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Abstract. 

 

In the short evolutionary time since the human-chimpanzee divergence, approximately 

6.6 million years ago, humans have acquired a range of traits that are unique among 

primates. These include tripling brain size, enhanced cognitive abilities, complex 

culture, descended larynx structure that enables spoken language, longevity, specific 

diseases, inferior olfaction, and (in some human populations) adult lactase persistence. 

These traits were likely to have evolved through various genomic mechanisms, among 

them gene duplications and gene-culture co-evolution. Several studies have estimated 

the dates for some of these human lineage genomic events. However, no study to date 

has performed a genomewide estimate of the dates of all human gene duplications. 

Moreover, as many of these traits were likely to have evolved via gene-culture 

coevolutionary mechanisms, investigating the evolution of one of these human-specific 

traits – lactase persistence – provides a model example for in-depth future investigations 

of specific human phenotypes. 

 

In this study I have investigated an important class of human-specific genomic events – 

gene duplications (otherwise known as human inparalogues). I have developed a new 

bioinformatics approach for detecting human lineage-specific inparalogues and the 

duplication dates for those genes.  I show that human-specific inparalogues are non-

randomly distributed among biological function classes, and their duplication event 

dates are non-randomly distributed on a timeline between the date of the human-

chimpanzee split and the present. I have also investigated the evolution of the human-

specific polymorphic trait – lactase persistence. I have performed a worldwide 

correlation analysis comparing frequency data on all currently known lactase 

persistence-associated alleles and the distribution of the lactase persistence phenotype in 

different human populations. I have also performed a gene-culture co-evolution 

analysis, employing spatially explicit simulation and Approximate Bayesian 

Computation to condition simulations on genetic and archaeological data, in order to 

make inferences on the evolution of lactase persistence and dairying in Europe.  
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1. Introduction. 

 

1.1. Rationale of the Study. 

 

Charles Darwin‟s theory of natural selection (Darwin, 1872) indirectly implied that the 

emergence of modern human has been a product of slow evolutionary process for which 

all organisms are, and have been, subjected – descent from earlier organisms, rather 

than an organism which is above and unrelated to other species.  

 

After Darwin‟s revolutionary breakthrough, the discoveries of ancient hominid fossils in 

Africa during the 1920‟s have driven forward the scientific field of palaeoanthropology 

– the study of ancient human fossils – the first scientific field that dealt exclusively with 

human evolution (Figure 1.1). Palaeoanthropology had confirmed for the first time that 

human has evolved on a time scale of millions of years. The discovery of structure of 

the DNA ((Watson and Crick, 1953), popularly credited mostly to James Watson and 

Francis Crick, but involved to a large extent the work of Rosalind Franklin, Maurice 

Wilkins, and Raymond Gosling) has led to the establishment the central dogma of 

molecular biology: DNARNAProtein (Figure 1.1). 
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Figure 1.1. The two main methodologies used in human evolution studies. Molecular biology on the 

left and palaeoanthropology on the right. The left part of the Figure is a basic illustration of the dogma of 

molecular biology which is the basis for molecular genetics, and on the right is “Lucy” – the famous 

Australopithecus afarensis specimen dated from about 3.2 million years ago. Left image credit: Daniel 

Horspool. Right image credit: The Houston Museum of Natural Sciences.  

 

Human evolution is a broad subject that has been contributed to by various disciplines. 

Palaeoanthropology provides evidence for human evolution through major 

morphological changes (notably bipedalism and large cranium) that differentiate 

modern human from chimpanzee, human‟s closest living relative, and all other primates 

(see section 1.3.1). Molecular evolution is the scientific field studying evolution at the 

DNA, RNA, and protein scales (see sections 1.3.2 and 1.6), and can be applied for 

research of the various genomic processes that have contributed to the modern human 

phenotype. Recent advances in molecular biology techniques allowed efficient and cost 

effective sequencing of the genomes of different species, among them human and 

chimpanzee. With the availability of these genomes, large scale interspecies 

comparisons and analyses provided new insights into human genomic evolution. Recent 

human population genetic variation studies give a different angle of human evolution – 

genetic differences among individuals and various human groups. Anthropological 

observation of humans and primates provide insights about the evolution of human 

behaviour, while archaeology studies the material evidence and hypotheses about the 

evolution of modern human culture. 
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When considering the vast subject of the evolution of the human phenotype, one may 

ask “what makes human special”. Being human-centric rather than comparative, this 

question is likely to shift the study from the broader scope that I preferred my studies to 

follow. I consider the following question as more apt to ask: “what makes human 

different from chimpanzee”. Indeed this is a vast (and arguably too general) question to 

ask, but with the recent availability of human and chimpanzee genomic data (Hubbard 

et al., 2009, Smedley et al., 2009, Lander et al., 2001, Mikkelsen et al., 2005), the 

integration of anthropology and archaeology with these data (Mace, 1993, Burger et al., 

2007, Pinhasi et al., 2005), and high performance computing for bioinformatics analyses 

and computational simulations (Remm et al., 2001, Katoh et al., 2002, Kent, 2002, Itan 

et al., 2009) – it is now possible to start to address one aspect of this question: what are 

the genomic events that have lead to the human phenotype. This question can be tackled 

from different angles. I will do this through four studies: (1) detecting all gene 

duplication candidates in the human lineage; (2) estimating the dates and the 

functionalities of the duplicated genes found in (1) and thus correlating human genomic 

events with palaeoanthropological data; (3) worldwide Correlating lactase persistence (a 

trait unique to human) genotype and phenotype; and (4) modelling the origins and 

evolution of lactase persistence in Europe.  

Studies (1) and (2) provide a large scale understanding of one genetic event class – gene 

duplication – that is likely to have played a strong role in shaping the human phenotype. 

Studies (3) and (4) are case studies of the evolution of one human-specific trait that 

provided people with a very strong selective advantage (Bersaglieri et al., 2004, Ingram 

et al., 2009a, Itan et al., 2009). The interdisciplinary nature of the full study requires the 

integration of different data types across life sciences, computer science and 

mathematics, and social sciences. Altogether, this whole work is under one umbrella: 

human-specific genomic events. I hope that this work will provide novel and important 

advances to the field of human evolution, especially the “human-specific”, and will be a 

good framework for future studies in this field.       
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1.2. The Human Specific Phenotype: Human-Chimpanzee Differences. 

 

To better understand the aspects of the human specific phenotype, the most obvious 

approach is to look for traits that exist in human but not in chimpanzee. In this section I 

will review some of the significant traits that are unique to humans among apes. The 

evolutionary perspective of the human phenotype will be reviewed in section 1.3. 

 

The human brain weighs 1,300 – 1,400 grams on average, while the chimpanzee‟s 

brain weighs 420 grams on average (Nieuwenhuys et al., 2007). A common method to 

estimate the cognitive ability of a species (especially when comparing evolutionary 

close species) is to calculate the percentage of body weight made up by the brain. In 

humans the brain consists of about 2% of the body weight, while in chimpanzee the 

ratio is about 0.8% on average – about 2.5 times less than human: the human brain is 

about 3 times bigger (Carroll, 2003). The increased size of the human brain is mostly 

explained by increase in the size of the cerebral cortex, the largest brain structure and 

the location of most higher cognitive functions (Kornack and Rakic, 1998). The human 

cerebral cortex also shows functional asymmetries which are much more significant 

than in chimpanzee – most humans are right handed and have the language function 

located in the brain‟s left hemisphere, while chimpanzees show much weaker 

asymmetry in handedness (Hopkins and Cantalupo, 2004).  

 

The larynx (also called the voice box) is the organ located inside the mammals‟ 

respiratory tract, which has a function of protecting the lower respiratory tract from 

passage of food and foreign particles. The larynx contains the vocal chords which 

produce vocal sounds. Humans are the only primate that has a descended larynx – 

humans are incapable of raising the larynx high enough so it will connect with the nasal 

passage. This human-specific (among apes) characteristic of the larynx is, interestingly, 

shared with some aquatic mammals, which has lead to the controversial aquatic ape 

hypothesis, which maintains that some unique human characteristics (such as descended 

larynx, hairlessness, and bipedalism) had evolved through a period of humans 

inhabiting aquatic environments (Morgan, 1999). The descended larynx has extended 

the length of human vocal tract, and so it is suggested that it was a crucial element in the 

development of speech and language – a major difference between the human and the 



16 

 

chimpanzee phenotypes (although descended larynx evolved in other mammals and 

vertebrates, such as red-deer stags and birds) (Fitch and Reby, 2001).    

 

Obligate bipedalism is defined as locomotion on two legs that is the organism‟s only 

alternative. Obligate bipedalism is unique for humans among primates, and had evolved 

in various mammals, reptiles, and birds. Human bipedalism enabled carrying food for 

long distances, the potential of handling tools, as well as the ability to run for long 

distances. As human bipedalism evolved early in human history, it is likely that is was a 

key element in later major developments of the human phenotype (Hunt, 1994). The 

different perspectives regarding the evolution and function of human bipedalism will be 

discussed in section 1.3.   

 

A significant difference between human and chimpanzee is human‟s longevity – the 

average life expectancy of humans in places with good health conditions is about 80 

years (from CIA – The World Factbook, https://www.cia.gov/library/publications/the-

world-factbook/), while the life expectancy for chimpanzee in captivity is about 50 

years, and less in the wild (Jones et al., 1996). One key element for human longevity is 

the human growth rate and maturation process, which is slower in human than in 

chimpanzee. A human infant is helpless and totally dependent on the mother for a 

minimum of 2-3 years, while in chimpanzee, total dependency is only for a few months. 

The slow development of human infants is strongly related to their brain development – 

reaching one quarter of its final size at birth and half of the final size after one year, 

while a chimpanzee is born with its brain already half the final size (Campbell, 1999). 

Several genes and genetic pathways that may be involved in human aging and longevity 

have been identified (Browner et al., 2004). More implications of the long period of 

immaturity and longevity in human will be discussed in section 1.3.3.  

 

There is a range of diseases and disorders that are unique to human. Among them is 

autism – a brain development disorder that is likely to have a complex genetic basis of 

interaction between multiple genes, the environment, and epigenetic factors (Amaral et 

al., 2008, Abrahams and Geschwind, 2008); Alzheimer‟s disease – the most common 

form of dementia, a degenerative terminal disease with causes that are only partly 

understood, associated with amyloid plaques (dead cells and protein deposits) and 

neurofibrillary tangles (overactive enzymes resulting in neuron cells death) in the brain 
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(Tiraboschi et al., 2004); and the acquired immunodeficiency syndrome (AIDS) – a 

modern incurable disease of the immune system caused by susceptibility to the human 

immunodeficiency virus (HIV). The HIV virus is thought to have been originated from 

the primates‟ SIV virus, which is non-pathogenic  (Sepkowitz, 2001). Another 

significant disease unique to humans is smallpox – a potentially lethal infectious disease 

that is thought to have originated about 10,000 years ago, caused by two virus variants. 

Smallpox is thought to have caused 300-500 million human deaths during the 20
th

 

century (Barquet and Domingo, 1997). Smallpox is unique in being the only human 

infectious disease that had been completely eradicated (in 1979) after successful 

vaccination campaigns (Barquet and Domingo, 1997). 

 

Culture is defined as an “integrated pattern of human knowledge, belief, and behaviour 

that is both a result of and integral to the human capacity for learning and transmitting 

knowledge to succeeding generations. Culture thus consists of language, ideas, beliefs, 

customs, taboos, codes, institutions, tools, techniques, works of art, rituals, ceremonies, 

and symbols. It has played a crucial role in human evolution, allowing human beings to 

adapt the environment to their own purposes rather than depend solely on natural 

selection to achieve adaptive success” (Britannica Concise Encyclopaedia, 2006). 

Culture is not strictly a phenotype, and it is argued that culture is not unique to human 

since it was characterised in different chimpanzee communities (Whiten et al., 1999). 

This is an open discussion which is beyond the scope of this work. However, three 

features have been suggested for a distinction of modern human culture from 

chimpanzee‟s (Tomasello, 1999): (1) Creating and using of conventional symbols, 

including written language and mathematical symbols and notations; (2) Creating and 

using complex tools and instrumental technologies; and (3) creating and participating in 

complex social organization and institutions. Because of these reasons, I consider 

“human culture” to be a significant human specific phenotype. See section 1.3.3 and 

(Powell et al., 2009) for the evolution of modern human behaviour and culture.   

 

In this section I have briefly reviewed some significant elements of the human-specific 

phenotype. This is by no means a comprehensive list, but rather an attempt to give a 

broad perspective of the human-chimpanzee phenotypic differences.  

 

 

http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/HIV
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1.3. The Human Phenotype Evolution. 

 

Human evolution, the process that has shaped the modern human phenotype, is a very 

broad subject that was traditionally tackled by the fields of palaeoanthropology (fossil 

record) and archaeology (evidence for early human culture). With the advances of 

molecular biology techniques, human genomics is now being incorporated into the 

human evolution studies. In this section I will review significant human evolutionary 

events from human-chimpanzee divergence until present, separately bringing examples 

for each methodology of research. Climate and ecology played crucial roles in the 

evolution of early and modern human. However, these vast subjects will be only briefly 

discussed in this section since they are not a major aspect of my study, and they will be 

described in the different chapters whenever relevant (particularly in chapter 5).   

 

1.3.1. Palaeoanthropology Perspective on Human Phenotype Evolution – Fossil Record 

and Morphology. 

 

Hominids (the anglicised form of “Hominidae”) is the genera of human and all extinct 

species since the human-chimpanzee divergence about 6.5 million years ago (mya) 

(Jobling et al., 2004). Figure 1.2 is an estimate of the hominid evolution timeline and 

phylogenetic relationships. In this section I will present the morphological evolution of 

the major genera and species leading to modern human. Note that due to sparse data and 

the nature of reconstruction techniques and inference in the field of palaeoanthropology, 

major disagreements are common among scientist in the field, so it is likely that each 

element presented here would be controversial among some researches in the field. 

However, I will attempt to present those among which there seems to be general 

agreement.  

 

The earliest known hominid (that is, relatively, non controversial) is Orrorin tugenensis, 

“Millennium man”, from Kenya, dated about 6mya. This species fossil includes a 

fragmentary thigh bone – indicating some degree of bipedalism – and thick enamelled 

molars that relate Orrorin tugenensis to the human lineage rather than to the 

chimpanzees (Senut et al., 2001).  
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Most fossils dating after about 4.2mya and until the appearance of Homo are of the 

genus Australopithecus (Jobling et al., 2004). The genus is assumed to have been 

bipedal, with evidence including the Laetoli volcanic ash footprints (Leakey and Hay, 

1979) and “Lucy” – a well preserved partial skeleton – both belonging to the A. 

afarensis species (Figures 1.1 and 1.2). The most significant discovery about Lucy was 

her valgus knee – a strong indication for bipedalism. Australopithecus brain / body mass 

proportion was similar to chimpanzee. Australopithecus was 1-1.5m tall. It is suggested 

that a loss of body hair gradually took place in parallel with more modern species of 

Australopithecus as they became fully bipedal between 2 and 3mya (Wheeler, 1984), 

which leads to the theory that loss of hair contributed to the evolution of dark skin 

(Jablonski, 2008). The ongoing question of which Australopithecus species – if any – is 

the direct ancestor of Homo is controversial. For many years Homo habilis was 

considered to be the link between the Australopithecus and the genera Homo, based on 

evidence of a partial skull and jaw fossils from Olduvai Gorge, Tanzania dated 2.5mya 

(Jobling et al., 2004, Leakey et al., 1964). However, habilis does not show all 

characteristics of Homo: it has larger teeth and different body size and shape (the “body 

size and shape” is described differently among the different researchers studying Homo 

habilis), and thus it is now generally agreed that habilis was an extinct branch of the 

Australopithecus genus (Jobling et al., 2004). The first Homo species that is generally 

agreed to be distinct from Australopithecus is Homo ergaster, and its first fossils are 

dated from about 2mya (Wood and Collard, 1999). A theory that was widely accepted 

claimed that Homo ergaster and Homo erectus were two separate species, where the 

former lived in Africa and the latter outside Africa. However, the difficulty in making 

significant morphological distinction between the two species and the finding of a fossil 

in Africa dated 1mya and having all the erectus characteristics – has lead to the current 

prevalent theory that ergaster and erectus were one widespread species, and so I will 

now term both as Homo erectus (Asfaw et al., 2002, Jobling et al., 2004). The best 

preserved and complete early hominid skeleton is the “Nariokotome Boy” from Lake 

Turkana, Kenya, dated about 1.6mya (Walker and Leakey, 1993). The fossil shows 

some modern human characteristics of body and brain size. Mature Homo erectus male 

was estimated to have reached 1.8m tall and weighing 70kg, while its brain size was 

estimated to be 909cc, significantly smaller than mature modern human average brain 

size (1,450-1,500cc) and about 60% of the modern human brain / body mass proportion, 

but yet within the range of modern human brain size (830-2,300cc) (Clegg and Aiello, 
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1999). It has been suggested that this branch of Homo erectus survived until 27 

thousand years ago (kya) in Java, which would have made them contemporaries of 

modern humans, while the Homo floresiensis species is thought to have survived in 

Flores until 12,000 years ago, making it the latest lasting non-human hominid (Swisher 

et al., 1994, Jobling et al., 2004, Morwood et al., 2005). 

 

The definition of the different species (notably Homo mauritanicus and Homo 

heidelbergensis) in the genus dated from about 1mya until about 200kya (Homo erectus 

to Homo sapiens) is disputed, and so these species are generally termed as archaic 

sapiens (Jobling et al., 2004). Archaic sapiens had a less robust bone and muscle 

structure, and had larger brains, around 1,200cc. See section 1.4.1 for the potential 

genetic trigger for this significant brain expansion. 

 

Homo neanderthalensis (Neanderthal) is a distinct branch of archaic sapiens that 

inhabited Europe and western Asia between 250 and 28kya, having a robust bone 

structure and a large brain, around 1400cc (Jobling et al., 2004). Whether Neanderthals 

interbred with modern human and contributed to the modern human gene pool is a 

matter of great controversy (Tattersall and Schwartz, 1999, Serre et al., 2004). However, 

Neanderthal ancient mitochondrial DNA (mtDNA) studies show that Neanderthals did 

not contribute to modern human mtDNA diversity (Serre et al., 2004).  

 

The origins of anatomically modern human (AMH) is, yet again, a matter of great 

controversy among palaeoanthropologists. A recent study had made a system for 

distinction of AMH from archaic sapiens, where the main distinct AMH features are the 

globular shape of the skull and the degree of retraction of the face (Lieberman et al., 

2002). The earliest AMH fossils found are the Omo remains, dated about 198kya 

(Fleagle et al., 2008) and fossils from Herto (Ethiopia), dated about 154-160kya, with 

the AMH features of a 1450cc brain and a globular skull, and the archaic feature of 

protruding brows (White et al., 2003). These early AMH fossils show post mortem 

modifications including cut marks – an indication for mortuary practices. However, 

these specimen are described today as Homo sapiens hidaltu - a sub-species predating 

Homo sapiens (White et al., 2003). The earliest known fully modern Homo sapiens 

fossils are from Omo-Kibish (Ethiopia, discovered by Richard Leakey in 1967), dated 

about 130kya, with a controversial recent study dating these fossils to be 196kya 
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(McDougall et al., 2005). Mitochondrial DNA studies estimate that “Mitochondrial 

Eve” (the most recent common matrilineal ancestor of AMH) is dated 171±50kya 

(Ingman et al., 2000, Gonder et al., 2007).  

 

Both fossil and genetic evidence support the Out of Africa theory – where AMH 

evolved exclusively in Africa between 200-100kya and then a branch left Africa about 

55-70kya and gradually replaced native Homo erectus and Neanderthal populations  

(Liu et al., 2006). The competing theory is the Multiregional Hypothesis which 

maintains that the evolution of AMH had been continuous and worldwide, and within 

only one human species (Wolpoff et al., 1988). 



22 

 

 

Figure 1.2. Phylogenetic relationships within the family Hominidae. The timeline is on the vertical 

axis. Solid lines show stratigraphic ranges - assigning time ranges for fossils. This diagram shows that 

typically several different hominid species have coexisted at any one point in time, and it is the exception 

that Homo sapiens is the lone hominid in the world today. Image credit: Ian Tattersall, American Museum 

of Natural History. 
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1.3.2. Genomic Perspective Human Phenotype Evolution – The Various Types of 

Genomic Events. 

 

In this section I will review the different classes of large scale genomic events that are 

likely to have contributed to the evolution of human phenotype in the relatively short 

evolutionary time of about 6.5 million years (Steiper and Young, 2006). For notable 

examples of genomic events that contributed to the early and modern human phenotype 

see section 1.4. 

 

Gene duplication is mainly caused by unequal crossing over or retroposition (Koonin, 

2005) (Figure 1.3). Unequal crossing over occurs during the meiosis in regions of 

repetitive DNA, when the two homologous chromosomal regions are not precisely 

aligned (mismatched). While regular crossing over results in identical lengths of DNA 

exchanged between the two chromosomes, in the case of unequal cross over one of the 

chromosomes receives extra DNA sequence while the other chromosome loses it. The 

result is a segmental duplication of a region (which may contain a gene or set of 

genes) being duplicated in one chromosome (Koonin, 2005, Cheung et al., 2003). 

Retroposition is a process whereby repetitive DNA fragments are inserted into the 

chromosome by reverse transcription from mRNA molecules. Retroposition accounts 

for about 1,000 duplicated genes in the human genome (Emerson et al., 2004). A 

seminal work regarding the fate of the duplicated genes suggests that one copy 

maintains the original functionality of the gene, while the other copy “escapes” the 

constraint of purifying selection, and thus becomes “free” to accumulate genetic 

mutations that might give rise to novel functionalities (neo-functionalisation) or loss of 

function (non-functionalisation) (Ohno, 1970). Later experiments on duplicated gene 

expression levels have shown that extant gene pairs might partition between them the 

functions of the single ancestral gene (Prince and Pickett, 2002). The Sub-

functionalisation model (also called the duplication-degeneration-complementation 

model) proposes that the two gene copies acquire complementary loss of function, and 

together they produce the full functionality of the ancestral gene (Force et al., 1999). A 

study that tested expression levels of gene copies in various human tissues provides an 

example for acquisition of new function through gene duplication (by retroposition) in 

human lineage. The study has found several cases where one gene copy was expressed 

in several different tissues while the other copy was expressed exclusively in testis 



24 

 

tissues (Marques et al., 2005). For more examples of human gene duplication studies 

and for my own research of human gene duplications see chapters 2 and 3.  

Pseudogenes are DNA sequences with features that resemble conventional genes, but 

that do not code for viable proteins, mostly due to stop codons and frameshifts (Figure 

1.3). Processed pseudogenes emerge via retrotransposition – a portion of mRNA that is 

reverse transcribed back into the genome, inserting a new sequence lacking regulatory 

elements and thus being non functional – “dead on arrival” (Graur et al., 1989). Non-

processed pseudogenes evolve after a gene duplication event, where one copy retains 

the original function and the other becomes dysfunctional (Wang et al., 2006). Unitary 

pseudogenes are elements of rapid evolution – where the only copy of a functional gene 

becomes dysfunctional, the genotype is fixed in the population (mostly via genetic drift 

or a population bottleneck), and the loss of function can give rise to new functionalities 

– the “less is more” hypothesis (Olson, 1999). Recent studies show that some genes that 

were traditionally annotated as pseudogenes are actually functional (coding to proteins) 

using alternative molecular mechanisms (Zheng et al., 2007, Zheng and Gerstein, 2006). 

A notable example for pseudogenization in the human lineage is the loss of olfactory 

receptor genes (Gilad et al., 2003), which will be discussed in section 1.4.1. 

 

Gene fusion is a chromosomal rearrangement event where two separate genes form a 

hybrid gene, following a recombination event. When gene fusion happens in non-coding 

regions it may affect the regulation and expression of the gene, while gene fusion in 

coding regions may lead to new functionalities of the hybrid gene (Durrens et al., 2008). 

A major human lineage chromosomal rearrangement event by gene fusion is the fusion 

of the chimpanzee‟s chromosomes 12 and 13 into one chromosome in human, which is 

termed human chromosome 2 for annotation convenience (Shimada et al., 2005). It is 

proposed that the fusion of the UPS32 and TBC1D3 genes in the hominoid lineage has 

strongly contributed to the hominoid speciation (Paulding et al., 2003). In gene fission a 

gene splits into several parts by either recombinatorial or single-base mutation events, 

which can result in changes in regulation, production of a less complex protein due to 

domain deletion, or pseudogenization (Durrens et al., 2008).     

 

A regulatory region is a DNA sequence, mostly upstream of the coding sequence of a 

gene, where transcription factors and other regulatory proteins can bind preferentially 

and thus regulate the expression levels of the gene (Stepanova et al., 2005). A 
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genomewide study has investigated transcription factor sites that are conserved among 

chimpanzee and mouse while absent in human. The study has shown that the human 

lineage loss was not random, but rather correlated to the biological function of the 

associated genes, which have an over-representation of sensory perception functions. 

This study suggest that these genes may highlight potential pathways underlying 

human-chimpanzee divergence (Donaldson and Gottgens, 2006).  

 

Retroviral insertion is executed by retroviruses, which are unique among RNA viruses 

in their ability to integrate DNA copies of their genomes into the genome of the infected 

cell. On occasion, integration takes place in a human germline cell, giving rise to a 

human endogenous retrovirus (HERV), which can be inherited by the offspring of the 

infected host, and may eventually become fixed in the gene pool of the host population 

(Johnson and Coffin, 1999). The pathological effects of HERVs include susceptibility to 

cancer and autoimmune diseases (Lower, 1999, Dunn et al., 2003), while it was 

suggested that HERVs may have beneficial roles in protection against exogenous 

retroviral infection and in the formation of the placenta (Sverdlov, 2000, Villarreal, 

1997). A study of polymorphic HERVs among different human populations shows that 

HERVs can be applied as good population genetics and forensics markers (Herrera et 

al., 2006).    

 

“Epigenetics refers to heritable changes in gene function that do not change the DNA 

sequence but, rather, provide an “extra” layer of transcriptional control that regulates 

how genes are expressed” (Rodenhiser and Mann, 2006, Egger et al., 2004). Although 

not strictly genomic events, epigenetic effects have a direct influence on human 

genomics, and thus it is feasible to include them in the genetic category. Epigenetics 

effects of gene expression regulation are performed via the mechanisms of DNA 

methylation and histone modifications (Feinberg and Tycko, 2004). The loss of normal 

DNA methylation patterns may result in various human diseases that relate to X 

chromosome inactivation (Avner and Heard, 2001), genomic imprinting (Verona et al., 

2003), and cancer (Feinberg and Tycko, 2004). I could not find any human evolution 

study for detecting human-lineage epigenetic elements and their functionalities when 

compared to chimpanzee. This subject is beyond the scope of this study, and is 

suggested as a potentially important future study. 
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Of the genomic classes presented in this section, human gene duplications are the most 

relevant to my research (especially regarding chapters 2 and 3) since they are 

genomewide events for which their date can be estimated. See chapters 2 and 3 for 

further details. Pseudogenization can also be potentially dated, but this is beyond the 

scope of this study, as will be discussed in chapters 2 and 3.  

 

  

Figure 1.3. Illustrating gene duplications and pseudogenization. The left image illustrates a segmental 

duplication of a region that includes a gene, and the right image illustrates a premature stop codon that 

results in a dysfunctional truncated protein. The left image is taken from NHGRI, a public domain, and 

the right image is taken from (Craig, 2003). 

 

1.3.3. Cultural Perspective Human Phenotype Evolution – From Early Human to 

Farming and Modernity. 

 

The cultural evolution of humans from the time of human-chimpanzee divergence until 

several thousand years ago is mostly investigated by archaeology, the science that aims 

to understand pre-historical human culture, mostly through recovery of human material 

remains such as artefacts, architecture, and more (Aldenderfer and Maschner, 1996). 

This section will briefly review the archaeological evidence for human lineage culture, 

from early humans tool use, through ancient art, and the transition from modern humans 

hunting-gathering to a farming society.    

 

Modern chimpanzees use a variety of tools for gathering food: sticks for extracting 

termites from mounds and stones for breaking open nuts (Whiten et al., 1999, Jobling et 

al., 2004), most of these tools would not be preserved in archaeological records, and 
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would not be identified as distinct from natural objects (Mercader et al., 2002). Since no 

tools were found for the Orrorin and most Australopithecus genera timeline, it could be 

assumed by parsimony that Orrorin and early Australopithecus have had a culture 

equivalent to the chimpanzee genus (Jobling et al., 2004).  

 

Archaeological records begin 2.5mya with the tools of the Oldowan culture at the 

Olduvai Gorge, Tanzania. The makers of these tools are likely to be A. habilis – a 

relatively modern Australopithecus, before the transition to Homo. The tools include 

hammerstones, flakes, and cores, and it is assumed that they were used for scavenging 

large animal carcasses and breaking open bones for the highly nutritional bone marrow. 

This could give the tool users advantage over other scavengers, such as hyenas, that 

could not break these bones open (Napier, 1962).  

 

A major shift occurred about 1.65mya; symmetrical teardrop shaped handaxes started to 

be made by Homo erectus in West Turkana, Kenya (Scarre, 2009). The technology and 

the culture of manufacturing these tools is termed Acheulean (after the French site St. 

Acheul). This technology was so successful that it dominates the Old World 

archaeological record until about 150kya. The tools were potentially used for tree 

hacking, and cutting carcasses and hides. It is likely that these stone tools were 

combined with other materials to create more sophisticated tools such as spears 

(Thieme, 1997). Over-sophistication of some of the tools (beyond needed functionality) 

suggests that the tools also served for social interactions (O'Brien, 1981) and as early 

means of artistic expression (Mania and Mania, 1988). It is hypothesized 

(controversially) that the Acheulean tool users possessed the ability for early language, 

because the parts of the brain that are correlated to the fine control required for the tool 

construction are also correlated to speech (Isaac, 1976).  

 

The control of fire was a cornerstone in human history. It introduced cooked proteins 

and carbohydrates into the human diet, and allowed the extension of activity into night 

time, while providing protection from predators (Price, 2005). The earliest evidence for 

hominin (Homo erectus) use of fire is red clay sherds dated about 1.42mya, from 

various sites in East Africa (James, 1989). It is hypothesized that the change of diet as a 

consequence of fire control allowed humans to absorb more calories and as a result 

triggered brain expansion (Wrangham and Conklin-Brittain, 2003). The earliest 
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indication for fire being used as an engineering tool – treatment of stone tools – is from 

about 164kya, Pinnacle Point, South Africa. This use of fire required an elevated 

cognitive skill, and is associated with widespread evidence for symbolic behaviour from 

the same time range (Brown et al., 2009). 

 

The use of art is often associated with modern human culture. Examples of abstract art 

in various South African sites are dated back to 75kya (Henshilwood et al., 2002). The 

oldest example of figurative art, a proxy for advanced symbolic communication, is of 

the Upper Palaeolithic Aurignacian culture in Schelklingen, Germany, dated about 

40kya (Conard, 2009). 

 

Hunting-gathering (HG) was the subsistence method for humans since 2mya and until 

about 10kya, when farming was introduced. A HG society obtain most food (about 

80%) by gathering, and the rest by hunting (Barnard, 2004). The social and cultural 

structure of the HG is often being inferred by modern anthropological studies of such 

indigenous societies. It is thought that HG had a non-hierarchical society and mostly 

nomadic, and thus not tending to store food or support a full-time leaders class or 

artisans (Gowdy, 1997). The HG lifestyle required a wide territory for each individual 

(in comparison to farmers), and so the carrying capacity – the maximum number of 

individuals per area – of such societies was low. HG carrying capacity estimates vary 

and depends on several factors (see chapter 5), and a rough average approximation 

would be 0.1 individuals per km
2
 (Bellwood, 2005). The need of the HG mothers to 

carry and care for the children for several years prevented them from fully participating 

in food collection for long periods, and more importantly – the minimum spacing 

between child births was about 4 years (Ethenberg, 2008). Domestic dog is likely to be 

the first animal to have been domesticated by humans, most likely by HG. Genetic and 

fossil record date the emergence of domestic dogs back to about 15kya (while other 

studies give dog domestication the range of 9-30kya) (Savolainen et al., 2002). 

 

The earliest evidence of agriculture, the precursor for today‟s modern human culture, is 

dated about 10-11kya (though the date is disputed) in the Near East where people 

pioneered domestication and farming of wild cereal (Bellwood, 2005). The cognitive 

skill of the pioneering farmers was likely to have been similar to this of humans that 

lived 40kya (where complex art artefacts were constructed). That leads to the question 
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of what triggered, or rather, what prevented farming from starting for about 30 thousand 

years. Several answers and scenarios are being offered in numerous studies and the one 

that seems the most widely accepted today (although controversial) goes as follows: the 

last ice age ended about 14kya, followed by climatic stability and growth of the HG 

populations and extinction of large vertebrates (Jobling et al., 2004). The geographic 

locations where agriculture had started are correlated to the availability of wild grass 

species with a potential of domestication in mild climates: wheat and barley in the Near 

East, rice in the Far East, and so on (Diamond, 1998). Archaeozoology record show that 

the domestication of goat, cow, pig, and cattle was likely to have co-evolved with 

agriculture between 12-10kya (Ucko, 2007). The origins of dairy farming in Europe is 

the subject of chapter 5 of this work.  

 

The agricultural subsistence has resulted in a significant change in lifestyle. Although 

farming reduced life expectancy in its earlier years, at later stages it allowed higher 

population density due to increased yield of food and the option of one carer for several 

infants, which allowed shorter intervals between births, while constant food supply was 

likely to have resulted in fewer miscarriages (Diamond, 2002). With the increase of 

farmers population size and the establishment of larger and permanent settlements, the 

dominant social unit became the household (rather than the whole group in HG), and 

new non-portable technologies could be developed. Private property gave rise to social 

hierarchical systems and bureaucracy, while surplus in food supply had resulted in the 

development of modern forms of trade. Written language is thought to have originated 

by economic administration (Jobling et al., 2004).     

 

There are two main hypotheses that explain the process of the transition of the majority 

of human society from HG into an agricultural society: (1) Cultural Diffusion (CD) 

maintains that farming had spread with the spread of knowledge of technology (Zvelebil 

and Zvelebil, 1988), while (2) Demic Diffusion (DD) claims that farming had spread by 

means of physical migration of populations (Cavalli-Sforza et al., 1994). This subject 

will be thoroughly discussed in chapter 5 of this work.  
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1.4. Notable Genomic Events Contributing to Human Phenotype. 

 

As discussed in section 1.3.2, there are various classes of genomic events that are likely 

to have a major role in the evolution of the modern human phenotype. In this section I 

will describe a few examples of some of these notable genetic events, first in early 

humans and then in modern humans (Homo sapiens). 

 

1.4.1. Notable Genomic Events in Early Humans. 

 

Most primates, including the extinct Australopithecus genus, have strong masticatory 

muscles, which require a massive and thick braincase. The gene that encodes in these 

primates masticatory muscles is the myosin heavy chain (MYH). In contrast, the Homo 

genus (modern human and earlier Homo species) have significantly smaller masticatory 

muscles and thinner braincases (White et al., 2000), while in modern human the MYH 

gene is inactivated (Stedman et al., 2004). A molecular evolution study has shown that 

MYH inactivation took place in the human lineage approximately 2.4mya (just before 

the transition from Australopithecus to Homo) as a result of a frame shift mutation. The 

loss of this protein is associated with the reduction of human muscle fibres, and of the 

entire masticatory muscles. The timing of the mutation predates modern human 

anatomy, and represents the first proteomic difference between human and chimpanzee 

that can be correlated to anatomic imprint in the fossil record. It is hypothesized that 

this mutation was a trigger for the thinner braincase, and thus for the brain expansion in 

the human lineage (Stedman et al., 2004).    

 

Human is the only mammal that lacks the common mammalian sialic acid N-

glycolylneuraminic acid (Neu5Gc). Neu5Gc is developmentally regulated, tissue 

specific, and has various biological roles in mammals (Angata and Varki, 2002). The 

human deficiency in Neu5Gc is a consequence of an Alu-mediated inactivating 

mutation of the gene encoding the enzyme CMP-N-acetylneuraminic acid (CMP-

Neu5Ac) hydroxylase (CMAH), dated about 2.8mya (the Australopithecus genus). It is 

thought that in chimpanzee the CMAH is involved in down regulation of brain Neu5Gc 

(Kawano et al., 1995). It is suggested that the inactivation of CMAH in human had 

released human ancestors from this constraint, and thus had an evolutionary role in 

human brain and cognition development (Chou et al., 2002). Further evidence is the 
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CMAH inactivation in Neanderthals, which had a common ancestor with Homo sapiens 

dated 500-600kya (Hayakawa et al., 2001). 

 

Olfactory receptors (OR) are the largest mammalian gene super-family, with consist 

more than 1,000 genes. 60% of these genes are pseudogenes in human (Glusman et al., 

2001). A study has shown that human lineage had accumulated mutation in the OR 

super-family at a 4-fold faster rate than in chimpanzee, gorilla, orangutan, and rhesus 

macaque (Gilad et al., 2003, Glusman et al., 2001). The deterioration of OR genes in 

modern human suggests that human relied on their sense of smell less than chimpanzee 

and other primates, which may have contributed to the evolution of different 

behavioural patterns in human. Non-human primates use the sense of smell for sexual 

behaviour and social interaction, and thus humans were required to develop different 

strategies with the significant loss of olfactory capacities (Glusman et al., 2001).     

 

1.4.2. Notable Genomic Events in Modern Humans. 

 

Language is a trait unique to human, and is likely to have been a prerequisite for 

modern human culture (Wall and Przeworski, 2000). The ability to develop the modern 

human articulate speech capacities depends on fine control of the larynx and the mouth, 

traits that lack in chimpanzee and all other non-human primates (Lieberman et al., 

2002). The gene FOX2P was identified to be correlated to the modern human ability to 

develop language, in a study that found that the gene is mutated in human individuals 

which suffer from severe speech and language disorders (Lai et al., 2001). FOX2P is 

extremely conserved among mammals, and the human FOX2P has two amino acids that 

are different from chimpanzee, where at least one of the differences is thought to have a 

functional consequence (Enard et al., 2002). It is suggested that two functional copies of 

the FOX2P gene are required for acquisition of normal spoken language (Fisher et al., 

1998). The fixation of the FOX2P gene in humans is estimated to be 200kya (Enard et 

al., 2002), at the time of the emergence of anatomically modern human (Homo sapiens), 

which is compatible with the model maintaining that the expansion of modern humans 

was driven by the appearance of spoken language (Klein, 1989). 

 

Another trait that is unique to some modern humans is lactase persistence (LP), a 

dominant Mendelian trait that determines the ability of adult human to digest lactose, 
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the main sugar in milk. For newborn mammals, milk is the only source of nutrition. 

Lactase is the enzyme responsible for cleaving lactose from disaccharides to digestible 

monosaccharide, and is coded by the LCT gene. Following weaning in mammals, there 

is a downregulation of the LCT gene which result in the inability to digest lactose 

throughout adult human life – lactose non persistence (Ingram et al., 2009a). About 

40% of modern human populations, including Europeans and some African and Asian 

groups (mostly ones that have a history of pastoralism subsistence) are lactase 

persistent. There are currently 4 known alleles that are associated with lactase 

persistence. In chapter 4, I investigate the worldwide correlation between the LP 

associated alleles and LP phenotype. LP gives a strong selective advantage to 

individuals that have a constant supply of milk, which has lead to the hypothesis that LP 

originated in a pastoralist population. In chapter 5, I investigate the European origins 

and gene-culture coevolutionary dynamics of this evolutionary very recent human 

specific trait. The main finding of this study is that European LP is likely to have 

originated about 7,500 years before present in the region between central Europe and 

the northern Balkans, in a gene-culture coevolutionary process on the wave front of the 

Neolithic expansion. The background and various aspects of LP will be thoroughly 

described in chapters 4 and 5.     

 

1.5. Integrating Early and Modern Human Genomic Studies. 

 

A main motivation of my study is to investigate the evolution human phenotype from 

different perspectives – genomewide (human chimpanzee comparison), worldwide 

(lactase persistence in different human populations), and gene-culture coevolution (the 

evolution of lactase persistence in Europe). Chapters 2 and 3 are investigating the 

duplications in human lineage, dating these duplications, applying functions to the 

duplicated genes, and correlating an aspect of human genomics to fossil record. The 

scale of the times in these studies is tens of thousands of years, since they deal with a 

timeline of about 6.5 million years – from human-chimpanzee divergence until present. 

Since modern human emerged only about 200kya, these chapters will naturally have 

more focus on early human genomics, while chapters 4 and 5 that focus on lactase 

persistence are presenting a case study of modern human-specific genomics. 
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Interestingly, chapter 3 show a disproportionately large number of duplicated genes in 

the modern human lineage, which are likely to have contributed to the modern human 

phenotype. There are also several statistically significant clusters of gene duplications 

around a few dates in human history, which may suggest that these “bursts” of gene 

duplications have contributed to a strong evolutionary drive in human history. Focusing 

on the duplication times together with their function may give a clearer picture of the 

genomic transition from early into modern human. Altogether, the combination of large 

scale and fine scale early and modern human genomic studies should give a clearer 

picture about the evolution of human. This will be further discussed in chapter 6. 
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2. Detecting Human-Chimpanzee Lineage 

Inparalogues. 

 

2.1. Introduction. 

 

Gene duplications are likely to represent an important class of the evolutionary events 

that have shaped the unique human phenotype in the short evolutionary time since the 

Human-Chimpanzee divergence approximately 6.6 million years ago (Steiper and 

Young, 2006). Furthermore, together with pseudogenization, gene duplications are 

evolutionary events for which time of occurrence can be estimated (Yang and Yoder, 

2003, Brawand et al., 2008).  

 

With the availability of both human and chimpanzee genomes in high re-sequencing 

coverage assemblies (Lander et al., 2001, Mikkelsen et al., 2005), and the high 

annotation quality of most known human genes (Hubbard et al., 2009), it should now be 

possible to identify all human lineage specific gene duplication events (i.e. human 

inparalogues) using bioinformatics approaches. A few pioneering studies have 

attempted to do that (Tatusov et al., 1997, Remm et al., 2001). However, due to 

problems that arise from the different natures of the Human and Chimpanzee‟s genomes 

assemblies and level of annotation, these methods have been based on some problematic 

assumptions and oversimplifications in the algorithm and the datasets used, leading to 

inaccuracies in detecting human inparalogues.  

 

This chapter describes an attempt to collect a reliable and representative set of human 

inparalogues, overcoming the conceptual errors that are prevalent in past studies, using 

methods that I have developed for tackling these trivial and non-trivial obstacles. This 

chapter is focusing on the methodology and algorithm developed for finding human-

lineage gene duplications, rather than on the characterization of these duplications and 

estimation of duplication dates, which will be explored in detail in chapter 3. 
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2.1.1. Definitions of Evolutionary Terms Employed. 

 

The evolutionary relations between genes in the same species (paralogues) and among 

different species often lead to confusing or misleading definitions due to terminology 

inconsistencies in different studies (Koonin, 2005), therefore I will define in this section 

the evolutionary terms that are relevant to this study of detecting human inparalogues. 

See Figure 2.1 for a graphical description of the different evolutionary relations. 

 

Homology, the most general definition, designates a relationship of common descent 

between any DNA sequence entities, without further specification of the evolutionary 

scenario that gave rise to observed homology. Accordingly, the entities related by 

homology, in particular genes, are called homologues (Koonin, 2005). Because the term 

„homologues‟ can refer to orthologues, inparalogues, or outparalogues, it is improper to 

use it for describing any specific evolutionary relations between genes. All genes in 

Figure 2.1 are homologous. 

 

Orthologues are homologues produced by species divergence – they represent genes 

derived from a common ancestral copy in the ancestral species. Orthologues tend to 

have similar function (Jenuth, 2000). Orthologues can provide useful information 

regarding functionality, conservation, evolutionary constraint / selection, and evolution 

of similar genes among different species (Remm et al., 2001). For example – genes XA, 

XB, and XC in Figure 2.1 are orthologues, since A, B, and C are different species with 

one common ancestor, while X is the ancestral gene in that common ancestor.  

 

Paralogues are homologues produced by gene duplication and represent genes derived 

from a common ancestral copy that duplicated within an organism followed by 

divergence (Jenuth, 2000). Paralogues can have different functions that emerge over 

time, for example – the two paralogous human genes AMY1 and AMY2, where the 

former is coding for salivary amylase and the latter is coding for pancreatic amylase 

(Samuelson et al., 1988). Until recently, the term paralogues was the only one used for 

describing gene duplications within one species. However, since no distinction was 

made between duplications that occurred before speciation and duplications that 

occurred after speciation – two subgroups were needed to be defined – outparalogues 
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and inparalogues (Remm et al., 2001). Inclusion in one or other of these groups is 

defined by the speciation event being considered. 

 

“Outparalogues: paralogous genes that evolved via ancient duplication(s) preceding 

the given speciation event” (Koonin, 2005). In other words – outparalogues are gene 

duplications that occurred before the speciation event, and as such they do not represent 

any “lineage-specific” gene duplication event unless one copy is lost in one species. For 

example – genes XB, YB, and ZB1 in Figure 2.1 are outparalogues since X, Y, and Z 

are different genes in the same species (B) that were also separate genes in the common 

ancestor – gene duplications before speciation.  

 

“Inparalogues: paralogous genes resulting from a lineage-specific duplication(s) 

subsequent to a given speciation event” (Koonin, 2005). In other words – inparalogues 

are gene duplications that occurred after a specific speciation event, and as such they 

are suitable for “lineage-specific” gene duplications studies. For example – genes ZA1, 

ZA2, and ZA3 in Figure 2.1 are inparalogues since they are a result of two separate 

duplication events of the gene Z in the lineage of species A (i.e. after the A-B speciation 

event). 

 

Copy number variation (CNV) is a DNA segment (that may or may not include genes) 

which has a different number of copies among two or more chromosomes sampled from 

a population. The size of the segment can be up to several megabases. CNVs arise due 

to sequence duplications or deletions (Cook and Scherer, 2008). This work will not deal 

with CNVs. However, it is important to understand the main conceptual difference 

between CNV and the other homology terms that were explained above, as CNV deals 

with gene duplications and so may cause confusion. CNV, as with any genetic variation 

term, is based on more than one individual. For this reason it cannot be used (in its strict 

sense) as a “representative” of the species, though CNV does have a potential use as a 

tool to measure if the human-lineage duplications detected are representatives of the 

majority of modern human population, or if they are duplications that represent only 

specific group or individuals. This genetic variation work is beyond the scope of this 

thesis. 
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Figure 2.1. A hypothetical phylogenetic tree illustrating orthologous and paralogous relationships 

between three ancestral genes (X, Y, and Z) and their descendants in three species (A, B, and C). 

The divergence of the three genes was prior to the species most recent common ancestor (MRCA). The 

hypothetical timeline from the family ancestor until present is from the top to the bottom of the Figure. 

The blue circles and blue arrow represent the first divergence event (between species AB and C), and the 

yellow circles and yellow arrow represent the second divergence event (between species A and B). 

Adapted from Koonin (2005) (Figure 2, page 313). 

 

2.1.2. Review of Orthologues and Paralogues Detection Methods. 

 

The first step in identifying inparalogues in a specific species for a particular species 

pair is identifying the corresponding orthologues in the reference species, to make a 

distinction between „out-‟ and „in-‟ paralogues – duplications that happened before 

MRCA speciation and duplications that happened after MRCA speciation, respectively. 

However, until recently most studies focused on paralogues without the distinction 

between inparalogues and outparalogues (Remm et al., 2001), and some pair the 

paralogous studies with segmental duplications – continuous portions of DNA that map 
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to two or more locations on one genome, and tend to form core „duplicons‟ in the 

human genome (Bailey and Eichler, 2006, Jiang et al., 2007). 

 

The “traditional” process of identifying lineage-specific duplications is laboratory 

based, applying molecular genetics techniques. An example of such methodologies is a 

recent extensive study of comparing primates segmental duplications (She et al., 2006) 

combining bioinformatics analysis using BLAST-based detection schemes (Bailey et 

al., 2001, Bailey et al., 2002) with fluorescent in situ hybridization (FISH) analyses 

(Nath and Johnson, 2000) for detecting lineage-specific segmental patterns.  

 

With the accumulation and availability of whole genome data from several species, due 

to the development of cheaper and more efficient sequencing techniques, the only 

practical way of analyzing the homology relationship between sets of genes is by 

applying (or combining) bioinformatics methods, which mostly follow one of two main 

approaches: best reciprocal hit and phylogenetic reconstruction (Koonin, 2005, 

Altenhoff and Dessimoz, 2009).  

 

The more commonly used approach is based on best reciprocal hit using sequence 

database search algorithms such as BLAST or BLAT (Altschul et al., 1990, Kent, 2002) 

or reciprocal smaller distance using a substitution rate matrix such as JC69, F84, or 

HKY85 (Jukes and Cantor, 1969, Felsenstein, 1989, Hasegawa et al., 1985). Both 

approaches are much more computationally efficient than phylogeny methods (and 

arguably some are at least as accurate, as will be explained in the section describing the 

InParanoid algorithm), and thus can be applied for complete genomes orthology and 

paralogy detection. 

  

The second, and less commonly used approach – phylogenetic reconstruction – is a 

natural way of detecting orthology and paralogy, as the specific type of homology is 

being directly inferred from the topology of the tree. A simple example for homology 

type inferred from tree topology would be three sequences – two human sequences 

(which will be called H1 and H2) and one chimpanzee sequence (called C1), where we 

want to know if H1 and H2 are inparalogues, and given that C1 is an orthologue for at 

least one of the two human sequences. The possible topologies, described using the 

Newick tree format (Felsenstein, 2003), of the full tree space are: (1) ((H1,H2),C1) , (2) 
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(H2,(H1,C1)), and (3) (H1,(H2,C1)). See Figure 2.2 for the full tree space of these 3 

sequences. Trees (2) and (3) represent scenarios where the H1-H2 duplication occurred 

before the human-chimpanzee speciation event, and thus they are not inparalogues. Tree 

(1) is the only scenario where H1 and H2 are inparalogues, since the duplication event 

took place after human- chimpanzee speciation.   

 

 

Figure 2.2. The tree space of two human sequences and one chimpanzee sequence. The left tree is the 

only one that represents two human inparalogues and their chimpanzee orthologue. In the central and 

right trees the human sequences are outparalogues. 

 

However, this example deals with only 3 sequences. The full combinatorial space of a 

genome-wide comparison is immense – the number of possible rooted bifurcating trees 

is for n sequences is 
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 (Cristianini 

and Hahn, 2006). Before inferring each topology - multiple sequence alignment, an 

error-prone and time consuming procedure (Remm et al., 2001) – must be performed. 

The number of possible rooted and unrooted trees for n=5 is 15 and 105, respectively, 

while for n=10 the number of possible rooted and unrooted trees jumps to 2,027,025 

and 34,459,425, respectively (calculated by me using the Python programming 

language, http://www.python.org/). As a result, the computational time required for 

such analyses on a genome-wide scale (with tens of thousands of sequences for each 

species) makes this method very computationally intense even when using tree space 

searching optimization methods that reduce the tree space (Koonin, 2005) or by treating 

some of the sequences as having a non-random relations to each other.  

Below, I will present two well-established methods as representatives of the modern 

computational methods of genome-wide orthology and paralogy detection. The methods 

are both non-phylogenetic, and so present practical options for whole-genome 

paralogues detection.  

H1 

H2 

C1 

C1 

H2 

H2 

C1 

H1 

H1 
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COG - Clusters of Orthologues Groups (Tatusov et al., 1997), was the first platform 

created to identify large scale clusters/groups of orthologues and paralogues, as opposed 

to previous methods that identified smaller and separate sets of orthologues and 

paralogues. The main assumption of COG is that any set of at least three proteins from 

relatively distant genomes that are more similar to each other than they are to any other 

proteins from the same genomes are most likely to be orthologues. The prediction holds 

even if sequence similarity between some of the compared proteins are relatively low, 

thus COG can also group genes that are fast evolving (Koonin, 2005). The COG 

algorithm consists of the following steps (Koonin, 2005, Tatusov et al., 1997): (1) An 

all-against-all BLASTP (Altschul et al., 1990) comparison of protein sequences from 

multiple genomes. (2) Detection and clustering of orthologues and paralogues, 

following the assumption that if a gene from one of the genomes has its two best 

BLAST hits (BeTs) in two other genomes (i.e. the two genes most similar to a specific 

gene are from distant genomes rather than from the gene‟s own genome) then it is likely 

that they are orthologues. (3) Identification of triangles of genome-specific best hits, 

treating paralogues detected at step 2 as single entities. (4) Forming COG‟s from 

triangles with a common side. See Figure 2.3 for examples of orthologues and 

paralogous identified using the COG algorithm. 

 

Although COG identifies orthologues and inparalogues, it tends to have high false 

positive rates when large protein families include both in- and outparalogues or when 

multidomain proteins that are included in the analysis artificially bridge unrelated COGs 

(Koonin, 2005, Altenhoff and Dessimoz, 2009) since multidomain proteins don‟t fully 

represent their corresponding genes‟ full DNA sequence. Moreover, the minimum 

number of species for a COG is three, and so a COG represents sequences with 

conserved functions across different and distant lineages. It becomes a problem when 

there is a need to find orthologous groups (and detecting inparalogues in these groups) 

between closely related species, such as human and chimpanzee – two species that are 

too closely related for their paralogues being detected in COG. Another obvious 

problem may arise when sequences are available from only two species. 
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Figure 2.3. Three examples of orthologues and paralogues obtained by COG (Clusters of 

Orthologous Groups). Different colours representing different species, solid lines show symmetrical 

BeTs (and thus orthologous relation), broken lines show asymmetrical BeTs, and proteins of the same 

colour are paralogues. (A) The minimal COG of 3 orthologues. (B) A COG with two yeast paralogous - 

YBL076c and YPL040c. (C) A complex COG where 3 species have multiple paralogous (for example, 

Sll0184 and Slr1564) and 2 species have no paralogous but do have orthologues identified in other 

species (for example, MP485 has no paralogues, and is orthologous with MG249, RpoD, and Slr0653). 

Figure taken from Tatusov et al. (1997). 

 

The problems of COG include disentangling inparalogues from outparalogues and 

dealing with closely related genomes, and this has led to the development of 

InParanoid - In-paralogue and Orthologue Identification (Remm et al., 2001, O'Brien 

et al., 2005). The algorithm identifies orthologues and inparalogues between any given 

pair of genomes (two species only), while the programme MultiParanoid allows finding 

orthology and paralogy among multiple species, making it conceptually more similar to 

COG (Berglund et al., 2008).  Given the proteomes (in this case – exactly one protein 
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from each coding gene) of two given species B and C with a most recent common 

ancestor A (Figure 2.4a), the InParanoid algorithm works as follows (Remm et al., 

2001, O'Brien et al., 2005): (1) Find all sequence pairwise similarities between B-C, C-

B, B-B, and C-C using BLASTP (Altschul et al., 1990). (2) Mark two-way best hits as 

potential orthologues (these are inter-species seed-orthologues). (3) Add potential 

inparalogues for each seed-orthologues pair, by assuming that two inparalogues (which 

are, by definition, from the same species) are closer to each other than the distance 

between the seed-orthologues, otherwise the gene duplication is assumed to be before 

the divergence of B and C, and thus the two sequences are considered to be 

outparalogues (Figure 2.4b). (4) Calculate relative distance scores for the potential 

inparalogues (Figure 2.4b), using the equation: 
   
   2:22:2

2:23:2
3

BCBlastCCBlast

BCBlastCCBlast
C




  , 

where Blast[X:Y] is the averaged BLASTP score between X and Y in bits. (5) Resolve 

overlapping groups of orthologues and inparalogues.  

 

 

Figure 2.4. The InParanoid algorithm. (a) Showing a protein in the ancestral species „A‟ that 

underwent a gene duplication event. After speciation event into species „B‟ and „C‟, gene C2 was 

duplicated into the inparalogues C2 and C3. (b) Showing the clustering method. The best reciprocal hit 

proteins B2 and C2 are regarded as inter-species seed-orthologues, around which paralogues are 

clustered. The distance between the seed-orthologues is set to 1.0, and accordingly the distance between 

an orthologue and its inparalogue is always between 0 and 1.0 (as is the case with inparalogues C2 and 

C3), while a distance between an orthologue and an outparalogue (that is rejected) is greater than 1.0 (as 

is the case with inparalogues C2 and C3). The image was taken from O'Brien et al. (2005) Figure 1. 
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I chose InParanoid as the main algorithm to work with because the focus of the 

algorithm is detecting inparalogues, rather than paralogues (or only orthologous) in 

general. Also, a benchmark test of several of the most popular orthologue detection 

methods using a Human, Mouse, and C. elegans protein expression and sequence data 

(Hulsen et al., 2006) has shown that InParanoid had the best performance in Human-

Mouse orthologue detection. The benchmark tested used the Pearson correlation 

between conservation of function (determined by known protein expression levels) and 

the orthologue prediction performed with the following six methods: (1) COG (Tatusov 

et al., 1997), (2) best bidirectional hit (essentially a simple version of InParanoid 

implemented by the authors of the benchmark study), (3) InParanoid (Remm et al., 

2001), (4) OrthoMCL (Li et al., 2003) – a markov-clustering (Enright et al., 2002) based 

algorithm, (5) Z / Hundred – estimating statistical significance of dynamic alignment 

scores through the use of a Monte-Carlo process (Comet et al., 1999), and (6) 

PhyloGenetic Tree – based on time consuming multiple alignments (van Noort et al., 

2003). Interestingly, InParanoid outperformed even the phylogeny based method (van 

Noort et al., 2003) and was shown to perform exceptionally well in detecting 

orthologues among relatively closely related species (Human-Mouse, as opposed to the 

much more distantly related Human-C. elegans and Mouse-C. elegans).  

 

However, the InParanoid algorithm introduces problems when attempting to implement 

it for detecting inparalogues in projected genomes (genomes of non-model organisms 

that their genes are experimentally unknown, and thus these genes are being identified 

by projection – transferring their nearest species experimentally known genes to the 

corresponding location in the non-model organism genome (Hubbard et al., 2009)). This 

problem is a critical issue in detecting Human-Chimpanzee inparalogues where the 

chimpanzee‟s genome is projected. This will be discussed in the following section.  

 

2.1.3. Problems with Inparalogues Detection using InParanoid. 

  

InParanoid is the only comprehensive method that focuses on detecting inparalogues 

(rather than paralogues in general), which makes it a potentially ideal tool for detecting 

human inparalogues. However, some critical problems were encountered when I 

attempted using the InParanoid Human-Chimpanzee orthologues/inparalogues database 

(O'Brien et al., 2005), and, alternatively, attempting to locally use InParanoid with the 
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Human and Chimpanzee proteomes (Hubbard et al., 2009). I will now elaborate on the 

problems that were encountered, and which this project has attempted to tackle. Unless 

otherwise stated, all automating procedures in this section were performed by Perl 

scripts written by me. 

 

2.1.3.1. Human Haplotype Data. 

 

As a part of the effort to map human genomic variants that may be associated with 

common diseases susceptibility – two projects were conducted to identify two 

haplotypes of the major histocompatibility complex (MHC) on Human chromosome 6 

(COX and QBL), to which susceptibility to more than 100 diseases has been mapped 

(Stewart et al., 2004, Traherne et al., 2006).  

 

The Ensembl annotated human genome database (Hubbard et al., 2009) includes 246 

COX haplotype alleles and 234 QBL alleles, and altogether 741 proteins (Hubbard et 

al., 2009, Smedley et al., 2009) (Table 2.1.) The InParanoid database of orthologues and 

inparalogues (http://inparanoid.sbc.su.se/cgi-bin/index.cgi) was attained by using the 

InParanoid algorithm with the full known proteome of each species from which it 

attempts to identify inparalogues - it includes the longest protein sequence from each 

human coding gene. However, the InParanoid algorithm does not filter for haplotype 

data, resulting in using chromosome 6 COX and QBL protein sequences. The result is 

many variants of the same genes collected from different genomes, which leads to false 

detection of inparalogues (i.e. false positives), as the haplotype genes and proteins are 

likely to be very similar to each other, and so they will be identified as inparalogues 

even though they are actually variants of the same gene among different individuals 

rather than being genes that are representing duplications in the human lineage. 

 

The use of haplotype data in InParanoid‟s inparalogues detection has an effect similar to 

artificially adding hundreds of almost identical copies of hundreds of genes to the 

human genome database. This leads to erroneous clustering and an overprediction of 

human inparalogues.   
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2.1.3.2. Proteome Data. 

 

The input data for InParanoid consists of the proteomes of the two species, which 

orthologues and inparalogues are to be sought. The longest peptide sequence from each 

coding gene is used, creating a non-redundant representation of the organism‟s genome. 

As a result of using proteome data, only the gene‟s coding sequence (CDS) is 

represented. A gene consists mostly of introns and regulatory regions, while the CDS is 

a small part of the whole gene (12.11% on average, calculated by me using the BioMart 

(Smedley et al., 2009) information for all human coding gene and CDS lengths). This 

poses a problem since the majority of the gene‟s sequence information is lacking. 

 

On the conceptual level, there is a problem in using peptide sequences for detecting 

physical DNA duplications, as the peptides are the product of codons that contain 

redundancies (i.e. a few different codons that code for the same amino acid) and so the 

peptide sequence will miss DNA silent mutations. In general, a peptide sequence does 

not perfectly represent the DNA sequence that it was derived from.  

 

For these reasons, it is problematic to use protein sequences for detecting lineage-

specific gene duplications. However, the proteome can be very useful as a first pass 

filter for detecting inparalogue candidates as will be demonstrated in Section 2.2.  

 

2.1.3.3. Ambiguous Data. 

 

As a part of the Ensembl (Hubbard et al., 2009) gene annotation process of each species, 

transcripts are aligned to the whole sequenced genome to identify the chromosomal 

location of each gene. Due to low sequence coverage or low transcript quality, there are 

cases where a transcript cannot be mapped to specific chromosomal regions, and 

consequently the gene‟s chromosomal location is identified as „random‟ (when a 

specific chromosome is identified), „Un‟ (when the chromosome is unknown), or „NT‟ 

(essentially like „Un‟, with the original contig‟s name specified as a chromosome). I 

will refer to the three classes of ambiguous annotation data as „ambiguous‟. The 

numbers of these ambiguous genes vary among the different annotated species.  
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The Ensembl database (Hubbard et al., 2009) includes 221 ambiguous human genes and 

1,268 ambiguous chimpanzee genes (Table 2.1), which are used in the current 

InParanoid human-chimpanzee database (O'Brien et al., 2005). Although the sequence 

quality for some of these genes may be adequate, the fact that they are „ambiguous‟ (as 

described above) makes it not impossible to detect if they overlap with other genes (see 

next section for gene overlaps), and if they are identified as gene duplications it is 

difficult to know if they are tandem duplications (on a similar chromosome) or 

duplications among different chromosomes. Altogether, the fact that these genes cannot 

be traced into a specific location suggests a problem in the quality of the genes 

annotation, and so using these genes makes the dataset used much less reliable.  

 

2.1.3.4. Gene Conversion. 

 

Following gene duplication, adjacent paralogous are prone to reciprocal unequal 

crossovers by virtue of the high degree of homology between them. As a consequence 

of these unequal crossovers, the „acceptor‟ sequence is replaced, wholly or partly, by a 

sequence that is copied from the „donor‟, whereas the sequence of the donor remains 

unaltered. This process is termed gene-conversion (Chen et al., 2007). As a 

consequence of a full gene conversion, the two copies of the gene have very high degree 

of similarity. In the case of a gene duplication occurring before the most recent 

speciation event followed by gene conversion, any currently available inparalogues 

detection method is likely to identify the two copies as inparalogues, when in fact they 

are outparalogues. There is no currently available bioinformatics filter gene conversion 

regions, and so I expect that all currently available inparalogues detection methods will 

include false positive inparalogues.  

 

2.1.3.5. Non-Model Organisms. 

 

The most critical problem that I have encountered when locally using InParanoid to 

detect human-chimpanzee inparalogues was the use of the chimpanzee proteome.  

 

Chimpanzee is a non-model organism whose genome has been sequenced and annotated 

by Ensembl. The majority of annotated genomes available from Ensembl and BioMart 

are of non-model organisms (such as the orangutan, macaque, horse, cat, platypus, and 
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more) as well (Hubbard et al., 2009, Mikkelsen et al., 2005). One major implication of 

annotating non-model organisms‟ genomes is that they have a very low proportion of 

experimentally known genes. The non-model organism‟s unknown genes are being 

annotated by projection – aligning its transcripts to the known genes from the 

evolutionary nearest genome(s). See Figure 2.5 for the phylogenetic relations between 

mammals and vertebrates, which determine the genomes from which non-model 

organisms or unknown genes are being projected, and Table 2.1 for the numbers of 

known and projected genes among several model and non-model organisms. Note that 

for lower coverage genomes or where genes cannot be annotated in model organisms, 

Ensembl is applying another annotation category termed “novel genes” – a process that 

is essentially following the same process as projection, but unlike projection, it allows 

the projection sequence to change the original assembly (Hubbard et al., 2009). For 

convenience I will term both “projected” and “novel” genes as “projected”.   

 

The chimpanzee‟s unknown (i.e. in-silico predicted or projected) genes are wholly 

projected from the human known genes, while (for example) the majority of the horse‟s 

gene annotations are projected from several model-organisms genomes, including 

human and mouse. 

 

The majority of chimpanzee‟s annotated genes are being projected from known human 

genes, and currently there is no algorithm for identifying chimpanzee-specific genes. 

Furthermore, comparing a human genome/proteome with the chimpanzee‟s 

genome/proteome that is projected from human is essentially as if human genes are 

being compared with “less annotated” genes. .  

 

The lack of chimpanzee-specific genes/peptides is demonstrated by performing an 

InParanoid run where the human and chimpanzee‟s proteomes are used as input, after 

applying various filtering as will be elaborated in section 2.2. The output of the 

InParanoid run was the full set of human and chimpanzee orthologous group (that some 

of them contain inparalogues). I detected cases of human and chimpanzee orthologous 

groups where one species has inparalogues while the other species has no inparalogues 

(in other words – human- or chimpanzee- specific inparalogue groups). This gives a 

measurement of how much the two genomes‟ annotation is balanced, with the null 

hypothesis being that human and chimpanzee have a similar number of species-specific 
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gene duplications. The numbers of human- and chimpanzee-specific gene duplications 

show a massive bias towards human duplications – 192 human-specific inparalogues 

groups, and only 33 in chimpanzee (Table 2.2), a difference of almost 6 times. While at 

face value this could have been a very exciting discovery, indicating that human lineage 

has had a significantly accelerated gene duplication rate compared to chimpanzee (or 

alternatively, continuing this line of thought, that chimpanzee had a significant 

deceleration), running InParanoid with the human proteome as in input against several 

other species demonstrated that this is not the case. Rather, there seems to be a bias 

stemmed in the nature of the specific species‟ genome – depending whether it is a 

genome of a model or a non-model organism, which reflects on the annotation of the 

genes – being known or projected. When running the human proteome against 

organisms in which the majority of the genes are known (e.g. mouse and cow, see 

Tables 2.1 and 2.2) the tendency of human “having” more lineage specific gene 

duplications was reversed. I detected differences of 1.27 and 1.57 times more lineage 

specific inparalogues-containing groups in cow and mouse, respectively, than in human. 

The number of human peptide sequences used is only 1.07 times larger than the 

chimpanzee‟s, while the number of mouse peptides is 1.1 times larger than human and 

the cow‟s is 1.1 times smaller – so the differences in number of peptide sequences 

among the different species are not likely to account for the bias witnessed in the 

human-chimpanzee test. Performing similar InParanoid runs and species-specific 

duplications analyses of the human proteome against other non-model primates revealed 

similar patterns that were witnessed with chimpanzee: a 3.64 times more human-

specific inparalogues groups than orangutan-specific, and 1.84 times more human-

specific inparalogues groups than macaque-specific. Importantly, Ensembl added 

human genes to the orangutan and macaque‟s database where the Ensembl projection 

failed to identify acceptable gene models for these species, and this may explain the 

smaller numerical bias that these species have when compared to chimpanzee bias.  

 

Performing the analyses described above for the human proteome against horse‟s, a 

non-primate non-model organism, revealed high similarities in the number of species-

specific inparalogues groups among the two species – 196 human-specific vs. 204 

horse-specific (Table 2.2). The horse‟s Ensembl genome annotation is projected from 

all known mammalian genes, and – at a lower priority – from non-mammalian 

vertebrates. Also, the horse genome assembly coverage was (as for Ensembl version 52) 
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x6.79 (where the assembly coverage unit represents the average number of times that 

each unit of the genome was sequenced), a relatively very good quality for whole 

genome sequencing (Ensembl unofficially defines “low coverage” as about x2.5 or 

less). The similar human- and horse-specific groups, together with the horse annotation 

process and its high coverage show that when all (available) high vertebrate genomes 

are taken into consideration then there is no numeric bias. This does not mean that the 

horse‟s genome annotation can be used for inparalogues prediction, but rather that on 

average the different lineages seem to have about the same gene duplication rates. 

 

In summary, the use of a non-model organism‟s proteome as one of the species when 

performing inparalogues prediction using InParanoid, or any other inparalogues 

prediction algorithm, produces an underestimation of the non-model organism‟s 

inparalogues. This has presented a critical problem in using the chimpanzee‟s proteome 

for detecting the human lineage gene duplications, and required developing new 

methodologies for doing that. Section 2.2 will describe the algorithm that was 

developed to detect lineage specific duplications in cases resembling the human-

chimpanzee relations – one genome is of a model organism while the other one is non-

model, while resolving the problems of human haplotype data, proteome data, gene 

conversion, and the use of non-model organisms, which were presented in sections 

2.1.3.1 - 2.1.3.5.  
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Table 2.1. Gene categories in model and non-model organisms’ genomes and proteomes. The 

different categories are explained in section 2.1.3.5.  

Organism 

Number known 

protein-coding 

genes 

Number projected 

and novel 

protein-coding 

genes 
Number 

ambiguous genes  
Number 

overlapping genes  
Number 

haplotype genes  

Human 

(Homo 

sapiens) 

21388 28 221 2125 741 

Chimpanze

e (Pan 

troglodytes) 

2647 17182 1268 1226 - 

Orangutan 

(Pongo 

pygmaeus 

abelii) 

3813 16255 1245 1007 88 

Macaque 

(Macaca 

mulatta) 

874 21031 1123 1854 - 

Mouse 

(Mus 

musculus) 

23019 98 273 1976 - 

Cow (Bos 

taurus) 

20471 583 2745 874 - 

Horse 

(Equus 

caballus) 

723 19599 153 1024 - 

 

Table 2.2. The number orthologous clusters having species-specific inparalogues, detected by 

InParanoid. Non-model organisms are identified by „
*
‟. For hypothetical species j and k, a cluster was 

detected for having species-specific inparalogues by counting the number of inparalogues for j and k, then 

if the number of j inparalogues is greater than 0 and the number k inparalogues is equal to 0 then the 

cluster is considered as having j-specific inparalogues (and vice versa for k-specific inparalogues).  

Organisms tested 

N  estimated human-specific 

duplications 

N estimated species-specific 

duplications 

Human-Chimpanzee* 192 33 

Human-Mouse 207 326 

Human-Orangutan* 171 47 

Human-Macaque* 208 111 

Human-Cow 220 279 

Human-Horse* 196 204 
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2.2. The Human Inparalogues Detection Algorithm. 

 

As was demonstrated in the previous sections of this chapter, there are various reasons 

why past efforts to detect human inparalogues may produce unreliable results with 

projected or poorly annotated genomes. I will now describe the full process that I have 

developed for finding human inparalogues that overcomes many of these problems.  

 

Importantly, this algorithm can be applied to identify inparalogues among any two 

species, where one is a model organism in which a proteome is available and the other 

is a non-model organism. The process requires the availability of both their genomes 

assemblies, and the availability of another outgroups model organism‟s proteome. 

 

The programming language used for writing the various scripts for the algorithm was 

Perl (http://www.perl.org/) which is used extensively in Bioinformatics applications 

mainly because its implementation of regular expressions (identification of patterns in 

text) which makes the language ideal for handling genetic and proteomic sequences. 

Other applications that were used will be described at the relevant sections.  

The algorithm is first filtering the input data of human and mouse for InParanoid by 

removing ambiguous data and resolving gene overlaps, then detecting human 

inparalogue candidates using InParanoid. The inparalogue candidates are used to 

identify potential chimpanzee orthologues and human inparalogues on chimpanzee and 

human genomes, respectively. The full duplication lengths of these candidates are being 

identified, and phylogenetic trees are inferred, while removing topologies that suggest 

human outparalogues and filtering molecular clock violations. The final step of the 

algorithm is filtering for gene conversions and acquiring the human inparalogue genes 

in the duplicated regions. The full algorithm is described in Figure 2.6. 

 

2.2.1. Choosing an Outgroup and filtering data. 

 

The first part of the algorithm is identifying potential inparalogues applying the 

InParanoid software, using the human proteome and the proteome of the model 

organism that is nearest to human, in this case – the mouse. See Figure 2.5 (Benton and 

Donoghue, 2007). 

 

http://www.perl.org/
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Figure 2.5. A phylogenetic diagram ranging from the insect to the primates clades. Numbers 

represent divergence/speciation times. The different colours represent the Ensembl version 55 genome 

annotation type: blue represents model organisms, red represents non-model organisms with high 

sequence coverage (more than x4), green represents non-model organisms with low sequence coverage 

(equal or less than x4), and black represents organisms that their annotation is currently not available in 

Ensembl. Adapted from (Benton and Donoghue, 2007) Figure 8, page 43. 

 

 

Figure 2.6. The filtering and analyses stages in the human-lineage gene duplication detecting 

algorithm. Each stage provides the input for the next stage, while the initial input is the full human and 

mouse proteomes. H1 and H2 represent the human orthologue and human inparalogue-candidate 

sequences, respectively. The algorithm is fully described in section 2.2. 
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Using the biological data mining website BioMart (Smedley et al., 2009), the following 

Ensembl (Hubbard et al., 2009) annotation features for all 21,388 human and 23,019 

mouse protein coding gene were obtained: (1) Chromosome number/symbol. (2) Start 

location. (3) End location. 

 

Genes were removed if: (1) The chromosome‟s symbol is either ambiguous or 

haplotype data. (2) Two following entries are overlapping, following the logical rule:  

IF (chri==chri-1 AND starti<endi-1) THEN genei filtered. This rule means that if two 

following genes are located on the same chromosome and the start location of one gene 

is located within the other gene then it is overlapping and thus removed. This step was 

repeated until there were zero overlaps.  

 

From each human and mouse non-ambiguous and non-overlapping known coding 

genes, the longest protein sequence was acquired. Altogether, the final set acquired 

peptides representing the human and mouse proteomes consisted of 18,522 human 

peptide sequences and 21,043 mouse peptide sequences. The filtering process has 

removed 2,866 human peptides and 1,976 mouse peptides. 

 

2.2.2. Human-Mouse InParanoid Run. 

 

As demonstrated in section 2.1.3.5, InParanoid (Remm et al., 2001, O'Brien et al., 2005) 

did not provide reliable human inparalogues results when used with the known human 

and the projected chimpanzee‟s proteomes. However, InParanoid provides a very robust 

and accurate platform for detecting inparalogues among two model organisms such as 

human and mouse (van Noort et al., 2003). For these reasons, after the initial filtering 

process described above, InParanoid was ideal for detecting human-mouse inparalogues 

with the filtered human and mouse proteomes as input.  

 

Running InParanoid with the 18,522 human peptide sequences and 21,043 mouse 

peptide sequences obtained in section 2.2.1 resulted in 16,227 clusters of human-mouse 

seed orthologues, among them 305 contain one or more human inparalogue. It is 

important to note that each of the human inparalogues detected in this stage are in 

regard to the human-mouse lineage, making the majority of them to be human-
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chimpanzee lineage inparalogues, as human-mouse divergence occurred about 60mya 

while human-chimpanzee divergence occurred about 6.5mya. 

 

2.2.3. Human-Chimpanzee BLAT Run.  

 

BLAT (BLAST Like Alignment Tool) is a software identifying DNA or peptide 

sequences in a database, such as a full genome (Kent, 2002).  

 

To detect gene duplications, the DNA sequence was required to be used against the 

human and chimpanzee genomes (the chimpanzee‟s assembly has a high coverage of x6 

coverage, making the sequence reliable to use). 

 

For each of the 305 clusters of human-mouse containing one or more human 

inparalogue (as described in section 2.2.2), the cDNA sequence of the human seed-

orthologue peptide was acquired using BioMart, a biological data mining web interface 

(Smedley et al., 2009). Then BLAT (Kent, 2002) was used to identify the chimpanzee 

orthologues and human inparalogues. BLAT‟s characteristics are tailored to identify 

DNA sequence duplications on genomes with a high degree of similarity. This makes 

BLAT suited for species with a small evolutionary distance such as human and 

chimpanzee, and consequently suited for finding human inparalogues which are 

assumed to have a smaller distance from their human orthologue than the distance 

between the human and chimpanzee orthologues. The BLAT run of the 305 human 

cDNA sequences against the human and chimpanzee genomes on the UCSC web server 

was automated by using the Perl script that is available at the following website: 

http://genomewiki.ucsc.edu/index.php/Image:BlatBot_pl.txt. 

 

The chimpanzee orthologues and human inparalogue candidates were detected from all 

BLAT hits by applying the following criteria: (1) Highest bit scores (which the BLAT 

algorithm uses to determine the best match). For human inparalogues detection, a 

minimum threshold of half of that of the best hit was applied. (2) Sequence length 

similarity of at least 50%, since local alignment may capture various regions of the 

BLATed cDNA sequence scattered on huge regions of the chromosome, which may 

result in a (say) 300 base pairs cDNA sequence being match to a 1 million base pairs 

hit. 
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The human inparalogue-candidates were then filtered for overlaps, following the same 

process described in section 2.2.1. 

 

2.2.4. Finding the Full Extent of Human Duplicated Regions.  

 

Although using cDNA sequences provides more evidence for DNA duplications than 

using peptide sequence only, each sequence will represent only a portion of the full 

actual segmental sequence duplication that may extend upstream and downstream from 

the orthologues and candidate human inparalogue sequence detected by the human 

cDNA.  

 

To find the full extent of each duplication, the Ensembl Perl API interface 

(http://www.ensembl.org/info/data/api.html) was applied, and was automated with a 

Perl script written by myself. The dataset was divided into triplets of (1) Human 

orthologue. (2) Human inparalogue-candidate. (3) Chimpanzee orthologue. Upstream 

from the start of each of the 3 sequences, sliding windows of 100 base pair slices were 

obtained and compared to each other. In case there was a similarity greater than 90% (a 

heuristic value, greater than the similarity between two random sequences and lower 

than the expected 95%-100% human inparalogues / human-chimpanzee orthologues 

comparisons (Britten, 2002, Mikkelsen et al., 2005)) another 100 base pair slice 

upstream of the previous slice was obtained and the same similarity check was made. 

The window continued its upstream slide until similarity went below 90%. The same 

process was performed downstream of each human and chimpanzee sequence‟s end. 

Importantly, as genome are represented by only one strand, whenever a sequence was 

on the opposite strand the complementary sequence was inferred and the upstream-

downstream directions were reversed. 

 

By checking for no overlap between the extended tandem duplications, the full human 

duplications and their full length chimpanzee orthologue DNA sequences were 

obtained.   

 

 

 

 

http://www.ensembl.org/info/data/api.html
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2.2.5. Alignment, Phylogenetic Trees and Molecular Clock Testing.  

 

At this stage, all human-human-chimpanzee orthologue sets were still inparalogue 

candidates, as they rely were identified as potential human-chimpanzee inparalogues 

only by comparison of human and mouse proteomes. The human-mouse divergence was 

~61.5mya while the human-chimpanzee split was ~6.5mya, so the majority of 

duplications identified at this stage are expected to be outparalogues with respect to 

human-chimpanzee comparison. 

 

As described in section 2.1.2, phylogenetic tree inference is a very robust way to 

estimate homology types. The InParanoid clustering and various filtering described 

above had reduced the potential tree space from one that is completely impractical (see 

section 2.1.2 for the number of possible bifurcating trees – millions for 10 sequences, 

and so an inconceivably large number for sequences of two full genomes) into a scale of 

only hundreds of human-human-chimpanzee triplets. This has made possible the use of 

phylogenetic tree inference for the human inparalogues and their chimp orthologue 

triplets, for differentiating human inparalogues from outparalogue.   

 

The first step in any phylogenetic inference is performing multiple sequence alignment. 

The software I chose for that was MAFFT - Multiple sequence Alignment employing 

Fast Fourier Transform (Katoh et al., 2002). The advantage of the method is its 

flexibility and reliability tradeoff – automatically optimizing the alignment according to 

the different DNA sequence lengths used, which is very important due to the large 

variety of sequences used in this case – from a few hundred to hundreds of thousands of 

base pairs. A benchmark test (Katoh et al., 2005) has shown high performance of 

MAFFT when compared to other well established methods, including MUSCLE (Edgar, 

2004), T-Coffee (Notredame et al., 2000), and ClustalW (Thompson et al., 1994). 

Moreover, due to memory constraints MUSCLE is incapable of aligning sequences 

larger than a few thousand base pairs, T-Coffee‟s very slow computation time makes it 

impractical to use for this study, and ClustalW is slower and less accurate than MAFFT. 

Manual alignment testing that I performed with MAFFT (inspecting by eye) also 

confirmed the high performance of the software.  
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I wrote a Perl script automating the DNAML and DNAMLK maximum likelihood 

phylogeny inference programs, which are a part of the Phylip package (Felsenstein, 

1989), with the aligned sequences as input. DNAML doesn‟t assume a molecular clock 

and DNAMLK does. Both tree topology and maximum likelihood score were obtained 

from each set of sequences. The first filtering process kept only the trees with the 

topology of ((H1,H2),C1) – representing two human inparalogues and their chimpanzee 

orthologue (see the left tree in Figure 2.2). Then a likelihood ratio test of the molecular 

clock was applied to make sure that the molecular clock cannot be rejected (Felsenstein, 

1981). The test was as follows: )(22 01 MLMLML  , where ML1 is the DNAMLK 

(clock) maximum likelihood score and ML0 is the DNAML (no clock) log maximum 

likelihood score. In cases where 83.102 ML  (p-value<0.001 for a 2 distribution 

with 1 degree of freedom: d.f.=s-2 where s is the number of sequences. Note that the p-

value is conservatively low to avoid false positives, while the change from p-value=0.05 

to p-value=0.001 has resulted in rejecting only two extra sets) the molecular clock was 

considered to be violated. 

 

2.2.6. Gene Conversion. 

 

As explained in section 2.1.3.4, gene conversion may cause outparalogues to be 

detected as inparalogues because gene conversions can cause closely related sequences 

to become more similar. With respect to inparalogue detection and duplication data 

estimation (the subject of chapter 3), this has the effect of resetting the inferred data to 

zero or near zero. Because of that, and because the genomic regions upstream and 

downstream of the gene conversion are likely to continue diverging at the expected 

evolutionary rate, detecting gene conversion by means of genetic distance or 

phylogenetic inference is very difficult. 

 

However, an important characteristic of gene conversions is that most gene converted 

sequences have a high content of G and C nucleotides. Various studies give the range of 

60%-90% (Galtier, 2003, Galtier et al., 2001, Chen et al., 2007, Marais, 2003, Spencer 

et al., 2006). With the fact that two gene converted sequences always have a very short 

genetic distance from each other, it was possible to take both factors into account to 

provide, to a first order of approximation, gene conversions. 
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For each human inparalogue-candidate pair on the same chromosome, the genetic 

distance between was calculated using the DNADIST program with the F84 substitution 

matrix (Felsenstein, 1989). Where two sequences have a relatively high similarities (up 

to 10% difference, such as is the case between human and chimpanzee orthologues and 

human inparalogues) the F84 genetic distance log scale (Felsenstein, 1989) is roughly 

linearly correlated to the percentage of difference between the nucleotides of the two 

sequences – genetic distance of 0 represents 0% difference between the sequences, and 

genetic distance of 0.1 is roughly 8% difference. After calculating the genetic distances, 

GC content of the inparalogue-candidates was calculated. Pairs where the genetic 

distance was smaller than 0.02 on a scale of 0 to 0.1 and their GC content was greater 

than 60% were considered to be gene conversion candidates. Figure 2.7 shows that all 

inparalogue-candidates with a high GC content also have a very short genetic distance 

from each other and cluster into one well defined group, which is very like to consist of 

some gene conversion sequences (importantly, since the scope of this work allowed 

only a preliminary basic attempt to approximate gene conversions, this cluster does not 

represent statistical significance, but rather a visual representation of the sequences that 

fall into the criteria of a small genetic distance and high GC content). All inparalogue-

candidates that were detected as gene conversion were removed. It is important to note 

that this candidate gene converted set will consist of false positives – genes that were 

assigned gene converted candidate status but which are genuine inparalogues. However, 

since only 9 such sequences were removed, and since a reliable final dataset of true 

inparalogues is of a greater importance, this should not be considered as a problem.   
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Figure 2.7. The results of testing same-chromosome human gene duplications for gene conversions. 

For each duplication event genetic distance was calculated between the human orthologue and its 

inparalogue candidate using the F84 substitution matrix in the Phylip package (Felsenstein, 1989). GC 

content was calculated by counting the G and C bases in each inparalogue candidate, then dividing by the 

full sequence length. The dashed lines area shows that all duplications having high GC content are also 

having a short genetic distance from their orthologues, making them likely to be gene conversions.  

 

2.3. The Final Candidate Human Inparalogues Set. 

 

After applying the full process described in section 2.2, 138 human inparalogues were 

identified, 104 of them are duplication that occurred on the same chromosome, while 34 

are duplications among different chromosomes. 

 

This chapter describes the algorithm that I have developed for finding all human 

inparalogues, and its application for detecting the candidate human inparalogues and 

their chimpanzee orthologues dataset. Chapter 3 will explore various characteristics of 
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the human inparalogue candidates that were detected in this chapter, focusing on 

estimating the duplication times and functionalities of these genes. 

 

2.4. Discussion. 

 

This chapter described the problems that interfere with acquiring a reliable set of human 

inparalogues when using the currently available homology detection methods. These 

problems include the human haplotype data, proteome data, gene conversion, and the 

use of non-model organisms. Then the chapter described an algorithm that was 

consequently developed to find a good quality set of human inparalogues.  

 

The algorithm that I have developed and the filtering processes applied are relevant for 

any model-non model organism inparalogues detection. For an example, in a proposed 

future project the algorithm can be applied to find cow (an organism with a majority of 

genes known) – dog (an organism with a majority of genes projected) inparalogues, 

using a rat (a model organism with a majority of known genes) as an outgroup (see 

Figure 2.4 for the phylogeny among the 3 species – cow and dog diverged about 

62.3mya, while cow-dog diverged from rat about 95.3mya). In this example, since cow 

and dog are more distantly related than human-chimpanzee, it would be suggested to 

use BLAST instead of BLAT, as it is more sensitive for more distant homologies (see 

section 2.2.3). It should be noted that the more distantly related the species are, the more 

likely it is for conserved genes to be detected as orthologues. 

 

Future applications for this algorithm may be, for example, identifying the full 

inparalogues datasets for all model/non model organism pairs.  

 

The combination of the GC content and the genetic distance test results (Figure 2.7) 

could be further analysed in future studies. For examples, it is evident that there are two 

prominent clusters (determined visually by me and not though statistical testing) of 

inparalogues having a very short genetic distance (suggesting recent gene duplications) 

having GC content between 42.5%-44% and between 50%-55%, respectively. 

Investigating the molecular and evolutionary implications of these could prove 

informative.   
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Some improvements envisaged for future versions of the algorithm are a more robust 

process of detecting gene conversion, and creating a fully automated pipeline of the 

process described in this chapter. Such an application would take as an input two 

evolutionary neighbouring species and their outgroup species proteomes, and providing, 

as an output, the full set of inparalogues after performing the filtering, clustering, and 

tree inference procedures. 

 

CNV data can also be incorporated for testing the robustness of the inparalogues results. 

For example – each human-lineage duplication could be tested against the equivalent 

human CNV gene data and check whether the duplication is polymorphic, or rather if it 

is a duplication that is fixed in that species.  

 

To better detect gene duplications, InParanoid could be adapted to use BLASTN instead 

of BLASTP. This would result in the input being a non-redundant filtered genome, 

rather than the proteome data of the species. However, testing this option has revealed 

that current conventional computing power is insufficient for such a task. A test run of 

3,000 human and chimpanzee sequences (1500 from each species), where the upper 

threshold for one sequence length was 300,000 base pairs required about 4GB RAM. A 

full genome InParanoid run with about 20,000 gene from each species and no sequence 

length threshold (which may include sequences of a million base pairs or more) would 

require about 50 RAM (a very rough approximation, assuming that the full non-

redundant genomes will be more than 10-15 times larger than the 3,000 human and 

chimpanzee dataset that was tested). Adapting InParanoid for distributed computing 

may enable such a task at a feasible time (i.e. in a number of weeks or less) and 

computer memory. Another possibility would be to make the BLAST algorithm more 

memory efficient. 

 

In the same spirit of this chapter, identifying other “all human-lineage” genomic events 

of other classes may be performed, such as: pseudogenization (Wang et al., 2006), 

regulatory regions changes (Montgomery, 2009), retroviral insertions and sequence 

deletions (Costantini and Bernardi, 2009), genomic rearrangement (Zhang et al., 2009), 

and various (not strictly genetic) epigenetic effects (Lee and Mahadevan, 2009). For all 

such searches, the particulars of differences in annotation quality would need to be 

accounted for. 
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3. Estimating Dates of Human Lineage-Specific 

Gene Duplications. 

 

3.1. Introduction. 

 

Gene duplication is a class of large scale genomic events that is likely to have 

contributed to the shaping of the human phenotype in the short evolutionary time since 

the divergence of human and chimpanzee – approximately 6.6 million years before 

present (Steiper and Young, 2006). A duplication of a gene can result in several 

outcomes: pseudogenization of one copy, different expression levels, or (the less 

common option) one copy retains the original function while the other copy (or copies) 

develops new functionalities (Ohno, 1970, Prince and Pickett, 2002). Chapter 2 

describes the method that I have developed for detecting human lineage gene 

duplications (inparalogues).  

 

The major evolutionary events that have lead to the modern human phenotype are 

traditionally being studied by palaeoanthropology – fossil record of the various human 

genera from the human-chimpanzee divergence and until present. The most distinct 

morphological characteristics of modern human are bipedalism and a brain three times 

larger than chimpanzee‟s. Carbon 14 dating of human fossil record provides a timeline 

of these significant morphological changes. See sections 1.2 and 1.3.1 for human-

chimpanzee phenotypic differences and for human fossil record, respectively.  

 

Molecular evolution techniques can be applied to estimate the dates of gene duplication 

events, and specifically – the dates of human inparalogues that were identified in 

chapter 3. Under the Null hypothesis the dates of human gene duplications are expected 

to be randomly distributed along the timeline from human-chimpanzee divergence until 

present. However, gene duplications are large-scale genomic events that are likely to 

have had a significant impact on the human phenotype in a short evolutionary time. 

Therefore, I hypothesize that the human lineage timeline contains clusters of duplication 

events. Moreover, it is possible that these duplication events are correlated to some of 

the significant human morphological changes that are documented in fossil record. If 
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such clusters are identified, the functionalities of these duplicated genes and the 

correlation of their duplication date with fossil record could provide for the first time a 

genomewide correlation between fossil record and human genomics.  

 

In this chapter I will estimate the dates for all human inparalogue candidates, using 

maximum likelihood and Bayesian techniques from the software PAML – Phylogenetic 

Analysis by Maximum Likelihood (Yang, 2007, Yang, 1997), automating the 

duplications dating process for all human inparalogues. I will then identify the function 

and possible gene enrichment (a statistically significant overrepresentation of a specific 

function) for all duplicated genes using the Gene Ontology (GO) (Ashburner et al., 

2000) and DAVID (Database for Annotation, Visualization, and Integrated Discovery) 

interfaces (Dennis et al., 2003), and finally – will attempt to identify clusters of gene 

duplication times by Quality Threshold (QT) partitional clustering algorithm (Heyer et 

al., 1999). I will then discuss the correlation between human fossil record, genomics, 

and evolution of function.  

 

3.1.1. Primate Evolution and Human-Chimpanzee Divergence.  

 

Chimpanzee (together with bonobo) is human‟s nearest living organism. For this reason 

it is ideal to use chimpanzee orthologues as outgroups for finding human inparalogues 

(see chapter 2) and for rooting the molecular clock estimating the dates of the 

inparalogues duplications. This section will briefly review the primate evolution 

timeline, which leads to the divergence of the human and chimpanzee lineages. See 

Figure 3.1 for primate phylogeny and estimates divergence times.   

 

Although fossil record is considered to be a more robust evidence for species 

divergence than molecular clock dating, there is a scarcity of ancient primate fossils and 

so the earliest fossils for a genus are unlikely to be available. For estimating a time 

range for species divergence, fossils provide a good estimate for the “minimum” age of 

branching, but they are poorer for estimating a “maximum age” (Benton and Donoghue, 

2007). For this reason molecular clock estimates for species divergence often predates 

the fossil record estimate.  
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The first fossil evidence for primates is dated about 65mya, at just about the time of the 

Cretaceous-Tertiary mass extinction event. It is suggested that the first primates, the 

Plesiadapiforms, were small tree dwelling insect eating mammals (Van Valen and 

Sloan, 1965).   

 

There is more conclusive primate fossil evidence the Eocene era, between ~55-35mya, 

where the major clades of Prosimians (which include lemurs, lorises, etc.) and Simians 

(which include old and new world monkeys) started to show their distinct 

characteristics. Eocene primates were widespread in the Old World and North America, 

with their population declining at the mass extinction caused by global cooling at the 

end of the Eocene (Fleagle, 1998). 

 

Molecular clock dating estimates the divergence time of Catarrhini (Old World 

monkeys and apes) and Platyrrhini (New World monkeys) to be approximately 

42.9mya. Earliest Old World monkey fossil is dated between 32 and 37mya (Benefit 

and McCrossin, 1997). New World monkeys are thought to have diverged from 

Catarrhini by migrating from Africa to South America across the Atlantic Ocean in a 

natural raft of floating mangrove vegetation (Sellers, 2000). Some prominent 

differences between Old World and New World primates are the flat nose and side-

facing nostrils of the Platyrrhini, most Platyrrhini males lacking trichromatic vision (e.g. 

being colour blind), and unlike Old World monkeys – most Platyrrhini have 

monogamous pair bonds with paternal care of infant (Garber et al., 2008, Sellers, 2000, 

Jacobs et al., 1996). 

 

There is a relative wealth of African Hominidae (great apes) fossils from the Miocene 

period, 23-25mya, suggesting that the numbers and diversity of apes was greater than 

today (Begun et al., 1997). Molecular clock estimates the divergence between great apes 

(orangutan, gorilla, chimpanzee, bonobo, and human) and Old World monkeys (rhesus 

macaque, baboon, langur and more) to be about 30.5mya. Old World monkeys differ 

from apes by having a smaller body and mostly having tails (Sellers, 2000). Apes show 

high cognitive abilities when compares to the other monkeys, with abilities including 

the use of tools, complex problem solving, and arguably the ability to acquire a basic 

form of language and culture (Whiten et al., 1999). 
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The mechanism and date of the divergence between human and chimpanzee is a matter 

of a long ongoing debate. One hypothesis maintains that human and chimpanzee 

underwent allopatric speciation – one group separated from the ancestral species group 

and a geographical barrier (possibly the Rift Valley) has separated the two groups for 

long enough to prevent gene flow and eventually breeding between the two groups 

became impossible. This mode of human-chimpanzee speciation is supported by a 

recent genetic study (Webster, 2009). Another theory claims that the mechanism was 

sympatric speciation – groups separating as a result of sexual preference or 

specialisation in a specific niche. It is argued that such speciation cannot be captured by 

conventional genetic studies, but rather should be investigated through modelling and 

computer simulations (Fitzpatrick et al., 2008). A genetic study has demonstrated that 

after human and chimpanzee first diverged about 10mya, the two groups had inhabited 

again the same geographic space less than 6.3mya and interbred before their final 

speciation (Patterson et al., 2006). 

 

The estimates for the human-chimpanzee divergence time range between 4mya 

(Hobolth et al., 2007) and 10mya (Benton and Donoghue, 2007). In this chapter I will 

use the human-chimpanzee divergence estimate of 6.6mya, which was obtained from a 

primate divergence times study that performed Bayesian analyses of genomic data from 

13 primates and 6 mammalian outgroups, while considering the context of divergence 

time estimates from past studies (Steiper and Young, 2006).  
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Figure 3.1. Primates phylogeny obtained by molecular clock estimates. The dates on the nodes are in 

a millions of years scale, with a lower and upper bound divergence time estimate. The K-T (Cretaceous-

Tertiary) Boundary is the large scale mass extinction event that had occurred during a short time about 

65.5mya. Taken from Steiper and Young (2006), Figure 1. 

 

3.1.2. Hypothesis and Rationale – Clusters of Duplication Events in Human Lineage. 

 

Molecular evolution is the field describing evolution at the genomic and proteomic 

level. The basic principles of molecular evolution maintain that the main force in 

evolution is mutations at the DNA level, where harmful (deleterious) mutations are 

removed and favourable (beneficial) mutations accumulate more than neutral mutations. 

Selection and drift are the main factors determining whether a mutation will remain or 

will be removed from the genome and the population gene pool (Kimura, 1968, King 
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and Jukes, 1969, Yang, 2006a). We will assume that the same basic molecular evolution 

principles apply to gene duplications as they apply to single mutations. 

 

The core element that I will attempt to determine in this chapter is the dates for all 

human-lineage duplication events – from human-chimpanzee divergence 6.6mya and 

until present. If one assumes conditions of no selection and no genetic drift, then 

according to the molecular evolution principles, the Null Hypothesis would be: the 

dates for human-lineage gene duplications events are randomly distributed along the 

human-chimpanzee timeline, and don‟t tend to cluster or to be absent from one time 

frame or another. However, in various previous sections (including sections 1.3.2, 1.4.1, 

and 1.4.2) I have described various genomic events in the human lineage that had a 

direct correlation to the evolution of early and modern human phenotypes – genomic 

events that have triggered brain expansion, language, and more. Since these genomic 

events are not randomly distributed along the human timeline, I would expect human-

lineage gene duplications to have the same non-random behaviour. For this reason, my 

Research Hypothesis for this study is as follows: human specific gene duplications are 

dateable events that are likely to have a major role in shaping the unique human 

phenotype. The dates of these genomic events are clustered around key periods along 

the timeline from human-chimpanzee divergence until present. 

 

In this study I will not only attempt to identify clusters of human-lineage gene 

duplication events, but also attempt to detect enrichment for genes with particular 

functions in these gene clusters (if they are found) – over-representation of specific 

function around a specific time indicate that these genomic events had a strong drive for 

this phenotypic trait. I will further elaborate about the correlation between genomics, 

function, and fossil record in section 3.1.6.   

 

3.1.3. Molecular Clocks and Estimating Duplication Times. 

 

Estimating the date for a gene (or any genetic sequence) duplication event requires the 

use of a molecular clock. The molecular clock basic hypothesis asserts that DNA and 

protein sequences evolve at a constant rate over time among different organisms (Yang, 

2006b). Therefore, the molecular clock hypothesis maintains that the number of 

nucleotides or amino acid differences between two sequences is proportional to the time 
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of divergence due to the constant mutation rate over time (a phenomenon termed 

genetic equidistance), as was asserted by a study of cytochrome C residue differences 

between mammals, birds, and fish (Margoliash, 1963). Later studies had proposed the 

Neutral Theory of molecular evolution – suggesting that a large fraction of mutations 

are “neutral” and thus do not affect natural selection, and so these mutations can either 

be permanently fixated in the whole population, or disappear as a result of genetic drift 

(Kimura, 1968). This model was demonstrated as over-simplistic in cases where 

distantly related species divergence was estimated, as evolutionary rates and molecular 

clock models tend to depend on at least five major factors (Ayala, 1999): (1) generation 

time of a species; (2) population size; (3) species-specific differences; (4) evolution of 

function; and (5) changes in selective pressure.  To deal with this problem, more 

sophisticated, realistic, and parameterised “relaxed” models of molecular clocks were 

developed; in the global-clock model the evolutionary rate is around a constant average 

value determined by a point calibration (see next paragraph), while in the local-clock 

model the evolutionary rate can vary among the different branches of the tree (Yang, 

2006b, Yoder and Yang, 2000).   

 

To estimate the evolutionary mutation rate, the molecular clock is calibrated with a 

known divergence time. For example, assume a phylogenetic tree of two human 

inparalogues (H1 and H2) and their chimpanzee orthologue C1: ((H1,H2),C1). The 

divergence time between human and chimpanzee is estimated to be 6.6mya (Steiper and 

Young, 2006), and so the divergence time between any human and chimpanzee 

orthologue is also 6.6 million years. The mutation rate is estimated using the 

substitution rate matrix of choice with a particular calibration point (see sections 2.1, 

2.2, and 3.2 for more information about the different substitution matrices). A very 

simplistic example for demonstrating the estimation of divergence time of two 

inparalogues using a molecular clock would be as follows: assume a phylogenetic tree 

of ((X1,X2),Y1@1.0) where X1 and X2 are inparalogues of species X and Y1 is their 

orthologue from species Y, that diverged from species X 1.0 million years ago (i.e. the 

calibration point). Assume that using the JC69 substitution matrix which gives the same 

weight for transition and transversion mutations (Jukes and Cantor, 1969), an average of 

10 residue differences is found between the two inparalogues and their orthologue, 

which is in average one difference per 200,000 years (e.g. the mutation rate, assuming 

similar rates among orthologues and paralogues). Now assume that there are 3 residue 
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differences between X1 and X2. Multiplying the mutation rate by the number of 

differences, the divergence time of X1 and X2 is estimated 300,000 years ago. Note that 

substitution rate matrices, substitution rate, and calibration points are major elements of 

dating estimates, but modern models of molecular clocks are much more complicated 

and parameter rich (Yang, 2007, Huelsenbeck et al., 2001). Reviewing each of these 

parameters is beyond the scope of this work, though I will explain each of the other 

relevant parameter that I estimate in section 3.2 (rather than ones that I will keep fixed 

to their default values, which are determined by the program‟s authors based on 

empirical evidence). 

 

There are two major methods for applying the molecular clock – maximum likelihood 

(ML) (Yang, 2007) and Bayesian (Huelsenbeck et al., 2001, Yang and Rannala, 2006). 

ML is a statistical methodology for estimating the parameter value in a model and 

testing hypotheses concerning the parameters (Yang, 2006a). The output of ML for a 

parameter is an estimate of a single value which has the highest likelihood (probability) 

to fit the model. Bayesian methods are based on a prior range for a parameter as input, 

and a posterior range (rather than a single estimate) of the parameter as an output, where 

the posterior can be represented in different statistical distribution, such as Gaussian or 

Binomial (Yang, 2006a, Huelsenbeck et al., 2001). Bayesian statistics were not 

commonly applied until recently due to the different calculations required by the 

different methods. While ML is calculated analytically with a few differential equations, 

Bayesian computation requires iterative and stochastic calculations, where the most 

common method applied in Bayesian is Markov Chain Monte Carlo (MCMC) – an 

algorithm for sampling from probability distributions of a parameter. In this study I will 

apply both methods to estimate the dates of human gene duplications – using ML for 

estimating the evolutionary rate, which will be used as a prior for Bayesian estimation 

of the dates. I consider Bayesian as more appropriate to make the human inparalogues 

duplication date estimates because this method allows using soft bounds for the 

molecular clock calibration values – allowing a range for the human-chimpanzee 

divergence time rather than a single value (Yang and Rannala, 2006). The ML method 

can arguably be described as Bayesian since it infers probability. 
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3.1.4. Studies Dating Divergence Events. 

 

There are only 2 studies known to me that have focused on dating all gene duplications 

in the human lineage (Gu et al., 2002, Cotton and Page, 2005). However, the studies 

analysed all human paralogues without differentiating inparalogues from outparalogues, 

while the timescale examined was of 3,500 million years rather than the 6.6 million 

years from human-chimpanzee divergence until present. The studies counted gene 

duplications in time frames of 50 million years and did not attempt to identify clusters 

or to estimate the function of the duplicated genes. Furthermore, the identification 

process of human paralogues lacked the filtering processes that I have demonstrated as 

essential in chapter 2.  

Another study has attempted to identify the duplication time of human gene family 

blocks. It did not use molecular clock for dating, but rather estimated phylogenetic tree 

topologies for the different duplication events (without using an outgroup) and then 

compared the trees and branch lengths with the primate-rodent divergence time, which 

is a crude timescale (Friedman and Hughes, 2003). In this section I will review a few 

examples of dating species divergence and duplication events using the methodologies 

that I will apply in this study. Note that the Bayesian dating techniques are more recent 

and thus there are less examples of Bayesian dating. 

 

A mitochondrial genome study of extinct and extant bear species estimated divergence 

time of the different species (Krause et al., 2008). The study demonstrated a correlation 

between climatic changes and speciation and evolution patterns. The dating technique 

used for the study was mcmctree – a Bayesian MCMC method (part of the PAML 

package) for estimating divergence times (Yang and Rannala, 2006, Yang, 2007). See 

section 3.2 for further information about the method. Another study applying mcmctree 

for divergence time found that the extinct American mastodon diverged from the 

Elephantidae genera between 24-28mya, African elephants diverged from the 

mammoth-Asian African lineage about 7.6mya, while mammoth diverged from Asian 

elephant about 6.7mya (Rohland et al., 2007). A study estimating the divergence time of 

fish species (Finn and Kristoffersen, 2007) has applied MrBayes (Huelsenbeck and 

Ronquist, 2001), a Bayesian method equivalent to mcmctree.  
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A study of human chromosome 1 PRAME (Preferentially expressed antigen of 

melanoma) genes has shown two large segmental duplications that have occurred 

approximately 3mya in a cluster that had arisen due to translocation between 85 and 

95mya, while both duplication events were shown to have evidence for a strong 

selective advantage (Birtle et al., 2005). The study applied the baseml program 

(Goldman and Yang, 1994) for ML analysis of coding and non-coding nucleotide 

sequences (while the codeml program analyses coding sequence only. Both programs 

are part of the PAML package).  

 

3.1.5. The Novelty of the Study – Correlating Genomics with Fossil Record. 

 

Previous studies for dating human gene duplications have referred to “human lineage” 

as the timeline from the emergence of life until present (Gu et al., 2002, Cotton and 

Page, 2005). Other studies have timed the gene duplications of single specific 

chromosomes (Birtle et al., 2005), or of gene family blocks without applying a 

molecular clock (Friedman and Hughes, 2003). There is yet no study that estimates the 

dates of all human inparalogues – the genes that duplicated from human-chimpanzee 

divergence 6.6mya until present. Moreover, I believe that any attempt perform such a 

study using currently available human inparalogue databases would produce results that 

are not reliable – I have demonstrated in chapter 2 the various problems of previous 

human inparalogue detection studies (Remm et al., 2001, O'Brien et al., 2005, Tatusov 

et al., 1997, Hubbard et al., 2009, Stewart et al., 2004). I believe that in chapter 2 I have 

produced for the first time a reliable set of human inparalogue candidates, and so I made 

it possible for the first time to produce a reliable study dating human inparalogue 

duplication events, as I will attempt to perform in this chapter. 

 

A few studies have attempted to correlate dates of human lineage genetic events with 

fossil record and with significant changes in human morphology and phenotype, such as 

brain expansion (Stedman et al., 2004) and language capacities (Enard et al., 2002). 

However, there was yet no attempt to correlate an entire class of genomic events in the 

human lineage to fossil record. With the full dataset of human inparalogues that I have 

detected in chapter 2, I will attempt to automate a process of estimating their duplication 

times. Once this is performed, a correlation between human genomics and human fossil 

record could be done for the first time, where the availability of many duplication 
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events (or alternatively, clusters) around or before key periods in human fossil record 

would show that bursts of large scale genomic events in human history have had a 

strong role in shaping the modern human phenotype, while if this work detects clusters 

at times that are less significant in fossil record then it may suggest that fossil record 

evidence is lacking or that the correlation between genomics and fossil record is 

following a more complex dynamics that needs to be further studies. Another possibility 

could be that the duplication events are randomly distributed along the human timeline, 

and that would suggest that the null hypothesis is correct. I consider each of these 

potential results as important and novel. This is the first time that such an attempt is 

performed, and I hope that it will contribute to the interdisciplinary field of human 

evolution.  

 

3.2. Materials and Methods. 

 

In my attempt to date human lineage gene duplications and correlate them with fossil 

record I have followed 3 main stages: (1) estimating gene duplication times; (2) 

clustering gene duplication times; and (3) investigating function and gene enrichment. 

Each of the stages contains non-trivial and subjective elements, such as prior parameters 

fine-tuning (stage 1), defining what is a cluster (stage 2), and attributing a biological 

function to a duplicated segment (stage 3). In this section I will follow the full process 

that I have employed, using as input the dataset of human inparalogues that was 

detected in chapter 2. 

 

3.2.1. Human Inparalogues Input. 

 

In chapter 2 I have described the process that I have developed for detecting all human 

inparalogue candidates. The result was 138 duplication events, of them 34 duplications 

among different chromosomes, while 104 duplications are on the same chromosome. 

See Table 3.1 for a summary of all duplications. Although the molecular mechanisms 

that caused the same and different chromosomal duplications are likely to be different 

(segmental duplication on same chromosome duplications and retrotransposition on 

different chromosomes duplications) and the patterns of duplication dates may differ 

from these two classes, the relatively small number of different chromosomes 

duplications makes it impossible to perform reliable clustering, so I will analyse the two 
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classes together as one set. However, I will briefly explore the differences between the 

same and different chromosome duplications density distributions in section 3.3. 

 

3.2.2. Estimating Gene Duplication Times. 

 

For estimating the human inparalogues duplication dates I used baseml and mcmctree, 

both are part of the PAML package that contains several phylogenetic analysis tools 

(Yang, 2007). For a detailed manual of using the different PAML programs see (Yang, 

2009). 

 

The program mcmctree implements MCMC methods for estimating sequences 

divergence times on a given rooted tree using a calibration point or range (Yang and 

Rannala, 2006, Rannala and Yang, 2007). The two main advantages of this MCMC 

dating method over ML dating methods (such as baseml or codeml) are: (1) mcmctree 

allows using soft boundaries prior for the tree root calibration, which reflects the 

uncertainty of the estimated time range for human-chimpanzee divergence time (Steiper 

and Young, 2006), and (2) mcmctree calculates a posterior distribution for divergence 

time, which has a probability of being beyond the soft bound range for human-

chimpanzee divergence time. In cases where the duplication time is estimates beyond 

the upper bound the duplication event is detected as an outparalogue – a false positive 

that was not detected in chapter 2. Dating such an outparalogue with a ML method 

would give an estimate of the upper bound, and it would be impossible to ascertain 

whether it is an inparalogue dated very near to human-chimpanzee divergence time, or 

rather if it is an outparalogue for which the duplication time is unknown. 

 

The first requirement for mcmctree is to provide the scale (α) and shape (β) for the 

gamma distribution prior values of the substitution rate. These values were estimated by 

first evaluating average substitution rate (s) using baseml, a ML likelihood method for 

parameters estimates, using the following tree: ((H1, H2), C1@0.066), where H1 and 

H2 are the human inparalogues, C1 is their chimpanzee orthologue, and @0.066 is the 

point estimate for the human-chimpanzee 6.6mya divergence time calibration point (one 

unit is 100 million years). I used the F84 substitution model (Hasegawa et al., 1985) 

which computes genetic distance by considering experimental substitution rates for 

transitions and transversions. Then the scale and shape where calculated as following: 
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α=(s/sd)
2
 and β=s/sd

2 
, where sd is the standard deviation for s, a heuristic value fixed to 

sd=s/2.  

 

The main challenge in using mcmctree for 138 sets was the requirement for parameters‟ 

fine tuning. The MCMC algorithm uses 4 parameters for the step lengths used in the 

proposals in the MCMC algorithm. These proposals (1) change the divergence times, 

(2) change the rates, (3) perform the mixing step (page 225 in Yang and Rannala 2006), 

and (4) change parameters in the substitution model (such as πi, one F84 substitution 

rate parameter). The optimal acceptance proportion for one of these 4 parameters is 0.3, 

while the acceptance interval is between 0.2 and 0.4 (Yang, 2009). The estimate of these 

parameters is performed manually by the user, where if the result for the proportion 

value for a parameter falls below the minimum then decreasing the parameter‟s value 

will increase its value for the next run and vice versa – increasing its value in case of a 

to high value will lower its value in the next run. It is impossible (using mcmctree only) 

to predict the effect of changing the parameters‟ values since they dependant on the 

nature of the sequences used, and are rarely linear (as I‟ve witnessed from various 

manual testing that I have performed, data not shown). Although after some intuitive 

trial and error it is very doable to fine tune each parameter to give an acceptance 

proportion within the interval, it is much more difficult to automate it for 138 sequences 

due to the reasons explained above. To solve this problem, I have used the binary search 

algorithm that is designed to locate an element in a sorted list, eliminating half of the list 

at each iteration, giving a computation complexity of 2(log2K) for a list with no upper 

bound and (log2K) for a list with an upper bound, where K is the number of elements – 

an efficient computation complexity (for example, a sorted list with an upper bound of 

65,000 elements would require a maximum of 65,000 attempt to locate a random 

number, while a binary search will find the element in a maximum of 16 attempt). The 

acceptance proportion for a specific set of genes is monotonically decreased / increased 

with the parameters values being increased / decreased, respectively, as explain above. 

Since the acceptance proportion values represent a range rather than a discrete list, I 

have divided the range into units of 0.01, so I accepted parameters values that gave a 

high accuracy acceptance value between 0.29 and 0.31. For more information about 

binary search see (Cormen et al., 2009).  
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After estimating and fine tuning the parameters, mcmctree was executed using the 

following tree: ((H1, H2), C1 „B(0.06,0.07)‟) , where B(0.06,0.07) is the soft bound 

range for human chimpanzee divergence time that is estimated to be between 6.0 and 

7.0mya (Steiper and Young, 2006). I have automated the procedure for the 138 human 

lineage gene duplications with a Perl script that I have written, and have obtained the 

estimated duplication dates (see Table 3.1). 

 

Table 3.1. The chromosomal location, biological function, and estimated duplication time of all 

human inparalogue candidates. Sorted by duplication time – from present to human-chimpanzee 

divergence. 

Chromosome Start position End position strand Function     

Duplication time 

(mya) 

X 52798483 52806246 + transcription and translation regulation 0.02 
11 57738793 57739770 + sensory perception 

 
0.05 

X 70900227 70903498 + unknown 
  

0.07 

8 7776354 7777500 + immune system 
 

0.08 
10 135330645 135331913 + transcription and translation regulation 0.08 

10 135333955 135335223 + transcription and translation regulation 0.08 

10 135343873 135345141 + transcription and translation regulation 0.08 
10 135347172 135348440 + transcription and translation regulation 0.08 

1 610959 611897 - sensory perception 
 

0.09 

5 180726894 180727832 + sensory perception 
 

0.09 
2 89680942 89681746 + immune system 

 
0.1 

10 135337264 135338532 + transcription regulation 
 

0.1 

16 28298620 28322440 - transcription and translation regulation 0.11 
15 81002607 81005939 - transcription and translation regulation 0.12 

2 240633242 240634186 - inter/intra cellular signalling 0.13 

10 47867676 47872093 + immune system 
 

0.14 
10 135340563 135341831 + transcription and translation regulation 0.14 

2 95654725 95655906 + transcription and translation regulation 0.15 

11 55351271 55352206 + sensory perception 
 

0.15 

1 159817852 159828656 + non-coding duplication 
 

0.18 

5 69381269 69408154 + transcription and translation regulation 0.22 

10 81361534 81363821 + cellular regulation 
 

0.25 
17 31648372 31649759 - immune system 

 
0.31 

8 12212843 12220196 - immune system 
 

0.33 

5 69426242 69460017 - inter/intra cellular signalling 0.42 
10 18081268 18127693 + membrane protein 

 
0.51 

4 75699863 75707136 + cellular signalling 
 

0.52 

X 52993880 52994521 - membrane protein 
 

0.55 
10 81594145 81600342 + unknown 

  
0.56 

17 41728277 41770847 + membrane protein 
 

0.62 

8 7716940 7718770 - immune system 
 

0.63 
1 246718513 246719460 + sensory perception 

 
0.64 

10 18138461 18239400 + cellular transport 
 

0.74 

X 153115156 153132153 - inter/intra cellular signalling 0.77 
2 130995528 131001938 + non-coding duplication 

 
0.8 

X 47875014 47876855 + metabolic and catabolic processes 0.85 

10 46578843 46593924 - inter/intra cellular signalling 0.86 
X 153152274 153169958 - inter/intra cellular signalling 0.91 

2 106395969 106451176 - cellular transport 
 

0.94 

9 40690320 40696387 + membrane protein 
 

1.02 
9 41490708 41496772 + membrane protein 

 
1.02 

10 47414578 47468859 + immune system 
 

1.02 
9 41311260 41317335 - membrane protein 

 
1.03 

9 65243336 65249401 - membrane protein 
 

1.04 

X 72009011 72012253 - transcription and translation regulation 1.07 
9 39875004 39881057 + membrane protein 

 
1.09 

9 39345728 39351806 + membrane protein 
 

1.1 

7 143600471 143614992 - inter/intra cellular signalling 1.11 
22 20068430 20073067 + metabolic and catabolic processes 1.14 

8 7742979 7758467 + immune system 
 

1.22 

10 81136040 81142247 + unknown 
  

1.22 
4 69010133 69045117 + membrane protein 

 
1.25 

22 20230346 20234983 - metabolic and catabolic processes 1.29 

10 47221150 47232193 + cellular regulation 
 

1.31 
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17 60281179 60323837 - membrane protein 
 

1.35 

8 7720109 7723885 + immune system 
 

1.53 

X 154264958 154266073 + nucleus activity 
 

1.7 

X 154340340 154341455 - nucleus activity 
 

1.71 

12 102948687 102949451 + non-coding duplication 
 

1.74 

22 19892427 19909843 - metabolic and catabolic processes 1.8 
10 135288593 135290236 - nucleus activity 

 
1.82 

10 48873417 48877823 - unknown 
  

1.85 

8 7871325 7872908 - metabolic and catabolic processes 1.96 
8 7259893 7261759 - immune system 

 
2.04 

19 60974983 60976357 + inter/intra cellular signalling 2.04 

X 148851465 148852750 - unknown 
  

2.11 
8 106086 107024 - sensory perception 

 
2.16 

1 246150968 246151840 + sensory perception 
 

2.18 

15 80838110 80838688 - non-coding duplication 
 

2.38 
8 7177319 7178911 + metabolic and catabolic processes 2.38 

9 99000406 99001614 - transcription and translation regulation 2.49 

2 89897079 89897555 + immune system 
 

2.63 
6 170790619 170791556 + unknown 

  
2.65 

16 68765683 68777924 + extracellular binding 
 

2.66 

10 88978236 88984445 + transcription and translation regulation 2.73 
10 89110454 89116661 + unknown 

  
2.75 

8 7182047 7183639 + metabolic and catabolic processes 2.77 

11 76649 77586 - unknown 
  

2.79 
10 47210318 47214775 + cellular regulation 

 
2.82 

2 113911916 113969790 + non-coding duplication 
 

2.84 

7 72272617 72287760 + inter/intra cellular signalling 2.94 
15 100233690 100234627 + non-coding duplication 

 
2.98 

2 109916647 109962880 + inter/intra cellular signalling 3.02 

6 50919 51856 - unknown 
  

3.05 
7 74210536 74225683 - immune system 

 
3.05 

19 107279 108216 - non-coding duplication 
 

3.13 

7 6805380 6832353 - cellular regulation 
 

3.14 
16 73000405 73012669 - extracellular binding 

 
3.15 

8 7866593 7868185 - non-coding duplication 
 

3.19 

2 87852800 87897619 - cellular transport 
 

3.25 
2 87022878 87078395 + cellular transport 

 
3.29 

2 110715607 110760256 - inter/intra cellular signalling 3.51 

16 4381 8789 - inter/intra cellular signalling 3.53 
2 89180465 89180942 - immune system 

 
3.56 

2 89325386 89326322 - immune system 
 

3.57 

2 112852098 112896715 - inter/intra cellular signalling 3.57 
2 89046894 89047372 - immune system 

 
3.63 

9 4807 9213 - non-coding duplication 
 

3.67 

1 4559 8963 - non-coding duplication 
 

3.7 
2 114068374 114072787 + non-coding duplication 

 
3.7 

2 89776410 89776887 + immune system 
 

3.82 

2 89849045 89849560 + immune system 
 

3.84 
2 89100627 89101296 - unknown 

  
3.86 

15 100329588 100333992 + inter/intra cellular signalling 3.86 

2 89276695 89277432 - non-coding duplication 
 

3.87 
2 89662063 89662799 + immune system 

 
3.9 

2 89856037 89856778 + non-coding duplication 
 

3.91 
19 40554102 40555142 + inter/intra cellular signalling 4.2 

9 70046768 70104323 + metabolic and catabolic processes 4.39 

4 8978698 8979891 + metabolic and catabolic processes 4.44 
2 97367012 97367743 - non-coding duplication 

 
4.49 

9 69672249 69729888 - metabolic and catabolic processes 4.5 

9 68494783 68552307 - cellular signalling 
 

4.57 
1 144636184 144651472 - inter/intra cellular signalling 4.65 

1 145933157 145948450 - inter/intra cellular signalling 4.67 

19 1828199 1832565 - metabolic and catabolic processes 4.73 
4 8969207 8970799 + non-coding duplication 

 
4.86 

4 8935989 8937581 + metabolic and catabolic processes 4.89 

4 8945482 8947074 + metabolic and catabolic processes 4.89 
4 8954972 8956564 + metabolic and catabolic processes 4.89 

4 8964462 8966054 + metabolic and catabolic processes 4.89 

4 8973953 8975545 + metabolic and catabolic processes 4.89 
9 106903 108119 - transcription regulation 

 
4.9 

4 8940735 8942327 + metabolic and catabolic processes 4.9 

4 8959717 8961309 + metabolic and catabolic processes 4.9 
4 8950227 8951819 + metabolic and catabolic processes 4.95 

2 89090592 89091069 - immune system 
 

5.18 

11 57963329 57964044 - sensory perception 
 

5.28 
2 130613598 130619039 - non-coding duplication 

 
5.39 

2 89836021 89836467 + immune system 
 

5.5 

8 12280552 12282144 - immune system 
 

5.51 
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10 52109175 52115379 + non-coding duplication 
 

5.55 

7 143378450 143379233 + sensory perception 
 

5.69 

11 57668647 57669436 + sensory perception 
 

5.7 

2 89126601 89127078 - non-coding duplication 
 

5.73 

2 89830253 89830730 + immune system 
 

5.73 

2 89012310 89013010 - non-coding duplication 
 

5.83 
11 6847688 6848401 + sensory perception   5.85 

 

3.2.3. Detection Duplication Dates Clusters. 

 

After estimating the duplication dates I have attempted to check whether the 

duplications have a tendency to cluster, and if they are clustered then to detect these 

clusters. All the procedures in this section were performed using the R language 

(http://www.r-project.org/). 

 

For estimating the degree of clustering in the set of 138 human duplication dates I have 

first calculated the average nearest neighbour distance (ANND) as follows:   

138

138

1


 i

iD

ANND  

Where i is a gene duplications elements and Di is the distance (a unit is one million 

years) between i and its closest date. For example, in a uniform distribution of 138 

elements at a time interval of 6.6 million years we would expect 

ANND=6.6/137=0.048. The ANND value calculated for the set of human inparalogues 

was 0.021 – much smaller than the uniform distribution. However, since we expect that 

the duplication dates distribution is random, I simulated 100,000 random sets of 138 

elements ranging between 0 and 6.6mya and calculated the ANND value for each of 

these sets (Figure 3.2). In 95.3% of the simulations, the observed ANND was smaller 

than the simulated ANND, giving a value of p=0.047 which shows statistical 

significance for the dates being clustered clustering (which may be due to bias in the 

dating methodology).  
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Figure 3.2. Simulated random ANND. The horizontal axis is for the simulated sets sorted by ANND in 

ascending order. 

 

The next problem was to define a cluster, and such a definition inevitably includes 

several subjective elements. The main clustering paradigm chosen was partitional 

clustering – which gives a finite one level set of clusters and cluster centres for the 

dataset. There are two main ways to define a partitional cluster: (1) by a fixed 

predetermined number of clusters, and (2) by determining a minimum radius for a 

cluster, assuming that the number of clusters is unknown. Approach (1) clusters all the 

elements in the dataset and approach (2) clusters only the elements that are within the 

radius, and thus there may be elements that are not being clustered. I believe that only 

relevant dates should be clustered, and so I chose to use and focus on approach (2) 

(although I accept that clustering with approach (1) could prove informative, the 

emphasis of this study is not to compare clustering methods). For clustering in the 

chosen approach (2) I used Quality Threshold (QT) flexible partitional clustering 

algorithm (Heyer et al., 1999), which is a part of the flexclust R package (http://cran.r-

project.org/web/packages/flexclust/). The algorithm is creating a candidate cluster for 
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each point, where the point is surrounded by other points up to the maximum radius, 

saves the cluster with most points as the first true cluster, and then recourses with the 

non-clustered reduced set of points. The “centroid” of a QT cluster is the mean value of 

all the cluster‟s points. I first needed to determine a fixed maximum radius value and 

then minimum number of elements for each cluster. Both values are heuristic, and I 

used the radius value as the observed ANND*2, and a minimum of 5 elements per 

cluster (which corresponds to the expected number of elements around one central 

point). 

 

3.2.4. Assigning Biological Function to Duplications. 

 

The set of 138 duplications obtained in chapter 2 are sequences that are likely to contain 

coding genes, as they were identified by using BLAT with human coding sequences 

against the human genome, and the best hits are likely to have functional similarities to 

the original sequences. Moreover, since I have identified the full length of each 

duplication, some of the duplications may contain more than one coding gene. 

However, it is also possible that the full sequence does not contain any gene or that it is 

a pseudogene. 

 

For estimating the functions of the duplicated genes, I used BioMart, a biological and 

genomic data mining online tool (Smedley et al., 2009), with an input of the 

chromosome, start position, end position, and strand of each duplication (see Table 3.1). 

For each entry I identified the Gene Ontology (GO) (Ashburner et al., 2000) biological 

and molecular (a lower level) function, as well as obtaining Uniprot (Bairoch et al., 

2005, Jain et al., 2009) function data. Whenever available I used the higher biological 

function. I then manually merged the categories into 10 parent categories: (1) cellular 

regulation, (2) cellular transport and membrane proteins, (3) extracellular binding, (4) 

immune system, (5) inter/intra cellular signalling, (6) metabolic and catabolic processes, 

(7) nucleus activity, (8) sensory perception, (9) transcription and translation regulation, 

and (10) unknown. 
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3.2.5. Detecting Gene-Enrichment in Human Inparalogues. 

 

After describing the distribution of the different functions over the human lineage, I 

checked whether there are functions that are over-represented. For example: assume that 

in the observed set of duplications, 10% of the genes have an immune system function. 

If human immune system genes consist of (say) 1% of all human genes, the observed 

immune system function is 10 times more than expected. Gene enrichment is the term 

for describing this significant over-representation of specific function in a dataset of 

genes when compared to a background set of genes. I used the online resource DAVID 

(Database for Annotation, Visualization and Integrated Discovery) for detecting clusters 

of gene enrichment (or lack of) in the dataset of human inparalogues using fuzzy 

heuristic clustering (weighting the degree of belonging of each element to each cluster). 

The program accepts a set from one specific annotation resource. I used Entrez 

(http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi) annotated genes for DAVID as it 

was the resource with which the largest number of functions could be identified. The 

strength of DAVID clustering is that it considers functional information from various 

experimental resources but has an algorithm to avoid redundancies, and so it provides a 

broad coverage with a robust evidence for gene enrichment. I have used DAVID with 

high classification stringency, which is likely to discard false positive clusters. The 

significance of each biological cluster is measured by a group enrichment score, which 

is the geometric mean (in log scale) of the annotation cluster member's p-values. Thus, 

the top ranked annotation groups (with values greater than 1) are most likely to have 

consistently lower p-values for their annotation members. 

 

3.3. Results. 

 

3.3.1. Distribution of Human Lineage Gene Duplications and Function. 

 

The set of human inparalogues with their locations, duplication date estimates, and 

estimated function is summarised in Table 3.1. I detected 138 gene duplication events in 

the human lineage – from human-chimpanzee divergence until present. There are 

duplication events in each chromosome except in chromosomes 3, 13, 14, 18, 20, and 

21. 
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A density distribution of all human inparalogues is illustrated in Figure 3.3, which 

demonstrates that there is a large density of duplications between present and 1mya, 

while there is a secondary high density are of duplications between 3 and 4mya.  

 

 

Figure 3.3. The kernel density plot for all human gene duplications. Due to the algorithm used the x-

axis shows values beyond the minimum and maximum values for the human duplications dates, and 

therefore the plot should be used only as a visual representation for duplications density rather than for 

their precise values. 

 

The number of duplications and the different functions of these duplications in time 

windows of 500,000 years are shown at the histogram plot of Figure 3.4. The plot 

reconfirms the density function of Figure 3.3: the average (expected) number of 

duplications for each time frame is 10.62 (138 duplications divided by 13 time 

windows), while there are 25 gene duplication events between 500,000 years ago until 

present, while there are 16 duplications between 3.5 and 4mya. Interestingly, although 
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human-chimpanzee divergence time is estimated as 6.6mya, the oldest duplication date 

estimate is 5.85mya.  

 

 

Figure 3.4. Distribution of human lineage gene duplications and functions. Each time window 

represents 500,000 years, where the histogram with the duplication time value of 0.5 is representing all 

gene duplication between 0 and 0.5mya, the histogram with the duplication time value of 1 is representing 

all gene duplication between 0.5 and 1mya, and so on. The colour scheme is similar in figures 3.7 and 3.9. 

 

There is a different distribution of duplication dates between the classes of duplications 

among different chromosomes and duplication on similar chromosomes (Figure 3.5): 

the different chromosome duplications tend to accumulate between 3.5 and 4mya (with 

a secondary smaller peak of very recent duplications), while same chromosome 

duplications accumulate on a very recent time window – approximately between present 

and 1mya. 
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Figure 3.5. The kernel density plot for human gene duplications on same and different 

chromosomes. The left plot is for same chromosome duplications and the right plot is for different 

chromosome duplications and. Due to the algorithm used the x-axis shows values beyond the minimum 

and maximum values for the human duplications dates, and therefore the plots should be used only as a 

visual representation for duplications density rather than for their precise values. 

 

The distribution of the different duplication functions over time varies with the different 

time windows (Figure 3.6). Except for the cellular regulation function, all functions 

have multiple density peaks, while some functions occurred throughout the full range of 

human lineage timeline and others occurred within a limited time range. The 

distribution of all human gene duplication functions is shown in Figure 3.7. 
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Figure 3.6. The kernel density plots for the biological functions of human lineage gene duplications. 

Due to the algorithm used the x-axis shows values beyond the minimum and maximum values for the 

human duplications dates of different functions, and therefore the plots should be used only as a visual 

representation for density rather than for their precise values. 
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Figure 3.7. Distribution of all human lineage gene duplication functions. 

 

3.3.2. Clusters of Human Inparalogues Duplication dates. 

 

As mentioned in section 3.2.3, I consider the QT clustering as a more robust form of 

clustering in the context of human duplication dates, and therefore I will focus on the 

QT analysis that identified 5 clusters. See Table 3.2 for a summary of the clusters and 

their centroids, with Pam clustering ((Kaufman and Rousseeuw, 2005) used as a control.  

Pam is an improved version of the commonly used K-means algorithm (MacQueen, 

1967) that clusters n observations into k clusters, where each observation belongs to the 

cluster with the nearest mean. The “medoid” of a Pam cluster is the median value for all 

the points in the cluster.   
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Table 3.2. Five clusters of human inparalogues dates. Using QT as the main method and Pam as the 

control method. 

QT clusters 
 

Pam clusters 

N 

duplications 

Centroid 

(mya) 

Diameter 

(million years) 

 

N 

duplications 

Medoid 

(mya) 

Diameter 

(million years) 

17 0.105 0.13 

 

29 0.130 0.54 

8 1.049 0.08 

 

33 1.090 1.23 

8 3.548 0.06 

 

27 2.750 1.23 

5 3.858 0.08 

 

19 3.700 0.95 

6 4.890 0.04 

 

30 4.900 1.46 

 

Considering the cluster centroid times from the most recent to the most ancient, the 

largest cluster is also the most recent one, centred 105kya and ranging from 118kya and 

92kya – within the anatomically modern human time period (see section 1.3.1 for 

human lineage palaeoanthropological times and Figure 3.9 for the five clusters). The 

second cluster is around 1.049mya – the Homo erectus genus, the third and fourth 

clusters are around 3.548 and 3.858mya, respectively, and both are from the 

Australopithecus genus, while the oldest cluster is around 4.89mya – a disputed era in 

fossil record, which was a transition between Orrorin (the most ancient species genus in 

human lineage) and Australopithecus. See section 3.4 for discussion of the clusters 

times.  
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Figure 3.8. The five clusters of human gene duplication dates obtained by the QT clustering 

method. The colours only serve to visually differentiate between the clusters. 

 

The different clusters contain different dominant functions, as could be expected from 

Figure 3.5. There is a limited number of functions for each cluster – while there is a 

total of 10 functional classes, the number of different functional classes in each cluster 

ranges between 2 and 5. The most ancient cluster contains mostly metabolic and 

catabolic functions whereas this function does not appear in any other cluster, while the 

other clusters are dominated by regulatory, immune system, cellular signalling and 

transport functions. See section 3.4 for a discussion of functions in different clusters and 

Figure 3.9 for the distribution of functions in the different clusters.  
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Figure 3.9. The distribution of function in the five clusters of human gene duplication dates 

obtained by the QT clustering method. The bottom right cluster is similar to Figure 3.7. There is one 

specific colour designated for each function. 

 

3.3.3. Gene Enrichment in Human Inparalogues. 

 

Describing the different functions of human inparalogues can give insights regarding 

acquisition of different functions over different time windows. However, it may be that 

some of the functions that seem to “dominate” a specific time window or cluster is 

simply because their number is greater than the other functions (i.e. they are actually 

represented in the same proportion of their actual distribution in the human genome, and 
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thus their representation is not significantly greater than expected). I have described in 

section 3.2.5 the DAVID gene enrichment tool that I have used for identifying 

functional cluster in the human inparalogues set.  

 

Table 3.3. The human inparalogues gene enriched functional clusters identified by DAVID. 

Biological function 

Group enrichment 

score 

Immune system 5.39 

Sensory perception 1.63 

Metabolic and catabolic processes 1.37 

 

Table 3.3 shows the three gene-enriched biological groups that were identified by 

DAVID with high classification stringency. The group with the highest score (i.e. 

having the highest significance) is immune system, while sensory perception and 

metabolic and catabolic processes also show highly significant representation in the 

human inparalogues dataset. 

 

3.4. Discussion. 

 

In this work I have attempted for the first time to estimate the dates of all gene 

duplications in the human lineage. I have then attributed biological functions to these 

gene duplications, identified clusters of duplication times, described the accumulation 

of different functions over time, and then performed a gene enrichment test for over-

representation of biological functions in my dataset. 

 

One of the main motivations in this study was to correlate human gene duplications 

with fossil record. I found that the clusters tend to be in two major time windows: a 

recent one between 1mya and present, and an ancient one between 3.5 and 5mya. These 

two time windows are significant in human history: the last one million years were the 

transition from early Homo erectus to anatomically modern human (AMH), while the 

time between 5 and 3.5mya was the transition between Orrorin (the first know species 

in the human genera) and Australopithecus where fossil record shows a significant 

change towards bipedalism. Interestingly, the largest cluster identified (see Table 3.3) is 

also the most recent one – centred at about 100,000 years ago – after the “out of Africa” 

event and before the gradual replacement of Neanderthals in Europe. Another 
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significant finding is the complete lack of gene duplications at the earliest stages of 

human evolution – there are no duplications between 5.85 and 6.6mya. This might due 

to a bias in the dataset as I have obtained the set of human inparalogues with a rigorous 

process of verifying true inparalogues (see chapter 2) and thus rejecting some true 

ancient inparalogues that are near the human-chimpanzee divergence boundary.  

 

I attempted to check whether specific functions tended to duplicated in specific time 

windows (Figures 3.6 and 3.9). Some of the functions (cellular regulation, extracellular 

binding, and nucleus activity) are a very small portion of the full duplication set – 1%-

3%; therefore their distribution description may be biased. Moreover, it is important to 

consider the original density distribution of human inparalogues (Figure 3.3) and 

assume that this should be the expected distribution of the different functions over time. 

I discovered that some of the functions tend to accumulate around specific time 

windows, for example – there was a burst of transcription and translation regulation 

gene duplications very recently, while the most ancient duplications cluster was 

dominated (78%) by metabolic and catabolic processes genes. An in-depth association 

between specific duplicated functions at a specific time window with the fossil record 

morphological change that occurred during and after the duplications is proposed as an 

extensive future study. There are abundant possibilities to investigate duplication dates 

in the context of the various available human genomic classes databases (Lander et al., 

2001). 

 

The gene enrichment test identified three biological functions that are over-represented 

in the human inparalogues set: immune system, sensory perception, and metabolic and 

catabolic processes. The immune system function, that has the greatest enrichment 

score, is distributed all over the human lineage timeline from human-chimpanzee 

divergence until present, suggesting consistent immune system gene duplications and 

evolution of the immune system had a significant role throughout all human lineage. 

Sensory perception gene duplications mostly occurred at both very recent and very old 

time periods, with a stronger representation in AMH time. Moreover, the only 

duplication times cluster where sensory perception duplicated genes are represented is 

the most recent one, centred at about 100,000 years ago. I believe that this demonstrates 

the genetic contribution of human recent cognitive development and that changes in the 

genes that contributed to the human senses have also played a role during the early 
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stages of human evolution. This is a preliminary suggestion, and I think that it has the 

potential to develop into a vast interdisciplinary study that combines human cognition, 

fossil record, and human genomics. Another over-represented function was metabolic 

and catabolic processes. Very interestingly, this function appears exclusively in the 

oldest duplication dates cluster, centred on 4.89mya. This could suggest an adaptation to 

different diet at the earlier stages of human history, which is reasonable since the 

climate in East Africa started to become drier about 5mya, where jungles where 

gradually replaced by savannas (Behrensmeyer et al., 1997), and it is likely that changes 

in the digestive system allowing consuming food from the new environment would have 

given a selective advantage. A future study could combine nutrition, fossil record, 

climatology, and human genomics to further investigate this ancient burst of function 

and its affect on human evolution.  

 

There are many other possible future studies that could use the results that I have 

presented in this study. The set of human inparalogues could be tested for its molecular 

properties: the characteristics of the duplication sizes, the distance between tandem 

duplications, and the molecular mechanisms that were likely to have caused the 

duplications. The subject of genome obesity could also be investigated in the context of 

human gene duplications. This study could be extended to detect all gene duplications 

in the primates‟ lineage. Since it extends over approximately 77.5 million years (see 

Figure 3.1) it will be possible to make the distinction between the date estimates that 

were obtained on same chromosome duplications and ones that were obtained from 

different chromosomes duplications. It was impossible to perform this interesting task 

in depth in this study because the small number of different chromosome duplications 

did not allow significant and robust clustering, while the density plot of the dates 

distribution in these two duplication classes (Figure 3.5) visually shows differences 

between them, where same chromosome duplications tend to accumulate at recent times 

while different chromosome duplications accumulate at much older times. A correlation 

between the two different duplication classes and different functions could also prove 

informative. 

 

Since the molecular clock is inferring dates in a Poisson distribution, it is possible the 

genuine ancient human lineage duplications were detected as outparalogues. It is also 

important to note that since the human inparalogues were detected by first using the 
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human and mouse (about 10 times further evolutionary from human than chimp) 

proteomes, we should expect a high rate of genes with high conservation.     

 

The methodology that I have developed in this chapter could be applied to investigate 

other species duplication times, clustering, and function, and correlate them with their 

fossil record. For example, there is an abundant fossil evidence of the elephant lineage, 

including the African and Asian elephants, the extinct mammoth and their common 

ancestor – the mastodon (Lister and Sher, 2001).  

 

Concluding the major findings of this work, I found that among all human inparalogues 

a disproportionately large number of them were duplicated very recently – around 

100kya. I demonstrated that gene duplications of some biological functions tend to have 

accumulated at narrow time windows rather than being evenly distributed along the 

whole human lineage. I identified that there are three biological functions that are over-

represented in the human inparalogues sets, and I hypothesise that these functions have 

had an important role in shaping the modern human phenotype.  
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4. A Worldwide Correlation of Lactase 

Persistence Phenotype and Genotypes. 

 

This chapter is based on the following article that was submitted to the BMC 

Evolutionary Biology journal on the 28.07.2009: Itan Y, Jones BL, Ingram CJE, 

Swallow MS, Thomas MG (2009) A Worldwide Correlation of Lactase Persistence 

Phenotype and Genotypes BMC Evol Biol.  

At the time of writing the manuscript is under the status of “Editorial Assessment”.  

 

The content of this chapter will resemble in many parts the original article, with some 

changes: I will integrate the original article‟s supplementary information Tables into the 

main body of this chapter and further elaborate on some relevant subjects that were only 

briefly mentioned in the original article, such as the GenoPheno and Natural Neighbour 

methods. The core work of this study (including data analysis and article writing) was 

mostly performed by me. Bryony Jones and Catherine Ingram contributed to collating 

the data, while Dallas Swallow contributed her lactase persistence expertise.  

 

4.1. Introduction. 

 

An estimated 65% of human adults (and most adult mammals) downregulate the 

production of intestinal lactase after weaning. Lactase is necessary for the digestion of 

lactose, the main carbohydrate in milk (Ingram et al., 2009a), and without it, milk 

consumption can lead to bloating, flatulence, cramps and nausea (Simoons, 1969, 

Heyman, 2006, Swallow et al., 2001, Castiglia, 1994). Continued production of lactase 

throughout adult life (lactase persistence, LP) is a genetically determined trait and is 

found at moderate to high frequencies in Europeans and some African, Middle Eastern 

and Southern Asian populations, but is rare or absent elsewhere (see Table 4.1 and 

Figure 4.1).  
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Figure 4.1. Old World LP phenotype frequencies based on all phenotype frequencies. Dots represent 

collection locations. Colour key shows the frequencies of the LP phenotype.  

 

The most frequently used non-invasive methods for identifying the presence of 

intestinal lactase are based upon detecting digestion products of lactose produced by the 

subject (Blood Glucose, BG) or gut bacteria (Breath Hydrogen, BH). For both methods 

a lactose load is administered to the subject following an overnight fast. In individuals 

producing lactase this leads to a detectable increase in blood glucose. In individuals 

who are not producing lactase, the undigested lactose will pass into the colon where it is 

fermented by various gut bacteria, producing fatty acids and various gases, particularly 

hydrogen. Hydrogen is highly soluble in the blood and so can be detected in the breath 

using a portable hydrogen analyser. Both the BG and the BH tests have asymmetric type 

I (false positive) and type II (false negative) error rates. Thus any study seeking 

association between a particular polymorphism and LP should take these error rates into 

account. In addition it should be noted that while in most cases the presence / absence of 

intestinal lactase in an adult is likely to be genetically determined, the absence of lactase 

can also be caused by gut trauma such as gastroenteritis (Newcomer et al., 1975, 

Peuhkuri, 2000). Other non-invasive methods for detecting the presence / absence of 

lactase include assaying for urine galactose and detecting metabolites of Carbon-14-

labelled lactose. These methods are rarely used today. The most reliable method is 

intestinal biopsy, which provides a direct determination of intestinal lactase activity. 

However, this procedure is very rarely used for diagnosing healthy individuals because 

of its invasive nature (Mulcare, 2006b).  
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With the recent discovery of nucleotide changes associated with LP comes the prospect 

of direct genetic tests for the trait (Enattah et al., 2007, Mulcare et al., 2004, Rasinpera 

et al., 2004, Swallow, 2004, Enattah et al., 2002). However, it has become clear that 

there are multiple, independently derived LP-associated alleles with different 

geographical distributions (Mulcare et al., 2004, Ingram et al., 2007, Ingram et al., 

2009a, Tishkoff et al., 2007, Swallow, 2006). LP is particularly common in Europeans 

and certain African and Middle Eastern groups. As a consequence these are the regions 

where most genetic studies have been focused and all currently known LP alleles have 

been identified (Mulcare, 2006b, Tishkoff et al., 2007, Ingram et al., 2007). The first 

allelic variant that was shown to be strongly associated with increased lactase activity is 

a C>T change 13,910 bases upstream of the LCT gene in the 13
th

 intron of the MCM6 

gene (Enattah et al., 2002). Functional studies have indicated that this change may affect 

lactase gene promoter activity (Lewinsky et al., 2005) but, as with all LP-associated 

variants, there remains the possibility that linkage to an as yet unknown causative 

nucleotide change may explain observed associations. Haplotype length conservation 

(Bersaglieri et al., 2004), linked microsatellite variation (Coelho et al., 2005) and 

ancient DNA analysis from early European farmers (Burger et al., 2007) later confirmed 

that this allele has a recent evolutionary origin and had been the subject of strong 

positive natural selection. Furthermore, as I will present in chapter 5, using a simulation 

model of the origins and evolution of lactase persistence and dairying in Europe, I have 

inferred that natural selection started to act on an initially small number of lactase 

persistent dairyers around 7,500 BP in a region between Central Europe and the 

northern Balkans, possibly in association with the Linearbandkeramik culture. 

 

 However, the presence of this allele could not explain the frequency of LP in most 

African populations (Mulcare et al., 2004). Further studies identified three additional 

variants that are strongly associated with LP in some African and Middle Eastern 

populations and/or have evidence of function, all are upstream of the LCT gene in the 

13
th

 intron of the MCM6 gene: -13,907*G, -13,915*G and -14,010*C (Ingram et al., 

2007, Tishkoff et al., 2007, Enattah et al., 2008, Ingram et al., 2009b). Where data was 

sufficient, some of these alleles also showed genetic signatures of a recent origin and 

strong positive natural selection (Tishkoff et al., 2007, Enattah et al., 2008).  

Although at least four strong candidate causative alleles have been identified, only a 

small number of populations have been studied, and those are confined to Europe, 
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Africa and the Middle East. It is therefore unlikely that all LP-associated or LP-causing 

alleles are currently known. As a consequence, genetic tests based on current knowledge 

would underestimate the frequency of LP in most world populations. As part of the first 

study to seek a genetic explanation for the distribution of LP in Africa (Mulcare et al., 

2004), a statistical procedure (GenoPheno) was developed to test if the frequency of an 

LP-associated allele could explain reported LP frequency in ethnically matched 

populations. Crucially, this statistical procedure was designed to account for sampling 

errors and the asymmetric type I and type II error rates associated with different 

phenotype tests (BH and BG).  

 

In this study I have sought to extend this approach to the whole of the Old World. 

However, while there is a rich literature on the frequencies of LP in different geographic 

regions (Ingram et al., 2009a) and a growing body of publications reporting the 

frequencies of candidate LP-causing alleles, in most cases the genetic and phenotypic 

data are not from the same individuals and often not of the same or closely 

neighbouring groups. To overcome this problem I performed surface interpolation of 

various data categories (genetic, phenotypic, sample numbers, phenotype tests used and 

their associated error rates) and applied the statistical procedures described on a fine 

grid covering the Old World landmass. This has allowed identification of regions where 

reported LP-associated allele frequencies are insufficient to explain the presence of LP. 

These regions should be good candidates for future genotype/phenotype studies.  

 

4.2. Material and Methods. 

 

4.2.1. Data. 

 

My global LP phenotype dataset consists of 112 locations (Ingram et al., 2009a) (see 

Table 4.1). These data were carefully selected from a large literature on LP frequencies 

so as to remove data collected from (1) children, (2) patients selected for likely lactose 

intolerance, (3) family members, and (4) people with twentieth/twenty-first century 

immigrant status. Genotype data was obtained for 118 locations where the frequency of 

the -13,910 C>T allele had been estimated (Bersaglieri et al., 2004, Enattah et al., 2007, 

Ingram et al., 2007, Ingram, 2008, Mulcare, 2006b, Mulcare et al., 2004, Almon et al., 

2007), and from 45 locations where the frequency of all 4 currently known LP 



97 

 

associated allelic variants had been estimated ((Enattah et al., 2008, Ingram, 2008, 

Myles et al., 2005, Tishkoff et al., 2007) and the unpublished work of Ingram et al., 

2009. See Table 4.2)). Where there was more than one dataset for a particular location 

(for either genotype or phenotype data), a weighted average frequency was calculated. 

The type I and type II error rates used were 8.621% and 6.849%, respectively, for BG 

and 6.818% and 4.167%, respectively, for BH (Mulcare et al., 2004). Predicted LP 

frequencies, from the LP genotype frequencies, were calculated by assuming Hardy-

Weinberg equilibrium and dominance (see Table 4.2).  

 

The geographic space explored for all analyses was from longitude -19 to 180, and from 

latitude -48 to 72. 

 

4.2.2. Surface Interpolation. 

 

To estimate the distribution of LP and LP-associated allele frequencies in continuous 

space, from irregularly spaced data, surface interpolation was performed using the 

Natural Neighbour algorithm (Sibson, 1981, Watson, 1992), as implemented in the 

PyNGL module of the Python programming language (Berglund et al., 2008, Watson, 

1994, Berndt and Berndt, 1994). This algorithm first divides a 2-dimensional space into 

polygons according to the locations of the observed data points, then estimates the value 

at locations for which data is absent by weighting each of the neighbouring locations by 

their relative overlap. The equation used for Natural Neighbour is: 

F(x, y)  wi f (xi , yi )
i1

n

  

where F(x,y) is the estimated frequency at location (x,y) where data is lacking, n is the 

set of (x,y) location‟s bordering (i.e. natural neighbours) data points with known 

frequency data, wi is the weight for a known data point, and  f(xi,yi) is the known 

(observed) frequency for location i.   

 

Other simpler alternative methods for surface interpolation include the Nearest 

Neighbour (Knuth, 1973) and the Inverse Distance Weighting (Shepard, 1968) 

algorithms, where the former uses only one known value when estimating each 

unknown value (making it over-simplistic) and the latter weights all known values for 

each unknown value, making it less suitable for a global scale surface interpolation. 
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4.2.3. Quantitative Difference Correlation Analysis. 

 

I also performed an analysis to quantify the difference between phenotype frequency 

and predicted phenotype frequency based on the frequency of LP-associated alleles. As 

in section 4.2.1, I assumed Hardy-Weinberg equilibrium and performed surface 

interpolation using the data provided in Tables 4.1 and 4.2. I then subtracted the surface 

representing expected frequencies from that representing observed LP frequencies. 

Maps were plotted using PyNGL (http://www.pyngl.ucar.edu/) (Berndt and Berndt, 

1994).  

 

4.2.4. GenoPheno Correlation Analysis. 

 

To identify regions where LP-associated allele frequencies are insufficient to explain 

observed LP incidence I applied the Monte Carlo based statistical test GenoPheno 

(Mulcare et al., 2004). The GenoPheno algorithm is defined as follows (Mulcare et al., 

2004): (1) A value for p (the frequency of the -13,910C>T allele in the genotyped 

group) was drawn from a Beta(T+1, C+1) distribution, where T is the number of -

13,910C>T alleles and C is the number of -13,910*C alleles found in the genotyped 

group. This beta distribution describes the posterior distribution for p, given the 

genotype data, assuming a Uniform(0,1) prior. (2) The predicted frequency of true 

lactase persistence in the population, Ltrue, was calculated as p
2
+2p(1-p) (i.e., the 

expected frequency of TT+CT genotypes under Hardy-Weinberg equilibrium). (3) 

Values for fn (the frequency of false negatives according to the phenotyping method 

used) and fp (the frequency of false positives according to the phenotyping method used) 

were drawn from Beta distributions of the error rates and sampling size. These beta 

distributions describe the posterior distribution for fn and fp, given the combined false 

error rate data reported above and assuming a Uniform(0,1) prior. (4) The predicted 

frequency of apparent lactose digesters accounting for phenotyping error, Lapp (the 

frequency of apparent lactase persistence in the phenotyped group), was calculated as 

Ltrue(1-fp) + (1-Ltrue)fn. (5) A simulated value for nL, the number of lactose digesters 

observed in the phenotyped group was drawn from a Binomial(n,Lapp) distribution, 

where n is the number sampled in the phenotyped group. (6) Steps 1–5 were repeated 

10,000 times (N=10,000) to build up a Monte Carlo sampling distribution for nL under 

the null hypothesis that the C/T genotype and phenotyping error alone account for the 
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apparent frequency of lactose digesters. (7) Let Sg be the sum of simulated nL values 

greater than or equal to the observed nL value, and let Sl be the sum of simulated nL 

values less than or equal to the observed nL value. A two-tailed P value for the observed 

nL under the null hypothesis was found as 2min(Sg,Sl)/N. In this case the null hypothesis 

is that the C/T genotype and phenotyping error alone account for the apparent frequency 

of lactose digesters (Mulcare et al., 2004). 

 

GenoPheno was applied to each cell in a 198 (west-east) by 119 (south-north) grid of 

covering the Old World. For each cell it was necessary to provide information on LP-

associated allele frequencies and LP incidence (see above) as well as on sample 

numbers used for each data type and type I and type II error rates for the LP phenotype 

tests used.  These parameters were estimated by surface interpolating values from 

genetic and phenotypic studies to provide 6 surface interpolated „layers‟ of information.  

 

4.3. Results. 

 

4.3.1. Interpolated LP Phenotype Frequencies. 

 

Figure 4.1 shows an interpolated map of the frequencies of LP based on phenotype tests 

(also see Table 4.1, (Ingram et al., 2009a)). Although this map should provide a 

reasonable representation of frequencies in Europe and western Asia, it should be noted 

that (1) data is sparse at eastern and northern Asia, Indonesia, Melanesia, Australia and 

Polynesia, and (2) in Africa and the Middle East it is often the case that populations 

living in close proximity to each other have dramatically different LP frequencies, 

depending to an extent on traditional subsistence strategies (Ingram et al., 2009a).  

 

4.3.2. Interpolated Predicted LP Phenotype Frequencies. 

 

Figure 4.2 shows an interpolated map of the frequencies of LP predicted by all 4 

currently known LP associated allelic variants, based on genotyping tests (see Table 4.2, 

(Bersaglieri et al., 2004, Enattah et al., 2007, Ingram et al., 2007, Ingram, 2008, 

Mulcare, 2006b, Mulcare et al., 2004, Almon et al., 2007)). As with the phenotype data, 

the genotype data is sparse in eastern and northern Asia, Indonesia, Melanesia, Australia 

and Polynesia. 
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Figure 4.2. Predicted Old World LP phenotype frequencies based on all genotype frequencies. The 

prediction is assuming Hardy-Weinberg equilibrium. Crosses represent collection locations where all 4 

currently known LP-correlated alleles were genotyped, and diamonds represent collection locations where 

the only data on the -13,910 C>T allele is available. Colour key shows the predicted LP phenotype 

frequencies. 

 

Figure 4.3 shows an interpolated map of the frequencies of LP predicted by the -13,910 

C>T allele data only (see Table 4.2, (Bersaglieri et al., 2004, Enattah et al., 2007, 

Ingram et al., 2007, Ingram, 2008, Mulcare, 2006b, Mulcare et al., 2004, Almon et al., 

2007)).  
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Figure 4.3. Predicted Old World LP phenotype frequencies based on frequency data for the -13,910 

C>T allele only. The prediction is assuming Hardy-Weinberg equilibrium. Stars represent collection 

locations. Colour key shows the predicted LP phenotype frequencies. 

 

Figure 4.4 shows an interpolated map of the frequencies of LP predicted by the 3 

currently known LP associated allelic variants, excluding the -13,910 C>T allele (see 

Table 4.2, (Enattah et al., 2008, Ingram, 2008, Myles et al., 2005, Tishkoff et al., 

2007)). This map should provide a reasonable representation of frequencies the 3 LP 

associated allelic variants in eastern Africa and the Middle East, while data is sparse at 

the rest of the world.  
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Figure 4.4. Predicted Old World LP phenotype frequencies based on frequency data for the 3 

currently known LP associated allelic variants, excluding the -13,910 C>T allele. The prediction is 

assuming Hardy-Weinberg equilibrium. Crosses represent collection locations. Colour key shows the 

predicted LP phenotype frequencies. 

 

4.3.3. LP Genotype-Phenotype Correlations. 

 

Figure 4.5 shows the quantitative difference between observed phenotype frequency and 

predicted phenotype frequency based on the frequency of 4 LP-associated alleles. This 

map was obtained by subtracting the surface shown in Figure 4.2 from that shown in 

Figure 4.1. It represents the extent to which current knowledge of the frequencies 

various LP-associated alleles explains the distribution of the LP trait. In many cases 

sample numbers used to obtain molecular and phenotype data were small. Additionally, 

phenotype testing error rates are appreciable. It is therefore possible that, for some 

regions, where the discrepancies between predicted and observed LP frequencies are 

high, such differences can be explained by sampling and testing errors alone.  
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Figure 4.5. Old World LP genotype-phenotype correlation, obtained by calculating the quantitative 

difference between observed phenotype frequency and predicted phenotype frequency based on the 

frequency of 4 LP-associated alleles. Positive and negative values represent cases of LP-correlated 

genotype under- and over-predicting the LP phenotype, respectively. Dots represent LP phenotype 

collection locations, crosses represent data collection locations for all currently known 4 LP-correlated 

alleles, and diamonds represent -13,910 C>T only data collection locations. Colour key shows the values 

of the predicted LP phenotype frequencies (Figure 4.2) subtracted from the observed LP phenotype 

frequencies (Figure 4.1). 

 

To account for the sampling and testing errors, I have applied the Monte Carlo based 

statistical test GenoPheno (Mulcare et al., 2004) to the surfaces presented in Figures 4.1 

and 4.2. Performing this test also requires data on sample numbers and error rates, for 

which I generated interpolated surfaces by applying the same reasoning as I have to LP 

frequencies. By applying the GenoPheno test to 23562 locations on a on a 198 by 119 

cell grid I obtained the surface presented on Figure 4.6. These p-values approximate the 

probability of the observed genotype and phenotype data under the null hypothesis that 

the LP-associated alleles and phenotyping errors alone account for the observed LP 

frequency. 
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Figure 4.6. Old World LP genotype-phenotype correlation, obtained by the GenoPheno Monte 

Carlo test. Dots represent LP phenotype collection locations, crosses represent data collection locations 

for all currently known 4 LP-correlated alleles, and diamonds represent -13,910 C>T only data collection 

locations. Colour key shows the p value obtained by the GenoPheno test. All values of p<0.01, indicating 

a very significant lack of correlation, are shown in red colour, yellow colour represents a statistical 

significance of p<0.05, while blue colour is for non significance of p≥0.05. 

 

4.4. Discussion. 

 

In this study I have identified regions where the current data on LP-associated allele 

frequencies is insufficient to explain the estimated LP phenotype frequencies, by surface 

interpolating LP genotype and phenotype data. The analyses also indicate regions where 

genotypic or phenotypic data is sparse or non-existent. Data collection from these 

regions is likely to be of value in developing a fuller understanding of the distribution 

and evolution of LP. I suggest that regions where LP-associated genotypes are under-

predicting LP are good candidates for further genetic studies.   

 

While on a broad scale most regions of the Old World have been sampled for the -

13,910*T allele, data on frequencies of the other three LP-associated alleles is localised 

mainly to Africa and the Middle East. It is likely that further studies will identify 

appreciable frequencies of the -13,907*G, -13,915*G or -14,010*C alleles, or reveal 

new LP-associated alleles, in other regions. 
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The analysis indicated a few regions (the Horn of Africa, Arabia, and the Basque 

region) where the LP-associated allele frequency appears to over-predict LP phenotype 

frequency. If we assume that all four LP-associated alleles considered here are causative 

of the trait, or very tightly linked to causative variants, then it is likely that over-

prediction is a result of population sampling problems. For example, the pastoralist 

Bedouin in Saudi Arabia have high frequencies of LP, while non-Bedouin Arabs from 

the same region typically have lower frequencies (Hijazi et al., 1983). Similar issues 

may explain over-prediction in the Horn of Africa (Eritrea, Djibouti, Ethiopia and 

Somalia), where ethnic diversity is particularly high and the phenotypic and genotypic 

data are derived in many cases from different ethnic groups with different subsistence 

strategies (Blench, 2006, Tishkoff et al., 2009). To an extent these problems of 

matching population groups from the same geographic regions applies to the whole 

analysis. However, it is notable from Figure 4.5 that where a lack of correspondence 

between LP phenotype and predicted phenotype frequencies occurs, it is usually when 

genotype over-predicts phenotype, while under-prediction is rare. 

 

By applying GenoPheno statistical procedure to interpolated layers of phenotype and 

genotype associated data (Figure 4.6), I have identified west and parts of southeast 

Africa, eastern and southern Europe, and parts of western, central, and southern Asia as 

potential targets for further genetic studies. A paucity of frequency data for the -

13,907*G, -13,915*G and -14,010*C alleles in most of these regions may partly explain 

this under-prediction (Figure 4.5). The population sampling problems described above 

may explain the under-prediction I infer in eastern Europe and parts of southern Asia, as 

in each of these regions, the locations where phenotype and genotype data were 

obtained are mostly well separated. This population data-matching problem is, however, 

unlikely to explain the lack of correspondence between LP and allele frequency-based 

predicted LP frequencies in the region around Pakistan and Afghanistan, as well as in 

West Africa and Italy. Further genetic studies in these regions should prove informative. 

I also suggest that the information that I present here could potentially be in use for 

international health and food aid organisations, to aid with understanding the region 

population‟s estimated genotype and phenotype of lactase persistence.  

 

http://en.wikipedia.org/wiki/Djibouti
http://en.wikipedia.org/wiki/Ethiopia
http://en.wikipedia.org/wiki/Somalia
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In this study I have demonstrated that lactase persistence genotype data is currently 

insufficient to explain lactase persistence phenotype frequency in western and southern 

Africa and several other Old World regions. The identification of additional LP-

associated or LP-causative alleles, especially in these regions, will help not only in 

developing a better understanding of the evolution of LP but also in elucidating the 

physiological mechanisms that underlie the trait. The interpolation and mapping 

approach that I have applied in this study may also be of value in studying the 

underlying genetic basis and evolution of other phenotypic variation that impacts on 

human health, such as the distribution of functional variation in drug metabolising 

enzymes (Xie et al., 2001). 
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Table 4.1. The lactase persistence phenotype frequencies. Columns show location (continent, country, 

longitude and latitude), population group, number of individuals tested, frequency of lactase persistent 

individuals, LP test method, and the primary source reference. The Americas were excluded from the 

Table due to paucity of data. Other reasons for data exclusion were: recent immigrant populations, 

children (under 12 years old), or biased individuals selection criteria (such as individuals reported being 

lactase non persistent or related individuals). Wherever only country name was available, location was 

determined by the capital city or the estimated central point of the country. 

COUNTRY POPULATION  LONGITUDE LATITUDE N 

FREQUENCY 

OF 

DIGESTORS 

TESTING 

METHOD 

(BG / BH / 

UG / 

BIOPSY) REFERENCE 

BOTSWANA Shua 25.00 -25.00 22 0.09 BG Nurse, G. T., & Jenkins, T. (1974) Br. Med. J. 2, 728. 

EGYPT Cairo and Giza 31.25 30.05 67 0.33 BH Hussein, L., et al. (1982) Hum.Hered. 32, 94. 

EGYPT Nile Delta 32.00 31.50 291 0.27 BH Hussein, L., et al. (1982) Hum.Hered. 32, 94. 

EGYPT Suez Canal Zone 32.50 31.00 16 0.31 BH Hussein, L., et al. (1982) Hum.Hered. 32, 94. 

EGYPT Upper Egypt, North 28.00 31.00 111 0.15 BH Hussein, L., et al. (1982) Hum.Hered. 32, 94. 

EGYPT Upper Egypt, South 28.00 28.00 85 0.40 BH Hussein, L., et al. (1982) Hum.Hered. 32, 94. 

ETHIOPIA Somali 41.86 9.59 90 0.24 BH Ingram et al. (2009, submitted) J Mol Evol. 

GABON Bantu 9.45 0.38 20 0.40 BH Gendrel, D., et al. (1989) J.Pediatr.Gastroenterol.Nutr. 8, 545. 

KENYA Borana 38.00 1.00 7 0.71 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Burji 38.00 1.00 6 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA El Molo 38.00 1.00 6 0.67 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Gabra 38.00 1.00 8 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Kikuyu 38.00 1.00 2 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Konso 38.00 1.00 4 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Maasai 38.00 1.00 26 0.88 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Marakwet 38.00 1.00 5 0.60 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Nandi 38.00 1.00 2 0.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Ogiek 38.00 1.00 11 0.55 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Pokot 38.00 1.00 10 0.60 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Rendille 38.00 1.00 7 0.71 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Sabaot 38.00 1.00 4 0.75 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Samburu 38.00 1.00 9 0.89 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Sengwer 38.00 1.00 12 0.17 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Somali 38.00 1.00 1 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Tugen 38.00 1.00 11 0.73 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Turkana 38.00 1.00 8 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Wata 38.00 1.00 1 0.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

KENYA Yaaku 38.00 1.00 11 0.73 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

NAMIBIA !Kung 20.50 -19.60 40 0.03 BG Jenkins, T., et al. (1974) Br.Med.J. 2, 23. 

NAMIBIA Herero 13.70 -18.30 39 0.03 BG Currie B, et al. (1978). S. Afr. J. Sci. 74:227. 

NIGER Tuareg 2.12 13.52 118 0.87 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 

NIGERIA Hausa/Fulani 3.47 7.23 15 0.40 BG Olatunbosun, D. A., et al. (1971) Am.J.Dig.Dis. 16, 909. 

NIGERIA Ibo 3.47 7.23 11 0.18 BG Olatunbosun, D. A., et al. (1971) Am.J.Dig.Dis. 16, 909. 

NIGERIA Yoruba 3.47 7.23 48 0.17 BG Olatunbosun, D. A., et al. (1971) Am.J.Dig.Dis. 16, 909. 

RWANDA Hutu-Hutu 29.74 -2.60 36 0.58 UG Cox, J. A., et al. (1974) Am.J.Dig.Dis. 19, 714. 

RWANDA Hutu-Tutsi 29.74 -2.60 11 0.45 UG Cox, J. A., et al. (1974) Am.J.Dig.Dis. 19, 714. 

RWANDA Shi 29.74 -2.60 28 0.04 UG Cox, J. A., et al. (1974) Am.J.Dig.Dis. 19, 714. 

RWANDA Tussi-Tutsi 29.74 -2.60 27 0.93 UG Cox, J. A., et al. (1974) Am.J.Dig.Dis. 19, 714. 
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SENEGAL Diolas -17.43 14.67 40 0.73 BG Arnold, J., et al. (1980) C R.Seances Soc.Biol Fil. 174, 983. 

SENEGAL Peuhls -15.12 15.40 29 1.00 BG Arnold, J., et al. (1980) C R.Seances Soc.Biol Fil. 174, 983. 

SENEGAL Sereres -17.43 14.67 38 0.71 BG Arnold, J., et al. (1980) C R.Seances Soc.Biol Fil. 174, 983. 

SENEGAL Toucouleurs -17.43 14.67 40 0.90 BG Arnold, J., et al. (1980) C R.Seances Soc.Biol Fil. 174, 983. 

SENEGAL Wolof -17.43 14.67 53 0.51 BG Arnold, J., et al. (1980) C R.Seances Soc.Biol Fil. 174, 983. 

SOUTH AFRICA Shangaan 28.08 -26.20 7 0.14 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SOUTH AFRICA Sotho 28.08 -26.20 23 0.35 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SOUTH AFRICA Swazi 28.08 -26.20 12 0.25 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SOUTH AFRICA Tswana 28.08 -26.20 24 0.17 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SOUTH AFRICA Xhosa 28.08 -26.20 17 0.18 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SOUTH AFRICA Zulu 31.02 -29.85 47 0.11 BG O'Keefe, S. J.& Adam, J. (1983) S.Afr.Med.J. 63, 778. 

SOUTH AFRICA Zulu 28.08 -26.20 32 0.19 BH Segal, I., et al. (1983) Am.J.Clin.Nutr. 38, 901. 

SUDAN Ama 30.00 14.00 2 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Amarar 37.22 19.62 82 0.87 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Artega 37.22 19.62 22 0.82 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Bedja 30.95 18.05 9 0.89 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Beja Banuamir 30.00 14.00 6 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Beja Hadandawa 30.00 14.00 11 0.82 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Beni Amir 37.22 19.62 40 0.88 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Bisharin 37.22 19.62 22 0.86 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Dinka 33.63 7.67 208 0.25 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Dinka 30.00 14.00 7 0.86 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Dongolawi 30.95 18.05 16 0.19 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Gomoeia 30.95 18.05 31 0.68 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Habbani 30.35 13.08 19 0.47 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Haddendoa 37.22 19.62 137 0.80 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Jaali 32.53 15.59 113 0.53 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Jaali 33.43 16.69 94 0.48 BH Ingram, C. J., et al. (2007) Hum Genet 120, 779. 

SUDAN Kahli 30.95 18.05 21 0.62 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Koalib 30.00 14.00 1 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Liguri/Logorik 30.00 14.00 1 0.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Masalit 30.00 14.00 1 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Misseri 30.35 13.08 20 0.40 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Nilotic 27.67 7.77 18 0.33 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Nuba 29.68 6.80 58 0.21 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Nubians  30.95 18.05 21 0.33 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Nuer 33.63 7.67 23 0.22 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Nuer 30.00 14.00 2 1.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

SUDAN Shaygi 30.95 18.05 42 0.38 BH Bayoumi, R. A., et al. (1981) Hum.Genet 57, 279. 

SUDAN Shilluk 33.63 7.67 8 0.38 BH Bayoumi, R. A., et al. (1982) Am.J.Phys.Anthropol. 58, 173. 

SUDAN Shilook 30.00 14.00 4 0.75 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Akie 34.00 -7.00 11 0.55 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Burunge 34.00 -7.00 16 0.38 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Datog 34.00 -7.00 1 0.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Dorobo 34.00 -7.00 6 0.67 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Fiome 34.00 -7.00 7 0.14 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Hadza 34.00 -7.00 15 0.60 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Iraqw 34.00 -7.00 19 0.95 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Maasai 34.00 -7.00 15 0.67 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Mbugu 34.00 -7.00 23 0.43 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Mbugwe 34.00 -7.00 8 0.50 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Pare 34.00 -7.00 8 0.75 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Rangi 34.00 -7.00 26 0.65 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Samba'a 34.00 -7.00 2 0.00 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 

TANZANIA Sandawe 34.00 -7.00 23 0.35 BG Tishkoff, S. A., et al. (2007) Nat Genet 39, 31. 



109 

 

TUNISIA Tunisian 10.18 36.80 43 0.16 BH Filali, A., et al. (1987) Gastroenterol.Clin.Biol 11, 554. 

UGANDA Baganda 32.57 0.32 12 0.00 BG Cook, G. C., & Dahlquist, A . (1968) Gastroenterology 55, 328. 

UGANDA Batutsi 32.57 0.32 5 1.00 BG Cook, G. C., et al. (1968) Gastroenterology 55, 328. 

UGANDA Nilotic 32.57 0.32 9 0.56 BG Cook, G. C., et al. (1966) Lancet 1, 725. 

UGANDA Ugandan Bantu 32.57 0.32 17 0.06 BG Cook, G. C., et al. (1966) Lancet 1, 725. 

ZAMBIA Bantu of Zambia 28.11 15.28 26 0.00 BG Cook, G. C., et al. (1973) Gastroenterology 64, 405. 

CHINA Kazakh 87.58 43.80 195 0.24 BH Yongfa, W., et al. (1984) Hum.Genet. 67, 103. 

CHINA Mongols 111.65 40.81 198 0.12 BH Yongfa, W., et al. (1984) Hum.Genet. 67, 103. 

CHINA Northern Han 116.39 39.93 248 0.08 BH Yongfa, W., et al. (1984) Hum.Genet. 67, 103. 

INDIA Indians 72.83 18.98 100 0.36 BG Desai, H. G., et al. (1970) Indian J.Med.Sci. 24, 729. 

INDIA Indians 78.47 17.38 18 0.39 BG Reddy, V., Pershad, J. (1972) Am.J.Clin.Nutr. 25, 114. 

INDIA Indians 80.28 13.08 38 0.00 BIOPSY Swaminathan et al. (1970) Clin Chim Acta 30, 707. 

INDIA Northern Indians 77.20 28.60 70 0.73 BG Gupta, P. S., et al. (1971) J.Trop.Med.Hyg. 74, 225. 

INDIA Northern Indians 77.20 28.60 66 0.36 BG Tandon, R. K., et al. (1981) Am.J.Clin.Nutr. 34, 943. 

JAPAN Japanese 140.47 40.59 40 0.28 BG Yoshida, Y., et al. (1975) Gastroenterol.Jpn. 10, 29. 

MYANMAR Burmese 91.17 16.78 50 0.08 BG 
Aung-Than-Batu et al. (1972), Union Burma J Life Sci, 5, 133-

135 

PAKISTAN Baloochi 67.05 24.87 4 1.00 BG Rab, S. M., et al. (1976) Br. Med. J. 1, 436. 

PAKISTAN Baluchistani 71.92 32.27 32 0.38 BH Ahmad, M., Flatz,G. (1984) Hum. Hered. 34, 69. 

PAKISTAN Kashmiri 71.92 32.27 27 0.30 BH Ahmad, M., Flatz,G. (1984) Hum. Hered. 34, 69. 

PAKISTAN Mohajir 67.05 24.87 15 0.80 BG Rab, S. M., et al. (1976) Br. Med. J. 1, 436. 

PAKISTAN Pathan 67.05 24.87 15 1.00 BG Rab, S. M., et al. (1976) Br. Med. J. 1, 436. 

PAKISTAN Punjabi 71.92 32.27 322 0.41 BH Ahmad, M., Flatz,G. (1984) Hum. Hered. 34, 69. 

PAKISTAN Punjabi 67.05 24.87 9 1.00 BG Rab, S. M., et al. (1976) Br. Med. J. 1, 436. 

PAKISTAN Sindhi 71.92 32.27 33 0.42 BH Ahmad, M., Flatz,G. (1984) Hum. Hered. 34, 69. 

PAKISTAN Sindhi 67.05 24.87 12 1.00 BG Rab, S. M., et al. (1976) Br. Med. J. 1, 436. 

RUSSIA Khanty (Northern) 69.02 61.04 115 0.29 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA Komi-Izhems 50.81 61.67 56 0.38 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA Mansi 69.02 61.04 81 0.28 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA 
Nenets (West 

Siberia) 
80.86 59.06 9 0.22 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA Udmurtians 53.23 56.85 30 0.60 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA West-Siberian 80.86 59.06 47 0.51 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

SRI LANKA Sri Lankan 80.64 7.30 135 0.29 BG Thomas, S., et al. (1990) J Trop Pediatr 36, 80. 

SRI LANKA Sri Lankan 80.64 7.30 135 0.29 BG Thomas, S., et al. (1990) J Trop Pediatr 36, 80. 

SRI LANKA 
Sri Lankans 

("Ceylonese") 
80.60 7.26 200 0.28 BG Senewiratne, B., et al. (1977) Gastroenterology 72, 1257. 

TAIWAN Chinese 121.45 25.02 50 0.12 BG Sung, J., et al. (1972) Asian Journal of Medicine 8, 149. 

THAILAND Thai 100.52 13.75 140 0.03 BG Keusch, G. T., et al. (1969) Am.J.Clin.Nutr. 22, 638. 

THAILAND Thai 100.49 13.45 40 0.00 BG Troncale et al. (1967) Br. Med. J. 4, 578. 

AUSTRALIA Aboriginal 123.97 -17.30 45 0.16 BH Brand, J. C., et al. (1983) Am.J.Clin.Nutr. 37, 449. 

NEW ZEALAND Maori 174.77 -36.87 28 0.36 BH 
Abbott W.G., Tasman-Jones C. (1985) N Z Med J. 10;98(776), 

228. 

PAPUA NEW 

GUINEA 

Central (inc. Port 

Moresby) 
147.19 -9.46 14 0.07 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

PAPUA NEW 

GUINEA 

E and W Sepik 

provinces 
143.52 -4.18 35 0.23 BH Arnhold R.G. et al. (1981) Ann Hum Biol 5, 481 

PAPUA NEW 

GUINEA 
Gulf & Western 147.19 -9.46 13 0.08 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

PAPUA NEW 

GUINEA 
Highlands 147.19 -9.46 13 0.00 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

PAPUA NEW 

GUINEA 

Huli, Mendi, and 

Dunai  
142.95 -5.70 30 0.10 BG Jenkins, T., et al. (1981) Ann.Hum.Biol 8, 447. 

PAPUA NEW 

GUINEA 
Milne Bay 147.19 -9.46 2 0.00 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

PAPUA NEW 

GUINEA 
Morobe & Northern 147.19 -9.46 5 0.00 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

PAPUA NEW 

GUINEA 

N. Solomons & E. 

New Britain 
147.19 -9.46 3 0.00 BG Cook, G. C. (1979) Ann.Hum.Biol 6, 55. 

AUSTRIA Austrian 14.00 47.75 118 0.75 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA Austrian 14.00 47.75 57 0.79 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA Austrian 14.00 47.75 88 0.80 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA Austrian 14.00 47.75 32 0.81 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA Karnten Austrian 14.31 46.62 46 0.80 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA 
Oberosterreich 

Austrian 
14.30 48.30 45 0.84 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 

AUSTRIA Tirol Austrian 9.77 47.50 124 0.83 BH Rosenkranz, W., et al. (1982) Hum.Genet 62, 158. 
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CYPRUS Greek Cypriots 33.37 35.17 50 0.34 BG Kanaghinis, T., et al. (1974) Am.J.Dig.Dis. 19, 1021. 

DENMARK Danes 12.58 55.73 91 0.96 BG Busk, H. E., et al. (1975) Ugeskr Laeger 137, 2062-4. 

ESTONIA Estonian 26.70 58.23 112 0.75 BG Lember, M., et al. (1991) Eur J Gastroenterol Hepatol 3, 479. 

ESTONIA Setus 27.64 57.96 100 0.51 UG Lember, M., et al. (1991) Eur J Gastroenterol Hepatol 3, 479. 

FINLAND 
Finnish-speaking 

Finns 
21.43 60.60 91 0.92 BG Sahi, T. (1974) Scand.J.Gastroenterol. 9, 303. 

FINLAND Finns 27.68 62.90 638 0.83 BIOPSY Jussila, J. (1969) Ann.Clin.Res. 1, 199. 

FINLAND Rural Finn 21.93 60.41 159 0.83 BG Jussila, J., et al. (1970) Scand.J.Gastroenterol. 5, 49. 

FINLAND 
Swedish-speaking 

Finns 
21.43 60.60 156 0.83 BG Sahi, T. (1974) Scand.J.Gastroenterol. 9, 303. 

FORMER 

CZECHOSLOVAK

IA 

Czech 17.50 49.00 17 0.82 BG Leichter, J. (1972) Am.J.Dig.Dis. 17, 73. 

FRANCE French 5.82 44.93 102 0.76 BH Cloarec, D., et al. (1991) Gastroenterol.Clin.Biol 15, 588. 

FRANCE French 6.63 49.75 85 0.71 BH Cuddenec, Y., et al. (1982) Gastroenterol.Clin.Biol 6, 776. 

FRANCE 

Maghrebins 

(Northern African 

Muslims) 

7.25 43.70 55 0.22 BG O'Morain, C., et al. (1978) Acta Gastroenterol Belg 41, 56-63. 

FRANCE Northern French 6.63 49.75 76 0.78 BH Cuddenec, Y., et al. (1982) Gastroenterol.Clin.Biol 6, 776. 

FRANCE Southern French 6.63 49.75 40 0.43 BH Cuddenec, Y., et al. (1982) Gastroenterol.Clin.Biol 6, 776. 

FRANCE Southern French 7.25 43.70 55 0.58 BG O'Morain, C., et al. (1978) Acta Gastroenterol Belg 41, 56-63. 

GERMANY 
Baden-Wurttemberg 

Germans 
9.50 48.40 136 0.76 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GERMANY Bayern Germans 12.53 47.80 221 0.86 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GERMANY Eastern Germans 13.75 51.05 246 0.78 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GERMANY Germans 8.52 53.18 60 0.87 BIOPSY Howell, J. N., et al. (1980) Hepatogastroenterology 27, 208. 

GERMANY Northwest Germans 8.80 53.08 341 0.91 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GERMANY 
Rheinland and Pfalz 

Germans 
8.27 50.00 182 0.86 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GERMANY 
Schleswig-Holstein 

Germans 
9.55 54.52 100 0.94 BH Flatz, G., et al. (1982) Hum.Genet 62, 152. 

GREECE Continental Greeks 23.73 37.98 600 0.55 BG Kanaghinis, T., et al. (1974) Am.J.Dig.Dis. 19, 1021. 

GREECE Cretan Greek 25.13 35.33 50 0.44 BG Kanaghinis, T., et al. (1974) Am.J.Dig.Dis. 19, 1021. 

GREECE Greek 23.73 37.98 16 0.63 BG Spanidou, E. P., & Petrakis, NL (1972) Lancet 2, 872. 

GREECE Greeks 23.73 37.98 200 0.25 BH Ladas, S., et al. (1982) Gut 23, 968. 

GREECE Greeks 23.73 37.98 250 0.77 BG Zografos et al. (1973), The Lancet, 301,367.    

HUNGARY Eastern Hungarian 19.08 47.50 70 0.71 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

HUNGARY Hungarian 19.08 47.50 262 0.59 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

HUNGARY Matyo 20.58 47.82 172 0.63 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

HUNGARY 
Northeastern 

Hungarian 
19.08 47.50 103 0.58 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

HUNGARY Romai 21.72 47.95 113 0.44 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

HUNGARY Western Hungarian 19.08 47.50 100 0.72 BH Czeizel, A., et al. (1983) Hum.Genet 64, 398. 

IRELAND Native Irish -6.25 53.33 50 0.96 BG Fielding, J. F., et al. (1981) Ir.J.Med.Sci. 150, 276. 

ITALY Italians 9.20 45.47 42 0.38 BH Bozzani, A., et al. (1986) Dig.Dis.Sci. 31, 1313. 

ITALY Italians 9.20 45.47 89 0.48 BG Cavalli-Sforza et al. (1987) Am J Clin Nutr 45, 748 

ITALY Italians 12.48 41.90 65 0.82 BG Cavalli-Sforza et al. (1987) Am J Clin Nutr 45, 748 

ITALY Italians 14.25 40.83 51 0.59 BG Cavalli-Sforza et al. (1987) Am J Clin Nutr 45, 748 

ITALY Italians 14.25 40.83 44 0.23 BIOPSY Rossi et al., (1997), Gastroenterology. 112(5), 1506. 

ITALY Italians 9.20 45.47 20 0.25 BH Zuccato, E., et al. (1983) Eur J Clin Invest 13, 261. 

ITALY Napolitans 14.25 40.83 99 0.46 BH Rinaldi, E., et al. (1984) Lancet 1, 355-7. 

ITALY Neapolitan 14.25 40.83 9 0.00 BG De Ritis,  F., et al. (1970) Enzymol.Biol Clin.(Basel) 11, 263. 

ITALY Northern Italians 7.67 45.05 208 0.49 BH Burgio, G. R., et al. (1984) Am.J.Clin.Nutr. 39, 100. 

ITALY Sardinians 8.56 40.73 50 0.14 BH Meloni, G. F., et al. (2001)Am.J.Clin.Nutr. 73, 582. 

ITALY Sardinians 9.00 39.40 47 0.15 BH Meloni, T., et al., (1998) Ital J Gastroenterol Hepatol 30, 490. 

ITALY Sardinians 9.00 40.10 53 0.11 BH Meloni, T., et al., (1998) Ital J Gastroenterol Hepatol 30, 490. 

ITALY Sardinians 9.00 40.30 38 0.18 BH Meloni, T., et al., (1998) Ital J Gastroenterol Hepatol 30, 490. 

ITALY Sicilians 13.37 38.12 100 0.29 BH Burgio, G. R., et al. (1984) Am.J.Clin.Nutr. 39, 100. 

POLAND Eastern Polish 23.13 52.03 35 0.63 BH Socha, J., et al. (1984) Ann.Hum.Biol 11, 311. 

POLAND Northeastern Polish 22.35 53.83 34 0.59 BH Socha, J., et al. (1984) Ann.Hum.Biol 11, 311. 

POLAND Polish 21.00 52.25 21 0.71 BG Leichter, J. (1972) Am.J.Dig.Dis. 17, 73. 

POLAND Polish 19.00 51.73 29 0.62 BH Socha, J., et al. (1984) Ann.Hum.Biol 11, 311. 

POLAND Polish 19.37 52.23 92 0.63 BH Socha, J., et al. (1984) Ann.Hum.Biol 11, 311. 

POLAND Polish 19.37 52.23 85 0.64 BH Socha, J., et al. (1984) Ann.Hum.Biol 11, 311. 
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RUSSIA Kildin Saami 32.00 68.00 50 0.52 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA Komi-Permiaks 32.00 68.00 112 0.50 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

RUSSIA Udmurtians 32.00 68.00 75 0.41 BG Kozlov, A. I. (1998) Int J Circumpolar Health 57, 18. 

SPAIN Galician -8.55 42.88 338 0.66 BH Leis, R., et al. (1997) J.Pediatr.Gastroenterol.Nutr. 25, 296. 

UK British -3.20 55.95 150 0.95 BG Ferguson, A., et al. (1984) Gut 25, 163. 

UK British natives -1.25 51.75 75 0.95 BIOPSY Ho, M. W., et al. (1982) Am.J.Hum.Genet 34, 650. 

UK White British -1.92 52.47 67 0.97 BIOPSY Iqbal, T. H., et al. (1993) Br. Med. J.  306, 1303. 

AFGHANISTAN Hazara 69.18 34.52 10 0.20 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

AFGHANISTAN Mixed urban 69.18 34.52 34 0.24 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

AFGHANISTAN Pasha-I 71.00 36.00 60 0.13 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

AFGHANISTAN Pashtun 69.18 34.52 71 0.21 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

AFGHANISTAN Tajik 69.18 34.52 79 0.18 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

AFGHANISTAN Uzbek 69.18 34.52 16 0.00 BG Rahimi, A. G., et al. (1976) Hum.Genet. 34, 57. 

IRAN Iranian 51.42 35.67 21 0.14 BG Sadre, M., et al. (1979) Am.J.Clin.Nutr. 32, 1948. 

ISRAEL Arabs 34.95 32.23 67 0.19 BG Gilat, T et al. (1971) Digestive Diseases 16, 203  

JORDAN Jordanian Arabs 35.93 31.95 148 0.25 BH Hijazi, S. S., et al. (1983) Trop.Geogr.Med. 35, 157. 

JORDAN 

Mediterranean 

origin Jordanian 

Arabs 

35.93 31.95 56 0.23 BG Snook, C. R., et al. (1976) Trop.Geogr.Med. 28, 333. 

JORDAN 
Urban/agricultural 

Jordanian Arabs 
35.93 31.95 162 0.76 BH Hijazi, S. S., et al. (1983) Trop.Geogr.Med. 35, 157. 

KUWAIT Arab Kuwaiti 47.98 29.37 70 0.53 BH Sanae, H. A., et al. (2003) Med. Princ. Pract. 12, 160. 

KUWAIT Asian Kuwaiti 47.98 29.37 79 0.42 BH Sanae, H. A., et al. (2003) Med. Princ. Pract. 12, 160. 

LEBANON Lebanese 35.51 33.87 74 0.22 BG Nasrallah, S. M. (1979) Am.J.Clin.Nutr. 32, 1994. 

PAKISTAN Punjabi 73.07 33.60 53 0.55 BG Abbas H., Ahmad M. (1983) Hum. Genet. 64:277. 

SAUDI ARABIA Arabs 50.11 26.43 109 0.43 BH 
Dissanayake, A.S. et al., (1990) Annals of Saudi Medicine, 10, 

598. 

SAUDI ARABIA Bedouin  50.11 26.43 21 0.81 BH 
Dissanayake, A.S. et al., (1990) Annals of Saudi Medicine, 10, 

598. 

SAUDI ARABIA 
Beduin and Urban 

Saudi 
46.77 24.64 14 0.86 BG Cook & Al Torki (1975) Br. Med. J.  3,135. 

SAUDI ARABIA Yemenites 50.11 26.43 17 0.53 BH 
Dissanayake, A.S. et al., (1990) Annals of Saudi Medicine, 10, 

598. 

TURKEY Central Anatolia 39.50 34.00 104 0.29 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 

TURKEY Eastern Anatolia 39.50 40.00 122 0.26 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 

TURKEY 
North Coast of 

Turkey 
34.00 41.50 64 0.31 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 

TURKEY 
South Coast of 

Turkey 
33.00 36.50 54 0.28 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 

TURKEY Turks 32.86 39.93 30 0.63 BG Tuncbilek, et al. (1973), The Lancet July 21, 151  

TURKEY 

Western Anatolia 

and European 

Turkey 

28.96 41.02 126 0.30 BH Flatz, G., et al. (1986) Am.J.Hum.Genet 38, 515. 
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Table 4.2. The lactase persistence associated allele frequencies. Columns show location (continent, 

country, longitude and latitude), population group, number of individuals tested, frequency of -13910*T, -

13,907*G, -13,915*G and -14,010*C LP-associated alleles, and the primary literature and own data 

source. Data taken from SNP typing tests (where only -13,910*T is shown) or from resequencing. The 

Americas were excluded from the Table due to paucity of data. The predicted lactase persistence 

frequency was calculated by assuming Hardy-Weinberg equilibrium and dominance using the sum of the 

all available LP-associated alleles at a specific location. Wherever only country name was available, 

location was determined by the capital city or the estimated central point of the country. The “sum” 

column is the result of adding together the 4 LP-associated alleles. It should be noted that the collection 

location for the Indian and North Indian genotype data was Singapore. As an exception, I placed these 

data in the location of the ancestral population because of lack of genetic data from India.  

COUNTRY POPULATION LONG LAT N  

-

14010 

G>C 

-

13915 

T>G 

-

13907 

C>G 

-

13910 

C>T SUM 

PREDICTED 

LP 

FREQUENCY  REFERENCE 

Algeria Berber Mzab 3.05 36.76 66 0.00 0.00 0.00 0.17 0.17 0.31 
Myles et al.  (2005) Hum 

Genet. 117, 34. 

Algeria Mozabite 3.05 36.76 60 - - - 0.22 0.22 0.39 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Cameroon Cameroonian 12.50 6.00 130 0.00 0.00 0.00 0.00 0.00 0.00 
Jones et al. (2009, 

unpublished) 

Cameroon Cameroonian 14.50 13.00 108 0.00 0.08 0.00 0.02 0.10 0.19 
Jones et al. (2009, 

unpublished) 

Cameroon Fulani 14.00 11.00 110 0.00 0.00 0.00 0.39 0.39 0.63 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Cameroon Fulani 11.55 6.47 98 - - - 0.11 0.11 0.21 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Cameroon Hausa 11.55 6.47 36 - - - 0.14 0.14 0.26 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Cameroon Mambila 13.00 9.00 74 0.00 0.00 0.00 0.00 0.00 0.00 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Cameroon Mambila 11.28 6.45 244 - - - 0.00 0.00 0.01 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Cameroon Nso 10.67 6.20 252 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Cameroon Shuwa Arab 14.00 13.00 30 0.00 0.13 0.00 0.00 0.13 0.25 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Cameroon Yamba 11.55 6.47 42 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Congo Congolese 15.28 -4.26 90 0.00 0.00 0.00 0.00 0.00 0.00 
Jones et al. (2009, 

unpublished) 

Ethiopia Afar 41.44 11.56 74 0.00 0.12 0.30 0.01 0.43 0.68 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Ethiopia Amharic 38.70 9.03 38 0.00 0.13 0.05 0.00 0.19 0.34 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Ethiopia Ethiopian 34.50 7.58 120 0.00 0.00 0.00 0.00 0.00 0.00 
Jones et al. (2009, 

unpublished) 

Ethiopia Ethiopian 36.65 5.65 132 0.00 0.05 0.02 0.00 0.07 0.14 
Jones et al. (2009, 

unpublished) 

Ethiopia Ethiopian 36.83 7.67 146 0.01 0.08 0.07 0.00 0.16 0.29 
Jones et al. (2009, 

unpublished) 

Ethiopia Ethiopian 38.70 9.03 130 0.00 0.02 0.06 0.00 0.10 0.19 
Jones et al. (2009, 

unpublished) 

Ethiopia Ethiopian 41.44 11.56 148 0.01 0.19 0.25 0.01 0.46 0.71 
Jones et al. (2009, 

unpublished) 

Ethiopia 
Phenotyped 

Somali 
41.87 9.58 218 0.01 0.05 0.06 0.02 0.13 0.24 

Ingram et al. (2009, 

submitted) J Mol Evol. 

Ethiopia Somali 42.80 9.35 74 0.03 0.04 0.10 0.00 0.16 0.30 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Ethiopian Nuer 34.58 8.25 238 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Ghana Ghanaian -1.00 7.00 114 0.00 0.00 0.00 0.00 0.00 0.00 
Jones et al. (2009, 

unpublished) 

Kenya Borana 38.00 1.00 16 0.13 0.19 0.13 0.00 0.44 0.68 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Burji 38.00 1.00 16 0.06 0.00 0.00 0.00 0.06 0.12 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya El Molo 38.00 1.00 18 0.11 0.00 0.00 0.00 0.11 0.21 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Gabra 38.00 1.00 18 0.00 0.28 0.11 0.00 0.39 0.63 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Kikuyu 38.00 1.00 4 0.75 0.00 0.00 0.00 0.75 0.94 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 
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Kenya Konso 38.00 1.00 12 0.08 0.08 0.00 0.00 0.17 0.30 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Maasai 38.00 1.00 64 0.58 0.00 0.03 0.00 0.61 0.85 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Marakwet 38.00 1.00 14 0.36 0.07 0.00 0.00 0.43 0.67 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Nandi 38.00 1.00 8 0.25 0.00 0.00 0.00 0.25 0.44 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Ogiek 38.00 1.00 22 0.36 0.00 0.00 0.00 0.36 0.60 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Pokot 38.00 1.00 28 0.29 0.04 0.00 0.00 0.32 0.54 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Rendille 38.00 1.00 16 0.13 0.13 0.06 0.00 0.31 0.53 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Sabaot 38.00 1.00 12 0.17 0.00 0.00 0.00 0.17 0.31 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Samburu 38.00 1.00 18 0.28 0.06 0.06 0.00 0.40 0.64 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Sengwer 38.00 1.00 32 0.06 0.00 0.00 0.00 0.06 0.12 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Somali 38.00 1.00 2 0.00 0.50 0.00 0.00 0.50 0.75 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Tugen 38.00 1.00 32 0.19 0.00 0.00 0.00 0.19 0.34 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Turkana 38.00 1.00 26 0.21 0.00 0.00 0.00 0.21 0.37 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Wata 38.00 1.00 2 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Kenya Yaaku 38.00 1.00 28 0.54 0.00 0.04 0.00 0.58 0.82 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Malawi Bantu 33.78 
-

13.98 
310 - - - 0.00 0.00 0.00 

Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Malawi Malawian 33.50 
-

13.00 
100 0.00 0.00 0.00 0.00 0.00 0.00 

Jones et al. (2009, 

unpublished) 

Morocco Arabs -6.84 34.03 180 - - - 0.18 0.18 0.33 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Morocco Berber -3.77 34.05 154 - - - 0.14 0.14 0.25 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Morocco Moroccan -6.84 34.03 24 0.00 0.08 0.00 0.21 0.29 0.50 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Morocco Saharawi -6.84 34.03 114 - - - 0.26 0.26 0.45 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Morocco 

(High-Atlas) 
Amizmiz -4.00 34.00 78 0.00 0.00 0.00 0.14 0.14 0.26 

Myles et al.  (2005) Hum 

Genet. 117, 34. 

Morocco (Mid-

Atlas) 

Berber Moyen-

Atlas 
-6.00 32.00 66 0.00 0.00 0.00 0.16 0.16 0.29 

Myles et al.  (2005) Hum 

Genet. 117, 34. 

Mozambique Mozambicans 36.50 
-

18.00 
102 0.00 0.00 0.00 0.00 0.00 0.00 

Jones et al. (2009, 

unpublished) 

N.E. Kenya Bantu 36.00 -1.00 24 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Namibia San 17.08 
-

22.57 
14 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Namibia San 17.08 
-

22.57 
30 - - - 0.00 0.00 0.00 

Mulcare (2006) London: 

University of London 

PhD. 

Nigeria Yoruba 3.47 7.23 50 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Senegal Manjak -16.00 14.00 186 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Senegal Wolof -17.38 14.67 118 0.00 0.00 0.00 0.00 0.00 0.00 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Senegal Wolof -17.00 14.00 20 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Somalia Somali 45.37 2.07 158 - - - 0.03 0.03 0.06 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

South Africa Bantu 28.08 
-

26.20 
16 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

South Africa Bantu 28.08 
-

26.20 
50 - - - 0.00 0.00 0.00 

Mulcare (2006) London: 

University of London 

PhD. 

Sudan Ama 30.00 20.00 4 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan 
Beja 

(Banuamir) 
30.00 20.00 12 0.00 0.17 0.25 0.00 0.42 0.66 

Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan 
Beja 

(Hadandawa) 
30.00 20.00 22 0.00 0.09 0.18 0.00 0.27 0.47 

Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Beni Amer 37.22 19.62 38 - - - 0.05 0.05 0.10 

Ingram et al. (2007) Hum 

Genet. 120, 779, Ingram 

(2008) London: 

University of London 

PhD. 

Sudan Beni Amer 37.22 19.62 162 0.00 0.25 0.01 0.01 0.26 0.45 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Sudan Dinka 30.00 20.00 18 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Dunglawi 30.00 20.00 12 0.00 0.00 0.08 0.00 0.08 0.16 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Sudan Fulani 30.00 20.00 88 - - - 0.48 0.48 0.73 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Sudan Gaali  32.53 15.59 20 0.00 0.00 0.05 0.00 0.05 0.10 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Sudan Jaali 33.43 16.69 172 0.00 0.13 0.01 0.01 0.15 0.27 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Sudan Koalib 30.00 20.00 2 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Liguri/Logorik 30.00 20.00 2 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Mahas  32.53 15.59 30 0.00 0.17 0.00 0.00 0.17 0.31 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 
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Sudan Masalit 30.00 20.00 2 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Nuer 30.00 20.00 10 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Shaigi 30.00 20.00 18 0.00 0.06 0.00 0.00 0.06 0.11 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Sudan Shilook 30.00 20.00 16 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Sudan Sudanese 30.00 15.00 60 0.00 0.07 0.00 0.02 0.09 0.17 
Jones et al. (2009, 

unpublished) 

Sudanese Dinka 31.00 4.00 68 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Sudanese Ga'ali 30.00 20.00 60 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Sudanese Nuer 31.00 4.00 26 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Sudanese Shaigi 30.00 20.00 22 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Tanzania Akie 35.00 -5.00 28 0.25 0.00 0.00 0.00 0.25 0.44 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Burunge 35.00 -5.00 36 0.38 0.00 0.00 0.00 0.38 0.62 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Datog 35.00 -5.00 8 0.63 0.00 0.00 0.00 0.63 0.86 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Dorobo 35.00 -5.00 20 0.40 0.00 0.00 0.00 0.40 0.64 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Fiome 35.00 -5.00 24 0.55 0.00 0.00 0.00 0.55 0.80 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Hadza 35.00 -5.00 36 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Iraqw 35.00 -5.00 78 0.58 0.00 0.00 0.00 0.58 0.82 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Maasai 35.00 -5.00 38 0.45 0.00 0.00 0.00 0.45 0.69 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Mbugu 35.00 -5.00 60 0.31 0.00 0.00 0.00 0.31 0.52 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Mbugwe 35.00 -5.00 26 0.27 0.04 0.00 0.00 0.31 0.52 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Pare 35.00 -5.00 20 0.10 0.00 0.00 0.00 0.10 0.19 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Rangi 35.00 -5.00 70 0.27 0.00 0.00 0.00 0.27 0.47 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Samba'a 35.00 -5.00 6 0.00 0.00 0.00 0.00 0.00 0.00 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Sandawe 35.00 -5.00 62 0.13 0.00 0.00 0.00 0.13 0.25 
Tishkoff et al. (2007) Nat 

Genet. 39, 31 

Tanzania Tanzanian 38.05 -5.38 92 0.14 0.00 0.00 0.00 0.14 0.26 
Jones et al. (2009, 

unpublished) 

Uganda Bantu 32.98 0.43 44 - - - 0.00 0.00 0.00 
Mulcare et al. (2004) Am 

J Hum Genet. 74, 1102. 

Uganda Ugandan 32.57 0.32 76 0.03 0.00 0.00 0.00 0.03 0.06 
Jones et al. (2009, 

unpublished) 

Afghanistan Pashtu (Pushtu) 72.00 35.00 16 - - - 0.13 0.13 0.23 

Mulcare (2006) London: 

University of London 

PhD. 

Afghanistan Tadjik 68.71 36.13 98 - - - 0.10 0.10 0.19 

Mulcare (2006) London: 

University of London 

PhD. 

Afghanistan Uzbek 67.64 35.50 76 - - - 0.08 0.08 0.15 

Mulcare (2006) London: 

University of London 

PhD. 

Algeria Algerian -1.32 34.88 21 - - - 0.33 0.33 0.56 

Mulcare (2006) London: 

University of London 

PhD. 

Armenia Armenian 44.51 40.18 88 - - - 0.01 0.01 0.02 

Mulcare (2006) London: 

University of London 

PhD. 

Azerbaijan Azerbaijani 49.88 40.40 44 - - - 0.02 0.02 0.04 

Mulcare (2006) London: 

University of London 

PhD. 

Cambodia Cambodian 104.92 11.55 22 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Dai 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Daur 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Han 109.00 19.00 90 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Han 100.00 35.00 200 - - - 0.00 0.00 0.00 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

China Hezhen 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Lahu 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Miaozu 107.00 26.00 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Mongola 116.39 39.93 20 - - - 0.10 0.10 0.19 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Naxi 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Oroqen 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  
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China She 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Tu 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Tujia 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Uygur 116.39 39.93 20 - - - 0.05 0.05 0.10 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Xibo 116.39 39.93 18 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

China Yizu 116.39 39.93 20 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

India Indian 80.28 13.08 68 - - - 0.13 0.13 0.25 

Mulcare (2006) London: 

University of London 

PhD. 

Iran Iranians 51.42 35.67 42 0.00 0.00 0.00 0.10 0.10 0.19 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Mongolia Mongolian 106.92 47.92 102 0.00 0.00 0.00 0.04 0.04 0.08 
Jones et al. (2009, 

unpublished) 

North India Indian 77.20 28.60 128 - - - 0.19 0.19 0.34 

Mulcare (2006) London: 

University of London 

PhD. 

Russia Erzas 45.11 54.11 60 - - - 0.27 0.27 0.47 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia Mokshas 45.11 54.11 60 - - - 0.28 0.28 0.48 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia Ob-Ugric 80.00 60.00 40 - - - 0.03 0.03 0.06 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia Russian 90.00 60.00 76 0.00 0.00 0.00 0.07 0.07 0.14 
Jones et al. (2009, 

unpublished) 

Russia Udmurts 80.00 60.00 60 - - - 0.33 0.33 0.55 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia (Komi 

republic) 
Komi 50.49 61.40 20 - - - 0.15 0.15 0.28 

Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Siberia Yakut 125.00 65.00 50 - - - 0.06 0.06 0.12 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

South Korea South Korean 127.00 35.57 46 - - - 0.00 0.00 0.00 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Syria, Iraq, 

Lebanon, West 

Bank 

Arabs 40.00 33.00 40 0.00 0.11 0.00 0.13 0.24 0.41 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Papua New 

Guinea 
Papuan 147.19 -9.46 34 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Solomon 

Islands 

Melanesian 

(NAN) 
159.95 -9.43 44 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Czechoslovakia Roma 14.47 50.08 162 - - - 0.10 0.10 0.19 

Mulcare (2006) London: 

University of London 

PhD. 

Finland Finns  28.00 65.00 1876 0.00 0.00 0.00 0.58 0.58 0.82 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Finland Saami 29.00 69.00 60 - - - 0.17 0.17 0.31 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Finland and 

Sweden 
Scandinavians 18.05 59.33 360 - - - 0.82 0.82 0.97 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Finns eastern 29.00 65.00 77 - - - 0.55 0.55 0.80 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Finns western 26.00 65.00 308 - - - 0.62 0.62 0.86 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

France Basques 0.00 43.50 170 - - - 0.66 0.66 0.88 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

France French 2.33 48.87 58 - - - 0.43 0.43 0.68 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

France French 2.33 48.87 34 - - - 0.34 0.34 0.56 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

France French Basque -1.00 43.00 48 - - - 0.67 0.67 0.89 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Germany German 10.00 53.55 60 - - - 0.56 0.56 0.80 

Mulcare (2006) London: 

University of London 

PhD. 

Greeks Greece 23.73 37.98 82 - - - 0.13 0.13 0.25 

Mulcare (2006) London: 

University of London 

PhD. 

Italy North Italian 9.72 45.68 28 - - - 0.36 0.36 0.59 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Italy S. European 12.48 41.90 66 0.00 0.00 0.00 0.09 0.09 0.17 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Italy Sardinian 9.12 39.22 56 - - - 0.07 0.07 0.14 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Italy South Italians 16.25 39.30 200 - - - 0.05 0.05 0.10 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Italy Tuscan 11.25 43.77 16 - - - 0.06 0.06 0.12 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Mixed N. European 15.00 54.00 110 0.00 0.00 0.00 0.62 0.62 0.85 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Poland Ashkenazi 21.00 52.25 96 - - - 0.08 0.08 0.16 

Mulcare (2006) London: 

University of London 

PhD. 
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Russia Russian 37.62 55.75 50 - - - 0.24 0.24 0.42 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Russian 

(Caucasus) 
Adygei 42.06 44.22 34 - - - 0.12 0.12 0.22 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Sweden Swedish 17.98 59.23 784 - - - 0.74 0.74 0.93 

Almon et al. (2007) 

Scand J Gastroenterol. 42, 

165. 

UK English, London -0.12 51.50 64 - - - 0.73 0.73 0.93 

Mulcare (2006) London: 

University of London 

PhD. 

UK 
Northern 

Ireland 
-7.63 54.37 65 - - - 0.95 0.95 1.00 

Mulcare (2006) London: 

University of London 

PhD. 

UK 

Orcadian 

(Orkney 

Islands) 

-3.30 58.95 32 - - - 0.69 0.69 0.90 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Russia Druss 47.12 42.83 34 - - - 0.12 0.12 0.23 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia mixed 47.12 42.83 46 - - - 0.13 0.13 0.24 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Russia Nog 47.12 42.83 40 - - - 0.07 0.07 0.14 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Iran Iranian 52.00 36.00 90 - - - 0.04 0.04 0.09 

Mulcare (2006) London: 

University of London 

PhD. 

Iran Qashqai 51.42 35.67 20 - - - 0.05 0.05 0.10 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Israel  Bedouin 34.77 32.07 38 0.00 0.13 0.00 0.03 0.16 0.29 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Israel Bedouin 34.00 31.00 98 - - - 0.03 0.03 0.06 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Israel Druze 35.00 33.00 96 - - - 0.02 0.02 0.04 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Israel Druze 34.77 32.07 28 0.00 0.11 0.00 0.04 0.14 0.27 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Israel 
Non-Bedouin 

Arabs 
34.77 32.07 160 0.00 0.05 0.00 0.00 0.05 0.10 

Ingram et al. (2009, 

submitted) J Mol Evol. 

Israel 
Palestinian 

Arabs 
35.13 31.47 102 - - - 0.04 0.04 0.08 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Israel/PAA 
Palestinian 

Arabs 
35.20 31.90 36 0.00 0.00 0.00 0.00 0.00 0.00 

Ingram et al. (2009, 

submitted) J Mol Evol. 

Japan Japanese 139.75 35.69 62 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Jordan Jordanian 35.93 31.95 112 0.00 0.05 0.00 0.05 0.11 0.20 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Jordan 
Jordanian 

Bedouin 
35.93 31.95 52 - - - 0.00 0.00 0.00 

Ingram et al. (2007) Hum 

Genet. 120, 779, Ingram 

(2008) London: 

University of London 

PhD. 

Jordan 
Jordanian 

Bedouin 
35.93 31.95 46 0.00 0.35 0.00 0.00 0.35 0.57 

Ingram et al. (2009, 

submitted) J Mol Evol. 

Kuwait Kuwaiti 47.98 29.37 28 - - - 0.00 0.00 0.00 

Mulcare (2006) London: 

University of London 

PhD. 

Pakistan Balochi 73.04 33.43 50 - - - 0.36 0.36 0.59 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Balti 68.00 30.00 46 - - - 0.00 0.00 0.00 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Baluch 68.00 30.00 38 - - - 0.34 0.34 0.56 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Brahui 73.04 33.43 50 - - - 0.34 0.34 0.56 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Brahui 68.00 30.00 60 - - - 0.27 0.27 0.47 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Burusho 72.00 37.00 50 - - - 0.10 0.10 0.19 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Burusho 68.00 30.00 60 - - - 0.02 0.02 0.04 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Hazara 66.00 35.00 50 - - - 0.08 0.08 0.15 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Hazara 68.00 30.00 28 - - - 0.04 0.04 0.08 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Kalash 73.04 33.43 50 - - - 0.00 0.00 0.00 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Kalash 68.00 30.00 60 - - - 0.00 0.00 0.00 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Kashmiri 68.00 30.00 40 - - - 0.12 0.12 0.23 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Makrani Baluch 68.00 30.00 58 - - - 0.17 0.17 0.31 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Mohannes 68.00 30.00 58 - - - 0.28 0.28 0.48 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Parsi 68.00 30.00 58 - - - 0.14 0.14 0.26 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Pathan 72.00 35.00 50 - - - 0.30 0.30 0.51 

Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 

1111.  

Pakistan Pathan 68.00 30.00 56 - - - 0.30 0.30 0.51 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Pakistan Sindhi 68.00 25.00 50 - - - 0.32 0.32 0.54 
Bersaglieri et al. (2004) 

Am J Hum Genet. 74, 
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1111.  

Pakistan Sindi 68.00 30.00 56 - - - 0.41 0.41 0.65 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Saudi Arabia Bedouin 45.00 23.00 94 0.00 0.48 0.00 0.00 0.48 0.73 
Ingram et al. (2009, 

submitted) J Mol Evol. 

Saudi Arabia Central  45.00 23.00 180 0.00 0.61 0.00 0.00 0.61 0.84 
Imtiaz et al. (2007) J Med 

Genet. 44, e89. 

Saudi Arabia Eastern  52.00 21.00 164 0.00 0.62 0.00 0.00 0.62 0.85 
Imtiaz et al. (2007) J Med 

Genet. 44, e89. 

Saudi Arabia Northern 40.00 30.00 164 0.00 0.52 0.00 0.01 0.53 0.78 
Imtiaz et al. (2007) J Med 

Genet. 44, e89. 

Saudi Arabia Southern 45.00 18.00 184 0.00 0.58 0.00 0.00 0.58 0.82 
Imtiaz et al. (2007) J Med 

Genet. 44, e89. 

Saudi Arabia Western 40.00 21.00 172 0.00 0.65 0.00 0.01 0.65 0.88 
Imtiaz et al. (2007) J Med 

Genet. 44, e89. 

Saudi Arabia  Arabs 45.00 23.00 248 0.00 0.57 0.01 0.00 0.58 0.83 
Enattah et al. (2008) Am 

J Hum Genet. 82, 57. 

Syria Assyrians 36.30 33.50 80 - - - 0.04 0.04 0.07 

Mulcare (2006) London: 

University of London 

PhD. 

Turkey Anatolian Turks 30.00 38.00 98 - - - 0.03 0.03 0.06 

Mulcare (2006) London: 

University of London 

PhD. 

Ukraine Ukraine 36.00 48.00 92 - - - 0.22 0.22 0.39 

Mulcare (2006) London: 

University of London 

PhD. 

Uzbekistan Uzbekistani 64.43 39.77 36 - - - 0.00 0.00 0.00 

Mulcare (2006) London: 

University of London 

PhD. 

West Bank 
Palestinian 

Arabs 
35.00 32.00 34 - - - 0.03 0.03 0.06 

Mulcare (2006) London: 

University of London 

PhD. 
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5. Simulating the Origins and Evolution of 

Lactase Persistence in Europe. 

 

This chapter is based on the following published article: Itan Y, Powell A, Beaumont 

MA, Burger J, Thomas MG (2009) The Origins of Lactase Persistence in Europe. PLoS 

Comput Biol 5(8): e1000491. doi:10.1371/journal.pcbi.1000491  

 

The content of this chapter will resemble in many parts the original article, with some 

changes: I will integrate relevant parts of the original article‟s supplementary 

information into the main body of this chapter and further elaborate on some relevant 

subjects that were only briefly mentioned (or not at all) in the original article, such as 

the spread of farming and animal domestication. It is important to note that the original 

article (and consequently this chapter) is a result of a collaborative study. Mark 

Beaumont developed and supervised the use of the Approximate Bayesian Computation 

(ABC) method that is applied in this study, Adam Powell analysed the results with the 

ABC method, and Joachim Burger contributed his archaeology and ancient DNA 

expertise. 

 

5.1. Introduction. 

 

Lactase persistence (LP) is an autosomal dominant trait enabling the continued 

production of the enzyme lactase throughout adult life. Lactase non-persistence is the 

ancestral condition for humans, and indeed for all mammals (Swallow, 2003). 

Production of lactase in the gut is essential for the digestion of the milk sugar lactose. 

LP is common in northern and western Europeans as well as in many African, Middle 

Eastern and southern Asian pastoralist groups, but is rare or absent elsewhere in the 

world (Ingram et al., 2007, Swallow, 2003, Mulcare et al., 2004, Tishkoff et al., 2007). 

In Europeans LP is strongly associated with a single C to T transition in the MCM6 

gene (-13,910*T), located 13.91kb upstream from the lactase gene (Enattah et al., 2002). 

Furthermore, in vitro studies have indicated that the -13,910*T allele can directly affect 

LCT gene promoter activity (Lewinsky et al., 2005). The -13,910*T allele ranges 

frequency from 6%-36% in eastern and southern Europe, 56%-67% in Central and 

western Europe, to 73%-95% in the British Isles and Scandinavia (Mulcare, 2006a, 
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Bersaglieri et al., 2004) while LP ranges in frequency from 15%-54% in eastern and 

southern Europe, 62%-86% in Central and western Europe, to 89%-96% in the British 

Isles and Scandinavia (Ingram et al., 2009a). This makes the -13,910*T allele a good 

candidate for predicting LP in Europe. However, genotype/phenotype frequency 

comparisons have shown that the -13,910*T allele cannot account for LP frequencies in 

most African (Mulcare et al., 2004) and Middle Eastern populations (Enattah et al., 

2008). Instead, different LP-associated alleles occurring in the same genomic region 

have been reported, indicating convergent evolution (Tishkoff et al., 2007, Ingram et al., 

2007, Enattah et al., 2008, Enattah et al., 2007). In chapter 4 I explore all four known 

LP-associated alleles and their worldwide distribution and correlation with the LP 

phenotype. 

 

Using long-range haplotype conservation (Bersaglieri et al., 2004) and variation in 

closely linked microsatellites (Coelho et al., 2005) as proxies for allelic age, the -

13,910*T variant has been estimated to be between 2,188 and 20,650 years old and 

between 7,450 and 12,300 years old, respectively. These recent age estimates, when 

considered in conjunction with modern allele frequencies, indicate that -13,910*T has 

been subjected to very strong natural selection (s = 0.014 - 0.19; (Bersaglieri et al., 

2004)). It is interesting to note that similar estimates for the strength of selection have 

been obtained for one of the major African LP variants (Tishkoff et al., 2007).  

 

It is unlikely that lactase persistence would provide a selective advantage without a 

supply of fresh milk and this has lead to a gene-culture co-evolutionary model where 

lactase persistence is only favoured in cultures practicing dairying (Kretchmer, 1972, 

Simoons, 1970, McCracken, 1971b, Aoki, 1986), and dairying is more favoured in 

lactase persistent populations (Bayless et al., 1971, Nei and Saitou, 1986, Simoons, 

1970, McCracken, 1971a). The reasons why LP, in conjunction with dairying, should 

confer such a strong selective advantage remain open to speculation. Flatz and 

Rotthauwe (1973) proposed the calcium assimilation hypothesis, whereby a lactase 

persistence allele is favoured in high-latitude regions because reduced levels of sunlight 

do not allow sufficient synthesis of vitamin-D in the skin. Vitamin D is required for 

calcium absorption and milk provides a good dietary source of both nutrients. 

Additional factors are likely to include the ability to consume a calorie and protein-rich 

food source, the relative constancy in the supply of milk (in contrast to the boom-and-
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bust of seasonal crops), and the value of fresh milk as a source of uncontaminated 

fluids. It is likely that the relative advantages conferred by these various factors differ in 

Europe and Africa. 

 

Estimates of the age of the -13,910*T correspond well with estimates of the onset of 

dairying in Europe. Slaughtering age profiles in sheep, goats and cattle suggest dairying 

was present in south-eastern Europe at the onset of the Neolithic (Vigne and Helmer, 

2007, Bartosiewicz, 2007), while residual milk proteins preserved in ceramic vessels 

provide evidence for dairying in present day Romania and Hungary 7,900-7,450 years 

BP (Craig et al., 2005). Furthermore, residual analyses of fats indicate dairying at the 

onset of the Neolithic in England, some 6,100 years BP (Copley et al., 2003, Copley et 

al., 2005), and after to 8,500 BP in the western parts of present day Turkey (Evershed et 

al., 2008). Allelic age estimates are also consistent with the results of a recent ancient 

DNA study (Burger et al., 2007) which showed that the -13,910*T allele was rare or 

absent among early farmers from Central and Eastern Europe. These observations lend 

support to the view that -13,910*T, and thus LP, rose rapidly in frequency only after the 

onset of dairying, as opposed to the „reverse-cause‟ hypothesis (Nei and Saitou, 1986, 

Bayless et al., 1971, Simoons, 1970, McCracken, 1971a), whereby dairying developed 

in response to the evolution of LP.  

 

Archaeological studies estimate that farming originated in the Near East about 10-11kya 

as a result of a mild climate and the availability of wild crops that were potential for 

farming (Bellwood, 2005). The change into a farming lifestyle from hunting-gathering 

had brought to a substantial change in lifestyle. Although in early stages of farming the 

life expectancy of farming was lower than this of hunter gatherers, it introduced the 

option of one carer for several infant, which enabled women to have shorter intervals 

between child births, and as a result the population density was increased (Diamond, 

2002). The Neolithic transition in Europe from hunting gathering to farming started 

approximately 9,000 years BP, and has been attempted to explain by two major 

mechanisms: the Demic Diffusion (DD) (Cavalli-Sforza et al., 1994) and Cultural 

Diffusion (Zvelebil and Zvelebil, 1988) models. According to the DD model, farming 

had spread in Europe and replaced hunting gathering by means of physical migration, 

while the CD model asserts that farming had spread by means of the spread of idea and 

technology. Assuming the DD model, we would expect the modern European gene pool 
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to consist mostly of Anatolian/Near Eastern ancestry, while if we assume the CD model 

then the modern European genetic ancestry would be expected to consist mostly of 

earlier hunter gatherers. A simulation method testing both hypotheses has suggested that 

it is likely that the mechanism was a complex combination between the DD and CD 

models (Currat and Excoffier, 2005). The spread in Europe had a south-eastern – north-

western cline, with faster migration along coastlines (Clark, 1965). Figure 5.1 shows the 

spread of farming in Europe that I obtained by applying the Natural Neighbour 

algorithm (Watson, 1994) surface interpolating the  calibrated c-14 dates of the arrival 

of farming to 761 locations around Europe and West Asia (Pinhasi et al., 2005). 

 

   

Figure 5.1. The dates of farming to different parts of Europe and West Asia. The contour map was 

calculated by using the Natural Neighbour surface interpolation method. The colour bar represents years 

before present, dots represent the archaeological sites where data were collected. The map was plotted 

using the PyNGL module (http://www.pyngl.ucar.edu/). 

 

Archaeozoology record show that the domestication of goat, cow, pig, and cattle was 

likely to have co-evolved with agriculture between 12-10kya (Ucko, 2007). A study has 

demonstrated a substantial geographic coincidence between high diversity in cattle milk 

genes, locations of the European Neolithic cattle farming sites, and present day lactase 

persistence in European, suggesting a gene-culture coevolution between cattle and 

Neolithic Europeans (Beja-Pereira et al., 2003). 

 

Important questions remain regarding the location of the earliest -13,910*T-carrying 

dairying groups and the demographic and gene-culture co-evolutionary processes that 
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shaped the modern distribution of LP in Europe. The present-day distribution of the -

13,910*T allele might be taken to indicate an origin in Northwest Europe. However, the 

earliest archaeozoological and residual lipid and protein evidence for dairying is found 

in the Near East, in Southeast Europe and in Mediterranean Europe (Vigne and Helmer, 

2007, Evershed et al., 2008, Vigne, 2006). While these observations can seem 

contradictory, forward computer simulations have shown that the centre of distribution 

of an allele can be far removed from its location of origin when a population expands 

along a wave front (Edmonds et al., 2004, Klopfstein et al., 2006). 

 

Assuming that the -13,910*T-allele was only subjected to strong natural selection in 

dairying groups, it is likely that -13,910*T-carrying dairyers underwent demographic 

expansion to a greater extent than non-dairying groups. While gene flow between 

dairying and non-dairying groups would ultimately lead to genetic homogeneity, under 

conditions of limited gene flow between cultural groups, it is plausible that the earliest 

LP peoples would have made a higher contribution to the European gene pool than their 

non-LP neighbours. In this study I used demic forward computer simulations to 

examine potential scenarios for the spread of LP in Europe. I simulated three interacting 

cultural groups (hunter gatherers, non-dairying farmers and dairying farmers) and 

tracked the spread of an allele that is selected only in one group (dairying farmers). I 

also tracked the expected proportion of genetic ancestry from the geographic region 

where LP/dairying coevolution began. I parameterized intrademic gene flow between 

cultural groups, interdemic gene flow, sporadic longer-distance migration, the cultural 

diffusion of subsistence practices and selection favouring lactase persistent dairyers. I 

compared the predicted frequency of a LP allele and arrival dates of farmers – from 

simulation outcomes – to known frequencies of the -13,910*T allele (Mulcare et al., 

2004, Bersaglieri et al., 2004) and carbon-14 based estimates of the arrival dates of 

farmers (Pinhasi et al., 2005) at different locations throughout Europe. Approximate 

Bayesian computation (ABC) was employed – a set of methods that allow the 

estimation of parameters under models too complex for a full-likelihood approach 

(Beaumont et al., 2002). By comparing summary statistics on the observed data with 

those computed on the simulated datasets, ABC enables estimation of the key 

demographic and evolutionary parameters including the region where LP-dairying 

coevolution in began in Europe. 

 



123 

 

5.2. Material and Methods. 

 

5.2.1. The Simulation Model. 

 

The simulation approach is motivated by a previous demic computer simulation study 

(Barbujani et al., 1995) and has features in common with more recent applications of 

this approach (Ray et al., 2003, Currat and Excoffier, 2005, Excoffier, 2004). 

Geographic space is modelled as a series of rectangular demes arranged to approximate 

the European landmass (2375 land demes and 1511 sea demes). Each deme has 

attributes of elevation, area (which varies due to the curvature of Earth and is calculated 

accordingly for each individual deme), and a climate (Mediterranean, Temperate, or 

Cold/Desert – see Figures 5.2 and 5.3).  

 

 

Figure 5.2. The average elevation at each simulated deme. The colour bar represents average elevation 

in meters above sea level. 
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Figure 5.3. The climate at each simulated deme. Red colour represents Mediterranean climate, yellow 

represent temperate climate, and blue is for cold/desert climate. 

 

 

Figure 5.4. The carrying capacity at each simulated deme. Values dependent on the deme‟s average 

elevation and climate (Figures 5.2 and 5.3, respectively).  

 

A maximum total population size is specified for each land deme taking into account its 

area, and assuming that lower elevation and mild Mediterranean climate results in a 
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greater potential population size, while harsher conditions, such as high elevations and 

cold/desert climates, result in a smaller potential population size (Colledge et al., 2004). 

The ratio for the relative contribution coefficients of climate and elevation factors to the 

population size is fixed at 1:4 in this study; meaning that elevation has a more dramatic 

effect than climate on population size. The sum of the carrying capacities of the three 

cultural groups (the deme‟s maximum population size, Figure 5.4) is calculated by: 

 

 Kdeme  0.2cl  0.8el DmaxAdeme   (1) 

 

where cl and el are the climatic and relative elevation factors, respectively; cl having 

values of 1 for Mediterranean, 2/3 for Temperate, and 1/3 for cold/desert climates 

(Colledge et al., 2004) (see Figure 5.3), and el being calculated as: 

 

 
el  1

deme_elevation

max_elevation
 (1.1) 

 

So el ranges between 0 at the highest elevation and 1 at sea level (see Figure 5.2). Dmax 

is the maximum population density and is fixed at 5 individuals per km
2 

(i.e. in a sea 

level Mediterranean climate deme (Hassan, 1981)), and Ademe is the area of the deme in 

km
2
. 

 

Each deme contains three distinct cultural groups: non-dairying farmers (Fnd), dairying 

farmers (Fd), and hunter-gatherers (HG). The ratios of ceiling population size for Fnd, Fd, 

and HG (as a proportion of the total maximum population size for the deme, Kdeme) are 

50:50:1 respectively (Bellwood, 2005, Hassan, 1981). Each cultural group in each deme 

is assigned a frequency for an allele that is subjected to genetic drift (modelled by 

intergenerational binomial sampling) and an allele at an unlinked locus that is not (as 

explained below). Initially the frequency of both „alleles‟ is set at zero. The former 

represents a LP allele and is subject to selection of intensity s, only in the Fd group. The 

latter, here termed the GB (genetic background) „allele‟, is used to track the general 

genetic ancestry component from the region where the LP allele is first found among 

dairying farmers. It will be used to infer the expected proportion of genes that originate 

from this region. The two alleles are assumed to be unlinked and are modelled 
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separately. I treat s as an unknown but bounded parameter, and choose random values 

ranging from 0 to 0.2 in simulations (Bersaglieri et al., 2004). 

The LP and GB „allele‟ frequency dynamics are determined in each generation by five 

processes: (1) intrademic bidirectional geneflow between cultural groups; (2) 

bidirectional geneflow between demes (interdemic) within the same cultural groups; (3) 

sporadic unidirectional migration within the same cultural groups; (4) cultural diffusion 

(CD); and (5) selection operating on LP allele-carrying individuals within the Fd group. 

Hardy-Weinberg equilibrium within each cultural group within each deme is assumed. 

Population size increase for each cultural group in each deme is modelled by logistic 

growth, limited by the carrying capacity of each group within each deme. The growth 

rate is fixed to r = 1.3 per generation, a value estimated from data of world population 

growth rate over the last 10,000 years, excluding the post-Industrial Revolution 

population boom (US Census Bureau: www.census.gov). In addition, the Fd group is 

allowed to increase in size as a function of the selective advantage of the LP allele, s, by 

considering the number of LP individuals and the selective advantage to being a LP 

dairyer (see equation 5). 

 

I define intrademic bidirectional geneflow as the exchange of individuals between 

different cultural groups within a deme (see Figure 5.5). A proportion of individuals in 

each cultural group, Pc, are deemed „available to change group‟. The actual number of 

individuals that exchange genes between cultural groups i and j, Bi↔j, is determined as 

follows: 

 

 
Bi j 

N j

Ni  N j

PcNi  (2) 

 

Where Ni and Nj are the total number of individuals belonging to each cultural group. I 

treat Pc as an unknown but bounded parameter, and choose random values ranging from 

0 to 0.2 in simulations (Spielmann and Eder, 1994, Mace, 1993). 
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Figure 5.5. Intrademic bidirectional geneflow between all cultural groups within a deme. The 

number of individuals exchanged between two cultural groups is determined by equation (2). 

 

I define interdemic bidirectional geneflow as the exchange of individuals between the 

same cultural groups in neighbouring demes (see Figure 5.6). A proportion of 

individuals in each cultural group, Pd, are deemed „available to change deme‟. The 

actual number exchanged is determined using the same formula as for intrademic 

bidirectional geneflow (equation 2), except I substitute Pd for Pc, and Ni and Nj are the 

total number of individuals belonging to each cultural group in each neighbouring 

deme. In each generation, each cultural group in each deme undergoes bidirectional 

geneflow with one neighbouring deme, randomly chosen from the 8 possible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Interdemic bidirectional geneflow between similar cultural groups in different demes. 

The number of individuals exchanged between two groups is determined by equation (2). 
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Fnd 

 

HG 

 

Fd 

 

Fnd 
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I define sporadic unidirectional migration as the movement of some individuals in a 

particular cultural group and deme to the same cultural group in a different deme (see 

Figure 5.7). A proportion of individuals in each cultural group, Ps, are deemed 

„available to migrate‟. The actual number of individuals that migrate, Nmig, is dependent 

on the „pressure‟ to leave the current deme and the availability of unoccupied carrying 

capacity in the destination deme (‟attractiveness‟), and is determined as follows:  

 

 

 
(3) 

   

Where  is the value of Kdeme (see equation 1) in the destination deme, Kcurr and 

Kdest are the carrying capacities for a specific cultural group, and Ncurr and Ndest are the 

number of people in the same cultural group, in the current home and destination demes 

respectively. I treat Ps as an unknown but bounded parameter, and choose random 

values ranging from 0 to 0.2 in simulations. The destination deme is chosen by a 

Gaussian random-walk process, which takes into account the mobility of the cultural 

group and the topography of the home deme. The Gaussian distribution is centred on the 

home deme; and its standard deviation is the product of the mobility of the cultural 

group, Mi, and the relative mobility factor of the home deme, Mcurr. I treat Mi as a 

separate unknown but bounded parameter for each of the three cultural groups, and 

choose random values ranging from 0 to 3 (demes) in simulations. Mcurr is determined 

for each deme by its elevation, allowing greater mobility at lower elevations (Weale et 

al., 2001, Thomas et al., 2008), with fixed values of 0.5 (demes) at mountainous terrain 

(above 1,100 meters), 1.0 at lowlands (below 1,100 meters), and 1.5 at coastal demes. 

The sporadic unidirectional migration function allows movement overseas, but 

whenever a sea deme is identified as a non-realistic destination deme the nearest 

neighbouring coastal deme is chosen instead. This feature, together with the 

attractiveness of low elevation land and the higher Mcurr value for coastal demes, creates 

the realistic tendency of a faster spread of farming along coastlines, consistent with 

archaeological data (Clark, 1965).  
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Figure 5.7. Sporadic unidirectional migration. Illustrating only one potential scenario, as migrants 

potentially leave and migrate to every populated deme. The migrants‟ destination deme is chosen by a 

Gaussian random walk process, centred on the home deme and with a standard deviation of the product of 

the cultural group mobility, Mi, and the relative mobility factor of the home deme, Mcurr . See equation (3). 

 

I define Cultural Diffusion (CD) as the spread of culture and technology by learning 

through exposure rather than by migration (see Figure 5.8). In the simulations a 

proportion of individuals in each cultural group, Pdif, are deemed „available to convert‟ 

from one cultural group to another. The number of individual that convert from cultural 

group i to cultural group j, Ni→j, is determined by this parameter and the proportion of 

the carrying capacity (K) of the home deme (deme 0) and in the 8 neighbouring demes 

(demes 1 to 8) that is taken up by cultural group j, as follows:  

 

 
Ni0 j  Ni0Pdif b

N j0

K j0

 (1 b)
1

8

N jn

Knn1

8










  (4) 

   

where b is the relative influences of the home deme and the 8 neighbouring demes 

(fixed to 0.75). I treat Pdif as an unknown but bounded parameter, and choose a random 

value ranging from 0 to 0.2 in each simulation. That value is then applied to 

„conversions‟ between all 3 cultural groups. 

 

 

 

Fd 

 

Fnd 

 

HG 
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Figure 5.8. Cultural diffusion. The number of individuals in cultural group i converting to cultural 

group j is determined by the proportion of the carrying capacity taken by group j in the home deme of 

group i and the eight surrounding demes. See equation (4). 

 

The geographic location where LP / dairying gene-culture coevolution starts is chosen at 

random from all land demes. This LP mutation is initialized at a frequency of 0.1 in Fd 

when their population size reaches a critical size in the chosen start deme, set to a 

minimum of 20 individuals per deme in simulations. While we would expect any de 

novo mutation to always have an initial frequency of 1/2N, we also expect that it will 

have a high probability of extinction unless selection is very strong (Haldane, 1927). 

Indeed, in preliminary simulations this was observed (data not shown). Thus, for 

computational efficiency I condition on the LP mutation having already reached a 

frequency of 0.1 in Fd in the deme of origin. However, such a starting frequency means 

that little more than four LP alleles are initialized in simulations. Selection acting on the 

LP allele, p, increases its frequency in Fd only, as follows (Maynard Smith, 1998): 

 

 
p ' 

p2 1 s  pq 1 s 
1 s p2  2pq 

 (5) 

   

where s is the selection coefficient for p, and p’ is the new LP allele frequency. In 

addition, selection acting on the LP allele increases the number, N, in Fd as follows: 

 

 N '  N 1 s p2  2pq   (6) 

 

where N’ is the new number of Fd in a particular deme.  

Group i 

 

Group j 
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All simulations were run for 360 generations which, assuming a generation time of 25 

years (Thomas et al., 2006, Tremblay and Vezina, 2000), corresponds to the 9,000-year 

history of farming in Europe. I performed 200,000 simulations in total. 

 

The genetic contribution of the population living in the region of origin of LP / dairying 

gene-culture coevolution to the overall European population is tracked over generations 

by calculating the GB „allele‟ frequency over all demes in all 3 cultural groups. In the 

generation when the LP allele is initialized, all cultural groups in the origin deme and 8 

neighbouring demes are assigned the unlinked GB „allele‟ at a frequency of 1. The GB 

'allele' is subjected to the same intra- and inter-deme geneflow and migration processes 

as described above, but is not subject to drift, as modelled by binomial sampling, or to 

selection. At the end of each simulation this GB allele is taken to represent the general 

genetic contribution of the population living in the region of origin of LP to the modern 

European population. The ancestry component of Europeans, at any generation, that 

originates from people living in the region of origin of the LP allele (FGB) is calculated 

as follows:  

 

 

FGB 

pGBi j
Ni j

j Fnd ,Fd ,HG 


i

n



Ni
i

n


 (7) 

 

where n is the number of land demes, Ni is the total number of people in deme i, and 

pGBij and Nij are the frequency of the GB 'allele' and the population size in deme i / 

cultural group j, respectively.  

 

5.2.2. Parameters Estimation. 

 

To estimate parameters of interest an ABC approach was applied, following (Beaumont 

et al., 2002). By comparing summary statistics computed on each simulated dataset to 

those from the observed data, only those simulations with summary statistics 

sufficiently close to the target (i.e. the observed summary statistics) are accepted, 

remainder are rejected. Then a weighted local-linear regression was performed on these 

retained parameter sets, with weight determined by the “distance” between the 

simulation summary statistics and the target (all details below). This generates 
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approximate marginal posterior probability distributions for each parameter of interest, 

from which the modal point estimates are derived. The chosen summary statistics, U, 

are the frequencies of the -13,910*T allele at 12 different sample locations around 

Europe, the Near East and western Asia (Mulcare, 2006a, Bersaglieri et al., 2004). In 

addition, the times to arrival of farming at 11 of the same locations (the Anatolia 

location is excluded as the simulation model is initialized with this as the origin of the 

spread of farming into Europe) are included as summary statistics. These are not 

summary statistics sensu stricto but are parameters in the model for which independent 

estimates are obtained. However, the simulations, being stochastic, generate a 

distribution of arrival times, and should be conditioned on those that are consistent with 

the known archaeological evidence (Figure 5.1). The most straightforward way to do 

this is to place a point prior on the arrival dates, and then condition on these using the 

ABC machinery, as if they are summary statistics. The point priors for the arrival dates 

of farming at 11 of the 12 sampling locations considered (Anatolia was set to 9,000 

years as the simulations begin 360 generations ago in „an Anatolia‟ populated by 

farmers) were calculated as follows: (1) The average nearest-neighbour distance 

(ANND) between each sampling location was calculated (557.13km). (2) A 2-D 

Gaussian sampling region was constructed around each of the 11 sampling locations, of 

standard deviation = ANND / 1.96 (this ensures that 95% of each Gaussian sampling 

region will be within the ANND). (3) A weighted average of all dates within 3 standard 

deviations of the sampling location was calculated using all calibrated carbon-14 

earliest farming arrival dates from Pinhasi et al. (Pinhasi et al., 2005), and weighting 

using the distance from the sampling location and the standard probability density 

function for a Gaussian distribution. Assuming a generation time of 25 years (Thomas 

et al., 2006, Tremblay and Vezina, 2000) these observed dates are converted to 

generations from the start of the simulation, which was set at 9,000 years BP or 360 

generations ago (see Table 5.1). Two Spearman‟s rank-order correlation coefficients are 

also included, calculated separately for the 12 T-allele frequencies and the 11 times to 

arrival of farming, giving a total of 25 summary statistics. When calculating these 

statistics for the simulated data: LP frequencies are taken in the final generation of the 

simulation at the 12 corresponding geographic locations; and the time to arrival of 

farming is defined as the simulation generation at which either Fd or Fnd reach 1% of 

their carrying capacity within each of the 11 corresponding location demes. All time to 

arrival of farming statistics are scaled to the interval [0,1] by dividing by the total 
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number of simulated generations (360). 

 

Table 5.1. -13,910*T allele frequencies, inferred farming start dates and geographic coordinates of 

12 locations data used in ABC analysis. Inferred arrival of farming dates were based on: 
1
 a weighted 

average of all calibrated carbon-14 earliest farming arrival dates from Pinhasi et al. [31] within 853 km of 

each sampling location, weighted using the distance from the sampling location and the standard 

probability density function for a Gaussian distribution of s.d. 285 km; and 
2
 by assuming a constant rate 

of spread of farming (estimated at 0.9 km/year (Pinhasi et al., 2005)) and calculating the great circle 

distance from Anatolia to each sampling location. All inferred generations after the start of farming were 

calculated by assuming a generation time of 25 years (Thomas et al., 2006, Tremblay and Vezina, 2000). 

 

 

Parameters of interest, , are: the east-west and north-south coordinates of the location 

where the LP-allele first undergoes selection among Fd; the generation at which this 

selection starts; the selective advantage of LP within the Fd group, s; the proportion 

available for interdemic bidirectional geneflow, Pd; the proportion available for 

intrademic bidirectional geneflow among cultural groups, Pc; the rate of cultural 

diffusion, Pdif; the proportion of people available for sporadic migration, Ps; the 

mobility of each of the three cultural groups, Mi; and the contribution of people living in 

the deme where LP-dairying gene-culture coevolution began and its 8 surrounding 

demes, FGB, to the modern European gene-pool. The uniform prior distributions for each 

parameter are given in Tables 5.2 and 5.3. 
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Table 5.2. Posterior estimates of demographic and evolutionary parameters (mean, mode and 95% 

credibility interval). Posterior distributions were by estimated by ABC employing regression adjustment 

and weighting of simulations accepted at the 0.5% tolerance level (Beaumont et al., 2002). 

Parameter Parameter 

symbol 

Prior 

range 

Units Posterior 

95% CI  

Mode Mean 

Interdemic 

BD GF 

Pd 0 to 0.2 Proportion 0.00716 - 

0.171 

0.0440 0.0620 

Intrademic 

BD GF 

Pc 0 to 0.2 Proportion 0.00206 - 

0.0867 

0.0153 0.0339 

Cultural 

Diffusion 

Pdif 0 to 0.2 Proportion 0.00113 - 

0.0847 

0.0136 0.0321 

Selective 

Advantage 

s 0 to 0.2 Proportion 0.0518 - 

0.159 

0.0953 0.0957 

Proportion 

available for 

Sporadic 

migration 

Ps 0 to 0.2 Proportion 0.0575 - 

0.251 

0.129 0.132 

Sporadic 

migration 

mobility HG 

MHG 0 to 3 Demes 0.333 - 2.17 1.16 1.20 

Sporadic 

migration 

mobility Fnd 

MFnd 0 to 3 Demes 0.311 - 1.18 0.733 0.713 

Sporadic 

migration 

mobility Fd 

MFd 0 to 3 Demes 2.15 - 3.93 3.12 3.08 

Time of 

Origin of 

Gene-Culture 

coevolution 

Not a 

parameter 

sensu stricto  

[0 to 

9000] 

Years 6256 - 8683 7441 7553 

Genetic 

contribution 

to modern 

European 

genepool 

Not a 

parameter 

sensu stricto 

[0 to 

100] 

Percent 2.83 - 27.4 7.47 11.1 
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Table 5.3. Parameters of simulation model. „Flat‟ indicates that a uniform prior was used. 

Symbol Fixed/ 

variable 

(F/V) 

Value Description 

Dmax F 5 Maximum population density per per km
2
. 

cl F cold=1/3, temperate= 

2/3, med=1 

Climatic factor modifying carrying capacity. 

el F 0 to 1, depending on 

elevation values as a 

proportion of max 

elevation. 

Elevation factor modifying capacity. 

a F 0.2 Coefficient for relative contribution of climatic 

factor (a) and elevation factor (1-a) to deme 

carrying capacity. 

ratios F 1:50:50 for HG, Fd, 

Fnd, respectively. 

Ratios between the carrying capacities of the 

cultural groups, summing to deme's carrying 

capacity. 

r F 1.3 Logistic population growth rate. 

gen F 360 Number of generations in one simulation run. One 

generation = 25 years. 

Mcurr  F 1.5, 1, 0.5 for coastal, 

lowland, and 

mountains, 

respectively. 

Topography factor modifying sporadic migration 

distance. Mountains defined as elevation>1100m 

b F 0.75 Cultural diffusion coefficient for relative 

contribution of local population density and 1-b 

for surrounding demes' population density. 

s V 0 to 0.2 (flat) Selective advantage. Affects gene frequencies and 

population growth. 

Pc V 0 to 0.2 (flat) Proportion of people available to move to another 

cultural group within a deme (bidirectional). 

Pd V 0 to 0.2 (flat) Proportion of people available to move to the 

same cultural group in a neighbouring deme 

(bidirectional). 

Ps V 0 to 0.2 (flat) Proportion of people available for sporadic 

migration. 

MFnd V 0 to 3 (flat) Sporadic migration mobility of non-dairying 

farmers (s.d. of the Gaussian random walk 

distribution given by the product of this value, Mi, 

and the relative mobility factor of the home deme, 

Mcurr).  

MFd V 0 to 3 (flat) Sporadic migration mobility of dairying farmers. 

MHG V 0 to 3 (flat) Sporadic migration mobility of hunter-gatherers.  

Pdif V 0 to 0.2 (flat) Maximum proportion of people available for 

converting into another cultural group. 

location V Any land deme Start location coordinates for LP-dairying 

coevolution. 

 

The full ABC algorithm is as follows: (1) choose the summary statistics U as outlined 

above and calculate their values, u, for the observed data (these are given in Table 5.1), 

(2) choose a tolerance level  (a proportion of the best fitting simulations, P, is 

predefined to accept and from this calculate an implicit tolerance level ), (3) sample a 

parameter set i from the pre-determined prior distribution of , (4) simulate forward 

under the model using parameter set i, (5) in the final generation of the simulation the 
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summary statistics, ui, is calculated for this simulated data, (6) If ||ui – u||    (where ||.|| 

is the Euclidean norm between the two vectors) the parameter set i is accepted, (7) 

steps 3 to 6 are repeated until a sufficient number of retained parameter sets is obtained, 

(8) A local-linear standard multiple regression is then performed to adjust the i, with 

each i weighted according to the size of ||ui – u|| using the Epanechnikov kernel 

function K(t) (see (Beaumont et al., 2002) for details), (9) The resulting fitted 

parameter sets i* form a random sample from the approximate joint posterior 

distribution P(|U=u). All retained parameters – except for the two coordinate values 

and the generation at which the co-evolutionary process starts – were log transformed 

prior to the regression step, and subsequently back-transformed to produce the fitted 

parameter sets i*, as suggested by Beaumont et al. (Beaumont et al., 2002). 

 

The simulation and ABC analysis procedures were written in the Python Programming 

Language (URL: http://www.python.org/) employing the numarray and Numpy array 

handling libraries. Maps were generated using the Python library PyNGL 

(http://www.pyngl.ucar.edu/). Post-ABC analysis data was processed and visualised 

using the statistical package „R‟ (URL: http://www.R-project.org/). 

 

5.3. Results. 

 

Simulation time. Unlike the simulation models used in related studies (Barbujani et al., 

1995, Ray et al., 2003, Excoffier, 2004, Currat and Excoffier, 2005) the one presented is 

stochastic and more parameter-heavy. In addition, it was written in Python using the 

object orientated paradigm which, while utilizing some highly efficient array-handling 

libraries such as numarray and Numpy, is considerably slower than purely procedural 

simulations written in a lower-level programming language such as C++. A single 

simulation takes about 170 seconds on a 3.0GHz Athlon™ 64 processor. 

 

Demographic parameter estimation. The regression adjustment and weighting step of 

ABC were applied to simulations accepted at the 0.5% tolerance level (Beaumont et al., 

2002). As can be seen in Figure 5.9, for some parameters, such as the sporadic 

migration mobility of hunter-gatherers, little information could be obtained using the 

observed data (also see Table 5.2). This is unsurprising since we would expect the value 

for this parameter to make little difference to either the arrival time of farming or the 
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distribution of a LP allele. However, the analyses did appear informative for some key 

parameters. (1) The 95% credibility interval (CI) for selective advantage of the LP allele 

among dairying farmers, s, is considerably narrower (0.0518 - 0.159; mode = 0.0953) 

than its prior (0 - 0.2); (2) The 95% CI for the proportion of individuals available for 

intrademic bidirectional geneflow between cultural groups, Pc, (0.00206 - 0.0867; mode 

= 0.0153) falls in the lower end of its prior range (0 - 0.2); and (3) The sporadic 

migration mobility of dairying farmers, MFd, is significantly higher than that for non-

dairying farmers; 99.998% of 100,000 random draws from the former are greater than 

those from the latter. I note that for some parameters the estimated 95% credible 

intervals lie outside the upper prior bound. This is a consequence of using regression 

adjustment in a model with rectangular priors (Beaumont et al., 2002). Points in which 

the parameter value is close to the boundary, but with summary statistics that are distant 

from those observed, may have their parameter values projected outside the boundary 

by the regression method. 
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Figure 5.9. Approximate marginal posterior density estimates of demographic and evolutionary 

parameters. ABC was performed using regression adjustment and weighting, following acceptance at the 

0.5% tolerance level (Beaumont et al., 2002). The upper and lower 2.5% of each distribution are shaded. 

For some parameters the estimated 95% credible intervals lie outside the upper prior bound. This is a 

consequence of the regression adjustment stage of ABC when using rectangular priors (Beaumont et al., 

2002). Points in which the parameter value is close to the boundary, but with summary statistics that are 

distant from those observed, can have their parameter values projected outside the boundary. Parameters 

estimated are (A) Interdemic bidirectional geneflow, (B) Intrademic bidirectional geneflow, (C) the rate 

of cultural diffusion of subsistence practices, (D) the selective advantage of a LP allele among dairying 

farmers, (E) the proportion of individuals in a deme available for sporadic long-distance migration, and 

the average mobility – in number of demes moved – of (F) hunter-gatherers, (G) non-dairying farmers, 

and (H) dairying farmers. 

 

To investigate relationships among demographic and evolutionary parameters 

Spearman‟s R
2
 and p-values were calculated for all possible pairwise joint posterior 

parameter distribution (see Table 5.4), following acceptance at the 0.5% level and 

regression adjustment (Beaumont et al., 2002). Figure 5.10 shows those with R
2
 > 

0.024. The following parameter pairs, in order of decreasing R
2
, showed non-

independence by this criteria: (A) proportion available for sporadic migration and the 

sporadic mobility of dairying farmers, (B) proportion available for sporadic migration 

and the sporadic mobility of non-dairying farmers, (C) selective advantage and sporadic 

mobility of non-dairying farmers, and (D) sporadic mobility of dairying farmers and 

sporadic mobility of hunter-gatherers. That the first two joint distributions show 
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negative correlation is unsurprising since changes in the proportion available for 

sporadic migration, or in the sporadic migration mobility of dairying and non-dairying 

farmers, will have similar effects on the timing of arrival of farming at different 

locations. 

 

Table 5.4. Correlations among demographic and evolutionary parameters. Spearman‟s R
2
 (above 

diagonal) and p-values (below diagonal) are given for all pairwise joint posterior parameter distribution. 

Posterior distributions were estimated by ABC employing regression adjustment and weighting of 

simulations accepted at the 0.5% tolerance level (Beaumont et al., 2002). Parameter joint distributions are 

shown in Figure 2 (main article) for combination returning a Spearman‟s R
2
 value > 0.024. 

 Sporadic 

Prop 

Selective 

Advantage 

Sporadic 

Mob Fd 

Sporadic 

Mob Fnd 

Interdemic 

BD GF 

Intrademic 

BD GF 

Cultural 

Diffusion 

Sporadic 

Mob HG 

Sporadic 

Prop 

 0.00680 0.458 0.118 1.69E-04 

 

0.00229 0.00241 0.00710 

Selective 

Advantage 

0.00901  00727 0.0746 0.00222 0.0175 0.0111 5.96E-04 

 

Sporadic 

Mob Fd 

1.40E-135 

 

0.00691  5.94E-04 

 

0.00829 0.0137 0.0124 0.0255 

Sporadic 

Mob Fnd 

4.01E-29 

 

1.27E-18 

 

0.441  0.0208 1.90E-05 

 

8.89E-05 

 

0.00418 

Interdemic 

BD GF 

0.681 0.136 0.00390 4.52E-06  0.0239 0.00451 0.00197 

Intrademic 

BD GF 

0.130 2.59E-05 

 

2.08E-04 

 

0.890 8.53E-07 

 

 0.00580 4.18E-05 

 

Cultural 

Diffusion 

0.121 8.21E-04 

 

4.14E-04 

 

0.766 0.0334 0.0159  2.32E-04 

 

Sporadic 

Mob HG 

0.00760 0.440 3.70E-07 

 

0.0406 0.160 0.838 0.630  

 

 

Figure 5.10. Pairwise joint approximate posterior density estimates of demographic and 

evolutionary parameters showing high degrees of correlation (Spearman’s R
2
 > 0.024). Points 

represent regression adjusted parameter values from simulations accepted at the 0.5% tolerance level. 

Shading was added using 2D kernel density estimation. Parameter combinations shown are the proportion 

of individuals in a deme available for sporadic long-distance migration versus the average mobility – in 

number of demes moved – of (A) dairying farmers, and (B) non-dairying farmers, (C) the selective 

advantage of a LP allele among dairying farmers versus the average mobility of non-dairying farmers, 

and (D) the average mobility of dairying farmers versus the average mobility of hunter-gatherers. 
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Geographic and temporal origin of LP-dairying co-evolution: Following acceptance at 

the 0.5% level and regression adjustment it is estimated that the most probable location 

where an LP allele first underwent selection among dairying farmers lies in a region 

between the central Balkans and central Europe (see Figure 5.11). It should be noted 

that, as simulated, it was not attempted to identify the location where the LP -13,910*T 

allele first arose. Instead it was assumed that it started to rise to appreciable frequencies 

only after selection began among dairying farmers, initially at the particular location 

estimated. The timing of the start of this gene-culture coevolution process was therefore 

strongly influenced by the arrival time of dairying farmers at the location where 

selection began in simulations. Since simulations that give a good fit to the timing of the 

arrival of farming were selected at different locations (Pinhasi et al., 2005), a narrow 

range of dates for when selection began was estimated (95% CI 6,256 to 8,683 years 

BP; mode = 7,441 years BP; see Figure 5.12A).  

 

 

Figure 5.11. Approximate posterior density of region of origin for LP / dairying co-evolution. Points 

represent regression-adjusted latitude and longitude coordinates from simulations accepted at the 0.5% 

tolerance level. Shading was added using 2D kernel density estimation. 

 

Genetic contribution of the earliest LP dairying farmers to the modern European gene 

pool: Although not strictly a parameter of the model presented, the ABC approach had 

been applied to estimate the genetic contribution of people living in the deme where LP-
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dairying gene-culture coevolution began, and its 8 surrounding demes, to the modern 

European gene-pool (95% CI 2.83 to 27.4%; mode = 7.47%; see Figure 5.12B).  

 

 

Figure 5.12. Estimates of the date of origin for LP / dairying coevolution and the contribution of 

people living in the deme of origin for LP / dairying co-evolution, and its eight surrounding demes, 

to the modern European gene pool. Although not parameters of the model sensu stricto, estimates were 

calculated as with all model parameters by using ABC with regression adjustment and weighting, 

following acceptance at the 0.5% tolerance level (Beaumont et al., 2002). The date of origin for LP / 

dairying coevolution (A) is given in thousands of years before present, and the contribution of people 

living in the deme of origin for LP / dairying co-evolution, and its 8 surrounding demes, to the modern 

European gene pool (B) is given as a percentage. The upper and lower 2.5% of each distribution are 

shaded. 

 

The genetic contribution will, to a large extent, be determined by the start location of 

LP-dairying gene-culture co-evolution. For example, if this process started in Anatolia 

or the Greek peninsula then we would expect the people living in that region to make a 

greater contribution to overall European ancestry than if it started in Northwest Europe. 

With respect to LP a more pertinent question is: Does the advent of LP-dairying 

coevolution increase the genetic contribution of people living in a particular region to 

the modern European gene pool? To investigate this, two extra sets of 5,000 simulations 

were performed, each by picking parameter values at random from the marginal 
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posterior distributions obtained above. Each set of 5,000 simulations was run with 

identical sets of parameter value combinations except that in one set the level of 

selection acting on the LP allele was fixed to zero. Then the distributions of genetic 

contribution (of people living in and around the LP-dairying start deme to the modern 

European genepool) were compared with and without selection acting. It was surprising 

to find that the two distributions are nearly identical (see Figure 5.13). 

 

 

Figure 5.13. Contribution of people living in the deme of origin for LP / dairying co-evolution, and 

its 8 surrounding demes, to the modern European gene pool with and without selection on LP. 

Value distributions were taken from 5,000 simulations assuming selection (black line), and 5,000 

simulations assuming no selection (red line). Simulation parameter values were sampled at random from 

the marginal posterior density estimates presented in Figure 5.9 and were identical for each set of 5,000 

simulations, except that in the „no selection‟ set the selection acting on the LP allele in dairyers parameter 

was set to zero.  
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Performance of model in explaining observed data: To explore the power of the model 

to explain the two data sets considered (13,910*T allele frequency at 12 European 

locations and farming arrival date at 11 European locations), the following for each data 

type and at each location considered were plotted: (1) the observed value, (2) the 

distribution of values from simulations accepted at the 0.5% tolerance level, and (3) the 

distribution of values from all simulations in which the 13,910*T allele arose and did 

not go extinct (see Figures 5.14 and 5.15). Although it will necessarily be the case that 

the 0.5% closest points will be nearer to the observed summary statistics than those 

simulated from the prior, it is still possible that an observed value will be an outlier 

from the distribution of simulated points, possibly indicating poor fit of the model. 

However, as can be seen from Figure 5.15, simulations accepted at the 0.5% tolerance 

level generate narrow ranges of expectations for the farming arrival date, in very good 

accordance with the observed (target) values. This can be taken to indicate that with the 

ABC-estimated parameter values, the model explains the farming arrival dates very 

well. When considering the 13,910*T allele frequency at the 12 European locations for 

which data was available (Figure 5.14) it is notable that the observed (target) values are 

within the 95% equal tail probability interval of expectations generated from 

simulations accepted at the 0.5% tolerance level. However, a number of the target 

values are somewhat offset from the expectation modes. In particular, it is notable that 

for northern European locations the observed frequency is lower than the mode of the 

expected values and the opposite is the case for southern European locations.  
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Figure 5.14. Performance of model in explaining observed data on −13,910*T allele frequency at 12 

locations throughout Europe. The observed point values are indicated by vertical red lines. The 

distributions of expected values from all simulations in which the 13,910*T allele arose and did not go 

extinct are indicated by black lines. The distributions of expected values from all simulations accepted at 

the 0.5% tolerance level in ABC analysis are indicated by green lines. 
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Figure 5.15. Performance of model in explaining observed data on the estimated time of arrival of 

farming at 11 locations throughout Europe. The observed point values are indicated by vertical red 

lines. The distributions of expected values from all simulations in which the 13,910*T allele arose and did 

not go extinct are indicated by black lines. The distributions of expected values from all simulations 

accepted at the 0.5% tolerance level in ABC analysis are indicated by green lines. 

 

5.4. Discussion. 

 

The simulation model I have employed here is relatively complex compared to related 

human demographic / evolutionary models reported (Barbujani et al., 1995, Ray et al., 

2003, Excoffier, 2004, Currat and Excoffier, 2005). The inclusion of a selected allele 

and three distinct but interbreeding cultural groups is necessary for the type of questions 

addressed in this study. But the inclusion of four parameters related to sporadic 

migration activity, namely the proportion of individuals available for sporadic long-

distance migration and the sporadic mobility of each of the 3 cultural groups (modeled 

separately as a Gaussian random walk process) both allows to tackle the problem of 

migration overseas and adds, in my view, an extra level of realism to the model. 

However, as with any simulation model of population history, many simplifying 
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assumptions have to be made and the extent to which these assumptions may lead to 

erroneous conclusions remains unknown. For example, I have not considered the 

„reverse-cause‟ hypothesis (Nei and Saitou, 1986, Bayless et al., 1971, Simoons, 1970, 

McCracken, 1971a) – which proposes that dairying first arose in populations that were 

already LP – because both ancient DNA evidence (Burger et al., 2007) and data from 

lipid residues on pots (Evershed et al., 2008) are inconsistent with this view. However, 

this does not mean that once LP-dairying gene-culture coevolution was established, 

conversion to the culture of dairying was more likely in high LP frequency populations. 

Such a process is captured in the model to an extent, in that „cultural‟ conversion is 

determined by the frequency of the receiving cultural group (see equation 4), and LP is 

unlikely to rise to high frequencies anywhere without the presence of dairying. 

Nonetheless, a more explicit treatment of this process may lead to different conclusions. 

Some parameters, such as those relating to the effects of climate zone / elevation, and 

the logistic growth rate, are fixed based on realistic assumptions (Bellwood, 2005, 

Colledge et al., 2004, Hassan, 1981). For those parameters that are allowed to vary 

within a range I note that an important shortcoming is that in any single simulation their 

value is constant over the 360-generation duration of the run. This may be a particular 

issue for selection acting on an LP allele in Fd (see below). Since „good‟ simulations are 

identified by using their fit to only two data sets (arrival time of farming and LP allele 

frequency, both at a range of geographic locations) it is unsurprising that the analysis is 

relatively uninformative for some parameters. However, inclusion of these parameters 

does serve to reflect uncertainty in their values. 

 

Estimates of the arrival dates for farming the 11 locations considered here were 

calculated as local weighted averages of calibrated carbon-14 dates (Pinhasi et al., 2005) 

from a Gaussian sampling region (also see Figure 5.1). The standard deviation of this 

region was set at the average nearest neighbour distance to ensure that most of the 

carbon-14 data was used. However, the geographic density of carbon-14 dates is highly 

uneven across Europe and so the number of such dates that are informative for farming 

arrival time at any of the 11 locations will vary. Also, there appears to be a considerable 

amount of noise in the dates for the first farmers. For example, the earliest carbon-14 

date for farming in Ireland predates those for Great Britain, the Low Countries and 

Denmark. To test if these concerns had a major effect on the results, the simulation date 

was reanalysed by setting the target farming arrival dates as those inferred by assuming 
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a constant rate of spread of farming (estimated at 0.9 km/year (Pinhasi et al., 2005)) and 

calculating the great circle distance from Anatolia to each sampling location. The results 

of this reanalysis were very similar to those presented above (see Figure 5.16). 

 

 

Figure 5.16. Reanalyses Images. Equivalent to Figures 5.9-5.12 from top to bottom ,respectively, 

reanalysed by setting the target farming arrival dates as those inferred by assuming a constant rate of 

spread of farming (estimated at 0.9 km/year (Pinhasi et al., 2005)) and calculating the great circle distance 

from Anatolia to each sampling location. 
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I am well aware that the spread of the Neolithic over Europe was not as constant as the 

model assumes. After the arrival of the Neolithic in the Balkans, there is a pause of 

approximately 800 years before it starts to spread to Central Europe, and there is 

another pause of 1,000 years before it spreads further into the northern German 

lowlands and other parts of the northern Europe. Clearly, the carbon-14 dates used to 

estimate the farming arrival times will not fully reflect the complex history of 

neolithisation in all parts of the continent. 

 

The list of parameters for which the marginal posterior distributions are notably 

narrower than their corresponding prior ranges (selective advantage, intrademic gene 

flow, the sporadic migration distance of Fd and Fnd, and the geographic origin location 

of LP / dairying co-evolution) – which I interpret as those parameters for which the 

analysis is informative – is an unsurprising one since we would expect these parameters 

to have the greatest influence on the spread of an LP allele and farming in Europe. 

Likewise, it is unsurprising that the proportion available for sporadic migration and the 

sporadic mobility of (a) dairying farmers, and (b) non-dairying farmers are both 

strongly negatively correlated (Figure 5.10A and 5.10B) since we would expect these 

parameters to be confounded in influencing the arrival time of farmers at different 

locations.  

 

The estimated selective advantage conferred by a LP allele (mode = 0.0953; 95% CI = 

0.0518 - 0.159) is in good agreement with previous estimates for Europeans (0.014 - 

0.15 (Bersaglieri et al., 2004)). However, it should be noted that (1) this estimate is for 

selection only in dairying farmers, who make up just under half of the population that is 

simulated, and (2) it is assumed that selection is constant over time. It is possible that 

selection favouring LP has in fact been episodic and possibly spatially structured in 

different climate zones (Flatz and Rotthauwe, 1973, Beja-Pereira et al., 2003, Simoons, 

1980, Simoons, 1978, Bloom and Sherman, 2005, Simoons, 2001). Episodic selection 

would be difficult to model without additional information on when those episodes were 

likely to have occurred. But I reason that constant selection strength is a more 

parsimonious assumption in the absence of evidence to the contrary. If, as modelled 

here, dairying farmers made up less than half of the European post-Neolithic population 

then we would expect the real continent-wide selection values for LP to average less 
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than half of what estimated here. Such a range of selection values are, however, still 

consistent with previous estimates based on haplotype decay (Bersaglieri et al., 2004). 

Perhaps the most interesting result presented here is the estimation of the geographic 

and temporal origins of LP-dairying co-evolution. The highest posterior probabilities 

were found for a region between the central Balkans and central Europe (see Figure 

5.11). At first sight such a location of origin may seem counter intuitive since it is far-

removed from Northwest Europe, where the -13,910*T allele is found at highest 

frequency. However, previous simulations have shown that the geographic centroid of 

allele can be offset from its location of origin, particularly when it occurs on the wave 

front of a demographic expansion (Klopfstein et al., 2006, Edmonds et al., 2004). The 

lactase-dairying coevolution origin region inferred here is consistent with a number of 

archaeologically attested patterns concerning the emergence and spread of dairying. 

Recent carbon isotope ratios from lipids extracted from archaeological sherds show the 

presence of milk fats in present-day western Turkey and connect these findings to an 

increased importance of cattle herding (Röhrs and Herre, 1961, Boessneck and Driesch, 

1979, Buttenhuis, 1995, Benecke, 1998, Evershed et al., 2008). In general, the spread of 

the Neolithic lifestyle from the Aegean to Central Europe goes hand in hand with the 

decline of the importance of sheep and goat and the rise in frequency of cattle bones in 

archaeological assemblages. While the Balkans at the beginning of the Neolithic still 

shows a variety of subsistence strategies (Bartosiewicz, 2005), the middle Neolithic in 

SE-Europe and the earliest Neolithic in Central Europe after 7,500 BP show a clear 

preponderance of cattle. Benecke (Benecke, 1994b) gives the following averaged rates 

for the respective domestic species: cattle 55.2%, sheep and goat 32.6%, pig 12%. The 

proportion of cattle in Central Europe increases during the following centuries to an 

average of 73% and then stays (with a few exceptions) stable for most prehistoric 

periods of Middle and northern Europe. Thereby, cattle herding is in most cases 

connected with kill-of profiles indicative for dairying (Arbogast, 1994, Balasse and 

Tresset, 2002, Tresset, 1996, Tresset, 1997, Benecke, 1994a, Benecke, 1994b, 

Bartosiewicz, 2007). Milk consumption and dairying have been proposed to be as early 

as the Pre-Pottery Neolithic B of the Near East and may even be a reason for 

domestication (Cribb, 1987). Without doubt, it was a common cultural practice during 

all phases and regions of the European Neolithic, especially for goat and cattle. 

However, a fully developed dairying-based farming economy emerges first during the 

late Neolithic in Southeast Europe and the Middle Neolithic Cultures following the 
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Linearbandkeramik (LBK) in Central Europe, and is connected mainly to cattle and 

partly also to goat (for the Rössen culture see (Benecke, 1994b, Benecke, 1994a)). In 

the Mediterranean, milking of cattle occurs episodically (Vigne, 2006) and sheep and 

goat remain the dominant domestics, as they were earlier in Anatolia and the Aegean. It 

is very likely that the goat and sheep, and to a lesser extent cattle, based economies of 

the Mediterranean used processed milk in the form of yoghurt, cheese and other milk-

derived products instead of fresh milk. The nutritional and agricultural differences 

between southern Europe, the Mediterranean and central and northern Europe, as well 

as historic reports, point to this. For instance, the Romans used goat and sheep milk for 

the production of cheese, and cattle as a draught animal. In contrast the Germanic 

peoples and other inhabitants of central and northern Europe practised cattle dairying 

and drank fresh milk in significant amounts. Strabo reports in his Geography (Strabo, 

1969): “Their [sc. "the men of Britain"] habits are in part like those of the Celti, but in 

part more simple and barbaric - so much so that, on account of their inexperience, some 

of them, although well supplied with milk, make no cheese; and they have no 

experience in gardening or other agricultural pursuits.”  

 

Overall, by considering the results from the simulations and archaeological, 

archaeozoological, and archaeometric findings, it seems very plausible to connect the 

geographic origin of the spread of LP to the increasing emergence of a cattle-based 

dairying economy during the 6
th

 millennium BC. The geographic region of origin of the 

LBK – in modern day Northwest Hungary and Southwest Slovakia (Pavúk, 2005, 

Bánffy, 2004) – certainly correlates well with the results (see Figure 5.17). The date of 

origin of LP-dairying coevolution estimated here (mode = 7,441 years BP; 95% CI = 

6,256 to 8,683 years BP; see Figure 5.12A and Table 5.2) also fits well with dates for 

the early LBK in Central Europe (~7,500 years BP) and its proposed main predecessor, 

the Starčevo culture of the northern Balkan Peninsula and south of Lake Balaton (8,100 

to 7,500 years BP; (Baldia, 2003)). However, as explained above, the date estimate is 

conditioned by farming arrival dates in the estimated LP-dairying coevolution origin 

region. As a result, the date and location estimates are not independently derived. 

Nonetheless, a role for LP-dairying coevolution in the later rapid spread of LBK culture 

– from its origins in the Carpathian Basin – into central and Northwest Europe would be 

consistent with the significantly higher sporadic migration distances inferred for of Fd 

when compared to Fnd. This is also consistent with the rapid dissemination of the LBK 
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culture over a territory of 2,000 km width and approximately one million square 

kilometres within less than 500 years (Lüning, 2005). 

 

 

Figure 5.17. Main regions of the spread of the Linearbandkeramik culture from its origins in 

modern day northwest Hungary and southwest Slovakia. Early phase is in dark green and late phase is 

in light green. 

 

Contrary to my expectations, I did not find that the presence of a positively selected LP 

allele in early dairying groups increases the unlinked genetic contribution of people 

living in the region where LP-dairying coevolution started to the modern European gene 

pool, when using demographic parameter values estimated here. The main reason for 

this is likely to be the relatively high inferred rates of intra- and interdemic gene flow 

between dairying and non-dairying farmers and between neighbouring demes, 

respectively, leading to a rapid erosion of any demographic „hitchhiking‟ of unlinked 

genomic regions. Additionally, the simulation tracked only the genetic contribution of 

people living in and around the deme of LP / dairying coevolution from the inception of 

this process. Since it takes some time for the LP allele to rise to appreciable frequencies, 

any demographic „hitchhiking‟ effect may become important only after the allele 

centroid has moved some distance away from its origin deme. 
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Another notable result was obtained when comparing the range of expected 13,910*T 

allele frequencies at different European locations – from simulations accepted at the 

0.5% tolerance level – to those observed. While all observed values were within the 

95% equal tail probability interval of the simulated values, many were somewhat offset 

from the modes. This could indicate that the simulation model does not fully explain the 

distribution of the 13,910*T allele in Europe. One possible explanation for this is that 

migration activity – as modeled here by interdemic gene flow and sporadic 

unidirectional migration – has increased subsequent to the expansion of farming into the 

northwestern reaches of Europe. In this scenario the farming expansion phase, occurring 

9,000 to 5,500 years BP, would be mainly responsible for generating the 13,910*T 

allele frequency cline in Europe but higher migration activity following this period 

would then have a homogenizing effect in LP allele frequencies. Intriguingly, a general 

pattern can be seen (Figure 5.14) whereby observed frequencies are lower than expected 

in northern Europe and higher than expected in southern Europe. Such a pattern is the 

opposite of what we would expect if selection for LP was higher in northern latitudes 

through a greater requirement for dietary vitamin D and calcium because low-sunlight 

conditions reduce UV-mediated vitamin D production in the skin (Flatz and Rotthauwe, 

1973). This frequently cited mechanism (Simoons, 1980, Simoons, 1978, Simoons, 

2001, Weiss, 2004, Hollox et al., 2001, Akey et al., 2004, Ingram et al., 2009a) was not 

included in the model and thus would seem to have negative explanatory power. Thus 

the simulations indicate that geographically and temporally homogeneous selection in 

combination with well-attested underlying demographic processes are sufficient to 

explain, indeed, to over-explain, the LP / latitude correlation in Europe. However, it 

should be noted that since a parameterised latitudinal effect on selection was not 

explicitly included in the model, there may be scenarios where such an effect could also 

explain patterns of LP in Europe. 

 

As inferred here, the spread of a LP allele in Europe was shaped not only by selection 

but also by underlying demographic processes; in this case the spread of farmers from 

the Balkans into the rest of Europe. I propose that this combination of factors could also 

explain the apparent homogeneity of LP-associated mutations in Europe. In Africa there 

are at least four known LP-associated alleles, including three that are likely to be of 

African origin (Tishkoff et al., 2007, Ingram et al., 2007) as well as -13,910*T, which is 

likely to be of European origin (Mulcare et al., 2004, Coelho et al., 2005). The greater 
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apparent diversity of LP-associated mutations in Africa may reflect a greater genetic 

diversity in general, leading to the availability of more mutations upon which selection 

can act following the advent of dairying. However, I suggest that this diversity is the 

result of an „imposition‟ of dairying culture on a pre-existing farming people, rather 

than the spread of dairying being tied to the spread of dairyers. Such a model would 

require the availability of a number of, albeit low-frequency, LP-causing mutations; 

either through a high mutation rate or a large number of potential LP-causing sites. It is 

therefore possible that, in the absence of the spread of dairying being linked to a major 

demographic expansion, high LP-allele diversity will also be found in the Indian 

subcontinent. 

 

The model used does not accommodate all data (both genetic and archaeological) that is 

potentially informative on the coevolution of LP and dairying in Europe. Future 

improvements can be made by adding more „realism‟ to the model and by increasing the 

number of data types that are used in the ABC analysis, leading to more integrative 

inference. The former should include both adding more fixed parameter information 

(such as the effects of past vegetation, climate variation and other geographic features 

on migration parameters and carrying capacities (Özdogan and Basgelen, 1999, Cavalli-

Sforza et al., 1994, Özdogan, 2007)) and estimating currently fixed parameters such as 

the ratio of dairying to non-dairying farmers. The latter could be achieved by writing the 

simulation model so that it generates expectations for other data types. For example, 

including the movement of domestic cattle could be used to generate expectations on 

patterns of ancient and modern cattle genetic diversity, for which considerable data is 

available (Troy et al., 2001, Bollongino et al., 2006, Edwards et al., 2007, Achilli et al., 

2008, Achilli et al., 2009). For an extra level of realism I also suggest applying a more 

accurate model for human population grown, based on the logistic equation that 

increases its carrying capacity according to advance in technology (Marchetti et al., 

1996). The proportion of vitamin D and lactose consumption in different cultures could 

also be applied as an extra level of realism in future simulations. Finally, it should be 

possible to extend the approach that was used here to study the evolution of LP and 

dairying in other parts of the world.  

 

I infer that the coevolution of European LP and dairying originated in a region between 

central Europe and the northern Balkans around 6,256 to 8,683 years BP. I propose the 
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following scenario: after the arrival of the Neolithic in south-eastern Europe and the 

increasing importance of cattle herding and dairying, natural selection started to act on a 

few LP individuals of the early Neolithic cultures of the northern Balkans. After the 

initial slow increase of LP frequency in those populations and the onset of the Central 

European LBK culture around 7,500 BP, LP frequencies rose more rapidly in a gene-

culture co-evolutionary process and on the wave front of a demographic expansion, 

leading to the establishment of highly developed cattle- (and partly also goat-) based 

dairying economies during the Middle Neolithic of central Europe around 6,500 BP. A 

latitudinal effect on selection for LP, through an increased requirement for dietary 

vitamin D (Flatz and Rotthauwe, 1973), is unnecessary to explain the high frequencies 

found in northern Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 

 

6. Discussion. 

 

When planning and performing the different parts of my PhD studies that are presented 

in the previous chapters I had one major goal: to understand the role of various genomic 

events in human evolution. I was interested in large-scale understanding of processes 

and in a top-down approach, and this reflected in the nature of the four different studies 

that I have performed: detecting all human lineage gene duplications (chapter 2), 

estimating all human lineage gene duplications‟ date and function (chapter 3), 

worldwide interpolating and correlation of lactase persistence genotypes and phenotype 

(chapter 4), and simulating the origins and demography of lactase persistence in Europe 

(chapter 5). I am well aware that due to the “large-scale” interests and the time 

constraint of 4 years, I will have overlooked or chosen not to tackle several related 

issues. However, I attempted to suggest these as subjects for future studies in the 

relevant chapters. That is not to say that I did not attempt to consider the “small details” 

that build the studied mechanisms – I believe that all chapters demonstrate attempts to 

make a comprehensive understanding of the various evolutionary processes, with a 

careful consideration of the trade-off (especially in simulations) between realism (i.e. 

parameter heavy) and computation time / results analyses options. In all four studies 

that I have performed I have dealt with large data sets and enjoyed the challenges of 

estimating missing data by different methods. 

 

In chapter 2 I attempted to identify all human inparalogues, and developed a systematic 

method to tackle several major problems that were prevalent in the previous methods 

that have attempted to achieve the same aim in the past. The main result of this chapter 

is an algorithm that I believe is the most robust one that is available today for detecting 

species inparalogues in cases where one of the genomes used is of a non-model 

organism. Consequently I consider that set of human inparalogues that I have detected 

with this method as the most robust and most comprehensive that is available today. 

When I planned the human inparalogues detecting project I expected that it would be a 

relatively straightforward process, as both human and chimpanzee proteomes had just 

become available, and there was a well-established method (InParanoid) that could 

automatically identify inparalogues given two species‟ proteome sets. The results that I 

obtained on first time using InParanoid with the human and chimpanzee proteomes 

seemed very exciting and even sensational – the human genome underwent 6 times 



156 

 

more duplications than the chimpanzee‟s genome. However, further examination of the 

result taught me an important lesson – sensational results are likely (but not always) to 

be a result of various biases – in chapter 2 I present the full range of problems that went 

undetected in all previous studies, which brings me to my second major insight – well 

established methods and studies may contain errors and should be individually tested to 

better understand the method and data that being used. 

 

In chapter 3 I estimated the dates of the human inparalogues duplication events, their 

function, and attempted to check whether the dates are clustered or if they are, as 

expected, randomly distributed (the null hypothesis). I found that the dates of the 

duplication events are clustered, and I believe that the main issue in such a clustering is 

how one defines a cluster. For example – clusters can be identified by pre-determining 

the number of clusters or by setting a maximum radius for a cluster (and in this case 

there is the question of what is a sensible radius – one that show some statistical degree 

for clustering, or rather one that empirically represent a meaningful human evolution 

time unit). I have clustered the dates in two different approaches, and presented the 

distribution of the different functions within these clusters. I found that there was a burst 

of gene duplications in anatomically modern human. The most recent time window 

(between 500,000 years ago and present) is also the one that contains the largest number 

of human gene duplication – 27 gene duplications where, for comparison, the expected 

number would be 10.62 and the second largest burst of duplication (between 3.5 and 4 

million years ago) contains 16 duplications. Interestingly, the most ancient time window 

(between 6 and 6.6 million years ago) does not contain any gene duplication. Although 

these results may suggest a bias, I believe that they are reliable since I have taken strict 

precautions to avoid the counting of dates around both human-chimpanzee divergence 

time and present date by phylogenetic estimates, molecular clock validation, and 

removing genes that are suspected to have undergone gene convertion from my dataset. 

Moreover, I found that different time windows are enriched for genes in different 

functional classes, and three biological classes are over-represented in the human 

inparalogues set. For example – the metabolic and catabolic processes function class in 

enriched for gene duplications, and occurred exclusively in the oldest cluster, within an 

average estimate of 4.89 million years ago. The biological class with the highest gene 

enrichment score is the immune system and the second is sensory perception, with the 

former duplicated throughout the timeline of the human lineage, and the latter appearing 
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in two “bursts” – a recent and an ancient one. I believe that in this study I present for the 

first time a large scale correlation between human genome and the 

palaeoanthropological record, and I hope that these results could provide useful for 

various future studies that could find more detailed correlation between these functions, 

their time of duplication, and human fossil record. 

 

In chapter 4 I have applied a population level approach to the association of genotypes 

and phenotypes at worldwide scale. The idea for this study arose as a result of some 

collaborative analysis I contributed to Ingram et al. (2009) where I collated human LP 

phenotype frequencies from all available literature, filtered for reliable frequency 

estimates, and performed surface interpolation mapping of that data. In the present study 

I have correlated all known LP-associated alleles with the LP phenotype from 

populations of the same regions. In this study I have dealt with two major challenges: 

(1) since there are only data from 120 genotype and 112 reliable phenotype collection 

locations, I performed surface interpolation for estimating the missing data, and (2) to 

correlate LP genotypes and phenotype I used a method that was designed for estimating 

correlation using observed data of genotype, phenotype, sample size, and method error 

rate. This required an automation process and further interpolation to estimate the 

missing data. This study can be very useful as a tool for researchers to determine areas 

for further LP genotype studies, since in places that have high frequencies of lactase 

persistence but that also have low frequencies of LP-associated alleles, we would expect 

to discover new LP-associated genotypes. For example, this study suggests that West 

Africa is a region that seems to be a strong candidate for such further LP genotype 

studies. I believe that this study could prove very useful for other global genotype-

phenotype association studies, such as human drug metabolising enzymes that might be 

of strong interest to both academy and the pharmaceutical industry. 

 

In chapter 5 I present an integrative simulation modelling-based inference study of the 

evolution of lactase persistence in Europe. This study utilizes genetic data (the 

frequencies of the European LP associated -13,910*T allele in different European 

populations and selective advantage modelling), archaeological data (arrival of farming 

to different parts in Europe), geographic information (topography and Earth‟s curvature 

considerations), anthropology (for estimating the dynamics between different cultural 

groups) and other information sources. My role in this study was writing the program‟s 
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code, developing the model‟s mathematical equations together with Mark Thomas, 

collating empirical data for lactase persistence and the arrival of farming, running the 

simulations and collating the results, and plotting maps. Although I was involved in the 

ABC analyses and the LBK/archaeological discussion, these subjects were mainly dealt 

by other collaborators: Adam Powell and Mark Beaumont performed the ABC analyses, 

while Joachim Burger contributed his LBK/archaeological knowledge. I found that LP 

and dairying gene-culture coevolution has begun in the Central Europe / Northern 

Balkans region approximately 7,500 years ago in association with the LBK culture. 

Moreover, I demonstrated that the calcium assimilation hypothesis (which maintains 

that milk gave a selective advantage to individuals in northern latitudes because it 

contains vitamin D which is lacking in places with low sun exposure) is not necessary 

for explain the current distribution of LP in Europe. I believe that this study presents a 

good example of interdisciplinary research and could be a platform for other 

evolutionary or parameter rich studies. I also think that various results of this research 

could be subjects for future studies, such as the strong correlation between the 

proportion of dairying and non-dairying farmers‟ availability to migrate and their 

respective migration rate. Future studies could also consider using the extra -13,910*T 

data points in Europe that I have presented in chapter 4, and possibly fix certain 

parameters that have shown a narrow distribution (such as non-dairying farmers 

migration rate) to allow introduction of new parameters without significantly increasing 

the complexity and computation time of this simulation model. It would be interesting 

to show how lactase persistence evolved in other parts of the world, probably via 

convergent evolution and different demographic dynamic in different pastoralist 

population in Africa and Asia.     

 

I believe that the different research approaches that I have presented in these four 

studies could potentially be combined. For example – one could focus on the oldest 

human inparalogues cluster dated 4.89mya and where the dominant function is 

metabolic and catabolic processes, and simulate a scenario of the evolution of nutrition 

in early hominids as a result of the beginning of transition of the African climate into a 

drier one, and as a result the change of the terrain from jungles into savannas and 

consequently the change in food resources and the selective advantage that mutations 

allowing digestion of the new foods were likely to have had given. Another option is to 

collate human CNV data in the same way that I collated the human LP phenotype data, 
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and integrate it in the algorithm of human inparalogues detection, possibly in a project 

that aims to find inparalogues that are unique to different human populations and their 

estimated duplication date and correlated biological function.  

 

In summary, I have presented in this work four studies of genomic events that have 

contributed to the human phenotype, following different approaches and methodologies. 

I hope that they have made a significant contribution to knowledge on human evolution. 
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