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Abstract 

This paper presents a concise summary of a study on adaptive traffic signal controller for real time 
operation. The adaptive controller is designed to achieve three operational objectives: first, the 
controller adopts a dual control principle to achieve a balanced influence between immediate cost 
and long-term cost in operation; second, controller switches signals without referring to a preset 
plan and is acyclic; third, controller adjusts its parameters online to adapt new environment. Not all 
of these features are available in existing operational controllers. Although dynamic programming 
(DP) is the only exact solution for achieving the operational objectives, it is usually impractical for 
real time operation because of demand in computation and information. To circumvent the 
difficulties, we use approximate dynamic programming (ADP) in conjunction with online learning 
techniques. This approach can substantially reduce computational burden by replacing the exact 
value function of DP with a continuous linear approximation function, which is then updated 
progressively by online learning techniques. Two online learning techniques, which are 
reinforcement learning and monotonicity approximation respectively, are investigated. We find in 
computer simulation that the ADP controller leads to substantial savings in vehicle delays in 
comparison with optimised fixed-time plans. The implications of this study to traffic control are: the 
ADP controller meet all of the three operational objectives with competitive results, and can be 
readily implemented for operations at both isolated intersection and traffic networks; the ADP 
algorithm is computationally efficient, and the ADP controller is an evolving system that requires 
minimum human intervention; the ADP technique offers a flexible theoretical framework in which a 
range of functional forms and learning techniques can be further studied.  

1. Introduction 

Operating traffic signals in urban area requires proper timings in response to traffic demand 
that varies during a day and across days of a week. Conventional control methods often rely on a 
library of fixed-time plans that are optimised offline according to certain pattern of traffic demand. A 
conforming plan is retrieved from the library to accommodate the pattern of demand of hours during 
a day and across days of a week. The plans are maintained manually; otherwise their performance 
may degrade at a rate of 3% a year. Studies in responsive control methods, notably SCOOT, 
OPAC, PRODYN, SCATS, and UPTOPIA, have shown significant advantages over the 
conventional methods in performance, with reduced human intervention. In this paper, we 
investigate an adaptive controller that aims for three operational objectives: first, the controller 
adopts a control principle that aims to achieve a balanced influence between immediate cost and 
long-term cost in operation; second, controller operates signals without referring to preset stage 
sequences or stage during; third, controller adjusts its parameters online to adapt new environment. 
Not all of these features are available in existing operational controllers.  

To achieve the identified objectives, we demand a technique that optimises control process 
over time. Dynamic programming (DP), originally developed by Bellman (1957), is so far the only 
exact solution to problems as such. With all of its advantages, the DP problem cannot be solved 
analytically. The standard procedure to solve the DP problem is to recursively calculate Bellman’s 
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equation backward, step by step. The key components of the Bellman’s equation are the one-step 
cost function, which represents the immediate cost of making an action, and the value function, 
which represents the future cost of implementing a decision. In each iteration, the algorithm has to 
evaluate the cost of being every possible state of the system by using Bellman’s equation. This 
procedure may make a problem computationally intractable, if the state space of the control 
problem is large. Bellman called this phenomenon as “the curse of dimensionality.” Furthermore, 
because of the backward recursive calculation, one needs the complete information of the control 
system for the entire time period in concern. In real time operation, such a quest is usually 
impractical.  

Regarding the difficulties, the DP was only used for analytical purpose in previous studies in 
adaptive traffic signal control, such as in Robertson and Bretherton (1978), OPAC and PRODYN. 
Specific heuristics are adopted for the actual implementation of adaptive controllers.  

In this paper we present a novel approach in exploring the DP in real time traffic signal control. 
Central to this approach is to replace the true value function of the DP with a continuous 
approximation function. The approximation function aims to substantially reduce computational 
requirement, while preserving the fundamental properties of the true value function. The solution 
procedure is to step forward in time rather than step backward. The approximation function is 
updated at each step when a new state transition is observed. This approach is frequently denoted 
as approximate dynamic programming or adaptive dynamic programming. We use the acronym 
ADP in the rest of this paper.  

The fundamentals of the ADP are discussed in Section 2. The system dynamics and 
formulations of ADP for traffic signal control are introduced in Section 3. We present numerical 
experiments in Section 4. The experiments include scenarios of both isolated intersection and 
traffic network.  

 
2. Fundamentals of the ADP 

2A1.2 

i X∈Let  be the state variable of the system, and u U∈ the decision variable. Given the initial 
state i0 and a sequence of decisions ut at discrete time t, a dynamic programming algorithm is to 
solve  
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The backward dynamic programming solution recursively computes the Bellman’s equation 
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where  

gt is the one-step cost function,  

( ]0,1 is the discount factor, α ∈

( )J i is the value function representing the future cost of being in state i,  

and the expectation operator is taken in respect to the probability in state transition from it to it+1 
influenced by random information wt.  

( )i Xfor each iJIt is not difficult to show that we have to evaluate ∈ at time t so that the 
recursive calculation (2) may continue to the next step. This is the core problem of dimensionality, 
but is further complicated by the transition probability from it to it+1 and the decision space U.  In the 
ADP approach, we define a continuous approximation function ( ), : KJ r X⋅ × →% � �

( ) :J X⋅ → �

to replace the 

true , where parameter vector r of J% is K-dimensional. At each time step t, we calculate 
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) ( )J ⋅% r JBy using function we avoid a look-up table of i

(

that contains the true value of being 
each state i. We calculate (4) only upon visiting the actual state i, thus substantially reducing 
computational requirement.   

)JAlso by using function , r⋅%

1t t t tr r r

we calculate (4) by stepping forward into time. Upon each state 
transition from it to it+1 we obtain a new estimate of function parameter Δrt, which is then used to 
update the current estimation of parameter vector r as 

η+ = + Δ ,       (6) 

where ηt is the stepsize that satisfies 0 < ηt ≤ 1.  

A general algorithm of the ADP is summarised in Fig.1.  

 

Step 1. 

 

 

 

Initialisation  

a)  Initialise r0. 

b)  Choose an initial state i0, .  i X∈

c)  Set t = 1. 

Step 2. System receives random information wt.  

Step 3. For t = 1,2,…, m-1,  

a) Calculate (4), (5) 

b) Calculate , trΔ

t
∗

c) Update parametric vector r using (6), 

d) Implement u to transfer system to new state it+1. 

Step 4. If t < m go to step 2.  
 

Fig. 1 The general algorithm for the ADP  

The remaining question here is how to obtain the estimation Δrt online and update the 
functional parameter accordingly. Bertsekas and Tsitsiklis (1996) use artificial neural network to 
formulate approximation function and update the functional parameters using learning paradigms of 
neural networks, such as supervised learning or reinforcement learning (Sutton and Barto, 1998). 
In the context of online operation, where information of the system is not known a priori, 
reinforcement learning is a practical solution. One of the key technique of reinforcement learning is 
temporal difference (TD) learning (Sutton 1988), which constantly tracks the difference between 
estimation and the actual observation. Tsitsiklis and Van Roy (1997) prove that a linear 
approximation function trained by TD learning converges with a probability of 1, if a few outstanding 
assumptions are met. A different technique to update functional parameter is present by Papadaki 
and Powell (2002, 2003). They firstly identify the structural properties of the true value function,and 
then use perturbation learning to estimate the partial gradients of the linear approximation function. 
In this paper we investigate both TD learning and the perturbation learning for a linear 
approximation function.  

Let dt denote the temporal difference at time step t, we have 

( ) ( )ˆ , ,t t t td J i J i r= − %        (7) 

J% is calculated by (4). The functional parameter r is then updated by where 
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where λ is an exponential weighting factor that satisfies 0 ≤ λ ≤ 1. Stepsize factor ηt has to satisfy  

2

0 0
 and t t

t t
η η

∞ ∞

= =

= ∞ <∑ ∑ ∞ ,      (9) 
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and D is the diagonal matrix with diagonal entries π (i), i = 1,…, n,  
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The entries of D denotes the steady-state probability for the process it, and π (i) > 0,∀ ∈ .  

On the other hand, we may also seek to estimate Δr by numerically calculate partial gradient 
Δr (k), k = 1,2, K. The partial estimation is obtained by perturbing the state i with an artificial 
increment Δi (k), and calculate 

( )( ) ( )
( )

ˆ ˆ
t t

t

J i i k J i
r k

i k
+ Δ −

Δ =
Δ

.               (10) 

We then smooth to obtain an updated estimate of the functional parameter 

( ) ( ) ( ) ( )1 1 ,  for 1, 2,...,t t t t tr k r k r k k Kη η+ = − + Δ = .    (11) 

Papadaki and Powell (2002, 2003) use (10) and (11) to update the linear approximation 
function designated for a batch dispatch problem, which exhibits considerable similarities to traffic 
signal control problem.  

3. Formulation of ADP for traffic signal control 

The outstanding assumptions for the traffic signal control problem include:  

1). Signal phases are composed of effective greens and effective reds only, and no 
amber interval is considered. Lost time is not consider either.  

2). There are no constraints on the maximum duration of a green period. A signal switch 
is immediately followed by mandatory inter-green and minimum green. 

3). Queue lengths are calculated at the end of each time interval, neglecting the detail of 
vehicle behaviour during the interval. Signals may only be switched at the boundary 
between intervals 

4). The saturation flow on all lanes is 1 vehicles per 2 seconds. This is equivalent to 1440 
vehicles per hour, a rate that is sufficiently close to the saturation flow of a single traffic 
lane. 

5). Upstream roadside sensors provide information of arriving traffic of the next 10 
seconds 
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traffic link and the signal indication each link receives. We denote queue remaining in traffic 
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where l(n) denotes the actual number of vehicles queuing in link n, and each element of s is a 
binary variable depending on traffic signal indication such that 
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The system state i therefore can be expressed as i {l, s}. To construct the approximation 
function, we employ a feature-extraction function φ (i) such that,  
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In such a way, we differentiate the signal status, and assign r- to queue length variable l (n) if 
link n receives green signal, or r+ if otherwise.  

We further denote random arriving traffic by column vector w, where 

( )1w⎡ ⎤
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w
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Let column vector y denote the departing traffic from the N-link intersection, it follows  
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Finally, the transition of system state during time increment from t to t+1 can be then 
described as  
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where decision variable ut takes 

 



Cai and Heydecker: ADP Traffic Signal January 2009 UTSG 
 

London 
 

 

 

Equation (14) and (15) describe the state transitions of a single step. The number steps in a 
certain time period depends the resolution of the discrete time system. Let Δt denote the time 
increment of discrete time step, we assume that there is a total number of M steps in the planning 
period of the signal controller, and consequently the actual duration of the planning period is MΔt 
seconds. Since we assume that the upstream detector provides 10-second data of future traffic, the 
planning period MΔt is normally between 10 and 20 seconds. Traffic data for the period beyond 
10-second can be predicted by using Monte Carlo simulation. For a M-step planning period, the 
ADP controller aims to find 

2A1.6 
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The M-step temporal difference can be expressed as  
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and the functional parameter is updated by 

     (20) 

Equation (20) can be regarded as a special variant of (8). With a large M, Eq. (20) comes closer to 
(8) with λ= 1, and a smaller M makes (20) closer to (8) withλ= 0.  

For the perturbation technique presented by (10) and (11), in M-step planning, we simply use 
(17) instead of one-step equation (4) to calculate MJ . 

The traffic signal control algorithm using ADP can be summarised as the following: 

Step 0: Initialisation 
0.1 Choose an initial system state i0; 
0.2 Initialise functional parameter vector r0; 

0.3 Initiate learning rate (or stepsize) η0; 

0.4 Set time index t = 0. 

Step 1: Receiving new information 
1.1 Set time index t = t + 1; 
1.2 Receive detected information wt ; 
1.3 Predict the information vector tw′ for the extra part of the planning period, if necessary. 

Step 2: Evaluate control decisions 

2.1 If signal change is not admissible, set u*
t = 0; 

2.2 If signal change is admissible, for the planning period of M-steps, find the optimal decision 
u*

t using (14). 
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Step 3: Update approximation function 

a) TD option:  

( )Ĵ
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3.a.1 Calculate new observation M ti  using (17) 

( )1 1,t t tJ i r− −
% using (12); 3.a.2 Calculate current approximation

3.a.3 Calculate M-step temporal difference using (19) 

3.a.4 Update functional parameter vector rt-1 using (20). 

b) Perturbation option: 

3.b.1 Numerically calculate partial gradient for n = 1, 2, …, N by perturbing queue lt (n) of state it by 
Δl(n),  

( )tr n−Δ , if s(n) = 0 (green signal in link n), using (10) and (17) to obtain

( )tr n+Δ , if s(n) = 1 (red signal in link n), using (10) and (17) to obtain

3.b.2 Update functional parameter vector rt-1 accordingly by using (11) for n = 1, 2, …, N¸  

Step 4: Implement optimal decision u*
t for the first Δt of the planning period 

4.1 Transfer signal status using (15); 

4.2 Transfer queue status using (14); 

4.3 Complete the state transition from it to it+1.  

Step 5: Stopping Criteria 

5.1 If t < T, then goes back to Step 1; Otherwise, stop. 

In the next section, we discuss the application of the ADP control algorithm in numerical 
experiments.  

4. Numerical experiments 

Cai (2007) investigates the ADP signal controller for isolated intersection with two stages. The 
results from numerical experiments show that the ADP control algorithm using linear approximation 
function and perturbation training is as good as Robertson and Bretherton’s heuristic using 
quadratic approximation function. Heydecker et al. (2007) extended the investigation to an isolated 
intersection with multiple stages. The study shows that the ADP controller, which produces acyclic 
signal timings, can reduce 48% vehicle delays from the best fixed-time plans. Both of the studies 
above use perturbation to update the linear approximation function online, and a resolution of 5-
second per time step is adopted.  

In this study, we first investigate the performance of ADP controller at a three-stage 
intersection, using a resolution of 0.5-second per time step. The ADP controller can be trained both 
by TD learning and perturbation. The results will be compared with the optimised fixed-time plans 
from TRANSYT 12.0, and with the ADP controller at the resolution of 5-second per time step.  

We will further extend the investigation to a traffic network, where the ability of the ADP 
controller for distributive network control will be tested. The traffic network uses cell transmission 
model (CTM) to describe the traffic dynamics of the network. The performance of the ADP 
controller will be compared with optimised fixed-time plans and offset from TRANSTY. Only TD 
learning is used in this case.  

The geometric layout and signal stage composition of the three-stage traffic intersection are 
shown in Fig.2. Traffic demand of the intersection is 432 v/h in link A and C, and 252 v/h in link B. 
The saturation flow rate at the stop line of each traffic link is 1440 v/h.      
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The control policy for the ADP controller is to evaluate whether to change signal indication at 
each time step. The option of “change” must reward better performance than “not change” and 
“change at any time later in the planning period.” The planning period is 20-second long, with the 
first 10 seconds supplied with detected information and the second 10 seconds with predicted 
information. Only the first Δt seconds of the plan is implemented, and the system rolls forward to 
the next step.   

At the three-stage intersection, we obtain 10 results from independent run of test for each 
control method. The control methods include ADP trained with TD learning, ADP trained with 
perturbation learning, the TRANSTY plans, and the ADP controller trained with perturbation 
learning but at resolution of 5-second per time step.  The results are summarised in Table 1. Under 
the resolution of 0.5s, the ADP controllers reduce about 67% vehicle delays from the optimised 
fixed-time plans produced by TRANSYT. It is also worth noticing that the same ADP controller can 
reduce about 41% delays by operating at 0.5s instead of 5.0s per time step. The higher frequency 
of revising signal plans proves rewarding.  
 

Table 1 Performance results (vehicle seconds per second) of ADP controller and optimised fixed-time plans from 
tests at the three-stage isolated traffic intersection   

  

 ADP_TD ADP_Perturbation TRANSYT plans ADP_Perturbation 

 0.5s 0.5s 0.5s 5.0s 

1 4.38 4.36 15.03 7.51 

2 4.69 4.67 13.67 9.10 

3 5.03 5.09 13.78 8.62 

4 4.27 4.34 12.08 7.40 

5 4.63 4.74 13.71 7.81 

6 5.15 5.20 14.08 8.83 

7 4.05 4.02 13.20 6.68 

8 4.45 4.35 14.13 7.32 

9 5.11 5.19 15.06 8.36 

10 4.46 4.61 14.74 7.83 

Mean 4.62 4.66 13.95 7.94 

SD 0.37 0.40 0.90 0.76 
 

 
Table 2 The optimised fixed-time plans from TRANSYT 12.0 for the three-stage traffic intersection 

 

Starting time 
Number of Stages 

Stage 1 Stage 2 Stage 3 
Cycle time 

3 55 101 9 120 seconds 
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Fig. 2 Geometric layout and stage composition of the three-stage isolated traffic intersection 
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Fig. 3 The geometric layout of the example traffic network 

The geometric layout of the traffic network is shown in Fig.3. The example network was 
originally designed by Wong et al. (2007) and uses the CTM to model traffic dynamics. The cells 
are homogenous in the network, with a capacity of 4 vehicles, except for the first cells of input links 
and the last cells of exit links, where the capacity is infinite to serve as the reservoir of traffic. The 
modelling details of the traffic links in the network is summarised in Table 3. There two 
intersections in the network, each having two stages and being governed by an independent ADP 
controller. The ADP controller uses the same control policy as for the isolated intersection 
presented earlier. Only TD learning is used to train the linear approximation function in this case. 
The resolution is 2-second per time increment, which is conforming to the resolution of the CTM in 
use. The planning period is 16-second long.  

The traffic input and downstream distribution are summarised in Table 4. The saturation flow 
rate at the stopline of each link is 1440 v/h. An uneven flow pattern is seen in the network, with 
majority of traffic going from west to east, and a short link L8 in the middle. The coordination 
between signals S6 of intersection A and S4 of B are critical to the performance.   

 
Table 3 Modelling details of the traffic links in the example network 

Intersection Link Total no. of 
Cells Signal Signal stage Signal in Cell 

no. Remarks 

L1 5 S1 A1 5 Input link 

L2 5 S2 A2 5 Input link 

L5 3 - - - Exit link 
A 

L8 1 S6 A1 1 Short link 

L3 1 S3 B1 1 Short link 

L4 3 - - - Exit link 

L6 5 S4 B1 5 Input link 
B 

L7 5 S5 B2 5 Input link 
 
 

Table 4 Traffic input and downstream distribution in the example network 
 

Link L1 L2 L6 L7 

Flow rate 350 (v/h) 382 (v/h) 440 (v/h) 382 (v/h) 

Downstream L3 L3 L5 L8 L4 L8 

Turning ratio 100% 25% 75% 100% 25% 75% 

This paper is produced and circulated privately and its inclusion  
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The ADP controller’s performance indices obtained in a single run of test are shown in 
Table 5. The ADP controllers located in the two intersections maintain queues low in all input links, 
as indicated by the mean queue length of the concerning links. The temporal high demand from 
links L6 and L7 are quickly facilitated by the coordination between the two intersections, as 
indicated by the maximum queue length and the mode queue length of the respective links. A 
sample of coordination is visualised in Fig.4. Controller at intersection A trends to use the holding 
capacity of L8 to accommodate the first few arrivals from upstream until fully occupied (e.g. 
time 4551 to 4561), and then switch S6 to green to dissipate queues at saturation flow rate (1 v/2s) 
until flow rate drops (e.g. time 4562 to 4578). This means that controller at A usually maximises 
flow until upstream queues are cleared, at which point the incoming flow rate to L8 converges to 
arriving rate. In the mean time, using the holding capacity of L8 to accommodate the first few 
arriving vehicles gives the controlller at A opportunites to clear local queues in L2 (time 4551 to 
4558, and 4581 to 4592). Controller at intersection B coordinates flows from L1 and L2 in a similar 
manner, despite the lower demand from east to west. Overall, the average vehicle delays over 10 
tests runs is 9.00 vehicle seconds per second, with a standard deviation of 0.38.  

The corresponding results of the TRANSYT plan in a single test run are shown in Table 6, and 
details of the signal plans in Table 7. It is clear that the signal plans optimised by TRANSYT does 
not fit well in the CTM traffic model, which is under the influence of stochastic traffic from the input 
links, whereas the TRANSTY model assumes cyclic traffic flow profiles. The TRANSYT plans leave 
substantial queues in links L2 and L7, whiles the mean queue lengths in L1 and L6 are still greater 
than those obtained with the ADP controllers. 

The comparison suggests that the ADP controllers can be adopted for distributive control in 
network, and are far more advantageous in a stochastic traffic environment.  

 
Table 5  Performance result of a single test run of 4-hour simulated time using 

ADP_TD controllers for distributive network control 
 

 Intersection A Intersection B 

Link L1 L2 L8 L3 L6 L7 

Mean queue 0.78 1.76 1.93 0.84 1.35 2.32 

SE 0.01 0.02 0.02 0.01 0.02 0.03 

Median 0 1 2 0.75 1 2 

Mode 0 1 3 0 0 0 

Maximum 7 11 4 4 11 12 

 
Table 6 The performance results of a single test run of 4-hour simulated time using  

optimised fixed-time plans from TRANSYT 12.0 for network control 
 

 

 Intersection A Intersection B 

Link L1 L2 L8 L3 L6 L7 

Mean queue 0.86 70.14 2.26 0.81 2.05 34.36 

SE 0.01 0.42 0.02 0.01 0.02 0.27 

Median 0 67 3 0.25 1.25 27.67 

Mode 0 66 4 0 0 21 

Maximum 7 132 4 4 11 81.67 

Table 7 The optimised TRANSTY 12.0 plans for network control 
 

Intersections Number of 
Stages Stage 1 Stage 2 Stage 3 Stage 4 Cycle time 

A 4 119 (A1) 49 (A2) 73 (A1) 107 (A2) 120 seconds 

B 4 2 (B1) 35 (B2) 67 (B1) 97 (B2) 120 seconds 
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Fig. 4 Signal coordination between intersection A and B; 

 Links L7 and L6, signals S5 and S4, belong to intersection B, L8 and S6 to A.  

 

The evolutions of functional parameters r for each link of the traffic network are shown in 
Fig. 5. The functional parameters are updated by using online TD learning. Because that we use a 
constant rate ηt = 0.001, the values of r do not converge. For links of intersection A, i.e. L1, L2 and 
L8, the parameters come close to certain values since the transient-state of the simulation is 
passed. On the other hand, for links of intersection B, i.e. L3, L6 and L7, the parameters show 
greater oscillations. In general, the evolution of parameters reflects the increasing monotonicity of 
the true value function. The controller also penalises queue in red signal, as r+ is constantly greater 
than r- in all cases.  

5. Conclusion  

This study develops a novel adaptive traffic signal controller by using approximate dynamic 
programming (ADP). The ADP approach preserves the fundaments of the original dynamic 
programming (DP) problem, and exhibits significant implication to real time signal operation. The 
key feature of the ADP approach is to replace the true value function of the DP with an 
approximation function. The approximation function may start with an arbitrary initialisation. 
Machine learning techniques for online operation are then employed to update the approximation 
function progressively. In this study, we use a linear approximation function, which can be trained 
either by temporal difference (TD) learning or perturbation learning. Numerical experiments have 
shown that the ADP controller reduces substantial vehicle delays from the best fixed-time plans 
both at a multi-stage isolated intersection and in a traffic network. A comparison with the optimised 
signal plans from TRANSYT in the network operation also reveals that the ADP controller is far 
more advantageous in managing stochastic traffic arrivals than the fixed-time plans. Due to the 
limited scope of this study, we are unable to establish a direct comparison with any existing 
adaptive signal controller. A field test is strongly recommended to evaluate the merit of the ADP 
controllers, and their actual implication to practice.  
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On the approximation 
function, the formulation is 
not limited to linear functions 
only. By using a general 
approximation tool, such as 
the multi-layer perceptron 
(MLP), the approximation 
function may take a range of 
non-linear forms. There is 
also a rich quantity of 
learning techniques that can 
be explored to train the 
function parameters online.  
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Fig. 5 Evolutions of functional parameters in traffic network control 
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