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Abstract  

 
The work in this thesis applies magnetization transfer imaging (MTI) and 

conventional MRI measures (brain volume, T2 lesion load and enhancing lesions) 

to investigate the mechanisms underlying progression in primary progressive 

multiple sclerosis (PPMS), and identifies MR markers to predict and monitor 

progression. 

 

First, we demonstrated that MTI was sensitive to change in the normal appearing 

brain tissues over one year, and that clinical progression over this period was 

predicted by baseline normal appearing white matter (NAWM) MT ratio (MTR). 

However, our second study showed that over three years, grey matter MTR 

became a better predictor of progression than any other MRI measure. Grey matter 

MTR and T2 lesion load changes reflected concurrent progression during this 

study. 

To localize the baseline grey matter injury more precisely, we developed a voxel-

based technique to identify areas of grey matter MTR reduction and volume loss in 

patients compared with controls. The regions of grey matter MTR reduction 

identified correlated with clinical function in anatomically related systems.   

 

Finally, because our studies showed that lesion load influenced progression, we 

used contrast enhanced T1-weighted imaging to examine active focal 

inflammation. We found that while lesion activity declined over five years, levels of 

activity at the start of the study could influence mobility five years later.  

 

The work presented in this thesis suggests that grey matter damage has a 

predilection for certain brain regions and is an important determinant of 

progression in early PPMS. In the white matter, changes in lesion volume and 

activity continue to influence progression, but NAWM injury may have a declining 

role. MTR is a sensitive and responsive tool for predicting, monitoring, and 

localizing clinically relevant brain injury in early PPMS.  
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The chapter begins with an overview of the clinical features of primary progressive 

multiple sclerosis (PPMS), and current knowledge of the pathological processes 

underlying it. In contrast to other MS subtypes, no disease modifying treatments 

are available for PPMS, and the particular challenges for clinical trials in this group 

are outlined. The second half of the chapter explores the application and limitations 

of MRI for investigating the disease process in PPMS, summarizing research 

findings to date.  

 

1.1 Primary progressive Multiple Sclerosis 

 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system, and it is the commonest cause of neurological disability in young adults in 

the UK. Patients typically follow a relapsing-remitting disease course (RRMS), 

presenting with acute neurological dysfunction (a relapse) followed by some 

degree of recovery and a period of indefinite remission, before further relapses. 

After some years a proportion of patients show a gradual functional deterioration, 

independent of relapse activity, which is called secondary progression (Lublin 

1996). A minority of patients with MS progress from onset without relapses, and 

are described as having primary progressive MS (PPMS).  

 

1.1.1 Epidemiology 

 

MS has a prevalence of 97-184/100 000 (Pugliatti 2006), and an incidence of 

5.5/100 000 (Alonso 2007) in the UK. Northern European populations are 

particularly affected, and incidence remains higher in these groups in North 

America, Canada and Australia (Ebers 2008). However, MS has been diagnosed 

worldwide (Cheng 2007, Alter 2006, Cabre 2001, Kantarci 1998). 

  

Detailed information regarding PPMS is more difficult to collect, but three 

epidemiological reports from Asia (Yamout 2008, Maghzi 2007, Wasay 2007) and 

one from Africa (Modi 2008) specifically mention PPMS. In a European 

epidemiological review, estimates of PPMS prevalence ranged from 4 to 35% of all 

MS cases (Pugliatti 2006). This probably reflects the difficulty of categorizing 
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patients before definitive diagnostic criteria were set out in 2000 (Thompson 2000). 

It is generally accepted, from natural history studies in MS cohorts, that PPMS 

constitutes 10-15% of all MS cases (Tremlett 2005, Thompson 2004, Confavreux 

2000, Runmarker 1993). In contrast to RRMS, where there is a female 

preponderence, PPMS has an equal sex distribution. The age of onset is usually in 

the fourth or fifth decade (Tremlett 2005, Cottrell 1999), roughly ten years later 

than in RRMS (Compston 2002); similar to the onset of secondary progression 

(Confavreux 2006b, Ebers 2004). PPMS in children is extremely unusual, but has 

been described (Renoux 2007, Boiko 2002).  

 

1.1.2 Aetiology  

 

Genetic susceptibility to PPMS has been mapped to the same region as RRMS: 

the HLA class II region of the MHC molecule on the short arm of chromosome 6, 

specifically the HLA-DR2 allele DRB1*1501. HLA alleles do not appear to influence 

the age of onset or severity of the disease (Barcellos 2006). More recently, single 

nucleotide polymorphisms at IL7R and IL2R have been implicated in MS 

susceptibility, in large scale genome-wide association studies, which have included 

patients with PPMS (Hafler 2007). Australian studies postulate that there is under-

expression of the IL7R alpha chain mRNA, CD127, in PPMS in particular, and that 

this affects the T cell response (McKay 2008). Thus there are some indications that 

genetic factors may have some influence on disease subtype. Another study in 

1083 families with MS suggested a slight concordance for a primary progressive 

clinical course among siblings (kappa<0.2); however, concordance was not 

observed among parent-child groups (Hensiek 2007). A French study recently 

found that the DRB1*15 allele was more frequent in patients developing SPMS, 

compared to both PPMS patients and RRMS patients who had not converted after 

12-15 years (Cournu-Rebeix 2008).  

 

The recurrence rate in monozygotic twins for all types of MS taken together is just 

over one third (Ebers 2008), suggesting that environmental factors also play a role 

in disease causation. This phenomenon can not be identified at an individual level, 

but can be seen in large cohorts at a population level (Sawcer 2008). Although 
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there is no specific data for PPMS, studies in genetically homogenous populations 

suggest that MS incidence increases with latitude (Vukusic 2007), although this 

pattern appears increasingly complex and could be changing (Ascherio 2007). For 

example, east-west geographic variations also exist, with some irregularity, and 

countries at the same latitude do not all have the same incidence (Ebers 2008). 

Migration studies also provide evidence of a complex environmental influence. 

While child migrants take on the risk profile of their host community, those who 

migrate later in life maintain the risk associated with their country of origin (Dean 

1997). Similarly, second generation African and Asian immigrants have a higher 

risk than their parents (Elian 1990). Furthermore, the specific environmental agents 

which trigger MS in susceptible individuals remain unidentified. One hypothesis 

centres on sunlight exposure, which varies with latitude and is the principal inducer 

of vitamin D production: studies have suggested that vitamin D is an immune 

modulator (Smolders 2008), and that higher vitamin D levels protect against MS 

(Munger 2006). Diet may be another significant element in modulating individual 

responses to other risk factors (Ebers 2008). Finally, a large number of infectious 

agents, particularly viruses, have been implicated in MS, although no causal 

association has been proved. The strongest candidate at present is the Epstein-

Barr virus (EBV). Almost all patients with MS are sero-positive for EBV, compared 

to 90% in the general population (Giovannoni 2007).  

 

Regarding PPMS in particular, there is little information available on specific 

environmental risk factors. Smoking may be a risk factor for PPMS (Hernan 2005), 

although it has no effect on age of onset or disability accrual (Koch 2007). While 

there is evidence that Spring births increase the risk of RRMS (Willer 2005), timing 

of birth does not seem to influence PPMS susceptibility (Sadovnick 2007). A recent 

study suggests that the immune response to EBV may be related to disease 

subtype (Farrell 2009), but it remains to be established whether this is a cause or a 

consequence of phenotypic differences.  
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1.1.2 Symptoms, Signs and Clinical Course  

 

The clinical onset of PPMS tends to be insidious, with a gradual functional 

deterioration over months and years. While symptoms may fluctuate through the 

year, and sometimes remain stable for long periods, accumulated disability is 

irreversible. The majority of patients present with a progressive spinal cord 

syndrome, usually leg weakness and stiffness progressing to spasms. Initially, 

weakness may be evident only after exercise, and is often asymmetrical. Urinary 

urgency and constipation are common, and erectile dysfunction may be a feature. 

More rarely sphincter disturbance manifests as faecal urgency. Sensory 

symptoms, though less prominent than in RRMS, may be distressing and include 

pins and needles, numbness and pain. Less commonly, patients present with poor 

balance and tremor or hemiplegia, and very rarely with progressive visual or 

cognitive decline. Examination may reveal a spastic para- or hemi-paresis, 

cerebellar signs, and sensory loss which tends to be patchy rather than describing 

a definite sensory level.  

 

Cognitive impairment occurs in all MS subtypes. A study in 24 PPMS patients, with 

a mean disease duration of 5.4 years, emphasized information processing speed 

as the most markedly affected domain in comparison to healthy controls, and the 

only domain markedly declining over 3 years. Verbal memory was also impaired, 

and age had a significant impact on performance (Denney 2008). A larger group of 

99 PPMS patients with more advanced disease demonstrated wide heterogeneity 

in cognitive decline over two years; roughly one third deteriorated on individual 

tests (Camp 2005). Several studies have compared cognitive decline in PP and 

SPMS (Bergendal 2007, Wachowius 2005, Foong 1997, Comi 1995). There is no 

consensus as to which subtype, matched for age and disease duration, shows 

greater cognitive impairment, and while some studies indicate qualitative 

differences between the impaired domains (Kraus 2005, Gaudino 2001), others do 

not (de Sonneville 2002). It is possible that wide variations within subtypes (Kraus 

2005) have made differences harder to detect in these studies, all of which are 

limited in cohort size.  



                                                         Understanding progression in PPMS: Introduction     23 

 

Gradual progression of the presenting syndrome is typical. In severe cases 

paraparesis progresses to quadriparesis, cerebellar involvement and, at an 

advanced stage, brainstem dysfunction with dysphagia and dysarthria.  

The rate and character of progression is broadly similar to the secondary 

progressive phase in patients with RRMS (Kremenchutzky 2006, Confavreux 

2006a, Confavreux 2000). Indeed, in secondary progressive MS the previous 

relapse history appears to have minimal influence on eventual disability (Ebers 

2004, Confavreux 2003, Confavreux 2000).  

 

However, the rate of disability accrual varies widely between individuals in PPMS. 

In a large natural history study from Canada, 25% of patients required a walking 

aid seven years after onset, but 25% were still walking independently at twenty-five 

years (Tremlett 2005). The mean time to reach EDSS 6 (the patient requires a 

cane to walk) was 13.3 years. Studies in other cohorts have identified a worse 

prognosis, ranging from 6 to 8.5 years (Confavreux 2000, Cottrell 1999, Andersson 

1999, Runmarker 1993).  

 

At present, clinical indicators of future prognosis are uncertain. In the London, 

Ontario cohort, the small number of patients presenting with involvement of more 

than three systems had a worse prognosis (Cottrell 1999). A study from British 

Columbia indicated that involvement of the brainstem and cerebellum at 

presentation may adversely affect prognosis, and these symptoms were more 

common in men (Tremlett 2005). Both the London Ontario and Lyons cohorts 

describe a poorer prognosis in men (Confavreux 2006a, Cottrell 1999), but this is 

not a feature of all studies (Andersson 1999). Finally, both the Canadian studies 

suggest that the rate of initial progression is an important indicator of future 

prognosis (Tremlett 2005, Cottrell 1999).  
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1.1.4 Pathology  

 

1.1.4.1 White matter plaques  

The MS plaque is an area of demyelination, axonal loss and oligodendrocyte death 

on a background of inflammation (Bruck 2002). Plaques typically occur in the white 

matter, but are also abundant in grey matter (Peterson 2001). They are thought to 

result from a breach in the blood brain barrier, which allows the infiltration of 

macrophages, T cells and plasma cells into the central nervous system, and 

activates resident microglia (Frohman 2006). The inflammatory T cells attack 

myelin and oligodendrocytes in the central nervous system, creating a focus of 

inflammatory activity (Frohman 2006). Gradually, inflammation gives way to 

fibrillary gliosis, with fewer macrophages, loss of oligodendrocytes, and a decrease 

in axonal density, particularly at the lesion centre (Lucchinetti 2004).  

 

Post mortem investigations have demonstrated fewer inflammatory cells in PP 

compared to SPMS lesions (Revesz 1994), and specifically a reduction in T cells 

and macrophages has been described (Lucchinetti 2004). Magliozzi and 

colleagues found less meningeal inflammation in PP compared to SPMS, with 

fewer B cells seen in perivascular cuffs. The ectopic B cell meningeal follicles 

which they identified in SPMS, which may have produced a locally sustained B cell 

inflammatory response, were absent in PPMS (Magliozzi 2007). Finally, both PP 

and SPMS plaques tend to demonstrate a tendency to slow radial expansion, with 

a lower percentage of classical active lesions, when compared to RRMS 

(Kutzelnigg 2005, Prineas 2001).  

 

Some investigators have postulated inter-patient lesion heterogeneity in MS, with 

intra-patient homogeneity. Four lesion types with different mechanisms of myelin 

injury were identified, and pattern IV, demonstrating oligodendrocyte dystrophy 

without remyelination, was found exclusively in PPMS (Lucchinetti 2000). However, 

this concept was challenged in 2004 (Barnett 2004), and more recently another 

study found acute lesions to be homogeneous, and oligodendrocyte apoptosis to 

be rare (Breij 2008).  
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1.1.4.2 Diffuse white matter pathology 

The relevance of white matter pathology outside defined plaques has been 

increasingly recognized over the last two decades (Trapp 1999). Damage to the 

healthy-appearing white matter is most pronounced in progressive MS (see Figure 

1a), and involves widespread reduction in myelin and axon density on a 

background of parenchymal, perivascular and meningeal inflammation. 

Inflammation is less marked in PP compared to SPMS cases (Kutzelnigg 2005). 

The relatively normal appearance of the white matter may be preserved by the 

persistence of some myelin sheaths despite Wallerian degeneration of associated 

axons secondary to transection in lesions (Dutta 2007). There is no obvious 

correlation between NAWM injury and white matter lesion load, suggesting that 

diffuse white matter injury may be independent of lesion pathology (Kutzelnigg 

2005). 

    

 

Figure 1a: Diffuse white matter injury in 

the brain in PPMS  

 

Only the subcortical myelin is intact, and there 

are few focal demyelinated plaques 

Luxol fast blue stain, x0.5 

 

 

(adapted from Kutzelnigg et al, Brain 2005) 

 

 

 

1.1.4.3 Grey matter pathology 

Although grey matter demyelination was identified in the nineteenth century, it is  

only recently that its true extent has been appreciated. This is partly because the 

conventional lipid stains, used in the past for histo-pathological studies, were not 

sensitive enough to detect it (Stadelmann 2008). More recent studies, using 
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immunohistochemical techniques, have shown that lesions in the cortex and deep 

grey matter are prominent in progressive MS (Kutzelnigg 2007) and three types of 

cortical lesion have been identified (Peterson 2001): leukocortical lesions (type I), 

small cortical lesions, often perivascular (type II), and the commonest type, subpial 

lesions which can extend into layers III and IV of the cortex (type III). There are 

fewer inflammatory cells in grey matter lesions compared to white matter lesions 

(Pirko 2007, Peterson 2001), and marked neuro-axonal injury and neuronal 

apoptosis have been identified (Dutta 2007, Kutzelnigg 2005, Peterson 2001). 

Some neuronal damage may be ascribed to Wallerian and retrograde degeneration 

following white matter axonal injury, but the lack of association between focal white 

matter and grey matter injury suggest that the latter is a largely independent 

process (Lassmann 2007, Bo 2007). Extensive grey matter demyelination has also 

been demonstrated in the spinal cord, in patients with progressive MS (Gilmore 

2006). 

 

1.1.4.4 Remyelination  

There is evidence that some lesions seek to repair themselves. Oligodendrocyte 

numbers are increased in such lesions, known as shadow plaques, and myelin 

density is intermediate between fully demyelinated lesions and healthy brain tissue. 

Remyelination occurs in all MS subtypes (Patrikios 2006), does not diminish with 

disease duration (Patani 2007), and appears to be most extensive in the cortex 

(Albert 2007). In the white matter, remyelination is more often seen in deep and 

subcortical compared to periventricular lesions (Patrikios 2006). 

 

In summary, the pathology of progressive MS is distinct from RRMS in the relative 

preponderance of injury to the grey and NAWM. The pathology of PPMS is distinct 

from RRMS in the relative paucity of active focal inflammation, and from SPMS in 

the relative reduction of diffuse and focal inflammation. 

 

1.1.5 Diagnosis  

 

Multiple sclerosis remains a primarily clinical diagnosis. Diagnostic criteria based 
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on evidence of dissemination in time and space were formalized by the Poser 

Committee in 1983 (Poser 1983), and for the first time evoked potential or MRI 

evidence of a second lesion was accepted in lieu of clinical evidence. To achieve a 

laboratory supported diagnosis, it was necessary to demonstrate intrathecal 

synthesis of IgG on CSF analysis. However, these criteria were inappropriate for 

PPMS, by definition a slowly evolving deficit, often in a single system. This was 

addressed by Thompson in 2000 (Thompson 2000) who established three levels of 

diagnostic certainty (definite, probable and possible). The criteria were based on 

clinical information and supportive investigations (CSF, MRI, VEPs), for application 

to patients who had progressed for one year and in whom alternative diagnoses 

had been appropriately excluded. The identification of intrathecal IgG synthesis 

was mandatory for a definite diagnosis. These criteria were largely adopted in the 

international diagnostic criteria for MS in 2001 (McDonald 2001). In 2005, the 

criteria were simplified (Polman 2005), and, in the light of evidence put forward 

from the PROMiSe trial (Wolinsky 2003), a positive CSF analysis is no longer 

essential for diagnosis (see Table 1.A).  

 

1.1.6 Investigations  

 

MRI of both the brain and spinal cord is recommended, as the majority of patients 

present with a spastic paraparesis, and because lesions in the spinal cord may, 

rarely, be present in the absence of brain lesions (Thorpe 1996). In addition, age-

related non-specific white matter lesions are rare in the spinal cord, and therefore 

lesions identified at this site are more suggestive of MS (Kidd 1993). CSF analysis 

reveals increased intrathecal synthesis of IgG or the presence of oligoclonal IgG 

bands which are absent in the serum, in about 80% of PPMS cases (Wolinsky 

2004, Andersson 1999). Visual evoked potentials demonstrating a preserved 

waveform with a prolonged P100 latency can be taken as evidence of 

demyelination in the optic nerve (Thompson 2000). However, symptomatic optic 

neuritis is unusual in PPMS, and there is little data regarding the frequency of VEP 

abnormalities in this group. In a small study including 14 patients with PPMS it was 

suggested that VEP abnormalities may be less common than in SPMS, but of 
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similar frequency to RRMS (Rot 2006). Motor and somatosensory evoked 

potentials may also be delayed in PPMS. 

 

Table 1.A Diagnosis of PPMS  

 

Original McDonald Criteria 2005 Revisions 

1. Positive CSF and 1. One year of disease progression 
(retrospectively or prospectively determined) 

2. Dissemination in space by MRI 
evidence of nine or more T2 brain 
lesions or 

2. Plus two of the following: 
 

a. Positive brain MRI (nine T2 lesions or  
   four or more T2 lesions with positive VEP) 
 
   b. Positive spinal cord MRI (two focal T2  
   lesions) 
 
   c. Positive CSF (isoelectric focusing  
   evidence of oligoclonal IgG bands or  
   increased IgG index or both). 

     Two or more cord lesions or 
      Four to eight brain lesions and one  
      cord lesion or 

      Positive VEP with four to eight MRI  
      lesions or 

      Positive VEP with less than four  
      brain lesions plus one cord lesion 
      and 

3. Dissemination in time by MRI or 
Continued progression for 1 year 
 

(taken from Polman et al, Annals of Neurology 2005) 

 

1.1.7 The role of disease modifying treatments 

 

The disease modifying treatments used in RRMS are anti-inflammatory drugs 

which target relapses. The inflammatory component of PPMS implies a potential to 

respond to these treatments. The studies which have investigated this possibility 

are discussed in the next part of this section. However, disease modifying agents 

have proven largely ineffective in PPMS. Management has therefore focused on 

symptomatic control and rehabilitation (Jenkins 2008), with the hope that future 

treatment strategies aimed at neuro-axonal protection and repair will be more 

productive (Leary 2005).  

 

The largest randomized study in PPMS is the PROMiSe trial of glatiramer acetate, 

in which 943 patients with PPMS were randomised to placebo or glatiramer acetate 

for 3 years. Unfortunately, a lack of progression in both arms studied made it 
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impossible to identify a treatment effect, and the study was terminated early 

(Wolinsky 2007) . Beta interferons are widely used to treat RRMS and SPMS with 

relapses, and two small placebo controlled trials have been performed in PPMS. 

The first, on interferon beta-1a, found no reduction in disability accumulation, brain 

or spinal cord atrophy (Leary 2003). However, patients on the drug had a lower 

rate of T2 lesion accumulation. In the second study, testing interferon 1-beta 

versus placebo in 73 patients, a favourable effect was demonstrated on the MSFC 

in the treated group. T2 lesion load accumulation was reduced, although brain and 

spinal cord atrophy were not (Montalban 2004). Mitoxantrone has been studied in a 

small placebo controlled trial in 61 patients with PPMS (Stuve 2004), but 

preliminary results have not been positive (Miller 2007). Further, retrospective 

analysis of 163 patients with PPMS showed that those taking mitoxantrone 

continued to progress (Debouverie 2007). A randomised control trial investigating 

monthly intravenous immunoglobulin infusions suggested that progression was 

delayed in eight patients with PPMS, though there was no significant effect in the 

much larger group of SPMS patients (Pohlau 2007). A randomised controlled study 

of the monoclonal antibody Rituximab is underway (Miller 2007) following a report 

of successful B cell depletion in patients with PPMS (Monson 2005). Open label 

studies in perfenidone, an immune modulating oral medication (Bowen 2003), and 

cyclophosphamide (Zephir 2004) have appeared to demonstrate stabilization of 

PPMS patients, but interpretation is limited by study design. Studies in 

methotrexate (Goodkin 1995), azathioprine (British and Dutch Multiple Sclerosis 

Azathioprine Trial Group1988) and cladribine (Rice 2000) have included PPMS, 

but no benefit was demonstrated. A retrospective study of haematopoetic stem cell 

transplantation reported benefit in a proportion of PPMS patients, but mortality was 

considerable (Fassas 2002).  

 

From the point of view of neuro-protection, riluzole has shown some promise in 

preliminary studies (Kalkers 2002), and an unblinded pilot study in high dose 

recombinant erythropoetin showed some improvement in motor function over 24 

weeks (Ehrenreich 2007). Intravenous methylprednisolone, used in RRMS to 

shorten relapse duration, may sometimes be used for subacute functional 

deterioration in PPMS patients (Miller 2007). However, there have been calls to 
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investigate steroids as neuro-protective agents in progressive MS, following 

retrospective reports of longer term clinical benefit (Pirko 2004). 

 

Many of these studies highlight the difficulties of performing clinical trials in PPMS. 

Firstly, PPMS is a relatively uncommon MS subtype, which limits cohort sizes. This 

can only be addressed by large multi-centre collaborations. Secondly, in the 

absence of prognostic markers for progression, recruitment is unselected. Thus 

some study patients may progress very gradually, making treatment effects difficult 

to identify over short periods of time. Finally, while MRI outcome measures such as 

T2 lesion load have responded to treatment in some studies, the uncertain 

relationship between these measures and disease progression in PPMS makes the 

findings difficult to interpret. For this reason reliable, responsive surrogate outcome 

measures, which accurately reflect concurrent and future clinical progression, are 

needed to facilitate clinical trials in PPMS. MRI studies have tried to address some 

of these issues, and are discussed in the next section as part of a brief overview of 

MRI in PPMS.  

 

1.2 Imaging and PPMS 

 

1.2.1 Conventional MRI measures 

 

1.2.1.2 T2 and T1 lesions 

White matter plaques are best visualized on proton density-, T2-weighted and fluid 

attenuated inversion recovery (FLAIR) imaging. Lesions are usually less than 1cm 

in diameter and rounded in shape, but adjacent lesions may coalesce. 

T2 lesions are pathologically heterogeneous, showing wide variations in levels of 

demyelination, inflammatory activity and axonal loss (Fisher 2007). In PPMS, 

lesions are fewer and smaller than in other MS subtypes (Thompson 1990), and 

increases in T2 lesion load are largely due to expansion of existing lesions rather 

than to the formation of new ones (Stevenson 2000). Recent work suggests that 

the smaller T2 lesions occurring in PPMS are more persistent and destructive than 

larger lesions in RRMS (Meier 2007). This may contribute to the poor correlation 

between T2 lesion load and disability in PPMS. In addition, grey matter lesions 
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tend not to be visible on T2-weighted images. They have a signal intensity close to 

the normal grey matter, and are rarely seen on MRI even at higher field strengths 

(Geurts 2008). This may further limit the ability of T2 lesion loads to reflect the 

disease burden in PPMS.  

 

T2 lesions which develop into areas of hypo-intensity on T1-weighted images are 

called 'T1 black holes'. In progressive MS a greater proportion of T2 lesions 

develop in this way compared to RRMS (Wolinsky 2004, van Walderveen 2001). 

Some of the black holes persist indefinitely, representing focal areas of irreversible 

matrix destruction and axonal loss (van Walderveen 1998). There is some 

indication that T1 lesion load correlates better than T2 with disability in SPMS 

(Truyen 1996), but this has not been demonstrated in PPMS. 

 

1.2.1.2 Gadolinium enhancing lesions 

It is not possible to demonstrate the age or activity of a lesion on unprocessed 

unenhanced T1 and T2 imaging. Gadolinium, an intravenous contrast agent, 

penetrates the blood brain barrier in areas of active inflammation causing 

enhancement of active lesions on T1-weighted images (Bruck 1997). While the 

majority of T2 lesions show some gadolinium enhancement, a minority do not; it 

has been suggested that these lesions, which are often peri-ventricular, may arise 

from mechanisms other than BBB breakdown, such as Wallerian degeneration or 

the coalescence of two smaller lesions (Lee 1999). Lesions may enhance uniformly 

or inhomogenously. Some demonstrate ring enhancement, possibly representing 

the concentric pattern of lesion recovery (Meier 2007). Lesions which have ceased 

to enhance may reactivate and start to enhance again (Bruck 1997). Enhancement 

continues for a variable amount of time, but usually lasts less than 2 months 

(Ciccarelli 1999), and there have been suggestions that lesions which enhance for 

longer are more destructive (Silver 1999). Enhancing lesions may develop into T1 

black holes, remain as T2 hyper-intensities, or resolve completely, and this varies 

both between subjects and in different lesions within a subject (Minneboo 2005, 

Ciccarelli 1999).  

 

Patients with established PPMS demonstrate fewer gadolinium enhancing lesions 
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on MRI compared to SPMS (Thompson 1991); only 14% of the PPMS patients 

entering the PROMiSe trial had gadolinium enhancing lesions (Wolinsky 2004). 

However, a study in patients with early PPMS have demonstrated a higher  level of 

gadolinium enhancement, albeit using triple dose gadolinium (Ingle 2005), 

suggesting the possibility of an early inflammatory phase. This may have 

implications for the potential of anti-inflammatory disease modifying therapies 

during the early stages of PPMS. 

 

1.2.1.3 Brain Atrophy 

Atrophy is a putative marker for axonal loss, but other pathological processes 

affect tissue volume including gliosis, axonal swelling, inflammation, and 

demyelination (Fisher 2007, Kezele 2007, Simon 2006). In addition, the temporal 

relationship between loss of axons and subsequent volume loss is not clearly 

established (Simon 2006). Brain volume has been correlated with clinical function 

in cross-sectional studies in established PPMS (Nijeholt 1998). In longitudinal 

studies, atrophy does not correlate with accumulation of disability in the short term 

(Ingle 2002, Stevenson 2000), but an association is evident over five years (Ingle 

2003b). Brain atrophy on an initial scan can also predict long term clinical outcome 

(Sastre-Garriga 2005b, Ingle 2003a). In early PPMS, atrophy is already present in 

both grey and NAWM, and a correlation between NAWM volume and clinical 

function has been identified (Sastre-Garriga 2004). 

 

1.2.1.4 Spinal cord imaging 

Spinal cord lesions are less likely than brain lesions to demonstrate enhancement, 

or to develop into T1 lesions (Neema 2007). In PPMS, there are fewer lesions in 

the spinal cord, with less enhancement, than in other MS subtypes. In addition, a 

diffuse T2-weighted signal abnormality, shown to represent demyelination on 

histological studies (Bergers 2002), may be visible in PPMS. Spinal cord lesions 

have not shown strong correlations with disability in PPMS (Nijeholt 1998). Spinal 

cord volume is reduced in PPMS, although not as much as it is in SPMS. 

Compared with brain imaging parameters, spinal cord atrophy was found to be the 

best way of separating early PPMS and early RRMS (Bieniek 2006).  Cord atrophy 

particularly affects the cervical spine (Losseff 1996). Spinal cord atrophy correlates 
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with clinical measures in cross-sectional studies in PPMS (Stevenson 1998) , and 

loss of cord volume over two years has been correlated with disability accrual over 

five years (Ingle 2003b).  

 

Figure 1b: Brain and spinal cord atrophy in two patients with PPMS 

T1-weighted FSPGR sequences showing marked volume loss in the brain and spinal cord 

 

      

 

1.2.1.5 The Clinico-radiological Paradox 

The relationship between abnormalities identified on conventional imaging and 

disability has been surprisingly limited (Barkhof 2002), particularly in PPMS 

(Stevenson 1999). Longitudinally, the modest correlation between changes in 

clinical and MR measures may become apparent only after several years (Ingle 

2003b, Ingle 2002). A number of explanations for this have been suggested. 

Firstly, clinical outcome measures used in MRI studies, usually the EDSS (Kurtzke 

1983) and MSFC (Cutter 1999), have been widely criticized. Several studies, some 

in patients with PPMS (Kragt 2008), have demonstrated that the scales are 

unresponsive to disability accrual, and distinguish poorly between individuals 

(Hobart 2000, Sharrack 1999). These issues may be addressed in part by 
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examining patients early in their disease course, within five years of symptom 

onset. Clinical rating scales tend to be most responsive in less disabled individuals 

(Kragt 2006), and epidemiological studies suggest that early progression rates may 

give an indication of future course (Cottrell 1999). A second problem is that 

although patients usually present with a paraparesis, relatively little attention has 

been devoted to spinal cord imaging. Thirdly, repair, remyelination, and functional 

reorganization may obscure the relationship between measures of brain injury and 

disability. Finally, the pathological processes driving disability accrual in PPMS 

may occur in areas which appear normal on conventional MRI: the normal 

appearing brain tissues (NABT). In recent years quantitative MRI techniques have 

been developed to address some of these problems. Although their application in 

the spinal cord was initially limited, technical improvements have led to a recent 

expansion in research into spinal cord injury in PPMS. Quantitative techniques are 

better able to reflect the balance of damage and repair in MS lesions, as confirmed 

by correlation with pathological studies. Most importantly, they have extended our 

understanding of the disease process in PPMS by allowing examination of the 

NABT.  

 

1.2.2 Non-conventional MRI measures 

 

Widespread abnormalities have been demonstrated in the grey and normal 

appearing white matter (NAWM) and in lesions in PPMS using non-conventional 

quantitative techniques, including spectroscopy, diffusion tensor imaging (DTI), and 

magnetization transfer imaging (MTI). Each of these modalities provides 

information about tissue damage, although their specificity for pathological 

processes is limited. In this section each technique is briefly described, and 

findings in the NABT, lesions and spinal cord in PPMS are summarized. Finally the 

findings in early PPMS are delineated. 

 

1.2.2.1 Spectroscopy 

Of the quantitative techniques, spectroscopy provides the most direct measure of 

tissue injury. Four major resonances are seen on proton MR spectra: N-

acetylaspartate (NAA), choline, lactate, and creatinine (Cr) (Filippi 2004). NAA is a 
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putative marker of axonal integrity, and choline and lactate reflect demyelination 

and inflammation; however these relationships may be more complex, as 

demonstrated by studies in PPMS and other subtypes (Cader 2007, Sijens 2005). 

In PPMS, data from the PROMiSe trial analyzed by Narayana and colleagues 

showed NAA/Cr ratio reduction in both the NABT and in lesions (Narayana 2004). 

The indices did not correlate with disability or change over three years (Sajja 

2008). Another study, examining specific brain compartments in PPMS and SPMS, 

identified marked NAA reduction in the grey matter, with a less striking reduction in 

the NAWM (Sijens 2006). In early PPMS, NAA reduction has also been observed 

in both grey and NAWM; grey matter NAA changes correlated with disability 

(Sastre-Garriga 2005a).  

 

1.2.2.2 Diffusion Tensor Imaging (DTI) 

In DTI, the properties of water diffusion are used to examine tissue microstructure. 

The micro-architecture of a tissue limits and directs water motion, and tissue injury 

disrupts this architecture, allowing diffusion to occur freely in all directions. In DTI, 

a three dimensional tensor is constructed, and the magnitude of diffusion (mean 

diffusivity, MD) and degree of anisotropy (fractional anisotropy, FA) is measured 

(Filippi 2004). In a cohort including PPMS patients, Ciccarelli and colleagues 

identified widespread NAWM FA reduction, indicating tissue injury, and found that 

diffusion measures in the cerebral peduncles correlated with EDSS score. No 

difference in diffusion measures emerged between MS subtypes (Ciccarelli 2001). 

In another study, patients with progressive MS (including 54 PPMS patients) 

demonstrated tissue injury in the grey, NAWM and lesions, indicated by increased 

MD (Rovaris 2005). In 52 of these PPMS patients, followed up after 15 months, 

MD increased further in grey matter and lesions. Higher grey matter MD at 

baseline predicted clinical worsening at five years (Rovaris 2006). Reduction in FA 

and increase in MD has also been observed in the cervical cord in PPMS (Agosta 

2005). When MS subtypes were compared, PPMS patients demonstrated marked 

FA reduction in the cervical cord over two and a half years compared to RR and 

SPMS; in contrast, changes in cord MD and volume were comparable in the three 

groups (Agosta 2007).  
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1.2.2.3 Magnetization transfer imaging 

MTI is a particularly promising quantitative technique for the study of PPMS, 

because it is sensitive to the subtle pathological processes which cause tissue 

injury in the NABT. MT ratio (MTR) measures are derived from the MT images, and 

reflect the efficiency of magnetization exchange between macromolecules and 

tissue water (see section 2.8). MTR is altered by processes which affect the 

balance between macromolecules, most often related to myelin, and brain water. 

Animal and post mortem studies have shown that these processes include 

oedema, inflammation, and gliosis, but that MTR particularly reflects demyelination 

and axonal loss (Schmierer 2004, van Waesberghe 1999, Brochet 1999). In MS, 

MTR reduction has been shown to precede the appearance of lesions on T2-

weighted imaging (Filippi 1998), and  MTR provides an accurate quantitative 

measure of the extent of demyelination and repair within lesions (Chen 2007, 

Filippi 1999). In established PPMS, widespread clinically eloquent MTR reduction 

has been demonstrated in the NABT (Rovaris 2008) and also in the spinal cord 

(Nijeholt 2000). In early PPMS, MTR reduction is evident in the grey and NAWM, 

and correlates with disability (Ramio-Torrenta 2006) . 

 

1.3 Conclusions 

 

PPMS patients seldom experience relapses, and provide a relatively pure model 

for the study of progression in MS. This is reflected pathologically by comparatively 

modest focal inflammation and marked NABT injury. There are no effective disease 

modifying treatments for PPMS, and there are a number of challenges which 

impede clinical trials. MRI studies allow investigation of the disease process in 

vivo; however, correlation between conventional MRI parameters and clinical 

function are modest. Clinico-radiological correlation may be improved using 

quantitative techniques which assess disease burden more sensitively, through the 

inclusion of the NABT. Furthermore, targeting PPMS at the earliest stage, when 

disability accrual appears to influence future deterioration, may further augment 

clinico-radiological correlation. To date, studies in early PPMS have demonstrated 

marked, clinically eloquent injury to the NABT, as well as a surprisingly high 

proportion of active inflammatory lesions.  
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Magnetic resonance imaging (MRI) is a non-invasive technique used to image 

tissues in the human body in vivo. The first part of this chapter provides an 

overview of the basic principles of MRI; a full discussion of this complex subject 

necessitates an understanding of quantum mechanics, and is beyond the scope of 

this thesis. The latter part of the chapter discusses the sequences and post-

processing techniques employed in the studies described in this thesis. 

 

2.1 Nuclear magnetic resonance  

 

Atomic nuclei contain protons, which are positively charged particles, and 

neutrons, which have no charge. Nuclei with an odd number of protons exhibit 

nuclear magnetism, a form of paramagnetism. Materials with this property do not 

generate a net magnetic field, but are able to interact with an external magnetic 

field. This interaction is the basis of nuclear magnetic resonance (McRobbie 2003).  

 

The hydrogen atom has a nucleus consisting of a single proton. It is the most 

abundant atom in the human body and the most relevant paramagnetic nucleus for 

MR imaging studies. When it is placed in an external magnetic field (B0) it spins 

around its own axis, and thus exhibits a magnetic dipole moment or spin.  

At thermal equilibrium, the magnetic moment of each hydrogen nucleus is either 

aligned with B0, in a low energy state, or at 180˚ to B0 in a high energy state. There 

is a very slight excess of protons aligned in the low energy state, which gives the 

‘bulk’ or ‘net’ magnetization (M) in the direction of B0. The application of the 

external magnetic field causes the protons to rotate, or ‘precess’, around it, similar 

to the way a compass oscillates about the earth’s magnetic field (see Figure 2a). 

 

 

 

  

 



Understanding progression in PPMS: Chapter 2   49 

 

Figure 2a: Precession of protons 

The external magnetic field, B0, is depicted as a large arrow 

behind the proton. The magnetic dipole moment of the proton 

aligns towards this, in the low energy state, giving a bulk 

magnetization vector of M, in the direction of B0. The proton 

precesses around B0, along the dashed line. In a substance with 

many protons, some protons will be in the low energy state, 

aligned towards B0, and some in the high energy state, aligned in 

the opposite direction.  M is the sum of all the individual dipole 

moments, divided by the volume of the substance. At equilibrium 

there is a small excess of protons in the low energy state, so M 

is aligned towards B0. 

 

 

The frequency at which the protons precess is called the Larmor frequency. It 

depends upon the strength of the external magnetic field, and a constant intrinsic 

to the nucleus, called the gyromagnetic ratio: 

 

Larmor frequency (ω0) = gyromagnetic ratio (γ) * external magnetic field (B0) 

 

ω0 is described in Herz (Hz) and B0 in Tesla. The stronger the magnetic field, the 

higher the Larmor frequency. For a hydrogen proton in a standard 1.5 Tesla 

scanner, the Larmor frequency is 64MHz. 

 

An external radio-frequency (RF) pulse is described as being on resonance if it 

oscillates at the Larmor frequency. It is able to transfer energy to, or excite, the 

hydrogen nuclei because it is oscillating at the same frequency at which they 

precess. This excitation increases the number of magnetic moments which are in a 

high energy state, and tilts the direction of net magnetization (M) away from B0. 

B0 

M 
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2.1.1 The NMR signal 

 

The angle at which M is rotated away from B0, or the longitudinal axis, is called the 

flip angle, and it depends on the amplitude and the duration of the RF pulse. For 

example, a RF pulse applied orthogonally to B0 with a 90° flip angle converts all 

the longitudinal magnetization into transverse magnetization, with M lying at 90° to 

B0. The RF pulse also produces phase coherence, so that all the nuclei precess 

together in the transverse plane.  

 

The presence of a component of magnetization in the transverse plane induces a 

voltage in the MR scanner’s receiver coil, according to Faraday’s laws of induction. 

This is the NMR signal, and its magnitude depends on the magnetization vector; or 

the amount of magnetization in the transverse plane.  

 

2.2 Relaxation 

 

When the RF pulse is switched off, the protons lose energy and gradually return to 

thermal equilibrium, and the net magnetization returns towards B0. The signal 

observed during this relaxation process is called free induction decay (FID). 

Relaxation is achieved through two concomitant and independent processes: 

protons regain longitudinal magnetization (T1 relaxation) and lose transverse 

magnetization (T2 relaxation).  

 

2.2.1 T1 Relaxation (spin-lattice relaxation) 

 

When the RF pulse is turned off, nuclei lose energy to their surroundings, or lattice. 

Many of them return to a low energy state, so that M is once more aligned with B0, 

and longitudinal magnetization is regained. The time that this takes depends on the 

intrinsic properties of the tissue, and it is an exponential process. It is described by 

the time constant T1, or the time taken for 63% of the spins to regain longitudinal 

magnetization (see Figure 2b). This time constant is used to describe the 

exponential process. 
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Figure 2b: The exponential curve for T1 relaxation 

At time T1, 63% of the longitudinal magnetization has been regained. 

 

 

 

 

 

 

 

 

 

  

2.2.2 T2 relaxation (spin-spin relaxation)  

 

After the RF pulse has been turned off, the protons gradually lose energy to their 

neighbouring nuclei, as their magnetic fields interact. This causes variations in the 

precession frequency of each individual nucleus, and so reduces phase coherence 

and thus transverse magnetization. This exponential process is governed by a time 

constant T2, which is the time at which only 37% of the transverse magnetization 

remains (see Figure 2c). 

 

Substances such as water are highly mobile with high inherent energy, while large 

molecules, such as fat, have a low inherent energy. Energy transfer is more 

efficient in larger molecules, and T1 relaxation time is therefore shorter in fat than 

water. There are greater spin-spin interactions when molecules are more tightly 

packed, thus protons in fats de-phase more rapidly and have a shorter T2 

relaxation time than those in water, where the spins are farther apart.  

However, the magnetic field inside a scanner is distorted by imperfections in the 

magnetic coil, and variations in the sample itself, so that it is not truly 

homogeneous. Therefore protons lose phase coherence faster than expected from 

T2 effects, at a rate described by the time constant T2*. T2* describes both the T2 
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relaxation intrinsic to a tissue, and the relaxation effects of the magnetic field 

inhomogeneities extrinsic to the tissue.  

 

Figure 2c: The exponential curve for T2 relaxation 

At time T2 the signal has fallen to 37%. 

 

        

 

2.3 The spin echo 

 

It is not possible to reverse the loss of phase coherence due to the intrinsic effect 

of neighbouring spins in a specific tissue (T2 effects). It is, however, possible to 

reverse the loss of phase coherence which is due to main field inhomogeneities. 

One method is the application of a second RF pulse, with a 180° flip angle, to the 

de-phased nuclei. This has the effect of flipping the magnetic moments, so that 

those ‘further back’ along the precessional path are now ‘at the front’, and vice-

versa. Precession continues at the same speed, so the nuclei which were 

precessing faster, and now find themselves ‘further back’, are able to ‘catch up’ 

with those at the front. This puts the nuclei back in phase (after an interval 

matching the time between the first and the second RF pulse) so that the NMR 

signal increases again, and is described as a spin echo. The total time between the 

first RF pulse and the formation of the echo is called echo time, or TE. 
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2.4 Image Formation 

 

2.4.1 Spatial encoding 

 

In order to obtain an MR image from the signal in the receiver coil, it is necessary 

to be able to locate where the NMR signal is coming from. This is achieved using 

linear magnetic field gradients. There are two ways of obtaining MR images of a 

three dimensional (3D) object: two dimensional (2D) spatial encoding, and 3D 

spatial encoding. To create a 2 dimensional image, the sample is divided into 

slices (through slice-selection), each of which is then further differentiated by 

applying frequency encoding in one dimension, and phase encoding in another 

(see below). For 3D images, frequency encoding is applied in one dimension and 

phase encoding in the remaining two. 

 

2.4.1.1. Slice selection gradient (SS, Gslice, Gz) 

The slice-selection direction is often indicated with ‘z’, although it does not 

necessarily coincide with the direction of B0. A linear gradient is applied along the 

direction orthogonal to the planes to be imaged, so that the magnetic field changes 

strength at different locations along it. Thus at each location protons will precess at 

a different frequency to the rest of the sample. A RF pulse can therefore be applied 

at a frequency which is equal to the Larmor frequency of the protons at a specific 

location. In this way a specific slice of the sample can be selectively excited. 

 

2.4.1.2. Phase encoding gradient (PE, Gphase, Gy) 

The phase encoding gradient is applied along the direction conventionally indicated 

as ‘y’, prior to sampling, and alters the magnetic field strength at different points. 

This changes the precessional frequency of the protons at each point, so that 

nuclei along the gradient lose phase coherence. This makes the phase of the 

protons dependent on their position along the gradient. This allows protons to be 

located within a slice, and the greater the PE gradient the finer the detail of 

information obtained. This process is repeated a number of times N, which 

determines the number of phase-encoding steps. 
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2.4.1.3. Frequency encoding gradient (FE, Gread, Gx) 

A magnetic field gradient is applied in a direction orthogonal to the phase encoding 

gradient (the ‘x’ direction) during the measurement of the NMR signal. The 

frequency of the spins varies with the gradient, and so the signal changes with 

position along the gradient.  

 

Figure 2d demonstrates how these steps are employed in a spin echo sequence. 

At the echo time, TE, the signal is received. The next excitation pulse follows after 

the repetition time, TR, has elapsed.  

 

 

Figure 2d: The spin echo pulse sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A RF pulse is applied at 90˚, with a slice select gradient. This is followed by the frequency 

encoding and phase encoding gradients, and a rephasing pulse at TE/2. At time TE the 

signal is produced. Time TR is the time between one excitation and the next. 
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By varying the TR and TE, different contrasts in intensity can be achieved, to help 

differentiate between tissues. Shortening the TR helps differentiate tissues on the 

basis of their longitudinal relaxation (T1-weighting), because those with a long T1 

will not have had time to fully regain longitudinal magnetization before the next 

pulse. This reduces the transverse magnetization produced after the subsequent 

excitation, resulting in a smaller signal. Conversely, lengthening the TE helps to 

differentiate tissues on the basis of their T2-relaxation times (T2-weighting). It 

follows that a long TR and short TE minimises both T1 and T2 effects. In this case 

signal depends largely on the density of protons in the tissue (proton density [PD] 

weighting).  

 

2.4.2 k-space 

 

The receiver coil in the MR scanner receives information in the form of the NMR 

signal, and converts it into digits. Each digit represents the phase and frequency of 

signal at a specific point in time during scanning, and they are stored in an 

information matrix known as k-space. The order in which these data points are 

collected into k-space can be varied, but most often it is filled at regular intervals 

along the x and y directions. However, the trajectory always begins at the centre of 

k-space. The phase encoding gradient moves the trajectory vertically, along ky, and 

the larger the gradient the further away from the origin. Similarly, the frequency 

gradient moves the trajectory horizontally, along kx. Application of the 180˚ pulse 

will cause the trajectory to flip to the diametrically opposite position on the matrix. 

Low frequency, high amplitude data are recorded at the centre of k-space. They 

describe most aspects of the MR image, in particular the overall shape and 

contrast. High frequency, low amplitude data are recorded at the periphery of k-

space. They define areas of rapid spatial variation (such as edges), and therefore 

contain information about the finer details of the image. 

 

2.4.3 The Fourier Transformation 

 

To convert the information stored in k-space into an image, each data point 

undergoes a mathematical process known as the Fourier transform. It changes the 
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data from the time to the frequency domain. Each pixel in the image can then be 

allocated a colour on the grayscale corresponding to the amplitude of the 

frequencies, or signal intensity, recorded at that location.  

 

2.5 Sequences 

 

There are many ways in which the spin echo acquisition sequence can be altered, 

so that scanning time can be reduced and different types of contrast obtained. 

Below I will describe the acquisitions which have been used for the studies in this 

thesis. 

 

2.5.1 Fast/Turbo spin echo  

(also known as RARE (Hennig 1986), rapid acquisition with relaxation 

enhancement) 

 

In this sequence the 180˚ rephasing pulse is repeated, resulting in the formation of 

further spin echoes. The number of 180˚ pulses applied during TR is called the 

echo train length (ETL). After each new rephasing pulse, the phase encoding 

gradient is varied so that a different line of k-space can be filled for that slice. The 

scan time is decreased because the number of acquisitions necessary to fill k-

space is reduced by a factor equivalent to the ETL. However, the use of large 

ETL’s can result in image artefacts. Furthermore, it is necessary to control image 

contrast because each echo is acquired at a different TE, and therefore shows a 

different degree of T2-weighting. Image contrast is adjusted by assigning the 

echoes collected at the TE of interest to the low frequency signals, at the centre of 

k-space, where they have more influence on the image contrast. Those echoes 

collected at different TE’s are assigned to the edge of k-space.  

 

2.5.2 Interleaved or multi-echo sequences 

 

Images with different contrasts can be gathered at the same time by using different 

echoes in the echo train to fill the k-space for different images. For example, in a 



Understanding progression in PPMS: Chapter 2   57 

dual-echo sequence the first image is obtained at short TE. The second image is 

then obtained after a further 180˚ pulse, so the TE is longer and the image is more 

T2-weighted. The phase encoding gradient is kept the same, so that the same line 

of k-space is filled in both images. In this way interleaved PD and T2 images of the 

same slice can be obtained at almost the same time, without increasing acquisition 

length. It is also possible to employ longer echo trains, where the first part of the 

echo train produces the PD image, and the second part the T2 image, but several 

lines of k-space are sampled in each TR. In the studies described in this thesis, we 

have used an interleaved sequence to acquire co-registered PD and T2-weighted 

images as part of the magnetization transfer sequence (see section 2.8.3). 

 

2.5.3 Gradient echo 

 

Gradient echo sequences differ from the spin echo because the excitation pulse is 

applied at a flip angle which is typically less than 90˚. This means that not all the 

longitudinal magnetization is converted to transverse magnetization, and TR and 

TE are reduced. In addition a gradient is used to rephase the protons instead of a 

180˚ pulse, which reduces the TE. Although the sequence is faster, it can not 

compensate for magnetic field inhomogeneities and is susceptible to artefacts.  

 

2.5.4 Three-Dimensional Fast Spoiled Gradient Recalled Echo (3D-FSPGR) 

 

In this 3-D T1-weighted acquisition, the third dimension is provided by an additional 

phase encoding gradient, applied in the same direction as the slice selection 

gradient. For each slab excited by the slice-select gradients, there is a given 

number of phase-encodings. Thus the slice thickness is the slab thickness divided 

by the number of phase encodings, and it can be reduced by increasing the 

number of partitions per slab, without limiting the RF amplitude. To produce T1-

weighting, the sequence can be preceded by an inversion RF pulse at 180°, which 

flips the longitudinal magnetization. Tissues begin their T1 relaxation from full 

saturation, so that the differences in their T1 relaxation times have greater 

influence on the signal produced. An RF excitation pulse is applied at a flip angle 

lower than 90° (typically of the order of 20°), and a bipolar readout gradient is used 
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to create an echo, as described above. However, because the TR is short, some 

transverse magnetization may remain when the next excitation occurs. This is 

destroyed using a spoiler gradient, which de-phases the spins. This acquisition has 

a high resolution and good differentiation between tissues. It is useful for 

examining brain structure and volume, and in our studies we have used it to 

measure brain atrophy (see section 2.7.1).  

 

2.6 Use of Contrast agents 

 

Altering acquisition parameters changes the contrast for the whole image. To 

specifically improve contrast in certain tissues, for example to differentiate between 

normal tissues and pathology, contrast agents are used to decrease T1 or T2 

relaxation times. 

 

2.6.1 Gadolinium 

 

Gadolinium is a trivalent lanthanide metal with seven unpaired electrons. Following 

intravenous injection, it extravasates from the cerebral circulation in areas where 

the blood-brain barrier is damaged by inflammation. It has a large magnetic 

moment which causes a fluctuation in the local magnetic field. This reduces T1 

relaxation time in the surrounding water molecules (McRobbie 2003), and 

produces a brighter signal on T1-weighted images (see Figure2e). 

 

 

  

Figure 2e: T1-weighted image after 

injection with triple dose gadolinium 

A gadolinium enhancing lesion is seen adjacent to 

the left frontal horn 
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In MS, gadolinium enhancement produces high signal in active inflammatory 

lesions, and most new lesions visible on T2 imaging enhance initially (Lee 1999). A 

number of studies have investigated how best to maximize the detection of new, 

active lesions. Imaging patients regularly (Tortorella 1999); including the spinal 

cord in the imaging protocol (Kidd 1993); imaging thirty minutes after injection 

rather than the standard five to seven minutes (Filippi 1995); using an MR 

sequence with thinner slices; using magnetization contrast for the images (Silver 

1997), and using high field MR (Sicotte 2003) all increase the number of enhancing 

lesions detected in MS. The most useful adaptation identified to increase sensitivity 

in RRMS, however, has been an increase in the gadolinium dose from single 

(0.1mm/kg) to triple (0.3mmol/kg) (Filippi 2000). In PPMS, relatively few studies 

have been performed and it has not been established whether triple dose 

gadolinium increases sensitivity. In one small study, triple dose gadolinium 

increased sensitivity to lesion enhancement (Filippi 1995), but in another it 

conferred no benefit (Silver 1997). 

 

To prevent toxic accumulation in body tissues, gadolinium is chelated with DTPA 

(forming gadolinium-diethylenetriaminepenta-acetic acid), so that it can be safely 

excreted by the kidneys. However, recent case reports of nephrogenic systemic 

fibrosis developing in patients with renal impairment have resulted in Food and 

drug administration (FDA) recommendations that renal function is always tested 

before gadolinium administration. There is a small risk of anaphylaxis, and the drug 

should only be given under medical supervision with resuscitation equipment and 

drugs to hand. Patients should be fully informed of the reasons for contrast 

administration, and the potential risks, prior to imaging.  

 

2.7 Measuring brain volume 

 

There are a wide variety of rapidly evolving techniques available to measure brain 

volume and atrophy from MRI. This section briefly discusses some of the 

techniques most commonly employed in multiple sclerosis imaging studies. 
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Specific areas of interest, or indeed the whole brain, may be outlined manually in 

two dimensions, and measured. In MS, the corpus callosum has often been 

studied in this way (Paolillo 2000), as a site of particular disease predilection. The 

technique is straightforward but time consuming, and limited by problems of intra- 

and inter-observer reproducibility. The use of simple individual measurements of 

ventricular dimension, which can be used as markers for atrophy, has also been 

explored (Butzkueven 2008).  

 

2.7.1 Segmentation-based techniques 

 

This type of analysis involves separating segments of the brain from surrounding 

structures, and then measuring the volume of tissue within them. Segmentation on 

serial MRI allows measurement of the rate of atrophy. A semi-automated technique 

to measure central cerebral volume (Losseff 1996) has been  widely used in PPMS 

(Stevenson 1999). This technique concentrates on between four and six axial 

slices (depending on slice thickness) at the centre of the brain, a common site for 

peri-ventricular lesions which is particularly vulnerable to atrophy. The brain is 

segmented from the relevant image slices using an optimum intensity threshold 

that removes non-brain structures. Manual editing may be necessary, which limits 

reproducibility, and the accuracy of the technique is very dependent on slice 

thickness and patient positioning within the scanner. SIENAX (Structural Image 

Evaluation, using Normalization, of Atrophy cross-sectional) is an alternative 

segmentation-based package (Smith 2002), in which the brain is extracted from the 

image using a tessellated mesh to model the surface, followed by application of a 

brain mask in stereotactic space to remove extra-cerebral tissue. Further grey 

matter, white matter and CSF segmentation is carried out on this extracted brain 

image in order to determine brain volume. This technique also includes an 

estimation of partial volume effects, and therefore greater volumetric accuracy, as 

well as automatically normalizing the brain volume for head-size thereby making 

cross-sectional analyses more sensitive. Manual editing may improve accuracy, 

and does not compromise the high inter-centre reproducibility (Jasperse 2007). 

MIDAS, a semi-automated intensity thresholding technique (Freeborough 1997), 
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identifies the brain/CSF boundary in order to segment the whole brain, or CSF in 

order to calculate ventricular volume (Dalton 2006). 

 

In the work described in this thesis, the SPM99 and SPM2 packages (Statistical 

Parametric Mapping; Wellcome Department of Cognitive Neurology, London, 

UK)(Ashburner 1997) have been applied to segment 3-D FSPGR images (see 

section 2.5.4). All images are normalized to a template, based on the Montreal 

Neurological Institute template, and extra-cranial tissues are removed. Intensity 

inhomogeneities are corrected. Segmentation proceeds according to an a priori 

template derived from a database of normal brain images, in addition to information 

from individual pixel intensities. A probability map is produced, wherein each voxel 

is assigned a probability of belonging to a specific tissue class (see Figure 2f). The 

use of normal brain templates may pose problems when pathology markedly alters 

subjects’ brain morphology, for example in brains with severe atrophy or a very 

high lesion load. Another problem for MS studies is that white matter lesions may 

be erroneously classified as grey matter (Anderson 2006). This problem is 

addressed by applying a lesion mask following segmentation, which overrides local 

tissue classifications in order to remove lesions from the volume measurement.  

 

A recent study compared three brain volumetry methods for measuring grey and 

white matter: FAST, the segmentation tool from the FSL library 

(http://www.fmrib.ox.ac.uk/fsl); Freesurfer, an automated surface reconstruction 

tool for measuring cortical thickness (Fischl 2002), which also contains an 

automated segmentation algorithm; and SPM5, an updated version of SPM2.  

SPM5 was most consistent in measuring segment volumes longitudinally; however, 

maximum deviations of 3% occurred even with this technique, indicating the 

current limitations of sequential atrophy measurements (Klauschen 2008).  
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Figure 2f: Segmentation of FSPGR image in SPM2 

 

                                              

                                                  Original   FSPGR 

                           

                     Grey matter              White matter                      CSF 

 

The 3-D FSPGR image is segmented into grey matter, white matter and CSF using SPM2. 

Note the inclusion of peri-ventricular lesions, around the posterior horn of the lateral 

ventricle, in the grey matter segment; these are later removed by lesion masking. 

 

2.7.2 Registration-based techniques 

 

These methods provide a direct measure of brain volume change between serial 

images by matching the position of, or registering, the images. This may address 

the limitations for sequential segmentation-based measures described above. For 

example, SIENA (Structural Image Evaluation, using Normalization, of Atrophy) 

uses a tessellated mesh to model the edge of the brain surface, and shifts in this 

edge are measured over time (Smith 2001). BBSI (Brain Boundary shift integral) is 
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a technique which measures atrophy based on the difference in brain voxel 

intensities between registered images at the brain/CSF boundaries (Fox 1997). 

However, although these techniques may be more precise than segmentation-

based approaches in assessing whole brain volume change over time (Anderson 

2007), they can not examine specific brain segments, and lesions can not be 

removed from the analysis. 

 

2.7.3 Voxel-based morphometry (VBM) 

 

This fully automated technique localizes atrophy without an a priori hypothesis, 

providing an unbiased survey of the whole brain, or more usually the grey matter. 

Information about localized atrophy is lost using the whole-brain techniques 

described above, because areas of atrophy may be counterbalanced by relatively 

normal areas. In VBM, all images are registered to a template, so that the tissue 

concentration (or density) at each voxel can be compared between subject groups 

(Ashburner 2000). Areas where the tissue concentration in one group significantly 

differs from that in the other group are highlighted. Thus only regions where a 

significant proportion of the subjects have atrophy are identified, and there is less 

sensitivity to changes between groups in areas of high natural variance (Anderson 

2006). In addition this method does not provide absolute measures of volume or 

atrophy for individual subjects. 

 

There have been concerns that changes identified on VBM may be due to mis-

registration, patient positioning or other artefacts rather than to actual differences in 

brain volume (Bookstein 2001), and that localizing changes on normalized, 

smoothed images may be misleading (Smith 2006). In addition, methodological 

variations such as the size of the smoothing kernel may have considerable impact 

on results (Jones 2005). Particular challenges in multiple sclerosis studies include 

the normalization of images after lesions have been removed (Audoin 2004).  In 

the VBM study described in Chapter 4, we have attempted to address uncertainties 

regarding the accuracy of localization by performing a post-hoc analysis of our 

results. As we have confined our analysis to the grey matter, removal of visible T2 

lesions has minimal impact on normalization; in addition, the application of a zero-
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weighted lesion mask meant that voxels classified as containing lesions were not 

considered during the normalization. However, the strengths and limitations of this 

novel technique must be borne in mind when interpreting the results (see section 

4.4.1.4). In this study we also applied a voxel-based approach to the analysis of 

MTR images, as discussed in the next section.  

 

2.8 Magnetization Transfer Imaging (MTI) 

 

Much of the work described in this thesis is based on the use of magnetization 

transfer imaging (MTI), a semi-quantitative MRI technique based on cross-

relaxation and chemical exchange between protons in free water and those bound 

to macromolecules. Bound protons are often associated with proteins, such as 

myelin, and are restricted in their movement by the chemical environment. The 

proximity of other protons increases spin-spin interactions and reduces their T2 

relaxation time, so that they are far less visible than free water protons on most MR 

sequences. However, using MTI the properties of the bound proton pool can be 

indirectly explored.  

 

2.8.1 MTR 

 

Protons in the bound pool are constantly exchanging magnetization with the free 

proton pool. They tend to have a very broad spectrum of precessional frequencies 

due to their varying molecular structures and to the local interaction with 

neighbouring spins. In contrast, free water protons all precess at similar 

frequencies. This makes bound protons sensitive to off-resonance radiation, at 

frequencies other than the Larmor frequency, and allows a preparatory off-

resonance RF pulse to saturate (reduce to zero) the magnetization of bound 

protons with minimal direct effect on free protons. However, the bound protons 

then transfer magnetization to the free pool, via cross relaxation and chemical 

exchange. This reduces the PD-weighted signal (Ms) obtained in areas where there 

are bound protons, because the transverse magnetization of the free water protons 

has been reduced. The signal is then measured again in the absence of the 
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saturation pulse (M0), and the difference between the two signals in each voxel 

gives the MTR: 

 

MTR= 100 (M0- Ms/ M0) per cent units (pu) 

 

The MTR of a voxel is thus an indication of the size of the bound proton pool in that 

voxel, and is higher when the bound proton pool is larger. In the brain CSF, like 

free water, has an MTR value close to zero. White matter is abundant in myelin, so 

the bound proton pool is large and the MTR high. In the grey matter, there are 

fewer bound protons than white matter, but more than in CSF, and the MTR is 

intermediate.  

 

2.8.2 Factors influencing MTR in vivo  

 

There are several considerations which reduce the accuracy and applicability of 

this model in clinical practice. These relate to either the tissues themselves or the 

MR scanner. 

 

2.8.2.1 Properties of the tissue 

Essentially, MTR is determined by the exchange rate between the free and bound 

proton pools, and the size of the bound proton pool, but it is also influenced by the 

T1 relaxation time of the free water. Magnetization destruction is determined by the 

magnetization exchange rate multiplied by the size of the bound pool, and 

magnetization recovery by the inverse of the free water T1 relaxation time. This 

means that where there is pathology MTR may lose some sensitivity. For example, 

in an MS lesion, there is a reduction in myelin and therefore a reduction in the 

bound proton pool. However, there is a concomitant increase in T1 relaxation 

which counteracts this effect, resulting in only a very small change in the overall 

MTR. Thus the MTR reduction does not reflect the full extent of demyelination 

(Tofts 2004). However, the T1 effect is relatively small, and is minimized in our 

studies using a PD rather than T1-weighted acquisition sequence (McGowan 

1999). Another consideration is that some direct saturation of the free pool is 

difficult to avoid, and total saturation of the bound proton pool can not be achieved 
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safely in vivo. However, it has been shown that greater saturation of the bound 

pool is not necessarily optimal for studying pathology in MS (Graham 1999) .  

 

2.8.2.2 MR scanner parameters 

The MTR is also affected by the offset frequency selected, the bandwidth, 

amplitude and duration of the MT pulse (Tofts 2006). Typically, the MT pulse is 

Gaussian or sinc, with a bandwidth of a few 100Hz, delivered at 1-5kHz off the 

frequency of the mobile water. Care must also be taken to accurately set the flip 

angle and to minimise transmit field non-uniformity, for example by using body coil 

excitation, to achieve a reproducible MTR (Tofts 2006). 

 

In the work presented in this thesis, the considerations above are addressed 

because MTR is always compared between patients and normal controls, and all 

scans are performed on the same scanner, using the same parameters at each 

acquisition.  

 

2.8.3 MT sequence 

 

The MT sequence described in this thesis is an interleaved acquisition, producing 

inherently co-registered saturated and unsaturated PD-weighted MT images, a PD 

image, and a T2 image, for each slice (Barker 1996). Using an interleaved spin 

echo acquisition is relatively slow. To speed the acquisition, the saturated images 

for multiple slices are collected during one sequence, and then the unsaturated 

images. The TR is also reduced to speed up the acquisition, and this may increase 

T1-weighting. However, the production of co-registered images of different 

modalities is extremely helpful for lesion identification and marking, and the 

creation of accurate lesion masks.  

 

2.8.4 Post-processing 

 

Once the MTR for each voxel has been calculated according to the formula 

described above, an MTR map is created (see Fig 2g), which can be processed 

and analyzed in different ways. 
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Figure 2g: MTR image  

The image is derived from the saturated  

and unsaturated PD-weighted MT images 

 

 

 

 

 

 

 

2.8.4.1 Region of Interest (ROI) Analysis 

This process necessitates the a priori selection of a region for study, which is 

contoured on a suitable co-registered image and applied as a mask to the MTR 

map, to extract the MTR in specific voxels.  The ROI contouring may be manual or 

partly automated, depending on the structure to be examined, and this introduces a 

margin for error. Alternatively, the ROI may be represented by a box placed at 

specific co-ordinates in the brain; in this case, accurate ROI placement may be 

particularly problematic in serial studies. Only a limited number of areas may be 

examined in this way; too many comparisons necessitate Bonferroni corrections 

and thus lose sensitivity (Tofts 2004). In MS,  an ROI approach was initially 

employed to examine the normal appearing brain tissues (Leary 2000); however, 

this application has been superseded by more robust techniques, allowing 

unbiased examination of the whole NABT.  

 

2.8.4.2 MTR Histogram Analysis 

This technique is fully automated, relatively fast, and highly reproducible (van 

Buchem 1999). It involves the creation of a frequency distribution from the values 

in the MTR map, and allows modelling of the whole brain without an a priori 

hypothesis. If required, lesions can be masked and removed, and tissues can be 

segmented using automated algorithms, to obtain the MTR of the whole grey or 

NAWM.  
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The MTR histogram obtained from a normal brain demonstrates a single peak with 

a fairly narrow range of values (van Buchem 1997). Several considerations are 

involved in creating histograms. The values included in the histogram are often 

integers, because images tend to be stored as integers to limit the amount of 

memory required, and so continuous intensity values have been rounded up or 

down. This produces spikes in the histogram, which can be smoothed by the 

addition of random noise to the intensity value before conversion into MTR, called 

a pseudo-continuous distribution (Tozer 2003). The intervals into which MTR 

values are divided in a histogram is called the bin width, and in the studies 

described in this thesis we have chosen a bin width of 0.1 pu (see Chapter 3 

section 3.1.2.3). This is a trade-off between wider bin sizes, which can smooth 

away accurate localization and measurement of the peak, and the excess noise 

produced by very narrow bins (Tofts 2004). Initially, the area under the histogram 

curve gives the total number of voxels, so that the tissue volume is calculated by 

multiplying by the volume of one voxel. However, due to the wide variation in brain 

sizes, histograms are normalized to make them comparable. Each histogram value 

is divided by the sum of all the values and by the bin width, so that the area below 

the histogram becomes unity. The normalized histogram therefore shows the 

fraction of total brain volume lying at each MTR interval. 

 

Specific parameters which describe the histogram can be extracted (see Figure 2h) 

and in our studies we have used peak height (PH), peak location (PL) and mean 

values. Histogram PH appears to be the most sensitive to decline in MS (van 

Buchem 1996, Zhou 2004), indicating a reduction in voxels at the most popular 

MTR value of the normal range. For this reason it has been claimed that histogram 

PH represents the amount of ‘normal’ brain parenchyma remaining in the segment 

(van Buchem 1996). However, PH also tends to be the most variable parameter as 

it is vulnerable to artefact; for this reason it may not be the best parameter to 

distinguish between patients and controls (Zhou 2004). The mean MTR is closely 

related to the PH, but it is less sensitive to change as more voxels at lower MTR 

are needed to shift the mean value of the whole histogram. The peak location (PL), 

which is the mode of the values, is closely related to the mean, and moves to the 



Understanding progression in PPMS: Chapter 2   69 

left after considerable increase in voxels with a lower MTR. Some studies have 

included features which further describe the shape of the histogram, giving more 

information about pixels at lower values, such as the 25th and 75th centiles (Ramio-

Torrenta 2006). Zhou et al proposed using the area under the histogram at a width 

of 2/3 the histogram height, to encompass a wider variety of information about the 

histogram peak and distribution (Zhou 2004), and McGowan et al proposed using 

the mean +/- standard deviation (SD) (McGowan 2000). Attempts have also been 

made to use more complex analyses which represent the features of the histogram 

more completely, such as principle component analysis (Dehmeshki 2001) and 

more recently analysis of skew (Hayton 2009).  

 

Histograms are very sensitive to subtle diffuse change, because an average is 

taken from a large number of voxels, thus reducing the effect of noise. For this 

reason they are not ideal for analyzing small tissue volumes, such as lesions. They 

can be created from larger ROIs, but are extremely sensitive to slight changes in 

ROI positioning. In addition, the sensitivity of histogram analysis for the detection of 

very localized pathology is limited, because changes may be compensated for by 

normal areas. Generalized information about the segment under study is provided; 

all information about location is lost (Tofts 2004).  

 

Figure 2h: Histogram of the grey matter MTR in a patient with PPMS 
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2.8.4.3 Voxel-based MTR Analysis 

MTR changes can be localized using a voxel-based approach, as described in 

section 2.7.4. A mask of the area under study, for example the grey matter, may be 

created and applied to the MTR image (see Chapter 4), or the MTR image itself 

may be segmented (Audoin 2006). The MTR in each voxel can then be compared 

between groups. It is important to consider partial volume voxels, particularly in 

areas of localized atrophy. These occur when a voxel contains tissue from outside 

the segment under study; for example, some NAWM or CSF may contaminate a 

grey matter voxel and alter its MTR. In the study described in Chapter 4, we have 

addressed this issue by applying a 75% likelihood threshold to the grey matter 

mask, so that all voxels included are more than 75% likely to contain grey matter 

(see section 4.4.1.4). Other investigators have employed an erosion step, where 

the outer grey matter voxels are removed (Mesaros 2008); we avoided this 

because it indiscriminately reduces the number of grey matter voxels studied.  

 

2.9 Conclusions 

MRI exploits the paramagnetic properties of tissues by applying a radiofrequency 

pulse in the presence of an external magnetic field. Images are encoded using 

linear magnetic field gradients and recorded in k-space. Variations in acquisition 

can be used to manipulate image contrast. Contrast within an image can be altered 

using contrast agents such as gadolinium. The brain volume measurements 

performed in later chapters are calculated from 3-D FSPGR images using SPM2. 

The MT sequence used is an interleaved acquisition producing inherently co-

registered PD- and T2-weighted images. 
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This chapter contains two longitudinal studies which investigate progression in 

PPMS using MTR histograms. The first explores the sensitivity of MTR 

histograms for detecting short term changes in the brain over one year, and the 

potential for baseline MTR histograms to predict short term progression. The 

second study investigates whether the predictive value of MTR histograms is 

maintained over a longer period of three years, and whether MTR histogram 

parameters change concurrently with clinical measures during the study. In both 

sections, brain atrophy is also considered, both for its capacity to affect MTR 

measurements and its potential relevance to disease progression.  

 

3.1 Detecting change and predicting progression over one year 

in early PPMS 

 

3.1.1 Introduction 

Magnetization transfer imaging quantifies injury in the NABT and in lesions by 

measuring the MTR. A reduction in MTR is thought to reflect demyelination and 

axonal loss (Schmierer 2004), thus the technique is particularly suited for 

exploring the disease processes driving clinical progression in PPMS. The basis 

of the MTR measurement is fully discussed in section 2.8. Diffuse 

abnormalities, reflected by reduction in MTR, have been identified in the NABT 

of subjects with PPMS (Dehmeshki 2003, Gass 1994). Some studies suggest 

that the changes are less profound than those seen in SPMS (Vrenken 2007, 

Rovaris 2000), but others have described an equivalent amount of damage 

(Dehmeshki 2001). Initially, correlations between MTR and clinical indices in 

established PPMS appeared weaker than in other MS subtypes (Dehmeshki 

2001, Filippi 2000a), and short-term longitudinal studies did not demonstrate 

MTR changes despite concurrent increase in T2 lesion load (Filippi 2000b). 

However, a cross-sectional study in early PPMS demonstrated a correlation 

between MTR reduction (in both grey and NAWM) and clinical function (Ramio-

Torrenta 2006), suggesting that MTI may be sensitive to longitudinal changes in 

this group.  
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Brain atrophy represents irreversible tissue damage, and is thought to be a 

reflection of axonal loss (Simon 2006). Brain atrophy is already evident in 

patients with early PPMS, in both the grey and NAWM segments (Sastre-

Garriga 2004), and the extent of volume loss correlates with clinical function. 

Any investigation of MTI in PPMS must also consider brain atrophy, for two 

reasons. Firstly, volume loss interferes with MTR measurement by increasing 

‘partial volume’ voxels: voxels which only partly contain either grey or NAWM. 

Voxels containing both tissue types would generate an MTR intermediate to that 

of a purely grey or NAWM voxel, and those containing NABT and CSF together 

would have a markedly reduced MTR. For this reason, care must be taken in 

post-processing to minimize partial volume voxels, and statistical correction for 

atrophy may also be necessary to ensure that any remaining contribution of 

volume loss to the MTR measurement is taken into account. Secondly, MTR 

reduction is thought to reflect both reversible processes (principally 

demyelination, but also gliosis and inflammation) and irreversible processes 

(particularly axonal loss), although there is some indication that the former may 

be more directly related to MTR (Schmierer 2004). Thus models taking full 

account of concurrent volume change when measuring MTR may be more likely 

to highlight the contribution made by reversible processes, potentially gaining 

complementary information to that obtained from volume measurements. 

The only previous longitudinal MTR study in PPMS examined nine patients with 

PPMS as part of a mixed MS cohort, using NABT MTR histograms over one 

year. No change in MTR parameters was observed, despite an increase in T2 

lesion load over the same period (Filippi 2000b). In this study we explored the 

value of baseline MTR to predict clinical progression in the short-term, and 

investigated whether MTI was sensitive enough to detect changes over one 

year in early PPMS, independently of any contribution from brain atrophy.  

3.1.2 Methods 

3.1.2.1 Subjects 

 

The participants in this study were recruited as part of a cohort of fifty patients 

with definite or probable PPMS (Thompson 2000), within five years of symptom 

onset, who were participants in a longitudinal study comprising six monthly 
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radiological and clinical assessments. For this study we examined data 

obtained at baseline and after one year. One patient did not complete the 

baseline protocol, and two patients were excluded after baseline: one 

developed claustrophobia and one withdrew. Eleven patients did not attend at 

one year, the reasons were as follows: death, not MS related (1), illness 

unrelated to MS (2), personal commitments (6; in these cases patients were 

away from London or prevented from attending their appointment due to prior 

commitments). Two patients missed their one year time-point due to the 

scanner upgrade. In addition, three patients were scanned after the scanner 

upgrade, and excluded from this study, and two patients had not yet reached 

their one year time-point. Finally, one patient was excluded because all images 

were of sub-optimal quality (see section 3.1.2.3). Thus the subgroup for this 

study was composed of 30 patients (17 male, 13 female, mean age 42.1 years 

[range 25-63]). Patient characteristics are given in Table 3.A. None of the 

patients were taking disease modifying medications, but one patient was taking 

regular courses of oral steroids every three months. Patients were recruited 

from clinics at the National Hospital for Neurology and Neurosurgery and other 

hospitals in Southeast England. Written and informed consent was obtained 

from all participants. The study was approved by the Joint Medical Ethics 

Committee of the National Hospital for Neurology and Neurosurgery and the 

Institute of Neurology, London. 

Patients underwent neurological examination at baseline and one year. They 

were scored on Kurtzke’s Expanded Disability Status Scale (EDSS) (Kurtzke 

1983) . The Multiple Sclerosis Functional Composite (MSFC) (Cutter 1999) and 

its subtests (Paced Auditory Serial Addition Test [PASAT], Nine Hole Peg Test 

[NHPT], and Timed Walk Test [TWT]) were performed for the first time at 

baseline (without previous practice sessions) and on 22 of the patients at one 

year (12 male, 10 female, mean age 41.9 years [range 25-63]). There was no 

significant difference in baseline EDSS, MSFC, T2 lesion load or brain 

parenchymal fraction (BPF), or in one year EDSS, T2 lesion load, or BPF 

between those patients scored for MSFC at one year and those who were not.  

Fifteen healthy controls (9 male, 6 female, mean age 35.4 years [range 27-52]), 

were also scanned at baseline and one year. The difference in age between 

patients and controls was adjusted for in the statistical analysis. 
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Table 3.A Clinical characteristics of patients at baseline and follow-up 

Characteristics Baseline One year P value 

Number male / female 17/13 - - 

Mean age in years (range)  42.06 (25-63)   -   - 

Mean disease duration in years (range) 2.9 (1-5) - - 

Presentation: cord/non-cord symptoms 23 / 7 - - 

Median EDSS (range)  4.0 (1.5-7)   4.75 (2-7.5)   p=0.02 

Mean MSFC (SD) 0.05 (0.84)  0.02 (1.07) p=0.8 

Mean PASAT (range) 43.0 (0-60)   46.0 (3-60) p=0.3 

Mean NHPT (range) 34.3 (17.1-96.2)   40.9 (18.0-165.8) p=0.2 

Mean TWT (range ) 17.6 (3.65-180)  23.9 (3.70-180) p=0.4 

 

P values were obtained from Willcoxon rank tests (EDSS) and paired t-tests (all other 
variables) to compare baseline and follow-up values. EDSS=Expanded disability status 
scale, MSFC= Multiple sclerosis functional composite, PASAT= Paced auditory serial 
addition test, NHPT=Nine hole peg test, TWT=Timed walk test, BL=Baseline, 
FU=follow-up, SD=Standard deviation. 

 

3.1.2.2 MRI Acquisition 

 

All scans were performed at baseline and after one year on a 1.5 Tesla GE 

Signa scanner (General Electric Co, Milwaukee, Wisconsin, USA). The mean 

and median separation of baseline and one year scans were both 12.3 months 

(range 10.1 - 15.2 months).  

 

MTI was acquired using a 2D interleaved spin echo sequence described by 

Barker et al (Barker 1996), comprising 28 contiguous axial slices, slice 

thickness 5mm, repetition time (TR) 1720ms (milliseconds), echo time (TE) 

30/80 ms, number of excitations (NEX) 0.75, acquired matrix 256x128, 

reconstructed matrix 256x256 and field of view (FOV) 240x240mm. Proton 

density (PD)-weighted images were acquired in the presence and absence of a 

Hamming-apodised three lobe sinc MT pulse (duration 16ms, peak amplitude 

23.2 µT[micro-Tesla], bandwidth 250 Hz [Herz], 1kHz [kilo-Herz] off-water 

resonance). These saturated and unsaturated PD MT sequences were co-

registered and interleaved with simultaneously acquired PD and T2-weighted 

images.  
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All subjects also underwent a 3D inversion-prepared fast spoiled gradient recall 

(3D FSPGR) sequence of the brain, comprising 124 contiguous axial slices, 

slice thickness 1.5mm, TR 13.3 ms, TE 4.2ms, inversion time 450 ms, matrix 

256x160 [reconstructed matrix 256×256, final in plane resolution 1.17x1.17 mm] 

and FOV 300 x 225mm.  

3.1.2.3 Image Post Processing 

 

Images were displayed on a Sun workstation (Sun Microsystems, Mountain 

View, CA, USA) using DispImage software (DispImage, D. Plummer, 

Department of Medical Physics and Bioengineering, UCL, UK). Lesions were 

delineated with a semi-automated contour thresholding technique (Plummer 

1992) on the unsaturated PD images, with reference to the co-registered T2 

images, and used to create a binary lesion mask (setting the signal inside the 

lesion boundary to 0, and the rest to 1). 

3.1.2.3.1 MTI 

The pixel MTR was calculated from the pre- (Mo) and post- (Ms) saturation PD-

weighted images using the formula [(Mo-Ms)/Mo] x 100 percent units (pu), to 

produce MTR maps for each subject. These images were chosen because the 

resulting map has higher signal-to-noise ratio than that from the 80ms echo. 

The T2 images were segmented in SPM99 (Statistical Parametric Mapping 

1999, Wellcome Department of Cognitive Neurology, London, England) using 

an algorithm based on cluster analysis combined with a priori knowledge of 

tissue distribution (see section 2.7.1) (Ashburner 2000), which assigns voxels to 

white matter, gray matter or CSF. We used SPM99 so that our results would be 

comparable to those from a previous cross-sectional study in our cohort 

(Ramio-Torrenta 2006). Non-brain tissue, whole brain (WB), white matter and 

grey matter probability maps were produced, and used to create WB, grey and 

white matter masks, which were then applied to the calculated MTR map in 

each subject to produce WB, grey and white matter MTR maps. To minimise 

partial volume voxels, we employed a 10pu threshold, and eroded the outer and 

inner layer of voxels twice in the white matter, and once in the grey (the cortical 

grey matter was too thin to support further erosions). The segmentation of the 

MTR images was checked manually in all subjects. One patient’s scans were 

incorrectly segmented, with white matter accidentally included in the grey matter 
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segment due to a very high lesion load. This patient was excluded from the 

analysis.  

 

The T2 lesion masks were then applied to the WB, grey and white matter MTR 

maps to produce grey and NAWM probability maps. We have avoided the term 

normal appearing grey matter because while all visible T2 lesions were 

removed, grey matter lesions are not visible on T2-weighted images at 1.5 

Tesla (Geurts 2005b). To obtain the lesion MTR map, the lesion mask was 

reversed (setting the signal inside the lesion boundary to 1, and the rest to 0), 

applied to the grey and white matter probability maps to produce a lesion 

probability map, and then to the MTR images to produce a lesion MTR map. In 

the case of controls, where no lesions were found, segmentation produced 

normal white matter (NWM) and grey matter maps. MTR histograms were 

obtained for the grey, NAWM and lesions in patients, and grey matter and NWM 

in controls. To allow us to compare MTR histograms between subjects, the 

MTR histograms of each segment were normalized to the volume of that 

segment. The histograms had a bin width of 0.1 pu and a smoothing window of 

0.3 pu. Mean, peak height (PH) and peak location (PL) MTR measures were 

taken from each individual histogram. 

 

3.1.2.3.2 Atrophy 

At each time-point lesions were contoured on the individual FSPGR scans using 

the software described above, to create a T1-weighted lesion mask. The 

observer was blinded to the clinical details. FSPGR images were segmented 

into white matter, grey matter and CSF using SPM99, and the volume of each 

segment calculated as described by Chard et al (Chard 2002b). The lesion 

mask was then subtracted from the white matter and grey matter T1 images 

and separate NAWM, grey matter and lesion segments were obtained, with 

their volumes in ml. Volume estimations were made using a caudal cut-off at the 

last slice containing cerebellum. The total intracranial volume (TIV), BPF, 

normal appearing white matter fraction (NAWMF) and grey matter fraction 

(GMF) were calculated as follows: 

 

TIV = lesion volume (LV) + NAWM volume (NAWMV) + GM volume (GMV) + 

CSF volume 
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BPF = (LV+ NAWMV+ GMV) / TIV 

NAWMF = NAWMV / TIV  

GMF = GMV / TIV 

3.1.2.4 Statistical Analysis  

 

Analysis was carried out using SPSS 10.0 (Statistical package for the Social 

Sciences, Chicago, IL, USA). Statistical significance is reported at the 5% level. 

Significant values for correlation coefficients are reported without correction for 

multiple comparisons to avoid type II errors (Perneger 1998). 

 

3.1.2.4.1 Clinical data 

In analyzing the change in EDSS scores, a one step deterioration on the scale 

was defined as an increase of one if the baseline EDSS was less than or equal 

to five or an increase of 0.5 if it was greater than five (Ellison 1994). This gives 

greater weight to change in more disabled patients, in whom deterioration is 

harder to detect on the EDSS scale, and these steps have been regarded as 

equivalent in clinical trials (Hoogervorst 2003). Z-scores (z) were derived for the 

MSFC subtests using our own baseline sample as reference, and used to 

calculate the MSFC. One patient at baseline and two at one year were too 

disabled to complete the TWT, and were scored with the maximum time allowed 

for the TWT (180 seconds), as described by Hoogervorst et al (Hoogervorst 

2002).  

 

3.1.2.4.2 Baseline MTR predictors 

To find whether baseline MTR in patients predicted clinical change, multiple 

linear regression analyses were performed for each clinical test and subtest, 

and each MTR parameter in each segment. Clinical score at one year was the 

dependent variable, and clinical score at baseline and baseline MTR 

parameters were independent variables, so that any relationship identified 

between baseline MTR variables and change in clinical score would be 

independent of any relationship between baseline MTR variables and baseline 

clinical score. Models were adjusted for age, gender and baseline intra-

segmental volume ie WB analysis was adjusted for baseline BPF, NAWM for 
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NAWMF and grey matter for GMF. Where significant correlations were found 

between baseline MTR parameters and clinical change, the strength of the 

association was assessed using partial correlations adjusted for age, gender 

and intra-segmental volume. 

To investigate further the utility of baseline MTR measures in predicting clinical 

change, patients were divided into two groups: those with a stable EDSS score 

at one year, and those who had worsened. The MTR parameter that most 

strongly predicted EDSS changes was chosen. A cut-off value for this MTR 

parameter, which was below the lowest value in controls, was chosen. Patients 

were divided into a further two subgroups depending on whether their MTR was 

below or above this value. A two by two table was constructed, showing the 

number of patients with low and normal MTR against those who were stable or 

worsened on EDSS. The sensitivity, specificity, positive and negative predictive 

values, and overall accuracy of using this MTR parameter to predict clinical 

worsening were calculated according to standard methods (Greenhalgh 1997). 

3.1.2.4.3 MTR change over one year in patients and controls 

To determine MTR change over one year, paired t-tests were used to compare 

MTR at baseline and one year within patient and control groups. Multiple linear 

regression analysis was then used to compare changes in each segmental 

MTR parameter between patient and control groups, adjusting for age and 

gender.  

 

3.1.2.4.4 Relationship between MTR and atrophy 

Pearson’s correlations were performed to establish the relationship between 

change in MTR and brain volume in each segment. Grey matter damage is also 

related to white matter changes (Audoin 2006, Chard 2002a), therefore the 

correlation between grey matter MTR decrease and change in NAWMF was 

also examined. 
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3.1.3 Results 

3.1.3.1 Clinical changes  

Clinical changes over one year are summarized in Table 3.A. Patients 

progressed clinically with worsening EDSS scores (p=0.02). There was a non-

significant decrease in mean MSFC, with worsening of the TWT and NHPT 

scores. PASAT scores appeared to improve over one year. 

3.1.3.2. Predictive value of baseline MTR  

Lower MTR at baseline predicted greater clinical progression on both the EDSS 

and MSFC over one year after adjusting for age, gender and segmental atrophy 

(see Table 3.B). Baseline WB MTR (mean p=0.01, r -0.46) predicted change in 

EDSS. There was no contribution from lesion MTR, but NAWM MTR 

parameters predicted EDSS change (mean p=0.03, r -0.39 and PH p=0.04, r -

0.38). Baseline NAWM mean MTR below 37.0pu (this was chosen as a cut off 

because it was well below the lowest MTR value in controls, which was 

37.68pu) was able to predict worsening on the EDSS over one year with a 

specificity of 95%, sensitivity of 50%, positive predictive value of 83%, and 

negative predictive value of 79% (see Table 3.C). The overall accuracy of the 

test, indicating the proportion of correct predictions, was 80%. 

For the MSFC change the most complete predictor was the WB MTR (mean 

p=0.001, r 0.67; PH p=0.001, r 0.64; PL p=0.006, r 0.58). This prediction 

emerged largely from the NAWM segment (mean p<0.001, r 0.68; PH p<0.001, 

r 0.54). The grey matter MTR (PL p=0.02, r 0.51) and the lesion MTR (mean 

p=0.047, r 0.44; PL p=0.01, r 0.54) were weak predictors of MSFC change.  

Of the MSFC subtests, change in the zTWT was predicted by baseline NAWM 

(p<=0.001 in all cases, mean r 0.81, PH r 0.75, PL r 0.64) and grey matter 

parameters (PH p=0.007, r 0.55; PL p=0.004, r 0.58), and lesion MTR (mean 

p=0.01, r 0.52; PL p=0.009, r 0.53). zPASAT was weakly predicted by WB 

(mean and PH) and by lesion MTR (PL p=0.013, r 0.50). Although there was a 

group improvement in zPASAT, the positive correlation demonstrated that 
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individuals with lower MTR values were more likely to have a lower zPASAT 

score after one year. 

 

Figure 3a: Baseline NAWM Mean MTR predicts change in EDSS over one 

year 
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NB The positive correlation is maintained when data are analyzed without the two 

outlying patients with EDSS change of +2 and +3 respectively (p=0.03, r -0.40). MTR= 

magnetization transfer ratio, NAWM=normal appearing white matter, EDSS=expanded 

disability status scale; pu=percent units 

 

 

 

 



Understanding progression in PPMS: Chapter 3     85   

Table 3.B Baseline MTR parameters predict clinical change over one year 

 

MTR 

parameters at 

baseline 

Change in  

EDSS MSFC zPASAT zNHPT zTWT 

WB M 

PH 

PL 

0.01  (-0.46) 

0.55   

0.07  (-0.34) 

0.001  (0.67) 

0.001  (0.64) 

0.006  (0.58) 

0.03  (0.43) 

0.03  (0.44) 

0.19 

0.18 

0.85 

0.08 

<0.001 (0.71) 

 0.001  (0.64) 

<0.001 (0.70) 

NAWM M 

PH 

PL 

0.03  (-0.39) 

0.29 

0.04  (-0.38) 

0.001  (0.68) 

<0.001(0.54) 

0.68 

0.06 

0.10 

0.07 

0.26 

0.83 

0.20 

<0.001 (0.81) 

<0.001 (0.75) 

 0.001  (0.64) 

Grey 

matter 

M 

PH 

PL 

0.65 

0.72 

0.73 

0.11 

0.08 

0.02    (0.51) 

0.34 

0.57 

0.52 

0.60 

0.97 

0.190 

 0.06    (0.40) 

 0.007  (0.55) 

 0.004  (0.58) 

Lesion M 

PH 

PL 

0.18 

0.12 

0.33 

0.047  (0.44) 

0.77 

0.01    (0.54) 

0.05  (0.40) 

0.66 

0.01  (0.50) 

0.69 

0.93 

0.82 

0.01     (0.52) 

0.74 

0.009   (0.53) 

 

P values are shown for each parameter, and significant p values (p<0.05) are shown in 

bold. They were obtained from multiple linear regression analysis with age, gender and 

intra-segmental volume as covariates where significant. R values, shown in brackets, 

were obtained from partial correlation coefficients. MTR= Magnetization transfer ratio, 

WB=Whole brain, NAWM=Normal appearing white matter. PH=Peak height, PL=Peak 

location. EDSS=Expanded disability status scale, MSFC=Multiple sclerosis functional 

composite, zPASAT=z-score for the Paced auditory serial addition test, zNHPT=z-

score for the Nine hole peg test, zTWT= z-score for the Timed walk test. 
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Table 3.C Baseline NAWM mean MTR < 37 pu predicts worsening on EDSS 

over one year 

 

 NAWM mean 

MTR <37 pu 

 

NAWM mean 

MTR  >=37 pu 

TOTAL  

EDSS worsened 5 

 

5 10 Sensitivity 

50% 

EDSS the same 

or improved 

1 19 20 Specificity 

95% 

TOTAL 

 

6 24 30  

 Positive 

predictive 

value 83 % 

Negative 

predictive 

value 79% 

 Overall 

accuracy 

80% 

 

MTR= Magnetization transfer ratio, pu=percent units, NAWM=normal appearing white 

matter, < less than, >= greater than or equal to 

 

3.1.3.3. MRI changes over one year  

All mean MTR values decreased at one year in patients (see Table 3.D), with 

lesion MTR showing the least significant decrease (p=0.03), followed by NAWM 

(p=0.01). All peak location values, except for lesion MTR, decreased 

significantly (WB p=0.01, NAWM p=0.01, grey matter p=0.001), but only WB 

showed a significant decrease in peak height (p=0.03). In controls, there were 

no significant longitudinal changes in MTR. Significant differences in MTR 

change were only identified between patient and control groups in grey matter 

mean MTR (p=0.02).  
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Table 3.D MTR changes over one year in patients and controls 

 
 

MTR Parameter 
 

 
Baseline  
mean MTR 
(SD) 

 
One year 
mean MTR 
(SD) 
 

 
P 
value 

 

95% Confidence 
Interval 

Pts vs 
cont  
(p 
value) 

Lower Upper 
P

A
T

IE
N

T
S

 

WB M 

PH 

PL  

33.51 (1.43) 

0.98   (0.01) 

36.51 (1.23) 

33.20 (1.57) 

0.96   (0.01) 

36.13 (1.37) 

 

<0.001 

0.03 

0.01 

-0.45    

-0.0003  

-1.81      

 

-0.17 

-0.004 

-0.23 

- 

- 

- 

NAWM M 

PH 

PL 

 

37.48 (1.46) 

0.19   (0.03) 

37.77 (1.03) 

 

37.24 (1.57) 

0.18   (0.03) 

37.56 (1.11) 

 

0.01 

0.15 

0.01 

 

-0.41    

-0.002     

-0.38  

 

-0.06 

0.013 

-0.05 

 

0.5 

0.6 

0.3 

 

Grey 

matter 

M 

PH 

PL 

 

31.31 (0.98) 

0.11   (0.01) 

32.64 (0.85) 

 

31.04 (1.03) 

0.10   (0.02) 

32.24 (0.91) 

 

<0.001 

0.50 

0.001 

 

-0.40    

-0.002  

-0.62    

 

-0.14 

0.004 

-0.18 

 

0.02 

0.4 

0.1 

Lesion M 

PH 

PL 

 

31.38 (2.30) 

0.11   (0.03) 

34.23 (2.28) 

31.05 (2.38) 

0.12   (0.04) 

33.75 (2.28) 

0.03 

0.18 

0.09 

-0.61  

-0.025  

-1.03  

-0.03 

0.005 

0.08 

- 

- 

- 

C
O

N
T

R
O

L
S

 

WB M 

PH 

PL 

 

34.72 (0.38) 

0.01   (0.009) 

37.42 (0.45) 

34.72 (0.64) 

0.01   (0.01) 

37.09 (0.78) 

0.20 

0.36 

0.36 

-0.25     

-0.002       

-0.70  

0.25 

0.001 

0.05 

- 

- 

- 

NWM M 

PH 

PL 

 

38.40 (0.40) 

0.20   (0.02) 

38.51 (0.37) 

 

38.23 (0.57) 

0.20   (0.02) 

38.40 (0.53) 

 

0.99 

0.41 

0.09 

-0.44    

-0.003      

-0.37     

0.10 

0.01 

0.15 

- 

- 

- 

Grey 

matter 

M 

PH 

PL 

 

32.90 (0.44) 

0.12   (0.01) 

33.13 (0.56) 

 

32.28 (0.68) 

0.12   (0.02) 

33.09 (0.74) 

 

0.89 

0.49 

0.73 

-0.27     

-0.006      

-0.34    

0.23 

0.003 

0.24 

- 

- 

- 

Mean and Peak location MTR values are in percent units, and Peak height is given in 

percent volume. Pts vs cont = changes in patients compared to controls. Significant p 

values (p<0.05) are shown in bold, and are derived from paired t-tests for in-group 

comparisons, and multiple linear regression adjusting for age and gender for between- 

group comparisons. MTR=magnetization transfer ratio, WB=whole brain, 

NAWM=normal appearing white matter, NWM= normal white matter, M=Mean, 

PH=peak height, PL=peak location.  
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3.1.3.4. Correlations between MTR and volume changes  

Correlations were found between decrease in WB, grey and NAWM peak height 

MTR and decrease in corresponding intra-segmental volume (p=0.01, p=0.008, 

p<0.001 respectively, see Table 3.E). Change in NAWM mean and peak 

location MTR parameters also correlated significantly with the progression of 

atrophy in corresponding brain tissues (p=0.03 in both cases). There was no 

significant correlation between the grey matter MTR decrease and change in 

NAWMF. 

 

Table 3.E Correlation of change in MTR with change in segmental volume 

over one year 

Changing MTR 

parameter 

 

Correlation with segmental volume change 

p value r value r² 

WB Mean 0.15 0.3 0.08 

PH 0.01 0.47 0.23 

PL 0.10 0.32 0.10 

NAWM Mean 0.03 0.42 0.18 

PH 0.008** 0.50 0.24 

PL 0.03 0.42 0.17 

Grey 

matter 

Mean 0.61 0.10 0.01 

PH <0.001** 0.67 0.45 

PL 0.21 0.24 0.06 

 

P values are derived from Pearson’s test. Significant values at p<0.05 are shown in 

bold and at p<0.01 with asterisks **. Mean and Peak location MTR values are in 

percent units, and Peak height is given in percent volume. MTR=Magnetization transfer 

ratio, WB=Whole brain, NAWM=Normal appearing white matter. PH=Peak height, 

PL=Peak location. r= correlation coefficient for Pearson’s test. 
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3.1.4 Discussion 

3.1.4.1 MTR parameters predict clinical change  

This study shows, for the first time, that brain MTI is a modest predictor of 

clinical evolution in PPMS, over a relatively short period. Importantly, 

predictions survived adjustment for segmental volume, demonstrating that the 

predictive value of MTI is independent of atrophy. However, over a short study 

period clinical and imaging changes are necessarily small, and longer follow-up 

is necessary to investigate the role of MTI as a prognostic indicator (see section 

3.2). 

Over one year EDSS scores deteriorated significantly, but MSFC decline was 

not statistically significant. This may be explained by several factors. Firstly, 

MSFC data was not available on all patients. Secondly, mean zTWT and 

zNHPT scores declined over one year, but zPASAT scores improved. This was 

probably due to practice effects and a reduced anxiety, as patients became 

accustomed to testing (Tombaugh 2006, Solari 2005). Lastly, patients unable to 

complete the TWT at baseline could not demonstrate further reductions in 

mobility on the MSFC, whereas their EDSS score increased. Nevertheless, the 

MSFC may provide useful information in this study. It has been shown to be 

more accurate than the EDSS for detecting group differences within a sample in 

cross-sectional studies (Hobart 2004). There is evidence that the two scales do 

not correlate well, and thus may provide complementary clinical information 

(Kragt 2008). Indeed, in our study, reduction in zTWT sub-scores was more 

strongly predicted by imaging parameters than any other clinical test. This 

emphasizes that decreasing mobility is likely to be a prime indicator of 

progression in this cohort, in which 23 out of 30 patients presented with a 

spastic paraparesis.  

NAWM MTR parameters appear to be driving the prediction of clinical change. 

Only NAWM peak height did not predict EDSS change; significance was lost 

after adjustment for baseline brain volume. We identified the NAWM mean MTR 

with a cut-off value of 37pu as the best indicator of progression in this sample. 

The overall sensitivity for predicting progression was 50%, with a specificity of 

95%; using a higher cut-off value increased sensitivity, but decreased 
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specificity. The value provides information at a group level for this cohort. 

However, in order to validate a specific predictive MTR value for clinical use, to 

predict disability in individuals with PPMS, much larger studies would be 

necessary. Such a value would be scanner- and sequence-specific (see section 

2.8.2.2). 

Regarding the other MTR parameters, lesion MTR also predicted decline in 

MSFC, but not EDSS. Baseline grey matter MTR was only a weak predictor of 

MSFC change; possible reasons for this are discussed in section 3.1.4.2. 

3.1.4.2 MTR decreases significantly over one year  

To our knowledge only one previous study evaluated MTR in longitudinal follow-

up of PPMS (Filippi 2000b): no significant change in lesion, WB or NABT MTR 

was found in nine PPMS patients over one year. Median disease duration in the 

PPMS group was 8 years, with a range of 3-14 years.  

In our patients grey matter MTR decreased significantly, but the decrease in 

NAWM MTR was less notable. Similar results were obtained in a diffusion 

tensor study in advanced PPMS (mean disease duration 10 years), which 

observed marked deterioration in grey matter indices over a year, without 

significant NAWM change (Rovaris 2005). Furthermore, relatively marked grey 

matter MTR decline has been identified in early RRMS (Davies 2005), while CIS 

patients have shown equivalent reduction in grey and white matter MTR 

(Fernando 2005). In this study, the relatively extensive changes in grey 

compared to NAWM MTR could be due to grey matter lesion accumulation. 

Lesions within the cortex and deep grey matter are very extensive in 

progressive MS (Bruck 2005, Kutzelnigg 2005a, Kidd 1999), and can not be 

reliably detected on conventional MRI scans even at higher field strengths 

(Geurts 2005a). The grey matter thus contained an unknown number of lesions, 

while visible white matter lesions were masked out of the analysis. The role of 

partial volume effects, as discussed in section 3.1.1, should also be considered 

when interpreting the decline in grey matter MTR. Grey matter atrophy without 

significant white matter atrophy is known to have developed in this cohort over 

one year (Sastre-Garriga 2005a), and as brain volume decreases, there is an 

increase in the number of outer voxels at the brain/CSF interface. However, 
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steps were taken to minimize this effect. Two outer voxel erosions were carried 

out for the white matter, and one for the grey matter, discarding voxels with an 

MTR value below 10pu. MTR histograms were then normalised for brain 

volume. Furthermore, when we correlated atrophy and MTR changes, only the 

grey matter peak height showed a relationship with atrophy. There were no 

significant correlations with grey matter mean and peak location, where the 

significant longitudinal MTR reductions occurred.  

Finally, although grey matter MTR decreased more than NAWM MTR over the 

study, NAWM MTR was a better baseline predictor of clinical change. This may 

suggest an imbalance of changes in each segment prior to the start of the 

study: if NAWM changes occurred earlier in the disease course, they would 

initially contribute more to the clinical picture. Davies and colleagues, studying 

MTR in RRMS patients, extrapolated their findings backward, suggesting that 

NAWM changes had begun prior to symptom onset (Davies 2005). If NAWM 

changes preceded grey matter changes in our cohort, we would expect the grey 

matter changes evident in this study to affect clinical outcome in subsequent 

years (see section 3.2). This has been demonstrated in a DTI study in 

established PPMS (mean disease duration 10 years), in which grey matter 

damage predicted disability at five years (Rovaris 2006). In other MS subtypes, 

grey matter MTR has predicted long term EDSS progression over 8 years 

(Agosta 2006).  

3.1.4.3 MTR changes and progression of atrophy  

Weak to moderate correlations emerged between MTR and volume changes 

over one year. Decrease in peak height MTR was most strongly associated with 

the development of segmental atrophy, confirming previous findings (Rovaris 

1999, Phillips 1998). An increase in low MTR voxels widens and flattens the 

normalized histogram (Tofts 2004). Statistically, however, atrophy explained 

less than 10% of the significant decrease in grey matter MTR, and less than 

20% of the decrease in NAWM MTR.  

Our results emphasize that there is a modest relationship between atrophy and 

MTR, and that in patients with PPMS MTR measures must be interpreted in the 

context of atrophy. However, we have shown that MTR is an independent 
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marker of pathology. Significant MTR changes were not explained by brain 

volume changes, and baseline MTR predicted progression independently of 

atrophy. 

 

3.2 Monitoring and predicting clinical progression over three 

years in early PPMS 

3.2.1 Introduction 

It has been demonstrated that MTR reduction in the NABT correlates with 

disability in early PPMS (Ramio-Torrenta 2006). In section 3.1, we showed that 

baseline NAWM MTR predicts short-term clinical progression, and that MTR is 

sensitive to short-term brain tissue changes. This data implies that MTR may be 

a useful measure not only to improve understanding of disease progression in 

PPMS, but also to predict and monitor progression in a clinical setting.  

A number of clinical challenges stem from the wide variation in the evolution of 

disability among individuals with PPMS (Tremlett 2005). The absence of 

predictive markers for clinical outcome has adversely affected clinical trials, 

such as the glatiramer acetate study in PPMS, which was terminated early 

because patients did not progress as anticipated (Wolinsky 2007). In addition, 

robust surrogate markers are needed to detect treatment effects (Johnston 

2007). The potential for using MRI surrogate markers in MS was explored by a 

working group in 1999 (McFarland 2002), and they adopted criteria described 

by Prentice (Prentice 1989). These state that a surrogate marker should predict 

future clinical disability, and that any intervention must alter both the surrogate 

marker and clinical outcome by the same mechanism. In establishing these 

criteria, the requirement that the marker should change concurrently with clinical 

status was not included. However, this attribute is clearly advantageous 

because it allows monitoring of contemporaneous, as well as future, treatment 

effects.  

In this study we examined the potential of MTR as a surrogate marker to 

monitor progression in early PPMS in a medium term study suited to clinical trial 

design. For this purpose, we compared MTR to conventional MRI markers 
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which have been more widely used as outcome measures in MS clinical trials: 

T2 lesion load and atrophy. First, we assessed whether changes over three 

years in MTR, brain volume or T2 lesion load reflected concurrent clinical 

changes. Secondly we explored whether baseline MTR was a better predictor of 

clinical progression compared to the other two MR measures.  

3.2.2 Methods 

3.2.2.1 Subjects 

As described in study 3.1, 50 patients with definite or probable PPMS 

(Thompson 2000), within five years of symptom onset, were invited for 

radiological assessment at baseline. Following this, they were assessed six 

monthly for three years, and at each time-point they were scored on the EDSS. 

As before, two patients were excluded after baseline: one developed 

claustrophobia and one withdrew, and a third patient was excluded because all 

images were of sub-optimal quality (see section 3.2.2.3). The patient who did 

not complete the baseline protocol and was excluded from study 3.1 attended 

all other time-points and was therefore retained in this study. Thus the total 

number of patients was 47 (Table 3.F). Clinical data was obtained in person or 

by telephone (Lechner-Scott 2003) for patients who became too disabled to 

undergo scanning during the study, including those with severe ataxia 

preventing them from lying still, and those who were unwilling to attend the 

centre (Table 3.G). Two patients died of conditions unrelated to MS during the 

study and were excluded from subsequent analysis, one withdrew, and one was 

unwell at the final time-point. Thus 43 patients were assessed at three years 

(Table 3.G). None of the patients were taking disease modifying medications. 

One patient had a single course of intravenous (iv) steroids for a deterioration of 

symptoms, and two patients were taking regular courses of oral steroids every 

three months. 

Eighteen healthy controls (see Table 3.F), a different group from the controls in 

study 3.1, underwent the same scanning protocol. Adjustments for age and 

gender differences between the patient and control group were made at each 

stage of the analysis, as described below.  

 



Understanding progression in PPMS: Chapter 3     94   

 

Table 3.F Baseline clinical and imaging characteristics of patients and 

controls 

 Patients Controls p value 

Mean age in years (range) 45.1 (19-65) 34.6 (27-52) <0.001 

Gender (male/female) 28/19 8/10 0.08 

Median EDSS (range) 4.75 (1.5-7) - - 

Mean T2 lesion load (ml) 30.3 - - 

Mean grey matter volume  

(SD; mean PGMF [%]) 

710.4 

(78.6;47.7) 

726.4 

(70.6;49.7) 

0.001 

Mean NAWM volume                   

(SD; mean PNAWMF [%]) 

369.2 

(50.5;24.8) 

395.5 

(38.3;27.0) 

<0.001 

 

Grey matter 

MTR 

Mean (SD) 

PH, mean (SD) 

PL, mean (SD) 

31.8 (1.1) 

10.0 (1.4) 

33.3 (0.6) 

33.1 (0.4) 

12.1 (1.0) 

33.8 (0.5) 

<0.001 

<0.001 

0.006 

 

NAWM MTR 

 

Mean (SD) 

PH, mean (SD) 

PL, mean (SD) 

37.2 (0.9) 

17.4 (2.7) 

37.7 (0.8) 

38.1 (0.5) 

20.2 (1.5) 

38.4 (0.5) 

<0.001 

<0.001 

0.001 

 

EDSS= Expanded disability status scale, SD=Standard deviation, PGMF=Percentage 

grey matter fraction, PNAWMF=Percentage normal appearing white matter fraction, 

NAWM=Normal appearing white matter, MTR=Magnetization transfer ratio, PH=Peak 

height,PL=Peak location, pu=Percent units . PH is given in percent volume, and mean 

and PL in percent units. P values were derived from unpaired 2 tailed t-tests for patient 

versus control variables.  
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Table 3.G Numbers of patients assessed at each time-point and reasons 

for non-attendance 

Time-point (months) 0 6 12 18 24 30 36 

Total patients assessed: 47 

 

37 36 33 34 30 43 

Scan performed  46 

 

34 33 33 30 25 37 

Clinical assessment only, done in person 

 

1 3 3 0 3 2 2 

Clinical assessment only, done by telephone 

 

0 0 0 0 1 3 4 

Patients who did not attend: 0 

 

10 11 14 13 17 4 

Withdrew from study 0 

 

0 0 0 0 1 1 

Personal commitments 0 

 

7 6 7 5 7 0 

Non-MS related illness 0 

 

3 2 3 4 6 1 

Upgrade 0 

 

0 2 3 3 2 0 

Death 0 

 

0 1 1 1 1 2 

 

Clinical assessment only= Patients too disabled to be scanned, including patients with 

severe ataxia preventing them from lying still. Personal commitments= patient unable 

to attend within time allocated due to existing commitments. Upgrade= time-point 

missed because scanner was being upgraded.  

 

3.2.2.2 MRI Acquisition  

All scans were performed on a 1.5 Tesla scanner (General Electric Co, 

Milwaukee, Wisconsin, USA). Each time-point was separated by a mean of 26.7 
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weeks (range 25.3-29.0 weeks). The scanner was upgraded during the study, 

and the gradient amplifiers, but not the gradient coils, were changed. Maximum 

gradient strength increased from 22mTm-1 (milli-Tesla per metre) to 33mTm-1. 

The scanner software was upgraded from SIGNA version 5x to version11x. The 

upgrade was accounted for at each stage of the statistical analysis (see below).  

Subjects underwent brain MTI (Barker 1996), producing inherently co-registered 

proton density- (PD) and T2-weighted images (see 3.1.2.2); MTI parameters 

were unchanged after the upgrade. 3D inversion-prepared fast spoiled gradient 

recall (3D FSPGR) volume sequences of the brain were also acquired (see 

3.1.2.2), and the FSPGR repetition time was reduced from 13.3 to 10.9 ms after 

the upgrade. 

3.2.2.3 Post-processing 

Images were displayed on a Sun workstation (Sun Microsystems, Mountain 

View, CA) using DispImage software (DispImage, D. Plummer, Department of 

Medical Physics and Bioengineering, UCL, UK).  

In this study more accurate segmentation was achieved than in study 3.1, using 

the FSPGR images acquired during the same session as the MT, on which the 

boundary between grey and white matter was more clearly defined. 

Segmentation was carried out in SPM2, using a maximum likelihood algorithm. 

This assigns voxels to grey matter, white matter, or CSF segments according to 

spatial prior probabilities, ascertained here by reference to a standard a priori 

tissue probability map, and voxel signal intensity. This time we dealt with the 

problem of partial volume voxels by introducing a threshold of 0.75 to the 

NAWM and grey matter segments (Smith 2006), so that only voxels with a 75% 

or greater likelihood of being situated in each respective segment were included 

there. This ensured that voxels with any appreciable partial volume were 

excluded, wherever they were situated. Erosions would have reduced the 

volume of tissue retained in the analysis, and unnecessarily excluded full 

volume voxels situated in the eroded layer. This method also kept the 

segmentation process completely separate from the generation of MTR values, 

because the MTR value obtained had no relevance in determining the 

boundaries of the map (Tofts 2004). 
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The FSPGR was co-registered to the PD MTR image (Mo), and the 

transformation parameters were applied to grey and white matter probability 

maps. In patients, T2 lesions were contoured and converted into binary lesion 

masks, as described in section 3.1.2.3.1 Segmentation was carried out in 

SPM2, and the lesion masks applied to the FSPGR images to generate grey, 

NAWM and lesion segment probability maps. The volume of each tissue 

segment was calculated in SPM2. Raw grey and NAWM brain volumes were 

normalized by dividing them by the total intracranial volume (the sum of the grey 

matter, NAWM, lesion and CSF volumes), and multiplying by 100 to produce a 

percentage grey and NAWM fraction (PGMF and PNAWMF).  

The voxel MTR was calculated, and the probability maps applied to produce 

grey, NAWM and lesion MTR maps as described in section 3.1.2.3.1. One 

patient demonstrated severe movement artefacts on every MT image, and was 

excluded from the study. Histograms, normalized to the segment volume (bin 

width 0.1pu, smoothing window 0.3pu), were generated for the grey and 

NAWM, and the mean, peak height (PH) and peak location (PL) were obtained. 

The lesion segment was considered too small to create acceptable histograms, 

and only mean MTR was measured. In controls, the procedure was the same 

without the application of a lesion mask.  

3.2.2.4 Statistical Analysis  

Analysis was carried out using Stata 9.2 (Stata Corporation, Texas, USA).  

3.2.2.4.1 Clinical data  

Raw EDSS scores at baseline and three years were compared using the 

Wilcoxon matched-pairs signed-ranks test. Changes in EDSS were converted 

into steps (see section 3.1.2.4.1). For predictors of clinical outcome, three step 

change categories were created: stable EDSS, mild progression (EDSS 

deterioration of 0.5-1.5 steps), and marked progression (deterioration of 2 steps 

or more).  

 

3.2.2.4.2 Piecewise mixed effect linear regression models 

These models are standard linear mixed models, also known as multilevel or 

hierarchical regression models (Verbeke and Molenberghs 2000, Goldstein H 
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1995), but we adapted them specifically to adjust for the scanner upgrade. A 

simple linear regression with time as predictor would ignore the fact that 

different data points may belong to the same subject, and estimate a single 

residual variance around one fitted line. In contrast, linear mixed models 

accommodate the two-level structure of the data by estimating two components 

of variance: within-subject variation (around individual subject trajectories) and 

between-subject variation (in intercept and in rate of change with time). In the 

absence of upgrade the rate of change of the response variable over time is 

given directly by the coefficient on time. Non-linearity can be examined by fitting 

an additional quadratic term in time.   

 

To adjust for the upgrade, a modification of the linear mixed model is necessary 

to make it ‘piecewise’: instead of one continuous trajectory being fitted, two 

separate trajectories, with common gradient, are fitted before and after the 

upgrade, but estimated simultaneously within one model. The assumption of 

common gradient is tested, and if there is no evidence for a gradient change the 

common gradient in the piecewise model gives the rate of change adjusting out 

the discontinuity due to upgrade. 

 

Linear mixed models allow the inclusion of all available data points in the 

analysis, so that subjects with some data points missing still contribute 

information. This minimizes bias that could result from the exclusion of these 

subjects, for example from a method that examined change over just two time 

points. Another advantage particular to the piecewise adaptation is that both 

sections of the data, before and after the upgrade, contribute to the estimation 

of the single underlying adjusted rate of change. Separate regression before 

and after would not achieve this formally, and would not allow the assumption of 

a common gradient to be tested.  

 

3.2.2.4.3 Rates of change in brain MTR, volume and T2 lesion load 

For the following analyses, except for those predicting EDSS outcome, 

piecewise mixed effect linear regression models were fitted. The models used 

random intercept and random time coefficient. The models assume that the 

changes are linear. We tested for non-linearity in the data by adding a quadratic 

term in time, and none was found.  
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To determine mean annual rates of MTR change in patients versus controls, 

mean, PH and PL for grey and NAWM MTR were modelled in turn as response 

variables. The covariates were: a binary upgrade indicator, time (centred on the 

upgrade date to adjust for a scanner upgrade effect), a patient/control indicator, 

patient*time interaction, age and gender. The mean annual rate of lesion MTR 

change in patients was calculated in the same way, without the patient/control 

indicator. For brain volume changes, age was a significant covariate so an 

age*time interaction was added. The model was repeated using PGMF and 

PNAWMF. In patients, lesion load changes were similarly modelled, with an 

age*time interaction but without the patient/control indicator. To assess the 

relationship with change in EDSS in patients, the same MTR and volume 

variables were modelled in turn as response variables, and clinical change and 

clinical change*time were additional covariates.  

 

3.2.2.4.4 Baseline MRI predictors of EDSS change 

Multiple proportional odds ordinal logistic regression was used. Ordinal 

categories of EDSS step change were the response variable, and baseline MTR 

and volume parameters, age and gender were the covariates. Predictors were 

modelled individually, then the most significant predictor from each modality 

was selected for each segment (grey, NAWM and lesions). These were then 

modelled together to identify the best overall predictor. All baseline scans were 

performed before the upgrade so no adjustment was necessary. 
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3.2.3 Results 

The results are summarized in Table 3.H 

3.2.3.1 Changes in EDSS and MRI parameters over three years  

Median EDSS scores increased from 4.5 to 6 (p<0.001). Fourteen patients 

remained stable, 14 demonstrated mild and 15 marked progression. In patients, 

grey matter mean MTR declined by -0.60pu and NAWM mean MTR by -0.26pu 

(p<0.001 in both cases). Annual changes in grey and NAWM MTR parameters 

for patients and controls are shown in Table 3.I. Lesion MTR increased by 

0.77pu, at a rate of 0.26pu per year (p=0.002, 95%CI 0.09 to 0.42). 

In patients, mean grey matter volume decreased by -12.0ml, at an annual rate 

of -3.98ml, 0.26% of the original grey matter fraction (p<0.001, 95%CI -5.82 to -

2.15). NAWM volume decreased by -0.77ml per year, which was not significant. 

T2 lesion volume increased annually by 2.80ml, or 9.25% of the original T2 

volume (p<0.001, 95%CI 1.87 to 3.74). In controls, there were no significant 

changes. The rate of change in PGMF (percentage grey matter fraction; 

p=0.005) but not PNAWMF (p=0.47) was significantly different between patients 

and controls. 

 

Table 3.H Summary of significant findings for MTR, volume and lesion 

load measurements in early PPMS 

 MTR decrease Volume decrease T2 lesion 

load 

increase 

Grey 

matter 

NAWM Grey 

matter 

NAWM 

Longitudinal changes   

Yes 

 

Yes 

 

Yes 

 

No 

 

Yes 

Rate of change correlates 

with EDSS changes 

 

Yes 

 

No 

 

No 

 

No 

 

Yes 

Baseline measure predicts 

future clinical progression 

 

Yes** 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

NAWM=Normal appearing white matter. MTR=Magnetization transfer ratio. EDSS= 
Expanded disability status scale. ** Baseline grey matter PH MTR was the strongest 
predictor of deterioration. 
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Table 3.I Mean annual rates of change in grey and NAWM MTR in patients 

and controls 

 

MTR=Magnetization transfer ratio, pu=Percent units. 95%CI=95% confidence intervals. 

PH=Peak height, PL=Peak location. p values derived from piecewise mixed effect 

linear regression models. PH is given in percent volume, and mean and PL in percent 

units. MTR changes in controls were not statistically significant. 

 

MTR 

Histogram 

parameter 

 

PATIENTS 

 

CONTROLS 

Patients 

versus 

controls 

Yearly rate 

(p value)  

 

95%CI 

Yearly rate 

(p value) 

 

95%CI 

 

P value 

Grey 

Matter 

Mean - 0.20 

(<0.001) 

-0.25 to -0.15 0.02 

(0.62) 

-0.05 to 0.08 <0.001 

PH - 0.12 

(0.03) 

-0.23 to -0.01 -0.06 

(0.31) 

-0.19 to 0.56 0.41 

PL - 0.10 

(0.007) 

-0.17 to -0.03 0.02 

(0.58) 

-0.06 to 0.10 0.01 

NAWM Mean - 0.09 

(<0.001) 

-0.12 to -0.05 0.002 

(0.90) 

-0.34 to 0.40 <0.001 

PH - 0.17 

(0.14) 

-0.40 to 0.05 -0.06 

(0.63) 

-0.29 to 0.18 0.42 

PL - 0.07 

(0.003) 

-0.13 to -0.03 -0.0006 

(0.98) 

-0.56 to 0.55 0.02 
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3.2.3.2 Surrogate MRI markers of clinical change 

3.2.3.2.1 Markers of concurrent clinical progression 

In the grey matter, rapid mean MTR decrease was associated with greater rates 

of EDSS progression (there was a 0.04pu greater annual MTR decline for each 

EDSS step deterioration, p=0.03, 95%CI -0.82 to -0.003, see Figure 3b), as was 

PL MTR (0.07pu greater annual MTR decline for each EDSS step deterioration, 

p=0.008, 95%CI -0.01 to -0.2), but not PH MTR decrease. NAWM and lesion 

changes were not associated with progression rate.  

 

Volume changes in grey and NAWM were not associated with the rate of EDSS 

change. Greater rate of T2 lesion load increase was associated with faster 

progression on EDSS (lesion volume increase of 0.70 ml for each EDSS step 

deterioration, p=0.02, 95% CI 0.09 to 1.31). 

3.2.3.2.2 Baseline predictors of clinical progression 

Lower baseline grey matter mean MTR (odds ratio [OR] 2.34, p=0.02, 95%CI 

1.18 to 4.76; see Figure 3c) and lower grey matter PH MTR (OR 2.43, p=0.008, 

95%CI 1.27 to 4.65) predicted worse outcome on the EDSS. Grey matter PL 

MTR showed a trend towards prediction (p=0.09). Lower NAWM PL MTR 

predicted worse outcome on the EDSS (OR=2.5, p=0.04, 95%CI 1.04 to 5.88) 

and NAWM PH MTR showed a trend (p=0.09). Lower baseline PGMF (OR 1.42, 

p=0.04, 95%CI 1.01 to 2.00), lower baseline PNAWMF (OR 1.36, p=0.03, 

95%CI 1.03 to 1.80), and greater T2 lesion load (OR 1.03, p=0.02, 95%CI 1.00 

to 1.06) were also predictors of worse outcome on EDSS. When the most 

significant univariate predictors from each modality and segment were modelled 

together, only grey matter PH MTR remained significant (OR 2.9, p=0.04, 

95%CI 1.06 to 8.17).  
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Figure 3b: Grey matter mean MTR decline by EDSS step change over 

three years 

 

 

The three lines represent patients who are stable over three years, patients with an 

overall EDSS step deterioration of 1, and patients with an overall step deterioration of 2 

over three years. Those with a more rapid EDSS decline have a faster rate of MTR 

reduction. The model predicts MTR decline over time centred on the upgrade, at 

time=0 (see section 3.2.2.4.2 for details); the initial time-point for each patient occurs 

up to three years earlier. The model is adjusted for age, gender and upgrade. EDSS= 

Expanded disability status scale, MTR=Magnetization transfer ratio, pu=Percent units  
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Figure 3c Grey matter mean MTR (A) and grey matter PH MTR (B) at 

baseline, in patients who remained stable and patients who progressed 

markedly over 3 years                                                 
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PL showed only a trend to prediction and is therefore not represented. The boxes 

represent the values between the 25th and 75th centile. The horizontal line within the 

box represents the median. The vertical lines attached to the box represent adjacent 

values, and the small circles represent outside values. MTR=Magnetization transfer 

ratio, PH=Peak height. 
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3.2.4 Discussion 

We found MTR decline, particularly in the grey matter, grey matter atrophy, and 

increasing T2 lesion load over three years in early PPMS. The rate of change in 

grey matter MTR and T2 lesion load, but not grey matter volume, reflected the 

rate of clinical deterioration. Baseline MTR, brain volume and T2 lesion load 

predicted clinical progression, and grey matter PH MTR emerged as the 

strongest predictor.  

3.2.4.1 MRI changes 

The disproportionate evolution of grey matter damage, measured using MTR 

and atrophy, was already evident at one year in subgroup of this cohort (see 

section 3.1, and Sastre-Garriga 2004) and has been identified in other MS 

subtypes (Horakova 2007, Valsasina 2005). Cortical lesions may account for 

the majority of this injury. They exhibit demyelination, contain apoptotic neurons 

(Rovaris 2005, Valsasina 2005, Peterson 2001) and have been associated with 

axonal transection and loss (Dutta 2007). Wallerian degeneration secondary to 

axonal damage from white matter inflammation (Brownell 1962) may also 

reduce grey matter MTR and tissue volume. Conversely, the imaging 

techniques we used could be less sensitive to processes involved in NAWM 

damage. For example, inflammatory processes may mask NAWM atrophy 

(Pirko 2007, Kutzelnigg 2005b). This is less likely in the grey matter, because 

cortical lesions are less inflammatory (Pirko 2007, Peterson 2001). Notably, the 

relatively small decline in NAWM MTR is not explained by the removal of the 

white matter lesions, regarded as the main focus of white matter injury: lesions 

showed an overall increase in MTR. This is possibly due to remyelination, which 

has been demonstrated in pathological studies in PPMS of longer disease 

duration (Patrikios 2006); our results suggest that lesion remyelination may also 

be a feature in the early phase of PPMS.  

3.2.4.2 Predicting progression 

From a clinical perspective, grey matter MTR changes were the most relevant. 

In the sub-group of this cohort studied at one year (see section3.1), there was a 

stronger association between NAWM MTR and EDSS change; grey matter 

MTR predicted timed walk test changes only. In contrast, at three years grey 
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matter MTR is the stronger predictor of EDSS change. This suggests that the 

role of NAWM pathology in determining disease progression may be decreasing 

over time.  

Regarding the grey matter MTR histogram parameters, an 8 year follow-up 

study in different MS subtypes also identified grey matter peak height MTR as a 

predictor of clinical disability (Agosta 2006). However, the importance of a 

specific MTR parameter should not be over-emphasized: each one describes 

only a single point of the histogram (Zhou 2004). In this study, changes in two 

grey matter parameters (mean and PL MTR) were significantly correlated with 

the rate of clinical progression, and two predicted disability (baseline mean and 

PH MTR). This highlights the importance of viewing parameters as a group 

when evaluating pathological changes and their clinical significance, rather than 

concentrating on a single measure (see section 2.8.4.2). 

3.2.4.3 Monitoring progression 

Our findings advocate grey matter MTR as a possible surrogate marker of 

progression in PPMS. It was the strongest predictor of future disability and 

changed contemporaneously with clinical status. In addition, treatments shown 

to counteract MTR reduction could be explained as reducing demyelination and 

axonal loss, the substrates of progression (Pirko 2007, Schmierer 2004), thus 

addressing a further criterion for a surrogate marker. However, evidence from a 

single natural history study can only promote grey matter MTR as an un-

validated surrogate (McFarland 2002); larger natural history studies exploring 

MTR changes in PPMS, and more data on the effect of MS therapies on MTR 

are required (Filippi 2007). Finally, there are practical challenges to 

implementing MTR as a surrogate marker in multi-centre studies. A 

standardized MTR sequence applicable to scanners from different 

manufacturers has been proposed, although it was only reproducible within 2.5 

pu between sites (Barker 2005). However, further improvements are possible 

using dedicated research scanners with careful attention to the flip angle, B1 

calibration and patient positioning, and with the use of body coil excitation (Tofts 

2004).  
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Our findings also suggest that T2 lesion load is a potential surrogate, as has 

been the case in other MS subtypes (Rovaris 2003). To reflect both focal white 

matter injury and diffuse neurodegenerative change, a combination of grey 

matter MTR and T2 lesion load may be optimal (Rovaris 2003). However, our 

combined model suggests that T2 lesion load is a weaker predictor than grey 

matter MTR in this group. Perhaps surprisingly, a study in other MS subtypes, in 

a less disabled patient group, also identified grey matter MTR as being a 

stronger predictor of worsening than T2 lesion load (Agosta 2006). In contrast, 

developing brain atrophy, regarded as a potential surrogate marker in 

established PPMS (Fazekas 2007, Simon 2001), did not reflect concurrent 

clinical change in this group. This may reflect a delay between demyelination 

and axonal loss, the development of associated atrophy, and the clinical 

consequences of the tissue loss. Indeed, clinical trials utilizing brain volume as 

a surrogate have required extensive follow-up to demonstrate treatment effects 

(Simon 2006), and in advanced PPMS brain atrophy predicted clinical outcome 

five years later, but not before (Sastre-Garriga 2005b, Ingle 2002).  

 

3.2.4.4 Limitations 

The main limitation of this study was incomplete attendance, particularly relating 

to worsening disability which prevented us from scanning the patients with 

higher EDSS scores. This is an inevitable problem in longitudinal studies of 

disabling conditions. We were able to address this by using a statistical model 

which minimized bias due to drop-out by utilizing all available data at each time-

point, so that subjects who missed time-points still contributed to the gradient.  

The second limitation was the scanner upgrade. After the upgrade, changes to 

the acquisition parameters were minimized, but one parameter was changed 

(see 3.2.2.2). Using the piecewise mixed effects model, we were able to take 

the upgrade into account, and in effect “edit out” discontinuity caused by the 

upgrade from the trajectory of change, making the longitudinal correlations 

more robust. In addition, all the changes in patients are described with 

reference to controls scanned both before and after the upgrade. These 

approaches address a common problem in longitudinal MR studies, which is 

particularly relevant for the investigation of quantitative MR measurements.  
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3.3 Conclusions 

MTR histogram analysis is a sensitive measure for detecting change in brain 

tissues over a relatively short period in PPMS. MTR measures are able to 

predict short and medium term progression, and grey matter MTR parameters 

decline concurrently with clinical ability. The evident potential for MTR to satisfy 

the criteria for a surrogate marker of progression in early PPMS could be 

investigated in larger studies including natural history observations and 

therapeutic trials. 

Our results suggest that NAWM MTR is more clinically relevant in the early 

stages in this patient group. As the disease advances, grey matter MTR 

becomes more closely related to progression, perhaps indicating that grey 

matter pathology is now driving disability. Lesion MTR loses its clinical 

relevance over time, perhaps due to lesion heterogeneity and remyelination.  

Finally, while grey matter MTR is the strongest clinical predictor at three years, 

T2 lesion load remains extremely relevant to clinical outcome. This indicates 

that focal white matter inflammation also plays an important role in determining 

disability in early PPMS. Further follow-up of this group will be interesting to 

determine whether the influence of T2 lesion load declines over time, as has 

been demonstrated previously in established PPMS (Khaleeli 2008). The impact 

of white matter lesions in PPMS is explored further in Chapter 5. 
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4.1 Introduction 

 

In Chapter 3 we demonstrated that damage to the NABT had an impact on clinical 

progression in PPMS, and could be detected by measuring MTR and atrophy. 

However, while the MTR histogram and brain segmentation methods described 

suggest that grey matter damage is particularly relevant in this group, these 

techniques can not locate the damage more specifically. 

 

In this study, we used a voxel-based methodology, in which all images were 

spatially normalized into standard space. This allows a voxel-by-voxel statistical 

comparison between patients and a control group, so that all parts of the grey 

matter are investigated. The technique avoids the bias introduced when using an a 

priori hypothesis, for example in ROI analysis (see sections 2.8.4.1 and 2.8.4.3). 

The technique was previously applied to localize grey matter atrophy in a subgroup 

of our cohort, and thalamic atrophy was identified (Sepulcre 2006). In the present 

study we implemented methodological improvements to maximize the sensitivity of 

the technique, and increased the study population, in order to test for atrophy not 

only in the deep grey matter but also in the cortex.  

 

We aimed to localize both grey matter MTR changes and atrophy, to establish the 

relationship between the processes reflected by each technique. In addition, we 

assessed the direct clinical impact of the MTR changes by correlating them with 

clinical scores for the functional systems relevant to the damaged areas, while 

taking into account volume loss within the regions of reduced MTR. 
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4.2 Methods 

 

4.2.1 Subjects 

 

As described in section 3.1.2.1, fifty patients with definite or probable PPMS 

(Thompson 2000), within five years of symptom onset, were invited for radiological 

assessment and scored on the EDSS and MSFC. As described previously, one 

patient did not complete the baseline protocol, and another developed 

claustrophobia. One patient withdrew after baseline, but was retained in the 

present study. Two patients were excluded from this study on the basis of their 

images (see section 4.2.2). Thus a total of 46 patients entered the present study 

(19 female, 27 male; mean age 43.5 years, range 19 to 65 years; see Table 4.A  

for patient characteristics), and twenty-three healthy controls were also scanned 

(12 female, 11 male; mean age 35.1 years, range 23-56 years). The difference in 

age between patients and controls was adjusted for at each stage of the analysis, 

as described below.  

 

 

Table 4.A Characteristics of patients and controls 
 
 Patients (n=46) 

 
Controls (n=23) 

Age in years (range) 43.5 (19-65) 35.1 (23 -56) 

Gender female/male 19/27 12/11 

EDSS median (range) 4.5 (1.5-7) - 

Disease duration in years (range) 3.3  (2-5) - 

T2 lesion load in ml (SD) 13.39 (19.61) - 

 
SD=Standard deviation, EDSS=Expanded Disability Status Scale, n=number 
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4.2.2 Image acquisition and post-processing  

 

A 1.5 Tesla GE Signa scanner (General Electric, Milwaukee, Wisconsin, USA) was 

used to acquire the images. MTI and T1-weighted FSPGR sequences were 

acquired as described in section 3.1.2.2. The images were transferred to a Sun 

workstation (Sun Microsystems, Mountain View, CA) for post-processing. MTR 

maps were calculated from the PD images as described in section 3.1.2.3. The 

following processing, except the creation of the lesion mask, was done in SPM2 

(Wellcome Department of Cognitive Neurology, London, UK). 

 

4.2.2.1 Lesion mask creation 

Lesions were contoured on the unsaturated PD images from the MT sequence as 

described in section 3.1.2.3, and binary lesion masks created for each patient. The 

lesion mask was smoothed with an 8mm full width at half maximum (FWHM) 

isotropic Gaussian kernel. Voxels at the lesion boundary with intensity less than 

one were set to zero, so that any voxel containing lesional and peri-lesional tissue 

would be included in the mask and therefore excluded from the analysis (see 

below). 

 

4.2.2.2 Co-registration of MTR and T1-weighted images 

PD-weighted scans from the MT sequence were co-registered to the 

corresponding T1-weighted volume, using normalized mutual information as the 

cost function (Studholme 1997). The same transformation was then applied to the 

MTR map and lesion mask, so that all images were in the space of the T1-

weighted volume. 

 

4.2.2.3 Segmentation of the T1-weighted images in native space 

Segmentation of the T1-weighted volume image was performed in native space in 

SPM2, as described in Chapter 3 section 3.2.2.3. Lesion masks were applied to 

patients’ scans to remove any lesional tissue erroneously classified as grey or 

white matter.  
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4.2.2.4 Normalization of segmented images  

The use of lesion masks excluded lesions from the normalization process by 

assigning them a zero weighting. The grey matter T1 segmented images were 

normalized into MNI (Montreal Neurological Institute) stereotactic space using a 12 

parameter affine transformation, optimized using 16 non-linear warps (Ashburner 

1997). Optimized transformation parameters were noted and used again later.  

 

4.2.2.5 Normalization of the original T1-weighted images, lesion masks and MTR 

maps 

The optimum parameters obtained from normalizing the NAGM T1-weighted 

images as described above were then applied to the original T1-weighted images. 

This optimized methodology is used because normalization is ideally performed on 

segmented images, so that structural differences affecting normalization do not 

influence segmentation; however, segmentation is optimally performed on 

normalized images corresponding to the a priori T1 template (Good 2001). The 

same transformation parameters were applied to MTR maps and lesion masks. 

 

4.2.2.6 Segmentation in stereotactic space 

Normalized T1-weighted images were then segmented in stereotactic space to 

produce grey matter, white matter, and CSF segments, as explained above. 

Normalized lesion masks were applied to the grey matter segments to ensure no 

lesions were included erroneously. 

 

4.2.2.7 Production and application of grey matter mask 

A conservative threshold of 0.75 (Smith 2006) was applied to the grey matter 

segment from the FSPGR image produced in Step 6, as described in section 

3.2.2.3. Thus only those voxels with a 75% or more likelihood of being situated in 

the grey matter were used to compute a binary grey matter mask in SPM2. This 

mask was then applied to the MTR map, to produce a conservative NAGM MTR 

map. The voxel size was 1mm3. 
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4.2.2.8 Smoothing 

MTR maps and T1-weighted images were smoothed with a 12mm FWHM 

Gaussian kernel, which rendered the data more statistically normal for analysis by 

SPM2, and corrected for errors during normalization.   

 

The post-processing output on each patient was checked at each stage, and two 

patients were excluded from the study. The first had extensive and severe global 

atrophy far in excess of the rest of the group, making normalization to the T1 

template problematic. The second had an extremely high lesion load causing a 

segmentation failure in which white matter was incorrectly included in the grey 

matter segment, as described in section 3.1.2.3. 

 

4.2.3 Location of Regions with abnormal MTR and grey matter volume 

 

Comparisons of grey matter MTR and volume between patients and controls were 

performed in SPM2 using analysis of covariance adjusted for age, and using a 

family-wise error correction at p<0.01 for multiple comparisons at voxel level 

across the whole brain. This produced maps depicting regions where MTR and 

grey matter volumes were significantly lower in patients. Regions comprising 

clusters of less than one hundred voxels were excluded from the analysis, which is 

a relatively conservative threshold (Ceccarelli 2008, Henry 2008). We calculated a 

mean MTR for each region where MTR was significantly reduced.  

 

To investigate the relationship between abnormal regions in the deep grey matter 

and cortex, Pearson’s correlation were carried out (in SPSS 11.0 [Statistical 

package for the Social Sciences, Chicago, IL, USA]) between the mean MTR in the 

thalamic regions and regions in the motor, somato-sensory, temporal and occipital 

cortex.  
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4.2.4 Correlations between MTR in abnormal regions and clinical measures 

 

Z-scores (z) for MSFC subtests were calculated using our own sample as 

reference, and used to obtain the MSFC (Cutter 1999). Correlations between 

clinical scores and the mean MTR in selected regions with reduced MTR (chosen a 

priori) were carried out in SPSS. From among the regions where patients showed 

reduced MTR compared to controls, we selected those within the motor network 

and within areas reported as relevant to PASAT performance. The motor regions 

were the pre- and post-central gyri, from which the cortico-spinal tract originates 

(Toyoshima 1982). Mean MTR in these regions was correlated with disability 

(EDSS) as well as mobility and upper limb function test scores (zTWT and zNHPT 

respectively). Regions selected as relevant to PASAT performance were: superior 

and middle frontal cortex, inferior parietal cortices and precuneus, superior 

temporal, inferior and medial occipital cortices. These regions were reported to 

activate during PASAT testing in functional MRI (fMRI) experiments in controls and 

patients with relapsing and remitting MS (RRMS) (Forn 2006, Audoin 2005, 

Mainero 2004, Audoin 2003). Mean MTR for each of these regions was correlated 

with the zPASAT score.  

 

We wanted to identify whether MTR was associated with any of the clinical scores 

collected, so a general linear model was performed separately for each clinical 

measure using SPM2. Clinical score was the dependent variable and MTR within 

the selected region was the covariate. As the zTWT scores were not normally 

distributed, the inverse zTWT score was used as this rendered the data more 

normal (izTWT). Models were adjusted for age and gender where they significantly 

affected the model. R values were obtained using partial correlations adjusted for 

the same covariates as the general linear model. Since MTR can be affected by 

partial volume effects in voxels containing CSF or white matter in addition to grey 

matter, we always adjusted models for the grey matter volume within precisely the 

same voxels in which the MTR was reduced. To calculate this value we used 

MRIcro software (http://www.sph.sc.edu/comd/rorden/mricro.html). Abnormal MTR 

regions were delineated as regions of interest (ROIs), and a separate ROI mask 

created for each region. The masks were then applied one by one to the 
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segmented grey matter maps, to extract the grey matter volume for each individual 

in each region of abnormal MTR (normalized to the voxel size).  

 

4.2.5 Post hoc analysis on the region in the left pre-central gyrus 

 

Having co-registered scans from different sequences with different resolutions and 

then normalized them into standard space, we wanted to be certain that the 

anatomical location of our abnormal regions was correct, and that the MTR 

changes identified reflected genuine grey matter abnormalities. We used a post 

hoc analysis similar to that described by Sommer (Sommer 2002). We chose to 

perform this on the region identified in the left pre-central gyrus, because the MTR 

reduction in this region in patients was highly significant, and correlated with 

clinical measures of disability, but the region was sufficiently small to make 

accurate localization relevant. First, we extracted the transformation parameters 

used to put the T1-weighted image into standard space using SPM2, and inverted 

them using the SPM Deformation Toolbox. We applied the inverted transformation 

parameters of each individual patient’s T1-weighted image in turn to the ROI mask 

for the abnormal region in the left pre-central gyrus (created above). This produced 

an ROI mask of the abnormal region in the left pre-central gyrus in the space of the 

native T1-weighted image. We then reversed the rigid body transformation 

originally used to register the MTR image onto the T1-weighted image, producing 

an image of the ROI mask in the space of the original MT image. This allowed us 

to check the location of the region on each original scan in native space, and to 

obtain the mean MTR for this region from the original images. Finally, we 

compared the mean MTR in this region between patients and controls (in SPSS) 

using a general linear model adjusted for age, where MTR was the dependent 

variable and patient or control status and age were covariates. 
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4.3 Results 

 

4.3.1 Location of regions of reduced MTR and atrophy  

 

4.3.1.1 Cortical grey matter 

In patients, all cortical regions with significantly reduced grey matter volume 

overlapped with regions with significantly reduced MTR (see Figure 4a and Table 

4.B). The largest and most significant (p<0.001) regions of cortical reduction in 

MTR and grey matter volume were in the right pre-central gyrus (Brodmann area 

[BA] 4), but regions were also present in the right middle frontal gyrus (BA 44), left 

post-central gyrus (BA3), and left insula. 

 

Reduced MTR without significant atrophy was seen in the left superior frontal gyrus 

(BA 9/46), left pre-central gyrus (BA 4), right inferior parietal cortex and precuneus 

(BA7), right insula, bilateral superior temporal gyrus (BA 42 and 22), and right 

medial and bilateral inferior occipital cortex (BA 17 and 18; see Table 4.B). 

 

4.3.1.2 Deep grey matter 

In both thalami the region of reduced MTR extended anteriorly, laterally and infero-

laterally, encompassing the anterior, ventral anterior, ventral lateral, ventral 

posterior and lateral geniculate nuclei and pulvinar (see Table 4.B). The right 

thalamus contained the region with the most significantly reduced MTR in the 

whole brain (p<0.001).  

 

Moderate correlations were present between the mean MTR in the thalamic 

regions and in all the regions identified in connected areas of cortex: motor cortex, 

somato-sensory cortex, temporal and occipital cortex (p< 0.001, r value between 

0.60 and 0.80 in all cases). 
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Figure 4a: Regions of significantly reduced MTR and grey matter volume in 

patients compared to controls 

 

 

 
       
             z = 48                            y = -14                                  x = 49.8 
 
The top row shows regions of MTR reduction, in red. The middle row shows regions of 
atrophy, in yellow. The bottom row shows regions of MTR and atrophy superimposed to 
demonstrate the degree of overlap, shown in orange. 
 
x, y and z are the Montreal Neurological Institute co-ordinates, in mm. MTR=magnetization 
transfer ratio 
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Table 4.B Regions with significantly reduced MTR and grey matter volume in 

patients compared to controls 

 

* p value after family wise error correction of p<0.01 at voxel level 
BA=Brodmann area, MTR=magnetization transfer ratio, MNI= Montreal Neurological 
Institute, R=Right, L=Left 

 
 
 
 
 

Gyrus/portion 

 
 
 
 
 

BA 

MTR ATROPHY 

 
MNI co-

ordinates of 
maxima 

 
Number 

of 
 voxels 

 
p 

value* 

 
MNI co-

ordinates 
of maxima 

 
Number 

of 
 voxels 

  
p 

value* 

 

Frontal  

Superior   
 

L 9/46 -23   49   25 718 0.001 - - - 

Middle 
 

R 44  43   10   37 
 

408 
 

<0.001 
 

44   10   37 19 0.004 

Pre-central 
 

R 
 

4 40   -23  50 3916 <0.001 41   -22   52 2520 <0.001 

R 
 

4 - - - 56   -9   40 139 <0.001 

L 
 

4 
 

-45   -13   43 
 

1850 
 

<0.001 
 

- - - 

 

Parietal 

Post-
central  
 

L 3 -49   -12   23 1131 <0.001 -47   -19  57 234 <0.001 

Inferior R 
 

7 34   -62   46 194 0.003 - - - 

Precuneus R 
 

7 10   -56   43 120 0.002 - - - 

 

Temporal 

Superior  
 

R 22  
 

63   -29    -9 
 

430 
 

0.004 
 

- - - 

L 42 
 

-51   -42    17 
 

351 
 

0.001 
 

- - - 

 

Occipital 

Medial R 17 
 

15   -67   14 
 

316 
 

0.002 
 

- - - 

R 17 
 

10   -82   -1 
 

175 
 

0.002 
 

- - - 

Inferior 
 
 

R 
 

18 28   -90   -9 244 0.002 - - - 

L 18 -27   -92   -10 270 <0.001 
 

- - - 

L 
 

18 -10   -79   -2 532 <0.001 - - - 

 

Insula 

 R 
 

13 36   3   4 1036 0.002 - - - 

L 
 

13 -37   5   1 1190 <0.001 -36   5   0 558 <0.001 

 
Thalami 

Anterior, 
Lateral, 
Infero-
lateral 

R - 20   -28   2 1152 <0.001 21   -26   7 1092 <0.001 

Anterior, 
Lateral, 
Infero- 
lateral 

L - -8   -12   5 778 <0.001 -10   -10   9 794 <0.001 
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4.3.2 Clinical correlations with MTR in abnormal regions after adjusting for atrophy 

 

4.3.2.1 Motor function 

Clinical scores correlated with mean MTR in the regions identified as different to 

controls within the pre- and post-central gyri (see Table 4.C). Patients with greater 

disability measured by EDSS, MSFC, NHPT and TWT scores had a lower MTR in 

these regions.  

 

4.3.2.2 Cognition 

zPASAT correlated with mean MTR in the right inferior parietal cortex (BA 7; 

p=0.043, r=0.30) and right inferior occipital gyrus (BA 18; p=0.04, r=0.30). There 

was a trend to correlation between the zPASAT and mean MTR in the abnormal 

region identified in the left superior frontal gyrus (BA 9; p=0.06, r=0.28).In these 

regions, lower zPASAT scores correlated with lower MTR values. In the remaining 

regions identified, there were no correlations between zPASAT score and MTR.  

 

4.3.2.3 Post hoc Analysis 

When the abnormal region identified in the left motor cortex was translated back 

into native space and applied to the original MTR map, the position of the region 

was shown to be consistent in all subjects (see Figure 4b for examples). The mean 

MTR obtained in this region from the original MTR map was significantly lower in 

patients than in controls (p=0.001). 
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Table 4.C Correlation between mean MTR in abnormal regions found within 

the motor network and clinical measures of disability 

 

 EDSS zNHPT  
 

izTWT MSFC 

p r  
 

p r   p r   p r   

Frontal 
Pre-
central 
(BA 4) 

R 0.013 -0.37  <0.001 0.49 0.013 0.37 <0.001 0.53 

L 0.004 -0.43 
 

<0.001 0.55 0.001 0.48 0.001 0.49 

 
Parietal 

Post-
central 
(BA 3) 

L  0.001 -0.50 
 

<0.001 0.56 <0.001 0.53 0.001 0.50 

 
EDSS= Expanded disability status scale, zNHPT= z-score for the nine hole peg test, 
izTWT= inverse of z-score for the timed walk test, MSFC= Multiple sclerosis functional 
composite, BA= Brodmann area 

 
 
 
Figure 4b: The abnormal region in the left pre-central gyrus translated back 

into native space and applied to the original PD-weighted MTR images 

 
 
 
                       PATIENT                                                    CONTROL 
 

       
 

The number on the left of the image is the slice number 
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4.4 Discussion 

 

It has been widely accepted that the NABT changes contributing to clinical 

progression are likely to be diffuse (Filippi 2003). In this study we report for the first 

time that focal regions of damage occur in the cortex and deep grey matter in early 

PPMS, as demonstrated by localized regions of MTR reduction and atrophy, and 

that they contributes to disability.  

 

4.4.1 Regions of reduced MTR and atrophy  

 

4.4.1.1 Cortical Regions 

The largest and most significant cortical regions of MTR and volume reduction 

were in the pre-central gyrus (BA 4), indicating severe damage to the primary 

motor cortex early in the disease course of PPMS. Reduced MTR and grey matter 

atrophy were also found in: the post-central gyrus (left somato-sensory cortex, BA 

3 in particular); left insula, a highly connected brain area integrating information 

from a number of functional systems; and the right middle frontal gyrus, which may 

be involved in the directed forgetting of unwanted memories (Aron 2004). It should 

be noted that although there was no region with a local maximum in the right post-

central gyrus, the pre-central gyrus cluster was very large and extended into the 

post-central gyrus. MTR reduction alone involved a number of additional areas, 

including the right somato-sensory association cortex; right insula, bilateral 

superior temporal gyri, which are involved in lexical-semantic processing (Koeda 

2006); and the bilateral visual cortex.  

 

4.4.1.2 Deep Grey Matter Regions 

Thalamic damage has been noted from the earliest stages of MS (Mesaros 2008, 

Derache 2006, Geurts 2006, Audoin 2004), and this was the area that differed 

most significantly from controls in our cohort. The anterior thalamic centres are 

connected to the motor and pre-motor cortex, and the infero-lateral areas to the 

somato-sensory, temporal and occipital cortex (Behrens 2003). Thus the areas of 

thalamus affected correspond with areas where we found cortical damage, and 
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indeed there was a moderate correlation between the MTR in the thalamic regions 

identified and those identified in connected areas of cortex. 

 

It remains uncertain whether the cortical and deep grey matter damage is a 

primary pathological process, whether it is due to lesions within the grey matter, or 

whether it is secondary to white matter lesions causing retrograde or Wallerian 

neuro-axonal degeneration (Brownell 1962). A study in RRMS found a significant 

relationship between focal thinning in the cortex and white matter lesion load 

(Charil 2007) in a large cohort, and more recently T2 lesion volume has been 

shown to correlate strongly with thalamic atrophy in PPMS (Ceccarelli 2008). 

Recent work suggests that lesions in PPMS may have a predilection for the 

cortico-spinal tract (Di Perri 2008), but examination of larger cohorts will be 

necessary to confirm this. 

 

4.4.1.3 Relationship between MTR reduction and Atrophy 

As expected, MTR reduction was always present in regions with significant 

atrophy. The pathological substrate of grey matter MTR reduction remains unclear. 

However, post mortem studies in NAWM suggest that while MTR reduction reflects 

axonal loss, and thus essentially areas of tissue atrophy, this is probably 

secondary to its sensitivity to demyelination (Schmierer 2004). This may explain 

the incomplete overlap in the cortex and the thalamus, where regions of MTR 

reduction tend to extend beyond regions of atrophy. MTR reduction in these areas 

may, in addition to axonal loss, also reflect a qualitative change in the atrophied 

tissues. This is likely to represent demyelination of remaining neuro-axonal tissue 

(Schmierer 2004), which is a common finding in pathological studies of the grey 

matter in MS (Geurts 2005), but other reversible processes such as oedema and 

inflammation may also contribute.  

 

This raises the possibility that regions showing reduced MTR in the absence of 

atrophy are demonstrating reversible change, where irreversible neuro-axonal loss 

has not yet occurred. If this were the case, these regions would be vulnerable to 

atrophy in the future. Indeed, regions showing MTR reduction alone in our study in 

early PPMS are similar to regions showing atrophy in patients with advanced MS in 
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other studies (Prinster 2006, Chen 2004, Sailer 2003). Comparisons between 

heterogeneous studies must, however, be made with caution, and longitudinal 

studies are necessary to investigate this hypothesis. 

 

4.4.1.4 Methodological considerations 

There is debate surrounding the use of voxel-based analysis (Davatzikos 2004, 

Bookstein 2001), and in particular its application to quantitative data (Smith 2006, 

Jones 2005). In all voxel-based analyses, normalization of images into standard 

space necessitates a degree of interpolation, and images are then smoothed to 

render the data normal for statistical analysis. In addition, we co-registered MT and 

volume sequences which had different slice thicknesses. These aspects may have 

influenced our results by compromising accurate localization of abnormal regions, 

and by increasing the number of partial volume voxels, which contain other tissues 

along with grey matter, in the image. 

 

In this study, we minimized registration biases by using an optimized technique, so 

that significant regions identified are clearly attributable to grey matter differences. 

In addition, we applied a very conservative threshold to our grey matter masks, so 

that only voxels with greater than 75% likelihood were included. This threshold 

minimized the effect of partial volume voxels containing CSF or white matter in 

addition to grey matter (which may alter the MTR measurement; see section 

2.8.4.3) on the analysis, while still allowing the detection of atrophy. Although the 

combination of a conservative threshold (75%) and a relatively large smoothing 

kernel (12mm) may reduce the overall accuracy of the localization, using the 

threshold increases the certainty that the abnormal regions are situated in the grey 

matter. In addition, in order to confirm the anatomical position of the abnormal 

regions on the original images in native space, and to confirm that our findings 

were genuine, we performed a post hoc analysis on one of the abnormal regions. 

When the region was translated back into native space and applied to the original 

image, our results were confirmed; both qualitatively, by assessing the anatomical 

position of the region, and quantitatively, by confirming post hoc the significant 

difference in mean MTR values between patients and controls. 
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We used PD-weighted rather than T1-weighted MT sequences because T1 effects 

are known to affect the MTR (Finelli 1998, Hajnal 1992). However, poor grey-to-

white matter contrast in PD-weighted sequences made it necessary to include the 

additional step of co-registering the MT sequence to the volume images to perform 

the segmentation accurately. For these images, this method is likely to produce 

more accurate results than direct normalization of MT images onto a template. 

Furthermore, in a recent study comparing automated segmentation methods, SPM 

was shown to have an accuracy advantage over FSL and Freesurfer, although 

SPM5 was tested rather than SPM2 as used in our study (Klauschen 2009). The 

intra-subject co-registration was optimized in this study by the use of a voxel-

intensity registration measure known to work well for images of different contrasts, 

namely normalized mutual information (Studholme 1997). 

 

4.4.2 Clinical correlations 

 

4.4.2.1 Motor function 

Correlations were present between clinical tests of disability and regions of MTR 

reduction within the motor network, suggesting that the local MTR reduction 

identified is contributing to the clinical status of the patient. However, the moderate 

nature of our associations suggests that damage in other areas, such as the white 

matter and spinal cord, may also be contributing to functional impairment. 

 

PPMS tends to present with locomotor disability (Sailer 2003), and this was the 

most common presentation in our cohort. There is some indication that damage to 

the motor cortex occurs later in other types of MS (Sailer 2003). Localized damage 

in the somato-sensory, but not the motor, cortex, is apparently greater in SP 

compared to RRMS, and greater in SP than in PPMS (Ceccarelli 2008). This 

suggests that differences in symptom prevalence between disease subtypes may, 

in part, reflect differential patterns of cortical predilection.  

 

4.4.2.2 Cognition 

MTR in regions in the right inferior parietal cortex and right inferior occipital gyrus 

showed a correlation with PASAT scores, suggesting that damage to these areas 
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reduced ability to perform the task. There was a trend to correlation with MTR in 

the left superior frontal gyrus (left lateral prefrontal cortex BA9 and BA 46), which 

has been identified in a number of functional MRI studies as a key functional area 

for the PASAT test (Forn 2006, Audoin 2005, Mainero 2004). However, damage to 

other areas known to be active during PASAT testing did not correspond with lower 

PASAT scores (middle frontal gyrus [BA 44] and superior temporal gyrus [BA 42 

and 22], medial occipital cortex [BA 17]). Notably, these areas were identified in 

patients with RRMS (Forn 2006, Mainero 2004), and specific combined MT and 

fMRI studies would be necessary to confirm which areas are functionally relevant 

during PASAT testing in our own cohort. Furthermore, correlations between MTR 

in these regions and PASAT scores may be weak because damage in other brain 

areas, such as the white matter, makes an important contribution to cognitive 

impairment. The findings of a recent study in RRMS, which identified a relationship 

between localized peri-ventricular atrophy and PASAT performance (Jasperse 

2007), lends some support to this hypothesis. 

 

4.5 Conclusions 

 

This study demonstrates that areas of grey matter damage, reflected by MTR 

reduction and atrophy, can be localized to specific sites of predilection early in the 

course of PPMS. Localized regions of MT change are more widespread than 

localized regions of atrophy, and the two measures may provide complementary 

information. Clinically, localized MT reduction is expressed as disability in the 

systems related to the damaged areas.  
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5.1 Introduction 

 

The concept that primary progressive multiple sclerosis (PPMS) may be 

pathologically distinct from other MS subtypes gained momentum in the late 

1980’s, when its characteristic MRI features were first described (Thompson 1990). 

Fewer and smaller lesions, demonstrating relatively little enhancement with 

gadolinium-DTPA (gadolinium-diethylenetriaminepentaacetic acid) were seen in 

PPMS (Thompson 1991). Post-mortem investigations have since confirmed a 

relative paucity of inflammation in PPMS lesions. In comparison to SPMS, fewer 

perivascular cuffs, reduced parenchymal cellularity (Revesz 1994), and a relative 

reduction in T and B cell infiltrates have been described (Magliozzi 2007, 

Lucchinetti 2004). Furthermore, there are relatively few active lesions in PPMS; 

instead established lesions show a tendency to radial expansion (Kutzelnigg , 

Prineas Annals 2001). Radiological studies have demonstrated that this expansion 

is largely responsible for increases in T2 lesion load (Stevenson 2002). 

It was therefore somewhat surprising that, in a subgroup of our cohort with early 

PPMS, 42% had at least one enhancing lesion at baseline after administration of  

triple dose (0.3mmol/kg) gadolinium (Ingle 2005). This is three times the 

percentage of patients demonstrating enhancement in the PROMiSe trial (Wolinsky 

2004), although single dose gadolinium was used in the latter study. This raised 

the possibility of an early enhancing phase in PPMS, a finding which may have 

therapeutic implications. In addition, the patients with enhancement were more 

disabled, with a higher T2 lesion load and reduced partial brain volume, compared 

to those without enhancing lesions. This raises the possibility that enhancement is 

a poor prognostic feature. 

 

In this study we followed patients with early PPMS over five years, to investigate 

whether they continued to show the same level of enhancement. We also 

investigated whether enhancement influenced clinical progression, or correlated 

with changes in MRI markers over this period.  
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5.2 Methods  

 

5.2.1 Subjects 

 

As described in section 3.1.2.1, fifty patients fulfilling the diagnostic criteria for 

definite or probable PPMS (Thompson 2000), within five years of symptom onset, 

were invited to attend for clinical assessment and scanning every six months for 

three years, and again at five years. The clinical assessment involved neurological 

examination and scoring on Kurtzke’s Expanded Disability Status Scale (EDSS) 

(Kurtzke 1983) and multiple sclerosis functional composite (MSFC) (Cutter 1999) 

at each time-point. The scanning protocol is described below. Five patients were 

excluded from the study: two patients declined gadolinium injections, two patients 

were taking regular courses of oral steroids prescribed by their GPs, and one 

patient died during the first year of the study. Thus 45 patients were included in this 

study (28 male, 17 female, mean age 44.2 years, range 19-65 years). Median 

EDSS was 4.5 (range 1.5-7) at the start of the study, with mean disease duration of 

3.4 years (range 2-5 years). The number of patients attending each study time-

point is given in Table 5.A. During the study some patients became too disabled to 

undergo scanning or no longer felt able to attend our centre, and one became 

claustrophobic. In addition, three patients were unable to undergo gadolinium 

injections because the normality of their renal function could not be established 

prior  to the scan. In these cases we obtained EDSS data in person if possible, or 

using a telephone interview (Lechner-Scott 2003). Patients taking short courses of 

disease modifying or anti-inflammatory medications were excluded from the 

analysis at that time-point (see Table 5.A). A total of 38 patients (24 male, 14 

female, mean age 44.4 years, range 19-63) completed the study.  
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Table 5A Patients attending at each time-point 

Personal Commitments= patients were unable to arrange an appointment during the six 

month period due to personal commitments, eg work, holiday and family commitments. 

Upgrade= scanner undergoing upgrade during this time-point. Drugs= patients taking 

drugs which affect gadolinium enhancing lesions (the patient excluded at 36 months had 

intra-venous steroids within 6 weeks of the scan, the patient excluded at 60 months was 

being treated with mitoxantrone for rapid clinical deterioration with superimposed relapses 

unresponsive to steroids). Patients had a clinical assessment only if they were unable to 

attend the centre, or if their renal function was not proven to be normal.  

 

Time-point  

(months) 

0 6 12 18 24 30 36 60 

Total patients assessed: 45 38 34 33 34 29 40 38 

Patients given gadolinium  45 37 32 31 28 25 30 19 

Patients with clinical 

assessment only 

0 1 2 2 6 4 10 19 

Patients who did not 

attend: 

0 7 11 12 11 16 5 7 

Withdrew from study 0 1 1 1 1 2 2 2 

Personal commitments 0 5 7 7 7 8 0 0 

Non-MS related illness 0 1 2 3 3 5 1 1 

Upgrade 0 0 1 1 0 0 0 0 

Death 0 0 0 0 0 0 1 1 

Could not be contacted 0 0 0 0 0 1 0 2 

Drugs 0 0 0 0 0 0 1 1 



Understanding progression in PPMS: Chapter 5     138 

5.2.2 MRI Acquisition 

All scans were performed on a 1.5 Tesla GE Signa scanner (General Electric Co, 

Milwaukee, Wisconsin, USA). The mean and median times between scans for 

each six-month time-point were 26.7 and 26.5 weeks respectively (range 25.3-29.0 

weeks), and between the three and five year time point were 101.2 and 100 weeks 

(range 46.7 to 166.3 weeks). The scanner was upgraded during the study, and the 

gradient amplifiers, but not the gradient coils, were changed. Maximum gradient 

strength increased from 22mTm-1 to 33mTm-1. The scanner software was 

upgraded from SIGNA version 5x to version11x. At each time-point imaging of the 

brain and spinal cord was carried out as follows: 

1. Axial T1-weighted spin echo sequences of the brain were acquired before and 

after injection of triple dose gadolinium-DTPA (0.3mmol/kg). The acquisition 

comprised 28 contiguous slices of 5mm thickness, with a repetition time (TR) of 

540ms, and an echo time (TE) of 20m/s, field of view (FOV) 240 x 240, number of 

excitations (NEX)=1. Sagittal T1-weighted spin echo images of the spine were  

also acquired before and after gadolinium injection, with a slice thickness of 3mm 

TE  of 18ms, TR of 500ms, FOV 48x24 , NEX=3. Parameters were not changed 

after the upgrade. 

 

2. T2-weighted images were acquired as described in section 3.2.2.2, as part of 

the MTI sequence (Barker 1996). Parameters were not changed after the upgrade. 

 

3. 3D inversion-prepared fast spoiled gradient recall (3D FSPGR) sequence of the 

brain was acquired as described in section 3.2.2.2. After the upgrade the TR was 

reduced to 10.9 ms.  
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5.2.3 MRI post-processing 

 

Gadolinium enhancing lesions were identified, marked and counted on hard copies 

of the T1 -weighted images, by an experienced neuro-radiologist blinded to the 

clinical details of the patients.  

Images were displayed on a Sun workstation (Sun Microsystems, Mountain View, 

CA) using DispImage software (Plummer 1992). Calculation of the T2-weighted 

lesion load and segmentation of the FSPGR images was carried out as described 

in section 3.2.2.3, for images from baseline to three years. 

 

5.2.4 Statistical Analysis  

Analysis was carried out using Stata (http://www.stata.com). 

Statistical significance is reported at the 5% level.  

5.2.4.1 Clinical data 

We converted the change in EDSS scores into step changes as described in 

section 3.1.2.4.1. Z-scores (z) were derived for the MSFC subtests using our own 

baseline sample as reference, and used to calculate the MSFC.  Patients who 

were too disabled to complete the TWT and NHPT were initially given a score for 

the maximum time allowed (see section 3.1.2.4.1) but the statistical models were 

invalidated because the data was no longer normally distributed. They were 

therefore excluded from the analysis, and full details of this subgroup are given in 

Table 5.B.  

 

5.2.4.2 Gadolinium measures 

As in the PROMiSe trial (Wolinsky 2007), we examined the number of gadolinium 

enhancing lesions rather than the gadolinium lesion load, a measure easily 

applicable in a clinical setting. In PPMS lesions tend to be smaller (Thompson 

1991) and the lesion number is likely to reflect lesion load. We formulated the 

following measures, which were entered one by one into the models described 

below: Baseline measures (number of enhancing lesions, binary enhancement 
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status measure [ie. enhancing/non-enhancing], categories of enhancement [0, 1-3, 

or > 3 enhancing lesions]); Early changes (change in number of enhancing lesions 

from baseline to six months, change in number of enhancing lesions from baseline 

to one year); Overall changes at three and five years (total number of enhancing 

lesions, overall binary enhancement status [enhancing/non-enhancing], categories 

of enhancement [<3, 3-9 or >9 enhancing lesions], percentage of time-points with 

enhancing lesions for each subject). 

 

5.2.4.3 Changes in MRI parameters over five years 

To model the change in the percentage of patients with enhancing lesions at each 

study time-point, we used a mixed effect logistic model with the binary 

enhancement variable as the response variable and months from study entry as 

predictor. This allows estimation of the reduction in odds of enhancement per 

month. We included a quadratic term in time to assess the linearity of the data. To 

ensure that the upgrade had not altered the detection of enhancing lesions we 

compared the number of enhancing lesions in pre- and post- upgrade groups at 

each time-point using unpaired 2-tailed t-tests. The calculation of volume and T2 

lesion changes over three years, using piecewise mixed effect linear regression 

models adjusting for the upgrade, are described in detail in section 3.2.2.4.2. 

 

5.2.4.4 Predicting clinical changes over three and five years 

We compared clinical outcome between patients with spinal cord and other 

presentations using Mann-Whitney U tests (for EDSS changes) and t-tests (for the 

MSFC and subtests). First we examined clinical changes over three years, and 

then over five years. To identify predictors of EDSS change over three and five 

years, ordinal logistic regression was carried out with EDSS change as the 

response variable. Each enhancing lesion parameter was tested as a covariate in 

turn, and the model was adjusted for age and T2 lesion volume at baseline. For 

changes in MSFC and its subtests, a multiple linear regression was carried out with 

the change in the MSFC and each subtest in turn as the dependent variable, using 

the same covariates as for the EDSS. 
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5.2.4.5 Correlates of MRI change over three years 

Using multiple linear regression, changes in grey and NAWM volume were 

modeled in turn as the response variable. The enhancing lesion parameters were 

introduced in turn, with age, upgrade, T2 lesion load and interaction terms with 

time as covariates, in order to investigate their effect on the rate of volume change.  

As described in section 3.2.2.4, this model adjusts for any gradient discontinuity 

due to the upgrade. The model was repeated with T2 lesion load as the response 

variable rather than a covariate.  

 

The analyses were run using data on enhancing lesions in the brain only, then 

rerun using data on both the brain and spinal cord.  

 

5.3 Results 

 

5.3.1 Clinical progression 

 

Clinical progression was evident over three and five years on the EDSS, TWT and 

NHPT (see Table 5.2). The PASAT test showed significant improvement, probably 

due to practice effects, which affected the MSFC (section 3.1.4.1). For this reason 

the PASAT and MSFC data were considered flawed. However, we present results 

on the NHPT and TWT subtests. There was no difference in progression between 

the 35 patients presenting with a spinal cord syndrome, and the 10 presenting with 

deficits in other systems. 
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Table 5.B Clinical tests at baseline, three and five years, with separate data 

on the subgroup completing all tests and study time-points 

 

Clinical test Baseline 3 years p* 5years p** 

Median 

EDSS 

(range) 

All  4.5 (1.5-7)  

n=45 

6 (1.5-9)  

n=41 

<0.001 6.5 (2-9)  

n=38 

<0.001 

Pts with 5 year 

EDSS data 

4.25 (1.5-7) 

n=38 

6 (1.5-9) 

n=38 

<0.001 6.5 (2-9) 

n=38 

<0.001 

Mean 

MSFC 

(SD) 

All 0.02 (0.7) 

n=42 

0.14 (0.8) 

n=30 

0.52 0.001 (1.2) 

n=18 

0.11 

Pts with 5 year 

data able to 

complete all 

MSFC subtests 

0.51 (0.4) 

n=14 

0.60 (0.3) 

n=14 

0.34 0.56(0.4) 

n=14 

0.55 

Mean TWT 

in 

seconds 

(SD) 

All  20.2 (37.8) 

n=44 

35.8 (61.1) 

n=34 

0.02 57.6(77.3) 

n=22 

0.06 

Pts with 5 year 

data able to 

complete TWT 

7.0 (2.1) 

n=16 

8.6(4.7) 

n=16 

0.05 11.7(11.1) 

n=16 

0.28 

Mean 

NHPT in 

seconds 

(SD) 

All 38.0 (33.4) 

n=45 

53.9 (63.5) 

n=34 

0.01 50.1(64.6) 

n=21 

0.01 

Pts with 5 year 

data able to 

complete NHPT 

25.9 (5.4) 

n=20 

33.7 (30.9) 

n=19 

0.28 37.6(30.6) 

n=20 

0.01 

Mean 

PASAT 

score  

(SD) 

All  41.6 (13.2) 

 n=43 

 46.8 (14.2) 

n=32 

0.06 47.2(16.6) 

n=21 

0.90 

Pts with 5 year 

PASAT data 

43.1 (12.3) 

n=21 

49.4 (12.1) 

n=20 

0.002 47.2(16.6) 

n=21 

0.90 

 

Pts with 5 year data= the subgroup of patients who attended at five years. Pts with 5 year 

data able to complete test= the subgroup of patients who attended at five years and were 

not too disabled to complete the test. EDSS= expanded disability status scale, obtained in 

person or by telephone, NHPT= Nine Hole Peg Test, TWT= Timed Walk Test, PASAT= 

Paced Auditory Serial Addition Test (maximum score=60). SD= standard deviation. p*= p 

value from Mann-Whitney U (EDSS) and t-tests comparing baseline and three year 

scores. p**= p value from Mann-Whitney U (EDSS) and t-tests comparing three year and 

five year scores  
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5.3.2 The proportion of patients with enhancing lesions decreased over five years 

 

In the group as a whole over five years, the percentage of patients with enhancing 

lesions in the brain and spinal cord declined significantly over five years (p=0.03). 

The significant quadratic term in time (p=0.046) suggests that most of this decline 

occurred early on; a decreasing decline over time, with eventual leveling off, is 

demonstrated (see Figure 5a). However, in individual patients, both increases and 

decreases were observed in the number of enhancing lesions at each time-point 

(see Table 5C).  

In total, 24 patients demonstrated enhancement in either the brain or cord at one or 

more time-points (see Table 5C for the number of patients with enhancing lesions 

at each time-point), and 21 patients (47%) had no enhancing lesions. Five patients 

showed enhancing lesions in the brain or spinal cord for the first time at six 

months, one at twelve months, two at eighteen months, two at three years, and 

one at five years. Out of a total of 369 enhancing lesions seen over five years, only 

19 were spinal cord lesions, seen in eight different patients. The inclusion of the 

spinal cord lesions in the statistics did not alter the results, and as this additional 

parameter conferred no benefit we present the results using enhancing brain lesion 

parameters only. The number of enhancing lesions detected was not affected by 

the upgrade. 
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Table 5.C The frequency of each number of enhancing lesions identified in 

the brain and spinal cord at each time-point 

 

Number of 

Enhancing 

Lesions 

Time-point 

0 6 12 18 24 30 36 60 

0 30 23 24 25 24 20 24 14 

1 4 7 3 4 0 2 3 3 

2 4 2 0 0 1 0 1 0 

3 1 0 0 0 0 0 0 1 

4 2 1 0 0 2 1 0 0 

5 0 0 1 1 0 0 0 0 

6 2 1 1 0 0 1 0 0 

7 1 0 1 0 0 0 0 0 

8 0 0 0 0 1 0 1 0 

9 0 0 1 0 0 0 0 0 

10 0 1 0 0 0 1 0 0 

11 0 0 0 0 0 0 1 0 

14 1 0 0 0 0 0 0 0 

22 0 1 0 0 0 0 0 1 

26 0 1 0 0 0 0 0 0 

43 0 0 0 1 0 0 0 0 

60 0 0 1 0 0 0 0 0 

Total with 

enhancement 

15 14 8 6 4 5 6 5 

Total imaged 45 37 32 31 28 25 30 19 
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Figure 5a: Percentage of patients with gadolinium enhancing lesions at each 

time-point 
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5.3.3 Enhancing lesions were modestly related to clinical progression 

 

Progression on the EDSS over three years was predicted by the number of 

gadolinium enhancing lesions at baseline (p=0.01, OR 1.32, 95%CI 1.06-1.64), 

and greater increase in the number of enhancing lesions over the first year 

(p=0.047, OR 1.08, 95%CI 1.00-1.16) but this did not survive adjustment for T2 

lesion load. Progression on the EDSS over five years was predicted by the number 

of gadolinium enhancing lesions at baseline (p=0.02, OR 1.28, 95%CI 1.04-1.58), 

but this did not survive adjustment for T2 lesion load. EDSS increase over three 
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and five years correlated inversely with age (p<0.05), and positively with T2 lesion 

load at baseline (p=0.008). 

 

Changes in NHPT score over three and five years, and in TWT score over three 

years, were not predicted by enhancing lesion parameters. Reducing mobility on 

the TWT over five years was predicted by the number of enhancing lesions at 

baseline (p=0.02, coefficient 0.03, 95%CI 0.006 to 0.05, r2=0.64), and increase in 

enhancing lesion number at 6 months (p=0.02, coefficient 0.004, 95%CI 0.0008 to 

0.008, r2=0.64) and one year (p=0.046, coefficient 0.02, 95%CI 0.0004 to 0.04, 

r2=0.70), after correction for age and T2 lesion load. There was an inverse 

correlation with age (p=0.04). 

 

5.3.4 Enhancing lesions were related to T2 lesion load increase but not atrophy 

 

Increase in T2 lesion load over three years correlated with an increase in the 

number of enhancing lesions over one year after adjusting for age (p= 0.048, 

coefficient 2.18 95%CI 0.024 to 4.34, r2=0.21). Grey and NAWM volume decrease 

was not associated with clinical presentation, age or enhancing lesion parameters.  

 

5.5 Discussion 

 

We report a decline of the initially substantial level of lesion enhancement in 

patients with early PPMS over five years. The level of enhancement towards the 

end of the study (16-21%) is very slightly higher than that found in patients with 

longer disease duration using single dose gadolinium (14%) (Wolinsky 2004). This 

may suggest that there is an early inflammatory phase in a subgroup of patients 

with PPMS. Conversely, almost half of our cohort never showed enhancement, and 

few patients developed enhancement during the study. This may reflect a spectrum 

of activity in PPMS, in which reported cases of ‘pure’ PPMS – clinically progressive 

patients without focal lesions (Zwemmer 2008)- lie at one extreme. Alternatively, 

the non-enhancing patients in our study may have demonstrated enhancement if 

scanned more frequently (Tortorella 1999) or earlier; lesion activity may occur long 

before symptom onset in PPMS (McDonnell 2003). Furthermore, advancing age 
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may have influenced the reduction in lesion activity in our cohort, as observed in 

RRMS (Tortorella 2005). Indeed, we found more gradual disability accumulation 

and T2 lesion load increase  in older patients.  

 

Active inflammation had only a small impact on future disability in this group. The 

concept of an early inflammatory phase in PPMS raises the possibility of benefit 

from disease modifying treatments in a subgroup, if given early enough in the 

disease course. In the interferon and mitoxantrone studies in PPMS, gadolinium 

was not administered (Montalban 2004, Stuve 2004, Leary 2003). In the glatiramer 

acetate study, treated patients showed a reduction in gadolinium enhancing lesions 

in the first year, but this was not sustained over three years and did not affect 

progression. Mean disease duration in this study was double that in our cohort 

(Wolinsky 2007), but data from other MS subtypes also cautions against over-

anticipating the long term benefits of treatments targeting inflammation. Even in 

RRMS, where enhancement levels correlate more directly with clinical activity 

(Kappos 1999, Barkhof 1992), natural history studies suggest that disability accrual 

is ‘amnesic’ and disregards early relapse history (Confavreux 2006). Furthermore, 

treatments which limit relapse activity and the development of enhancing lesions 

have not affected the progression of disability in SPMS (Giovannoni 2004).  

 

Regarding brain atrophy, suppression of gadolinium enhancing lesions in clinical 

trials has also had minimal impact on this measure (Inglese 2004). In our study, the 

level of lesion enhancement failed to predict atrophy, as it has in other MS 

subtypes (Rashid 2007, Inglese 2005, Zivadinov 2002). However, it may also be 

the case that the relationship between focal lesion activity and eventual brain 

atrophy becomes apparent only after lengthy follow-up.  

 

It should be noted when interpreting this data that triple dose gadolinium was 

administered. RRMS studies suggest that additional lesions detected with triple 

dose gadolinium are less destructive than those already visible with single dose 

(Rovaris 1999), and it may be that the detection of ‘extra’ lesions complicates the 

relationship between enhancement and disability. The relevance of this remains 

unclear in PPMS, because the increased sensitivity using triple dose gadolinium 
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has not been consistently demonstrated. A study involving ten patients with PPMS 

(Filippi 1995) identified four enhancing lesions in two patients; following a triple 

dose of gadolinium in the same group, 13 enhancing lesions were seen in five 

patients. The patients had a mean disease duration of 6.5 years. In contrast, in 16 

patients with PPMS examined as part of a larger group, no increase in enhancing 

lesion number was found using triple rather than single dose gadolinium (Silver 

1997). Of note, only two enhancing lesions were identified in these patients, who 

had a mean disease duration of nine years. Both studies were small, and it is 

difficult to draw firm conclusions from them. Furthermore, gadolinium enhancement 

may be a more non-specific and less sensitive measure of blood-brain-barrier 

(BBB) breakdown than previously appreciated. A study measuring T1-relaxation 

time in post contrast scans in patients with RR and SPMS, found gadolinium 

leakage in chronic inactive non-enhancing lesions, particularly smaller lesions and 

those which persisted as T1 black holes (Soon 2007). Pathological studies have 

reported ongoing BBB leakage in inactive plaques in PPMS, suggestive of 

defective repair. Interestingly, persistent endothelial abnormalities in grey and 

NAWM have also been demonstrated in PPMS (Leech 2007). Newer MRI 

techniques, such as the ultra-small iron oxide particle (USPIO) enhancement, a 

putative marker of cellular infiltration, may provide complementary information not 

available from gadolinium images (Vellinga 2008, Dousset 2006). These findings 

indicate that BBB dysfunction is more extensive and complicated than previously 

appreciated, and may partly explain the poor correlation between gadolinium 

enhancement and irreversible disability. 

 

The clinical correlations identified in this group were weak. While the TWT in the 

subgroup still walking at five years was predicted by early gadolinium 

enhancement independently of T2 lesion volume, this was not yet evident at three 

years. Progression on the EDSS was predicted by early enhancing lesion 

parameters, but this effect did not survive adjustment for T2 lesion load. 

Nonetheless, this does indicate that enhancing lesion parameters give some 

prediction of EDSS outcome, and enhancing lesion numbers may be a more useful 

clinical tool than overall T2 lesion volume. Furthermore, as enhancing lesions are a 
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subset of T2 lesions, adjusting the analysis for T2 lesion volume may have 

introduced considerable Type II error.  

 

This study was limited by the number of patients unable to undergo gadolinium 

injection at later time-points, particularly as they were the most disabled patients. 

This may have caused a selection bias by artificially reducing the proportion of 

patients demonstrating enhancement later in the study, and results should be 

interpreted with caution. However, these considerations did not affect the predictive 

part of the analysis, as clinical data was obtained on most patients at five years.  

 

5.6 Conclusions 

Our findings indicate a decline in active lesions over five years, suggesting that 

there is an early inflammatory phase in a subgroup of patients with early PPMS.  

Lesion activity has some influence on clinical progression in the medium term.  
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Conclusions and Future Directions 

Mechanisms and measures of progression 

The mechanisms underlying clinical progression in PPMS are not clearly 

established. Our studies examine the evolution of brain injury in the early phase of 

PPMS in vivo, by measuring changes in brain volume, lesions and magnetization 

transfer ratio (MTR) over time. Our findings suggest that normal appearing white 

matter (NAWM) injury is already established, but remains relatively stable in early 

PPMS. Grey matter injury is evolving more quickly, and appears to be driving 

clinical progression in the medium term. Focal lesions and the level of lesion 

activity in the white matter continue to play a role in determining disability accrual. 

These findings are relevant to inform therapeutic approaches, and suggest that the 

identification of neuro-protective agents is a priority. In addition, they provide data 

for clinical trials in PPMS, which have been limited by the uncertain evolution of the 

condition. Our results suggest that MTR, particularly in the grey matter, is a 

sensitive and responsive measure of brain injury in early PPMS, and that it is 

associated with clinical progression. Therefore, grey matter MTR may be a useful 

measure for selecting and monitoring patients for study in clinical trials in early 

PPMS, possibly in combination with T2 lesion measures. At present our MTR 

findings are applicable only to groups, and can not guide the care of individual 

patients. Studies in larger cohorts will be necessary to confirm our results, and to 

identify clinically applicable thresholds. Future work on our own cohort will aim to 

establish whether grey matter injury, reflected by MTR, continues to drive clinical 

progression over five years; whether irreversible grey matter damage, reflected by 

atrophy, becomes more closely related to concurrent clinical progression, and 

whether the clinical relevance of white matter damage declines over five years.  
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Spinal Cord Studies 

Spinal cord pathology is likely to play an important role in disease progression in 

PPMS. In our study, the level of lesion activity in the spinal cord did not contribute 

significantly to progression, but the number of lesions observed was small. 

Measures of spinal cord atrophy may be a more suitable way to examine the 

impact of spinal cord injury on progression in early PPMS, and will be examined in 

a future study. Technical difficulties have previously hindered MRI studies in the 

spinal cord, but recent improvements in receiver coils and imaging speed have 

allowed the introduction of more sophisticated techniques (Bakshi 2008). Grey 

matter MTR has been used to detect clinically relevant cervical cord damage in 

patients with RRMS, in the absence of atrophy (Agosta 2007). Application of this 

technique in PPMS poses challenges, due to the presence of atrophy and partial 

volume effects, but a combination of MTR and atrophy measures in the grey matter 

could help to elucidate the mechanisms underlying progressive spastic paraparesis 

in early PPMS. High field post mortem MRI studies in the spinal cord have 

indicated that grey matter lesions are more readily detectable in the cord (Gilmore 

2009). As high field MR becomes more widely applicable in vivo, the spinal cord 

may become a prime location for comparing the clinical relevance of grey matter 

lesions with changes in the normal appearing grey matter. 

Understanding grey matter injury 

Having demonstrated the importance of grey matter injury for progression in 

Chapter 3, in Chapter 4 we went on to identify sites of predilection for cortical and 

deep grey matter injury in early PPMS, for the first time. We developed a voxel-

based technique which demonstrated that regions of localized MTR reduction were 

more widespread than regions of atrophy, but that significant atrophy was not 

present in the absence of MTR reduction. The focus of future work in this area will 

be on expanding our understanding of the processes evolving in this compartment 

over time, in terms of location, quantity and quality. We will apply voxel-based 

techniques longitudinally, to investigate the following questions: (1) Do potentially 
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reversible changes, reflected by MTR reduction, precede irreversible changes, 

reflected by tissue atrophy?  To answer this question, it will be necessary to 

develop a technique which ensures accurate longitudinal intra-subject registration, 

but allows the detection of subtle changes in tissue MTR and volume over time (2) 

Are differences in early symptom prevalence between disease subtypes explained 

by different areas of cortical predilection? This will be investigated by comparing 

patients with early PPMS and early RRMS (3) Do longitudinal changes in specific 

localized areas of damage correlate more closely with clinical progression? If 

progression is found to be associated with damage in specific areas, it may help to 

explain the wide inter-subject variation in clinical course.  

In order for this information to be fully exploited, better understanding of the 

pathological basis of grey matter MTR changes is needed. Post mortem studies 

combining imaging and histopathology are the best way to explore this further 

(Schmierer 2004), although the advanced disease duration of post mortem cases 

limits the relevance of these findings for early PPMS. In vivo, more specific 

analysis of the  macromolecular proton pool is now possible using quantitative MT 

indices, which allow assessment of myelin content without the confounding T1 

effects inherent in MTR measurements (Schmierer 2007). This may elucidate 

whether the grey matter changes we identified are primarily attributable to cortical 

demyelination. Our studies could be further enhanced by incorporating 3D double 

inversion recovery (DIR) sequences, which greatly improve cortical lesion 

detection, and may allow the segmentation of cortical lesions from relatively normal 

appearing areas of grey matter (Geurts 2008).  

Finally, spectroscopic imaging allows the direct measurement of metabolites which 

act as markers for pathological processes. Comparing and combining 

spectroscopic and MTR measures within our cohort may help us to understand the 

balance between demyelination, axonal loss and gliosis  occurring within the grey 

matter areas where MTR is reduced. In addition, combining these techniques with 

atrophy, T2 and T1 lesion measures within one cohort could guide us as to the 
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most useful MRI parameters, or combinations of parameters, for studying clinical 

progression (Mainero 2001). 

Cognition 

In assessing the impact of grey matter injury on progression, our studies have 

focussed on measures of physical disability. However, grey matter changes are 

likely to play a pivotal role in cognitive decline in MS, as evidenced by recent case 

reports describing a purely cortical form of MS, presenting with neurobehavioural 

symptoms (Zarei 2006). We would like to extend our studies to examine the 

relationship between MRI changes in our cohort and cognitive function, specifically 

whether  grey matter parameters at baseline, or the gradient of their decline over 

three years, can determine cognitive outcomes.  

Understanding White matter injury 

Although the work presented in this thesis emphasizes the role of grey matter 

injury in progression, white matter injury was important early on in the study, and 

clearly maintained some influence on long term outcome. Recent studies have 

suggested that the position of white matter lesions may have an influence on 

clinical outcomes independent of lesion burden, and may vary between disease 

subtypes (Di Perri 2008). This would be an interesting area to explore in our 

cohort, as variation in lesion position may explain some of the wide inter-individual 

variability in outcome. Qualitative assessment of lesions using a combination of T1 

and T2-weighted imaging with MTR may also provide a more comprehensive 

picture of the way in which pathological heterogeneity within white matter lesions 

affects disability (Fisher 2007). Damage to specific white matter tracts outside of 

lesions can be studied using tractography; given that we have identified areas of 

predilection for cortical damage, it would be fascinating to examine the white 

matter tracts directly associated with these areas, for example the cortico-spinal 

tracts. In addition, areas of NAWM damage can now be identified in the absence of 

an a priori hypothesis, using tract based spatial statistics (TBSS), which directly 
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complements our localization of grey matter damage using VBM.  Combining grey 

and white matter techniques in this way would allow us to explore the longitudinal 

relationship between damage in the two compartments in PPMS.  
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