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Theoretical framework

Male and female strategies

We consider a population with n males and n females, in which individuals marry either monog-

amously (M) or polygamously (P). We use w ≥ 1 to denote the number of wives for males and

h ≥ 1 the number of husbands for females; males and females marry with probabilities Ω and

Φ , respectively, which are derived below.

Each female produces one male and one female offspring. Unmarried females transfer their

resources, denoted δf , to their own offspring, whereas unmarried males transfer their resources,

denoted δm, to their sister’s offspring. The resources of married females are controlled by their

husbands, i.e. a male controls his own δm and a share 1/h of the δf of each of his w wives. Males

transfer resources “vertically” to their wife’s (or wives’) offspring (V), with probability mV,

or “diagonally” to their sister’s offspring (D), with probability mD; each male transfers either

vertically or diagonally, i.e. mV and mD take values 0 or 1, and mV = 1 − mD. To simplify

the notation, we assume that individuals in the parent generation transfer resources to sibling

pairs rather than to individuals in the offspring generation. Each sibling pair inherits resources
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δ, with δ = δm + δf = 1 for the offspring of a monogamous couple in a monogamous population

in which all males transfer vertically. The fitness of each sibling pair is given by δz, with z > 0.

δB′ and δF′ denote the resources inherited by sibling pairs B′ and F′, respectively (Figure 1 in

the text).

The probability p that a male is the biological father of his wife’s offspring depends on

the behaviour of females. Females give their husbands either “high” paternity pH (H) or “low”

paternity pL (L), with 0 < pL < pH ≤ 1. Females obtain an additional generic advantage α from

mating with other males beyond their husbands; for example, α may represent genetic benefits

which lead to increased offspring survival or resource benefits such as nuptial gifts (Reynolds

1996; Kokko 1999). We assume that αL > αH, and αH = 0 for pH = 1. For simplicity, we

further assume that 0 < α < 1/2, such that its fitness value is small relative to the value of the

resources transferred to the offspring generation, and does not affect the amount of resources

males transfer to their wives’ or sister’s offspring.

Both males and females know their spouses’ marriage strategy. The transfer strategy of

males may be conditional upon the marriage and paternity strategies of females. A “sus-

picious” male (S) transfers vertically if his wives are monogamous and provide paternity pH,

diagonally otherwise. An “ingenuous” male (I) transfers diagonally if his wives are monogamous

and provide paternity pH, vertically otherwise. These strategies require that males have cues

about paternity (e.g. Kokko 1999): in humans, these include direct phenotypic cues or indirect

behavioural cues (e.g. the conformity of females to cultural norms regulating their sexual be-

haviour). The paternity strategy of females may be conditional only upon the marriage strategy

of males. An “astute” female (A) provides paternity pH if her husbands marry monogamously,

pL otherwise. A “naive” female (N) provides paternity pL if her husbands marry monogamously,

pH otherwise.

Table S1 presents a summary of the strategies included in the game. We use XY to denote

the marriage strategy X and transfer strategy Y for a male, XZ to denote the marriage strategy

X and paternity strategy Z for a female, and (XY, XZ) to denote a pair of male and female

strategies. For example, (MV, MH) represents the interaction of a monogamous male who

transfers vertically, MV, with a monogamous female who always provides “high” paternity,

MH. Table S2 presents a summary of all the symbols used in the model.
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Table S1: Summary of the possible strategies

(a) Male strategies

Strategy

Attribute Symbol Behaviour Description

Marriage (X) M Monogamous Male marries one female only (w = 1)

P Polygynous Male marries more than one female (w > 1)

Transfer (Y) V Vertical Married male transfers resources to wives’ offspring

D Diagonal Married male transfers resources to sister’s offspring

S Suspicious Married male is V if wife is M and provides pH, D otherwise

I Ingenuous Married male is D if wife is M and provides pH, V otherwise

(b) Female strategies

Strategy

Attribute Symbol Behaviour Description

Marriage (X) M Monogamous Female marries one male only (h = 1)

P Polyandrous Female marries more than one male (h > 1)

Paternity (Z) H High Married female provides “high” paternity (0 < pH ≤ 1, αH)

L Low Married female provides “low” paternity (0 < pL < 1, αL)

A Astute Married female provides pH if husband is M, pL otherwise

N Naive Married female provides pL if husband is M, pH otherwise
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Table S2: Symbols used in the model

Notation Description

X: M, P marriage strategy (of males and females)

Y: V, D, S, I transfer strategy (of males)

Z: H, L, A, N paternity strategy (of females)

n number of individuals of each sex in the population

Ω, Φ marriage probability for a male and for a female

mM, mP frequency of monogamous and of polygynous males in the population

fM, fP frequency of monogamous and of polyandrous females in the population

w, wP number of wives for a male (generic and for a polygynous male)

h number of husbands for a female (generic)

δ, δB′ , δF′ resources inherited by a sibling pair in the offspring generation (generic, by sibling

pair B′, and by sibling pair F′)

δm, δf relative male and female contribution to δ

z describes the relationship between inherited resources and fitness, given by δz

mV, mD probability that a male transfers vertically and diagonally

p, pH, pL probability that a female’s husband is the biological father of her offspring (generic,

for a female who provides “high” paternity, and for a female who provides “low”

paternity)

α, αH, αL advantage to a female of mating with other males beyond her husbands (generic, for a

female who provides “high” paternity, and for a female who provides “low” paternity)

M, F focal male and female (or sibling to the focal individual)

A F’s husband

B M’s wife

C B’s brother

B′ B’s offspring

F′ F’s offspring

EM, EF inclusive fitness for a focal male and for a focal female

βi, φi resources transferred to B′ and to F′

rxy coefficient of relatedness of focal individual x (M or F) to heir y (B′ or F′)

˚ denotes any attribute that may depend on the relevant strategy for the focal individual
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Marriage probabilities

For simplicity, we assume that polygamous individuals either marry w or h spouses, or do not

marry at all. Denoting mM and mP the frequencies of monogamous and polygynous males in

the population, and fM and fP the frequencies of monogamous and polyandrous females, a focal

monogamous male marries with probability

ΩM =


fM

[
mM · 1 +mP

n

(n− 1)w + 1

]
+ fP

[
mM · 1 +mP

nh

(n− 1)w + 1

]
if

nh

(n− 1)w + 1
≤ 1

.

fM

[
mM · 1 +mP

n

(n− 1)w + 1

]
+ fP[mM · 1 +mP · 1] if

nh

(n− 1)w + 1
≥ 1

This is derived as follows:

• in a population of monogamous females and monogamous males there are n females, each

requiring one husband, and n males, each requiring one wife; thus, the focal male marries

with probability ΩM = 1;

• in a population of monogamous females and polygynous males there are n females, each

requiring one husband, n− 1 resident polygynous males, each requiring w wives, and the

focal monogamous male, requiring one wife; thus, the focal male marries with probability

ΩM = n/[(n− 1)w + 1];

• in a population of polyandrous females and monogamous males there are n females, each

requiring h husbands, and n males, each requiring one wife; thus, the focal male marries

with probability ΩM = 1;

• in a population of polyandrous females and polygynous males there are n females, each

requiring h husbands, n − 1 resident polygynous males, each requiring w wives, and the

focal monogamous male, requiring one wife; thus, the focal male marries with probability

ΩM = nh/[(n − 1)w + 1] if the number of potential wives is smaller than the number of

wives required, i.e. if nh/[(n− 1)w + 1] ≤ 1, or with probability ΩM = 1 if the number of

potential wives is greater than the number of wives required, i.e. if nh/[(n− 1)w+ 1] ≥ 1.
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By similar reasoning, a focal polygynous male marries with probability

ΩP =


fM

[
mM

n

(n− 1) + w
+mP

1
w

]
+ fP

[
mM · 1 +mP

h

w

]
if

h

w
≤ 1

.

fM

[
mM

n

(n− 1) + w
+mP

1
w

]
+ fP

[
mM · 1 +mP · 1

]
if

h

w
≥ 1

Assuming that n is large relative to h and w, ΩM and ΩP simplify to

Ω =


fM

(
mM · 1 +mP

1
w

)
+ fP

(
mM · 1 +mP

h

w

)
if

h

w
≤ 1

,

fM

(
mM · 1 +mP

1
w

)
+ fP

(
mM · 1 +mP · 1

)
if

h

w
≥ 1

which, assuming that h = w, simplifies to

Ω = fM

(
mM +

mP

w

)
+ fP.

The probability of marrying for females is derived by analogous reasoning. Assuming that

n is large relative to h and w, a focal female marries with probability

Φ =


mM

(
fM · 1 + fP

1
h

)
+mP

(
fM · 1 + fP

w

h

)
if

w

h
≤ 1

,

mM

(
fM · 1 + fP

1
h

)
+mP

(
fM · 1 + fP · 1

)
if

w

h
≥ 1

which, assuming that h = w, simplifies to

Φ = mM

(
fM +

fP

h

)
+mP.

Inclusive fitness payoffs

We use˚to indicate any attribute that may depend on the relevant strategy for the focal indi-

vidual, such that its value may differ from the corresponding value for the resident population.

For example, ẘ denotes the number of wives for a focal male M, with ẘ 6= w for a mutant focal

male whose marriage strategy differs from the strategy of resident males, and ẘ = w in all other

cases. With reference to Figure 1 in the text, the inclusive fitness payoff for a focal male M can
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be written as

EM = ẘ

{[
Ω m̊V

(
δm + ẘ

δf
h

)
︸ ︷︷ ︸

β1

+ Ω ẘ mV(h− 1)
(
δm
w

+
δf
h

)
︸ ︷︷ ︸

β2

+ Ω ẘ (1− Ω)δm︸ ︷︷ ︸
β3

+ Ω ẘΩmD

(
δm + w

δf
h

)
︸ ︷︷ ︸

β4

]
/ẘ

}z
rMB′

+

[
(1− Ω)δm︸ ︷︷ ︸

φ1

+ Ω m̊D

(
δm + ẘ

δf
h

)
︸ ︷︷ ︸

φ2

+ (1− Φ)δf︸ ︷︷ ︸
φ3

+ ΦhmV

(
δm
w

+
δf
h

)
︸ ︷︷ ︸

φ4

]z
rMF′ ,

where βi represents resources inherited by the offspring B′ of his ẘ ≥ 1 wives and φi represents

resources inherited by his sister’s offspring F′; the subscript i = 1, . . . , 4 denotes the pathway

through which resources are transferred to the heir. rMB′ and rMF′ represent the coefficients of

relatedness between M and, respectively, B′ and F′, as derived below.

β1, β2, β3, and β4 are only relevant if M marries, while φ4 is only relevant if F marries.

Specifically:

β1 represents the resources M transfers to B′ if his transfer strategy is V; this includes his δm

and a share 1/h of the δf of each B;

β2 represents the resources transferred to B′ by the other h−1 husbands of each B, excluding

M, if the transfer strategy of resident males is V; for each husband, this includes a share

1/w of his δm and a share 1/h of B’s δf ;

β3 represents the resources each C transfers to B′ if he does not marry;

β4 represents the resources each C transfers to B′ if he marries and his transfer strategy is

D; this includes his δm and a share 1/h of the δf of each of his w wives;

φ1 represents the resources M transfers to F′ if he does not marry;

φ2 represents the resources M transfers to F′ if he marries and his transfer strategy is D; this

includes his δm and a share 1/h of the δf of each B;

φ3 represents the resources F transfers to F′ if she does not marry;

φ4 represents the resources each A transfers to F′ if the transfer strategy of resident males is

V; this includes a share 1/w of his δm and a share 1/h of F’s δf .
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The inclusive fitness payoff for a focal female F is derived by analogous reasoning, and can

be written as

EF = w

{[
ΩmV

(
δm + w

δf
h

)
︸ ︷︷ ︸

β1

+ ΩwmV(h− 1)
(
δm
w

+
δf
h

)
︸ ︷︷ ︸

β2

+ Ωw (1− Ω)δm︸ ︷︷ ︸
β3

+ ΩwΩmD

(
δm + w

δf
h

)
︸ ︷︷ ︸

β4

]
/w

}z
rFB′

+

[
(1− Ω)δm︸ ︷︷ ︸

φ1

+ ΩmD

(
δm + w

δf
h

)
︸ ︷︷ ︸

φ2

+ (1− Φ)δf︸ ︷︷ ︸
φ3

+ Φ h̊ m̊V

(
δm
w

+
δf

h̊

)
︸ ︷︷ ︸

φ4

]z
rFF′ + α̊,

where βi represents resources inherited by the offspring B′ of her brother’s w ≥ 1 wives and

φi represents resources inherited by her offspring F′; as in the previous case, the subscript

i = 1, . . . , 4 denotes the pathway through which resources are transferred to the heir. rFB′ and

rFF′ represent the coefficients of relatedness between F and, respectively, B′ and F′, as derived

below. α̊ 6= α for a mutant focal female whose paternity strategy differs from the strategy of

resident females, and α̊ = α in all other cases.

As in the previous case, β1, β2, β3, and β4 are only relevant if M marries, while φ4 is only

relevant if F marries. In this case, F’s husbands transfer vertically with probability m̊V because

the transfer strategy of males may depend on the marriage and paternity strategies of females

(males XS and XI, Table S1). If this is the case, m̊V 6= mV for a mutant focal female whose

marriage and/or paternity strategy differs from the strategy of resident females. m̊V = mV in

all other cases.

Coefficients of relatedness

For simplicity, we assume that the biological fathers of the offspring of a promiscuous female

are not related, and that the h husbands of a polyandrous female are not related and have equal

probability of fathering her offspring. Under these assumptions, and assuming that p in the

parent generation is equal to p in the previous generation, a female is related to her offspring

by 1/2, a male to his wife’s offspring by an average of p/2h, and siblings by an average of

(1 + p2/h)/4. Thus, rFF′ = 1/2, rFB′ = (p/2h)[(1 + p2/h)/4], and rMF′ = (1/2)[(1 + p2/h)/4].

rMB′ must accommodate the fact that the paternity strategy of females may depend on the

marriage strategy of males (females XA and XN, Table S1). If this is the case, p̊ 6= p for a
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mutant focal male whose marriage strategy differs from the strategy of resident males. p̊ = p in

all other cases. Because a female’s h husbands have equal probability of fathering her offspring,

the coefficient of relatedness between a focal male M and his wife’s offspring B′ is affected both

by the paternity strategy his wife plays against him, and by the paternity strategy she plays

against her other h− 1 husbands. This can be written as

rMB′ =
(1/h)p̊+ [(h− 1)/h]p

2h
=
p̊+ (h− 1)p

2h2
,

which reduces to p/2h for p̊ = p.

Stability of social monogamy

The possible combinations of male and female strategies differ in inclusive fitness payoffs; given

these payoffs, we can derive evolutionarily stable equilibria consisting of pairs of male and female

strategies that cannot be invaded by rare mutants playing alternative strategies (Maynard Smith

1982). The software Mathematica (Wolfram Research, Inc. 2007) was used to perform the

numerical analysis and to produce the stability plots.

Only two pairs of pure stable strategies result in social monogamy: (MS, MH) and (MS,

MA). Because the model does not yield simple analytical solutions, we describe in detail the

analytical results for the simplest case, pH = 1; these are plotted in Figure 2 in the text. Figure

S1 shows graphical results obtained with numerical methods for pH = 0.5.

Stability of (MS, MH)

In the first scenario, (MS, MH), resident males are monogamous and suspicious, that is, they

transfer vertically if females are monogamous and provide “high” paternity, diagonally other-

wise. Resident females are monogamous and always provide “high” paternity. This combination

of male and female strategies results in monogamous marriage, vertical transfer, and “high” pa-

ternity (Table S1).

(MS, MH) is a weak equilibrium, because resident males MS are neutral with males MV,

and resident females MH are neutral with females MA. For pH = 1, males MS are stable for

z <
log 3
log 2

against males MD and MI, (1a)

wP

(
δm
wP

+ δf

)z
< 1 against males PV and PS, and (1b)
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(a)

(b)

Figure S1: Stability of “suspicious” monogamous males against mutant males with wP = 2, wP = 4, or

wP = 8, for pH = 0.5; wP denotes the number of wives for polygynous males, and pH the paternity level of

males with females who always provide “high” paternity and of monogamous males with “astute” females.

δm represents the relative male contribution to the resources transferred to the offspring generation; z

describes the relationship between resources and individual fitness; pL represents the paternity level

of polygynous males with “astute” females. See text for details. (a), with monogamous females who

always provide “high” paternity. a is the condition for stability against monogamous males who transfer

diagonally, b against polygynous males who transfer vertically, c against polygynous males who transfer

diagonally. Social monogamy is stable in the darker area, where all conditions are met. (b), with “astute”

monogamous females. Monogamy is stable throughout the volume shown.
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(2δm + δf + wPδf)z < 3 against males PD and PI, (1c)

where wP > 1 denotes the number of wives for a polygynous male.

These conditions are derived by comparing the inclusive fitness payoff for a resident male to

the payoff for mutant males. The payoff for a resident focal male M is given by the resources

β1 = δm + δf = 1 he transfers to B′, and by the resources φ4 = δm + δf = 1 his sister’s husband

A transfers to F′ (Figure 1 in the text). Thus, δB′ = δm + δf = 1 and δF′ = δm + δf = 1, with

inclusive fitness value for M (δm + δf)z(1/2) and (δm + δf)z(1/4), respectively. Because δB′ = 1

and δF′ = 1, the inclusive fitness value of these resources is not affected by z (i.e. δzB′ = 1 and

δzF′ = 1).

The payoff for a mutant focal male M who is monogamous and transfers diagonally (males

MD and MI in this population, Table S1) is given by the resources φ1 = δm +δf = 1 he transfers

to F′, and by the resources φ4 = δm + δf = 1 male A transfers to F′ (Figure 1 in the text).

Thus, δB′ = 0, while δF′ = 2δm + 2δf = 2, with inclusive fitness value for M (2δm + 2δf)z(1/4).

Note that δzF′ > 2 for z > 1, that is, values of z > 1 result in a greater than twofold increase

in fitness for F′. Condition (1a) specifies that vertical transfer can be advantageous where the

benefit to a mutant male of providing extra resources to his sister’s offspring is offset by their

lower relatedness relative to wife’s offspring (i.e. for z < log 3/ log 2).

The payoff for a mutant focal male M who is polygynous and transfers vertically (males

PV and PS in this population, Table S1) is given by the resources β1 = (δm + wPδf)/wP he

transfers to each B′, and by the resources φ4 = δm + δf = 1 male A transfers to F′ (Figure 1 in

the text). Thus, δB′ = (δm +wPδf)/wP and δF′ = δm + δf = 1, with inclusive fitness value for M

wP[(δm +wPδf)/wP]z(1/2) and (δm + δf)z(1/4), respectively. Note that δB′ < 1 if M contributes

at least part of the resources transferred to the next generation (i.e. if δm > 0), thus δzB′ < 1

for z > 1, that is, values of z > 1 result in a reduction of the fitness value of the resources.

Condition (1b) specifies that monogamous marriage can be advantageous if the fitness value

of resources is depleted through division (i.e. for δm > 0 if z > 1), and becomes increasingly

advantageous as each female provides a relatively smaller share of the resources inherited by

her offspring (i.e. as δm increases and/or wP decreases).

Finally, the payoff for a mutant focal male M who is polygynous and transfers diagonally

(males PD and PI in this population, Table S1) is given by the resources φ1 = δm + wPδf ≥ 1

he transfers to F′, and by the resources φ4 = δm + δf = 1 male A transfers to F′ (Figure 1 in
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the text). Thus, δB′ = 0, while δF′ = 2δm + δf(wP + 1) ≥ 2, with inclusive fitness value for M

[2δm + δf(wP + 1)]z(1/4). Note that, as for (1a), δzF′ > 2 for z > 1, that is, values of z > 1

result in a greater than twofold increase in fitness for F′. Condition (1c) specifies that vertical

transfer can be advantageous where the benefit to a mutant male of providing extra resources to

his sister’s offspring is offset by their lower relatedness relative to wife’s offspring; additionally,

it becomes increasingly advantageous as each female provides a relatively smaller share of the

resources inherited by her offspring (i.e. as δm increases and/or wP decreases). Condition (1c)

reduces to (1a) for δm = 1.

For pH = 1, the payoff for females MH includes the fitness contribution by their offspring and

the fitness contribution by their brother’s wife’s offspring. Because resident males are suspicious,

this is always greater than the payoff for mutant females who are polyandrous and/or provide

“low” paternity (females XL, XN, PH, and PA in this population, Table S1), which is limited

to the fitness contribution by their brother’s wife’s offspring (and possibly αL).

Thus, (MS, MH) is stable for values of δm and z for which conditions (1a) to (1c) are satisfied

simultaneously (Figure 2a in the text). The upper limit to the range of values of z is given by

condition (1c), marked c in Figure 2a, and the lower limit by condition (1b), marked b in Figure

2a; condition (1a), marked a in Figure 2a, is always satisfied where (1c) is satisfied.

Stability of (MS, MA)

In the second scenario, (MS, MA), resident males are monogamous and suspicious, that is,

they transfer vertically if females are monogamous and provide “high” paternity, diagonally

otherwise. Resident females are monogamous and astute, that is, they provide “high” paternity

if males are monogamous, “low” paternity otherwise. As for (MS, MH), this combination of male

and female strategies results in monogamous marriage, vertical transfer, and “high” paternity

(Table S1).

(MS, MA) is a weak equilibrium, because resident males MS are neutral with males MV,

and resident females MA are neutral with females MH. For pH = 1, males MS are stable for

z <
log 3
log 2

against males MD and MI, (2a)

wP

(
δm
wP

+ δf

)z
pL < 1 against males PV and PI, and (2b)

(2δm + δf + wPδf)z < 3 against males PD and PS, (2c)
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As in the previous case, these conditions are derived by comparing the inclusive fitness payoff

for a resident male to the payoff for mutant males. The inclusive fitness payoff for a resident

focal male M is identical to the payoff derived for the previous scenario.

Condition (2a) is the condition for the stability of resident males MS against invasion by mu-

tant males who are monogamous and transfer diagonally (males MD and MI in this population,

Table S1), and is identical to (1a).

As for (1b), the payoff for a mutant focal male M who is polygynous and transfers vertically

(males PV and PI in this population, Table S1) is given by the resources β1 = (δm+wPδf)/wP he

transfers to each B′, and by the resources φ4 = δm+δf = 1 male A transfers to F′ (Figure 1 in the

text). Thus, δB′ = (δm +wPδf)/wP and δF′ = δm + δf = 1; because in this case resident females

give polygynous males paternity pL, these resources have inclusive fitness value for M wP[(δm +

wPδf)/wP]z(pL/2) and (δm + δf)z(1/4), respectively. As for (1b), δB′ < 1 if M contributes at

least part of the resources transferred to the next generation (i.e. if δm > 0), thus δzB′ < 1 for

z > 1, that is, values of z > 1 result in a reduction of the fitness value of the resources. However,

because of the reduction in relatedness between polygynous males and their wives’ offspring,

condition (2b) specifies that monogamy can be advantageous irrespective of whether the fitness

value of resources is depleted through division (i.e. for z > 0). As for (1b), monogamy becomes

increasingly advantageous as each female provides a relatively smaller share of the resources

inherited by her offspring (i.e. as δm increases and/or wP decreases). Additionally, monogamy

becomes increasingly advantageous as the relatedness between a polygynous male and his wives’

offspring decreases (i.e. as pL decreases); for pL < 1/wP, any potential fitness benefit to polygyny

is offset by the reduction in relatedness to wives’ offspring, such that monogamy is stable for

all values of δm.

Finally, condition (2c) is the condition for stability against mutant males who are polygynous

and transfer diagonally (males PD and PS in this population, Table S1), and is identical to (1c).

For pH = 1, the payoff for females MA is always greater than the payoff for mutant females

who are polyandrous and/or provide “low” paternity (females XL, XN, PH, and PA in this

population, Table S1): as in the previous scenario, the former includes the fitness contribution by

own offspring and brother’s wife’s offspring, while the latter is limited to the fitness contribution

by brother’s wife’s offspring (and possibly αL).

Thus, (MS, MA) is stable for values of δm, z, and pL for which conditions (2a) to (2c) are
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satisfied simultaneously (Figure 2b in the text). The upper limit to the range of values of z is

given by condition (2c) and the lower limit by condition (2b); condition (2a) is always satisfied

where (2c) is satisfied.
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