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Abstract

Probabilistic category learning (PCL) has become an increasingly popular paradigm to study
the brain bases of learning and memory. It has been argued that PCL relies on procedural
habit learning, which is impaired in Parkinson’s Disease (PD). However, as PD patients were
typically tested under medication, it is possible that L-dopa caused impaired performance in
PCL. We present formal models of rule-based strategy switching in PCL to re-analyse the data
from Jahanshahi et al. (2009) comparing PD patients on and off medication (within subjects) to
matched controls. Our analysis shows that PD patients followed a similar strategy switch process
as controls when off medication, but not when on medication. On medication, PD patients mainly
followed a random guessing strategy, with only few switching to the better Single Cue strategies.
PD patients on medication and controls made more use of the optimal Multi-Cue strategy. In
addition, while controls and PD patients off medication only switched to strategies which did
not decrease performance, strategy switches of PD patients on medication were not always
directed as such. Finally, results indicated that PD patients on medication responded according
to a probability matching strategy indicative of associative learning, while the behaviour of
PD patients off medication and controls was consistent with a rule-based hypothesis testing
procedure.
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1. Introduction

Parkinson’s disease (PD) is well-known for its characteristic motor symptoms such
as rigidity, tremor and akinesia (lack of movement). In addition to these, PD has been
associated with a number of cognitive deficits. Dementia is prevalent in PD patients
(Aarsland et al., 2005), but there is a range of less severe cognitive symptoms of PD,
related to working memory (Owen et al., 1997), attention (Filoteo and Maddox, 1999),
set-shifting (Cools et al., 2001b), and procedural learning (Saint-Cyr et al., 1988). PD
patients have also been shown to be impaired in category learning (Ashby et al., 2003;
Filoteo et al., 2005, 2007; Knowlton et al., 1996; Maddox et al., 2005; Shohamy et al.,
2004b). Given the nature of the disease, it may come as no surprise that PD patients
show certain learning deficits. PD involves the loss of dopamine producing cells in the
substantia nigra pars compacta, resulting in dopamine depletion in the dorsal striatum,
extending to other areas such as the ventral striatum and prefrontal cortex as the disease
progresses (Cools, 2006). Dopamine is thought to play a crucial role in the flexible con-
trol of behaviour in response to environmental demands (Cools, 2006; Nieoullon, 2002).
Evidence suggests that phasic dopamine bursts and dips in the striatum code “reward
prediction errors” (O’Doherty et al., 2004; Schultz, 2002; Schultz et al., 1997), associated
with the presence of an unexpected reward and absence of an expected reward respec-
tively. Prediction errors are crucial to many learning theories and the disruption of these
signals in PD is thus likely to impair learning.

In this article, we restrict our attention to Probabilistic Category Learning (PCL),
involving tasks in which stimulus features are imperfect predictors of category member-
ship. A popular PCL task is the Weather Prediction Task (WPT, Knowlton et al., 1994),
which asks participants to predict the state of the weather (Rainy, or Fine) based on
combinations of four “tarot” cards which are related to the weather with different prob-
abilities. Research with the WPT has provided mixed results. Some studies showed that,
compared to healthy controls, PD patients were impaired at early learning (Knowlton
et al., 1996; Witt et al., 2002), but to a lesser extent (Knowlton et al., 1996) or not (Witt
et al., 2002) in later learning. Other studies found impaired performance throughout the
task (Shohamy et al., 2004b,a; Wilkinson et al., 2008). Some studies found no impairment
in performance at all (Moody et al., 2004; Price, 2005).

One explanation of these discrepant findings is that there are different ways in which
PCL tasks such as the WPT can be solved, and that these different learning strategies
implicate distinct neural circuits. One impetus for the claim of such dissociable learning
systems was the finding that amnesic patients showed no (early) impairment in the WPT,
whilst unable to recall recall certain aspects of the testing episode (Eldridge et al., 2002;
Knowlton et al., 1994, 1996). Impaired WPT performance was not accompanied by this
lack of declarative memory in PD patients (Knowlton et al., 1996; Sage et al., 2003; Witt
et al., 2002). The double dissociation between learning performance and explicit recall
has been taken as evidence for the existence of multiple memory systems (Ashby et al.,
1998; Ashby and Maddox, 2005; Gabrieli, 1998; Knowlton et al., 1994, 1996; Poldrack
and Rodriguez, 2004; Shohamy et al., 2008). According to this view, PCL involves an
implicit habit learning process which depends on the dorsal striatum, an area unaffected
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by amnesia. Declarative memory on the other hand involves the medial temporal lobes,
an area which is impaired in amnesic, but not PD patients. Knowlton et al. (1996)
suggested that PD patients who did learn in the WPT relied on declarative learning
strategies, which is supported by the finding that PD patients showed normal learning in
a paired-associate version of the WPT, emphasizing declarative learning by memorization
(Shohamy et al., 2004a). This suggests that PD patients have particular problems in
learning from feedback to their responses, which can be related to disrupted reward
prediction errors. Neuroimaging studies with healthy individuals have shown increased
activity in the striatum and decreased activity in the medial temporal lobes during the
normal (feedback based) WPT (Poldrack et al., 2001; Witt et al., 2002). PD patients on
the other hand show increased activation in the medial temporal lobes throughout the
task, as well as lower activity in the dorsal striatum than controls (Witt et al., 2002).
The emerging picture is thus that, due to a disrupted striatal habit learning system, PD
patients rely on a qualitatively different learning process, one that is explicit (declarative)
rather than implicit (procedural).

Upon closer scrutiny, there is reason to doubt the implicit, habitual nature of PCL.
Both healthy (Lagnado et al., 2006) and amnesic (Speekenbrink et al., 2008) participants
have shown explicit insight into the cue-outcome contingencies, thus indicating access
to representations of the task environment which should be absent in purely habitual
learning. Indeed, there is now considerable evidence that PCL relies at least partially
(Meeter et al., 2006), if not wholly (Lagnado et al., 2006; Newell et al., 2007; Price,
2009), on explicit processes. Furthermore, a recent study failed to replicate the results
of Shohamy et al. (2004a). Instead of selective impairment for the feedback-based, but
normal learning on the paired associate version of the WPT, we found PD patients were
impaired on both versions relative to controls (Wilkinson et al., 2008). With the above
in mind, it is important to note that previous studies have almost exclusively tested PD
patients whilst on medication. The current medication levodopa (L-dopa) is a precursor
for dopamine and raises the dopamine levels in affected areas. Whilst generally effective
in reducing motor symptoms, the effects of L-dopa on cognitive functioning are less
clear, sometimes improving and sometimes deteriorating cognitive ability (Cools et al.,
2001a; Swainson et al., 2000; Gotham et al., 1988). Evidence suggests that the relation
between dopamine and performance follows an “inverted U-shaped” function (Cools,
2006). Increasing dopamine levels can either enhance or lower performance, depending
on baseline dopamine levels, implying a possible L-dopa “overdose” effect on relatively
spared areas such as the ventral striatum and/or the prefrontal cortex (Cools et al., 2001a;
Cools, 2006; Frank, 2005; Gotham et al., 1988). This raises the question whether the
impairment in PCL displayed by PD patients is the result of impaired habit learning due
to dorsal striatal dysfunction, or of an L-dopa overdose effect on relatively intact areas. As
the ventral striatum and prefrontal cortex are thought to support more intentional and
representational forms of learning, impaired PCL learning by PD patients on medication
may be due to impaired explicit rather than implicit learning processes.

In this article, we will apply a formal modelling framework to assess the nature of
PCL in PD and how it is affected by L-dopa. Based on work by Gluck et al. (2002), we
formulate a model of rule-based learning consistent with explicit learning strategies such
as hypothesis testing. We contrast it to a model which is more closely related to asso-
ciative or habitual learning. We apply the models to data from Jahanshahi et al. (2009),
who conducted an experiment in which PD patients performed the WPT both on and
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off medication (L-dopa). This data allows us to test whether PD patients approach PCL
tasks in a different way than healthy controls and whether their learning strategy is
affected by L-dopa. If performance in the WPT depends primarily on a habit learning
system supported by the dorsal striatum (e.g., Knowlton et al., 1994, 1996), we should
expect the associative model to fit control participants better than the rule-based model.
We should expect the opposite pattern for PD patients, who must overcome impaired
habit learning by relying on declarative strategies. If, on the other hand, performance
depends on more explicit processes, we should expect the rule-based model to fit both
controls and PD patients better than the associative model. However, if an L-dopa over-
dose effects impairs these explicit strategies, we might expect the rule-based model to fit
poorly to PD patients on medication.

In the following, we will first describe the Weather Prediction Task, followed by a
brief description of the the study conducted by Jahanshahi et al. (2009). We will then
introduce our strategy switch model and describe the different versions that we fitted to
the data. In the results section, we first discuss how these models described behaviour in
the PD and control group separately, and then investigate group differences in learning
strategies.

2. The Weather Prediction Task

In the Weather Prediction Task, participants are asked to predict the state of the
weather Y (1 = Fine, 0 = Rainy), on the basis of four “tarot cards” xj (cards with
geometrical patterns), which are either presented (xj = 1) or not (xj = 0). Each card is
associated with the weather with a different probability. Jahanshahi et al. (2009) used
the version introduced by Gluck et al. (2002), in which Card 1 (card 4) is strongly
(p = .8) associated with Fine (Rainy) weather, and card 2 (card 3) is weakly (p = .6)
associated with Fine (Rainy) weather. On each learning trial, participants are presented
with a combination of one, two, or three cards. The probability of the card combinations
is given in Table 1. Participants are then asked to predict the state of the weather,
after which they receive immediate outcome feedback on the actual state of the weather.
In addition, Jahanshahi et al. (2009) informed participants whether the response was
correct or incorrect, by a “thumbs up” and “thumbs down” sign respectively. The state
of the weather depends on the 14 possible cue patterns x = (x1, . . . , x4) according to
the conditional probabilities in Table 1. The objective is to draw upon these different
predictive patterns to maximize the number of correct predictions.

3. The Jahanshahi et al. (2009) study

Jahanshahi et al. (2009) conducted a study to investigate the effects of L-dopa on
PCL. They employed a within subjects design, in which PD patients were tested with
the WPT both on and off L-dopa, and matched controls also performed the task twice.
As a detailed description of the study can be found in Jahanshahi et al. (2009), we only
provide a brief description of the relevant details here.
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Table 1
Structure of the Weather Prediction task and strategy definitions (vs(x)) for the Constant Error and

Generalized Matching strategy switch model.

Pattern

A B C D E F G H I J K L M N

x

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

P (Pattern) 0.095 0.045 0.130 0.045 0.060 0.030 0.095 0.095 0.030 0.060 0.045 0.130 0.045 0.095

P (Fine|Pattern) 0.895 0.778 0.923 0.222 0.833 0.500 0.895 0.105 0.500 0.167 0.556 0.077 0.444 0.105

Constant Error (CE)

Random 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Singleton 1 1 0 -1 0 0 0 -1 0 0 0 0 0 0

Single 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

Single 2 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1

Single 3 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

Single 4 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

Multi-cue 1 1 1 -1 1 0 1 -1 0 -1 1 -1 -1 -1

Generalized Matching (GM)

Random 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Singleton 2.143 1.254 0 -1.254 0 0 0 -2.143 0 0 0 0 0 0

Single 1 1.386 -1.386 1.386 -1.386 1.386 -1.386 1.386 -1.386 1.386 -1.386 1.386 -1.386 1.386 -1.386

Single 2 -0.405 0.405 0.405 -0.405 -0.405 0.405 0.405 -0.405 -0.405 0.405 0.405 -0.405 -0.405 0.405

Single 3 0.405 0.405 0.405 -0.405 -0.405 -0.405 -0.405 0.405 0.405 0.405 0.405 -0.405 -0.405 -0.405

Single 4 1.386 1.386 1.386 1.386 1.386 1.386 1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386

Multi-cue 2.143 1.254 2.484 -1.254 1.607 0 2.143 -2.143 0 -1.607 0.225 -2.484 -0.225 -2.143

3.1. Participants

The PD patient group consisted of eleven individuals (8 male, 3 female), aged between
53 and 73 (M = 63.5, SD = 6.2), with a diagnosis of idiopathic Parkinson’s disease.
Patients were recruited from the movement disorders clinic at the National Hospital for
Neurology and Neurosurgery and their disease duration ranged from 3 to 37 years (M =
13.2, SD = 10.7). The majority of patients were in the mild to moderate stages of the
disease, while the disease was more severe for a small number of patients. When patients
were assessed off medication, the mean Hoehn-Yahr score (Hoehn and Yahr, 1967) was
2.8 (SD = 0.6) and when assessed on medication, the mean Hoehn-Yahr score was 2.2
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(SD = 0.8). All patients were non-demented and did not suffer from clinical depression. In
addition, all patients in the study were treated with L-dopa, stable on their medication
doses and responding well to the medication. The control group consisted of thirteen
healthy volunteers (5 male, 8 female) aged between 44 and 69 (M = 60.00, SD = 9.7).
Controls were screened and none had any neurological disorder or history of psychiatric
illness.

3.2. Procedure

PD patients were tested on two consecutive days. Half of the PD patients were tested
on medication first and the remainder were tested off medication first. When patients
were assessed on medication they were tested while they continued to take their usual
levodopa medication, on average 1.69 (SD = 0.94) hours after taking their last dose of
medicine. When assessed off medication, patients were tested after overnight withdrawal
of medication, on average 13.79 (SD = 2.2) hours after taking their last dose of med-
ication. Controls completed both tasks on the same day. Because each participant did
the WPT under two different conditions (on/off medication or time 1/time 2), a parallel
version of the usual WPT was constructed in which the outcomes were labelled Hot and
Cold. In addition, four different sets of tarot cards were used. Each version of the WPT
consisted of 200 trials. The order of the two versions was randomized.

3.3. Learning performance

To assess overall differences in learning performance, we re-analysed the results using
the average probability of correct responses, rather than the proportion of optimal re-
sponses, as a measure of performance (see Speekenbrink et al., 2008, for a specification
and justification of this measure). A 2 (group) by 2 (occasion) by 4 (block) ANOVA,
with repeated measures on the last two factors, showed a significant main effect of block,
F (3, 66) = 4.54, MSE = 0.004, p = .006, and a marginally significant main effect of occa-
sion, F (1, 22) = 4.06, MSE = 0.01, p = .056. In general, performance increased during the
task, block 1: M = 0.62, SD = 0.32; block 2: M = 0.64, SD = 0.31; block 3: M = 0.66,
SD = 0.30; block 4: M = 0.67, SD = 0.30. Furthermore, performance increased from
the first (M = 0.63, SD = 0.31) to the second testing occasion (M = 0.66, SD = 0.30).
There were no other significant effects. Importantly, although PD patients (M = 0.63,
SD = 0.32) performed slightly less well than controls (M = 0.67, SD = 0.30), this
difference was not significant, F (1, 22) = 2.42, MSE = 0.028, p = .134. To investigate
the effect of medication on performance, we conducted a 2 (order: on medication first,
off medication first) by 2 (medication: on, off) by 4 (block) ANOVA on the PD patient
data, with repeated measures on the last two factors. This showed a significant main ef-
fect of medication, F (1, 9) = 5.58, p = .042, MSE = 0.002. PD patients performed better
off (M = 0.64, SD = 0.31) than on medication (M = 0.62, SD = 0.32). Other effects
were not significant. Taken together, these results indicate that PD patients were im-
paired when on medication, but not when off medication. This was confirmed by t-tests,
which showed that performance of PD patients on medication differed from controls,
t(22) = 2.12, p < .05, while the performance of PD patients off medication did not differ
from controls, t(22) = 0.87, p = 0.39.
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4. Strategy switch model

Our strategy switch model is based on the work of Gluck et al. (2002). On the basis
of participants’ answers in a post-task questionnaire, Gluck et al. distinguished three
broad classes of response strategies in the WPT: a Singleton strategy, where partici-
pants respond optimally to those cue patterns consisting of a single card, but guess for
combinations of multiple cards, Single Cue strategies, in which participants base their
responses solely on the presence or absence of a single card, ignoring the other cues, and
a Multi-Cue strategy, in which participants learn to respond optimally to all possible
card patterns. Gluck et al. (2002) fitted the strategies to participants’ responses by least
squares and showed that they adequately fitted the large majority of their participants.
This strategy analysis has proven popular in neuropsychological investigations of PCL
(Fera et al., 2005; Shohamy et al., 2004b,a; Wilkinson et al., 2008). Previous results have
shown that healthy participants typically use the Singleton strategy early on in the task,
moving to the Single Cue and Multi-Cue strategies at later stages (Gluck et al., 2002).
PD patients, on the other hand, appear to rely on simple strategies such as the Singleton
and Single Cue strategies throughout the task (Shohamy et al., 2004b,a).

There are different views on what shifts in strategy use signify. One interpretation
(e.g., Ashby and Maddox, 2005) is that strategy shifts indicate switches between qual-
itatively different learning processes, such as direct memorization (Singleton strategy),
rule-learning (Single Cue strategies) and incremental associative learning (Multi-Cue
strategy). Another interpretation (e.g., Meeter et al., 2008) is that they indicate the
adoption of different hypothetical rules in a hypothesis testing procedure. Another inter-
pretation (e.g., Shohamy et al., 2008) is that strategy switches reflect the progression of an
incremental associative learning procedure, in which cue-outcome (or stimulus-response)
associations slowly adapt to the task structure. Responses become more optimal as a
result, which may lead to an apparent shift from suboptimal Single Cue strategies to
the optimal Multi-Cue strategy. The original strategy analysis offers little guidance to
discriminate between these alternative interpretations. Rules are typically determinis-
tic, while the task representations resulting from associative learning will reflect the
probabilistic nature of the task. Assuming that responses are made in accordance with
this representation, we may expect responses from associative learning to reflect the
cue-outcome probabilities. Based on this distinction, we formulate two variants of the
strategies: one in which responses are made according to deterministic rules, allowing for
a fixed level of “implementation error”, and one in which responses are made by matching
to the conditional probabilities of the outcome.

Shifts in strategy use are usually identified by fitting strategies to separate blocks of
trials. More recently, Meeter et al. (2006) improved upon this method by specifically fo-
cussing on strategy switches and attempting to identify the switch trials more precisely.
We build on this idea here, but rather than assigning maximum likely strategies to small
blocks of trials (Meeter et al., 2006, 2008), we formalize the strategy switch model as a
hidden Markov model. This offers a more principled approach with a number of advan-
tages. For instance, we can obtain maximum likelihood estimates of the probabilities of
switching between strategies. These can be used to test for group differences in the strat-
egy switching process. By restricting transition probabilities between certain strategies,
we can also assess the rationality of the strategy switch process. Furthermore, we can use
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the model to determine, for each participant, a maximum a posteriori strategy sequence.
This offers a statistically optimal way of assigning strategy sequences to participants.

4.1. General structure

Meeter et al. (2006) formulated 11 strategies on the basis that each (1) should result
in above chance performance, and (2) should be easily verbalisable. As the difference
between some of the proposed strategies is rather subtle, we restrict our attention to a
subset of 7, which contains the original strategies identified by Gluck et al. (2002). In
words, these strategies can be stated as:

(i) Random: Guess (on each trial, predict “Fine” with probability .5, and “Rainy”
otherwise. Note that this strategy does not result in above chance performance. It
is included to allow more valid assignment of the remaining strategies).

(ii) Singleton: predict “Fine” when either only cue 1 or cue 2 is present, predict “Rainy”
when either only cue 3 or cue 4 is present, and guess otherwise.

(iii) Single Cue 1 : Predict “Fine” when cue 1 is present, and “Rainy” otherwise.
(iv) Single Cue 2 : Predict “Fine” when cue 2 is present, and “Rainy” otherwise.
(v) Single Cue 3 : Predict “Rainy” when cue 3 is present, and “Fine” otherwise.
(vi) Single Cue 4 : Predict “Rainy” when cue 4 is present, and “Fine” otherwise.
(vii) Multi-cue: Predict “Rainy” when only cue 4 is present, . . ., predict “Rainy”, when

cue 3 and 4 are present, . . ., predict “Fine” when cue 1, 2, and 3 are present.
As the name suggests, according to the strategy switch model, participants can change

their strategy on a trial by trial basis. We formalize the strategy switch model as a hidden
Markov model (e.g., Rabiner, 1989; Wickens, 1982). Hidden Markov models describe the
inter-dependencies in a series of observations through a latent Markovian state process,
which in the present context corresponds to the strategies used. Hidden Markov models
are characterized by two assumptions: (1) responses Rt are conditionally independent
given states St,

P (R1, R2, . . . , RT |S1, S2, . . . , ST ) =
T∏
t=1

P (Rt|St), (1)

and (2) states St depend only on the previous state St−1 (Markov property),

P (S1, . . . , ST ) = P (S1)
T∏
t=2

P (St|St−1). (2)

In addition, we will assume the process is stationary, or time homogeneous, so that
P (Rt = r|St = s) = P (Rt−1 = r|St−1 = s) and P (St+1 = s|St = q) = P (St = s|St−1 =
q) for all q, r, s, t. To complete the model, we need to specify the conditional distributions
P (St+1|St) and P (Rt|St). For the latter, we use a Bernoulli distribution

P (Rt = r|St = s) = ps(xt)r[1− ps(xt)]1−r, (3)

with r ∈ {0, 1}. The cue vectors xt are treated as fixed and, for ease of notation, we will
usually not explicitly conditionalize on them.
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WS SS

MC 1

Figure 1. State transitions in the Directed Transition (DT) strategy switch models. Non-zero transition

probabilities are depicted as arrows. R = Random, S = Singleton, WS = Weak Single Cue, SS = Strong
Single Cue, MC = Multi-Cue strategy.

4.2. Undirected and directed transitions

The (stationary) transition probabilities aij = P (St+1 = j|St = i) are collected in
the transition matrix A = {aij}, i, j = 1, . . . ,M . In one version of the model, we allow
transitions between all M states. For example, individuals can switch from the optimal
Multi-Cue strategy to the rather poor Random strategy. We will refer to these as the
Undirected Transition (UT) models. We contrast these to the theoretically interesting
Directed Transition (DT) models, in which participants can only switch to strategies
which are at least as good as the previous strategy in terms of expected performance. As
such, the DT version implements a kind of “rationality constraint”. In the DT version,
we also treat the Single Cue 1 and Single Cue 4 strategies (strong cues), and the Single
Cue 2 and Single Cue 3 strategies (weak cues) as similar. In particular, we assume that
the probability of switching to and from the two strong (weak) Single Cue strategies are
identical to each other. A graphical representation of the resulting state transition model
is given in Figure 1. In the DT models, the transition matrix A has 12 free parameters
(compared to the 42 free parameters of the UT models). Note that the Multi-Cue strat-
egy is an absorbing state (e.g., Wickens, 1982) – as it results in the best performance,
participants cannot switch once it has been adopted.

4.3. Constant Error model

Meeter et al. (2006) assumed that the strategies were implemented probabilistically,
such that on each trial, there is a fixed probability p that the response is in accordance
with the strategy, and a probability 1 − p that the response is the opposite of that
prescribed by the strategy. This is consistent with rule-following behaviour with a fixed
level of “implementation error”. In their study, they used values of p = .9, p = .95 and
p = .99. Rather than fixing the probability to such pre-specified values, we let p be a
freely estimable parameter in the range p ∈ [.8; 1]. The lower bound of this range was
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chosen to increase the discrimination between the strategies. Obviously, the strategies
are indistinguishable if p = .5 (and p < .5 would mean that individuals can apply a
strategy whilst being more likely to respond in disagreement than in agreement with
the strategy). The higher the value of p, the more the strategies differ in their predicted
responses. While the exact value of the lower bound (p ≥ .8) is somewhat arbitrary, we
felt that lower values of p would allow the randomness in responses to exceed plausible
levels for rule-following behaviour.

We formulate the response part of the model as a generalized linear model (Dobson,
2002; McCullagh and Nelder, 1983), using Equation 3 with

ps(x) = h(λvs(x)), (4)

where

h(z) =
exp(z)

1 + exp(z)
(5)

is the inverse of the logit link function

g(p) = ln(p/(1− p)), 0 < p < 1. (6)

Equations 4 and 5 specify a logistic regression model with a single predictor vs(x). The
cue-dependent values of the predictor vs(x) are given in Table 1. As can be seen there,
vs(x) can only take the value -1, 0, or 1 in the Constant Error model. With these values,
the regression coefficient λ is related to the probability of a strategy consistent response
as

p = h(λ). (7)

The lower bound p ≥ 0.8 corresponds to a lower bound of λ ≥ 1.386 (there is no upper
bound for λ; as λ increases to infinity, p approaches 1). While the formulation as a logistic
regression model is not strictly necessary at this point, it is useful for the alternative
version of the strategy switch model we present next.

4.4. Generalized Matching model

The Constant Error model assumes that participants follow a strategy with a certain
fixed probability p, which is identical for each strategy. We now propose an alternative
model in which ps(x) depends on the predictive validity (or diagnosticity) of the different
cue patterns. This model is related to the “multi-match” strategy identified by Lagnado
et al. (2006). The multi-match strategy is like the optimal Multi-Cue strategy, but re-
sponses are made by probability matching to the conditional probabilities P (Y |x). The
original Multi-Cue strategy of Gluck et al. (2002) predicts maximising responses to all
cue patterns, regardless of the diagnosticity of the pattern. Similarly, according to the
Multi-Cue strategy in the CE model, the probability of a maximising response is identical
for each cue pattern. For example, the probability of a maximising response is identical
for responses to cue pattern A and cue pattern K. As can be seen in Table 1, pattern A
is relatively predictive of Fine weather (P (Fine|A) = 0.895), while the predictive validity
of pattern K is relatively low (P (Fine|K) = 0.556). As such, it is likely that inferring
the optimal response is easier for pattern A than for pattern K. This difference can be
incorporated into the model by letting the probability of responses vary according to
the diagnosticity of the cues. We extend this idea to all strategies, so that, for example,
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responses are made in accordance with P (Y |x1) in the Single Cue 1 strategy. Moreover,
we use a response scaling parameter λ ≥ 1 which allows responses to vary between prob-
ability matching and maximising. We use the exponential version of Luce’s (Luce, 1959)
choice rule, which is commonly used in categorization models (e.g., Ashby and Maddox,
1993). For example, the generalized matching version of the Multi-Cue strategy can be
stated as

P (R = r|S = Multi-Cue) =
P (Y = r|x)λ

P (Y = r|x)λ + P (Y 6= r|x)λ
. (8)

By changing the conditional term in Equation 8, we can derive the response rule for
the other strategies (e.g., replacing x for the Multi-Cue strategy by x1 for the Single
Cue 1 strategy). In the GM version of the strategy switch model, responses are made
in accordance with the (conditional) probability of the criterion Y , and strategies de-
termine which cues function in the conditional. In this way, a strategy might reflect
the attention given to different cues (assuming attention is an all-or-none process). This
generalized matching version of the strategy switch model is easily implemented in the
current framework by using

vs(x) = g(P (Y = 1|·)) (9)

in Equation 4, where g is defined as in Equation 6 and the dot replaced by the relevant
conditional term. The values of vs(x) for the GM model are given in Table 1.

The assumed relation between response and criterion probabilities in Equation 8 and
9 is a special case of the generalized matching law (Baum, 1974, 1979). The generalized
matching law has provided a successful description of responses in a wide range of operant
conditioning studies, both for human (see e.g. Kollins et al., 1997, for an overview) and
non-human (Baum, 1979) animals. In previous work (Speekenbrink et al., 2008), we
formulated an incremental, associative learning model – closely related, but not identical
to the Rescorla-Wagner (Rescorla and Wagner, 1972) model – which predicts responses in
accordance with this generalized matching law. In this respect, the Multi-Cue strategy in
the GM version corresponds to the outcome of an incremental associative learning model.
Likewise, the single cue strategies correspond to the outcome of incremental learning
when the learner focusses attention to a single cue. Switches between the strategies can
thus correspond to rapid shifts in attention (cf. Kruschke and Johansen, 1999).

4.5. Estimation

The strategy switch model contains a number of freely estimable parameters. These
are the initial state probabilities P (S1 = j), the transition probabilities aij , and the
response consistency parameter λ. For simplicity, and theoretical reasons, we fixed the
initial state probabilities so that P (S1 = Random) = 1. The remaining parameters
are estimated by the Expectation-Maximisation (EM, Dempster et al., 1977) algorithm.
Details of the estimation procedure are provided in the Appendix. There, we also give
details of the procedure to determine the Maximum A Posterior (MAP) state sequences,
the most probable strategy sequences given the data and model parameters.
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4.6. Inference

The strategy switch model can be used to investigate group differences by comparing
versions with different equality restrictions on the model parameters. For instance, we
can restrict the transition matrix A to be identical for PD patients on and off medication,
or for PD patients off medication and controls. Versions with such equality restrictions
are nested under versions without them, and as the model parameters are estimated by
maximum likelihood, we can use likelihood ratio tests to assess whether the restrictions
significantly impair model fit. The likelihood ratio test statistic is computed as

LRT = 2[ln(L1)− ln(L2)], (10)

where ln(·) is the natural logarithm, Lj the model likelihood and kj the number of
freely estimated parameters of model j = 1(general), 2(nested). The LRT statistic is
asymptotically Chi-square distributed, with k1 − k2 degrees of freedom (e.g., Dobson,
2002).

To compare non-nested models (such as the UT and DT models, where the latter fixes
certain parameters of the former at 0, which is on the bound of the parameter space),
we can use model selection criteria such as the AIC (?) and BIC (Schwarz, 1978) as a
means to infer the tenability of parameter restrictions.

4.7. Relation to other models

A large number of formal learning models have been proposed to describe probabilistic
category learning (see e.g. Ashby and Maddox, 2005, for a partial overview). The objec-
tive of these models is to describe how participants learn from the information they have
been given. Transitions from one model state to the next are an essentially deterministic
function of outcome feedback. While participants’ responses are used to adjust model
parameters such as learning rate and response consistency, these adjustments are often a
matter of degree. For example, in the well known Rescorla-Wagner (Rescorla and Wagner,
1972) model, the change in associative strength between a cue and outcome is propor-
tional to the difference between observed and predicted outcome. While the learning rate
determines the scale of the difference (i.e., by how much associative strength changes)
it is the outcome that determines the direction of the difference (i.e., whether associa-
tive strength increases or decreases). In this sense, the outcome feedback constrains the
path the model takes. A different approach is to estimate model states directly from
participants’ responses, as in rolling regression (Kelley and Friedman, 2002; Lagnado
et al., 2006) and dynamic lens model analysis (Speekenbrink et al., 2008; Speekenbrink
and Shanks, 2008). These models make a similar assumption regarding the relation be-
tween responses and cues as the Rescorla-Wagner model (e.g., responses are an additive
function of cue values), but estimate an associative-weight-like quantity, called cue uti-
lization, without reference to the outcome feedback. As such, cue utilization can increase
or decrease freely on each trial, allowing for idiosyncratic and sometimes quite irrational
patterns. A main objective of dynamic lens model analysis is to compare these relatively
unconstrained estimates of model states to the relatively constrained estimates of formal
learning models in order to assess the latter’s validity.

The strategy switch model lies between these two approaches. The model proposes a
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number of a priori determined strategies, but makes no assumption how transitions be-
tween strategies are related to outcome feedback. Meeter et al. (2008) compared rolling re-
gression to their version of the strategy switch model and concluded that both were about
equal in their ability to predict participants’ responses. In comparison to their strategy
switch model, our version is both more and less constrained. As we include a freely es-
timable response consistency parameter, there is more freedom in fitting strategies to
participants’ responses. However, in our version, the strategy switch process depends on
the transition matrix. Once estimated, this places constraints on strategy switches which
are absent in the model of Meeter et al. (2008). Moreover, as implemented in the Directed
Transition model, the transition probabilities can be fixed to place a priori restrictions
on strategy switches, constraining strategy switches even more.

In comparison to other models of probabilistic category learning, our strategy switch
model has a relatively large number of free parameters. However, apart from the re-
sponse consistency parameter, they are all estimates of the transition probabilities be-
tween strategies and have a direct and clear interpretation. While we could have restricted
the number of parameters by setting the transition probabilities equal for all strategies,
we were particularly interested in group differences in strategy switches. By placing too
much constraint on the transition matrix, the model may miss these differences.

5. Results

We fitted several versions of the strategy switch model, each with different restrictions
on the parameters. We first fitted the different models to the PD and control group
separately. For each of the four models (CE/UT, CE/DT, GM/UT and GM/DT), we
constructed a series of nested versions by imposing different equality constraints on the
model parameters. The transition matrix could vary over testing occasions (denoted as
Ao), or not (denoted asA). In addition, response consistency could vary over participants
and occasions (denoted as λi,o), vary over participants but not occasions (λi), vary over
occasions but not participants (λo), or not vary at all (λ). The resulting fit measures for
the models are given in Table 2.

5.1. PD patients

For the PD patients, the overall best fitting model according to the AIC was the
GM/UT model with an identical transition matrix (A) but different individual consis-
tency parameter in the on and off medication conditions (λi,o). The BIC selected as
overall best fitting the simpler GM/DT model with identical transition probabilities (A)
and consistency parameters (λ) for the on and off medication conditions. Disagreement
between the selection criteria is not uncommon. As sample size increases, the BIC puts a
higher penalty on additional parameters than the AIC. In fact, as can be seen in Table 2,
the BIC consistently selected the model with the least number of parameters, which
may be due to the relatively large sample size (there are 4400 observations in the PD
conditions).

For a more overall comparison of the different models, we used Wilcoxon tests to com-
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Table 2
Fit measures for the Strategy Switch models. Best fitting models in bold.

Constant error Generalized Matching

parameters # par. logL AIC BIC logL AIC BIC

PD patients

Undirected Transition (UT)

A λ 43 -2401 4889 5164 -2397 4879 5154

λi 53 -2388 4882 5221 -2389 4884 5222

λo 44 -2395 4878 5160 -2401 4889 5170

λi,o 64 -2380 4887 5296 -2372 4873 5282

Ao λ 85 -2375 4920 5463 -2366 4902 5445

λi 95 -2364 4918 5525 -2365 4920 5527

λo 86 -2375 4922 5471 -2376 4923 5473

λi,o 106 -2352 4915 5593 -2343 4898 5575

Directed Transition (DT)

A λ 13 -2449 4925 5008 -2436 4897 4980

λi 23 -2432 4909 5056 -2427 4901 5048

λo 14 -2446 4921 5010 -2435 4899 4988

λi,o 34 -2424 4916 5133 -2420 4909 5126

Ao λ 25 -2446 4941 5101 -2430 4910 5069

λi 35 -2428 4926 5150 -2422 4913 5137

λo 26 -2442 4937 5103 -2429 4911 5077

λi,o 46 -2421 4933 5227 -2416 4925 5219

Controls

Undirected Transition (UT)

A λ 43 -2516 5118 5399 -2543 5173 5455

λi 55 -2506 5123 5483 -2528 5166 5527

λo 44 -2513 5114 5402 -2533 5155 5443

λi,o 68 -2479 5094 5539 -2510 5157 5602

Ao λ 85 -2477 5125 5682 -2523 5216 5773

λi 97 -2464 5123 5759 -2507 5208 5844

λo 86 -2477 5125 5689 -2523 5218 5782

λi,o 110 -2445 5111 5832 -2500 5219 5941

Directed Transition (DT)

A λ 13 -2548 5122 5207 -2555 5137 5222

λi 25 -2531 5112 5276 -2542 5135 5298

λo 14 -2545 5118 5210 -2553 5133 5225

λi,o 38 -2506 5089 5338 -2522 5119 5369

Ao λ 25 -2543 5136 5300 -2548 5145 5309

λi 37 -2529 5133 5375 2525 5123 5366

λo 26 -2537 5125 5296 -2546 5145 5315

λi,o 50 -2496 5091 5419 -2510 5119 5447
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Table 3
Model fits for the PD on and PD off medication conditions separately.

PD on PD off

model # par. logL AIC BIC logL AIC BIC

CE/UT 53 -1217 2541 2843 -1134 2375 2677

CE/DT 23 -1260 2566 2697 -1161 2367 2498

GM/UT 53 -1210 2526 2828 -1133 2372 2674

GM/DT 23 -1255 2555 2686 -1162 2369 2500

pare the AIC and BIC values for corresponding versions of each model 1 . This confirmed
that the GM family was preferred to the CE family, Z = 2.95, p < .01. The AIC showed
a general preference for the UT family, Z = 2.12, p < .05, while the BIC values indicated
superiority of the DT family, Z = −3.52, p < .001.

For each of the four models, we used likelihood ratio tests to identify group differences
in model parameters. For the GM/UT model, the on and off medication conditions
differed in state transition probabilities, χ2(42) = 58.98, p < .05. Besides a difference
in transition probability, there was clear evidence of individual variability in response
consistency, χ2(20) = 65.65, p < .001, and that individual response consistency varied
with medication, χ2(11) = 44.12, p < .001. The likelihood ratio tests thus confirm that
the response consistency varied between individuals and conditions, but in addition also
showed that the transition probabilities varied between conditions. This latter result is
due to the greater power of the likelihood ratio test when comparing nested models.

The analyses above looked for an overall best fitting model for the PD patients as
a group, and then assessed differences in parameters as a result of medication. This
showed an overall preference for the GM/UT model, and that the PD on and off medica-
tion conditions differed in strategy transition probabilities and response consistency. To
investigate whether medication was related to use of the GM or CE strategies, we looked
at the fit measures for the Ao and λi,o versions of the four models separately for each
condition. The results are given in Table 3. This analysis confirmed that the the GM
model fitted best for the PD patients on medication, with the AIC selecting the GM/UT
model, and the BIC selecting the GM/DT model. For the PD patients off medication
however, both the AIC and BIC selected the CE/DT model. The overall preference for
the GM model noted earlier appears to be due to the patients on medication and for
these participants, the superiority of the GM version is clearly marked.

To assess the particular strategies used, we computed the Maximum A Posteriori
(MAP) strategy sequence for each PD patient, using the GM/UT model when on medi-
cation, and the CE/DT model when off medication. The results are depicted in Figure 2,
where we classified the Single Cue strategies as “Strong Single Cue” strategies (Single

1 We compared pairs of models with the same restrictions on A and λ. For example, we compared

the CE/DT model with Ao and λi,o to the corresponding GM/DT model with Ao and λi,o. As the
corresponding versions of the CE and GM models have the same number of parameters, differences in

the AIC and BIC are entirely due to differences in model likelihood. Corresponding versions of the UT
and DT models differ in the number of parameters, so these comparisons were based on the AIC and
BIC values.

15



trial

P

0.0

0.2

0.4

0.6

0.8

1.0
PD on

0 50 100 150 200

PD off

0 50 100 150 200

CT 1

0.0

0.2

0.4

0.6

0.8

1.0
CT 2

Random
Singleton

Weak Single Cue
Strong Single Cue

Multi Cue

Figure 2. Maximum A Posteriori (MAP) strategy sequences. For the PD on medication condition, these

were estimated from the GM/UT model with Ao and λi,o, and for the PD off medication and control
conditions (CT1 and CT2, denoting first and second testing occasion respectively), from the CE/DT

model with Ao and λi,o.

Cue 1 and Single Cue 4), and “Weak Single Cue” strategies (Single Cue 2 and Single Cue
3). As can be seen there, PD patients on medication appear to have almost exclusively
responded according to the Random strategy. PD patients off medication, on the other
hand, learned to use both the Strong Single Cue and Multi-Cue strategies. Out of the
two PD patients on medication who did switch from Random responding, one switched
a total of 3, and one a total of 19 times (these latter switches were mainly from the
Single Cue 1 to the Single Cue 3 strategy, and back). In contrast, 9 of the PD patients
switched strategies when off medication; the average number of switches (for those that
did switch) in this condition was 1.33. The difference in switching behaviour between the
two conditions can also be seen in the estimated transition matrices. For the PD patients
off medication, the diagonal values aii, reflecting the probability of strategy continua-
tion, were relatively high (M = 0.98, SD = 0.03). For the PD patients on medication,
the diagonal values were on average much smaller (M = 0.43, SD = 0.32), indicating
more rapid switching behaviour (for those that did switch strategies). In addition, strat-
egy switches of the PD patients off medication were more rational, as the DT model
prohibits switches to strategies that decrease expected performance.

The MAP strategy sequences are the most probable strategy sequences given a partic-
ipant’s responses and the model parameters. This “best guess” of participants’ strategies
does not reflect the level of uncertainty associated with these assignments, and as such
may miss subtle changes in the evidence for the use of particular strategies. Such sub-
tle changes can be inferred from the strategies’ posterior probabilities (P (St|R1:T ), see
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Figure 3. Posterior state probabilities. For the PD on medication condition, these were estimated from

the GM/UT model with Ao and λi,o, and for the PD off medication and control conditions (CT1 and
CT2, denoting first and second testing occasion respectively), from the CE/DT model with Ao and λi,o.

Appendix) depicted in Figure 3. As can be seen there, the posterior probabilities mainly
reproduce the pattern of the MAP strategy sequences, but for the PD on medication
condition, they do indicate a slow increase for the Multi-Cue strategy, which was not ev-
ident in the MAP sequences. As such, there is some indication that, given more training,
PD patients on medication might be able to learn the Multi-Cue strategy.

5.2. Control participants

For the control group, the AIC indicated that the overall best fitting model was the
CE/DT model with identical transition probabilities (A), but differing response con-
sistency between individuals and test occasions (λi,o). The BIC selected as overall best
fitting the same CE/DT model (with A), but with identical response consistency between
individuals and occasions (λ). Pairwise comparisons confirmed that the CE models were
preferred to the GM models, Z = 3.41, p < .001. In addition, both the AIC and BIC
values indicate that the DT models fitted better than the UT models, Z = 2.59, p < .01
and Z = 3.52, p < .001, for the AIC and BIC values respectively.

For the CE/DT model, likelihood ratio tests showed that the transition probabilities
differed between testing occasions, χ2(12) = 21.63, p = .04. Furthermore, there was
clear evidence of individual variability in response consistency, χ2(24) = 82.00, p <
.001, and that individual response consistency varied with testing occasion, χ2(13) =
67.30, p < .001. Note that the evidence for different transition probabilities is relatively
weak compared to that for varying response consistency. Inspection of the estimated
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transition matrices showed little difference, but participants may have been slightly less
variable in their strategy use (i.e., fewer strategy switches) on the second testing occasion.
Inspection of the response consistency estimates showed that responses were on average
more consistent on the second (median p = 0.88) than on the first (median p = 0.86)
test occasion, but this difference was not significant (Wilcoxon signed rank test, V = 28,
p = 0.24).

Comparing the MAP strategy sequences between the two testing occasions (Figure 2),
we see that participants on both occasions learned to use the Multi-Cue strategy. How-
ever, on the first testing occasion, the Random strategy was also quite prevalent. On
the second testing occasion, this latter strategy was overtaken by the Strong Single Cue
strategies. The mean number of strategy switches (for those participants who showed at
least one switch), was 4.56 and 1.15 on the first and second testing occasion respectively.
The relatively high average on the first occasion was mainly due to two participants, one
of whom showed a large number of switches between the two Weak Single Cue strate-
gies before settling on the Multi-Cue strategy, and the other switching between the two
Strong Single Cue strategies.

5.3. Comparing PD patients and controls

The results above indicate that the PD patients off medication followed a similar
strategy switch process as the controls (for both groups, the CE/DT model fitted best).
When on medication, the PD patients appeared to use the GM strategies, and switches
between these strategies were not always in the direction of increased performance. To
further investigate the similarity between the PD patients off medication and controls,
and the difference between these conditions and the PD patients on medication, we
fitted a number of additional versions of the models. In particular, we were interested
in whether PD patients off medication followed a similar strategy switch process – as
reflected by the transition matrix A – in addition to relying on the same CE strategies.
Based on the previous results, we took response consistency to vary over individuals and
occasions (i.e., λi,o). We then investigated different restrictions on the transition matrix.
In particular, we fitted a version in which A was identical for all conditions, and a version
in which we took A to be different in the PD on medication condition, but identical in
all other conditions. For comparison, we also fitted a version in which A was taken to be
different for the PD off medication condition, but identical for all other conditions.

The fit measures of these additional models, together with aggregated measures of
the models fitted previously, are given in Table 4. In this table, we can see that the
AIC selected as the best fitting model the CE/UT model with the transition matrix
differing between the PD on medication condition and the other conditions. As earlier,
the BIC selected the simplest GM/DT model, with an identical transition matrix for all
conditions. For the CE/UT model, the likelihood ratio tests indicate that the transition
probabilities were identical between the PD off medication and the two control groups,
χ2(84) = 97.98, p = .14. In contrast, the transition probabilities were not identical
between the PD on medication condition and the two control conditions, χ2(84) = 144.25,
p < .001. In addition, the version which assumes identical transition probabilities for the
PD conditions, different to those of the control conditions, was also rejected, χ2(84) =
122.76, p < .001. These analyses thus show that, when off medication, PD patients follow

18



Table 4
Fit measures of the strategy switch models fitted to the overall data. Best fitting models in bold.

A (id) Constant Error (CE) Generalized Matching (GM)

PD on PD off CT 1 CT 2 # par logL AIC BIC logL AIC BIC

Undirected Transition (UT)

1 2 3 4 216 -4822.39 10076.78 11625.40 -4842.63 10117.26 11665.88

1 2 3 3 174 -4830.48 10008.95 11256.45 -4853.18 10054.37 11301.86

1 1 2 2 132 -4858.49 9980.98 10927.36 -4882.67 10029.35 10975.72

1 2 2 2 132 -4846.10 9956.20 10902.57 -4859.28 9982.55 10928.93

1 2 1 1 132 -4869.24 10002.47 10948.85 -4896.93 10057.86 11004.23

1 1 1 1 90 -4901.31 9982.62 10627.88 -4910.51 10001.03 10646.29

Directed Transition (DT)

1 2 3 4 96 -4922.60 10037.20 10725.47 -4911.26 10014.51 10702.79

1 2 3 3 84 -4933.41 10034.83 10637.07 -4923.44 10014.89 10617.13

1 1 2 2 72 -4930.47 10004.93 10521.14 -4930.36 10004.71 10520.92

1 2 2 2 72 -4937.19 10018.38 10534.58 -4937.62 10019.24 10535.44

1 2 1 1 72 -4946.01 10036.02 10552.22 -4943.51 10031.02 10547.23

1 1 1 1 59 -4948.02 10016.03 10446.20 -4947.32 10014.64 10444.81
Note: values under A (id) indicate equality constraints. E.g., for the models on the
second row, there are three unique transition matrices: one for the PD on medication
(id = 1), one for the PD off medication (id = 2), and one for the two control conditions
(id=3).

a similar strategy switch process to matched controls. This process is different when the
PD patients are on medication. The estimated transition probabilities are depicted in
Figure 4. As can be seen there, the different strategies are more “connected” in the
control and PD off medication conditions. The transition probabilities for the PD on
medication condition show two clusters, and starting with the Random strategy, the
probability of switching to the Multi-Cue strategy is very small. In addition to showing
a similar strategy switch process as controls, PD patients off medication also did not
differ in terms of response consistency: median p = 0.91 (PD off) vs median p = 0.94
(controls), Wilcoxon W = 122, p = 0.49. The median consistency for the PD patients on
medication was 0.88, which was significantly different from the consistency in the control
conditions, W = 82, p < .05, and marginally different from the consistency in the control
and PD off medication conditions combined, W = 125, p = .054.
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Figure 4. Transition probabilities for the CE/UT model. The PD off medication and control conditions
were assumed to have identical transition probabilities. Transition probabilities for the PD on medication

group are depicted on the left hand side; transition probabilities for the other conditions on the right

hand side. Only transition probabilities ≥ .01 are depicted. Thicker arrows indicate higher probabilities.
R = Random, S = Singleton, SC1-SC4 = Single Cue 1-4, MC = Multi-Cue.

6. Discussion

We presented a general hidden Markov model for rule-based response behaviour in
probabilistic category learning tasks. Two types of strategy switch models were described.
The Constant Error model, following Gluck et al. (2002) and Meeter et al. (2006), is a
“classical” rule model in which participants responded according to an easily verbal-
isable, deterministic rule (although the Multi-Cue strategy requires a rather lengthy
description). The Generalized Matching model takes the same strategies, but responses
are assumed to be made by a form of matching to the conditional category probabilities.
In the Directed Transition version of these models, we restricted strategy switches to be
rational, in the sense that a newly adopted strategy should not decrease the probability of
a correct response. In the Undirected Transition version, no such restriction was placed.

We applied the models to the data of Jahanshahi et al. (2009). Their data showed that
PD patients on medication were impaired on the WPT, while the same PD patients off
medication were not. Our models offered useful results with regards to the role of L-dopa
in PCL impairment in Parkinson’s disease. In particular, we showed that PD patients
on medication responded more in line with the Generalized Matching model, while PD
patients off medication and controls were better modelled by the Constant Error model.
In addition, we showed that strategy switches of PD patients off medication and controls
were rational, in the sense just described, while those of PD patients on medication were
not directly rational. Finally, we showed that PD patients followed a different pattern
of strategy switches than controls when on medication, but not when off medication.
Both the estimated transition probabilities and MAP strategy sequences indicated that
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PD patients on medication mostly relied on a guessing strategy, with some use of simple
Single Cue strategies. In contrast, the Multi-Cue strategy was prevalent in PD patients
off medication and controls.

6.1. Learning deficits in PD and L-dopa

PD patients on medication responded more in accordance with the Generalized Match-
ing than Constant Error version of the strategy switch model. PD patients off medication,
like matched controls, responded more in accordance with the Constant Error version. We
have argued that the Generalized Matching strategies are more typical of an incremental
habit learning system than the Constant Error strategies, which are more indicative of
the rule-following behaviour expected from hypothesis testing. The present results thus
contradict the hypothesis (e.g., Knowlton et al., 1996) that PCL normally relies on im-
plicit habit learning and that PD patients, due to a dysfunctional habit learning system,
must solve the task by declarative strategies. In accordance with later findings (Lagnado
et al., 2006; Newell et al., 2007; Price, 2009), our results indicate that PCL typically relies
on explicit learning strategies. Moreover, the difference between PD patients on and off
medication indicates that these explicit strategies may be impaired by L-dopa, consistent
with the L-dopa overdose hypothesis. Indeed, both the PD patients off medication and
controls displayed good knowledge of the cue-outcome contingencies, while PD patients
on medication were impaired in this respect (see Jahanshahi et al., 2009, for these re-
sults). According to the overdose hypothesis, L-dopa can raise dopamine levels beyond
optimal in less affected areas such as the ventral striatum and prefrontal cortex. While
the dorsal striatum seems to support habitual stimulus-response learning, the ventral
striatum and prefrontal cortex appear to support more reflective, goal-directed forms of
learning involving cue-outcome representations (Daw et al., 2005; Hampton et al., 2006;
O’Doherty et al., 2004). While habitual learning is relatively slow and inflexible, the
latter form of learning allows more swift adaptation of behaviour in response to environ-
mental changes. Corresponding to this distinction, evidence suggests that L-dopa impairs
performance on tasks which require cognitive flexibility, while enhancing performance on
tasks which require cognitive stability (see Cools, 2006). As indicated by the posterior
strategy probabilities, the impaired performance of PD patients on medication appears
to be due to a general slowness in learning. This could be due to a reliance on slow, and
likely impaired, habit learning, although other explanations are also possible.

The overdose hypothesis relates the effects of L-dopa to baseline dopamine levels. As
the PD patients had a relatively wide range of disease duration and severity, the effect of
L-dopa may have varied between patients. Due to the progressive nature of PD, those with
longer duration PD are likely to be affected in more brain areas than those with shorter
duration PD. In addition, individuals with long duration PD may respond differently
to L-dopa (cycle on and off rapidly). As such, the overdose effect may be particularly
pronounced for patients in the early stages of PD. Because the data contained a relatively
small sample of PD patients, we did not investigate the effect of disease duration. Future
research with larger samples could contrast PD patients in early and late stages and
also measure baseline dopamine levels in the relevant areas (i.e., the dorsal and ventral
striatum and prefrontal cortex) to investigate whether and how these interact with the
effect of L-dopa.
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According to the present analysis, a main problem for PD patients on medication
was that many did not switch from a random guessing strategy to more advantageous
ones. Previous research (e.g., Shohamy et al., 2006) attributed impaired performance of
PD patients (on medication) to a failure to switch from the Singleton strategy to more
advantageous ones. We found that the Singleton strategy was hardly ever used, which
may be due to the inclusion of the Random strategy in our model – as the Singleton
strategy is closest to random responding, exclusion of the Random strategy will result
in more assignments to the Singleton strategy. As such, assignments of the Singleton
strategy in previous studies should be treated with some caution.

While the Random strategy fitted their responses better than the other strategies, PD
patients on medication did show an increase in performance during the task (the average
performance increased from .60 in block 1 to .65 in block 4). Thus, there seems to be
some level of learning which is not captured by the MAP strategy sequences. Indeed,
the posterior state probability of the Multi-Cue strategy for PD patients on medication
did increase during the task. As such, even PD patients on medication may learn to use
the Multi-Cue strategy after sufficient training. In addition, the high prevalence of the
Random strategy in the PD on medication group may be due to the lower bound set on
response consistency. To increase the discrimination between the strategies, we set a lower
bound of p = .8 for the Constant Error, and a lower bound of λ = 1 (pure probability
matching) for the Generalized Matching versions. As a result, we may have missed the
strategies of participants who “under-shoot” (λ < 1), or who applied a strategy with
p < .8.

Undershooting can be expected in the early stages of incremental learning if responses
are made by probability matching, and the length of this early stage will depend on
the rate of learning. The present analysis is not very sensitive to slow and gradually
changing response processes. In other work (Speekenbrink and Shanks, 2008), we have
used a dynamic generalized linear model to analyse learning in the WPT. This model
has similarities to the hidden Markov model used here, but assumes a (multidimen-
sional) continuous state space, rather than the discrete state space of the strategy switch
models, making it more appropriate for a slow, incremental learning mechanism. While
certainly interesting, a comparison of this model to the present strategy switch models
is beyond the scope of this article. One complication is that maximum likelihood estima-
tion of dynamic generalized linear models is rather difficult, while the MCMC technique
we used previously (Speekenbrink and Shanks, 2008) is inadequate for present purposes.
We are currently working on a sampling-based method for maximum likelihood estima-
tion of dynamic generalized linear models, which would allow direct comparison with
the strategy switch models. We can then more directly assess whether PD patients on
medication are indeed best characterized by an incremental “habit” learning process.
While we have argued that this form of learning is more consistent with the General-
ized Matching strategies, the better fit of the GM model is not sufficient to conclude
that PD patients on medication relied on habit learning. An alternative view is that
the GM and CE strategies reflect a difference in decision rather than response strategy.
Both the GM and CE strategies could derive from the same underlying (incrementally)
formed cue-outcome representations (cf. Shohamy et al., 2008). The difference between
the strategies then reflects how this information is used. In the Constant Error model,
the process is essentially one of maximizing, predicting the most probable outcome, but
this maximizing strategy is corrupted by a fixed level of noise. In the Variable Matching
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model, the probability of a maximizing response depends directly on the conditional out-
come probabilities, indicating a possibly less reflective use of learned information. Future
research could investigate this possibility by separating learning and decision processes
more clearly. This requires both careful modelling and informative data and we plan to
address both in future work.

6.2. Mathematical models in clinical assessment

A main contribution of the present study was to develop a statistically well-founded
model of strategy switches in PCL. The model was based on the work of Gluck et al.
(2002), later extended by Meeter et al. (2006). In comparison to these other models,
our strategy switch model has a number of advantages. Firstly, we can obtain maximum
likelihood estimates of the strategy transition probabilities. We illustrated that these can
show interesting differences between groups. Secondly, group differences can be tested
with likelihood ratio tests, comparing a model in which parameters are constrained to
be identical between groups to a model in which parameters are allowed to vary between
groups. This is a more sensitive method than testing for differences in parameter esti-
mates using post-hoc t-tests or nonparametric equivalents. Thirdly, by fixing transition
probabilities, we can assess the rationality of the strategy switch process. Finally, we can
estimate maximum a posteriori (MAP) strategy sequences for individual participants.
These take into account both the likelihood of a strategy given observations and the
strategy transition probabilities, so that they are consistent with fundamental aspects of
the model.

The original strategy model has already proven a popular tool to investigate differences
between patient groups in PCL (Fera et al., 2005; Shohamy et al., 2004b,a; Wilkinson
et al., 2008). This illustrates the large potential of mathematical models in studies with
clinical populations. We hope that those interested in strategy use in probabilistic cat-
egory learning will consider the models described here for future work 2 . The current
approach offers a powerful framework to investigate clinically significant differences in
PCL. Probabilistic category learning is not just an experimental paradigm – in daily life,
people will encounter many situations in which they need to learn to make decisions based
on probabilistic feedback. Understanding the precise nature of the cognitive impairments
associated with PD, and the effects of medication, is not only interesting for theoretical
neuroscience. The finding that one of the current treatments of choice (L-dopa) has ad-
verse effects on learning has important clinical implications because cognitive deficits in
PD patients are predictors of poor quality of life in PD patients (Schrag et al., 2000) and
their carers (Aarsland et al., 1999), and admission to nursing homes (Aarsland et al.,
2000). Hopefully, the present findings will stimulate research into new medication that
does not impair cognitive functioning.

2 The software used for the current analyses is available from the first author’s website via
http://www.ucl.ac.uk/psychlangsci/staff/cpb-staff/m speekenbrink.
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Appendix A. Estimation of the strategy switch model

In this appendix, we provide details of the parameter estimation of the strategy switch
model, and the determination of the maximum a posteriori state sequences.

A.1. Parameter estimation by EM

To apply the EM algorithm, we treat the latent states as missing observations. Pa-
rameters are estimated by iteratively maximising the expected joint likelihood of the
parameters given the observations and states. Let R1:N

1:T and S1:N
1:T denote the set of N

repeated series of observations (states) of length T (i.e., N is the number of participants,
and T the number of learning trials in the WPT for each participant). From (1) and (2),
and noting that we fixed P (S1:N

1 ), the joint log likelihood can be written as

lnP (R1:N
1:T = r1:N1:T , S

1:N
1:T = s1:N1:T |A,λ) =

N∑
i=1

T∑
t=2

lnP (sit|sit−1) +
N∑
i=1

T∑
t=1

lnP (rt|st, λi)

This likelihood depends on the unobserved states sit. In the Expectation step, we replace
these with their expected values given a set of (initial) parameters θ′ = (A,λ) and
observations R1:N

1:T . The expected log likelihood

Q(θ,θ′) = Eθ′(lnP (R1:N
1:T , S

1:N
1:T |R1:N

1:T ,A,λ))

can be written as

Q(θ,θ′) =
N∑
i=1

T∑
t=2

M∑
j=1

M∑
k=1

ξit(j, k) ln ajk +
N∑
i=1

T∑
t=1

M∑
j=1

γit(j) lnP (rit|λi), (A.1)

where the expected values ξit(j, k) = P (Sit = k, Sit−1 = j|Ri1:T ,θ
′) and γit(j) = P (Sit =

j|Ri1:T ,θ
′) can be computed effectively by the Forward-Backward algorithm (see e.g.,

Rabiner, 1989). The Maximisation step consists of the maximisation of (A.1) for θ. As
the r.h.s. of (A.1) consists of two separate parts, we can maximise separately for A and
λ. The maximising values of ajk are (e.g., Rabiner, 1989)

âjk =
1

N(T − 1)

N∑
i=1

T∑
t=2

ξit(j, k)
γit−1(j)

. (A.2)
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Fixing certain elements of A to 0, as in the DT version, does not affect the estimation
of the other elements. When elements ajk are assumed identical, we simply extend the
summation in (A.2) to include all those elements, changing the denominator N(T − 1)
accordingly.

To estimate λ, we note that the term containing this parameter has the form of a
weighted likelihood, where γit(j) can be interpreted as the number of replications of rit.
Hence, we can rely on standard ML estimates of the logistic regression coefficients λi,
using the values γit(j) as “case weights” (e.g., Agresti, 2002; McCullagh and Nelder,
1983) 3 . The resulting parameter estimates are then used in a new Expectation step,
followed by another Maximisation step, until convergence. Under mild regularity condi-
tions, it can be shown that the EM algorithm converges to a (local) maximum of the
likelihood (Dempster et al., 1977).

A.2. Maximum A Posteriori state sequences

Note that, at the ML estimate of the parameters, the expectations γit(j) are the pos-
terior state probabilities P (Sit = j|Ri1:T ), and can be used to determine point-wise Max-
imum A Posteriori (MAP) states. However, the resulting point-wise MAP state sequence
might be quite different from the overall MAP state sequence (for instance, it can con-
tain state transitions with probability 0). The latter can be computed by the Viterbi
algorithm (e.g., Rabiner, 1989). For completeness, we give the relevant details below.

The Viterbi algorithm computes, for each individual i, the maximum a posteriori state
sequence

si∗ ≡ arg max
s1:T

P (Si1:T = s1:T |Ri1:T ).

For readability, we will omit the superscript i in the remainder. The Viterbi algorithm
works with two variables. The first, δt(j), keeps track of the maximum probability of
reaching state j at trial t for a single state sequence, i.e.

δt(j) ≡ max
s1:(t−1)

P (S1:(t−1) = s1:(t−1), St = j|R1:t).

The second variable keeps track of which preceding state sequence gives state j at t the
highest probability, i.e.

ψt(j) ≡ arg max
k

δt−1(k)akj .

We initialize the variables at
δ1(j) = P (S1 = j)P (R1|S1 = j)

ψi1(j) = 0.

and for t = 2, . . . , T , we have

3 To be more specific, we replicate each observation ri
t a total of 6 times, once for each of the states besides

the random state (which offers no information regarding λi). For the j-th replication (corresponding to

the j-th state), we used vj(xt) as a predictor variable and γi
t(j) as a case weight. All these replications

were used to obtain the maximum likelihood estimate of λ from a single GLM, using the “glm.fit”
function in R (R Development Core Team, 2006).
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δt(j) = max
k

δt−1(k)akjP (Rt|St = j)

ψt(j) = arg max
k

δt−1(k)akj .

Once the values δt(j) and ψt(j) have been computed, determination of the MAP state
sequence is straightforward. Clearly,

s∗T = arg max
j
δT (j).

For t = T − 1, . . . , 1, we can then proceed as

s∗t = ψt+1(s∗t+1).

Note that, especially for long sequences, it will be numerically better to work with δ′t(j) =
log δt(j). This does not affect the determination of ψt.
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