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Abstract
Large clusters of mutual dependence can cause problems for com-
prehension, testing and maintenance. This paper introduces the
concept of coherent dependence clusters, techniques for their ef-
ficient identification, visualizations to better understand them, and
empirical results concerning their practical significance. As the
paper will show, coherent dependence clusters facilitate a fine
grained analysis of the subtle relationships between clusters of
dependence.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Experimentation, Measurement

Keywords Dependence, program comprehension, program slic-
ing, clustering.

1. Introduction
Program dependence analysis, a key component of source code
analysis [4], explores the dependence relationships between pro-
gram statements. Real-world code can contain large clusters of
mutually dependent code [6, 14], which can be hard to compre-
hend [9], modify [13], test [3], and analyze [11]. As such, de-
pendence clusters can be regarded as anti-patterns [5] or bad code
smells [12].

Despite their potentially large negative impact, dependence
clusters are not well understood. One could be forgiven for think-
ing that there is little to understand; at first sight, there appears
to be little more to say than ‘everything depends on everything
else’. However, interprocedural dependence is non-transitive with
the result that the relationships between dependence clusters can be
highly subtle, even surprising. This motivates the introduction and
study of coherent dependence clusters; dependence clusters within
which all nodes share identical extra-cluster dependence.

While it is often noted that large clusters are bad, this work is
part of a project aimed at identifying and qualifying such clusters.
The primary contribution of this paper is the introduction of coher-
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ent dependence clusters. The paper presents the results of an em-
pirical study of coherent dependence clusters in eight open-source
programs. The results show that the probability of finding large co-
herent dependence clusters in real-world programs is high, thereby
motivating their further study. The results also reveal that, in most
cases, large coherent dependence clusters are formed by partition-
ing even larger dependence clusters.

The paper also introduces two new visualizations: the Monotone
Cluster-Size Graph and the Slice/Cluster-Size Graph. These two
visualizations facilitate exploration and better understanding of
the size and prevalence of coherent dependence clusters and the
relationships between them. The paper applies these visualizations
to the eight programs from the empirical study, illustrating their use
with several case studies.

The remainder of this paper is organized as follows: Section 2
provides background on dependence clusters and previous visual-
ization technique, while Section 3 introduces coherent dependence
clusters. Section 4 describes the newly proposed visualization tech-
niques and Section 5 presents the results of the empirical study.
Section 6 describes related work, while Section 7 shows results of
ongoing work as well as a glimpse into future work, and finally,
Section 8 summarizes the work presented.

2. Background
This section first provides a general definition of mutually depen-
dent sets and dependence clusters. It then discusses existing tech-
niques for detecting and visualizing dependence clusters. Finally,
it illustrates the intransitivity of the dependence relation used in
forming dependence clusters and discusses some implications.

Harman et al. [14] defined a dependence cluster as a maximal
set of program statements that mutually depend upon one another.
This notion is formalized in the following two definitions:

Definition 1 (Mutually-Dependent Set [14])
A Mutually-Dependent Set (MDS) is a set of statements, S, such
that

∀x, y ∈ S : x depends on y.

Definition 2 (Mutual-Dependence Cluster [14])
A mutual-dependence cluster is simply a maximal set of mutually
dependent statements. That is, a Mutual-Dependence Cluster is an
MDS not properly contained within any other MDS.

Previous work used the more general term Dependence Cluster in
the above definition. The more concise term Mutual-Dependence
Cluster is used here to emphasize that such clusters only consider
internal (mutual) dependence and thus to distinguish them from
those that also consider external dependence relations.
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while (...) {
c = a; //x
b = c; //y
a = b; //z

}

Figure 1. A Slice-based Cluster

The above definitions are parameterized by an underlying
depends-on relation. Ideally, such a relation would represent im-
pact, influence or dependence precisely—but such a relation is not
computable. The best known approximation is based on Weiser’s
Program Slice [20]: a slice is a set of program statements that
affect the values computed at a statement of interest (referred to
as the slicing criterion). While its computation is undecidable, a
minimal (or precise) slice includes exactly those program elements
that affect the criterion and thus can be used to provide an equiva-
lent definition for an MDS in which t depends on s iff s is in the
minimal slice taken with respect to slicing criterion t.

The slice-based definition is useful because algorithms to com-
pute (approximations to minimal) slices can be used to define and
compute approximations to mutual-dependence clusters. One such
algorithm computes slices using a program’s System Dependence
Graph (SDG) [15]. An SDG is comprised of vertices, which es-
sentially represent the statements of the program, and edges, which
represent the immediate control and data dependence between ver-
tices. Hereafter, the term statement is taken to be synonymous with
the statement’s SDG vertex. A control dependence arises when one
statement controls the possible execution of another statement and
a data dependence arises when a value flows from a defining state-
ment to a use reached by the definition. In the SDG a slicing crite-
rion is a vertex from the SDG.

Two kinds of SDG slices are used in this paper: backward slices
and forward slices. The backward slice taken with respect to vertex
t, denoted BSlice(t), is the set of vertices reaching t via a path
of control and data dependence edges [18]. The second kind of
slice, a forward slice, is also taken with respect to vertex t. Denoted
FSlice(t), it includes the set of vertices reachable from t via a path
of control and data dependence edges [15]. In both cases, when
slicing programs that contain certain language features, the path of
dependence edges considered must be restricted. For example to
respect procedure calling convention of the language [15].

The following definitions are given using BSlice. Each has a
dual that uses FSlice. When the distinction is important, backward
and forward will be used for clarification. Harman et al. [14] use
backward slicing to define slice-based clusters:

Definition 3 (Slice-based MDS/Cluster [14])
A Slice-based MDS is a set of statements, S, such that

∀x, y ∈ S : x ∈ BSlice(y).
A Slice-based Cluster is a slice-based MDS contained within no
other slice-based MDS.

An example of a slice-based cluster is shown in Figure 1, which
includes a fragment of source code on the left and a graphical de-
piction of its slice-based dependence (slice containment relations)
on the right. In this graph, Statements x, y, and z are represented
by nodes and the directional edges denote slice-based dependence
relationships: a → b depicts that b depends on a or equivalently
that a ∈ BSlice(b). In the example, BSlice(y) includes x and thus
y depends on x as captured by the edge x → y. Because all three
statements are in each other’s slices, they are mutually dependent.
Therefore, the set {x, y, z} forms a slice-based MDS. Assuming
that the set is included in no larger cluster, the set also satisfies the
definition of a slice-based cluster.

Calculating the complete set of slice-based clusters is expensive
because it requires computing and comparing the slices for every
pair of statements in a program. This process requires quadratic
space and time and thus, even for mid-sized programs, can grow
prohibitively expensive. To reduce this cost, Binkley and Har-
man [6] approximate the mutual-slice inclusion of Definition 3
using the same-slice relation. This technique replaces checking if
two vertices are in each other’s slice with checking if two vertices
have the same slice. This notion is formalized as follows
Definition 4 (Same-Slice MDS/Cluster [6])
A Same-Slice MDS is a set of statements, S, such that

∀x, y ∈ S : BSlice(x) = BSlice(y).
A Same-Slice Cluster is a Same-Slice MDS contained within no
other Same-Slice MDS.

Because BSlice(x) always includes x, two vertices that have the
same slice will be in each other’s slice. If slice-inclusion were tran-
sitive, then the Slice-based MDS (Definition 3) would be identical
to the Same-Slice MDS (Definition 4). However, slice-inclusion is
not transitive (as illustrated later in this section); thus, the relation is
one of containment where every Same-Slice MDS is a Slice-based
MDS but not necessarily a maximal one.

Although the introduction of same-slice clusters was motivated
by the need for efficiency, the definition inadvertently introduced
an external requirement on the cluster. This addition becomes im-
portant as it was later exploited in the development of coherent
dependence clusters. Comparing the definitions for a Slice-based
Cluster (Definition 3) and a Same-Slice Cluster (Definition 4), a
Slice-based cluster includes only an internal requirement on the el-
ements of a cluster. In contrast, a Same-Slice Cluster includes this
same internal requirement, but adds the external requirement that
all statements in the cluster are affected by the same statements ex-
ternal to the cluster. In the next section, coherent dependence clus-
ters will extend the external requirements to include the statements
affected by the elements of the cluster.

Even calculating same-slice clusters is expensive. In practice it
requires tens of gigabytes of memory for even modest sized pro-
grams [14]. Thus, a second approximation was used. This approx-
imation replaces ‘same-slice’ with ‘same-slice-size’: rather than
checking if two vertices yield identical slices, the approach sim-
ply checks if the two vertices yield slices of the same size. The
resulting same-slice-size approach is formalized as follows:
Definition 5 (Same-Slice-Size MDS/Cluster [14])
A Same-Slice-Size MDS is a set of statements, S, such that

∀x, y ∈ S : |BSlice(x)| = |BSlice(y)|.
A Same-Slice-Size Cluster is a Same-Slice-Size MDS contained
within no other Same-Slice-Size MDS.

The observation motivating this approximation is that two slices of
the same (large) size are likely to be the same slice. In practice, this
approximation is very accurate if a small tolerance for difference
is allowed. This tolerance is needed when two slices of the same
size have almost the same vertices. For example, one situation in
which this commonly occurs is when a call-site is in a cluster. The
slice taken with respect to each of the call’s actual parameters often
includes the parameter and then the same vertices as the slice taken
with respect to the call-site itself. Thus, the slice size for each slice
taken with respect to a parameter is the same, but these slices differ
by the single vertex representing the parameter. With a tolerance of
1% the approximation is 99.9943% accurate. However, in the strict
case of zero tolerance the accuracy falls to 78.3%.

The same-slice-size approximation also leads to a useful visu-
alization: Monotone Slice-Size Graph (MSG) [6]. An MSG plots
a landscape of monotonically increasing slice sizes where the x-
axis includes each slice, in increasing order, and the y-axis shows
the size of each slice, as a percentage of the entire program. In an



MSG a dependence cluster appears as a sheer-drop cliff face fol-
lowed by a plateau. The visualization assists with the inherently
subjective task of deciding whether a cluster is large (how long is
the plateau at the top of the cliff face relative to the surrounding
landscape?) and whether it denotes a discontinuity in the depen-
dence profile (how steep is the cliff face relative to the surrounding
landscape?). MSGs drawn using backward slice sizes are referred
to as backward-slice MSG (B-MSG), which those using forward
slice sizes are referred to forward-slice MSG (F-MSG).

Example. The open source calculator bc contains 16,763 lines
of code represented by 7,538 SDG vertices. The MSG for bc,
shown in Figure 2, contains a large plateau spanning almost 70%
of the MSG. This indicates a same-slice-size cluster formed from
slices that appear to have the same size. However, “zooming” in re-
veals that the cluster is actually composed of multiple smaller clus-
ters made from slices of very similar size. The tolerance implicit in
the visual resolution used to plot the MSG obscures this detail. Two
alternative visualizations that both overcome this implicit tolerance
are presented in Section 4.

Figure 2. Monotone Slice-Size Graph (MSG) for bc

The remainder of this section considers the impact of slice
inclusion not being a transitive relation. For programs with features
such as multiple threads or multiple procedures, x ∈ BSlice(y)
and y ∈ BSlice(z), does not imply x ∈ BSlice(z). This is
illustrated by Program P shown in the first column of Table 1.
Consider the Statements labeled a, b, and c. Columns 3, 4, and 5
show the slices of P taken with respect to a, b and c, respectively.
From these slices it can be seen that c depends on b (b ∈ BSlice(c))
and b depends on a (a ∈ BSlice(b)); however, c does not depend
on a (a /∈ BSlice(c)). This example illustrates that slice inclusion
is not a transitive relation.

Program P sliced on
P Lbl a b c
void f1() { void f1() { void f1() {
x = 1; a x = 1; x = 1;
y = f3(x); y = f3(x);
} } }

void f2() { void f2() { void f2() {
x = 2; x = 2; x = 2;
y = f3(x); y = f3(x); y = f3(x);
return y; c return y;
} } }

int f3(int z) { int f3(int z) { int f3(int z) {
return z+1; b return z+1; return z+1;
} } }

Table 1. Intransitive Dependence

One implication of the lack of transitivity is that a statement
can be in multiple clusters. For example, in Figure 3 Statements i, j,
and k are mutually dependent upon each other as are Statements i,
j, and l. However, Statements k and l do not have a dependence

relationship (i.e., are not part of each other’s slices). The slice-
based clusters (Definition 3) formed from the nodes of this graph
are {i, j, l} and {i, j, k}. Notice that Statements i and j are in both
clusters. In contrast, the same-slice clusters (and the same-slice-
size clusters) are {k}, {i, j}, {l}

Figure 3. Overlapping Dependence Clusters

Rather than calculating all the slice-based clusters for a program
allowing overlaps (creating larger clusters), it is more interesting
to find maximal partitions that do not include overlaps (creating
smaller clusters) because such partitions model the various compo-
nents of a program. Future empirical work will qualitatively asses
the value of the identified dependence clusters as an aid in program
comprehension. This motivates the introduction of coherent depen-
dence clusters.

3. Coherent Dependence Cluster
This section first formalizes coherent dependence clusters, and then
presents a slice-based instantiation of the definition for coherent
(dependence) clusters. A coherent dependence cluster is a set of
statements all of which are mutually dependent on each other, the
same set of statements depend on them, and they all depend on
the same set of statements. Coherent dependence clusters extend
dependence clusters to include not only internal dependence (each
statements of a cluster must depend on all the other statements of
the cluster) but also external dependence. External dependence in-
cludes both that each statement of a cluster depends on the same
external statements and that the same set of external statements
depends on each statement of the cluster. The first external depen-
dence (that each statement of a cluster depends on the same external
statements) was inadvertently introduced by Harman et al. [14] in
the same-slice approximation. The second external dependence is
new. Incorporating internal and both kinds of external dependence,
Coherent Clusters are defined in terms of the coherent MDS:
Definition 6 (Coherent MDS/Cluster)
A Coherent MDS is a set of statements S, such that ∀x, y ∈ S : x
depends on a implies y depends on a and a depends on x implies
a depends on y. A Coherent Cluster is a Coherent MDS contained
within no other Coherent MDS.

A slice-based instantiation of coherent clusters is now consid-
ered. Unlike the definitions presented in Section 2 these new defini-
tions employ both backward and forward slices. The combination
has the advantage that the entire cluster is both affected by the same
set of statements (as in the case of same-backward-slice clusters)
and also affects the same set of statements (as in the case of same-
forward-slice clusters). The slice-based instantiation produces the
Coherent-Slice Cluster:
Definition 7 (Coherent-Slice MDS/Cluster)
A Coherent-Slice MDS is a set of statements, S, such that

∀x, y ∈ S : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

A Coherent-Slice Cluster is a Coherent-Slice MDS contained
within no other Coherent-Slice MDS.



At first glance the use of both backward and forward slices
might seem redundant because x ∈ BSlice(y) ⇔ y ∈ FSlice(x).
This is true up to a point; as for the internal requirement of a
coherent-slice cluster, the use of either BSlice or FSlice would
be sufficient. However, the two are not redundant for the external
requirements of a coherent-slice cluster. With a mutual-dependence
cluster (as defined by Definition 2) it is possible for two statements
within the cluster to affect or be affected by different statements
external to the cluster. Neither is allowed with a coherent-slice
cluster. To ensure both external effects are captured, both forward
and backward slices are required.

The example shown in Figure 4 illustrates the differences be-
tween same-backward-slice clusters, same-forward-slice clusters,
and coherent-slice clusters. The illustration includes six nodes: a,
b, c, d, x, and y. As can be seen in the graph, d depends only on
c, only b depends on a, and b, c, x and y are mutually dependent
upon (completely interconnected with) each other and, hence form
a Mutual-Dependence Cluster (Definition 2). However, this (non-
coherent) cluster includes statements that have different influences
and are influenced by different statements. This is easily seen by
looking at the slices shown in Table 2. Here, c, x, and y form a
same-backward-slice cluster and are thus affected by the same ex-
ternal statements. Furthermore, b, x, and y form a same-forward-
slice cluster as they affect the same external statements. However,
only the coherent-slice cluster of x and y incorporates both influ-
ences.

Figure 4. Slice Inclusion Example

Slice Criterion Backward Slice Forward Slice
a {a} {a,b}
b {a, x, y, b, c} {x, y, b, c}
c {x, y, b, c} {x, y, b, c, d}
d {c, d} {d}
x {x, y, b, c} {x, y, b, c}
y {x, y, b, c} {x, y, b, c}

Table 2. Slices for Figure 4

The computation of the coherent-slice clusters (Definition 7)
requires considerable computational effort. Therefore, an approx-
imation similar to the same-slice-size approach is employed. This
approximation replaces slice comparisons with the comparison of
a hash value, yielding the following approximation to Coherent-
Slice Clusters in which H denotes the hash function. A Hash-Based
Coherent-Slice MDS is a set of statements, S, such that

∀x, y ∈ S : H(BSlice(x)) = H(BSlice(y))
∧ H(FSlice(x)) = H(FSlice(y))

A Hash-Based Coherent-Slice Cluster is a Hash-Based Coherent-
Slice MDS properly contained within no other Hash-Based Coher-
ent-Slice MDS.

(a) B-MSG (b) F-MSG

Figure 5. MSGs for the program bc.

4. Visualization
This section introduces two new visualizations: Monotone Cluster-
Size Graph (MCG) and Slice/Cluster-Size Graph (SCG). Both pro-
vide greater visual precision than the MSG. While the visual blur-
ring in the MSG is at times an advantage, it can also preclude the
precise identification of dependence clusters. These two visualiza-
tions are empirically studied in the Section 5.

4.1 Monotone Cluster-Size Graph
The Monotone Cluster-Size Graph (MCG) visualizes clusters based
on cluster size rather than slice size as done in the MSG:
Definition 8 (Monotone Cluster-Size Graph)
A Monotone Cluster-Size Graph (MCG) is a graph of cluster sizes,
plotted for monotonically increasing size.

Thus in an MCG, cluster sizes (measured in vertices) are plotted
on the horizontal axis in monotonically increasing order with their
sizes plotted on the vertical axis. As a result, a program’s (same-
slice) clusters are clearly identified as steps in the MCG.

An MCG can be drawn using the sizes of same-backward-
slice clusters (B-MCG), same-forward-slice clusters (F-MCG),
or coherent-slice clusters (C-MCG). Figure 6 shows these three
MCGs for the program bc. Comparing the B-MSG from Figure 5a
and the B-MCG from Figure 6a the precision difference becomes
apparent. In the MSG the long plateau indicates that approximately
70% of the program is involved in a cluster. In contrast, the B-
MCG clearly shows that this long plateau is composed of two
separate clusters that span 15% and 55% of the program. This
observation is supported by the raw slice data where the two same-
backward-slice clusters cover 14.74% and 54.86% of the program.
The F-MCG for bc (Figure 6b) shows three distinct steps depicting
three same-forward-slice clusters. Finally, similar to the F-MCG,
in the C-MCG, the presence of three coherent-slice clusters span-
ning about 15%, 20% and 30% of the program’s statements can be
seen. As coherent-slice clusters are formed using both backward
and forward slices, they will tend to closely resemble the smaller
of the same-backward/forward-slice clusters.

4.2 Slice/Cluster-Size Graphs
As illustrated by Figures 5 and 6, the MCG provides an accu-
rate visualization of the clusters. However, information regard-
ing the size of the slices that form the cluster is no longer avail-
able. The Slice/Cluster-Size Graphs (SCGs) provides a link be-
tween slice and cluster sizes. Two variants of the SCG are used:
the backward-slice SCG (B-SCG) is built from the sizes of back-
ward slices, same-backward-slice clusters, and coherent-slice clus-
ters, while the forward-slice SCG (F-SCG) is build from the sizes
of forward slices, same-forward-slice clusters, and coherent-slice
clusters. Note that both backward and forward SCGs use the same
coherent-slice cluster sizes.

An SCG plots three landscapes, one for increasing slice sizes,
one for the corresponding same-slice cluster sizes, and the third
for the corresponding coherent-slice cluster sizes. As a result, this



(a) B-MCG (b) F-MCG (c) C-MCG

Figure 6. MCGs for the program bc.

visualization not only shows the slices with similar sizes but also
distinctly identifies which clusters are formed. In the SCG, vertices
are ordered along the x-axis first according to their slice size, sec-
ond according to their same-slice cluster size, and third according
to the coherent-slice cluster size. Three values are plotted on the
y-axis: slice sizes form the first landscape, while cluster sizes form
the second and third. Thus, SCGs not only show the sizes of the
slices and the clusters, they also show the relation between them.

The B-SCG and F-SCG for the program bc are shown in the
second row of Figure 8. In both figures the slice size landscape is
plotted using a solid black line, the same-slice cluster size land-
scape using a gray line, and the coherent-slice cluster size land-
scape using a broken line. Like the B-MCG, the B-SCG shows that
bc contains a large same-backward-slice cluster consisting of al-
most 55% of the program and a second consisting of almost 15%
of the program. In contrast to the MCG, the size of the slices that
formed the clusters can be ascertained. In fact, Figure 6a gives the
impression that the larger cluster is of greater interest because it
includes more program statements. However, in the left SCG on
second row of Figure 8 the larger cluster is composed of smaller
slices than the smaller cluster. The smaller cluster thus has a bigger
impact (slice size) than the larger cluster.

Finally, three interesting observations can be made from con-
sidering bc’s two SCGs. First, the program bc contains two
large same-backward-slice cluster as opposed to three large same-
forward-slice clusters visible in the light gray landscapes. Secondly,
looking at the B-SCG it can be seen that the space correspond-
ing to the largest same-backward-slice cluster is occupied by two
coherent-slice clusters (shown in dotted landscape). This indicates
that the same-backward-slice cluster splits into the two coherent-
slice clusters; a phenomenon found to be common and studied in
Section 5. Finally, coherent-slice clusters are almost identical to the
same-forward-slice clusters. Since the same-forward-slice clusters
for the program bc were smaller in size than the same-backward-
slice clusters, the coherent-slice clusters were essentially restricted
to resemble the size of the same-forward-slice clusters.

5. Empirical Validation
This section presents an empirical evaluation of the coherent-slice
clusters and the two visualizations. It first considers the experimen-
tal setup and the subject programs used in the study. The core of
the study includes results from the search for coherent-slice clus-
ters and a case study that consider split clusters. Finally, threats to
validity are considered.

5.1 Experimental Setup
The data for the empirical study was computed from the for-
ward and backward slices taken with respect to each source-code-
representing SDG vertex. This excludes pseudo vertices introduced
into the SDG, to represent, for example, global variables, which are

modeled as additional pseudo parameters by CodeSurfer [1], the
tool used to build the SDGs. The hash values for each of the slices
were stored and compared to calculate the clusters.

5.2 Experiment Subjects
Initially 18 open-source C programs were analyzed. Data from
eight representative examples is presented in this section. Table 3
provides a brief description of the selected programs alongside two
measures of each program’s size: LoC – lines of code (as counted
by the Unix utility wc) and SLoC – the non-comment non-blank
lines of code (as counted by the utility sloc [21]). It also shows the
number of slices that were calculated for each program.

Total
Program LoC SLoC Slices Description
acct 10,182 6,764 2,834 Process monitoring
barcode 5,926 3,975 9,602 Barcode generator
bc 16,763 11,173 15,076 Calculator
diffutils 19,811 12,705 16,122 File differencing
ed 13,579 9,046 11,376 Line text editor
indent 6,724 4,834 12,444 Text formatter
userv 8,009 6,132 5,568 Access control
which 5,407 3,618 3,804 Unix utility

Table 3. Subject Programs Studied

5.3 Do Large Coherent-Slice Clusters occur in practice?
The evaluation focuses on the existence question “do large coher-
ent-slice clusters exist?” This is done first visually and then quanti-
tatively. The visual study considers the B-SCG and F-SCG for each
subject program. These are shown in Figures 7 and 8. The graphs
in the figures have been laid out in descending order of the largest
coherent-slice cluster present in the program; that is, barcode has
the largest coherent-slice clusters while the acct has the smallest.

The graphs shown in Figures 7 and 8 clearly contain large mu-
tual and coherent dependence clusters whose sizes often resem-
ble each other’s closely. In particular for the program barcode all
the clusters have an almost identical size. The programs bc and
ed show instances where the sizes of the coherent-slice clusters
closely resemble (i.e., are constrained by) the sizes of the same-
forward-slice clusters but not that of the same-backward-slice clus-
ters. On the contrary, the programs indent and diffutils show in-
stances where the sizes of the coherent-slice cluster are constrained
by the backward-same-slice clusters. The SCGs clearly identify
coherent-slice clusters that occur in programs and their relation to
the same-slice clusters and the actual slice sizes.

Turning to the quantitative evaluation, to quantitatively assess if
a program includes a large coherent-slice cluster, there is a value
judgment to be made concerning what constitutes large. For the
purpose of the empirical study, a threshold of 10% is used. In other



B-SCG barcode F-SCG

B-SCG ed F-SCG

B-SCG indent F-SCG

B-SCG diffutils F-SCG

Figure 7. Slice/Cluster-Size Graphs (SCGs) 1-4

words, a program is said to contain a large coherent-slice cluster
if 10% of the program (10% of its SDG’s vertices) produce the
same backward slice and the same forward slice. This threshold
matches that used in previous work [6, 14]. The choice of a rel-
atively large threshold also provides a conservative answer to the
existence question. However, smaller coherent-slice clusters may
also be interesting and worthy of further investigation. Therefore,
the results presented in this section can be thought of as a lower
bound on the quantity of large coherent-slice clusters found in the
programs studied.

Figure 9 shows the size of the largest coherent-slice cluster for
each of the eight subject programs. These sizes are reported as a
percentage of the program to facilitate comparison. Only one of
the eight programs (userv) does not contain a large coherent-slice
cluster using the 10% threshold. Of the remaining programs, three
(barcode, ed and indent) have very large coherent-slice clusters
that include over 50% of the program. In fact, the B-SCG for
ed shown in Figure 7, includes two separate large coherent-slice
clusters that cover over 10% of the program. (One is larger than
50% and the second covers just over 10% of the program). The
programs diffutils, which and bc are seen to contain a coherent-
slice cluster that covers over 25% of the program’s SDG vertices.

The results of the empirical study show that large coherent-slice
clusters are found frequently in real-world programs. These clusters
are significant as any change made to a statement in such cluster
does not only impact the whole cluster and any code reachable from

B-SCG which F-SCG

B-SCG bc F-SCG

B-SCG userv F-SCG

B-SCG acct F-SCG

Figure 8. Slice/Cluster-Size Graphs (SCGs) 5-8

Figure 9. Coherent-Slice Clusters (Largest)

it, but it will also impact the statement itself creating a ‘feedback-
loop’ involving the whole cluster. For large clusters, this poses
severe problems during program maintenance. Changing a small
separable piece of code is easier than changing one that is tightly
interconnected to many other pieces of code thus making it difficult
to update program containing large coherent clusters.

5.4 Case Study: Qualitative study of bc
The program bc which is a calculator contains two major coher-
ent dependence clusters as seen in second row of Figure 8. The
largest cluster of the program spans over most of the files of the



program. This cluster comprised of functions of the program which
performs ’execution of equations’. The second largest cluster is
heavily spread of two files scan.c and bc.c. This cluster consists
of functions of the program that deal with scanning and parsing
of the equations. Other coherent dependence clusters could also be
mapped to functionalities of the program such as: production of
base 10 output, performing arithmetic division and basic arithmetic
operation. This overview allows core functionalities of programs to
be modeled by coherent dependence clusters could aid in under-
standing and comprehension of legacy program which often have
missing documentation.

Util.c is one of the files of the program which contains utility
functions. It was seen that 5 of the utility functions were part of
the largest cluster. Another 6 of the utility functions were part of
second largest cluster. The program could be restructured to split
util.c into two separate files each containing the utility functions
that belong to each of the cluster. This would enable separation of
logic, increased cohesion making the program easier to understand.

5.5 Case Study: Split Clusters
As coherent-slice clusters incorporate both backward and for-
ward slices, they potentially split same-backward-slice clusters and
same-forward-slice clusters. This splitting can be seen visually in
the left SCG on the second row of Figure 8, which includes a large
same-backward-slice cluster (the gray landscape) that runs from
10% to 65% on the horizontal axis. The statements that make up
this same-backward-slice cluster break in two coherent-slice clus-
ters (the dashed landscape): the first runs from 10% to 35% and the
second from 35% to 65%. Since these two coherent-slice clusters
comprise the same statements (the same segment of the x-axis)
they represent a splitting of the single same-backward-slice cluster.
This splitting phenomenon was found to be very common and all
but one program (barcode) showed cluster splitting. The splitting
of clusters however,shows that vertices of coherent-slice clusters
are more likely to closely map to independent parts of the program.

5.6 Threats to validity
This section considers threats to the validity of the results presented
in the paper. In the study, the primary external threat arises from
the possibility that the selected programs are not representative of
programs in general (i.e., the findings of the experiments do not
apply to ‘typical’ programs). This is a reasonable concern that ap-
plies to any study of program properties. To address this issue a set
of 18 open source programs were used as test subjects. The pro-
grams were not selected based on any criteria or property and thus
represent a random selection. However, these were from the set of
programs that were studied in previous work on dependence clus-
ters (to facilitate comparison with previous results). In addition, all
of the programs studied were C programs, so there is greater uncer-
tainty that the results will hold for other programming paradigms
such as object-oriented or aspect-oriented.

Internal validity is the degree to which conclusions can be
drawn about the causal effect of the independent variables on the
dependent variable. In this experiment, one possible threat arises
from the potential for faults in the slicer. A mature and widely used
slicing tool (CodeSurfer) was used to mitigate this concern. An-
other possible concern regards the precision of the pointer analy-
sis used. An overly conservative, and therefore imprecise, analy-
sis would tend to increase the levels of dependence and potentially
also increase the size of clusters. There is no automatic way to tell
whether a cluster arises because of imprecision in the computation
of dependence or whether it is ‘real’. CodeSurfer’s most precise
points-to analysis options were used for the study in order to ad-
dress this potential concern.

The last threat is the use of a hash function to compare slices
during the calculation of hash-based coherent-slice clusters. This
hash function has been carefully crafted to minimize the hash
collisions.

6. Related Work
There has been much work concerned with clustering of one form
or another; however, Binkley and Harman [6] were the first to in-
troduce the notion of dependence clusters that looked into the fine
grained structure of clustering based on vertices of an SDG rather
than clustering of larger entities such as modules. They also showed
how slicing could be used to detect such clusters and introduced
the MSG visualization. Harman et al. [14] extended this work pre-
senting additional evidence to support the claim that large clusters
are prevalent and exploring the implications for impact analysis.
The current paper clarifies the previous notion of dependence clus-
ters by making the distinction between internal and external depen-
dence and then introducing the new notion of a coherent depen-
dence cluster. In addition, this paper introduces two new visualiza-
tions to precisely identify coherent dependence clusters and their
relation to same-slice clusters and their slices.

Secondly, there is relevant work on dependence anti-patterns [5],
dependence structures that may indicate potential problems for
on-going software maintenance and evolution. Dependence anti-
patterns are not structures that must always be avoided. Rather, they
denote warnings that should be investigated. Dependence clusters
were deemed to be one of the patterns that can potentially cause
an increase in effort required for comprehension and testing due
to mutual dependence of statements in a cluster. Black [10] hy-
pothesized that faults are more likely to occur in source code that
is highly interdependent and thus suggest a direct relationship be-
tween the presence of large dependence clusters to the number of
faults in the program. Balmas [2] used dependence analysis as a
part of a visualization to assist with comprehension and mainte-
nance activities.

Further work by Binkley et al. [8] considered one of the causes
of dependence clusters, namely global variables. They considered
the quantity of dependence in 20 programs in general and on the
presence of dependence clusters in particular. Techniques were out-
lined in the study that could be used to locate global variables that
were the cause of dependence clusters (i.e., that held the depen-
dence cluster together). There was also some interesting cluster re-
duction patterns found by removing global variables using transfor-
mation techniques. It would be interesting to see how global vari-
ables contribute to the formation of coherent dependence clusters
rather than same-slice clusters.

Binkley and Harman have presented recent work into the low-
level causes of dependence clusters [7]. They show how to isolate
and find small atomic units of source code that are responsible for
formation of large clusters. They have termed such atomic units
‘linchpins’. It would also be interesting to understand how these
linchpins affect coherent dependence clusters.

There has also been work on locating dependence structures
within source code using Search-Based Software Engineering tech-
niques. Jiang et al. [17] have introduced a general framework for
search based slicing, in order to detect dependence structures us-
ing search techniques. The application of greedy, hill climbing, and
genetic algorithms to find structures showed that search-based tech-
niques could also be used to detect dependence clusters.

Finally, in software maintenance, dependence analysis is used
to protect the software maintenance engineer against the poten-
tially unforeseen side effects of a maintenance change. This can be
achieved by measuring the impact of the proposed change [9, 16] or
by attempting to identify portions of code for which a change can be
safely performed free from side effects [19]. The presence of large



coherent dependence clusters will be associated with higher values
for change impact metrics. This is not only because the statements
of a coherent dependence cluster are mutually dependent, but also
they have the same dependence relationship with statements exter-
nal to the cluster.

7. Ongoing and Future work
Coherent-slice and same-slice clusters are built from equivalent
slices. Using slice equivalence produces smaller clusters, and thus
a conservative result. A more liberal approach would require only
mutual slice inclusion. A preliminary experiment was designed to
gain a better understanding of how conservative it is to use slice
equivalence. The experiment compared the number of pairs of SDG
vertices that were in each other’s slices to the number of pairs where
both vertices have the same slice:

|{(x, y) : BSlice(x) = BSlice(y)}|
|{(x, y) : x ∈ BSlice(x) ∧ y ∈ BSlice(y)}|

A large difference would give cause for further research into de-
veloping better detection algorithms for dependence clusters. The
program bc was used in the investigation. It has 7,538 vertices
which require 56,821,444 comparisons. Because this process runs
in O(n3) time, the analysis took about 30 days. The result was that
60% of the pairs in each other slice also had the same slice. This re-
sult suggests the need for further research into new slice-inclusion
based cluster identification techniques. Such clusters could poten-
tially be much larger than those previously reported.

A second direction for future work is to consider mapping
clusters onto larger units of the source. For example, identifying
source files, classes, or functions associated with a dependence
cluster. A visualization tool is currently under development to allow
clusters to be mapped to actual source code rather than vertices of
an SDG. It would be interesting to look into causes of coherent
dependence clusters such as global variables and other linchpin
vertices.

Future work on coherent dependence clusters will also consider
a wider class of programs. One goal of this experiment is to cate-
gorize programs based on the size of coherent dependence clusters
that they contain.

8. Conclusion
This paper introduced the concept of coherent dependence clus-
ters and presented techniques to detect them. It also introduced
Monotone Cluster-Size Graph and Slice/Cluster-Size Graph visu-
alizations to better understand coherent dependence clusters and
the relationships between them.

The empirical evaluation of eight subject programs showed that
seven contain large coherent-slice clusters, which could potentially
cause problems, for example, during maintenance. It also revealed
that most coherent clusters are formed from partitions of larger
incoherent clusters.
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