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Abstract

This paper discusses the potential role for Computer Aided Process Engineering (CAPE) in

developing engineering analysis and design approaches to biological systems across multiple

levels – cell signalling networks, gene, protein and metabolic networks, cellular systems,

through to physiological systems. The 21st Century challenge in the Life Sciences is to bring

together widely dispersed models and knowledge in order to enable a system-wide

understanding of these complex systems. This systems level understanding should have broad

clinical benefits. Computer Aided Process Engineering can bring systems approaches to i)

improving understanding of these complex chemical and physical (particularly molecular

transport in complex flow regimes) interactions at multiple scales in living systems, ii) analysis of

these models to help to identify critical missing information and to explore the consequences on

major output variables resulting from disturbances to the system, and iii) to ‘design’ potential

interventions in in vivo systems which can have significant beneficial, or potentially harmful,
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effects which need to be understood. This paper develops these three themes drawing on

recent projects at UCL. The first project has modeled the effects of blood flow on endothelial

cells lining arteries, taking into account cell shape change resulting in changes in the cell

skeleton which cause consequent chemical changes. A second is a project which is building an

in-silico model of the human liver, tieing together models from the molecular level to the liver.

The composite model models glucose regulation in the liver and associated organs. Both

projects involve molecular transport, chemical reactions, and complex multiscale systems,

tackled by approaches from CAPE.

Chemical Engineers solve multiple scale problems in manufacturing processes – from molecular

scale through unit operations scale to plant-wide and enterprise wide systems – so have an

appropriate skill set for tackling problems in physiology and clinical medicine, in collaboration

with life and clinical scientists.
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1. Introduction

This paper explores the role that experts in Computer Aided Process Engineering can contribute

to the significant recent developments in Biology and to the way Life Scientists go about their

business, and potentially help the way clinicians diagnose and make operational decisions. In

this paper the terms Computer Aided Process Engineering (CAPE) and Process Systems

Engineering (PSE) are used interchangeably, as the field where models of process systems are

analysed and used to solve process problems computationally (Kraslawski, Klatt and



Marquardt). The aim of this paper is to show how the term ‘process’ can be extended beyond

the definition commonly accepted by Chemical Engineers.

At the 7th World Congress of Chemical Engineering in Glasgow Denis Noble spoke in his

plenary lecture about the computational model of the heart that he and his research group have

developed over the past twenty or more years (Noble, 2002). Their project reflects true systems

thinking in physiology. The model is used for part of the drug approval process for the Food and

Drug Administration and is the first such model to be used in this way. The model has three

levels, mostly involving electrical signals, but he was insistent on the need to involve more

chemistry and that it must align with engineering principles. He is convinced that Engineers,

and Chemical Engineers in particular, have a very important role to play in computational

physiology.

Physiologists have long considered whole systems, well before the growth of quantitative

modelling approaches. However Life Scientists have used reductionist techniques to advance

their understanding, driven by the revolution in molecular biology and the growth of genetic

analysis. Individual phenomena are isolated and studied in detail with only qualitative

reference to interacting phenomena. Systems Biology has emerged as the area where biology

is analysed as complex interacting systems, and done so using quantitative modelling

techniques and system wide analysis (Kitano, 2002). This has arisen from the huge expansion

of data, from the enormous improvements in computational and numerical techniques, and in

the recognition of the importance of system wide effects. Recently there is a strong move to

develop systems approaches to medical problems which is being called Systems Medicine

(Auffray et al.).



The need for systems thinkers in the Life Sciences, in the research community and in the

pharmaceutical industry and clinical services, is now widely acknowledged (Kitano, 2002). The

US National Academy of Engineering and National Science Foundation Report ‘Beyond the

Molecular Frontier’ identified a strong role for Chemical Engineers to play in the interface with

Biology and Medicine. This interaction could have significant potential to benefit research

efforts worldwide in the next ten years. The systems approach is instilled in Chemical

Engineers and specialists in Computer Aided Process Engineering should be able to help train a

new type of engineering biologist who can work at the molecular and system wide levels

applying systems engineering approaches to physiological and clinical problems. This is

already occurring for cellular systems.

Section 2 introduces some of the work done to address biological problems using systems

approaches. It is not a comprehensive review but seeks to identify some of the areas where the

contribution from the Chemical Engineering community is clear. Section three explains how the

use of CAPE approaches can help to explore the understanding of life science systems,

demonstrating this with the modelling of endothelial cells lining artery walls. Section four

discusses how analysis tools can be used in this domain and shows similarities between

physiological systems and chemical manufacturing process systems. The glucose homeostasis

system in humans is used to demonstrate the similarity. It is not the objective to show full

results for these systems but rather to demonstrate how the skills of the CAPE community can

be used to address these types of problems. Section five postulates how the approach to

process design can make valuable contributions in physiology and medicine. Greater fidelity of

the models will be required before clinical advice can be safely used. Finally the paper

discusses the ways the education of Chemical Engineers can prepare graduates to get involved

and to contribute to this exciting field.



2. Computer Aided Process Engineering in Systems Biology

Systems Biology has been emerging as a key approach for using quantitative analysis to

understanding biological systems. It arose from the need to deal with very large amounts of

data from the development of the analysis of the genome (Westerhoff and Palsson, 2004).

Recently the idea of considering clinical problems from a quantitative systems perspective has

been proposed and is giving rise to significant new lines of research, spawning the new subject

of Systems Medicine (Auffray et al., 2009; Ahn et al., 2006). Clinicians have always attempted

to consider holistic approaches to medical diagnosis and treatment but the change being

brought about is the huge increase in quantitative understanding of biological systems and the

use of personalised data from patients. Foteinou et al. (2008) discussed the use of systems-

based models to better understand and modulate inflammatory responses in particular.

Chemical Engineers have long been involved in the quantitative analysis of biological and

biomedical problems. Peppas and Langer (2004) have written a historical perspective of the

involvement of Chemical Engineers in Biomedical Engineering with ‘implications which would

not be felt until the mid 1970’s but which had started in chemical engineering in the early 60’s.’

Bailey and his co-workers (see for example Bailey, 2001a&b, and a summary of much of his

work on eukaryotic systems in Fussenegger and Betenbaugh, 2002) developed approaches to

metabolic control analysis particularly for biological manufacturing but also for broader biological

problems. Recently Stephanopoulos et al. (2005) wrote of the challenges in nanoscale process

systems engineering, focusing particularly on the systems engineering of cells as complex

nanoscale factories. Eissing et al. (2009) recently wrote of the use of models for the analysis of

the network that controls cell death. Doyle and Stelling (2006) reviewed progress using



engineering approaches to the analysis of metabolic networks, considering robustness aspects

in particular.

Recently there have been a number of articles outlining quantitative challenges for Chemical

Engineers in medical system. Vekilov (2008) highlighted the role we can play as problem

solvers in clinical medicine, concentrating on exploring polymerisation phenomena in disease.

The immune system is a complex system for which chemical engineers, and process systems

engineers in particular, are very well suited to ‘exploring the interplay between the dynamics of

the immune system and the viral diversity.’ Deem (2004, 2005) has developed quantitative

models and investigated how the immune system responds to disease and vaccination.

Chakraborty (2003) discusses how cells in the immune system communicate and make

decisions to mount an immune response and comments that ‘the chemical engineer’s rare

ability to think about phenomena that occur over a wide range of length and time scales is

useful for studying complex problems in cellular and molecular immunology.’ Yin (2007)

proposes that viruses be considered as products whose behaviour of how they grow, spread

and persist needs to be considered within populations considering temporal and spatial effects.

He also states that Chemical Engineers are needed ‘especially in the defining and advancing of

quantitative and integrative methods and models.’ Joly and Pinto reviewed the advances of

mathematical modelling of HIV-1 pathogenesis presenting a general framework for optimizing

drug therapy benefits. This approach will also lead to advances in drug design (see for example

Petitti et al. (2008) for an example of modelling controlled release of a drug encapsulated as a

solid core) and formulation design (Zucca et al.) where in the future a model of the physical

attributes of the drug formulation can be used with a model of the physiology where it will be

delivered to develop an optimal design.



Some years ago an academic project, the Physiome Project (www.physiome.org.nz), was

launched seeking to provide a computational framework for understanding human and other

eukaryotic physiology through computational tools and models. A recent European Funded

Network of Excellence entitled the Virtual Physiological Human aims to help support and

progress European research in biomedical modelling and simulation of the human body

(Gavaghan et al., 2009, http://www.vph-noe.eu/).

There have been a number of papers exploring how to be able to ensure that models from

disparate sources can be compared and published in a transparent fashion. Nickerson and

Buist (2009) describe a standard for biological models, particularly designed to facilitate

comparability to assist the peer review process. The physiome standard has so far

concentrated on mathematical models of cellular electrophysiology using the CellML standard

(Beard et al. 2009, www.cellml.org), a standard for models of biophysical mechanisms which

has applications to all models of cellular processes where spatial gradients are ignored. Spatial

information is handled by a complementary standard called field modelling language, FieldML,

Christie et al. (2009) www.fieldml.org). A second standard is SBML, the Systems Biology

Markup Language (sbml.org), which is a computer-readable format for representing models of

biological processes applicable particularly to simulations of metabolism and cell-signaling.

Model repositories have been developed to store biological models for public access. Two

examples are the JWS Online Cellular Modelling System (jjj.mib.ac.uk) and the European

Bioinformatics Institute Biomodels Database (www.ebi.ac.uk/biomodels), used together to

explore complex biological and physiological systems. These repositories encourage the use of

the standards described above.



Another approach has been to develop a system that allows heterogeneous models to be

integrated using computational wrappers to enable communication between models within a

model management system (Hetherington et al., 2007). This is not unlike the CAPE-OPEN

approach well known in the CAPE community (www.colan.org).

There is increasing commercial interest for the use of integrated systems of biological models.

Entelos (Stokes, 2000) have large scale biological system models that span multiple scales

focussed on specific targets for drug discovery.

The use of models to obtain proposed actions on the basis of models is rarer. There have been

a number of contributions developing model based control approaches to drug delivery both as

general systematic approaches (Dua and Pistikopoulos, Somayaji et al., Morari and Gentilini,

Parker and Doyle, Linninger et al.) but also a number of contributions specifically developed for

cancer therapies (Dua et al. (2008), Bandara et al, Harrold and Parker) and for ophthalmic

therapy (Pettiti et al. (2009)). Csete and Doyle (2002) have proposed a reverse engineering

approach focusing on the analysis of complex dynamics of biological feedback systems. Tyson

et al. (2003) review some of the common design principles in biological regulatory signalling

modules.

Chemical Engineers have been contributing to the quantification in Biology and there is a strong

appetite for greater involvement. The potential is exciting not just for the technical challenges

but also for the opportunity to make a major social contribution. The approach by clinicians as

problem solvers on the basis of the analysis of observed phenomena is similar to the traditional

role of engineers in solving industrial problems. In the rest of the paper we will consider three

roles that Process Systems Engineers can contribute. The first challenge is enhancing

understanding through modelling. The second challenge is for detailed analysis of the models.



The third challenge is to use the models to develop proposed actions, which could be chemical

(drug activated), dietary, environmental, or clinical. This in engineering terms is a design

problem. The paper will discuss each of these three in turn with examples.

3. Enhancing Understanding

Hangos and Cameron (2001) make great emphasis on the need to be clear about the purpose

of a modelling task. A key role for modelling is recognised as helping to clarify understanding.

This is particularly true for complex systems where it is often not possible to design experiments

that focus on one specific phenomenon either because it is unmeasurable or because several

phenomena are intractably interconnected. These problems are very evident in the Life

Sciences where in spite of major advances in the measurement of genetic and metabolic

species, many measurements are physically unattainable and vary dynamically at levels for

which in vivo accuracy is still far from adequate.

To clarify which phenomena are driving a particular system a number of hypotheses can be

tested using a mathematical model. This is common in Chemical Engineering particularly where

there are multiple phases and local measurement is difficult, for example in reaction engineering

systems and processes involving particulates. These are examples of multiscale systems

involving molecular, bulk transport, and sometimes process level driving phenomena. Since

measurement of key species in the systems is often difficult or impossible, the use of models to

predict gross behaviour which can be matched unambiguously to data is essential. Systems

engineering techniques facilitate the ability to make conclusions about specific phenomena in

complex systems which are not directly measurable.



An example of this from work at UCL has been the modelling of the behaviour of endothelial

cells lining the walls of arteries responding to changes in blood flow. There is evidence that the

force due to fluid flow stimulates chemical signalling and causes the cells to elongate (Wojciak-

Stothard and Ridley, 2003). Under some conditions macrophages accumulate in the arterial

wall, ultimately leading to atherosclerosis. The location of atherosclerotic plaques is correlated

to regions where the flow is non-laminar (for example where arteries bifurcate) – suggesting that

the endothelial cell interpretation of blood flow is critical in the pathogenesis of atherosclerosis.

The work sought to explain a number of questions: Which cell component interprets physical

force? How does this component initiate signalling? How is the signalling network shut off?

Figure 1 shows how force act on the system and causes consequent effects. To explore this

behaviour we developed a three level model (details of the models can be found in Allen (2009)

and Allen et al. (2009)). A model has been developed of the forces exerted by the fluid flow

(blood) on the surface of the cell, assuming laminar flow over an endothelial cell (initially)

represented as a spherical cap. This model is a boundary integral representation of the Stokes

Equation for flow over a cell with the cell surface discretised into small triangles, of varying area

(~ 0.4 m2). A second model (a mechanical model) was developed of the effect of force on the

cell wall on the behaviour of the cytoskeleton, a structure of tensile elements working as cables

(actin filaments) and compressible elements as struts (microtubules) which keep the shape of

the cell. The force normal to the cell surface is taken to act on a viscous spring model known as

a Kelvin body, with a dashpot of fixed viscosity and two parallel springs. The Kelvin body

represents a cellular component that transduces mechanical force into a biochemical signal

which causes activation of an enzyme, Src (a tyrosine kinase), which is hypothesised to

regulate the Rho GTPase enzymes (Rac and Rho). Rho GTPases control cellular structure and

morphology. In particular, localised Rac activity initiates growth of extensions called

lamellipodia. The chemical pathway (simplified) for this is shown in figure 2 and is assumed to



have much faster dynamics than the structural changes. Together these models allow us to

model the effect of changes in the fluid flow on the signalling and consequent elongation of the

cells (fig 1).

The model clarified a number of issues. For example the best hypothesis is that integrin

complexes, which transduce signals from outside into the cell, interpret the physical force and

cause changes to Src activation levels (the first question above). They are known to become

activated in response to tension and the composite model supports this. The exact mechanism

is unclear but the Kelvin body model produces a suitable response.

However the model also suggested a number of other questions that need answers, such as

how to deal with modelling sheets of cells effectively given that there is inter-cellular

communication and restricted mechanical effects as a result of boundaries with other cells.

This model has chemical and mechanical effects and involves cellular and metabolic scales. It

is not a traditional ‘process system’ but does involve many of the characteristics that the

process systems community is used to dealing with. This problem involves two scales and

requires the consideration of a system of three models to connect the effects and to generate

simulated results for comparison with data. The models here are both chemical and

mechanical, embracing the scales which are familiar to Chemical Engineers. Using the systems

view of Computer Aided Process Engineering has facilitated the development of an integrated

model leading to the ability to test and verify hypotheses about the way the system works in

spite of the measurement difficulties.

4. CAPE analysis



One of the CAPE community’s key strengths is the ability to analyse models efficiently to

explore their properties in the physical context of the system. Hangos and Cameron (2001)

define two types of model analysis: those where there is a yes/no answer, and those which

involve a ‘Find’ or ‘Compute’ component, for example, determining outputs resulting from

stimuli, observability and controllability properties (see for example Russel et al.), or obtaining

sensitivity information.

Of relevance to the Life Sciences is the analysis of the robustness of systems with multiple

feedbacks. Living systems are known to be very robust. Some recent work of ours showed it is

possible to use network properties and an optimisation problem determining the size of a

network determined as the minimum of the distances between any two nodes to explore the

behaviour of a network under attack from viruses (Dartnell et al.). It was shown how the most

virulent tumour inducing viruses, adenovirus, HPV 16/18 and SV40, attack the most connected

nodes of the p53 network (which controls cell death), the p53 and pRb cellular proteins, acting

like ‘viral hackers’.

A second important task is the identification of areas of weakness in a model, where the model

may be insufficiently accurate to be able to make predictions of the desired accuracy. Of course

this means defining the accuracy of data which are already within the model as well as the level

of accuracy required for the purpose for which the model is being developed. This becomes

very important in complex models where internal parameters cannot be measured and outputs

may not obviously be related to inputs. Such problems are acute when dealing with complex

physiological problems involving a number of organs.

Figure 3 shows a simple process flowsheet. A feed stream containing a component, A, needed

for an important process, together with some waste is fed to a plug flow reactor. In this reactor



some of the feed is reacted to form a byproduct, B, which is stored for future use. It is important

that the product stream from this process contains a bounded amount of component A. A is

converted to B by a reaction catalysed by catalyst, C, and converted back to A in the reverse

reaction catalysed by component D. The CSTR produces an amount of C or D depending on

the level of A fed to it. If the level is too high it will produce C catalysing the forward reaction

producing more B in the membrane reactor where it is stored. If the level is too low it produces

an amount of D catalysing the reverse reaction. The membrane reactor at the same time acts

as a sophisticated filter removing the waste.

This simple flowsheet is in fact a simplified version of the system which regulates the level of

glucose in the bloodstream (figure 4). Glucose enters the bloodstream from the gut and is used

in all the other organs of the body, especially the brain. It is important that the level of glucose

is maintained within certain levels to ensure good response of the various human (or animal)

functions; this regulation is known as glucose homeostasis. If glucose levels are high the

pancreas produces insulin, the hormone that instructs the liver (and other tissue, especially

muscle) to convert glucose into glycogen which is stored for later use. If the level of glucose in

the blood is low the pancreas produces glucagon which stimulates the conversion of glycogen

back into glucose which can be released into the blood stream. The liver cells, or hepatocytes,

also convert waste products in the blood into bile which is filtered through the bile duct for

excretion.

This is a complex system involving a number of organs and to explore the behaviour of the

system requires a number of interconnected models with feedback between them. Seven

models of parts of the glucose homeostasis system (written in different modelling languages as

indicated) were developed by the large team listed in the Acknowledgements:



Glucagon receptor model (Mathematica) – models the activation of a receptor on the

surface of hepatocytes by the hormone glucagon which causes subsequent internal

signaling resulting in the production of IP3, a secondary messenger molecule. The model

contains five differential equations describing the various states of the receptor (free,

sequestered, ligand-bound and phophorylated ligand bound), the activation of G-proteins

and the production of IP3.

Calcium model (XPPAUT) – models the calcium signaling pathway activated by IP3 and

contains two differential equations for the cytoplasmic and endoplasmic reticulum calcium

concentrations. The net flows of calcium are assumed to have Hill function dynamics i.e.

of the form xn/(cn + xn).

cAMP model (Mathematica) – models the activation of a receptor and the consequent

production of cyclic AMP. The model involves five differential equations for concentrations

of cyclic AMP and S-Adenosyl methionine (SAM), the proportion of unmodified receptors,

and the proportions of inactive and nuclear localized protein kinase A (PKA). Responses

are assumed to follow Hill function dynamics.

Insulin model (XPPAUT) – models the response of the liver to insulin. Consists of

one differential equation describing the activation of glycogen synthase kinase (GSK), the

key responding protein.

Blood model (XPPAUT) – models the transport of glucose between the blood, the liver

and the pancreas and contains one differential equation for the concentration of glucose in

the blood

Glycogenolysis model (XPPAUT) – models four factors that control glycogen breakdown

and synthesis: direct control by glucose and glucose-6-phosphate, control by calcium ions,

control by cyclic AMP, and control by insulin. This model contains a fuzzy logic model

describing response of the activity level of glycogen synthase (Sta) which controls the rate



of glycogen synthesis, and glycogen phosphorylase (Pho) which controls the rate of

glycogen breakdown. These are used within a four differential equation model for Pho,

Sta, glycogen, and intracellular glucose.

Pancreas model (Mathematica) – models the release of glucagon or insulin using time

delayed threshold responses. The model consists of two differential equations for blood

concentration of glucagon and insulin. Each release is assumed to follow Hill function

dynamics.

Saffrey et al. (2007) describe a model management system for the development of models of

physiological systems, and this system in particular (see also Hetherington et al. (2007)). The

system stores models, data, and analysis results in a searchable system. The system enables

models to be linked together as a composite model and run to generate results. Biological

models are developed by laboratories using a wide variety of different modelling languages so

the system has been developed to enable such models to communicate and to run simulations.

Models are ‘wrapped’ to provide a common interface for communication in a way similar to the

CAPE-OPEN standard (www.colan.org).

The seven models were linked together in the model management system to simulate the

behaviour of the integrated system. A detailed description of the model with comprehensive

results can be found in Hetherington et al. (2009). The model was able to reproduce ultradian

oscillations which are observed in glucose behaviour of healthy systems. These oscillations,

which occur with a period of approximately an hour, result from feedback between liver and

pancreas (Simon and Brandenburger, 2001). Fig 5 shows the model matched to commercial

data for ultradian oscillations following an oral glucose tolerance test.



This is an example of a multiscale physiological process system which has a number of

characteristics which make the contribution of Process Systems Engineers of value. The

approach to the modelling task itself is one that we are familiar with albeit in a different domain.

The application of conservation and constitutive equations for these systems is valid but we

need to work closely with life scientists in the modelling task for clarifying the purpose of the

model, generating the modelling equations, and obtaining the data. Where we add value is in

our quantitative approach, utilising the approach of breaking complex systems into unit

operations or functional modules, and the ability to determine which potential components of the

model will be important and which can be ignored on the basis of quantitative exploration of the

components.

5. Design

A major strength from Engineering is in design: the prediction of appropriate values for a system

to achieve particular outcomes. Model based engineering design techniques are used to

determine what actions should be taken to achieve a desired outcome. This is a well-explored

approach in Engineering: in safety engineering, process design and operations, and supply

chain analysis for example, where gross consequences for a system of external stimuli are

simulated and evidence produced for design decisions. Objectives in traditional process design

include achieving particular product amounts and qualities while maximising financial return,

and keeping the environmental cost to a minimum.

The equivalent in the case of physiological systems is in designing interventions in living (in

vivo) systems which can have significant beneficial, or potentially harmful, effects. Such

interventions can be environmental, through the introduction of chemical or physical agents,

pharmacological, through clinical interventions, or genetic. The challenge for the future will be



to use system models to design actions for physiological systems where the level of uncertainty

is high but the need for bounded accuracy critical if clinical decisions are to be made. This will

make the fitness for purpose (Hangos and Cameron) a very important aspect of model

development, model curation, and data generation. Here we will show how this type of problem

appears in the glucose homeostasis example above in order to exemplify the way engineering

design approaches could be used more widely in physiology and clinical medicine in the future.

With composite models within a computational system described in section 4 it will be possible

to use a wide range of the techniques used by the Computer Aided Process Engineering

community to obtain useful actions. Three examples of such techniques are: to use

optimisation techniques to identify optimal solutions such as optimal insulin doses for diabetics;

to use stochastic techniques to identify probabilistic solutions to identify where model

sensitivities are important, such as determining which of the many rate constants need to be

most accurately measured; and to use interval methods (Hansen and Walster) to identify worst

case tolerances for actions given desired clinical or environmental outcomes.

It is this last area where we are currently addressing our attentions. Defining desired outputs in

quantitative terms, such as minimum levels of glucose to avoid the onset of type 2 diabetes with

possible consequences of non-alcoholic fatty liver disease (NAFLD) which occurs more

frequently in those with diabetes, it will be possible using the integrated model to devise clinical

actions that should be taken to avoid major problems. Simple integrated models also will allow

us to use interval techniques to provide quantified levels of accuracy required for experimental

data that will provide the desired uncertainty bounds in the outputs. This requires construction

of models which calculate intervals for output variables given intervals for the input variables

(Byrne and Bogle).



The objective will be to obtain a methodology which aims to minimise a biologically defined

quality objective J (clinical or dietary for example) which will be an interval (a range in allowable

blood glucose measurement for example) subject to an integrated model and intervals for

measured state variables (such as glucose concentration) X and non-interval state variables x,

u are manipulated variables (a chemical stimulus for example), d disturbance variables coming

from unmodelled parts of the system or outside the body, and  the ‘design’ variables which

characterise the system (such as chemical kinetics of glycogen-glucose chemistry). This

problem can be solved for point objectives using traditional optimisation techniques but also to

obtain interval bounds as a conservative range using interval methods. Interval methods are

very conservative which is valuable given the approximations involved and the criticality of the

outcomes.

The techniques used in Computer Aided Process Engineering, such as optimisation, stochastic

analysis, and interval methods, will be increasingly needed for biological and medical advances

to be able to make reliable system-wide quantitative predictions of their effects. The solutions

will provide guidance as to the sort of clinical or environmental actions that should be taken to

design a robust system which will not fail given certain ranges of disturbances to key variables.

If these variables are measurable then we would design a solution which indicated what the

range of measurements would be permissible before serious extra action need be taken to

avoid a failure of the system.

6. Process Engineering Education

The involvement in medical areas provides a new potential research area and employment area

for Process Systems Engineers. Process Systems Engineering training already gives

graduates the ability to apply computational problem solving techniques to a wide range of



problem domains: in the process industries, natural sciences research, financial services and

now increasingly in Systems Biology and in Systems Medicine.

To make students more aware requires principally the use of examples and the practice at using

the techniques that have been taught in the context of process analysis. These examples are

difficult to develop without appropriate domain knowledge. It is therefore important that those

wishing to work in this area make appropriate collaborations. For example at UCL there is a

mechanism for promoting collaboration through short and long projects in the Centre for

Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX). The first

year of a doctorate involves a series of short six week projects and a four month project prior to

the start of the PhD project. All projects must have two supervisors, one life scientist and one

modeller. By developing research collaboration mechanisms Process Systems Engineers can

become involved in understanding and solving Systems Biology problems and to contribute to

the formation of young engineers keen to get involved.

7. Conclusions

In this paper we have sought to show how some of the problems in Physiology and Clinical

Medicine can be addressed by the approaches used in Computer Aided Process Engineering.

The problems involve chemical and physical change in the chemical factories in the body and

often involve complex multiscale systems. These are the type of problems with which the

Computer Aided Process Engineering community has much experience.

The paper has focussed on how the community can make contributions using familiar

techniques in three ways. While there is great knowledge of physiological systems there is still

much to learn through using system models where key measurements are not available. Only



through the use of integrated system models can some of the complexities be unravelled and

linked to measurable quantities, aiding better understanding. Model analysis tools can be

deployed to explore the behaviour and sensitivities of the systems. Finally it will be possible to

use design methodologies to recommend actions for physiological systems, either to improve

normal behaviour or to find ways to alleviate diseased states.

The greatest challenge is in obtaining models that can predict the behaviour of physiological

systems to a sufficiently accurate degree. Models that will be used in any clinical way will

require much greater accuracy that those that are used for understanding and analysis where

gross trends can help clarify phenomena which drive a system. Clinical usage is still a long way

off. But the involvement of the Computer Aided Process Engineering community can help the

development of suitable methodologies and aid the model development and data generation

process to significantly speed up the development of practical outcomes using the new

approaches of Systems Biology and Systems Medicine.
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Structure for the composite model for the response of endothelial cells to changes in blood flow
Fig 1



Chemical signalling network for response to force on the cell from blood flow
Fig 2



Generic flowsheet for glucose regulation system as a Chemical Engineering system
Fig 3



Flowsheet for glucose regulation system in the body
Fig 4



Model prediction matched against commercial data of the consequences of the standard oral
glucose tolerance test resulting in ultradian oscillations in the liver

Fig 5


