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Abstract. This paper is concerned with developing uniform con-
fidence bands for functions estimated nonparametrically with in-
strumental variables. We show that a sieve nonparametric instru-
mental variables estimator is pointwise asymptotically normally
distributed. The asymptotic normality result holds in both mildly
and severely ill-posed cases. We present an interpolation method
to obtain a uniform confidence band and show that the bootstrap
can be used to obtain the required critical values. Monte Carlo ex-
periments illustrate the finite-sample performance of the uniform
confidence band.
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1. Introduction

This paper is concerned with developing a uniform confidence band
for the unknown function g in the model

Y = g(X) + U ; E(U |W = w) = 0 for almost every w,(1.1)

where Y is a scalar dependent variable, X ∈ Rq is a continuously
distributed explanatory variable that may be endogenous (that is, we
allow the possibility that E(U |X = x) 6= 0), W ∈ Rq is a continu-
ously distributed instrument for X, and U is an unobserved random
variable. The unknown function g is nonparametric. It is assumed
to satisfy mild regularity conditions but does not belong to a known,
finite-dimensional parametric family. The data are an independent
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random sample {(Yi, Xi,Wi) : i = 1, . . . , n} from the distribution of
(Y,X,W ).

Nonparametric estimators of g in (1.1) have been developed by Newey
and Powell (2003); Hall and Horowitz (2005); Darolles, Florens, and
Renault (2006); and Blundell, Chen, and Kristensen, (2007). Horowitz
(2007) gave conditions for asymptotic normality of the kernel estimator
of Hall and Horowitz (2005). Newey, Powell, and Vella (1999) presented
a control function approach to estimating g in a model that is differ-
ent from (1.1) but allows endogeneity of X and achieves identification
through an instrument. The control function model is non-nested with
(1.1) and is not discussed further in this paper. Chernozhukov, Im-
bens, and Newey (2007); Horowitz and Lee (2007); and Chernozhukov,
Gagliardini, and Scaillet (2008) have developed methods for estimating
a quantile-regression version of model (1.1). In the quantile regression,
the condition E(U |W = w) = 0 is replaced by

P (U ≤ 0|W = w) = α for some α ∈ (0, 1).(1.2)

Chen and Pouzo (2008, 2009) developed a method for estimating a
large class of nonparametric and semiparametric conditional moment
models with possibly non-smooth moments. This class includes (1.2).

This paper obtains asymptotic uniform confidence bands for g in
(1.1) by using a modified version of the sieve estimator of Blundell,
Chen, and Kristensen (2007). Sieve estimators of g are easier to com-
pute than kernel-based estimators such as those of Darolles, Florens,
and Renault (2006) and Hall and Horowitz (2005). Moreover, sieve
estimators achieve the fastest possible rate of convergence under con-
ditions that are weaker in important ways than those required by exist-
ing kernel-based estimators. The sieve estimator used in this paper was
proposed by Horowitz (2008) in connection with a specification test for
model (1.1). Here, we show that this estimator is pointwise asymptoti-
cally normal and that the bootstrap can be used to obtain simultaneous
pointwise confidence intervals for g(x1), . . . , g(xL) on almost every fi-
nite grid of points x1, . . . , xL. We obtain a uniform confidence band
by using properties of g such as smoothness or monotonicity to in-
terpolate between the grid points. Hall and Titterington (1988) used
interpolation to obtain uniform confidence bands for nonparametrically
estimated probability density and conditional mean functions.

A seemingly natural approach to constructing a uniform confidence
band is to obtain the asymptotic distribution of a suitably scaled ver-
sion of supx |ĝ(x) − g(x)|, where ĝ is the estimator of g. However,
when ĝ is a sieve estimator, this is a difficult problem that has been
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solved only for special cases in which g is a conditional mean func-
tion and certain restrictive conditions hold (Zhou, Shen, and Wolfe
1998; Wang and Yang 2009). Our interpolation approach avoids this
problem. The resulting uniform confidence band is not asymptotically
exact; its true and nominal coverage probabilities are not necessarily
equal even asymptotically. But the confidence band can be made arbi-
trarily accurate (that is, the difference between the true and nominal
asymptotic coverage probabilities can be made arbitrarily small) by
making the grid x1, . . . , xL sufficiently fine. In practice, a confidence
band can be computed at only finitely many points, so it makes lit-
tle practical difference whether the confidence interval at each point
is based on a finite-dimensional distribution or the distribution of a
scaled version of supx |ĝ(x)− g(x)|.

The remainder of the paper is organized as follows. Section 2 presents
the sieve nonparametric IV estimator. Section 3 gives conditions under
which the estimators of g(x1), . . . , g(xL) are asymptotically multivari-
ate normally distributed when X and W are scalar random variables.
Section 4 uses the results of Section 3 to obtain a uniform confidence
band for g when X and W are scalars. Section 5 establishes consistency
of the bootstrap for estimating the confidence band. Section 6 extends
the results of Sections 3-5 to the case in which X and W are random
vectors. Section 7 reports the results of a Monte Carlo investigation
of the finite-sample coverage probabilities of the uniform confidence
bands, and concluding comments are given in Section 8. The proofs of
theorems are in the appendix.

2. The Sieve Nonparametric Estimator

This section describes Horowitz’s (2008) sieve estimator of g when
X and W are scalar random variables. Let fW denote the probability
density function of W , fXW denote the probability density function of
(X,W ), and

m(w) := E(Y |W = w)fW (w).

Assume, without loss of generality, that the support of (X,W ) is [0, 1]2.
Define the operator A by

(Av)(w) :=

∫ 1

0

v(x)fXW (x,w)dx.

Then g in (1.1) satisfies

Ag = m.
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For a function v : [0, 1] 7→ R and integer l ≥ 0, define

Dlv(x) :=
∂lv(x)

∂xl

whenever the derivative exists, with the convention D0v(x) = v(x).
Given an integer s > 0, define the Sobolev norm

‖v‖s :=

{
s∑
l=0

∫ 1

0

[Dlv(x)]2 dx

}1/2

and the function space

Hs := {v : [0, 1] 7→ R : ‖v‖s ≤ Cg} ,

where Cg <∞ is a constant. Assume that g ∈ Hs for some s > 0 and
that ‖g‖s < Cg.

The estimator of g is defined in terms of series expansions of g, m,
and A. Let {ψj : j = 1, 2, . . .} be a complete, orthonormal basis for
L2[0, 1]. The expansions are

g(x) =
∞∑
j=1

bjψj(x),

m(w) =
∞∑
k=1

akψk(w),

fXW (x,w) =
∞∑
j=1

∞∑
k=1

cjkψj(x)ψk(w),

(2.1)

where

bj =

∫ 1

0

g(x)ψj(x)dx,

ak =

∫ 1

0

m(w)ψk(w)dw,

cjk =

∫
[0,1]2

fXW (x,w)ψj(x)ψk(w)dwdx.
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To estimate g, we need to estimate ak, m, cjk, and fXW . The estimators
are

âk = n−1

n∑
i=1

Yiψk(Wi),

m̂ =
Jn∑
j=1

âjψj,

ĉjk = n−1

n∑
1=1

ψj(Xi)ψk(Wi),

(2.2)

and

f̂XW (x,w) =
Jn∑
j=1

Jn∑
k=1

ĉjkψj(x)ψk(w),

respectively, where Jn < ∞ is the series truncation point. Define the
operator Ân that estimates A by

(Ânv)(w) :=

∫ 1

0

v(x)f̂XW (x,w)dx.(2.3)

Define the subset of Hs:

Hns :=

{
v =

Jn∑
j=1

vjψj : ‖v‖s ≤ Cg

}
.

The sieve estimator of g is defined as

ĝn := arg minv∈Hns

∥∥∥Ânv − m̂∥∥∥ ,(2.4)

where ‖·‖ is the L2 norm on L2[0, 1]. Under the assumptions of Section

3, P (Ângn = m̂)→ 1 as n→∞. Therefore,

ĝn = Â−1
n m̂(2.5)

with probability approaching 1 as n→∞.

3. Asymptotic Normality

This section gives conditions under which ĝn(x) is asymptotically
normally distributed. Proving asymptotic normality of an estimator
usually requires assumptions that are stronger than those needed for
consistency or convergence at the asymptotically optimal rate. The as-
sumptions made here are stronger than those used by Blundell, Chen,
and Kristensen (2007) and Horowitz (2008) to prove that their estima-
tors are consistent with the optimal rate of convergence.
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Define A∗ to be the adjoint operator of A and

ρn := sup
h∈Hns:‖h‖6=0

‖h‖
‖(A∗A)1/2h‖

,(3.1)

Blundell, Chen, and Kristensen (2007) call this the sieve measure of
ill-posedness and discuss its relation to the eigenvalues of A∗A. Under
suitable conditions, ρn = O(Jrn) if the eigenvalues, sorted in decreasing
order, converge to zero at the rate J−2r

n (mildly ill-posed case). If the
eigenvalues converge exponentially fast (severely ill-posed case), then
ρn is proportional to exp(cJn) for some finite c > 0.

Assumption 3.1. (1) The support of (X,W ) is [0, 1]2. (2) g ∈ Hs

and ‖g‖s < Cg for some integer s > 0 and finite constant Cg. (3) The
operator A is nonsingular. (4) (X,W ) has a probability density func-
tion fXW with respect to Lebesgue measure. In addition, fXW has r ≥ s
bounded derivatives with respect to any combination of its arguments.
(5) supw∈[0,1]E(Y 2|W = w) ≤ CY for some CY <∞.

Assumption 3.2. (1) The set of functions {ψj : j = 1, 2, . . .} is a com-

plete, orthonormal basis for L2[0, 1]. (2)
∥∥∥g −∑J

j=1 bjψj

∥∥∥ = O (J−s).

Among other things, Assumptions 3.1 and 3.2 ensure that fXW is
at least as smooth as g. Moreover, A and A∗ map L2[0, 1] into Hs.
Assumption 3.2 (2) is satisfied by a variety of bases including trigono-
metric functions, orthogonal polynomials, and splines.

Let An be the operator on L2[0, 1] whose kernel is

an(x,w) =
Jn∑
j=1

Jn∑
k=1

cjkψj(x)ψk(w).

Let A∗n denote the adjoint operator of An.

Assumption 3.3. The ranges of An and A∗n are contained in Hns for
all sufficiently large n. Moreover

ρn sup
h∈Hns

‖(An − A)h‖ = O(J−sn ).(3.2)

Assumption 3.3 ensures that An is a “sufficiently accurate” approx-
imation to A. Condition (3.2) can be interpreted as a smoothness
restriction on fXW or as a restriction on the sizes of the values of cjk
for j 6= k. Condition (3.2) is satisfied automatically if cjk = cjjδjk,
where δjk is the Kronecker delta. Hall and Horowitz (2005) used a sim-
ilar diagonality condition in their nonparametric instrumental variables
estimator.
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Assumption 3.4. (1) J−sn = o
[
ρn(Jn/n)1/2

]
. (2) (ρnJn)/n1/2 → 0.

Assumption 3.4 (1) requires ĝn to be undersmoothed. That is, as
n → ∞, Jn increases at a rate that is faster than the asymptotically
optimal rate. As with other nonparametric estimators, undersmoothing
ensures that the asymptotic bias of ĝn is negligible. Assumption 3.4
(2) ensures that the asymptotic variance of ĝn converges to zero.

Remark 1. (1) If ρn = O(Jrn) for some finite r > 0, then we can set
Jn ∝ nη, where 1

2r+2s+1
< η < 1

2r+2
.

(2) If ρn = exp(cJn) for some finite c > 0, Assumption 3.4 is satisfied
if

Jn =
log n

2c
− 2sα0 + 1

2c
log log n

for some α0 satisfying 0 < α0 < 1. The rate of increase must be
logarithmic, and the constant multiplying log n must be 1/(2c). If the
constant is larger, the integrated variance of ĝn − g does not converge
to 0. If the constant is smaller, the bias dominates the variance. The
higher order component of Jn is important. If it is 0 or too small,
the integrated variance does not converge to 0. These requirements
illustrate the delicacy of estimation in the severely ill-posed case.

Now define

δn(x, Y,X,W ) :=

Jn∑
k=1

{
[Y ψk(W )− ak]−

Jn∑
j=1

bj [ψj(X)ψk(W )− cjk]

}
(A−1

n ψk)(x).

(3.3)

Also, define

σ2
n(x) := n−1Var [δn(x, Y,X,W )] .(3.4)

Define cn � dn for any positive sequences of constants cn and dn to
mean that cn/dn is bounded away from 0 and ∞.

Assumption 3.5. For any x ∈ [0, 1], σn(x) � ‖σn‖ except, possibly,
if x belongs to a set of Lebesgue measure 0.

This condition is similar to Assumption 6 of Horowitz (2007). It
rules out a form of superefficiency in which gn(x) − g(x) converges to
0 more rapidly than ‖gn − g‖.

Assumption 3.6. There exist constants C <∞ and v > 0 such that

EY XW
[
|δn(x, Y,X,W )|2+v] ≤ C

for all sufficiently large n and for all x ∈ [0, 1].
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By a triangular-array version of the weak law of large numbers, e.g.
Theorem 2 of Andrews (1988), Assumption 3.6 implies that as n→∞,

n−1

n∑
i=1

δn(x, Yi, Xi,Wi)
2 →p EY XW

[
δn(x, Y,X,W )2

]
.

Assumption 3.6 also ensures that we can apply a triangular-version of
the Lindeberg-Levy central limit theorem.

Let {x1, . . . , xL} denote a set of L points in [0, 1]. The following the-
orem establishes the joint asymptotic normality of the sieve estimator
of ĝn(x1), . . . , ĝn(xL).

Theorem 3.1. Let Assumptions 3.1-3.6 hold. Then as n→∞,{
[ĝn(x1)− g(x1)]

σn(x1)
, . . . ,

[ĝn(xL)− g(xL)]

σn(xL)

}
→d N[0, Vg(x1, . . . , xL)],

except, possibly, if x1, ..., xL belong to a set of Lebesgue measure 0 in
[0, 1]L, where Vg(x1, . . . , xL) is the L × L matrix whose (j, k) element
is

Vjk := E

[
δn(xj, Y,X,W )δn(xk, Y,X,W )

(Var [δn(xj, Y,X,W )])1/2(Var [δn(xk, Y,X,W )])1/2

]
.

3.1. Estimation of σ2
n(x). To make use of the asymptotic results ob-

tained in Theorem 3.1, it is necessary to estimate σ2
n(x). To do this,

let

δ̃∗n(x, Y,X,W ) := [Y − ĝn(X)]
Jn∑
k=1

ψk(W )ψk(x).(3.5)

Then σ2
n(x) can be estimated consistently by

s2
n(x) := n−2

n∑
i=1

{
Â−1
n

[
δ̃∗n(x, Yi, Xi,Wi)− δ̄∗n(x)

]}2

,(3.6)

where

δ̄∗n(x) := n−1

n∑
i=1

δ̃∗n(x, Yi, Xi,Wi).(3.7)

We now state the consistency of s2
n(x).

Theorem 3.2. Let Assumptions 3.1-3.6 hold. Then as n→∞,

s2
n(x)

σ2
n(x)

→p 1.
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4. Uniform Confidence Band

The results in Section 3 make it possible to form joint confidence
intervals and, by interpolation, a uniform confidence band for g over
[a, b] for constants a and b such that 0 ≤ a < b ≤ 1. To form joint
confidence intervals, let {x1, . . . , xL} be points sampled from uniform
distributions on the intervals [a, a+ (b−a)/L), [a+ (b−a)/L, a+ 2(b−
a)/L), . . . , [a+ (L− 1)(b− a)/L, b]. Random sampling this way avoids
exceptional sets of Lebesgue measure 0 in Theorem 3.1. Let zα satisfy

P

[
sup

1≤l≤L
|Zl| > zα

]
= α,

where Zl is the l-th component of Z ∼ N[0, Vg(x1, . . . , xL)]. Then

ĝ(xl)− zαsn(xl) ≤ g(xl) ≤ ĝ(xl) + zαsn(xl)(4.1)

are joint asymptotic 100(1−α)% confidence intervals for g(x1), . . . , g(xL),
l = 1, . . . , L. We now describe two ways of obtaining a uniform con-
fidence band for g by interpolating the joint confidence intervals. A
method for estimating zα is described in Section 5.

4.1. A Uniform Confidence Band under Piecewise Monotonic-
ity. In this subsection, assume that g is monotonic on each of the grid
intervals. This is reasonable if L is sufficiently large. Let

xl := argmax{ĝ(xl) + zαsn(xl), ĝ(xl+1) + zαsn(xl+1)},

and

xl := argmin{ĝ(xl)− zαsn(xl), ĝ(xl+1)− zαsn(xl+1)}.

Then by the assumed monotonicity of g on [xl, xl+1],

ĝ(xl)− zαsn(xl) ≤ g(x) ≤ ĝ(xl) + zαsn(xl)

uniformly over x ∈ [xl, xl+1], l = 1, . . . , L − 1. Putting these inter-
vals together gives a uniform confidence band for g over [a, b]. The
asymptotic coverage probability is at least 1 − α and it can be made
arbitrarily close to 1− α by making L sufficiently large.

4.2. A Uniform Confidence Band under Lipschitz Continuity.
Alternatively, assume that g is Lipschitz continuous. That is,

|g(x)− g(y)| ≤ CL|x− y|

for some constant CL and any x, y ∈ [a, b]. For any x ∈ [a + (b −
a)/L, a + (L − 1)(b − a)/L], choose l such that |x − xl| is minimized.



10 JOEL L. HOROWITZ AND SOKBAE LEE

First note that (4.1) is equivalent to

ĝ(xl)− zαsn(xl) + [g(x)− g(xl)]

≤ g(x) ≤ ĝ(xl) + zαsn(xl) + [g(x)− g(xl)].
(4.2)

Then (4.2) implies

ĝ(xl)− zαsn(xl)− CL|x− xl| ≤ g(x) ≤ ĝ(xl) + zαsn(xl) + CL|x− xl|,

so that

ĝ(xl)− zαsn(xl)−
CL
L
≤ g(x) ≤ ĝ(xl) + zαsn(xl) +

CL
L

(4.3)

uniformly over x ∈ [xl − 1/L, xl + 1/L]. Putting these intervals in
(4.3) together gives a uniform confidence band for g over [a, b]. Again
the asymptotic coverage probability exceeds 1 − α but can be made
arbitrarily close to 1− α by making L sufficiently large.

5. Bootstrap Estimation of zα

This section shows that the bootstrap consistently estimates the
joint asymptotic distribution of [ĝn(x1) − g(x1)]/sn(x1),...,[ĝn(xL) −
g(xL)]/sL(xL). It follows that the bootstrap consistently estimates the
critical value zα in (4.1).

It is shown in the proof of theorem 3.1 that the leading term of the
asymptotic expansion of ĝn(x)− g(x) is

Sn(x) = n−1

n∑
i=1

δn(x, Yi, Xi,Wi),

where δn(x, Y,X,W ) is defined in (3.3). Therefore, it suffices to show
that the bootstrap consistently estimates the asymptotic distribution
of tn(x1), ..., tn(xL), where tn(x) := Sn(x)/sn(x). Define gn(x) :=∑Jn

j=1 bjψj(x) for any x ∈ [0, 1]. Define

S̃n(x) := n−1A−1
n

n∑
i=1

δ̃n(x, Yi, Xi,Wi),

where

δ̃n(x, Y,X,W ) := [Y − gn(X)]
Jn∑
k=1

ψk(W )ψk(x).

Then Sn(x) can be rewritten as

Sn(x) = S̃n(x)− ES̃n(x).
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Define t̃n(x) = [S̃n(x) − ES̃n(x)]/sn(x). We now describe a bootstrap
procedure that consistently estimates the asymptotic distribution of
t̃n(x1), . . . , t̃n(xL).

Let {(Y ∗i , X∗i ,W ∗
i ) : i = 1, . . . , n} denote a bootstrap sample that is

obtained by sampling the data {(Yi, Xi,Wi) : i = 1, . . . , n} randomly
with replacement. The bootstrap version of S̃n(x) is

S̃∗n(x) := n−1Â−1
n

n∑
i=1

δ̃∗n(x, Y ∗i , X
∗
i ,W

∗
i ),

where δ̃∗n(x, Y,X,W ) is defined in (3.5). A bootstrap version of tn(x)
is

t∗n(x) :=
[
S̃∗n(x)− Â−1

n δ̄∗n(x)
]
/sn(x),(5.1)

where δ̄∗n(x) is defined in (3.7). The α-level bootstrap critical value, z∗α,
estimates zα in (4.1) and can be obtained as the solution to

P ∗
[

sup
1≤l≤L

|t∗n(xl)| > z∗α

]
= α,

where P ∗ denotes the probability measure induced by bootstrap sam-
pling conditional on the data {(Yi, Xi,Wi) : i = 1, . . . , n}. One nice
feature of the bootstrap procedure is that it is unnecessary to estimate
Vg(x1, . . . , xL).

An alternative bootstrap version of tn(x) is

t∗∗n (x) :=
[
S̃∗n(x)− Â−1

n δ̄∗n(x)
]
/s∗n(x),(5.2)

where s∗n(x) is the bootstrap analog of sn(x). Specifically,

s∗n(x) :=

[
n−2

n∑
i=1

{
(Â∗n)−1

[
δ̃∗∗n (x, Y ∗i , X

∗
i ,W

∗
i )− δ̄∗∗n (x)

]}2
]1/2

,

(5.3)

where Â∗n and ĝ∗n, respectively, are the same as Ân and ĝn in (2.3) and
(2.4), but with the bootstrap sample {(Y ∗i , X∗i ,W ∗

i ) : i = 1, . . . , n} in
place of the estimation data,

δ̃∗∗n (x, Y ∗i , X
∗
i ,W

∗
i ) := [Y ∗i − ĝ∗n(X∗i )]

Jn∑
k=1

ψk(W
∗
i )ψk(x).(5.4)

and

δ̄∗∗n (x) := n−1

n∑
i=1

δ̃∗∗n (x, Y ∗i , X
∗
i ,W

∗
i ).(5.5)



12 JOEL L. HOROWITZ AND SOKBAE LEE

Let L∗(. . .) denote the conditional distribution L(. . . |{(Yi, Xi,Wi) :
i = 1, . . . , n}) and let d∞(H1, H2) denote the Kolmogorov distance,
that is the sup norm between two distribution functions H1 and H2.
The following theorem establishes the consistency of the bootstrap and
implies that z∗α is a consistent estimator of zα.

Theorem 5.1. Let Assumptions 3.1-3.6 hold. Then as n→∞,

d∞ (L∗{t∗n(x1), . . . , t
∗
n(xL)},N[0, Vg(x1, . . . , xL)])→ 0 in probability,

(5.6)

and

d∞ (L∗{t∗∗n (x1), . . . , t
∗∗
n (xL)},N[0, Vg(x1, . . . , xL)])→ 0 in probability.

(5.7)

6. Multivariate Model

This section extends the results of Sections 2-5 to a multivariate
model in which X and W are q-dimensional random vectors. Assume
that the support of (X,W ) contained is [0, 1]2q. Let {ψj : j = 1, 2, . . .}
be a complete, orthonormal basis for L2[0, 1]q. Define the operator A
by

(Av)(w) :=

∫
[0,1]q

v(x)fXW (x,w)dx.

As in Section 2, the estimator of g is defined in terms of series expan-
sions of g, m, and A. The expansions are like those in (2.1) with the
following generalized Fourier coefficients:

bj =

∫
[0,1]q

g(x)ψj(x)dx,

ak =

∫
[0,1]q

m(w)ψj(w)dw,

cjk =

∫
[0,1]2q

fXW (x,w)ψj(x)ψk(w)dwdx.

The estimators of ak, m, cjk, and fXW are the same as in (2.2), but

with the basis functions for L2[0, 1]q. Also, define the operator Ân that
estimates A by

(Ânv)(w) :=

∫
[0,1]q

v(x)f̂XW (x,w)dx.(6.1)

The sieve estimator of g is as in (2.4), where ‖·‖ is now the norm on
L2[0, 1]q. Then the asymptotic normality result of Section 3 can be
extended to the multivariate model with minor modifications.
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As in Section 4, it is possible to form joint confidence set for g in
the multivariate model. However, it is difficult to display joint con-
fidence intervals or a uniform confidence set when X is multidimen-
sional. Therefore, we consider a one-dimensional projection of a joint
confidence set for g.

Assume without loss of generality that the first component of X
is the direction of interest. Let {x11, . . . , x1L} be points sampled from
uniform distributions on the intervals [a, a+(b−a)/L), [a+(b−a)/L, a+
2(b−a)/L), . . . , [a+(L−1)(b−a)/L, b]. Let σ2

n(x) denote a multivariate
version of (3.4) and s2

n(x) denote a consistent estimator of σ2
n(x) as in

(3.6). For a fixed value, say x−1, of remaining components of X,

ĝ(x1l, x−1)− zαsn(x1l, x−1) ≤ g(x1l, x−1) ≤ ĝ(x1l, x−1) + zαsn(x1l, x−1)
(6.2)

are joint asymptotic 100(1− α)% confidence intervals for {g(x1l) : l =
1, . . . , L} over [a, b], where

P

[
sup

1≤l≤L
|Zl| > zα

]
= α,

and Zl is the l-th component of Z. Here, Z is the L-dimensional mean-
zero normal vector whose covariance matrix is the asymptotic covari-
ance matrix of{

[ĝn(x11, x−1)− g(x11, x−1)]

σn(x11, x−1)
, . . . ,

[ĝn(x1L, x−1)− g(x1L, x−1)]

σn(x1L, x−1)

}
.

We can construct the uniform confidence band of (6.2) as in Section
4 by assuming piecewise monotonicity or Lipschitz continuity. As in
Section 5, the critical value zα can be obtained by the bootstrap.

7. Monte Carlo Experiments

This section reports the results of a Monte Carlo investigation of
the coverage probabilities of the joint confidence intervals and uniform
confidence bands using the bootstrap-based critical values of Section 5.

As in Horowitz (2007), realizations of (Y,X,W ) were generated from
the model

fXW (x,w) = Cf

∞∑
j=1

(−1)j+1j−α/2 sin(jπx) sin(jπw),

g(x) = 2.2x,

Y = E[g(X)|W ] + V,

where Cf is a normalization constant chosen so that the integral of the
joint density of (X,W ) equals one and V ∼ N(0, 0.01). Experiments
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were carried out with α = 1.2 and α = 10. The sample size is n = 200.
There are 1000 Monte Carlo replications in each experiment.

The grid (x1, ..., xL) used to form joint confidence intervals and uni-
form confidence bands consists of 100 points. The Monte Carlo results
are not sensitive to variations in the value of L over the range 25 to 100.
The basis functions are Legendre polynomials that have had their sup-
ports shifted and have been normalized to make them orthonormal on
[0, 1]. The critical values are obtained by using the two bootstrap meth-
ods of Section 5 with 1000 bootstrap replications. The confidence bands
were computed by using the piecewise monotonicity method of Section
4.1. The joint confidence intervals are for (x1, . . . , xL) ∈ [a, b] and the
uniform confidence band is for any x ∈ [a, b] = [0.2, 0.8], [0.1, 0.9] or
[0.01, 0.99].

The results of the experiments are shown in Tables 1-2. In each
table, columns 3-5 show the empirical coverage probabilities of the
joint confidence intervals, and columns 6-8 show the empirical coverage
probabilities of the uniform confidence bands. We show the results
of experiments with Jn = 3, 4, 5, and 6. The results show that the
differences between the nominal and empirical coverage probabilities
are small when the critical value is based on t∗∗n (x) and Jn = 3 or 4.

8. Conclusions

This paper has given conditions under which a sieve nonparametric
IV estimator is pointwise asymptotically normally distributed. The as-
ymptotic normality result holds in both mildly and severely ill-posed
cases. We have also shown that joint pointwise confidence intervals
can be interpolated to obtain a uniform confidence band for the esti-
mated function. The bootstrap can be used to estimate the critical
values needed to form confidence intervals and bands. The results of
Monte Carlo experiments show that the differences between nominal
and empirical coverage probabilities are small when the critical values
are obtained by using a suitable version of the bootstrap.

Appendix A. Proofs

We begin with the proof of Theorem 3.1. Because ĝn = Â−1
n m̂ with

probability approaching 1, it suffices to establish the asymptotic dis-
tribution of ĥ ≡ Â−1

n m̂.
Define

mn :=
Jn∑
k=1

akψk.
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Then

Anĥ+ (Ân − An)ĥ = m̂,

so that

ĥ = A−1
n m̂− A−1

n (Ân − An)ĥ

= A−1
n m̂− A−1

n (Ân − An)g − A−1
n (Ân − An)(ĥ− g).

(A.1)

Recall that gn =
∑Jn

j=1 bjψj. Write

A−1
n m̂− g = A−1

n (m̂−mn) + (A−1
n mn − gn) + (gn − g).(A.2)

Combining (A.1) with (A.2) yields ĥ− g = Sn +Rn, where

Sn := A−1
n (m̂−mn)− A−1

n (Ân − An)g

and Rn := Rn1 +Rn2 +Rn3 with

Rn1 = −A−1
n (Ân − An)(ĥ− g),

Rn2 = A−1
n mn − gn,

Rn3 = gn − g.
We now prove three lemmas that are useful to prove Theorem 3.1.

Lemma A.1. We have that∥∥A−1
n

∥∥ ≤ O(ρn).

Proof of Lemma A.1. First note that by Assumption 3.3, the eigen-
functions of A∗nAn are in Hs for all sufficiently large n. Hence, since
the dimension of A∗nAn is Jn, we have that the eigenfunctions of A∗nAn
are in Hns as well.

Now ‖A−1
n ‖

2
is the largest eigenvalue of (A−1

n )∗A−1
n = (AnA

∗
n)−1,

which is the inverse of the smallest eigenvalue of AnA
∗
n or, equivalently,

the inverse of the smallest eigenvalue of A∗nAn. Since the smallest
eigenvalue of A∗nAn minimizes ‖An‖2, it suffices to the find the inverse
of

inf
h∈Hns

‖Anh‖
‖h‖

.

But

ρ−1
n = inf

h∈Hns

‖Ah‖
‖h‖

= inf
h∈Hns

‖Anh+ (A− An)h‖
‖h‖

≤ inf
h∈Hns

‖Anh‖+ ‖(A− An)h‖
‖h‖

= inf
h∈Hns

‖Anh‖
‖h‖

+O(ρ−1
n J−sn )



16 JOEL L. HOROWITZ AND SOKBAE LEE

by (3.2). Therefore,

inf
h∈Hns

‖Anh‖
‖h‖

≥ ρ−1
n +O(ρ−1

n J−sn ) = ρ−1
n [1 +O(J−sn )],

which implies that ∥∥A−1
n

∥∥ ≤ ρn[1 +O(J−sn )].

This proves the lemma. �

Lemma A.2. We have that

‖Rn1‖ = O
[
ρ2
n(Jn/n)

]
.

Proof of Lemma A.2. By Horowtiz (2008),∥∥∥ĥ− g∥∥∥ = Op

[
J−sn + ρn(Jn/n)1/2

]
= Op

[
ρn(Jn/n)1/2

]
,

where the last equality follows from undersmoothing (See Assumption
3.4 (1)). Note that by Lemma A.1,

‖Rn1‖ =
∥∥A−1

n

∥∥∥∥∥(Ân − An)(ĥ− g)
∥∥∥

≤ O(ρn)
∥∥∥Ân − An∥∥∥∥∥∥ĥ− g∥∥∥

= O(ρn) Op[(Jn/n)1/2]
∥∥∥ĥ− g∥∥∥ ,

which proves the lemma. �

Lemma A.3. We have that

‖Rn2‖ = O(J−sn ).

Proof of Lemma A.3. Note that by Lemma A.1,

‖Rn2‖ ≤
∥∥A−1

n

∥∥ ‖mn − Angn‖ ≤ O(ρn) ‖mn − Angn‖ .

Also, note that

mn − Angn =
∞∑

j=Jn+1

Jn∑
k=1

bjcjkψk,

and

(A− An)g =
∞∑

j=Jn+1

Jn∑
k=1

bjcjkψk +
∞∑
j=1

∞∑
k=Jn+1

bjcjkψk.
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Therefore,

‖(A− An)g‖2 = ‖mn − Angn‖2 +
∞∑

k=Jn+1

(
∞∑
j=1

bjcjk

)2

,

which implies that

ρn ‖mn − Angn‖ ≤ ρn ‖(A− An)g‖ .
Now note that Assumption 3.3 implies that

ρn sup
h∈Hns

‖(An − A)h‖ = O(J−sn ).(A.3)

Therefore, under (A.3), we have that

ρn ‖(A− An)g‖ ≤ ρn ‖(A− An)gn‖+ ρn ‖(A− An)(g − gn)‖
= O(J−sn ),

since ρn ‖(A− An)(g − gn)‖ = o(J−sn ). Therefore, we have proved the
lemma. �

Proof of Theorem 3.1. Note that by Assumption 3.2 (2), ‖Rn3‖ = O(J−sn ).
This is asymptotically negligible because of undersmoothing (Assump-
tion 3.4 (1)). Therefore, by Lemmas A.2 and A.3 with the conditions
on Jn in Assumption 3.4,

‖Rn‖ = op
[
ρn(Jn/n)1/2

]
.(A.4)

Now using the series expansions, we have that

[A−1
n (m̂−mn)](x) =

Jn∑
k=1

[âk − ak] (A−1
n ψk)(x)

= n−1

n∑
i=1

Jn∑
k=1

[Yiψk(Wi)− ak] (A−1
n ψk)(x)

and

[A−1
n (Ân − An)g](x) =

Jn∑
j=1

Jn∑
k=1

bj(ĉjk − cjk)(A−1
n ψk)(x)

= n−1

n∑
i=1

Jn∑
j=1

Jn∑
k=1

bj [ψj(Xi)ψk(Wi)− cjk] (A−1
n ψk)(x).

Therefore,

Sn(x) = n−1

n∑
i=1

δn(x, Yi, Xi,Wi).
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A triangular-array version of the Lindeberg-Levy central theorem yields
the result that

Sn(x)

σn(x)
→d N(0, 1).

Now let {x1, . . . , xL} be a set of L points in [0, 1]. Then, the Cramér-
Wold device yields the result that{

Sn(x1)

σn(xl)
, . . . ,

Sn(xL)

σn(xL)

}
→d N[0, Vg(x1, . . . , xL)].

Under the assumption σn(x) � ‖σn‖, the theorem follows if we can
show that

‖σn‖ = Op

[
ρn(Jn/n)1/2

]
.(A.5)

To show (A.5), write∫ 1

0

σ2
n(x)dx = n−1

∫ 1

0

Var[δn(x, Y,X,W )]dx

= E

∫ 1

0

[Sn(x)]2dx

= E ‖Sn‖2

≤ 2E
∥∥A−1

n An(m̂−mn)
∥∥2

+ 2E
∥∥∥A−1

n An(Ân − An)g
∥∥∥2

≤ 2
∥∥A−1

n

∥∥2
[
E ‖An(m̂−mn)‖2 + E

∥∥∥An(Ân − An)g
∥∥∥2
]

= O(ρ2
n)

[
E ‖An(m̂−mn)‖2 + E

∥∥∥An(Ân − An)g
∥∥∥2
]
.

Note that

An(m̂−mn) =
Jn∑
j=1

(âj − aj)ψj.

Define

τjk := EY 2ψj(W )ψk(W )− ajak.
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Note that τjk is bounded uniformly over (j, k) since E(Y 2|W = w) is
bounded. Then

E ‖An(m̂−mn)‖2 = E

Jn∑
j=1

Jn∑
k=1

〈(âj − aj)ψj, âk − ak)ψk〉

= E
Jn∑
j=1

(âj − aj)2

= n−1

Jn∑
j=1

τjj

= O

(
Jn
n

)
.

Now note that

An(Ân − An)g =
Jn∑
j=1

Jn∑
k=1

bj(ĉjk − cjk)ψk.

Define

τ̃jklm := E [{ψj(X)ψk(W )− cjk} {ψl(X)ψm(W )− clm}] .

Since τ̃jklm is uniformly bounded over (j, k, l,m), we have that

E
∥∥∥An(Ân − An)g

∥∥∥2

= E
Jn∑
j=1

Jn∑
k=1

Jn∑
l=1

Jn∑
m=1

〈bj(ĉjk − cjk)ψk, bl(ĉlm − clm)ψm〉

= E
Jn∑
j=1

Jn∑
k=1

Jn∑
l=1

bjbl(ĉjk − cjk)(ĉlk − clk)

= n−1

Jn∑
j=1

Jn∑
k=1

Jn∑
l=1

bjblτ̃jklk

≤ (Jn/n)

[
Jn∑
j=1

|bj|

]2

≤ (Jn/n)
Jn∑
j=1

b2j

= O

(
Jn
n

)
.
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It follows that

‖σn‖2 = O

(
ρ2
nJn
n

)
.

Therefore,

σg(x) = O

[
ρn

(
Jn
n

)1/2
]

(A.6)

except, possibly, on a set of x’s whose Lebesgue measure is 0. Thus,
we have proved the theorem. �

We will first prove Theorem 5.1 and then Theorem 3.2.

Proof of Theorem 5.1. Define

Λn(x,X,W ) := − [ĝn(X)− gn(X)]
Jn∑
k=1

ψk(W )ψk(x)

and

Λ̄n(x) := n−1

n∑
i=1

Λn(x,Xi,Wi).

Now write

δ̃∗n(x, Y,X,W ) = δ̃n + Λn(x,X,W ).

Define ∆n := Ân − An. Then using the fact that

Â−1
n − A−1

n =
[
(I + A−1

n ∆n)−1 − I
]
A−1
n ,(A.7)

we have that

S̃∗n(x)− Â−1
n δ̄∗n(x) =

4∑
l=1

S̃∗nl(x),

where

S̃∗n1(x) = n−1A−1
n

n∑
i=1

[
δn(x, Y ∗i , X

∗
i ,W

∗
i )− δ̄n(x)

]
,

S̃∗n2(x) = n−1
[
(I + A−1

n ∆n)−1 − I
]
A−1
n

n∑
i=1

[
δn(x, Y ∗i , X

∗
i ,W

∗
i )− δ̄n(x)

]
,

S̃∗n3(x) = n−1A−1
n

n∑
i=1

[
Λn(x,X∗i ,W

∗
i )− Λ̄n(x)

]
,
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and

S̃∗n4(x) = n−1
[
(I + A−1

n ∆n)−1 − I
]
A−1
n

n∑
i=1

[
Λn(x,X∗i ,W

∗
i )− Λ̄n(x)

]
.

First, S̃∗n1(x) is a bootstrap analog of S̃n, so consistency of the boot-
strap distribution of S̃∗n1(x)/sn(x) for that of S̃n/sn(x) follows imme-
diately from Theorem 1.1 of Mammen (1992). Similarly, the boot-

strap distribution of
∑L

l=1 γlS̃
∗
n1(xl)/sn(xl) is consistent for that of∑L

l=1 γlS̃n(xl)/sn(xl) for any real constants γ1, . . . , γL.

Now consider S̃∗n2. Note that∥∥A−1
n ∆n

∥∥ ≤ ∥∥A−1
n

∥∥ ‖∆n‖ = Op

[
ρn(Jn/n)1/2

]
= op(1).(A.8)

Therefore, ∥∥(I + A−1
n ∆n)−1 − I

∥∥ = op(1).(A.9)

Since

S̃∗n2(x) =
[
(I + A−1

n ∆n)−1 − I
]
S̃∗n1(x),

(A.9) implies that ∥∥∥S̃∗n2

∥∥∥ = op(1)
∥∥∥S̃∗n1

∥∥∥ .
Now consider S̃∗n3 and S̃∗n4. We have that

S̃∗n4(x) =
[
(I + A−1

n ∆n)−1 − I
]
S̃∗n3(x).

Therefore, again (A.9) implies that∥∥∥S̃∗n4

∥∥∥ = op(1)
∥∥∥S̃∗n3

∥∥∥ .
It now suffices to show that S̃∗n3 is asymptotically negligible. To do
this, define

νn(X) := ĝn(X)− gn(X),

Zn(W,x) := A−1
n

Jn∑
k=1

ψk(W )ψk(x).

Then

S̃∗n3(x) = n−1

n∑
i=1

νn(X∗i )Zn(W ∗
i , x)− n−1

n∑
i=1

νn(Xi)Zn(Wi, x).
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Let V ∗ and E∗, respectively, denote the variance and expectation rela-
tive to the distribution induced by bootstrap sampling. Then E∗S̃∗n3(x) =
0. Define V ∗n (x) := V ∗[S̃∗n3(x)]. Now note that

V ∗n (x) ≤ E∗n−2

n∑
i=1

ν∗n(X∗i )2Z∗n(W ∗
i , x)2

= n−2

n∑
i=1

ν∗n(Xi)
2Z∗n(Wi, x)2.

But, νn(Xi)
2 = O(‖ĝn − gn‖2) = O(‖ĝn − g‖2) with probability 1.

Therefore,

V ∗n (x) ≤ n−2O(‖ĝn − g‖2)
n∑
i=1

Z∗n(Wi, x)2

with probability 1. Now,

n−2

n∑
i=1

Z∗n(Wi, x)2 = n−2

n∑
i=1

[
Jn∑
k=1

ψk(Wi)(A
−1
n ψk)(x)

]2

≡ Rn(x).

But, ‖A−1
n ψk‖ ≤ ρn, so (A−1

n ψk)(x) = O(ρn) for almost every x. There-
fore,

Rn(x) ≤ O(ρ2
n)n−2

n∑
i=1

[
Jn∑
k=1

|ψk(Xi)|

]2

= Op

(
ρ2
nJ

2
n

n

)
by Markov’s inequality for almost every x. Under Assumption 3.3,
Rn(x) = op(1) for almost every x. It follows that for almost every x,

V ∗n (x) = op(‖ĝn − g‖2).

This combined with the fact that E∗S̃∗n3(x) = 0 implies that S̃∗n3(x) is
asymptotically negligible for almost every x under sampling from the
bootstrap distribution.

Now note that the estimator sn(x) is consistent for σn(x) by Theo-
rem 3.2. Therefore, the first conclusion (5.6) of Theorem 5.1 follows
from consistency of the bootstrap distribution of the bootstrap distri-
bution of

∑L
l=1 γlS̃

∗
n1(xl)/sn(xl) for that of

∑L
l=1 γlS̃n(xl)/sn(xl) and

the Cramér-Wold device.
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Similarly, the second conclusion (5.7) of Theorem 5.1 follows if we
show that s∗n(x) is consistent for σn(x), which is proved in Lemma A.4
below. �

Proof of Theorem 3.2. Note that we can write s2
n(x) as

s2
n(x) = n−2

n∑
i=1

{
Â−1
n δ∗n(x, Yi, Xi,Wi)

}2

− n−1
[
Â−1
n δ̄∗n(x)

]2
.

By the arguments used for S̃∗n2 in the proof of Theorem 5.1, replacing

Ân with An creates an asymptotically negligible error for almost every
x, it suffices to prove the consistency of

n−2

n∑
i=1

{
A−1
n δ∗n(x, Yi, Xi,Wi)

}2 − n−1
[
A−1
n δ̄∗n(x)

]2
.

Now

A−1
n δ̃∗n(x, Y,X,W ) = A−1

n δ∗n(x, Y,X,W ) + A−1
n Λn(x,X,W ).(A.10)

Then the second term on the right-hand side of (A.10) is asymptotically
negligible for almost every x by the arguments used with S̃∗n3 in the
proof of Theorem 5.1. Therefore, it suffices to show that

σ−2
n (x)

{
n−2

n∑
i=1

[
A−1
n δ̃n(x, Yi, Xi,Wi)

]2
− n−1

[
A−1
n δ̄n(x)

]2}→p 1.

(A.11)

Note that {δ̃n(x, Yi, Xi,Wi)} is uniformly integrable by assumption.
Then (A.11) follows from a triangular-array version of the weak law of
large numbers, e.g. Theorem 2 of Andrews (1988). �

Lemma A.4. Let Assumptions 3.1-3.6 hold. Then as n→∞,

[s∗n(x)]2

σ2
n(x)

→p 1,

conditional on the original observations {(Yi, Xi,Wi) : i = 1, . . . , n}.

Proof of Lemma A.4. The estimator [s∗n(x)]2 differs from s2
n(x) by re-

placing ĝn with ĝ∗n, Â−1
n with (Â∗n)−1, and {Yi, Xi,Wi} with {Y ∗i , X∗i ,W ∗

i }.
Define ∆∗n := Â∗n − Ân. Then

(Â∗n)−1 − Â−1
n =

[
(I + Â−1

n ∆∗n)−1 − I
]
Â−1
n .(A.12)
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Now using (A.7), write

Â−1
n ∆∗n = A−1

n ∆∗n + [Â−1
n − A−1

n ]∆∗n

= A−1
n ∆∗n + [(I + A−1

n ∆n)−1 − I]A−1
n ∆∗n.

Thus, by (A.9), ∥∥∥Â−1
n ∆∗n

∥∥∥ ≤ [1 + op(1)]
∥∥A−1

n ∆∗n
∥∥ .(A.13)

Now as in (A.8),∥∥A−1
n ∆∗n

∥∥ ≤ ∥∥A−1
n

∥∥ ‖∆∗n‖ = Op∗
[
ρn(Jn/n)1/2

]
= op∗(1),(A.14)

where p∗ denotes bootstrap probability. It follows from (A.12)-(A.14)
that ∥∥∥[(Â∗n)−1 − Â−1

n ]h
∥∥∥ = op∗(1)

∥∥∥Â−1
n h
∥∥∥(A.15)

for any h ∈ L2[0, 1]. Therefore, s∗n(x)2 is asymptotically equivalent to

s∗n1(x)2 := n−2

n∑
i=1

{
(Ân)−1

[
δ̃∗∗n (x, Y ∗i , X

∗
i ,W

∗
i )− δ̄∗∗n (x)

]}2

.

Now define m̂∗ =
∑Jn

k=1 a
∗
kψk, where a∗k = n−1

∑n
i=1 Y

∗
i ψk(W

∗
i ). Set

ĝ∗n = (Â∗n)−1m̂∗.

Note that this is not the same as (2.4) with the bootstrap sample.

Recall that ĥ ≡ Â−1
n m̂ is asymptotically equivalent to ĝn. Then

ĝ∗n − ĥ

= [(A∗n)−1 − Â−1
n ]m̂+ [(A∗n)−1 − Â−1

n ](m̂∗ − m̂] + Â−1
n (m̂∗ − m̂).

Therefore, it follows from (A.15) and the fact that ‖m̂∗ − m̂‖ = Op∗ [(Jn/n)1/2]
that ∥∥∥ĝ∗n − ĥ∥∥∥ = Op∗ [ρn(Jn/n)1/2].

Consequently, s∗n(x)2 is asymptotically equivalent to

s∗n2(x)2 := n−2

n∑
i=1

{
(Ân)−1

[
δ̃∗n(x, Y ∗i , X

∗
i ,W

∗
i )− δ̄∗n(x)

]}2

.

where δ̃∗n(x, Y,X,W ) and δ̄∗n(x) are defined in (3.5) and (3.7), respec-
tively. Then the lemma follows from the consistency of the bootstrap
estimator of a sample average. �
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Table 1. Results of Monte Carlo experiments with
bootstrap critical values (α = 1.2)

Range Joint Confidence Intervals Uniform Confidence Band
of x: Nominal Probabilities Nominal Probabilities
[a, b] Jn 0.90 0.95 0.99 0.90 0.95 0.99

Bootstrap Critical Values I
(0.2,0.8) 3 0.866 0.923 0.962 0.872 0.926 0.962

4 0.913 0.953 0.986 0.920 0.957 0.986
5 0.929 0.962 0.987 0.935 0.965 0.989
6 0.933 0.966 0.989 0.938 0.970 0.990

(0.1,0.9) 3 0.851 0.893 0.944 0.859 0.904 0.948
4 0.826 0.883 0.926 0.838 0.886 0.931
5 0.874 0.914 0.963 0.883 0.921 0.964
6 0.896 0.940 0.975 0.903 0.947 0.979

(0.01,0.99) 3 0.848 0.896 0.945 0.862 0.906 0.952
4 0.808 0.864 0.921 0.830 0.870 0.929
5 0.790 0.856 0.919 0.817 0.874 0.934
6 0.788 0.849 0.916 0.825 0.873 0.937

Bootstrap Critical Values II
(0.2,0.8) 3 0.911 0.951 0.981 0.914 0.951 0.981

4 0.929 0.968 0.992 0.935 0.971 0.992
5 0.948 0.981 0.997 0.953 0.984 0.997
6 0.955 0.987 0.997 0.959 0.989 0.997

(0.1,0.9) 3 0.907 0.946 0.989 0.912 0.949 0.991
4 0.904 0.938 0.986 0.907 0.940 0.988
5 0.926 0.966 0.991 0.932 0.967 0.991
6 0.949 0.980 0.997 0.956 0.982 0.997

(0.01,0.99) 3 0.905 0.946 0.989 0.911 0.955 0.993
4 0.895 0.949 0.992 0.910 0.957 0.993
5 0.922 0.964 0.995 0.931 0.973 0.997
6 0.943 0.976 0.996 0.957 0.984 0.997

Note: This table shows coverage probabilities of the joint confidence
intervals and uniform confidence band for g(x). Two types of bootstrap
critical values are considered: t∗n(x) in (5.1) (bootstrap critical value I)
and t∗∗n (x) in (5.2) (bootstrap critical value II).
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Table 2. Results of Monte Carlo experiments with
bootstrap critical values (α = 10)

Range Joint Confidence Intervals Uniform Confidence Band
of x: Nominal Probabilities Nominal Probabilities
[a, b] Jn 0.90 0.95 0.99 0.90 0.95 0.99

Bootstrap Critical Values I
(0.2,0.8) 3 0.656 0.701 0.768 0.659 0.702 0.770

4 0.727 0.770 0.846 0.738 0.778 0.848
5 0.745 0.793 0.871 0.749 0.800 0.877
6 0.776 0.821 0.890 0.789 0.831 0.897

(0.1,0.9) 3 0.652 0.699 0.765 0.660 0.702 0.768
4 0.695 0.736 0.812 0.702 0.743 0.820
5 0.699 0.755 0.829 0.710 0.765 0.843
6 0.742 0.790 0.867 0.766 0.808 0.875

(0.01,0.99) 3 0.649 0.700 0.765 0.661 0.704 0.768
4 0.692 0.732 0.811 0.708 0.745 0.819
5 0.699 0.749 0.831 0.720 0.765 0.846
6 0.745 0.793 0.865 0.773 0.820 0.882

Bootstrap Critical Values II
(0.2,0.8) 3 0.891 0.938 0.975 0.894 0.939 0.976

4 0.915 0.948 0.983 0.915 0.950 0.983
5 0.930 0.970 0.991 0.931 0.970 0.991
6 0.960 0.977 0.995 0.961 0.980 0.995

(0.1,0.9) 3 0.892 0.940 0.979 0.893 0.940 0.979
4 0.915 0.954 0.986 0.917 0.955 0.986
5 0.936 0.970 0.991 0.937 0.971 0.991
6 0.955 0.979 0.996 0.956 0.979 0.996

(0.01,0.99) 3 0.892 0.942 0.979 0.894 0.944 0.979
4 0.917 0.959 0.986 0.923 0.960 0.986
5 0.940 0.973 0.993 0.943 0.973 0.993
6 0.962 0.984 1.000 0.965 0.984 1.000

Note: This table shows coverage probabilities of the joint confidence
intervals and uniform confidence band for g(x). Two types of bootstrap
critical values are considered: t∗n(x) in (5.1) (bootstrap critical value I)
and t∗∗n (x) in (5.2) (bootstrap critical value II).
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