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Abstract

Minimal surfaces have gradually been translated from the field of mathematics into the
architectural design research due to their remarkable geometric properties. The simulations of
soap films or protein folding are only some of the many applications in various fields, while
architecture and engineering have been applying them for tensile roof structures since the
early 1960’s. The research question relates to the problem of creating a computational
generative tool which simulates a parametric minimal surface with a non-standard method
using a self-organizing particle-spring system and achieving a controlled level of subdivision
modularity of the surface for fabrication. The process is iterative and it has a different
approach from a standard computational method such as the dynamic relaxation algorithm,
because it does not start with a pre-given topology and it consists of two simultaneous
processes: the one that is defining the minimal surface geometry and the one that is creating
the subdivision of the surface to control the basic constituent modules. The method is tested
on the case of triply periodic minimal surfaces and from the fabrication point of view it is
focusing on defining a tensegrity modular system composed of interlocked rings with a unique
dimension or a pre-given set of standard dimensions.
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1. Introduction

The general research question of the study is related to the design problem of minimal surface
structures while the aim is to create an algorithmic alternative method for generating minimal
surfaces, based on a particle-spring system. The main concept is based on the simulation of a
potential tensioned membrane such as a virtual soap film within an pre-given boundary, by
using an iterative algorithm which is performing on two directions simultaneously: the
generative algorithm for the minimal curvature geometry and the subdivision technique for the
triangulation of the surface in order to reach an optimal modular configuration for making
possible the fabrication of the generated structure.

1.1. The Architectural Problem and Thesis Aims
The research is focused on both the form-finding and the fabrication related to the geometric
properties of minimal surfaces, while the question that emerges is how the translation from
the virtual three-dimensional space to the built artifact could be embodied into a
computational process which would also solve the issues within the fabrication framework.

The study is of a common interest with a similar series of projects of Loop.pH, a design studio
which is specialized in the conception, construction and fabrication of environmentally
responsive textiles for the built environment. They have been developing cellular fabrication
systems for a set of minimal surface objects, involving weaving to form complex patterns or

creating tensegrity structures composed of interlocked fiber-glass rings.

Figure 1. Metabolic Media, Loop.pH ,London, 2008, (Source: < ttp://loop.ph/bin/view/Loop/MetabolicMedia>)

Metabolic Media is a structure based on a modular tensegrity system composed of interlocked
identical fibre-glass rings which defines a complex geometry with minimal surface
characteristics forming a rounded dodecahedral toroid. The fabrication process is a case of a
bottom-up cellular manufacturing process, similar to a textile hyperbolic surface crochet but at
a larger scale.
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The objective is to create a computational framework for developing a similar system for
testing and fabrication of several minimal surface geometries of various sizes and degrees of
complexity and controlling the fabrication method of such an assembly with one or multiple
size modular components. The study is focused on the case of triply periodic minimal surfaces
and on a similar bottom-up approach for both sides of the problem. Accordingly, the aim is to
investigate the possibility of using a particle-spring system which would create a minimal
surface while the springs could serve as the main geometrical base for defining the
manufacturing modular pieces.

From the point of view of the generative process, the study involves a form-finding strategy
considering the properties of infinitely periodic minimal surfaces. The problem is reduced to
creating the basic minimal surface module, within a basic kaleidoscopic cell (usually a
tetrahedron or a prism) characteristic to the specific potential geometric configuration. The
concept is to simulate a tensioned membrane, defined by the particles and the springs and
bounded by the faces of the kaleidoscopic cell. By defining a system of constraints and specific
attributes to the particles, the hypothesis is that the behavior of the system would suggest a
minimal surface membrane, a virtual soap film between the faces of the basic tetrahedron.

While the iterations of the algorithm are performing a self-organizing process of the particles
so that they could define a surface with a local area curvature minimization, the springs are
controlled by a Delaunay triangulation algorithm so that they reach an efficient topology made
of linear elements with one stable length or a specified set of standard lengths in order to
define standard sizes as fabrication components.

The investigation is meant to define a different approach to the problem of minimal surfaces
computational simulation. While the numerical methods deal with the differential geometry
algorithms, dynamic relaxation might be considered a similar method by generalizing the
particle-spring characteristics and the algorithmic similarities in the case of starting with a pre-
given topology. In this study, however, the algorithm does not start with an existing topology
and the accent is put on the iterative growth process, controlled by the geometrical constraints
of the growth environment (the kaleidoscopic cell) and the dynamic tessellation of the surface.

1.2. Computational design

Minimal surfaces are a specific example of complex geometries with diverse range of
applications in fields such as nanotechnology or molecular engineering and are a primary
element in the physical simulation of compound polymers, black holes, soap films or protein
folding. Computation is playing an essential role in the simulation and modeling process of
such complex phenomena. The methods used are developing different approaches coming
from the mathematical field such as numerical methods, differential geometry or other
algorithms such as shortest path segmentation or dynamic relaxation.
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Dynamic relaxation is the most frequent method used in structural engineering, regarding the
computation of network structures for optimizing predefined topologies. The algorithm is
based on applying external forces to a system of nodes connected by linear elements and it
performs an iterative relaxation process which modifies the position of the nodes in order to
minimize the potential energy of the system. The disadvantage of the method from the point
of view of the modularity would be that it does not allow a reconfiguration of the basic
topology.

In contrast with the dynamic relaxation, the proposed method for creating a minimal surface is
the one of using a form-finding generative algorithm which is based on particle-spring system
dynamics. It does not start with a predefined topology as it is based on a growth process, by
adding nodes according to the geometrical constraints and the subdivision rules applied. The
aim is to find an optimized topology for fabrication while generating the minimal surface.

Particle systems are a famous technique in computer graphics, being used for realistic physical
simulations of natural complex phenomena such as fire, smoke, clouds, water or complex
behaviors of the dynamics and modeling of clothes, hair, fur or grass. In the case of particle-
spring systems, the particles are connected with virtual springs which generate the forces to be
applied to the particles in order to achieve an elastic state of equilibrium of the system,
according to the masses of the particles, the lengths of the springs or external forces such as
gravity.

The concept of self-organization is very often related to particle systems being a model of
complex behavior found in the natural environment. Various examples such as the Beloussov-
Zhabotinsky chemical reaction or flocking behavior of birds are implying the notion of self-
organization and are exhibiting interesting properties leading to “autonomous emergence and
maintenance of structural order”, according to Michael Wheeler. (Wheeler, 2005)

1.3. Tensegrity Structures

Tensegrity structures are a special category of modular systems composed of basic structural
cells that consist of compressed solid struts and tensioned cables. Because of their lightness
and very interesting visual complexity they are very much appreciated and used by architects
and designers. The term belongs to Richard Buckminster Fuller and comes from tensional
integrity, a definition which characterizes the best the phenomenon within the interaction
between the components. According to Antony Pugh, “A tensegrity system is established when
a set of discontinuous compressive components interacts with a set of continuous tensile
components to define a stable volume in space.” (Burckhardt, 2008)

Extrapolating from the definition made by Antony Pugh, tensegrity structures could be
identified under many forms in the environment around us. For example, the skin of a balloon
is considered the tensile component, while the air inside it is the compressed element. The
same principle is to be found in nature, the cells of the green plants behaving in a similar way
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to the balloons while providing structural integrity. In a similar way, other human artifacts
could be identified as systems composed of tensioned and compressed elements working
together to reach a state of structural stability “even if no external load is present”.
(Burckhardt, 2008) A relevant architectural example from this point of view could be the pre-
stressed concrete in which the internal steel armature is in tension while the concrete is in
compression.

1.4. Structure of the Thesis

Within the next section of the thesis, a more detailed description of related subjects such as
the triply periodic minimal surfaces and tensegrity structures will be presented. In the
following section 3, the implemented method will be presented together with the parallel
alternative tests. Section 4 will describe the outcome of the various tests and different
implementations of the algorithm while in section 5 an analysis and a critical assessment of the
results will be performed. The overall conclusion will cover also the future possible directions
in the future development.
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2. Background

2.1. Minimal surfaces

The study of minimal surfaces has experienced a highly increased level of interest in the latest
decades due to questions such as: “What are the possible shapes of natural objects in
equilibrium and why? When a closed wire is dipped into a soap solution and afterward raised
up from the solution, the surface spanning the wire is a soap film. The soap film is in a state of
equilibrium. What are the possible shapes of soap films and why? Or why is DNA like a double
spiral staircase? ‘What’ and ‘why’ are questions that, when answered, help us understand the
world we live in. The answer to any question about the shape of natural objects is bound to
involve mathematics.” (Colding and Minicozzi, 2005)

A minimal surface is a geometry concept which refers to a surface with zero mean curvature
that has the property of being locally area-minimizing, in a sense of having the smallest area
within a given boundary (Brakke). Soap films are classical examples of minimal surfaces. The
special properties of the minimal surfaces were used in various fields from nanotechnology to
architecture, leading to very interesting applications such as the light roof tensile structures in
the case of Frei Otto, for which he used physical models and soap films as a form-finding tool.

Figure 2. Left: Soap Bubble within a metallic frame (Source: <www.emis.de/.../NNJ/conferences/N1996-
Emmer.html>) Right: Frei Otto’s Munich Olympic Stadium 1972(Source: live.cgcu.net/editions/livic/1596>)

Starting with catenoids or helicoids which were the first ones to be identified around the
beginning of the 18" century, a very important moment in the research related to minimal
surfaces was the discovery of the Costa Surface by Celso Costa in 1982, followed by different
new classes of surfaces obtained by a series of rotational symmetries. Besides the most famous
types such as the Enneper Surface or the Riemann Surface, the minimal surfaces can have a
large amount of different configurations, reaching very high levels of complexity by forming
infinite repetitive crystalline structures such as the doubly or triply periodic minimal surfaces.
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Infinite periodic minimal surfaces started being investigated after the first published example
described by H.A. Schwarz in 1865, in the same time that Riemann and Weierstrass were
independently publishing memoirs on investigating the same typology of surfaces. They were
called surfaces even if they presented symmetries related to the diamond crystal structures.
(Schoen, 1970) Their geometry is based on a potential infinite degree of repetition of a surface
region module based on an absolute symmetry in three dimensions.

Figure 3. Minimal Surfaces : Catenoid , Costa, Ennepeer , Chen Gackstatter

(Source: < http://xahlee.org/surface/gallery_m.html>)

Kaleidoscopic cells are fundamental regions for groups of reflection in three dimensions for
generating triply periodic minimal surfaces. They are “convex polyhedra which provide plane
boundaries for finite minimal surfaces which can be replicated by reflection to yield infinite
periodic minimal surfaces without self-intersection.” (Schoen, 1970) There are two categories
among the seven types of standard kaleidoscopic cells, represented by prisms and tetrahedral
geometries. Together with the main rectangular parallelepiped, there are the triangular prisms
and the tetragonal disphenoid, the trirectangular tetrahedron and the quadrirectangular
tetrahedron. “Many of the triply periodic minimal surfaces have embedded straight lines”
which are to be identified as symmetry axes (type C2) of 180 degree rotational symmetries.
(Brakke)

One of the most famous triply periodic minimal surfaces, is the Shwarz P Surface which
“divides the space in two congruent labyrinths” (Brakke) and it has a fundamental region which
is the 48" part of a cube, a trirectangular tetrahedron. The Complementary P Surface Family is
a set of surfaces complementary to the Shwarz P Surface. They all have the same kaleidoscopic
cell as a fundamental region. Among them, Neovius’ Surface is another cell with ‘necks’
towards the middle of every edge o the cube and Schoen’s C Surfaces are examples of a
similar process but with a 96-fold symmetry (having 96 copies of the same fundamental
region). Some of the most interesting triply periodic minimal surfaces families having a
quadrirectangular tetrahedron as a kaleidoscopic cell are the Batwing Family, with a
correspondent Schoen’s Batwing Surface, which has the fundamental region defined as a half
of the 48" part of a cube, the Disphenoid families or even Hybrid Surfaces.

From the point of view of the topology the surfaces could gain ‘handles’ without losing their
properties. The concept of a handle could be imagined as a sphere which becomes a torus after
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having attached one. Accordingly, the surfaces could be characterized by their genus, which
reveals the number of handles that have been attached to the surface. (Colding and Minicozzi,
2005)

“Minimal surfaces may be also characterized as surfaces of minimal surface area for given
boundary conditions”, (Weisstein). From the mathematical point of view, the process of finding
a minimal surface within a boundary with specific constraints is determined by the calculus of
variations. The mathematical model of minimal surfaces is based on differential geometries
and is strictly related to the standard computational method of visualization used in most of
the cases. Dynamic relaxation is another method which is based on an iterative process that
tends to an equilibrium state after a “pseudo-dynamic process in time”. (Lewis, 2003)

Computational methods

Dynamic Relaxation started being developed as a numeric, differential technique. “The
method relies on a discretized continuum in which the mass of the structure is assumed to be
concentrated(lumped) at given points(nodes) on the surface. The system of lumped masses
oscillates about the equilibrium position under the influence of ‘damping’. The iterative scheme
reflects a process, in which static equilibrium of the system is achieved by simulating a pseudo-
dynamic process in time.” (Lewis, 2003)The use of damping differentiates various types of
methods which include parameters such as viscous behavior or kinetic energy that help in the
simulation of different categories of tensioned cables or membrane structures. It is a method
that starting with a predefined topology, leads to a formation of a minimal surface, within the
constraining boundaries or existing forces.

The most famous application is the Great Court Roof of the British Museum, designed by Foster
and Partners Architects in collaboration with the Buro Happold, the structural engineers.
Computation was an essential element in the design of the steel and glass roof, in order to
define a “spiraling geometry” using a series of numerical and analytic methods, in order to
“satisfy architectural, structural and glazing constraints.” (Williams, 2001)

Ken Brakke’s Surface Evolver is an interactive modeling software used for the modeling of
liquid surfaces which are shaped by various forces and constraints. It is designed for simulating
soap bubbles, foams, liquid solder, capillary shapes, and other liquid surfaces which would be
shaped by reaching minimum energy from the point of view of the surface tension. The
resulted surfaces are represented as triangular meshes in order to control the potential
complicated topologies or topological changes, such as foam coarsening or quasi-static flow. It
has a command prompt interface with interactive three-dimensional graphics. (Brakke)

It is an example of great relevance to the subject of the thesis for its different approach in
defining standard or triply periodic minimal surfaces. The algorithm behind the software is
taking the input of the user which defines an initial surface which is implemented as a
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“simplicial complex. The program evolves the surface toward minimal energy by a gradient
descent method. The aim can be to find a minimal energy surface, or to model the process of
evolution by mean curvature, [...] for surface tension energy in the context of varifolds and
geometric measure theory.” (Brakke)

Evolver can simulate the energy as a combination of various factors such as surface tension,
gravitation, squared mean curvature, volume or boundary constraints, knot energies, user
defined surface integrals or prescribed mean curvature. The basic concepts are related to an
iterative algorithm which simulates an evolution process. Starting with a basic geometry as an
assembly of vertices, edges and faces and the system of constraints and forces, a total energy
is calculated. The process of minimizing this energy is actually the evolution. One iteration
defines on evolution step. The algorithm calculates “the force on each vertex from the gradient
of the total energy of the surface as a function of the position of that vertex. The force gives the
direction of motion. Second, the force is made to conform to whatever constraints are
applicable. Third, the actual motion is found by multiplying the force by a global scale factor.”
(Brakke)

Several studies on the tessellation of surfaces and on the development of discrete differential
geometry methods were being made in accordance to the increasing architectural design need
of digital fabrication of free-form structures and surfaces. It is a principle according to for a
given geometry there can be suggested different discretizations, while the question is which
one is the most efficient for its application in the architectural field.

A relevant example related to the minimal surfaces efficient modular tessellation is a
mathematical study made by Alexander I. Bobenco, a study which solves issues related to the
curvature and the integrability for polyhedral surfaces. However, being related to the
investigation subject of the present thesis research, it is a different approach in the sense of
not aiming to achieve a polyhedral tessellation of a pre-given surface leading to non-equal
polygonal quadrilaterals, which could be considered a top-down method, but to generate a
surface with a finite number of identical triangular subdivisions as a bottom-up process.

TLso b0 00,
AP = Tl

Figure 4 . Discrete geometry of a symmetric and asymmetric Schwarz P-surface(Sechelmann, Bucking) (Source:
www.math.tu-berlin.de/~bobenko/Rio.pdf>)
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2.2. Tensegrity structures

“How to obtain ‘non-column’ space rationally and beautifully has been a dream of mankind for
years. It is always our ambition to develop elegant, fascinating, unbelievable and even
‘unreasonable’ and ‘impossible’ forms. There seems no limit to architectural art. Meanwhile, a
designer has to face a combination of different objectives and constraints such as safety, costs,
aesthetics, manufacturing and functional requirements. Normally, rationality in structural point
of view is required.” (Bing, 2004)

Space structures are usually appreciated by architects and engineers for their lightness, visual
aesthetic complexity or flexibility together with the efficiency in developing models for
construction of architectural elements such as roofs or facades. The fascinating properties of
the tensegrity structures are moving beyond the aesthetic reasons and give the possibility of
building very-large scale structures, theoretically, in a case of a domical or spherical
configuration, the size of a city. The economical aspect is a major one, as in a tensegrity
structure the tensile members predominate while the compressed elements are reduced to
the minimum. (Burkhardt, 2008)

The word tensegrity is a contraction of two words: “tensile” and “integrity” and it is attributed
to Buckminster Fuller. It is meant to define the category of lightweight three-dimensional
structures which are composed of both compressed rigid linear elements and tensioned cables
and have as a characteristic the fact that the stability of the structure lies in the tension.
(Skelton and Oliveira, 2009)

Following their discovery by sculptor Kenneth Snelson, while he was a student of Buckminster
Fuller, in the same time the French architect Emmerich was developing similar structural
models independently, several patents related to various aspects of tensegrity structures were
attributed to all three of them. While Fuller and Emmerich were focusing on the development
of architectural spherical and domical structures, Snelson was interested primarily in the
artistic investigation and application of the principles. Fascinating examples of pioneering

tensegrity structures were produced by all of them, such as Kenneth Snelson ‘s ‘Needle Tower’
at the Hirshhorn Museum of Modern Art, Washington,DC .

Figure 5. Kenneth Snelson’s Needle Tower and a tensegrity sculpture (Source: <
http://www.kennethsnelson.net/sculpture/outdoor/images/twer_vertical.jpg>, <
http://swamiobryans.blogspot.com/2009/03/message-from-swami.html|>)
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Modularity is one of the great attributes of tensegrity structures which can reach a high level of
structural complexity starting from the very basic modules, such as Snelson’s X module, or the
simple prismatic or the more advanced polyhedral cells called simplexes. At a lower level, the
simplexes are made of basic struts and cables with predefined dimensional modules. Thus, the
tensegrity structures are not reduced to only cable-strut systems. According to Burkhardt, the
analogies to the balloons or plants are to be considered when thinking of any system in which
tension and compression work together to reach stability within a structural system. Following
this idea, other types of tensioned elements such as membranes or curved struts were
successfully introduced within tensegrity systems. (Burkhardt, 2008)

A special case of tensegrity structures is the one of interlocked, connected or woven rings in
which the basic elements, the rings are undertaking tension and compression forces
simultaneously. Due to the continuous nature of material distribution within a ring, the
investigation toward the distribution of forces and the structural properties or behavior of such
a system becomes one of great potential. They could be considered as single base modules or
as in three-dimensional assemblies forming tetrahedral, cubical or polyhedral geometries.
Sculptor Bo Atkinson has made several studies on ring reinforced concrete, called
“ringforcements”(Atkinson, 2000), and its application on several configuration of both regular
and freeform structural elements. The study was focused on both connected and interlocked
metallic strings and included several structural tests which have proven the high level of
potential of such systems.

The use of fiberglass rings, as modules for constructing minimal surface geometries, has been
developed extensively by Loop.pH, a design studio with a biomimmetic design approach which
simulates self-supporting cellular structures embodied in artistic installations. Based on an
analog cell to cell manufacturing process, similar to the crochet method of creating textile
fabrics as cellular hyperbolic surfaces, the results are extremely interesting from both the
aesthetic and the structural point of view.
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3. Methodology

3.1. The concept and the algorithm

Aiming to obtain a simulation of a tensioned membrane by using a bottom-up generative
approach in order to create a tool that could construct various types of triply periodic minimal
surfaces, the methodology is based on the dynamic behavior of a particle-spring system. The
hypothesis is that a particle-spring net which is defining a surface, due to the elastic properties
of the springs will tend to behave like an elastic membrane, responding to forces and
constraints. Accordingly, because of the elastic properties, it will tend to achieve a minimal
surface area between the defining boundaries. The solution to generate infinite triply periodic
minimal surfaces relies on establishing the system of constraints or forces that need to be
applied in order to satisfy the mean curvature characteristic and the topological configuration
of the surface obtained by the reflection of the basic kaleidoscopic cell.

The problem is reduced to creating the basic surface region within the kaleidoscopic cell, which
is the basic tetrahedral fundamental region for the group of reflections in three dimensions,
after which the surface could be reflected and form the triply periodic minimal surface. The
example chosen for illustrating the methodology is the well known Schwarz P-surface which
has as a kaleidoscopic cell a tri-rectangular tetrahedron which represents the 48" part of a
cube. The principle is based on the rules defined by Schwarz in order to construct a periodic
minimal surface:

“1. If part of the boundary of a minimal surface is a straight line, then the reflection across the
line, when added to the original surface, makes another minimal surface. 2. If a minimal
surface meets a plane at right angles, then the mirror image of the plane, when added to the
original surface, also makes a minimal surface.” (Weisstein)

In order to create a minimal surface within the cell, a network of particles needs to be created
which would connect the faces of the tetrahedron. The connection to the faces is realized by a
series of new types of particles, limited in their behavior by constraints: fixed particles,
particles constrained on the edges of the tetrahedron and particles constrained on the faces of
the tetrahedron. The theory leading to generating a minimal surface is based on the principle
that tension, acting within a spring between a constrained particle and a free one will tend to
reach a minimum length for the spring and tend to become perpendicular to the constraining
surface or edge, achieving a minimal distance in relation to it. Considering the bottom-up
approach for the whole process, besides the boundary defining constrained ones, the
algorithm starts with just one particle. As particles are added, a Delaunay adapted algorithm is
optimally triangulating the surface while the boundary particles are maintaining their
constrained relationship with the faces and the edges of the tetrahedron. Topologically, the
aim is to obtain only one length or a set of standard lengths for the springs as edges of
triangles, hence another iterative process is controlling the stable lengths of the springs to
adapt to the morphological changes of the surface.
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3.2. The particle-spring system

For the purpose of the research, the definition of the particle system was made simple enough
to satisfy the premises for the other aspects of the simulation. It is not using mass, acceleration
or viscous damping as it is not programmed for a realistic physical dynamic simulation of the
particles behavior. Accordingly, every particle is defined by two vectors: position and velocity.
The two vectors are updated at every iteration according to the previous instance and a
temporary value is stored and calculated as a result of the current position and velocity
vectors’ sum. It is a method which controls the behavior of the particle by analyzing and
confirming the next step to be taken.

The springs are defined by an ideal length which dictates the forces that need to be exerted to
each of the particles according to the current length of the connection. In case of a smaller
distance between the particles, the spring is in compression, meaning that it will exert a force
that repels the particles. If the distance is bigger than the ideal length, the spring would be in
tension and thus it needs to exert a force that would pull the particles closer to each other. In
case the distance between the particles is equal to the ideal length of the spring it means that
the spring is in equilibrium. In order to control the multiple spring connections between
particles, each particle accumulates in a temporary force vector all the forces transmitted by
the connected springs, which is applied after summing all of them.

3.3. The kaleidoscopic cell
The physical parameters of the space in which the particle system will perform, was created by
using a category of vertices and face entities that had to be defined in order to control the
boundary of the environment in which the self-organizing particle would simulate a tensioned
membrane. The faces have attributes such as the normal on the plane vector or the centroid
vector, which would be necessary for identifying the parameters needed for creating the
constraints defining the relationship between a particle and a face.

The vertices and the face entities are a very useful element in providing flexibility to the
program, for generating, simulating and testing various types of kaleidoscopic cell
configurations. By specifying the starting set of constrained particles, attached to the
geometries of the basic fundamental regions, the different configurations and tests would be
applied also to a variety of minimal surface solutions for the same kaleidoscopic cell.

3.4. Creating constraints
In order to achieve the expected behavior of the system, a set of constraints had to be created
for the particles. The constraints are strictly geometric and related to the boundary of the
fundamental region, the tri-rectangular tetrahedron. Except for the free particles, which have
a total degree of freedom in all three directions of the Euclidean space, a new category of
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particles needed to be created. The fixed particles would be locked on an initial position,
without having the possibility to be moved, but would interact with all the others through
spring connections.

In relation with the kaleidoscopic cell, in order to provide the possibility of an optimal
displacement for the particles defining the boundaries of the obtained membrane, a category
of particles fixed on face was added. Considering the faces as separate entities, dictated by the
position of the vertices of the tetrahedron, the principle behind this constraint was based on
correcting the trajectory of a particle according to its position relative to the correspondent
face. When created, according to the initial position, a specific face constraint would be added
to the particle’s attributes. With every iteration, the particle’s projection on the face would
create a vector with a magnitude equivalent to the distance between the particle and the
plane, which would be subtracted from the position vector of the particle. This way, according
to all the applied spring forces, after the new position of a particle fixed on a face is
determined, the new position will be corrected in order to bring the particle back on the
specified plane.

Figure 6. Principle of constraining a particle on a face

In order to achieve the last type of constraints, according to which the particles need to remain
fixed on the edges of the tetrahedron, the concept was based on the application of the
previous face constraint. When applied simultaneously, a particle kept on two faces will be
repositioned on the edge defined by the intersection of the two planes. Accordingly, two
correction vectors corresponding to the two faces were subtracted from the temporary
position of the particle in order to place it on the edge defined by them for every new step of
the algorithm.
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3.5. The Delaunay Algorithm
According to the purpose of the self-organizing particle system, the one of forming a surface
through spring connections, the problem of finding a criterion for choosing the right particles
to be connected was reduced to solving a triangulation algorithm which would allow the
springs to create a tessellation which could be mapped on a surface, without creating closed
three-dimensional geometries.

Given a number of random particles in space, for connecting them with springs which will
generate a triangulated surface mesh, a Delaunay algorithm was used. In order to avoid the
formation of tetrahedral or polyhedral geometries, the solution was to adapt a two-
dimensional Delaunay algorithm to a three-dimensional configuration, so that, in relation to a
base plane, all the points would be projected on it, and the algorithm will map the two-
dimensional solution to the three-dimensional configuration. For every iteration, after finding
the center of the circumscribed circle of every potential triangular face defined by the
projections of three particles on the base plane, the algorithm is checking whether there is
another particle projected within the same circle. If no other particle is found then the
corresponding particles are connected with springs.

3.6. The modular tessellation

The manufacturing side of the research is focused on generating a geometry composed of
single or multiple standard size modular elements. From the algorithmic point of view, the
elements are the springs that connect the particles. Having the property of tending to reach a
defined standard length, the springs could form a homogenous system in which they achieve a
state of equilibrium based on generating a geometry composed of only identical linear
elements. Another step in the optimization of the surface could lead to researching the
possibility of multiple size linear elements, a case in which the state of equilibrium would be
reaching only a fixed number of predefined dimensional instances of the modules.

The tessellation algorithm applied is updating the configuration of the surface according to the
current lengths of the springs. In case the existing springs are in tension and they are reaching
a length above a pre-defined threshold, new particles are inserted in the system to
compensate the tensional energy. In case a spring is in compression, and its length is below a
minimal value admitted, one of the particles that are defining the spring is removed from the
system. After a number of iterations the algorithm leads to a system in equilibrium, in which
case the lengths of the springs have become equivalent throughout the surface. Within a
kaleidoscopic cell, because of the geometrical constraints of the boundaries of the surface, the
maximum level of accuracy is impossible to achieve, but the tolerances would be acceptable
for a flexible manufacturing system. In order to increase the level of precision from the
dimensional point of view, the multiple stable length springs would be an alternative to finding
the optimal configuration of a series of identical modular elements.

Msc. AAC 08-09 — Vlad Tenu — Minimal surfaces as self-organizing systems
22



3.7. Reflection
After a series of iterations and after the fundamental surface region has reached a minimal
surface configuration, on order to obtain the corresponding triply periodic minimal surface
module, a number of 48 reflections are needed, relative to the faces of the tetrahedron, in
order to form a cube. The cube itself can be multiplied for creating two or three-dimensional
arrays, acting as a cell of the theoretically infinite triply periodic minimal surface which would
be obtained.

3.8. Alternative tested methods

Following a concept in a strict correlation to the reflection of the fundamental regions in order
to obtain a triply periodic minimal surface, another method for defining a minimal surface
geometry with a particle-spring system was tested. The idea of reflection was extrapolated to
the idea of creating virtual particles which would be reflected projections of the particles
within the boundary of the kaleidoscopic cell, in relation to the faces of the tetrahedron. In this
case, the factor which would affect the curvature of the surface would be given by the spring
connections between the ‘real’ particles and their reflected instances, the ‘virtual’ ones. The
reflected clones would have the property of keeping the exact corresponding position of the
original particles, a fact which is maintaining the reflective property of the basic surface.

Two alternatives were tested. One was realized by connecting the particles found close to a
face within the tetrahedron to their correspondent projection in relation to the same face. The
results were similar to the main method, with a satisfactory behavior from the point of view of
the quality of the obtained curvature. The other alternative was to create connections
between a particle in the proximity of a face and the clones of all the particles connected
through springs with the same particle, in relation to the closest face. The second method
proved to be very expensive computationally and not able to work with a considerable number
of particles.

Figure 7. Principle of connection between a particle in the proximity of a face and the ‘virtual’ projections of the
neighbors
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4. Testing and Results

The testing strategy for the methods involved applying the algorithm to a standard triply
periodic minimal surface and to identify the efficiency of the algorithm by analyzing the level of
accuracy in generating the geometry and in subdividing the surface for a uniform triangulation
given by the distribution of the particles on the surface. The algorithm was initially tested on a
classical Schwarz P Surface, following the effect of the basic rules and constraints to the quality
of the generated surface.

After identifying the position of the basic surface region within the tetrahedral kaleidoscopic
cell, the algorithm would start with one free particle besides the four constrained ones that
would define the initial boundary (two fixed and two on edges that would be positioned in the
middle of the four defining edges). The strategy also consisted in starting with a considerably
big ideal length for the springs so that the triangulation and the subdivision algorithm could
perform by affecting gradually the geometrical and the topological configuration of the
surface. By decreasing the ideal length new particles and springs are born and while self-
organizing, the shape of the surface starts to gain curvature and become smoother according
to the degree of tessellation. The results for the illustrated 6 initial different tests involving
from 5 to 92 particles that generated from 8 to 240 springs, were showing explicitly the
transition between the angular faceted configuration of the surface to a more densely
tessellated surface with a smoother curvature.

Figure 8. The fundamental region, the result after 6 reflections and the complete module of the Schwarz P Surface

The gradual process of generating the surface, given by the decrease of the ideal length for the
springs, is based on a correlation between the value of the ideal length and the length of all
springs. If a disequilibrium occurs, particles are added or removed from the system in order to
rearrange the connections between them. This correlation between the linear decrease of the
value of the ideal length of the springs and the increase in number of the particles and the
connections between them is illustrated in the graph below. The performance of the algorithm
is linear from this point of view, considering that a small decrease of the ideal length creates a
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new generation of particles and the corresponding springs would tend to reach a state of
equilibrium through their dynamic behavior.
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Figure 9. Graph illustrating the increase in number of the particles in relation with the decrease of the Ideal Spring
Length

From the point of view of the equilibrium of the system, after several runs, the conclusion was
that there are some more stable configurations than others in relation to the number of
particles and the ideal length. It is a phenomenon related to the lengths of the springs and the
dimensions of the boundary they need to fill in. The self-organizing process, with a strong
dynamic behavior caused loss of stability in some intermediary instances which was instantly
solved by decreasing the ideal length of the springs, hence increasing the tension within the
surface. Certain combinations of spring lengths and number of particles are always stable,
usually in the initial steps, while the ideal spring length is big enough. As it gets smaller and the
number of the particles gets bigger during the intermediary steps, the dynamism of the system
is increased but after a set of iterations the surface gets more stable in the end.

Figure 10. Different degrees of tessellation of the Schwarz P Surface according to the number of particles
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4.1. Geometrical analysis
From the overall geometrical point of view, before the reflection of the fundamental regions,
the result was satisfactory, showing that the main hypothesis was proved in a sense that the
network of particles, due to the springs between them, and the geometrical constrains leaded
to an apparent minimization of the mean curvature of the surface behaving as expected in
order to generate the basic region of a Schwarz P Surface.

After the reflection, by looking more into detail at the obtained curvatures in relation to the
faces of the cube and the relationship between the mirrored instances of the surface, there
was a certain deviation that was noticed which was influencing the continuity of the surface. In
order to evaluate the obtained curvature, the analysis was made on the planar circles formed
on every face of the cube. In accordance to the change in the number of particles, even if the
curvature became smoother, the deviation from the circular boundary that should have been
obtained on every face of the containing cube was consistent enough to get visible as a small
break of the surface continuity after the reflection. Theoretically, the perfect curvature should
be obtained by an infinite number of particles, which would lead to an indefinite number of
segments of the circle. Following this idea, in accordance with an increased number of
particles, a smaller curvature deviation was expected. The hypothesis is that the more
particles the surface has, the more accurate the curvature of the surface would be.
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Figure 11. Radius deviation situations on the face of the cube

For a more accurate evaluation of the curvature of the surface, a deeper analysis of the
phenomenon was initiated. The average of the measurements of the radii deviations were
mapped onto a graph in relation to the increase of the number of particles. As the number of
particles was increased the deviation from the main curvature oscillated, but tending to reach
a lower value, according to the graph below.
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Figure 12. The average deviation from the radius of the circle on the face of the cube.

The other factor which influences the curvature of the surface is given by the properties of the
springs. According to their strength, the tension within the surface could vary and affect the
overall curvature. In order to obtain a minimal surface, the ratio between tension and
compression within the springs should be reduced to a minimum, but balanced towards the
tensional factor. Simulating the tension requires mainly attraction within the springs, or
stronger attraction then repulsion, as the compression will break the continuity of the surface
by generating unwanted extrusions and tetrahedral geometries which would definitely change
the appearance of the resulted geometry.

The relation between attraction and repulsion was given by a coefficient k, meant to increase
the value of the attraction coefficient active within the spring’s force. The tested values were 1,
10 and 100 which leaded to the conclusion that the highest value was corresponding to the
higher level of stability from the point of view of the dynamics, but with high oscillations and
bigger absolute values for the average deviation from the radius of the circle on the face of the
cube.
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Figure 13. The average radius deviation values for the different spring conditions

4.2. Topological analysis
From the topological point of view, the efficiency of the algorithm could be assessed by
analyzing the tessellation of the surface related to the uniform distribution of particles and to
their correspondent valence (number of neighbors) and by the level of accuracy in reaching the
ideal lengths of the springs within the triangulation process. The valence distribution within
the system’s particles is controlled by the Delaunay algorithm which is constraining the number
of neighbors from 2 to 7 or potentially, as in very few cases, 8 neighbors.

Figure 14. Stills from the running algorithm with the numerical display of the spring length deviations and the
nodes valences
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Following the increase of the number of particles in strict correlation with their valences, the
corresponding bigger number of connections was creating a temporary instability of the
system in relation to the dynamic behavior of the particles and the predisposition of
connectivity through springs. In some of the cases, the subdivision algorithm leaded to the
formation of clusters of particles with tetrahedral or polyhedral geometries. Even if the
Delaunay algorithm was the main factor in preventing this type of phenomena, after repeated
experiments, a series of additional conditions for connecting the springs were added. The
connection filters were preventing the inefficient connections between similar constrained
particles or the formation of tetrahedrons. The relationship between the number of particles
and the corresponding number of springs is presented in the following graph which covers a
number of 2000 iterations.
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Figure 15. Number of particles versus number of connections between them

Due to the configuration of the fundamental region and the constraints defining the
boundaries of the surface, the problem of the precision consists in obtaining equal size linear
elements within the triangulated surface. In strict correlation with the attributes of the springs,
which provide the tension necessary for defining the curvature of the surface, the length
deviation of the springs relating to the ideal lengths was relatively high in most of the cases
and has been analyzed in different situations, on a different number of particles and different
values for the attraction/repulsion coefficient k.
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The results of the graphic analysis are showing that the high values for the k coefficient are
reaching to a more unstable system, with higher values for the absolute deviation but with an
approximately constant level after a considerable amount of iterations. The conclusion is that
the higher tension within the final surface, from the point of view of the tessellation, by leading
to a bigger but constant deviation from the ideal length is creating an optimized configuration
for the fabrication. From the point of view of the fabrication not the value of the deviation is
essential, but its constant level of deviation, obtained by the homogenous distribution of it
within the surface’s springs, in order to reach equal lengths for the elements.
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Figure 19. Average deviation from the spring ideal length for different values of the attraction/repulsion
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Considering the manufacturing system involves a relatively low degree of accuracy, by focusing
on the level of precision of the algorithm in obtaining the final geometry, the analysis shows
that the strong attraction within the springs leads to a more feasible system for fabrication.
Because of the irregular geometry boundaries, reaching a uniform distribution of the particles
by obtaining equal spring lengths is not giving a satisfactory level of precision in obtaining a
minimal level for the values of deviation from the average spring length within the system. The
problem of the impossibility of reconstructing the surface from identical component
configurations leaded to investigating the possibility of using a set of multiple equal sizes for
the elements.

4.3. Multiple lengths
The previous geometrical and topological tests were repeated for the modified algorithm for
multiple ideal lengths. In the case of the multiple lengths the problem increased in complexity,
but the hypothesis was that there would be better chances for the modules to reach different
equal lengths while adapting to the irregular boundaries of the surface. The system was based
on defining a set of ideal lengths as ratios of a main rest length.

The number of the ideal lengths was related to the problem of circle packing onto the surface,
generated by the architectural problem of the research. The concept behind the multiple size
circle packing was based on the analogy with the soap bubble arrays, aiming to simulate a
similar two-dimensional cellular system with a uniform triangular order, following the similar
natural laws that govern the phenomenon. (Pearce, 1980) The objective was to generate an
optimized distribution of the particles and the springs in order to form a triangulated surface
which could be reconstructed from circles of 3 standard sizes. Accordingly, in order to have the
positions of the particles as the centers of the circles, the ideal lengths of the springs should be
composed of different combinations of the three radii of the circles Ra, Rb, Rc, by taking into
consideration the valence (number of neighbors) of each particle. In relation to the number of
neighbors of one particle, its proportional value affecting the spring ideal length will be
attributed to the spring together with the correspondent value of the other particle at the
other end of the connection. The algorithm was modified in order to control the 6 possible
resulted combinations of the three radii as attributed ideal lengths for the springs.
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Figure 20. Principle for the circle packing proposal for three circle sizes
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The tested modules were defined as incremental ratios of an absolute ideal length such as 2, 3
and 5 tenths of the main ideal length. It was considered a theoretically flexible configuration
able to adapt to various dimensional boundaries. Accordingly, the final six ideal lengths were
formed by the different combinations of the three ratios of the absolute ideal length L.

After defining the algorithm for attributing the different ideal lengths according to the valences
of the particles, the surface had a similar behavior from the geometrical point of view but with
higher values for the radius deviation. The overall stability of the system was considerably
lower initially due to the behavior of the particles but the average spring length deviation
reached a more stable level after a certain amount of iterations.
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Figure 21. Curvature analysis for the multiple lengths

From the topological point of view, the tessellation of the surface started to develop irregular
configurations, with a similar tendency to push the bigger size elements towards the centre of
the surface, while the small sized elements were concentrating near the boundaries. Another
phenomenon was the appearance of particles with eight neighbors temporarily due to the
movements caused by the triangulation process.
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Figure 22. Multiple Ideal Spring Length instances of the Schwarz P Surface

From the point of view of the ideal length deviation the system proved to be more efficient in
reaching a constant level of deviation relative to the ideal lengths of the springs which proved
that the hypothesis was correct. Without achieving a high level of accuracy, the efficiency in
reaching the different ideal lengths does not consist on the average value of the deviations
which remains relatively high, but in the constant level of deviation that the system converges
to. A constant level of deviation means a small change in the ratio between the lengths of the
springs, which is the most important from the manufacturing point of view.
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Figure 23. Average ideal spring length deviation for multiple lengths — decrease of values/increase of nr of springs
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5. Discussion

The previous tests and the results are showing that by using particle-spring systems it is
possible to generate minimal surfaces. Based on the achieved tensional properties of the
generated surfaces, the analogy with the natural systems that have a similar behavior is a fact
that could be linked to the formation and the dynamics of soap films. From a cellular point of
view, if we were to consider the particles as cells or molecules and the springs as the
connections between them, the proposed system reaches an emergent quality of self-
organization similar to one found in nature.

The algorithm is materialized through a similar concept which comes from the questions raised
by Colding and Minicozzi regarding the equilibrium of natural organisms, which relates to the
conservation of energy (Colding and Minicozzi, 2005). Every iteration is programmed to update
the relationships between the components of the system, reapply the defined rules and
minimize the energy, in our case the tensional energy in order to achieve a state of
equilibrium.

5.1. Results overview

Following the tests and the experiments applied on the Schwarz P Surface, the findings are the
ones to assess to what extent the methodology has achieved its goals in testing the main
hypothesis. The geometrical analysis was pointing out the fact that the curvature of the
obtained surface, according to the total number of particles and connections and to the
properties of the springs is variable and it can adapt to various settings. The final results were
showing that together with the increase in number of the particles and with a higher attraction
factor, the curvature came closer to the ideal one, confirming the fact that with an infinite
number of particles the system could converge to an absolute minimal surface. The discrete
geometrical characteristic of the obtained surface is one of the main key points of the method,
the level of approximation being the object of analysis of the results and not the absolute
values. Including the architectural design factor into the analysis, the question that appears is
how much precision in reaching the absolute zero mean curvature is needed from the aesthetic
or functional point of view? The answer might involve both the aesthetic and the fabrication
issue in a sense that the best solution would be an optimal combination of the two, in which
the absolute values could leave room for the perfect balance between the design quality and
the modular fabrication optimization.

According to the topological analysis, the triangulation of the surface was assessed according
to the modularity issues, with direct relation to the manufacturing process. The efficiency in
reaching modular dimensional values for the linear elements of the surface proved to be higher
in obtaining constant values of the deviations more that minimal ones. In both of the cases, for
one size modules or multiple size ones, according to the number of connections and the
relationship between attraction and repulsion within the system, a similar convergence of the
values of deviations was obtained. The multiple sizes system proved to be the more efficient
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than the single size one, due to the multiple possibilities of filling the geometrical boundaries
for the surface. Together with reaching high values for the deviations, the overall ratio
between the different ideal lengths of the springs was kept constant. While the flexibility of the
proposed fabrication method is allowing this level of tolerances between the interlocked rings,
the question unanswered is how far could the level of accuracy go? As a potential tool that
could generate accurate geometries, the method could be optimized at a basic level of particle
and spring settings and a more precise system of constraints could be defined, in order to
reach a higher level of accuracy through a minimal tolerance process of fabrication.

5.2.  Critical assessment
One of the most important features of the overall methodology is that it illustrates a different
approach within the computational generative framework regarding the modeling of minimal
surfaces, which includes the design factor through the optimization for manufacturing. It is
more than a modeling process, consisting in a real-time simulation of a virtual tensioned
membrane in order to reach the properties of a minimal surface. The algorithm is based on a
bottom-up approach that simulates a growth process, which could reach emergent valences in
relation to the behavior of the particles at the level of the tessellations of the obtained surface.

Even though the results of the simulation are reaching the appearance and the properties of a
minimal surface, there are a series of potentially critical aspects about the precision of the
method in achieving the absolute characteristics of a minimal mean curvature. The average
deviation analysis showed that the method is not completely accurate from the point of view
of the mean curvature, neither from the point of view of the modularity of the tessellation.
This level of precision defines the tolerances admitted for the fabrication process. For high
values of the standard deviation from the ideal modular dimensions, the manufacturing system
could be compromised. From the point of view of the circle packing algorithm, the results
might also be questionable as they depend on the same level of accuracy in achieving the ideal
lengths. Due to the elastic properties of the proposed fabrication system, the tolerances could
handle the expected deviations within the surface, from a theoretical point of view. Therefore,
a new series of questions could arise related to the efficiency of the method in being not just a
generative tool, but a precise tool for providing accurate information and drawings for
fabrication.

5.3. Potential advantages of the method

The mainly architectural starting point of the research was related to the problem of the
relationship between form-finding methods and the fabrication issue. Due to their properties,
the minimal surfaces present a high level of interest for the architectural design field. The
research of minimal surfaces in relation to the design is relatively a new phenomenon, but with
several attempts of implementing minimal surface geometries in architectural structures. The
problems that were experienced in all cases were related to the separation of the two
processes: the computational modeling and the materialization of the geometry.
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The advantage of the proposed method lies in the ability of combining the two processes
within a parametric system that could include a lot more coefficients to be taken into
consideration during the generative process. While a standard method would provide a ‘rigid’
strictly geometric or mathematical framework in defining a minimal surface without including
the design factor, the generative proposed method could involve a lot of new parameters
besides the current geometrical and the modular ones, in order to solve spatial, morphological,
social or structural design problems. For example, the particles and the springs between them
could include several structural parameters and constraints in order to generate optimized
lattice structures, or they could simulate computational agents which could take into
consideration several space syntax parameters.

The study focused on a specific case of minimal surfaces and a tensegrity structural system as a
manufacturing method. However, the potential of the proposed generative tool is not limited
to these solutions, as the geometries could reach higher levels of complexity by exploring the
design possibilities of the known periodic minimal surfaces or even to explore new types of
surfaces or hybrid typologies.

From the point of view of the fabrication, the modularity is the main subject of the research.
As a general concept, the Delaunay triangulation of the surface is the principal framework for
developing modular systems. Without ignoring the potential of the triangulation as it is, an
infinite variety of different configurations could be derived from it, which could involve more
complex tessellations of linear or irregular geometries. The resulted configurations could cover
honeycombs, Voronoi polygons, or other types of ornamental or structural modular patterns.

The purpose of the research is to open a new direction within the computational design
methodology, as part of the architectural design process, involving a multiple purpose design
strategy which takes into consideration various categories of factors and constraints, as part of
a parametric system. The modularity of the subdivisions of the resulted free-form surfaces
could be extrapolated to various architectural applications such as facades, roofs, structural
tensioned membranes or other types of architectural structures. The design framework is not
limited to architecture, as the scale of the objects could reach the level of industrial design
artifacts, furniture or installations. Due to the cellular logical structure of the system, in
correlation to the interlocked circles used as a fabrication method, a feasible field of
applications could include even fashion and textiles design.

5.4. Further investigations
The main research subject of this thesis covers just one of the many potential directions that
could be taken in the investigation of the computational methods exploring the possible
applications of minimal surfaces within a generative design framework. Following the tests and
the results of the proposed method, some of the aspects of the algorithm that were found
problematic, have already been identified. One of the aspects that proved to be essential in
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the behavior of the particle-spring system in generating the minimal surface was the
attraction/repulsion coefficient. As an alternative from the linear coefficient defining the
relationship between them, could involve a more advanced polynomial function using
Lagrange interpolation coefficients. (Kanellos, 2007) A more advanced step would be to include
factors such as acceleration, viscous drag or damping in the particle system in order to obtain a
more accurate physical simulation. In this direction, another possibility worth exploring would
be using solvers or integrators such as Euler or Runge-Kutta for the approximations of the
solutions of the differential equations involved in the relationship between the new factors
included in the simulation.

Another aspect to be taken into consideration for future investigation would be to reconsider
the Delaunay triangulation algorithm. A three-dimensional Delaunay algorithm could be
implemented as well as defining new constraints such as angle coefficients between the facets
of the surface.

Following the same technique used in generating triply periodic minimal surfaces, the system
of constraints could be extended to circular geometries in order to be able to focus on the
generative process of other types of minimal surfaces, such as Costa or Enneper.

A future work on the proposed method could be focused on developing a more advanced
parametric design tool in order to create a framework for developing more complex
parametric minimal surfaces, taking into consideration a larger amount of coefficients in the
generative process. The fabrication aspect, including different types of configurations or
subdivision algorithms could be embedded in the algorithm in order to control the modularity
of the surface and the export of the resulted geometries in relation to the digital
manufacturing techniques.
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6. Conclusions

The research was developed around the design problem of minimal surface structures, in order
to create an alternative algorithmic design method for generating minimal surfaces, as well as
for the construction of the surfaces from modular components. The contribution to knowledge
of the study comes from the different approach of the project, in relation to the existing ones
in the field, by using a simulation of tensioned surfaces to generate minimal surface
geometries, moving forward in the direction of the final application in design, from the point of
view of digital fabrication. While generating the surface, the method is optimizing the
geometry for a modular fabrication system. The main difference in approach would come from
the bottom-up algorithmic strategy of not starting with a predefined topology, as in the case of
the dynamic relaxation method, but simulating an iterative growth process, optimized to reach
a state of tensional equilibrium of the system.

Based on various analogies with natural systems, the algorithm is developing a process of self-
organization with potential emergent qualities, following a specific set of rules and constraints
which are active at a basic cellular level of the system, but with a great impact on the overall
behavior of the generated surface. Accordingly, the aim of reaching the minimal properties of
the resulted geometries is based mainly on the effects of the defined rules within the process
of physical simulation, in order to achieve a behavior of a soap film as a virtual tensioned
membrane. The optimization process of the subdivisions of the surface is embedded in the
algorithm, controlling the relationships between the particles which would define the uniform
microstructure of the surface.

The architectural problem which launched the investigations of this subject of research was
essential in structuring a dual process methodology, involving the form-finding algorithm
simultaneously with the modular dynamic tessellation of the surface. Using the particle-spring
system as a framework for the simulation process, the potential of the proposed method could
open new directions in the computational design field, by having the ability to involve more
parameters in the generative design process. Together with aiming minimal surface properties
and an optimal modular triangulation of the resulted geometry, the system could be
programmed to reach a multiple objective optimization character which could include spatial,
social or structural parameters.
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7. Appendices

Appendix I: lllustrations of generated minimal surfaces

Complete set of illustrations for the Schwarz P Surface stages of evolution (pages 40 -43)

The set of images include the most important the stages of triangulation of the surface. The
planar views and the axonometric views are providing an overall visualization of the process.
The multiple Ideal Spring Length tests are also included. There is to be noticed a more
perceptible irregular tessellation of the same surface, comparing to the previous tests for one
single length.

lllustrations of the testing of the method on the Schwarz D Surface Typology (pages 44-45)

The Schwarz D Surface was tested with a similar algorithm, the only difference being given by
the change in the coordinates of the parameters of the basic kaleidoscopic cell.
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Figure 24. Plan and axonometric views of the 6 recorded states of evolution of the Schwarz P Surface
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Figure 25. lllustrations of the gradual evolution process for the Schwarz P Surface
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Number of Particles : 17 Ra : 50 Number of Particles : 67 Ra : 15 Number of Particles : 81 Ra @ 12.5
Number of Springs  : 38 Rb : 30  Number of Springs 1173 Rb : 9 NumberofSprings : 211 Rb : 75
Ideal Reference Length : 100 Rc : 20 Ideal Reference Length :30 Rc : 6 Ideal Reference Length : 25 Re : 5

Number of Particles : 17 Ra : 50 Numberof Particles : 67 Ra : 15 Numberof Particles : 81 Ra : 12.5
Number of Springs  : 38 Rb : 30 Numberof Springs  : 173 Rb : 9 NumberofSprings : 211 Rb : 7.5
Ideal Reference Length : 100 Rc : 20 Ideal Reference Length :30 Rc : 6 Ideal Reference Length : 25 Re : 5

Number of Particles : 17 Ra : 50 Numberof Particles : 67 Ra : 15 Numberof Particles : 81 Ra : 12.5
Number of Springs 38 Rb : 30  Number of Springs 113 Rb : 9 NumberofSprings : 211 Rb : 7.5
Ideal Reference Length : 100 Rc : 20 Ideal Reference Length :30 Rc : 6 Ideal Reference Length : 25 Re : 5

Figure 26. Multiple Ideal Spring Lengths test for the Schwarz P Surface
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Fundamental region characteristics
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Figure 27. Schwarz P Surface evolution from the fundamental region to a two-dimensional group of reflections of

the module
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Figure 28. Plan and axonometric views of the Schwarz D Surface
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Figure 29. lllustrations of the gradual evolution process of the Schwarz D Surface, together with a reflection group
of basic modules
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Appendix Il : Pseudocode (after Processing)

Basic adapted Delaunay triangulation function :

void triangulateSprings() //defines a Delaunay triangulation of the particles through springs
{Vector3D center = new Vector3D(0,0,0);
float rad=1;
springs.removeAllElements();
for (int i = 0; i < Particles.size()-2 ; i++)
{for (intj = i+1; j < Particles.size()-1 ; j++)
{for (int k = j+1; k < Particles.size() ; k++)
{ Particle a = (Particle) Particles.get(i);
Particle b = (Particle) Particles.get(j);
Particle c = (Particle) Particles.get(k);
boolean found=false;
for (int m = 0; m < Particles.size() ; m++)
{ Particle pm = (Particle) Particles.get(m);
center = center(a, b, c); // calculates the center of the circle intersecting the three points
rad = dist( center.x, center.y, 0, a.pos.x, a.pos.y ,0);
float ddd = dist( center.x, center.y ,0, pm.pos.x, pm.pos.y, 0 );

if (M!=i)&&(m!=j)&&(m!=k)&&( ddd <=rad ) ) // if there is another point within the radius of
the circumscribed circle , the three particles are not valid to be connected

{found=true; }

if ((found) && (angles(a,b,c)==true)) //If there is no other point within the circle and one of the
angles of the triangle is not smaller than 15 degrees, it creates the springs between the three points
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{if ((isSpring(a,b)==false) ) //creates a new spring
{Spring a2b = new Spring (a,b,iLength);
springs.addElement(a2b);

}

if ((isSpring(a,c)==false)) //creates a new spring
{Spring a2c = new Spring (a,c,iLength);
springs.addElement(a2c);

}

if ((isSpring(b,c)==false) //creates a new spring
{Spring b2c = new Spring (b,c,iLength);
springs.addElement(b2c);

b

}

Basic functions of the particle class:

class Particle implements Comparable
{ Vector3D pos;
Vector3D dir;
Vector3D tdir;
Facef; // the face constraint
Face f1,f2; // the faces corresponding to the edge constraint
ArrayList neighbors; // the list with all the connected particles
boolean fixed=false;
boolean onFace=false;

boolean onEdge=false;
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Particle(float x, float y, float z, float x_dir, float y_dir, float z_dir)//Main particle constructor
{ pos = new Vector3D(x,y,z);

dir = new Vector3D(x_dir, y_dir,z_dir);

tdir = new Vector3D();

neighbours= new ArrayList();
}

Particle(float x, float y, float z, float x_dir, float y_dir, float z_dir, Face fac) //Constructor for particles
constrained on a face

{ pos = new Vector3D(x,y,z);
dir = new Vector3D(x_dir, y_dir,z_dir);
tdir = new Vector3D();
onFace = true;
f=fac;
neighbours= new ArrayList();
}

Particle(float x, float y, float z, float x_dir, float y_dir, float z_dir, Face facl,Face fac2) //Constructor for
particles constrained on edge

{ pos = new Vector3D(x,y,z);
dir = new Vector3D(x_dir, y_dir,z_dir);
tdir = new Vector3D();
onEdge = true;
fl=facl;
f2=fac2;

neighbours= new ArrayList();

}

void move()

{ pos = add(pos,dir);
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}

void draw()

{ if (Mfixed) {pushMatrix(); translate(pos.x, pos.y, pos.z); fill(250,200,50); box(2); popMatrix();}
if (onFace) {pushMatrix(); translate(pos.x, pos.y, pos.z); fill(250,150,50); box(2); popMatrix();}
if (onEdge) {pushMatrix(); translate(pos.x, pos.y, pos.z); fill(250,50,50); box(2); popMatrix();}
if (fixed) {pushMatrix(); translate(pos.x, pos.y, pos.z); fill(150,50,150); box(2); popMatrix();}

}

void keepOnFace( Face fac ) //Constrains the particle on a face
{onFace = true;
f=fac;
Vector3D fn = new Vector3D(f.startpoint.x, f.startpoint.y, f.startpoint.z );
fn.normalise();
float dp = dot(pos,fn);
fn.scale(dp);
pos = sub(pos,fn);
}
void keepOnEdge( Face facl, Face fac2 )//Constrains the particle on an edge
{ onEdge = true;
fl=facl;
f2=fac2;
Vector3D fnorm = new Vector3D(0,0,0);
Vector3D fnl = new Vector3D(fl.startpoint.x, f1.startpoint.y, f1.startpoint.z );
fnl.normalise();
float dp1 = dot(pos,fnl);

fnl.scale(dpl); //projection on the first face
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Vector3D fn2 = new Vector3D(f2.startpoint.x, f2.startpoint.y, f2.startpoint.z );
fn2.normalise();
float dp2 = dot(pos,fn2);
fn2.scale(dp2); //projection on the second face
fnorm = add(fn1,fn2);
pos =sub(pos,fnorm); //the resulted position on the edge
clear(dir);
tdir = new Vector3D();

}

float distToFace(Face fac) //Returns the distance from the particle to a face

{ Face facet_=fac;
Vector3D tpos= pos;
Vector3D tdir= dir;
Vector3D fn = facet_.f_norm;
fn.normalise();
float dp = dot(tpos,fn);

return dp;

boolean angles(Particle pa, Particle pb, Particle pc) //Returns false if one of the angles of the triangle abc
is smaller than 15 degrees

{boolean angle=true;

Vector3D a = new Vector3D ( pa.pos.x, pa.pos.y, pa.pos.z );
Vector3D b = new Vector3D ( pb.pos.x, pb.pos.y, pb.pos.z );
Vector3D c = new Vector3D ( pc.pos.x, pc.pos.y, pc.pos.z );

Vector3D p= new Vector3D( (pa.pos.x+pb.pos.x+ pc.pos.x)/3, (pa.pos.y + pb.pos.y + pc.pos.y)/3,
(pa.pos.z + pb.pos.z + pc.pos.z)/3 );

Vector3D ab=sub(a,b); Vector3D cb=sub(c,b); ab.normalise(); cb.normalise();
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Vector3D bc=sub(b,c); Vector3D ac=sub(a,c); bc.normalise(); ac.normalise();

Vector3D ca=sub(c,a); Vector3D ba=sub(b,a); ca.normalise(); ba.normalise();

float al= dot(ba,ca);
float b1= dot(ab,cb);
float c1= dot(ac,bc);
float anglea = degrees(acos(al));
float angleb = degrees(acos(b1));
float anglec = degrees(acos(c1));
if ((anglea < 15) | | (angleb < 15) || (anglec < 15))
{angle=false;
}
return(angle);

}
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