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Abstract 
Following the discovery that porcine endogenous retrovirus (PERV) can 

infect human cells, the potential risk of a zoonotic infection by PERV has 

been a major obstacle in the xenotransplantation field. The aim of this thesis 

is to gain a better understanding of PERV biology, so as to help assess and 

reduce the risk of PERV zoonosis. 

PERV subgroup A can enter human cells through two human PERV-A 

receptors (huPAR-1 and -2). To determine critical regions in the receptor for 

PERV-A infection, chimeric receptors between huPAR-2 and the non 

functional murine PAR (muPAR) have been analysed. A single amino acid 

difference (amino acid 109) was found responsible for the inability of muPAR 

to mediate PERV-A binding and infection. These results were then applied to 

the evaluation of PERV infection of non-human primates (NHP). NHP could 

represent an ideal animal model for assessing the risk of zoonosis following 

long-term exposure to porcine material. However, PERV does not infect NHP 

cells with the same efficiency as it does human cells. The data presented in 

this thesis suggests that in some NHP species the poor infectivity is due to 

mutation of the same critical amino acid (a.a.109) described for muPAR. 

However, African green monkey cells express two functional receptors and 

other mechanisms are likely to be responsible for the low susceptibility to 

PERV-A infection. 

Secondly, I evaluated the effect of a release inhibitor as a possible strategy 

to reduce PERV dissemination from pig cells. Human tetherin can inhibit 

retrovirus production from cells. I showed that overexpression of human and 

newly cloned porcine tetherin in pig cells can reduce the release of PERV. 

My data suggests that tetherin-expressing transgenic pigs could represent a 

safer donor in xenotransplantation.  
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Chapter 1 

1 INTRODUCTION 
 

1.1 Xenotransplantation 

The term ‘transplantation’ derives from the latin transplantare meaning ‘to 

plant again in another place’ (trans=across and plantare=to plant), and it is 

currently used in the medical field to indicate the transfer of cells, tissues and 

organs from a donor to a recipient. When donor and recipient belong to 

different species, it is referred as ‘xenotransplantation’ (from the greek xeno= 

foreign). The history of xenotransplantation can be dated back to the 

beginning of the sixteenth century, when attempts were made to treat human 

patients by using sheep, lamb and calf blood transfusions or tissue 

transplantation [reviewed in (Deschamps et al., 2005)]. A few organ 

transplantations were also conducted at the beginning of the 1900s [reviewed 

in (Taniguchi and Cooper, 1997)]. Unsurprisingly, all of these experiments 

were unsuccessful, mainly because the immunological bases of rejection 

were still unclear. In the second half of the twentieth century, the discovery of 

immunosuppressive drugs kindled the interest of the scientific community in 

xenotransplantation. In fact, it became possible to avoid xenograft rejection of 

an organ belonging to a closely related species. In 1964, Keith Reemtsma 

transplanted a chimpanzee kidney into a 23 year-old woman. The patient 

eventually died 9 months later for an acute electrolyte imbalance, but without 

evidence of rejection (Reemtsma et al., 1964). Furthermore, with the 

increased rate of success in human-to-human transplantation (namely 

allotransplantation) due to the arrival of immunosuppressive protocols, the 

gap between the number of organ transplantations performed every year and 

the waiting list of candidates is enlarging (Figure 1.1). 
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3) Animal donors can be bred in a ‘clean’/controlled environment and the 

organs screened for the presence of infectious agents before implantation.  

The US Food and Drug Administration (FDA) has produced guidelines for 

xenotransplantation regarding donor animal selection, the facilities where to 

farm them, health surveillance and the screening for pathogens 

(www.fda.gov/cber/gdlns/xenophs0101.htm). Although the most obvious 

choice of donor animal would seem to be a closely to humans related 

species, such as non-human primates (NHP), the animal source 

recommended by the FDA is swine. Among several reasons, the risk for 

transmission of infectious disease from pigs to humans is lower than with 

NHP. Moreover, pigs offer fewer ethical problems since they are currently 

farmed for food. They have a short gestation (3.5 months) and large litter (6-

14 piglets). Maintaining pigs in specific pathogen-free (SPF) conditions is 

relatively easy and economically affordable. It is also possible to produce 

genetically modified pigs in the laboratory (Brunetti et al., 2008; Dai et al., 

2002; Lai et al., 2002).  

Xenotransplantation is not yet a worldwide clinical reality because some 

obstacles still exist:  

1) Some porcine organs may not be physiologically compatible with a 

human recipient, especially those organs which perform complex 

biochemical and metabolic functions, such as kidney and liver 

(Hammer, 2002; Soin et al., 2001).  

2) The immune rejection of the xenograft. Three types of reaction have 

been described [reviewed in (Yang and Sykes, 2007)]. Hyperacute 

rejection (HAR) and acute humoral xenograft rejection (AHXR) are 

antibody-mediated processes and occurred early after transplantation. 

If both HAR and AHXR have been prevented, the xenograft may still 

be subject to cell-mediated rejection.  

3) Although farming pigs in SPF conditions can reduce the risk of 

contamination by most known porcine pathogens, there are still safety 

issues posed by unknown pathogens and a certain type of viruses 
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such as porcine endogenous retroviruses, which are part of the pig 

genome and therefore difficult to eliminate (Patience et al., 1997). 

Genetic engineering of the donor pigs can overcome most of the 

xenotransplantation-related problems described above. 

1.1.1 Genetically modified pigs 

HAR may occur within minutes after xenotransplantation and it is 

characterised by the destruction of the vascular endothelium of the donor 

organ. This process is triggered by natural antibodies present in humans 

directed against pig antigens in a complement-dependent way. The major 

antigen in pigs is the disaccharide residue galactose-α(1-3)-galactose (αGal) 

[reviewed in (Galili, 2001)]. The enzyme α1,3-galactosyltransferase that 

synthesises αGal is active in most mammalian species (including pigs) but 

not in humans, apes and Old World monkeys. These species have a high 

concentration of circulating anti-αGal antibodies in response to continuous 

antigenic exposure by the gastrointestinal bacterial flora (Galili et al., 1988). 

Several strategies have been exploited which involve development of 

transgenic or gene knockout pigs. Animals lacking both alleles of the gene for 

α1,3-galactosyltransferase have successfully been bred (Kolber-Simonds et 

al., 2004; Phelps et al., 2003). Their organs have been tested in a pig-to-

baboon transplantation, and HAR was avoided. The recipients lived up to 6 

months but then developed thrombotic microangiopathy and coagulation 

disregulation (Kuwaki et al., 2005; Tseng et al., 2005; Yamada et al., 2005). 

Although these results are encouraging, more has to be done to ultimately 

avoid xenograft rejection. The future direction of research includes the 

introduction of further genetic modifications in pigs. To specifically target 

microvascular thrombosis, transgenic pigs expressing anticoagulant or 

antiplatelet genes such as CD39, hirudin, or a transmembrane-anchored 

form of human tissue factor pathway inhibitor, or the knockout of fibrinogen-

like protein 2, can be employed [reviewed in (Ekser et al., 2009)]. To inhibit 

the complement-mediated immune response in the patients, pigs have been 

genetically modified to express human complement regulatory proteins 

(CRP) prolonging the xenograft survival from minutes to weeks: decay-
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accelerating factor (DAF or CD55), CD59 and membrane cofactor protein, 

(CD46) (Adams et al., 2001; Bhatti et al., 1999; Cozzi et al., 2000; McCurry et 

al., 1995). 

All these strategies aimed at avoiding the immune response of recipient may 

increase the risk of the transfer of pathogens between species (section 1.2). 

Enveloped viruses budding from a host cells acquire and expose proteins 

present on the cell membrane. The lack of αGal in the donor animal cells will 

lead to the lack of this strong antigen in the viral particles, diminishing the 

immune response to the possible viruses harboured in the donor xenograft 

(Kim et al., 2007; Magre et al., 2004; Quinn et al., 2004). Furthermore, 

viruses budding from CPR-transgenic pigs would be protected, to some 

extent, from the complement-mediated lysis. In vitro studies conducted to 

explore this risk were not conclusive. Porcine endogenous retroviruses, 

budding from a CD59-expressing pig cell line, were neutralised by human 

serum, although CD59 was incorporated in the viral envelope (Takefman et 

al., 2002). However, in more recent studies, rhabdoviruses and retroviruses 

produced through a pig endothelial cell line expressing CD55 (Magre et al., 

2004) and PERV produced through cell lines engineered to express CD59 or 

CD55 (Hazama et al., 2005) were shown to be partially protected by 

complement-mediated inactivation. 

Due to the unpredictable risk posed by immune system-resistant transgenic 

pigs, more effort should be directed into increasing the safety of using the 

donor animals. 
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1.2 Zoonosis in xenotranplantation 

Zoonosis (from greek zoon=animal and nosis=disease) is the transfer of an 

animal pathogen to a human host.  

Infectious disease agents have often co-evolved with their own host species 

in a harmless relationship. Microbes are adapted to their host and not 

genetically equipped for infecting a different species efficiently (species 

barrier). However, occasionally, events of cross-species infection may 

happen due to physical proximity of different species. In this instance, there 

are two possible scenarios: the infectious agent will die with, or within, the 

new host, or adapt and spread in the new species causing epidemic. In the 

past, the human population has been afflicted (and still is) by several 

zoonoses. Among the most notorious examples are typhus [reviewed in 

(Andersson and Andersson, 2000)], plague [reviewed in (Perry and 

Fetherston, 1997)], Dengue fever [reviewed in (Gubler, 1988)], West Nile 

virus encephalitis [reviewed in (Kramer et al., 2007)], avian influenza 

[reviewed in (Alexander and Brown, 2000; de Wit and Fouchier, 2008)], AIDS 

(Gao et al., 1999; Keele et al., 2006), Nipah virus encephalitis [(Chua et al., 

1999; Paton et al., 1999) and reviewed in (Chua, 2003)], new variant of 

Creutzfeldt-Jakob disease (Will et al., 1996), severe acute respiratory 

syndrome (SARS) (Drosten et al., 2003) and the recent pandemic swine 

influenza (Garten et al., 2009; Smith et al., 2009). 

A literature survey has revealed that the majority of sources of emerging and 

reemerging infections in humans are zoonotic pathogens and viruses are 

greatly overrepresented (Woolhouse and Gowtage-Sequeria, 2005). A 

possible explanation for this lies in the fast evolution rate of viruses which 

can therefore adapt to a new host with comparative ease (Drake and 

Holland, 1999). 

In xenotransplantation, the risk of zoonosis is increased because normal host 

defences such as skin and mucosal surface are bypassed when human and 

animal tissues are placed in close contact and the patient receiving the 

xenograft undergoes immunosuppressive treatment. A cross-species 

infection is not only a danger for the recipient of the xenograft, but can also 
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lead to the development of a potential new epidemic in the human 

population. As pig is considered the most suitable candidate as donor 

species, porcine viruses represent a potential threat. They can be grouped 

into four categories: 1) exogenous acute viruses; 2) viruses able to establish 

a persistent infection in the infected cells; 3) endogenous retrovirus; 4) 

unknown viruses. Regarding the latest, the identification of uncharacterised 

viruses in pigs, may help to increase the safety of xenotransplantation. New 

techniques to screen the donor animal for known and unknown pathogens 

include DNA microarray (Palacios et al., 2007; Wang et al., 2002; Wang et 

al., 2003) and metagenomic surveys using high-throughput shotgun 

sequencing technology (Palacios et al., 2008). To improve the safety of an 

unpredictable risk, patients receiving porcine materials should be monitored 

in a life-long surveillance program, to promptly detect any unexplained 

posttransplantation illness (www.fda.gov/cber/gdlns/xenophs0101.htm). 

1.2.1 Porcine exogenous viruses 

Most known viruses belong to the exogenous acute group. They usually 

infect a cell, replicate, and kill it on their way out. Pigs are not always a 

natural reservoir of these viruses, but they may act as a vector to mediate the 

cross-species infection to humans. Some such examples include influenza 

virus (Castrucci et al., 1994; Ludwig et al., 1995), Nipah virus (Parashar et 

al., 2000) and the recently described Reston Ebola virus (Barrette et al., 

2009). The porcine exogenous viruses most relevant in xenotransplantation 

are described below. 

1) Swine Influenza viruses belong to the Orthomyxoviridae family, Influenza 

virus A genus. These enveloped viruses have a negative-sense single-

stranded RNA genome divided into eight segments (Klenk et al., 2004). Due 

to the segmented nature of its genome, new strains of Influenza virus may 

emerge by genetic reassortment of the RNA segments through infection of 

the same cells by two different strains (Brown et al., 1998; Webster et al., 

1995). Zoonotic infection of humans by swine influenza virus was first proven 

in 1976 by Smith and colleagues (Smith et al., 1976). Reassortment of avian 

and human influenza viruses in pigs was also detected (Castrucci et al., 
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1994; Ludwig et al., 1995). It has been hypothesised that pandemic flu, in 

1918, was derived from a swine influenza virus (Taubenberger et al., 1997), 

but recent genetic analysis could not confirm this hypothesis [reviewed in 

(Reid et al., 2004)]. Nevertheless, the threat of a reassortment strain of 

Influenza virus from pigs that could potentially cause a pandemic still exists. 

Indeed, a pandemic swine flu has recently been described (Garten et al., 

2009; Smith et al., 2009). 

2) Another porcine virus able to cross the species barrier between pigs and 

humans is Nipah virus. This enveloped virus is a member of the 

Paramyxoviridae family, whose genome is a linear, negative-sense, single-

stranded RNA molecule (Rima et al., 2004). Bats are the natural reservoir of 

this virus (Chua et al., 2002; Reynes et al., 2005; Sendow et al., 2006). The 

first outbreak of viral encephalitis due to Nipah virus occurred in Malaysia 

and Singapore between 1998 and 1999, resulting in 276 cases of 

encephalitis with 106 deaths (Chua et al., 2000; Chua et al., 1999). During 

this outbreak, the mode of transmission was mainly pig-to-human with only 

8% of the infected individuals not having had direct contact with pigs 

(Parashar et al., 2000). In the following years, several outbreaks occurred in 

Asia, with a worsening in mortality, and other modes of transmission such as 

foodborne and human-to-human were identified (Gurley et al., 2007; Hsu et 

al., 2004; Luby et al., 2006). 

3) The family Filoviridae comprises filamentous enveloped viruses whose 

genome is a linear, negative-sense, single-stranded RNA molecule. Two 

genera belong to this family, Marburgvirus and Ebolavirus (Suzuki and 

Gojobori, 1997). Filoviruses are associated with acute fatal hemorrhagic 

disease in humans and non-human primates. Reston Ebolavirus has recently 

been identified in pigs from different farms in the Philippines (Barrette et al., 

2009). Although Reston Ebolavirus has not been associated with any 

diseases in humans (Morikawa et al., 2007), concern arose in that its 

passage through swine may allow the virus to become more pathogenic. In 

the xenotransplantation context, the unexpected discovery of Ebola virus in 

pigs showed how surveillance of the animal donor should be extended to a 
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wide range of viruses, even those which are not normally associated with 

disease in pigs. 

4) Porcine rotaviruses are associated with gastroenteritis and diarrhoea in 

the human and swine population. They have a segmented double-stranded 

RNA genome enclosed in a core made of three protein layers (Holmes et al., 

2006). As for the previously described influenza virus, the 11 segments which 

form the rotavirus genome can rearrange in a superinfected cell, and new 

strains may emerge [reviewed in (Ramig, 1997)]. Cross-species infection by 

rotavirus has been documented: human rotavirus has been shown to infect 

pigs in vivo (Ward et al., 1996) and clinical studies have reported human 

infection by porcine rotavirus (Gabbay et al., 2008; Nguyen and Hildreth, 

2000). Furthermore, reassortment between human and porcine rotaviruses 

does occur (Li et al., 2008; Martella et al., 2008; Mascarenhas et al., 2007; 

Matthijnssens et al., 2008).  

Porcine exogenous viruses described above represent a possible risk in 

xenotransplantation. However, they cause an acute infection, easily 

recognised by clinical symptoms and diagnostic tests are available. 

Therefore, upon surveillance in SPF facilities for these viruses, a possible 

infection can be contained with ease. Instead, infection by other swine 

viruses may be not so easily recognisable, and special attention should be 

focussed on the following viruses. 

5) Members of the Parvoviridae family are non-enveloped, single-stranded, 

DNA viruses with a broad host range (Berns et al., 2004). Porcine parvovirus 

is the aetiological agent in the syndrome of reproductive failure in pigs, which 

include stillbirths, mummified foetus, early embryonic death and infertility 

(Dunne et al., 1965; Mengeling and Cutlip, 1976). There are no clinical signs 

associated with parvovirus. Therefore, animals should be screened regularly 

for this virus. ELISA-based diagnostic kits are available. 

6) Hepatitis E virus (HEV) is the sole member of the genus Hepevirus in the 

family Hepeviridae (ICTVdB, 2004). This RNA virus is the aetiological agent 

of enterically transmitted non-A, non-B, acute hepatitis (Balayan et al., 1983). 
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HEV is involved in many hepatitis epidemics and outbreaks [reviewed in 

(Panda et al., 2007)]. The overall mortality in humans associated with HEV 

infection is 0.5-3%, but this can increase up to 15-20% in pregnant women 

(Mushahwar, 2008). The faecal-oral route (i.e. drinking contaminated water) 

is the main mode of transmission during an epidemic (Panda et al., 2007). 

Zoonotic transmission of HEV has been associated with pigs. Swine HEV 

was first described in 1997 (Meng et al., 1997) and it shared 97% homology 

with two strains of human HEV genotype 3 (Meng et al., 1998). HEV infection 

was associated with the ingestion of raw or under-cooked pig meat  

(Bouwknegt et al., 2007; Deest et al., 2007; Mizuo et al., 2005; Yazaki et al., 

2003), and with surgical training using pigs (Colson et al., 2007). In the 

context of xenotransplantation, the infection of laboratory monkeys, and 

detection of HEV in pigs bred in specific pathogen-free facilities, is a major 

concern (Yamamoto et al., 2008). 

Other exogenous porcine viruses whose presence has important economic 

consequences in swine farming, such as porcine reproductive and respiratory 

virus, classical swine fever virus, swine vesicular virus and foot-and-mouth 

viruses, present clear clinical features and cross-species infection in human 

have not be observed with the exception of one case of foot-and-mouth 

disease in 1966 (Armstrong et al., 1967). This episode highlighted how, 

although a human infection by these swine viruses is a rare event, it is still a 

risk that cannot be excluded. 

1.2.2 Porcine Herpesviruses 

Herpesviruses are enveloped DNA viruses which can persist in the host in a 

latent phase without causing symptoms for long periods of time (ICTVdB, 

2006). Although herpesviruses usually have a narrow host range, cross-

species infection and adaptation to the new host have been described 

(Ehlers et al., 2008). Suid Herpesvirus type 1 (SuHV-1, Pseudorabies virus) 

is a member of subfamily α-herpesvirinae. Their natural host is swine, but 

cross-species infections have been described, causing severe neurological 

symptoms and death of the new host (Glass et al., 1994; Marcaccini et al., 

2008). However, infections of humans or primates have not been observed. 
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Nevertheless, a potential zoonosis or recombination with human 

herpesviruses cannot be excluded.  

Porcine cytomegalovirus (PCMV) is a β-herpesvirus. In preclinical studies in 

pig-to-baboon transplantation, PMCV replication was enhanced due to 

immune suppressive protocols, and consumptive coagulopathy was 

observed in transplanted pig tissues in association with PMCV expression. 

However, no evidence of PCMV invasion and productive infection has been 

detected in NHP tissues (Gollackner et al., 2003; Mueller et al., 2004). PCMV 

can be eliminated by early weaning of the herds bred for xenotransplantation 

purpose (Mueller et al., 2004).  

Porcine lymphotropic herpes viruses (PLHV)-1,-2 and -3 belong to the 

subfamily γ-herpesvirinae and have high homology with human herpes virus 

8 (HHV-8, also known as Kaposi’s sarcoma virus) and Epstein-Barr virus 

(EBV). Despite PLHV not being activated in pig-to-baboon organ 

transplantation (Issa et al., 2008; Mueller et al., 2004), the transactivators of 

HHV-8 and EBV could activate PHLV (Santoni et al., 2006). Furthermore, the 

same strategy of early weaning proposed for PMCV proved to be ineffective 

for PHLV (Mueller et al., 2005). 
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1.3 Retroviruses 

Retroviridae are a family of vertebrate viruses, divided into two subfamilies 

orthoretroviridae and spumaretrovirinae Only one genus has been described 

in the spumaretrovirinae subfamily, spumavirus, whereas six genera belong 

to the orthoretroviridae subfamily: α-retrovirus, β-retrovirus, γ-retrovirus, δ-

retrovirus, ε-retrovirus and lentivirus (Linial et al 2005).  

1.3.1 Structure 

A retroviral particle’s diameter is in the range of 80-120nm, measured by thin-

section electron microscopy. The mature virions have a condensed protein 

core wrapped in a lipid envelope. The viral envelope is derived from the cell 

plasma membrane and is acquired during budding. The lipid composition of 

the envelope is rich in sphingomyelin and cholesterol, suggesting that the 

virus buds from cholesterol-rich rafts in the cell plasma membrane (Aloia et 

al., 1993; Briggs et al., 2003; Ono and Freed, 2005; Quigley et al., 1971). 

The envelope is scattered with glycoproteins, called Env. The Env protein is 

synthesised as a polyprotein precursor, and the leader signal in the N-

terminus directs the protein to the ER and then to the Golgi apparatus where 

the glycosylation process commences. In the Golgi apparatus, cellular 

proteases cleave Env into two subunits, surface (SU) and transmembrane 

(TM). During the transport to the cell surface, three SU and three TM 

oligomerise to form the spike, which will be present on the viral envelope 

(Eckert and Kim, 2001; Einfeld and Hunter, 1988; Kamps et al., 1991; Wyatt 

and Sodroski, 1998). The Env proteins interact with the cell surface proteins 

which mediate the fusion process and the subsequent entry of the virus in 

the cell. The determinant regions for the receptor usage are located in the N-

terminal region of SU in the variable region A and B (VRA and VRB) (Battini 

et al., 1992; Tailor and Kabat, 1997). In the N-terminus of the TM is located 

the fusion peptide, responsible for the fusion of the viral envelope with the 

cell membrane, which occurs following the interaction of SU with the receptor 

(Hunter, 1997). 
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Matrix (MA) proteins are associated with the lipid envelope. In most 

retroviruses, MA proteins are myristylated at their N-terminus and this 

posttranscriptional modification appears to be essential for retroviral 

assembly (Bryant and Ratner, 1990; Gottlinger et al., 1989; Rein et al., 

1986). Furthermore, MA interacts with Env proteins during budding and it has 

been suggested for the lentivirus, human immunodeficiency virus (HIV)-1, 

that this interaction is required for the incorporation of the Env proteins in the 

virions (Freed and Martin, 1996; Yu et al., 1992).  

The condensed core in the retroviral particles is formed by the capsid 

proteins (CA) and is commonly referred to as the capsid. This structure 

contains the genomic viral material associated with the nucleocapsid proteins 

(NC). In all the orthoretroviruses, NC has one or two characteristic motifs 

(CX2CX4HX4C). Mutation of these domains results in the absence of the viral 

genome in the virions, suggesting a possible role for NC in the packaging of 

the genomic RNA into the nascent particles (Gorelick et al., 1988; Meric and 

Goff, 1989). Moreover, NC is important in the reverse transcription process 

(Meric and Goff., 1989) probably by promoting the annealing of the tRNA 

primers to the primer binding site, as well as facilitating the strand transfer 

(section 1.3.3). Indeed, NC has been shown to promote the annealing of 

complementary RNA sequences (Prats et al., 1988). 

MA, CA and NC are present in all the orthoretroviruses. They are encoded by 

the gag gene and synthesised as Gag polyprotein, then cleaved by the viral 

protease. Additionally, other Gag proteins may be produced, but they vary 

between retroviruses. For instance, murine leukaemia virus (MLV) gag 

encodes an additional protein p12 (figure 1.2), important for virus assembly 

and release as well as in the early stages of the infection (Yuan et al., 2002; 

Yuan et al., 1999). 
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Figure 1.2 Genetic organisation and transcript processing of MLV.  

From the top, the genomic RNA has been represented with the following elements 
highlighted (from left to right): repeat region (R), unique region in 5’ end (U5), tRNA primer 
binding site (PBS), splicing donor site (SD), packaging signal (Ψ), four genes (gag, pro, pol, 
env), splicing acceptor site (SA), polypurine tract (PPT), unique region in 3’end (U3) and the 
polyadenylated tail (PA). Following reverse transcription, the viral DNA integrates as a 
provirus, characterised by the long terminal repeat (U5-R-U3). The full length viral transcript 
follows three possible routes: assembled in a new virion as genomic RNA (1), translated in 
the polyproteins Gag and Gag-Pro-Pol (2), spliced and translated in the envelope protein 
(Env) (3). Gag-Pro-Pol polyprotein is cleaved in the following components (from left to right): 
matrix (MA), p12, capsid (CA), nucleocapsid (NC), protease (Pro), reverse transcriptase (RT) 
with the ribonuclease H domain (RNase H), and integrase (IN). The Env is processed by 
removal of the leader signal (L) and cleavage between the two units: surface (SU), 
containing the variable region A (VRA) and B (VRB), and transmembrane (TM) containing 
the fusion peptide (FP) and the R peptide (RP). 

Genomic RNA 

Provirus 

Viral transcripts 

Viral proteins 
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1.3.2 Genomic RNA 

The genome of the retroviruses consists of two positive-sense, single-

stranded, RNA molecules. The size is between 7 to 12 kilobases. The 

genomic RNA is a dimer held together at the 5’ ends. The structure of each 

molecule resembles a cellular messenger RNA (mRNA). The 5’ end is 

capped and the 3’ end is polyadenylated. The genomic RNA inside the 

virions is the unspliced form of the viral transcripts. At both the extremities of 

the RNA molecules there are the repeat regions (R) followed by a unique 5’ 

sequence (U5) and a unique 3’sequence (U3). These regions form the long 

terminal repeats (LTRs) in the integrated provirus. Immediately after the U5, 

there is the primer binding site (PBS), the region for annealing to a specific 

cellular transfer RNA (tRNA) which will act as primer for the reverse 

transcription (section 1.3.3). Retroviruses use different tRNAs; tRNALys (HIV-

1), tRNAPro (MLV and PERV subgroup C), tRNAGly (PERV subgroup A and 

B), are some examples. The genomic RNA is packaged into a retroviral 

particle by recognition of the packaging (or encapsidation) sequence, called 

Ψ, located near the 5’ end of the RNA molecules (figure 1.2). At the other 

end of the molecule there is a region important for reverse transcription, 

called the polypurine tract (PPT), immediately before the U3 (Vogt, 1997). 

The genome of all retroviruses encodes four main genes gag, pro, pol and 

env. In all of them, the Env protein is translated from a spliced mRNA which 

is formed by excision of the gag, pro and pol genes. The splice donor (SD) 

site is generally upstream of gag and the splice acceptor (SA) site 

immediately before env (Vogt, 1997). Structural proteins are synthesised 

from the gag gene. They are produced as a polyprotein successively cleaved 

by the viral protease, encoded by pro. The cleavage of the precursor Gag 

and Gag-Pol occurs during or after the assembly of the viral particle, leading 

to the maturation of an infectious virus. All the retroviruses possess two other 

enzymes encoded by the pol gene: reverse transcriptase (RT) and integrase 

(IN). RT is a RNA-dependent DNA polymerase. Using the viral genomic RNA 

as template, RT promotes the synthesis of a new single stranded DNA 

filament. RT possesses a second domain, a ribonuclease H (RNase H), 
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which degrades the RNA filament during DNA synthesis (Telesnitsky and 

Goff, 1997). Once the viral DNA has been synthesised and translocated to 

the nucleus, IN promotes its integration into the cellular genome. The 

different steps in the integration process involve the following IN functions: 

nuclease (cleavage of the 3’ ends of the viral DNA), DNA binding and 

transesterification (3’-OH groups at the viral DNA ends are used to form 

phosphodiester bonds on the target cellular DNA leading to the joining of the 

two DNA filaments) (Brown, 1997).  

In addition to these four genes, some genera of retroviruses possess other 

accessory genes. For instance, γ-retroviruses are simple viruses and encode 

only the four genes described above, while lentiviruses are complex 

retroviruses and possess additional genes (e.g. HIV-1 encode six accessory 

genes: vif, vpr, tat, vpu, rev and nef) (Rabson and Graves, 1997; Swanstrom 

and Willis, 1997). 

1.3.3 Life cycle 

Viruses need to infect a cell to reproduce (Figure 1.3). Retroviruses enter 

vertebrate cells by attachment to the cell surface, followed by interaction 

between the viral glycoprotein Env and specific host surface molecules 

(section 1.5). This binding causes conformational changes in the Env 

proteins, leading to the exposure of the fusion peptide at the N-terminus of 

TM, and its insertion into the cell plasma membrane. As a result, fusion 

between the viral envelope and the host cell membrane occurs, and the virus 

core is released into the cytosol [reviewed in (Colman and Lawrence, 2003; 

Eckert and Kim, 2001)]. The majority of the viral particles, however, enter the 

cell through endocytosis (Marechal et al., 1998). For lentiviruses such as 

HIV-1, this route leads to an abortive infection, with the virions being 

degraded by the proteasome (Fredericksen et al., 2002; Schwartz et al., 

1998). Other retroviruses, such as ecotropic and amphotropic MLV (Katen et 

al., 2001) and foamy virus (Picard-Maureau et al., 2003) can enter cells via 

the endocytic pathway, in a pH-dependent manner. The preferential route of 

entry for those retroviruses, which can use both, appears to be cell type 

specific (Kizhatil and Albritton, 1997). 
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Figure 1.3 Retrovirus life cycle 

The retroviral life cycle, schematised here, is described in detail in section 1.3.3. 
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Reverse transcription takes place in the cytoplasm of the cell and generates 

a linear, double-stranded DNA using the viral genomic RNA as template 

(Figure 1.4). The viral RT enzyme starts the synthesis of the minus-strand 

DNA filament using as primer the 3’ end of the tRNA which is annealed at the 

PBS in the genomic RNA (Figure 1.4 A). The minus strand DNA synthesis 

continues until RT reaches the 5’ end of the viral RNA (Figure 1.4 B). The 

RNase H domain of the RT digests the RNA filament in the newly 

synthesised hybrid RNA:DNA (Figure 1.4 C). The transfer of the minus-

strand DNA to the opposite end of the genomic RNA is guided by the 

repeated region, R (Figure 1.4 D). RT resumes the synthesis of the minus-

strand DNA. RNAse H digestion removes most of the RNA except the PPT, 

which is highly resistant to RNase H degradation (Figure 1.4 E). The 

undigested RNA sequence PPT serves as a primer for the synthesis of the 

plus-strand DNA (Figure 1.4 F). RT continues copying the minus-strand DNA 

into a portion of the tRNA used as initial primer, causing its removal (Figure 

1.4 G).The plus-strand DNA is transferred to anneal to the PBS site in the 

minus-strand DNA filament, and the synthesis of both strands completed 

(Figure 1.4 H and I). The final result is a blunt-ended, linear DNA duplex 

(Telesnitsky and Goff, 1997).  
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Figure 1.4 Reverse transcritption 
The reverse transcription of the retroviral genomic RNA (white) starts with the synthesis of 
the minus-strand DNA (light grey) at the 3’ end of the primer tRNA, annealed at the primer 
binding site (PBS). The synthesis of the plus-strand DNA (dark grey) commences using the 
undigested polypurine tract (PPT) as primer. The final product is a linear, double-stranded 
DNA flanked by two identical long terminal repeats (LTR). 
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The viral DNA is associated with viral and cellular proteins, forming the 

preintegration complex (PIC), which is translocated to the nucleus. To gain 

access to the nucleus, most retroviruses depend on mitosis, where the 

nuclear membrane is disassembled. However, members of the genus 

lentivirus, such as HIV-1, can pass through an intact nuclear membrane. HIV-

1 PIC enters the nucleus via a nuclear localisation signal-mediated, active 

import through the nuclear pore (Bukrinsky et al., 1992; Gulizia et al., 1994; 

Heinzinger et al., 1994; von Schwedler et al., 1994). Once in the nucleus, the 

integrase-DNA complex binds to the DNA and the integrase catalyses the 

joining of the viral DNA with the host cell DNA. The cellular components of 

the DNA damage response system mediates the filling in of the nicks and 

gaps flanking the viral DNA [reviewed in (Smith and Daniel, 2006)]. The site 

of integration was initially thought to be random. However, a systematic large 

scale analysis of retroviral integration sites revealed virus-specific preferential 

integration sites [reviewed in: (Bushman et al., 2005)]. For instance, HIV-1 

and simian immunodeficiency virus (SIV) preferentially integrate in 

transcription units (Crise et al., 2005; Schroder et al., 2002), whereas MLV 

and porcine endogenous retrovirus (PERV) in the proximity of the 

transcriptional start sites and near CpG islands, regions abundant in CpG 

dinucleotide, which are undermethylated and associated with gene regulatory 

regions (Moalic et al., 2006; Wu et al., 2003).  

Transcription of the viral genes can occur efficiently after the integration of 

the viral DNA and it is mediated by the RNA polymerase II, the enzyme 

responsible for the synthesis of cellular mRNAs and some small nuclear 

RNAs. The transcription is promoted by the viral LTR. Direct repeat 

sequences in the U3 region of the LTR constitute an enhancer element 

(Laimins et al., 1984; Levinson et al., 1982) which contains a transcription 

factor-binding site (Speck and Baltimore, 1987). The promoter in the U3 

region contains the TATA element upstream of the transcription start site. 

PERV shares the same structural organisation of other γ-retroviruses, 

however, the direct repeats (i.e. enhancer) differ from other γ-retroviruses, 

and appear to bind a smaller number of transcription factors. Another region 

in the U3 region of the LTR upstream of the repeated elements have been 
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predicted to contain transcription factor binding sites (Wilson et al., 2003). 

The cellular transcriptional machinery processes the viral transcripts as for 

any other cellular mRNAs, capping the 5’ end and adding a polyadenylated 

tail at the 3’ end. The full-length, unspliced transcript serves three possible 

roles: 1) viral genome, packaged into the nascent virions; 2) mRNA for Gag 

and Gag-Pol translation; 3) mRNA for Env translation, once spliced.  

The export to the cytoplasm of unspliced mRNAs requires the action of viral-

specific functions. HIV-1 produces an auxiliary protein, Rev (regulatory of 

virion), which acts as adaptor between the viral RNA and cellular export 

protein complex [reviewed in (Pollard and Malim, 1998)]. Other retroviruses, 

including human T- lymphotropic virus (HTLV), mouse mammary tumour 

virus (MMTV), equine infectious anaemia (EIAV), and feline 

immunodeficiency virus (FIV) encode Rev-like proteins (Magin et al., 1999; 

Mertz et al., 2005; Phillips et al., 1992; Rimsky et al., 1988). Simple 

retroviruses which do not encode accessory proteins rely upon the cis-acting 

element, for the export of the viral RNA. As examples, Mason-Pfizer monkey 

virus, simian retrovirus type D and Rous sarcoma virus possess a distinct 

RNA structure, called constitutive transport element (Bray et al., 1994; Ernst 

et al., 1997; Ogert et al., 1996; Zolotukhin et al., 1994). The Moloney MLV 

(MoMLV) packaging signal appears to be involved in the nuclear export of 

full-length RNA (Smagulova et al., 2005). 

Ribosomes bind to the viral RNA and start the translation with the start codon 

for Gag, skipping upstream start and stop codons, probably by internal 

ribosome entry site (IRES). Evidences for the presence of IRES in the RNA 

of MLV (Berlioz and Darlix, 1995; Deffaud and Darlix, 2000a), avian 

reticuloendotheliosis virus type A (Lopez-Lastra et al., 1997), Rous sarcoma 

virus (Deffaud and Darlix, 2000b) and HIV (Brasey et al., 2003; Buck et al., 

2001) have been described. Two polyproteins are synthesised, Gag and 

Gag-Pro-Pol from the same unspliced viral RNA. β-retroviruses, such as 

members of the avian sarcoma-leukosis virus group, differ from other 

retroviruses in that the Pro domain is contained in both precursors because 

Pro-coding sequence is placed in the gag reading frame (Bennett et al., 

1991; Schwartz et al., 1983). The regulation of the translation of the Gag-Pro-
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Pol precursor allows the production of more Gag proteins than the enzymes 

encoded by pro and pol. Typically, 10 to 20 Gag molecules are made per 

molecule of Gag-Pro-Pol (Hatfield et al., 1992). Two mechanisms are 

exploited by retroviruses to generate the Gag-Pro-Pol precursor, both aimed 

to bypass the termination codon at the 3’ end of gag. Most retroviruses (α-, β-

retrovirus and lentivirus) use a ribosomal frameshift by ‘slipping’ backwards 

of one nucleotide (-1) and changing the open reading frame (ORF). In other 

retroviruses, such as the β-retrovirus mouse mammary tumour virus (MMTV) 

and δ-retrovirus human T-leukaemia virus (HTLV-1), pro lies in a different 

reading frame from gag and pol and therefore two (-1) frameshifts, one to 

create Gag-Pro and a second one for the Gag-Pro-Pol precursor, are 

required [(Hatfield et al., 1992) and reviewed in (Jacks, 1990)]. Contrastingly, 

γ-retroviruses read through the termination codon. For instance, in MLV the 

stop codon is occasionally misread as a glutamine (Yoshinaka et al., 1985). 

Electron microscopy has showed at least two pathways for retroviral 

assembly. For lentiviruses, α- and γ-retroviruses, the viral proteins are 

transported to the plasma membrane where the assembly takes place. 

Instead, β- and δ–retroviral cores are assembled in the cytoplasm, and 

migrate to the plasma membrane where they bud from the cell. The cleavage 

of the polyprotein precursor by the viral protease occurs during and after the 

release of the virions (Swanstrom and Willis, 1997). The retrovirus budding 

has not been fully characterised yet. A region in the Gag precursor, late 

domain (L), has been described as critical for the release of the virions. The 

role of the L sequence appears to be the hijacking of the cellular machinery 

responsible for the budding of cargo-laden vesicles into the multivesicular 

bodies, such as the class E vesicular protein sorting machinery, which 

assembles into discrete complexes termed the endosomal sorting complex, 

required for transport (ESCRT)-I, -II, -III [reviewed in (Demirov and Freed, 

2004)].  

1.3.4 Retroviral pathogenesis 

Retroviruses are associated with a wide variety of diseases including 

tumours, immunodeficiencies and neurological disorders. The first retrovirus 
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was originally discovered in 1908 as transmissible oncogenic agents of 

erythro-myeloblastic leukaemia in chickens, later identified as the avian 

leukosis virus (ALV). Since then, many other tumourigenic retroviruses were 

described (Rosenberg and Jolicoeur, 1997). One possible mechanism of 

retrovirus-mediated oncogenesis is the expression of viral oncogenes. The 

first transforming gene identified was the src oncogene in Rous sarcoma 

virus, which highly resembles the cellular src gene in chicken DNA (Stehelin 

et al., 1976). Most of the viruses which carry oncogenes are replication-

defective because some, or all, of their genes were lost during the acquisition 

of the cellular oncogene. Other retroviruses induce tumours by provirus 

insertional mutagenesis. The viral integration site for these viruses has been 

mapped to the proximity of a cellular oncogene (called proto-oncogene). The 

promoter and enhancer elements in the proviral LTRs can increase the 

transcription of the proto-oncogene, leading to neoplasia (Hayward et al., 

1981; Neel et al., 1981). Some retroviruses cause tumorigenesis via an Env-

mediated mechanism, by interacting with cellular proteins and altering the 

transcriptional profile of the cells. A different mechanism to induce 

oncogenesis is represented by HTLV. HTLV-1 regulatory protein Tax, which 

potently increases transcription of viral gene from the LTR, also stimulates 

transcription of many cellular genes by binding cellular transcriptional factors, 

and may be involved in the leukaemogenesis [reviewed in (Maeda et al., 

2008)]. 

HIV-1 is the aetiological agent of the acquired immunodeficiency syndrome 

(AIDS). Other animal retroviruses which, as well as HIV, target immune 

system cells can induce immunodeficiencies (Aziz et al., 1989; Daniel et al., 

1985; Kanki et al., 1985; Letvin et al., 1985; Marx et al., 1984; Pedersen et 

al., 1987). 

Neurotropic retroviruses are associated with degeneration of neural function 

in the central nervous system (CNS). Retrovirus-induced spongiform 

encephalopathies, usually present without an inflammatory response, are 

characterised by neuronal loss and proliferation and hypertrophy of the glial 

cells (Andrews and Gardner, 1974; Swarz et al., 1981; Zachary et al., 1986). 
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In humans, infection of CNS cells by HTLV-1 and HIV-1 causes neurological 

disease associated with an inflammatory response. Similar encephalopathies 

have been described in animals such as cats infected with a T-lymphotropic 

feline virus, later renamed feline immunodeficiency virus (FIV) (Pedersen et 

al., 1987). 

Retroviruses have been associated with other pathologies. As example, 

anaemia is induced in horses by the lentivirus EIAV [reviewed in (Montelaro 

et al., 1993)] and in cats by feline leukaemia virus C (Abkowitz, 1991). 

1.3.5 Endogenous retroviruses 

Integration of a provirus in the genome of germ line cells may imply that the 

retrovirus can be transmitted vertically to the offspring according to 

Mendelian genetics, and become an endogenous retrovirus (Boeke and 

Stoye, 1997). It has been estimated that 8 to 10% of the human and mouse 

genome are constituted by retroviral sequences (Gifford and Tristem, 2003). 

Members of every genera of the family Retroviridae have been identified in 

vertebrates, with the exception of the deltaretrovirus genus (Gifford and 

Tristem, 2003; Gifford et al., 2008; Katzourakis et al., 2007). Most of the 

provirus sequences are transcriptionally silent or carry deletions or point 

mutations which render the retrovirus unable to replicate. However, some of 

the viral open reading frames are still active and full-length replication 

competent viruses have been observed in some species such as chicken, 

mouse and pigs [reviewed in (Best et al., 1997; Weiss, 2006)]. Several 

speculations arose regarding whether the expression of viral gene products 

might provide a selective advantage to the host. In support of this theory, 

there are some examples: 

1) protection from retroviral infection. Expression of Env proteins could 

prevent infection by retroviruses in the same interference group (retroviruses 

which uses the same receptor) by saturating, or down-regulating, the cellular 

receptors. For instance, murine locus Friend virus-4 (Fv-4) encodes an 

ecotropic MLV Env protein. Its expression conferred resistance in vitro and in 

vivo to ecotropic, but not amphotropic, MLV (Ikeda et al., 1985; Limjoco et al., 

1993). A different mechanism to prevent retrovirus infection has been 
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described for the murine locus Fv-1 [section 1.6.1; (Yan et al., 2009)]. 

Sequence analysis of the Fv-1 locus showed that it derives from the CA 

protein of a murine endogenous retrovirus (Benit et al., 1997). In sheep, the 

defective CA protein of the endogenous Jaaksiekte sheep retrovirus 

(enJSRV) can block the exit of exogenous JSRV (Mura et al., 2004). 

2) placental function. Syncytiotrophoblast formation is one of the initial steps 

in the placenta development, and involves fusion of the cells of the 

trophoblast (the outer layer of the blastocyst). A possible involvement of 

endogenous Env in syncytiotrophoblast genesis has been suggested by the 

discovery of syncytin. This gene shows 100% amino acid identity with the 

Env protein of human endogenous retrovirus (HERV)-W, and is highly 

expressed in the placenta. Expression of syncytin in COS cells, and cells 

expressing the RD114 receptor (ASCT-2), resulted in the formation of large 

cell syncytia (Blond et al., 2000; Mi et al., 2000). Another fusogenic gene 

derived from an endogenous retrovirus (HERV-FRD) env gene has been 

identified and called syncytin-2 (Blaise et al., 2003). The cellular counterpart, 

the receptor major facilitator superfamily domain containing 2 (MFSD2), has 

a placental-specific expression and the proposed function is a carbohydrate 

transporter probably acting at the level of the syncytiotrophoblast (Esnault et 

al., 2008). Evidence to support the possible contribution of the endogenous 

retrovirus Env in the host physiology emerged from use of syncytin-A knock-

out mice. Syncytin-A and –B are two fully-coding mouse ERV env genes, 

which display fusogenic property when expressed in transfected cells and are 

highly expressed in the placenta (Dupressoir et al., 2005). Homozygous null 

embryos for syncytin-A gene died in utero due to defective development of 

the placenta, indicating a critical role for syncytin-A (Dupressoir et al., 2009). 

Similar, but less conclusive, results were obtained by in vivo knock-down of 

the Env of enJSRV (Dunlap et al., 2006). 

Contrastingly, endogenous retroviruses have been implicated in the 

development of diseases.  

1) cancer. An unambiguous causative association between ERVs and cancer 

has been proved only in mice. Mouse mammary tumour virus (MMTV) has 
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been discovered in the milk of female mice as a filterable agent responsible 

for breast cancer (Boeke and Stoye, 1997). Recombination between infecting 

MLV and endogenous retroviruses leading to the generation of recombinant 

mink cell focus forming (MCF) viruses has been described as a hallmark in 

the development of leukaemia in AKR mice (Fan, 1997). Mobility and 

amplification of ERVs in murine tumour cells have been observed in murine 

neuroblastoma and melanoma (Pothlichet et al., 2006a; Pothlichet et al., 

2006b). In humans, the evidence for tumorigenesis induced by HERV is only 

circumstantial [reviewed in (Ruprecht et al., 2008)]. 

2) autoimmune disease. A role for ERV in autoimmune disease has been 

proposed on the basis of several pieces of evidence. Antibodies reactive 

against HERV proteins have been found in patients affected by systemic 

lupus erythematosis (Bengtsson et al., 1996; Li et al., 1996; Perl et al., 1995) 

and multiple sclerosis (Jolivet-Reynaud et al., 1999). Endogenous retroviral 

gene expression has been detected in several human autoimmune diseases 

(Conrad et al., 1997; Perron et al., 1997). However, there are no clear results 

which establish the causative role of ERV in inflammatory diseases [reviewed 

in (Voisset et al., 2008)]. 

Insight into the process of endogenisation has been offered by the discovery 

of the koala retrovirus (KoRV), detected in the wild and captive koalas as a 

full-length replication-competent provirus. Sequence analysis showed a 78% 

nucleotide similarity between the whole KoRV genome and the GALV’s, an 

exogenous gammaretrovirus associated with leukaemia and lymphoma in 

captive gibbon colonies (Hanger et al., 2000). A positive association was 

found between an increased level of KoRV RNA in the plasma of koalas and 

development of leukaemia or lymphoma (Tarlinton et al., 2005). As a 

endogenous virus, KoRV provirus sequences were detected in the germ line 

of the koalas analysed. However, the number and position of the provirus 

insertions vary between unrelated animals. Furthermore, while KoRV has 

been observed in all the koalas in North-East Australia, in the Southern 

mainland and islands there is a mixed prevalence of the virus with no animal 

infected in an isolated population (Kangaroo Island). These observations 
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suggest that KoRV endogenisation is not fixed, and in the regions with a 

mixed prevalence it is likely that KoRV behave both as exogenous and 

endogenous virus (Tarlinton et al., 2006). To investigate the process of 

endogenisation, KoRV was compared with the closely related exogenous 

GALV. Critical motif differences between the 17 KoRV and 4 GALV 

sequences were identified which correlated with a reduced titre of the 

endogenous virus. These observations lead to the speculation that part of the 

process of retrovirus endogenisation involves the attenuation of the viral 

infectivity (Oliveira et al., 2007). 
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1.4 Porcine endogenous retrovirus  

Four groups of β-retroviral and 10 groups of γ-retroviral sequences have 

been characterised by PCR using degenerated primers (Klymiuk et al., 2002; 

Patience et al., 2001). β-retroviral sequences were identified in the genomic 

DNA from animals of the Suidae and Tayassuidae families, indicating that 

some β-retroviral sequences entered the porcine lineage before the 

separation between the Suidae and Tayassuidae families approximately 20 

million years ago (Ericsson et al., 2001; Patience et al., 2001). Instead, γ–

retroviral sequences were found only in the members of the Suidae family 

(Patience et al., 2001). In the pig genome the number of full length PERV 

copies is estimated to be between 50 and 200 (Akiyoshi et al., 1998; Le 

Tissier et al., 1997; Patience et al., 1997), but less than 10 are replication 

competent (Niebert et al., 2002). PERV sequences in different swine breeds 

revealed a heterogenous distribution among breeds and PERV copy number 

and chromosomal distribution also varied between individuals (Bosch et al., 

2000; Edamura et al., 2004; Herring et al., 2001; Lee et al., 2002; Li et al., 

2004; Rogel-Gaillard et al., 1999). This is of importance in 

xenotransplantation because it suggests that careful breeding could allow the 

elimination of replication-competent PERV and most problematic sequences, 

such as active PERV-C (section 1.4.2) from the animal donor. 

1.4.1 Replication-competent PERVs and host range 

Only the endogenous retroviruses representing the γ1 group (Patience et al., 

2001) have been observed spontaneously budding from porcine cells 

(Armstrong et al., 1971; Lieber et al., 1975; Todaro et al., 1974). Sequence 

analysis indicated closest homology with gibbon ape leukaemia virus 

(GALV), KoRV, MLV, FeLV and BaEV among retroviruses (Akiyoshi et al., 

1998; Czauderna et al., 2000; Hanger et al., 2000; Patience et al., 2001). In 

vitro analysis of the host range of PERV showed that these viral particles can 

infect human cells (Patience et al., 1997; Takeuchi et al., 1998). Infectious 

human tropic particles could be also produced from porcine primary 

peripheral blood mononuclear cells (PBMC), upon mitogenic stimulation in 

vitro (Wilson et al., 1998). Three groups of PERVs (A, B and C) have been 
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described with high homology in the gag and pol genes. The major difference 

between PERV groups lies in the surface unit (SU) of Env, specifically in the 

regions VRA and VRB, which are responsible for receptor recognition 

(Akiyoshi et al., 1998; Le Tissier et al., 1997). All three PERV groups can 

infect porcine cells. PERV-A and PERV-B are human-tropic and their host 

range includes mink, cat and dog (PERV-A) and mink, mouse, rat and rabbit 

(PERV-B). PERV-C infection appears to be limited to pigs (Takeuchi et al., 

1998; Wilson et al., 2000). Initially, PERV infection of non-human primates 

cells was not detected (Martin et al., 1999; Takeuchi et al., 1998). However, 

MLV core particles pseudotyped with PERV-A Env were shown to infect 

baboon cells (Blusch et al., 2000a) and PERV transmission to baboon B-

lymphocytic cell lines was also detected, by PCR assay, after cocultivation 

with lethally irradiated PK15 cells (Templin et al., 2000). 

1.4.2 PERV recombination 

Human-tropic PERVs isolated from NIH mini-pigs were shown to be 

recombinants between PERV-C and human-tropic PERV-A (Oldmixon et al., 

2002; Wilson et al., 2000). One of these recombinants, PERV-NIH, had a 

higher titre than PERV produced from PK15 cells (Wilson et al., 2000) 

Another isolate, PERV-A14/220, was shown to infect human cells with a 

significantly higher titre than other human-tropic PERV-A and PERV-B 

(Bartosch et al., 2004; Ericsson et al., 2003; Harrison et al., 2004). The main 

determinant for the increased titre has been mapped to the chimeric 

envelopes (Harrison et al., 2004). Both PERV-NIH and PERV-A14/220 Envs 

have the receptor binding domain (RBD) in the SU derived from PERV-A 

(hence, the human tropism) and the TM region from PERV-C (Wilson et al., 

2000; Bartosch et al., 2004; Harrison et al., 2004). In addition, PERV-

A14/220 has a higher reverse transcriptase activity than PERV-A, suggesting 

that also pol contributes to the higher titre of this isolate (Wood et al., 2009). 

The origin of these recombinations is not totally clear. PERV-A/C 

recombinant sequences were not found in the minipig genome, suggesting 

that the recombination was an event which occured de novo in each pig 

(Scobie et al., 2004; Wood et al., 2004). However, more recently, two 

different sequences of recombinant PERV-A/C were described in the 
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genome of four mini-pigs (Martin et al., 2006). It has been suggested that 

PERV-C sequences drive the recombination process (Wood et al., 2004). 

Therefore, the use of PERV-C-free pigs in xenotransplantation was 

advocated to reduce the risk of PERV infection [(Hector et al., 2007) and 

reviewed in (Denner, 2007)]. In the context of xenotransplantation, another 

risk associated with PERV recombination could be represented by the 

emergence of a novel retrovirus by recombination of PERV with HERVs. The 

likelihood of HERV sequence packaging in PERV particles has been studied 

and found to be very low, but it cannot be excluded (Suling et al., 2003). 

1.4.3 Diagnostic methods for PERV detection 

Before PERV was shown to be able to infect human cells (Patience et al., 

1997), porcine materials have been used to treat human diseases (Chari et 

al., 1994; Deacon et al., 1997; Fink et al., 2000; Groth et al., 1994; 

Reichenbacher, 1975). Retrospective studies have been conducted to 

assess a possible PERV infection (Clemenceau et al., 2001; Cunningham et 

al., 2001; Elliott et al., 2000; Heneine et al., 1998; Paradis et al., 1999; 

Patience et al., 1998). In the most extensive study (Paradis et al., 1999), 

PBMC and serum samples from 160 patients who underwent through 

different procedures (extracorporeal liver, splenic or kidney perfusion, 

pancreatic islet cells transplantation, skin xenograft ) were collected. The 

exposure time to the porcine materials varied between 15 minutes to 460 

days. Testing was carried out by real-time PCR on the DNA extracted from 

PBMCs using primers specific for PERV gag and pol sequences: 81% of the 

samples were PERV DNA-negative. The PERV DNA-positive samples were 

assessed by PCR for the presence of pig centromeric or mitochondrial DNA, 

and all were found positive, indicating microchimerism (i.e. presence of 

circulating porcine cells in the xenotransplant recipient, but not necessarily 

PERV infection of patient’s cells). No PERV RNA was found in the serum or 

saliva. Similar results using similar PCR-based methods were obtained in all 

the other studies, showing no evidence of PERV infection in patients 

exposed to the porcine materials (Clémenceau et al., 2001; Cunningham et 

al., 2001; Elliott et al., 2000; Heneine et al., 1998; Patience et al., 1998). Due 
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to of the importance of follow up of the xenotransplantation patient, new 

improved PCR-based methods of detection have been developed to enhance 

the effectiveness and reliability of monitoring procedures (Blusch et al., 

2000b; Lovatt et al., 1999; Shah et al., 2003; Switzer et al., 1999). 

Immunological methods have also been developed and improved during 

recent years, mainly based on the detection of the virus in the cells or 

tissues, either by western blotting or immunostaining (Bartosch et al., 2002; 

Chiang et al., 2005; Fischer et al., 2003; Galbraith et al., 2000; Matthews et 

al., 1999; Tacke et al., 2001; Xu et al., 2003). Indirect diagnostic tools 

employed to detect viral infection have been the analysis of the presence of 

anti-PERV antibodies in the patients exposed to pig cells and tissues. No 

seroconversion was observed (Heneine et al., 1998; Patience et al., 1998; 

Paradis et al., 1999).  

1.4.4 Strategies to reduce the risk of PERV transmission 

The presence of αGal antigens on the surface of pig cells constitutes a major 

immunological obstacle in xenotransplantation (section 1.1.1). However, 

enveloped viruses produced from porcine cells are likely to acquire αGal 

antigens on their envelope and be readily neutralised by the human immune 

system (Rother et al., 1995; Takeuchi et al., 1997; Takeuchi et al., 1996). 

Indeed, it has been showed that natural xenoreactive antibodies can block 

PERV infection (McKane et al., 2004; McKane et al., 2003). The protection, 

offered by anti-αGal antibodies against PERV, would not be present when 

using transgenic pigs developed for xenotransplantation (section 1.1.1). 

PERV particles produced from transgenic porcine cells expressing 

complement regulatory proteins manifested a reduced susceptibility to 

neutralisation by the human immune system (Hazama et al., 2005; Magre et 

al., 2004; Okura et al., 2008; Takefman et al., 2002). PERV budding from 

αGal knock-out pig cells were found resistant to complement-mediated 

inactivation (Quinn et al., 2004). Novel strategies have to be developed to 

minimise the risk of PERV zoonosis in the context of xenotransplantation.  

1) A group of mini pigs have been shown not to produce human-tropic 

replication-competent (HTRC) PERV (Oldmixon et al., 2002; Wood et al., 
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2004; Scobie et al., 2004). The non-transmitting phenotypes have been 

associated with the lack of critical PERV loci. Specifically, PERV-C locus is 

potentially associated with the ability to produce HTRC PERV-A/C or 

infectious PERV-C (Hector et al., 2007). Pigs lacking these specific loci could 

represent a safer source of xenografts (Garkavenko et al., 2008a; 

Garkavenko et al., 2008b). 

2) Small interfering RNAs (siRNAs) represent a highly conserved mechanism 

of posttranscriptional gene silencing based on sequence-specific degradation 

of a target mRNA [(Caplen et al., 2001; Fire et al., 1998; Hammond et al., 

2000; Zamore et al., 2000) and reviewed in (Matzke et al., 2001)]. 

Transfection of siRNA directed against PERV sequences (pol and gag 

genes) was able to suppress the viral expression in PERV-infected human 

cells (Karlas et al., 2004) and in porcine endothelial cells (Miyagawa et al., 

2005). From their initial work, Karlas and co-workers identified the most 

effective siRNAs sequence (pol2) able to achieve 90% PERV suppression 

when expressed under the control of the polymerase III H1-RNA gene 

promoter (Karlas et al., 2004). The long-term effectiveness of siRNA-Pol2 

was verified in the PERV-producing pig cell line PK15, as well as primary 

porcine cells by expressing the siRNA in a HIV-based lentiviral vector 

(Dieckhoff et al., 2007a). The final step was the production of transgenic pigs 

carrying the PERV-specific siRNA (Dieckhoff et al., 2008). Recently, another 

group have produced transgenic pigs that express siRNA against PERV gag 

and pol sequences (Ramsoondar et al., 2009). Both studies produced a 

healthy transgenic litter (7 and 3 piglets, respectively) in which the presence 

of the siRNA was detected. In many porcine tissues the mRNA level of PERV 

genes was reduced. However, the suppression of PERV particle production 

could not be assessed. In fact, the amount of PERV proteins in the non-

transgenic pigs was not detectable and, therefore, it was impossible to 

compare PERV production between transgenic and non-transgenic animals 

(Dieckhoff et al., 2008; Ramsoondar et al., 2009).  

3) In addition to conventional antibodies, members of the Camelidae family 

(camels, llama and dromedaries) produce heavy-chain-only antibodies as 
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natural, functional single chain antibodies (Hamers-Casterman et al., 1993). 

An antibody specific to p15 matrix protein was derived from a llama 

immunised with PERV-B Gag protein following screening of a single-chain 

antibody phagemid library. Intracellularly expressed antibody reduced the 

production of PERV-A and PERV-B Gag precursor more than 90% in 

selected single-clone PK15 cells (Dekker et al., 2003). In a similar way to the 

production of siRNA-transgenic pigs, xenotranplantation animal donors could 

be genetically modified to express this antibody to reduce PERV production.  

4) Engineering pigs to express human APOBEC3G could result in an animal 

donor less likely to transmit PERV. APOBEC proteins have been described 

as host restriction factors able to block viral infection (section 1.6.2). PERV 

transmission to human embryonic 293 cells was reduced from human 

APOBEC3G-transduced PK15 cells (Jonsson et al., 2007), and from HEK 

293 cells cotransfected with human or porcine APOBEC3 and PERV B 

genome (Dorrschuck et al., 2008). 

5) An alternative strategy for preventing PERV transmission involved 

remodelling of the pig cell surface glycoproteins by the transfer of N-glycan 

processing transferases into porcine cells. The expression of three enzymes 

(α-1,2 mannosidase Ib, α3-D-mannoside β-1,2-N-acetylglucosaminyl 

transferase I, and α-mannosidase II) in pig endothelial cells was effective in 

reducing PERV infection of to human HEK 293 cells (Miyagawa et al., 2006). 

No reduction in PERV RNA level in the supernatant of porcine cells was 

detected. The high-mannose type N-linked sugars have been shown to be 

important for PERV infectivity, however their role is still unclear (Hazama et 

al., 2003; Miyagawa et al., 2006). 

6) Neutralising antibodies against PERV were produced by inoculation of the 

ectodomain of the transmembrane envelope protein p15E (amino acid 488-

597) into a goat (Fiebig et al., 2003). Antibodies present in the goat anti-

serum were able to neutralise PERV infection in vitro. These results showed 

that an anti-PERV vaccine could be a potentially successful strategy. 

However, effective vaccines against another γ-retrovirus, FeLV, have been 

produced (Hines et al., 1991; Poulet et al., 2003; Sparkes, 2003; Tartaglia et 
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al., 1993; Tizard and Bass, 1991; Weijer et al., 1993; York and York, 1991), 

but none was able to provide a complete protection (Hofmann-Lehmann et 

al., 2007; Jarrett and Ganiere, 1996; Marciani et al., 1991). 

7) Antiviral chemotherapy is probably the most direct system to prevent 

PERV transmission. Reverse transcriptase and protease inhibitors developed 

for HIV-1 were tested to assess their efficacy against PERV. Only two 

nucleoside analog RT inhibitors zidovudine (AZT) and dideoxyinosine were 

found effective at concentrations achievable in vivo, (Powell et al., 2000; Qari 

et al., 2001; Stephan et al., 2001; Wilhelm et al., 2002). More recently, 

acyclic nucleoside phosphonates were indicated as promising compounds to 

reduce PERV replication (Shi et al., 2007). 
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1.5  γ-RETROVIRUS RECEPTORS 

From a biochemical prospective, a receptor is an intrinsic membrane protein 

with both extracellular and intracellular domains. It possess a binding site on 

the extracellular domain which specifically recognises the signal molecule, 

the ligand. The interaction between ligand and receptor alters the tertiary or 

quaternary structure of the receptor, including the intracellular domain. These 

structural changes activate a downstream signalling pathway that can alter 

the biochemistry of the cell (Alberts et al., 2002). In contrast, a viral receptor, 

which is a molecule in the cell membrane, induces conformational changes in 

its ligand, the viral envelope glycoprotein.  

Viruses have exploited a wide variety of molecules to use as receptors, such 

as different families of proteins, carbohydrates and lipids [reviewed in 

(Haywood, 1994)]. The viral receptor mediates the binding of the virus to the 

cell surface and leads to its entry into the cell. In most cases, one molecule 

mediates both binding and fusion, such as for the γ-retroviruses. However, 

some other viruses, such as HIV-1, need a coreceptor (Choe et al., 1996). In 

addition, the initial step of viral infection consists of the adsorption of the virus 

to the cell surface, which can be receptor-independent, and mediated by 

many different cell surface molecules such as heparan sulphate 

proteoglycans, lectins (e.g. DC-SIGN and DC-SIGNR), integrins and 

glycolipids (Fortin et al., 1997; Jinno-Oue et al., 2001; Lee et al., 2001; 

Pohlmann et al., 2001; Saphire et al., 1999). Although other intracellular 

mechanisms may be present to restrict viral replication in a cell (section 1.6), 

the pattern of expression of the receptor on the surface of different cells 

defines the virus host range. For instance, murine leukaemia viruses (MLV) 

have been classified into four different host-range subgroups according to the 

distribution of their specific receptors among species. The receptor for 

ecotropic viruses is restricted to murine or rat cells, whereas the receptor for 

viruses with a xenotropic host range can be present on the cells of many 

different species but never on mice. Amphotropic and polytropic viruses use 

receptors found both on rodent and other species cells, but they do not 

interfere with one another, indicating that the receptors are distinct molecules 

(Rein, 1982; Rein and Schultz, 1984). 
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For the γ-retroviruses, the process of fusion is not necessarily mediated 

directly by the cognate receptor. In some examples, the conformational 

changes in the Env glycoproteins that occur following the binding to the 

receptor enable the same, and other, Env molecules to trigger fusion 

(Anderson et al., 2000; Barnett and Cunningham, 2001; Barnett et al., 2001; 

Lavillette et al., 2001; Lavillette and Kabat, 2004; Lavillette et al., 2002b; 

Lavillette et al., 2000). 

Members of the genus γ-retrovirus use a small number of quite related 

receptors. This fact has been explained by different authors in opposite ways: 

a convergent [reviewed in (Overbaugh et al., 2001)] or divergent evolution 

[reviewed in (Tailor et al., 2003)]. In both these reviews, the authors use ad 

hoc examples to support their hypothesis. For instance, Overbaugh and 

coauthors emphasise that multiple γ-retroviruses use the phosphate transport 

proteins, Pit1 and Pit2, as receptor. Whereas, Tailor and coauthors use other 

examples to support their hypothesis, such as that the only avian retrovirus 

known to use a receptor with multiple transmembrane domains, avian 

reticuloendotheliosis viruses, is closely related to mammalian endogenous 

retrovirus (Barbacid et al., 1979). However, although Tailor and coauthors 

strongly support the divergent evolution, they admit a limited degree of 

convergent evolution in receptor choice.  

There are many similarities between γ-retrovirus receptors, and they will be 

discussed in the following sections.  

1.5.1 Receptor cloning 

The first retroviral receptor that was molecularly cloned was the receptor for 

ecotropic MLV (E-MLV) (Battini et al., 1995; Battini et al., 1992), the cationic 

amino acid transporter-1 (CAT-1) (Albritton et al., 1989). The strategy used 

consisted of gene transfer of a cDNA library derived from the E-MLV 

permissive murine cell line NIH 3T3 into the resistant human cell line EJ, 

employing retroviral vectors which express a drug-resistant gene. EJ clones 

which have acquired susceptibility to E-MLV infection were selected by 

addition to the media of the drug. One year later, the receptor for gibbon ape 

leukaemia virus (GALV), GLVR-1 or Pit-1, was cloned using the same 
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technique (O'Hara et al., 1990). This receptor was subsequently determined 

to also function as a receptor for wooly monkey virus, feline leukaemia virus 

B (FeLV-B) (Takeuchi et al., 1992), MLV10A1 (Miller and Miller, 1994; Wilson 

et al., 1995) and KoEV (Oliveira et al., 2006). Similarly, the receptor for 

amphotropic MLV (A-MLV), Ram-1 or Pit-2, was cloned through screening of 

a rat cDNA library introduced into a hamster cell line (Miller et al., 1994). The 

same protein, called GLVR-2 was cloned independently by another group 

using a different technique. Low-stringency hybridisation with a cDNA 

encoding GLVR-1 was used to isolate related phage clones from human HL-

60 and placental cDNA libraries (van Zeijl et al., 1994). 

Using the expression cloning technique other γ-retrovirus receptors have 

been cloned. The human ASCT-2 receptor or RDR, feline endogenous 

retrovirus RD114 and retrovirus D-type receptor, allows the infection of not 

only RD114 but also baboon endogenous retrovirus (BaEV) human 

endogenous retrovirus W (HERV-W), reticuloendotheliosis virus (REV) as 

well as β-retrovirus simian retrovirus type D (Rasko et al., 1999; Tailor et al., 

1999b). In the same year, the human receptor, XPR-1, that facilitates the 

entry for both xenotropic and polytropic MLV (X- and P-MLV-) has been 

cloned by three different groups independently (Battini et al., 1999; Tailor et 

al., 1999a; Yang et al., 1999). XPR-1 is also required for infection by 

xenotropic MLV-related virus (XMRV) (Dong et al., 2007). The receptor for 

feline leukaemia virus C (FeLV-C), FeLVCR-1, has been cloned from human 

and domestic cat cDNA libraries (Quigley et al., 2000; Tailor et al., 1999c). 

The existence of a homologue to FeLVCR-1, FeLVCR-2, was predicted by 

search of the NCBI database. FeLVCR-2 was then cloned and tested for 

supporting FeLV-C infection but was found to be non-functional (Brown et al., 

2006). Recently, a FeLV-A and FeLV-C hybrid Env, named FY981, was 

isolated from a primary FeLV isolate, and when pseudotyped can use 

FeLVCR-2 for infection (Shalev et al., 2009). Porcine endogenous retrovirus 

subgroup A (PERV-A) receptors (Ericsson et al., 2003) and the FeLV-A 

receptor, the feline orthologue of the human thiamine transport protein 1 

(THTR1), have been identified by using the same gene transfer approach 

(Mendoza et al., 2006). 
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1.5.2 Receptor topology 

All γ-retrovirus receptors thus far discovered are multiple transmembrane 

(TM) proteins. The number of TM domains in these receptor is between 4, as 

predicted for the Mus caroli endogenous retrovirus (McERV) receptor and 14 

of CAT-1 (Table 1.1). The morphology has been initially predicted using 

bioinformatics tools such as hydro prediction software, and has been 

experimentally proven. Pit-2 was the first γ-retrovirus receptor whose 

topology was studied in detail (Salaun et al., 2001). A model of Pit-2 topology 

was obtained from different TM prediction programmes, such as 

PredictProtein (www.embl-heidelberg.de/predictrpotein/predict protein.htmL), 

DAS server (www.biomedi.su.se/-server/DAS) and TMHMM 

(www.cbs.dtu.dk/services/TMHMM). Extracellular N-glycosylation sites were 

assessed by creation of mutants and treatment of PNGase F, an enzyme 

which removes N-linked oligosaccharide chains. The orientation of the 

receptor extremities were studied by tagging either the C- or N-terminus.  

A similar study was conducted on Pit-1. Its topology was initially predicted by 

Kyte-Doolittle hydropathy plots to be 10 TM domains with both N-terminus 

and C-terminus being intracellular (Johann et al., 1992). Ten years later, 

Farrell and coworkers demonstrated, using HA-tagged Pit-1 in 

immunofluorescence, flow cytometry and glycosylation studies, that Pit-1 

topology was different with both N-terminus and C-terminus being 

extracellular (Farrell et al., 2002).  

Similar experiments have also been done to determine the topology of the 

FeLV-C receptor (Brown et al., 2006). N-glycosylation experiments (Marin et 

al 2003) have confirmed the ASCT2 topology previously predicted (Tailor et 

al., 1999b). So far there are no publications concerning the topology of PAR-

1 and PAR-2 [apart from a study described in this thesis, and also in 

(Mattiuzzo et al., 2007)], and THTR1, the receptors for PERV-A and FeLV-A, 

respectively.  
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1.5.3 Physiological function 

All gammaretrovirus receptors, whose physiological function has been 

described, are transporters (Table 1.1). A few years after their cloning and 

sequencing, the physiological function has been hypothesised through the 

comparison with homologous proteins in simpler organisms and then 

experimentally proven. The E-MLV receptor, CAT-1 is a cationic amino acid 

transporter which shares homology with the Saccharomyces cerevisiae 

arginine and histidine permeases (Kim et al., 1991). GLVR-1 and GLVR-2 

share about 25% amino acid identity with a phosphate permease from 

Neurospora crassa and are sodium-dependent phosphate transporters in 

human cells (Kavanaugh et al., 1994; Olah et al., 1994). For other proteins 

the description of their cellular function preceded the characterisation of their 

role as viral receptors. Following the isolation of the cDNA for ASCT-2, which 

conferred RD114 susceptibility to otherwise non permissive murine cells, its 

amino acid sequence revealed 97% homology to a neutral amino acid 

transporter (hATB0) (Kekuda et al., 1996). Indeed ASCT-2 was showed to 

function as a transporter of neutral amino acids (Rasko et al., 1999; Tailor et 

al., 1999b). When the feline receptor for FeLV-A was cloned, its sequence 

showed approximately 93% homology with the human high-affinity thiamine 

transporter-1 (huTHTR-1) (Mendoza et al., 2006). Similarly, the function of 

FeLVCR-1 was predicted to be a transporter by homology with members of 

the major facilitator superfamily of transporters (Quigley et al., 2000; Tailor et 

al 1999c). From the observation that cats infected with FeLV-C developed 

anaemia, the physiological function of FeLVCR-1 was hypothesised and then 

confirmed, as a heme exporter (Quigley et al., 2004). The function of other γ-

retrovirus receptors, such as XPR-1, is still unknown, or not confirmed, such 

as for PAR-1 and PAR-2 (section 3.1). 

For several receptors it has been showed that the transporter function is not 

necessary to support virus entry. This has been experimentally proven with 

mutated or truncated receptors: murine CAT-1 (Wang et al., 1994), human 

Pit-2 (Bottger and Pedersen, 2002; Salaun et al., 2004) and ASCT-2 (Tailor 

et al., 2001). Contrastingly, retroviral infection reduces the transport activity 



55 

 

of the receptor (Olah et al., 1994; Wang et al., 1992; Wilson et al., 1995). The 

mechanisms proposed are Env protein-mediated confinement of the newly 

synthesised receptors to the cytosolic compartment (Heard and Danos, 1991; 

Jobbagy et al., 2000), or Env interaction with cellular proteins necessary for 

trafficking the receptor to the cell surface (Fujisawa and Masuda, 2007). The 

cell can compensate by upregulating transporters with the same solute 

specificity. Indeed, down-modulation of Pit-1 causes up-regulation of Pit-2 

and vice versa (Chien et al., 1997; Kavanaugh et al., 1994). However, for 

other receptors, the disruption of the transport function caused by retroviral 

infection has been implicated in the development of disease, such as the 

anaemia in cats infected with FeLV-A or FeLV-C (Qiugley et al., 2004; 

Mendoza et al., 2006). 

 

name retrovirus function topology References 

CAT-1 
SLC7A1 

E-MLV Cationic 
amino acids 
transporter 

 

(Albritton et al., 1989; 
Kim et al., 1991; 
Wang et., al 1992) 

Pit-1 
GLVR-1 
SLC20A1 

FeLV-B 
GALV 
Wooly 
monkey virus 
10A1MLV 
KoRV* 

Phosphate 
tranporter 

 

(O’Hara et al., 1990; 
Takeuchi et al., 
1992; Miller and 
Miller, 1994; Wilson 
et al., 1995; Olah et 
al., 1994; Farrell et 
al., 2002; Oliviera et 
al., 2006) 

Pit-2 
GLVR-2 
Ram-1 
SLC20A2 

A-MLV 
10A1MLV 

Phosphate 
tranporter 

 

(Miller and Miller, 
1994; Van Zeijl et al., 
1994) 

XPR-1 X-MLV 
P-MLV 
XMRV 

unknown 

 

(Battini et al., 1999; 
Tailor et al., 1999a; 
Yang et al., 1999; 
Dong et al., 2007) 

ASCT-1 
SLC1A4 

BaEV 
HERV-W 

Neutral 
amino acid 
transporter 

 

(Lavillette et al., 
2002a; Marin et al., 
2000) 

ASCT-2 
RDR 
SLC1A5 

RD114 
BaEV 
REV 
HERV-W 

Neutral 
amino acid 
transporter 

 

(Rasko et al, 1999; 
Tailor et al., 1999b; 
Blond et al., 2000; 
Marin et al., 2003)  

FeLVCR-1 FeLV-C 
FeLV FY981 

Heme 
exporter 

 

(Tailor et al 1999c; 
Quigley et al., 2000; 
Quigley et al., 2004; 
Shalev et al., 2009) 
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FeLVCR-2 FeLV FY981 Not 
confirmed 

 

(Brown et al., 2006; 
Shalev et al., 2009) 

PAR-1 PERV-A unknown 

 

(Ericsson et al., 
2003; Mattiuzzo et 
al., 2007) 

PAR-2 PERV-A unknown 

 

(Ericsson et al., 
2003; Mattiuzzo et 
al., 2007) 

THTR-1 FeLV-A 
FeLV FY981 

Thiamine 
transport 

 

(Mendoza et al., 
2006; Shalev et al., 
2009) 

MFSD2 HERV-FRD Carbohydrate 
transport 

(predicted) 
 

(Esnault et al., 2008) 

PLLP 
(TM4SF11) 

McERV Voltage-
dependent 
K+channel 

(Miller et al., 2008) 

Table 1.1 Summary of the known γ-retrovirus receptors 
Highlighted in bold are endogenous viruses (second column). *KoRV has been described 
both as an endogenous and exogenous virus. 

 

1.5.4 Identification of sites critical for infection and binding 

Receptors are the main determinants for viral tropism. Polymorphic variation 

of the receptors confers resistance to retroviral infection between species or 

homologous proteins within the same species. The difference can be as little 

as a single amino acid. 

A few years after CAT-1 was cloned, a highly related (87%) gene was 

identified from a human T-cell line (Yoshimoto et al., 1991). Although the 

human homologue is very similar in sequence and in structure to murine 

CAT-1, it does not support E-MLV infection. To identify amino acid residues 

critical for E-MLV infection, human-mouse chimeric receptor molecules were 

created and tested for their ability to support infection and binding to Env 

gp70 (Albritton et al., 1993; Yoshimoto et al., 1993). The substitution of one 

amino acid residue, tyrosine at position 235 in the third extracellular domain 

in murine CAT-1 with the corresponding human amino acid proline, 

abrogated E-MLV infection. Conversely, the substitution of amino acids 242 
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and 244 in the human receptor with the corresponding amino acids in the 

murine receptor enabled human CAT-1 not only to support infection but also 

to bind Env gp70.  

The identification of the binding site in Pit-1 and Pit-2 was more difficult until 

the correct topology was described (Farrell et al., 2002; Salaun et al., 2001). 

The first candidate proposed to be the binding site for both receptors was a 

nine amino acid sequence called region A at position 550-558 within Pit-1 

(Johann et al., 1992; Johann et al., 1993). Region A was predicted by Kyte-

Doolittle Hydropathy plots to be in an extracellular domain and mutation in 

this region abolished GALV and FeLV-B infection (Johann et al., 1992). 

Later, other regions of the human Pit-1 and Pit-2 have also been found to be 

important for infection (Chaudry and Eiden, 1997; Leverett et al., 1998; 

Lundorf et al., 1998; Tailor and Kabat, 1997), but only in 2002 was the role of 

region A clarified. Cells expressing a mutant Pit-1 protein in region A does 

not work as a receptor, but retains its ability to bind the virus. Region A 

influences infection by controlling the orientation of the Pit-1 molecule in the 

membrane and therefore the accessibility or steric hindrance of the viral 

binding site. Furthermore, through the construction of chimeric receptors 

between Pit-1 and Pit-2, a second region (region B) required for both viral 

entry and binding was identified (Farrell et al., 2002). The A-MLV binding site 

in Pit-2 has been identified in the first extracellular domain of the protein by 

studying chimeric Pit-1/Pit-2 receptors in a infection and binding assay 

(Feldman et al., 2004). 

The same approach has been conducted for ASCT-2 protein, in which a 

sequence of 21 amino acids in the second extracellular loop plays a critical 

role in determining receptor function for RD114, BaEV, HERV-W and SRV 

(Marin et al., 2003a).  

Attempts to identify the binding site in the FeLV-C receptor could not use 

chimeric human/mouse FLVCR-1 proteins because the murine homologue 

overexpressed in murine cell line works as a receptor, although the mouse 

cells are not permissive to FeLV-C infection (Tailor et al., 2000). The isolation 

of FLVCR-2, a closely related protein (52% amino acid identity) which did not 

support FeLV-C infection, enabled the generation of specific mutants to study 
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the binding site (Brown et al., 2006). A single mutation (N463E) in the sixth 

extracellular domain in FLVCR-2 rendered this protein functional as FeLV-C 

receptor. The opposite mutation or the substitution of the whole ECL6 in 

FLVR-1 does not abrogate the infectivity. This allowed the identification of 

another region critical for FeLV-C infection, ECL1. However, neither ECL1 

nor ECL6 were recognised as a FeLV-C binding site; their role could be 

influencing membrane topology with a mechanism similar to Pit-1 region A 

(Brown et al., 2006). 

Critical determinants in XPR-1 for supporting X-MLV and P-MLV infection 

were discovered using chimeric constructs between human XPR-1 and the 

non-functional hamster homologue protein (Van Hoeven and Miller, 2005). 

Two entry determinants are present on XPR-1. One is located in the 

predicted ECL4 and can be used by both X-MLV and P-MLV. The second 

determinant is present in the ECL3 and can be only utilised by X-MLV. The 

identification of two different sites in the same receptor explained the 

phenomenon of non-reciprocal interference patterns where the infection by 

one virus (X-MLV) blocks infection by a second virus (P-MLV), but the 

infection of the second virus only slightly inhibits infection by the first virus 

(Chesebro and Wehrly, 1985; Miller and Wolgamot, 1997).  

1.5.5 Receptor-mediated barriers to infection 

Functional receptors do not always meditate a successful infection. Chinese 

hamster ovary (CHO) cells are resistant to infection by GALV and A-MLV 

(Miller and Miller, 1992, 1993). Overexpression of Pit-1 and Pit-2 cDNA 

isolated from CHO cells conferred susceptibility to GALV and A-MLV 

infection to CHO cells, indicating that these cells code for a functional 

receptor (Tailor et al., 2000). Similarly, delivery of FeLVCR-1 cloned from 

Mus dunni tail fibroblast (MDTF) cells renders these, otherwise resistant, 

cells susceptible to FeLV-C infection (Tailor et al., 2000). The hypothesis 

proposed was that functional receptors were expressed on the surface of 

these cells at a sub-threshold level and could be additionally inhibited by 

some masking factors (Tailor et al., 2000). One of these additional 

mechanisms to reduce, or prevent, retroviral infection is the secretion of 
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inhibitors in the media (Miller and Miller, 1992, 1993). Secreted endogenous 

retrovirus ENV have been identified as such an inhibitor (Ikeda et al., 1985; 

Jung et al., 2002; McDougall et al., 1994; Wu et al., 2005). Another important 

masking factor has been associated to the N-glycosylation of the receptors. 

Cells resistant to retroviral infection became permissive following treatment 

with tunicamycin, a drug which prevent N-glycosylation of proteins (Lavillette 

et al., 2002a; Marin et al., 2000; Yan et al., 2008). A possible explanation 

was that the masking of the receptor, due to the endogenous retrovirus Env 

products described above, was prevented by misfolding of the viral 

glycoproteins in the presence of tunicamycin (Lavillette et al., 2002). In fact, 

processing and folding of Env glycoproteins requires N-linked glycosylation 

(Li et al., 1997; Polonoff et al., 1982). Although this is plausible, it does not 

completely explain the departure from resistance through abrogation of N-

glycosylation. In the absence of tunicamycin, mutation of the N-glycosylation 

site in the non-functional receptors hamster ASCT-1 and hamster, rat or Mus 

dunni CAT-1 enables these proteins to support RD114 interference group 

viruses and E-MLV infection, respectively (Eiden et al., 1994; Kubo et al., 

2004; Marin et al., 2003a; Yoshii et al., 2008). The proposed mechanism of 

restriction was that a heavy glycosylation of the receptors close to the binding 

site would prevent the interaction with the virus (Eiden et al., 1994; Kubo et 

al., 2004). Treatment of cells with liposomes composed of phosphatidyl 

serine, a phospholipid component of the cell membrane, mimicked the 

tunicamycin effect without removing N-linked glycosylic chains (Coil and 

Miller, 2005). RD114 and MoMLV infect murine NIH3T3 and hamster CHO 

cells upon treatment with phosphatidyl serine, indicating that fully 

glycosylated receptors can still support virus entry (Coil and Miller, 2005).  
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1.6 Host restriction factors 

In the continuous fight between the host and retrovirus, eukaryotic cells have 

evolved several proteins (called restriction factors) that interfere with the life 

cycle of retroviruses. Contrastingly, viruses evolved to evade these 

mechanisms, either by mutating the targets of the restriction, or developing 

countermeasures that antagonise the host cell factors.  

Mammalian host factors are the best described. They inhibit different steps in 

retroviral replication [reviewed in (Wolf and Goff, 2008), and summarised in 

figure 1.5]. These molecules could be employed to generate safer animal 

donors for xenotransplantation. Indeed, human and porcine APOBEC3 

(section 1.6.3) have been described to be active against PERV, and the 

creation of APOBEC3-expressing transgenic pigs has been proposed to 

reduce the risk of PERV transmission (Dorrschuck et al., 2008; Jonsson et 

al., 2007). 

 

Figure 1.5 Summary of restriction factors acting in different steps of the retroviral life 
cycle. 

Retroviral life cycle is depicted in this model. The restriction factors described in the text 
are highlighted in red. A, APOBEC, which is incorporated in the virions in the producing 
cells, but acts at the reverse transcription stage after infection of a new target cells. 
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1.6.1 Early post entry restriction factors: Fv1 and TRIM protein family 

A genetic locus, Fv1 (Friend virus susceptibility gene 1), in mice was 

identified as responsible for resistance to infection by murine leukaemia virus 

(Odaka and Matsukura, 1969; Pincus et al., 1971) and the corresponding 

gene was cloned (Best et al., 1996). Fv1 interacts with the incoming virus 

core (Bassin et al., 1978) and prevents the nuclear translocation of the 

preintegration complex (Jolicoeur and Baltimore, 1976). This interaction, and 

the consequent restriction, can be abrogated by saturation of the Fv1 protein 

with replication defective viruses (Bassin et al., 1978). The viral determinant 

of the interaction with Fv1 lies at amino acid 110 of the CA protein (Kozak 

and Chakraborti, 1996).  

An Fv1-like restriction factor, able to block infection by some strains of MLV 

and called Ref1 (restriction factor 1), was described in other mammalian 

cells, including human (Towers et al., 2000). Although Ref1 blocks virus 

replication before reverse transcription, a step earlier than Fv1, the viral 

determinant for susceptibility to this restriction is the same as Fv1, amino 

acid 110 in the CA protein, and the restriction was saturable in a similar 

manner to Fv1 (Besnier et al., 2003; Towers et al., 2002). A Ref1-like 

restriction phenotype was also described that acted against lentivirus 

infection, and was called Lv1 (Besnier et al., 2002; Cowan et al., 2002; 

Hofmann et al., 1999; Munk et al., 2002).  

Rhesus macaque cells are permissive to infection by SIV but not HIV-1. The 

gene responsible for this tropism, Trim5α, was identified by a rhesus 

macaque cDNA library screen (Stremlau et al., 2004). Later, it was shown 

that the Ref1 and Lv1 restriction activity was encompassed by the product of 

the Trim5α gene (Hatziioannou et al., 2004; Keckesova et al., 2004; Perron 

et al., 2004; Yap et al., 2004).  

The tripartite motif (TRIM) protein family contains members characterised by 

three domains [(Reddy et al., 1992) and reviewed in (Nisole et al., 2005)]. At 

the N-terminus of almost all TRIM proteins is the RING (really interesting new 

gene) module, a cystein-rich zinc finger binding domain, involved in protein-

protein interactions (Borden, 1998). Many RING domains have intrinsic 
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ubiquitin E3 ligase activity (Freemont, 2000). The second domain is B-box, 

zinc finger motif. Some TRIM proteins have two B-boxes, B1 and B2. Other 

than facilitating homo-interactions of the coiled-coil region (Cao et al., 1997), 

their function is still unknown. The third region is a coiled-coil domain, which 

mediates the homo- or hetero-oligomerisation of the TRIM proteins 

(Reymond et al., 2001).  

TRIM5α is the largest isoform of TRIM5 proteins, and contains at the C-

terminus a B30.2 or SPRY domain; this module interacts with retrovirus CA 

protein and determines the virus specificity of TRIM5α (Nakayama et al., 

2005; Perez-Caballero et al., 2005; Sebastian and Luban, 2005; Stremlau et 

al., 2005; Yap et al., 2005). In New World Owl monkey TRIM5, the B30.2 

domain has been replaced by cyclophilin A (CypA), creating the fusion 

protein TRIMCyp (Sayah et al., 2004). CypA is a peptidyl prolyl isomerase 

and interacts specifically with HIV-1 CA protein (Luban et al., 1993). Owl 

monkey TrimCyp emerged by the retrotransposition of the CypA cDNA 

between TRIM5 exon 7 and 8 (Sayah et al., 2004). Interestingly, a second 

and independent appearance of TrimCyp, was found in Old World monkeys 

(Liao et al., 2007; Newman et al., 2008; Wilson et al., 2008). However, in Old 

World monkey TRIMCyp, the transposition of CypA took place downstream 

of TRIM5 exon 8, and the restriction phenotype is different. In fact, it is able 

to block HIV-2 and feline immunodeficiency virus infection, but not HIV-1 

(Wilson et al., 2008). 

The mechanism of restriction mediated by Fv1 and TRIM5α is not completely 

understood. For TRIM5α there are several hypotheses. One possibility is that 

the interaction between the restriction factor and the virus CA protein 

promotes its rapid, premature disassembly (Stremlau et al., 2006). This is, 

however, more an observation of effect than an assessment of mechanism. 

Ubiquitine E3 ligase activity of the RING domain produces polyubiquitination 

of TRIM5α and rapid turnover via the proteasome (Diaz-Griffero et al., 2006). 

It can be speculated that together with the proteasomal degradation of 

TRIM5α, the TRIM5α-CA complex will also be subjected to the turnover, 

causing block to the infection. However, drug-induced inhibition of 

proteasome does not rescue the infectivity (Anderson et al., 2006; Wu et al., 
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2006). A proteasomal-independent mechanism of CA degradation has been 

also proposed (Chatterji et al., 2006). 

Some other members of the TRIM family also display antiviral activity.  

TRIM28 (also known as Kap-1 or Tif1-β) has been identified as a factor 

required for the primer binding site-mediated restriction of MLV in embryonic 

carcinoma (EC) and embryonic stem (ES) cells (Wolf and Goff, 2007). Upon 

infection of EC and ES cells by MLV, the virus can integrate in the genome, 

but no viral mRNA can be detected (Barklis et al., 1986; Teich et al., 1977). 

Following differentiation, EC cells become susceptible to a new infection, but 

the integrated virus cannot be reactivated (Niwa et al., 1983). This 

mechanism of retrovirus silencing involved two different steps: an initially cell 

type-specific restriction (Akgun et al., 1991; Flanagan et al., 1989; Tsukiyama 

et al., 1989), and a subsequent proviral DNA methylation (Niwa et al., 1983). 

The target for the cell-specific transcriptional silencing is contained within the 

18 nucleotides encoding the primer binding site complementary to the proline 

tRNA, ((PBS)Pro) in the MLV genome (Barklis et al., 1986; Feuer et al., 1989; 

Loh et al., 1988). A single G to A point mutation, known as a B2 mutation, in 

the PBS, or the substitution with a sequence complementary to a different 

cellular tRNA, could relieve the repression (Barklis et al., 1986; Grez et al., 

1990; Petersen et al., 1991). TRIM28 has been described as a transcriptional 

co-repressor, acting in association with the Krϋppel associated box (KRAB)-

containing zinc finger DNA-binding proteins (Friedman et al., 1996; Le 

Douarin et al., 1996; Schultz et al., 2002; Schultz et al., 2001). Through an 

electrophoresis mobility shift assay, TRIM28 was identified as a component 

of the PBS-mediated restriction complex in EC and ES cells (Wolf and Goff, 

2007). However, although TRIM28 is necessary for the restriction, it is not 

sufficient. The zinc finger protein ZFP809, a member of the KRAB-containing 

zinc finger protein family, has been showed to be the EC and ES cell-specific 

factor which acts as a bridge between proviral DNA and TRIM28 (Wolf and 

Goff, 2009). 

One of the best characterised, but poorly understood, TRIM proteins is 

TRIM19 or PML (promyelocytic leukemia protein). It has been associated 
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with many cellular functions: cell proliferation (Wang et al., 1998), 

senescence (Pearson et al., 2000), transcriptional and translational 

regulation (Kentsis et al., 2001), apoptosis (Hofmann and Will, 2003) and 

signal transduction (Lin et al., 2004). PML has been implicated, but without 

conclusive results, in the resistance to infection by human herpes simplex 

virus (Maul et al., 1993), vesicular stomatitis virus, influenza A virus (Chelbi-

Alix et al., 1998), HIV-1 (Turelli et al., 2001), human foamy viruses (Regad et 

al., 2001) and Lassa virus and lymphocytic choriomeningitis virus (Asper et 

al., 2004).  

TRIM22, or Staf-50, is able to downregulate HIV-1 long terminal repeat-

directed transcription (Tissot and Mechti, 1995). TRIM45 has an indirect 

negative effect on viral replication because it inhibits the activities of 

transcription factors AP-1 and Elk-1 (Wang et al., 2004).  

1.6.2 APOBEC proteins 

Apolipoprotein B mRNA-editing catalytic (APOBEC) proteins constitute a 

family of polynucleotide cytidine deaminases which catalyse the deamination 

of a cytosine (C) into a uracyl (U). APOBEC1 was the first member of this 

family to be described. It causes the production of a truncated APOB protein 

by deamination of C6666 and sequential introduction of a stop codon in the 

APOB mRNA (Teng et al., 1993). 

The role of APOBEC proteins in the restriction of retroviral infection was 

disclosed through the study of the HIV-1 accessory protein, virion infectivity 

factor (Vif). HIV-1 deficient in Vif cannot replicate in primary human T cells 

and macrophages, as well as a limited number of cell lines (Fisher et al., 

1987; Gabuzda et al., 1992; Sakai et al., 1993). Using a complementary 

cDNA subtraction screening for transcripts specifically expressed in non-

permissive cell, a 1.5 kilobases gene, CEM15, was isolated. Its expression in 

permissive cells recreates the non-permissive phenotype for Vif-deficient 

HIV-1 (Sheehy et al., 2002). CEM15 was later identified as a member of the 

APOBEC family, APOBEC3G (A3G) (Jarmuz et al., 2002). In the absence of 

Vif, A3G is incorporated into the HIV-1 particles and, during reverse 
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transcription of viral RNA, deaminates C residues to U residues in the first 

strand DNA filament (Harris et al., 2003; Mangeat et al., 2003; Zhang et al., 

2003). In the plus strand sequence these modification will produce a guanine 

to adenine (G-to-A) transition which cause inactivation of the provirus as a 

result of multiple mutation events, known as hypermutation (Yu et al., 2004b). 

Infectivity can be reduced also in absence of DNA editing (Newman et al., 

2005). The mechanism is not completely understood, but it is associated with 

a reduction in reverse transcription (Holmes et al., 2007; Iwatani et al., 2007; 

Mbisa et al., 2007).  

APOBEC-mediated restriction appears to be involved in the inactivation of 

endogenous retrovirus in murine and mouse genomes (Esnault et al., 2005; 

Lee et al., 2008). Porcine endogenous retroviruses and simian foamy virus 

may also be inhibited by human A3G (Delebecque et al., 2006; Dorrschuck et 

al., 2008; Jonsson et al., 2007). Other members of the APOBEC3 family act 

as restriction factors. In particular, APOBEC3B and 3C have a potent antiviral 

activity against simian immunodeficiency virus, but not HIV-1 (Yu et al., 

2004a). APOBEC-induced mutations are not peculiar to retroviruses. 

Hypermutated genome of hepatitis B virus (HBV) has been reported in vivo 

and in cell lines (Noguchi et al., 2005). In vitro experiments showed that not 

only A3G can generate this mutation but also A3C, A3B and A3F (Suspene 

et al., 2005). Moreover, murine APOBEC3 encodes for Recovery from Friend 

Virus gene 3 (Rfv3) (Santiago et al., 2008). Rfv3 was identified as a gene 

responsible for recovery from Friend virus (FV) viremia and for the generation 

of FV-specific neutralizing antibody (Chesebro and Wehrly, 1979; Doig and 

Chesebro, 1979). 

HIV-1 and SIV evolved a protein, Vif, to counteract the action of APOBECs. 

HIV-1 Vif counteracts the action of APOBECs by inducing polyubiquitination 

and proteasomal-mediated degradation (Conticello et al., 2003; Marin et al., 

2003b; Mehle et al., 2004; Sheehy et al., 2003; Yu et al., 2003). The 

interaction between Vif and A3G is species-specific (Bogerd et al., 2004; 

Mangeat et al., 2004; Schrofelbauer et al., 2004; Xu et al., 2004). Foamy 

viruses also produce a protein, Bet, which antagonises A3G. However, Bet, 
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instead of inducing degradation of A3G, prevents its packaging in the 

nascent viral particles (Russell et al., 2005). Other viruses have produced 

different mechanisms to counteract APOBEC-mediated restriction. Human T 

cell leukaemia virus inhibits the incorporation of A3G in the virions through a 

peptide motif in the C-terminus of the nucleocapsid domain which prevents 

the binding of A3G (Derse et al., 2007). Avoiding the packaging into the 

virions is a mechanism of evasion from APOBEC restriction used also by the 

β-retrovirus Mason-Pfizer monkey virus and murine leukaemia viruses 

(Doehle et al., 2006; Doehle et al., 2005). In addition, MLV escapes 

restriction by an alternative mechanism involving MLV protease (Abudu et al., 

2006). 

1.6.3 ZAP, a zinc finger antiviral protein 

The zinc finger antiviral protein (ZAP) was isolated by screening a rat cDNA 

library for new restriction factors able to block retrovirus infection (Gao et al., 

2002). The step of the viral life cycle targeted by ZAP was the production of 

new viral RNA (Gao et al., 2002). ZAP binds directly to both the viral RNA 

through four CCCH-type zinc finger motifs (Guo et al., 2004) and to 

components of the exosome (Guo et al., 2007). Following these 

observations, the restriction mechanism proposed is that ZAP mediates 

interaction between exosome and the newly transcribed viral RNA, resulting 

in the degradation of the latter (Guo et al., 2007). Zap-mediated restriction 

was also shown for alphavirus (Bick et al., 2003) and filovirus (Muller et al., 

2007). The viral determinants for the interaction with ZAP have been mapped 

for MLV (in the 3’LTR) and for the alphavirus Sindbis virus (Guo et al., 2004). 

Interestingly, the two regions have no significant homology (Guo et al., 2004). 

In humans, in addition to the homologue to rat ZAP, namely ZAP(S), a longer 

isoform, ZAP(L) have been described. It has been showed that ZAP(L) was 

more effective than ZAP(S) as an antiviral against MLV and alphaviruses 

such as semiliki forest virus (Kerns et al., 2008). 

1.6.4 Tetherin  

HIV-1 viral protein U (Vpu) (Cohen et al., 1988; Strebel et al., 1988) 

enhances the production of virions from cells (Klimkait et al., 1990). Vpu is 
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necessary for the release of HIV-1 in certain cell types (Geraghty et al., 1994; 

Sakai et al., 1993), and in interferon-α-treated cells (Neil et al., 2007). 

Moreover, expression of Vpu in retroviral packaging cell lines could 

significantly enhance viral particle production (Kobinger et al., 1997). The 

presence of a dominant acting human cell restriction factor, counteracted by 

HIV-1 Vpu, was proposed following heterokaryon fusion experiments 

(Varthakavi et al., 2003). In the absence of Vpu, HIV-1 mature virions, 

produced in some human cell lines such as HeLa, accumulate on the cell 

surface and can be released by protease treatment (Neil et al., 2006). A 

specific restriction factor was identified by comparative microarray analysis of 

cells which did or did not need Vpu in order to successfully produce viral 

particles, together with their response to interferon α treatment (Neil et al., 

2008). Among less than ten candidates, CD317, also known as BST2 or 

HM1.24 antigen (Goto et al., 1994), was chosen for its localisation at the cell 

membrane and differential expression level in various cell lines. Expression 

of CD317, renamed tetherin by Neil et al., 2008, specifically inhibited the 

release of single cycle, VSV-G pseudotyped HIV-1 particles in the absence of 

HIV-1 Vpu by retaining them on the surface of the cell (Neil et al., 2008; Van 

Damme et al., 2008). Moreover, tetherin co-localised with HIV-1 Gag in the 

cell surface and in the intracellular compartments. However, when Vpu was 

co-transfected, this interaction was disrupted and tetherin co-localised with 

Vpu instead (Neil et al 2008; Van Damme et al 2008). Tetherin is involved in 

the growth and development of B cells (Ishikawa et al., 1995) and interacts 

indirectly with the actin cytoskeleton, playing a critical role in its organisation 

in polarised epithelial cells (Rollason et al., 2009). However, its biochemical 

function is undetermined. Tetherin topology is considered unusual: an amino-

terminal cytosolic tail, a single transmembrane domain, an extracellular 

coiled-coil region and a predicted carboxyl-terminal glycosyl 

phosphatidylinositol (GPI) anchor (Kupzig et al., 2003), and it is expressed as 

a homodimer (Ohtomo et al., 1999). The encounter between HIV-1 and 

tetherin could potentially take place in the lipid rafts in the cell membrane. In 

fact, tetherin is associated with the cholesterol rich rafts (Kupzing et al., 

2003), which have been implicated in the budding of HIV-1 (Aloia et al., 1988; 
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Brugger et al., 2006; Nguyen and Hildreth, 2000; Ono and Freed, 2001). A 

model of the proposed tetherin-mediated restriction is depicted in Figure 1.6. 

Tetherin will be discussed in more details in section 5.1. 

 

Figure 1.6 Model for tetherin-mediated retrovirus retention.  
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1.7 Aims 

In this thesis the receptors for PERV subgroup A have been characterised. 

The aim was to identify important regions in the receptor responsible for the 

virus infection. This could help the development of strategies to prevent 

PERV transmission to human cells.  

In addition, the new knowledge acquired about the PERV-A receptor was 

employed to evaluate non-human primates as animal models for the study of 

the risk of PERV infection in the context of xenotransplantation.  

As a second aim, a newly described restriction factor, tetherin, was evaluated 

as a potential molecule for use in the development of transgenic pigs with a 

reduced risk of PERV transmission, and therefore representing a safer 

animal donor. 
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Chapter 2 

2 Materials and Methods 
 

2.1 Materials 

All buffers and solutions made in house are listed with their formulae in Table 

2.1 (section 2.4). 

 

2.2 Molecular biology methods 

Plasmid and primer sequences are listed and described in Table 2.2 and 

Table 2.3, respectively (section 2.4). 

2.2.1 Preparation and transformation of chemically competent 
bacterial cells 

10 µL of Escherichia Coli DH5α bacteria (Invitrogen) were grown in 5 mL of 

LB overnight in a shaking incubator at 37°C. The day after, the suspension 

was diluted 1:100 in LB containing 15mM MgCl2 and incubated at 37°C 

shaking for 2-3 hours until OD600 reached 0.4-0.6. The bacteria were spun 

down for 15 minutes at 3,500 g in a refrigerated centrifuge (CR4 22, Jouan). 

The pellet was resuspended in 125 mL of ice-cold solution A (Table 2.1). 

After centrifugation for 15 minutes at 3500 g at 4°C, the bacteria were 

resuspended in 12.5 mL of solution A, supplemented with 15% (v/v) glycerol. 

They were aliquoted and stored at -80°C.  

50 µL of competent bacteria were incubated with 100-300 ng of plasmid DNA 

or with the whole ligation reaction on ice for 30 minutes. After a heat shock of 

45 seconds at 42°C, 200-500 µL of LB were added. The bacteria were grown 

for 1 hour at 37°C, shaking, and spread in a LB agar plate supplemented with 

the appropriate antibiotic (Table 2.2.2, note). 
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2.2.2 Plasmid DNA mini preparations 

A single bacterial colony was inoculated into 5 mL of LB broth containing the 

appropriate antibiotic at the concentration indicated (Table 2.2.2, note). The 

culture was grown overnight in a shaking incubator (200-250 rpm). Bacteria 

were pelleted, and plasmids extracted using the Qiaprep Spin miniprep kit 

(Qiagen) or PureLink quick miniprep kit (Invitrogen). Bacterial pellets were 

resuspended in 250 µL of resuspension buffer and cells were then lysed by 

incubation for 5 minutes at room temperature with 250 µL of lysis buffer. The 

mixture was neutralised by addition of 350 µL of neutralisation buffer, and the 

resulting precipitate was pelletted by centrifugation. The supernatant 

containing plasmid DNA was applied to an anion-exchange resin column 

provided with the kit. Purified plasmid DNA was eluted in EB buffer and the 

concentration determined by spectophotometric analysis using a Nanodrop 

ND-100 (Nanodrop Technologies). Plasmid DNA preparations were 

considered of good quality when the absorbance ratio at wavelength 260nm/ 

280nm was between 1.8 and 2. 

2.2.3 Enzymatic reactions 

Restriction enzymes used were obtained from Promega. Reactions were 

performed according to the manufacturer’s instructions in a final volume of 20 

µL for single, or 50 µL for a double, enzymatic digestion, in the appropriate 

buffer, at the temperature required by the enzyme for 1.5-2 hours. 

DNA ends were ligated in a 10-20 μl reaction containing 1xT4 buffer, 50 ng of 

the backbone construct, a ratio of at least 1:3 backbone:insert, DNA and 1μl 

of T4 DNA ligase [3U/μL] (Promega). Samples incubated either 1 hour at 

room temperature or 16-24 hours at 4oC.  

2.2.4 Agarose gel electrophoresis 

DNA samples were separated by agarose gel electrophoresis made by 

dissolving 1-3 g of agarose (Sigma) in 100 mL of TAE. 0.5 μg/mL ethidium 

bromide (Sigma) was added to visualize DNA on a UV transilluminator. DNA 

samples were mixed with 6x loading buffer. 500 ng of 100bp or 1Kb 
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GeneRuler DNA ladder (Fermentas) were included on each gel to allow size 

determination of DNA fragments. 

2.2.5 DNA purification from agarose gel 

DNA bands of the expected size were cut from the agarose gels and purified 

using Qiaquick Gel Extraction kit (Qiagen) according to the manufacturer’s 

instructions.  

2.2.6 Genomic DNA extraction 

Cells were harvested and washed twice in PBS. Genomic DNA was 

extracted using the DNeasy Blood and Tissue kit (Qiagen) following the 

manufacturer’s instructions. DNA was eluted in 100 µL of AE buffer and the 

concentration determined by spectophotometric analysis using a Nanodrop 

ND-100. 

2.2.7 RNA extraction 

2-10x106 cells were harvested, washed twice in PBS, and resuspended in 

600 µL of a denaturing guanidine-thiocyanate-containing buffer (buffer RTL) 

supplemented with 1% (v/v) of β-mercaptoethanol. Cells were vortexed for at 

least one minute and frozen at -80ºC. The lysate was thawed and 70% (v/v) 

ethanol was added. Total RNA was extracted using an RNeasy mini kit 

(Qiagen) following the manufacturer’s instructions, and eluted in 50 µL of 

RNase-free water. RNA concentration was determined by spectophotometric 

analysis using a Nanodrop ND-100. 

2.2.8 Polymerase chain reaction (PCR) 

PCR were performed using KOD High Fidelity DNA polymerase (Novagen) or 

HotStartTaq DNA polymerase (Qiagen) in a Peltier thermal cycler (Dyad) 

equipped with a heated lid following the recipes, and the amplification 

parameters, reported below. PCR were conducted in a final volume of 50 µL. 
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*dNTPs deoxynucleotide triphosphates 

Amplification Parameters: 

KOD HiFi DNA Polymerase 

 

HotStartTaq DNA Polymerase 

 

Component KOD polymerase [2.5 U/µL]
(µL) 

HotStartTaq [5 U/ µL] 
(µL) 

10x PCR buffer 5 5 
dNTPs 2mM (Novagen)* 5  
dNTPs 10mM (Qiagen)*  1 
Forward primer 10 µM 2 2.5 
Reverse primer 10 µM 2 2.5 
MgCl2 25 mM 2 (in the PCR buffer at final 

concentration of 1.5 mM) 
DNA polymerase 1 0.5 
Distilled water   

Step Time (seconds) Temperature (ºC) 
Initial denaturation 120 98 

Three step cycling 
Denaturation 15 98 
Primer annealing 2 As reported in Table 2.3 
Extension 20 72 

Number of cycles: 25 
Final extension 420 72 

Step Time  Temperature (ºC) 
Activation  15 minutes 94 

Three step cycling 
Denaturation 30 seconds 94 
Primer annealing 30 seconds As reported in Table 2.3 
Extension 0.5-2 minutes 72 

Number of cycles: 35-40 
Final extension 7 minutes 72 
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2.2.9 Reverse transcriptase (RT) reaction 

5 µg of total RNA were treated with 2 U of DNase I (New England Biolabs) in 

a final volume of 50 µL for 30 minutes at 37ºC. 5mM of EDTA was added to 

protect the RNA from being degraded during the 10 minutes of enzyme 

inactivation at 75ºC. 20 µL of the reaction were incubated with 1 µg of 

random primers (Promega) for 5 minutes at 70ºC, and then put on ice. A 

mixture containing 200 U of Moloney MLV reverse transcriptase (Promega), 

1x MoMLV reaction buffer, 25 U of recombinant RNasin ribonuclease 

inhibitor (Promega), 0.5 mM dNTPs (Qiagen) was added to the RNA-primer 

mix and incubated for 1 hour at 37ºC. Reverse transcriptase was inactivated 

by 10 minutes incubation at 65ºC. 

For quantitative RT-PCR, cDNA was generated from 1 µg of total RNA using 

the QuantiTect Reverse Transcription kit (Qiagen) in a final volume of 20 µL. 

A genomic ‘DNA wipe-out’ step is included in the kit, and a mixture of random 

primers and oligo d(T) were used to prime the RT reaction.  

2.2.10 Quantitative PCR 

Probe-based quantitative PCR was performed using the QuantiTect probe 

PCR kit (Qiagen) while SYBR Green-based quantitative PCR was conducted 

using the Quantitect SYBR Green PCR kit (Qiagen). One eighth of the RT 

reaction or 200 ng of genomic DNA were used per reaction. Each reaction 

was performed in a final volume of 25 µL in a 96-well plate using the ABI 

PRISM 7000 or Eppendorf RealPlex 4 real time thermal cycler. Quantitative 

PCR mix recipes and cycling conditions are reported below. Absolute 

quantification of gene copies were calculated using plasmids DNA standards 

as indicated in Table 2.2.1*. Plasmid used to generate standards for 18S 

rRNA (pCRBluntIITOPO-18S rRNA) was obtained by RT-PCR of RNA from 

293T cells using primers CF3;CR3 (Table 2.3.2). The PCR product was 

cloned into pCR BluntII-TOPO (invitrogen) following the manufacturer’s 

instructions. A 10-fold dilution series of plasmid DNA, range between 101 and 

105 copies, were used to generate the standard curves. For the 18S rRNA 

gene in the quantitative RT-PCR, the standard curve range was between 106 

and 1010 copies. For SYBR Green-based quantitative PCR, a melting curve 
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was run at the end of the reaction to confirm the absence of contamination, 

mispriming or primer-dimer artifacts. 

 

Probe-based quantitative PCR conditions 

SYBR Green quantitative conditions 

 

Component Probe (µL) SYBR Green (µL) 
2x PCR mastermix 12.5 12.5 
Forward primer 10 µM 1 0.75 
Reverse primer 10 µM 1 0.75 
Probe 5 µM 1  
Distilled water   

Step Time  Temperature (ºC) 
Activation 10 minutes 95 

Two step cycling 
Denaturation 15 seconds 94 
Primer annealing, extension 
and fluorescence acquisition 

60 seconds 60 

Number of cycles: 40 

Step Time  Temperature (ºC) 
Activation 10 minutes 95 

Three step cycling 
Denaturation 15 seconds 94 
Primer annealing 30 seconds 55 
Extension and 
fluorescence acquisition 

30 seconds 72 

Number of cycles: 40 
Melting curve 



76 

 

2.2.11 PCR-based mutagenesis 

Plasmid mutagenesis was performed by designing two complementary 

primers containing the mutations of interest. PCR was performed using KOD 

HiFi DNA Polymerase (Novagen) on 100 ng of plasmid DNA. 

2.2.12  Construction of HA-tagged chimeric receptors  

HuPAR-2 was tagged at the N-terminus with an influenza virus HA-tag by 

PCR of the construct pcDNAhuPAR-2 (Ericsson et al., 2003) using KOD HiFi 

polymerase and the primers GF1 and GR1. GF1 primer introduced the Kozak 

sequence at the ATG of the receptor downstream of the EcoRI restriction site 

and the HA-tag in the N-terminus downstream of the ATG start codon. C-

terminal HA-tagged huPAR-2 was obtained by PCR using the primers GF2 

and GR2. Primer GR2 contained an HA-tag downstream of a HindIII 

restriction site. Using EcoRI and NotI restriction sites, the HA-tagged 

receptors were introduced again into pcDNA3. The C-terminal HA-tagged 

plasmid, pcDNA3/huPAR-2HA, contains two HindIII restriction sites, one in 

pcDNA3 and the other introduced, in frame, upstream of the HA-tag by the 

reverse primer. HA-tagged huPAR-1 and muPAR genes were obtained by 

PCR of constructs pcDNA3/huPAR-1 and pcDNA3/muPAR (Ericsson et al., 

2003) with the primer pairs GF2;GR3 (huPAR-1), and GF4;GR4 (muPAR). 

Using the HindIII restriction site present in the reverse primers, huPAR-1 and 

muPAR were cloned into pcDNA3/huPAR-2HA upstream of the HA-tag.  

An NheI restriction site was introduced into huPAR-2 at the site 

corresponding to that in muPAR [Genbank: AK008081, nucleotide 805] by 

PCR-based muatgenesis using primer pairs GF2;MR1 and MF1;GR5, then 

GF2;GR5, where primers MF1 and MR1 contain the nucleotide change. 

Primer GR5 includes a HindIII restriction site which allows the cloning of the 

mutant receptor into pcDNA3/huPAR-2HA. Chimeric receptors H2M a and f 

were obtained by mix-and-match cloning between huPAR-2 and muPAR 

using the restriction sites EcoRI and NheI. The other huPAR-2-derived 

chimeric receptors were produced in a similar way using mutagenesis 

primers MF2;MR2 (H2M e) and MF3;MR3 (H2M d) in association with the 

primers GF2;GR5. Similarly, muPAR-derived chimeric receptors were 
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produced using primers MF4;MR4 (H2M b) and MF5;MR5 (H2M c) in 

combination with primers GF4;GR4. The mutant huPAR-1 carrying a proline 

or a serine at position 109 (H1M g or huPAR-1S109) was generated by PCR-

mutagenesis using the primers MF3;MR3 or MF9;MR9 in combination with 

the primers GF2;GR3.  

All the HA-tagged receptors were subcloned into the retroviral vector pCFCR 

(Table 2.2.2) using EcoRI and NotI restriction sites. 

The N178A mutation in huPAR-2 was introduced by PCR-mutagenesis using 

the primers MF6;MR6 in association with the primers GF2;GR5 and the 

mutant huPAR-2 was cloned into a partially digested pcDNA3/huPAR2HA 

using EcoRI and HindIII restriction sites. 

All the PCRs described above were performed using KOD HiFi polymerase in 

accordance with manufacturer’s instructions. Chimeric receptors were 

verified by sequencing based on a modification of the Sanger method and 

analysed using the CEQ 8000 DNA Sequencer (Beckman Coulter). 

2.2.13 Generation of soluble myc-tagged PERV-A14/220 SU Env 

The soluble surface unit of PERV-A 14/220 Envelope (PERV Env) was 

cloned into pCAGGS (Niwa et al., 1991) using the restriction sites BglII and 

NheI and a c-myc tag was introduced at the N-terminus of PERV Env using 

primers EF1 and ER1 (mycPERV Env). The sequence of human tissue 

plasminogen activator leader has been introduced in frame upstream to the 

c-myc tag by PCR of the construct PEE14 (Jeffs et al., 1996) using primers 

EF2 and ER2, bearing the enzymatic restriction sites KpnI and BglII, 

respectively. 

2.2.14 Receptors cloning 

Total RNA extracted from rat or NHP cells was reverse transcribed using 

Promega MoMLV RT (section 2.2.9). 5 µl of the reaction was used in an RT-

PCR using HotStartTaq polymerase and primers as indicated (Table 2.3.2). 

The PCR product was cloned into pcDNA3 using EcoRI and NotI restriction 

sites present in the forward and reverse primers, respectively. HA-tagged C-
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terminal RatPAR was obtained by PCR using KOD HiFi polymerase and the 

primers CF1;CR2 which contain the HindIII restriction site, and introduced 

into partially digested pcDNA/HuPAR-2HA. This product was then subcloned 

into pCFCR. 

A ClaI restriction site was introduced into pcDNA3/huPAR-2HA upstream, in 

frame, with the HA-tag by PCR-mutagenesis using primers MF7;MR7 in 

association with primers GF2;MR8 (pcDNA3/huPAR-2ClaIHA). NHP PERV-A 

receptors were cloned by RT-PCR of total RNA extracted from NHP cells. 

PCR products were introduced into pcDNA3/huPAR-2ClaIHA using 

restriction sites EcoRI and ClaI present in the primer sequences. The mutant 

rhesus macaque PAR-1 containing a leucine at position 109 (rhPAR-1L109) 

was created by PCR-mutagenesis using the primers MF10;MR10 in 

combination with the primers CF5;CR5. 

All the HA-tagged receptors were also subcloned into the retroviral vector 

pCFCR using EcoRI and NotI restriction sites 

2.2.15 Cloning of porcine tetherin 

Total RNA was extracted from pig cells, and cDNA was produced using the 

QuantiTect Reverse transcription kit (section 2.2.9). 5 µL of the reaction were 

employed in a RT-PCR using HotStartTaq polymerase and primers 

CF7;CR7. The PCR product was cloned into a pGEM-Teasy vector in 

accordance with the manufacturer’s instruction. Porcine tetherin was 

subcloned into pcDNA3 by enzymatic restriction using EcoRI site. Lentiviral 

vectors carrying tetherin genes were produced by subcloning them from 

pCR-huTHN (Neil et al., 2008), pcDNA-PK15THN and pcDNA-IOWATHN 

into an HIV-based vector pSIN-Dual (Escors et al., 2008), downstream of the 

SFFV promoter via BamHI and NotI restriction sites. 
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2.3 Cell culture methods 

Cell lines used and growth conditions are listed in Table 2.4 (section 2.4). 

2.3.1 Cell transfection 

The day prior to transfection, cells were seeded in a 10 cm dish (d10) or a 6-

well plate (p6). The number of cells plated varied for each cell line to achieve 

a density of 80-90% of confluence. 18 µL (d10) or 6 µL (p6) of Fugene-6 

transfection reagent (Roche) was diluted in 200 µL (d10) or 100 µL (p6) of 

Optimem serum-free medium (Gibco). 3 µg (d10) or 1 µg (p6) of plasmid was 

added to the Fugene-Optimem mixture, incubated at room temperature for 15 

minutes and then added to the cells.  

2.3.2 Pseudotyped virus production 

Pseudotyped viruses were produced by transient three-plasmid transfection 

(Besnier et al., 2002; Soneoka et al., 1995). A mix containing the following 

quantities of plasmids was prepared in a total volume of 15 µL of TE buffer: 

1.5 µg of retroviral vector, 1 µg of packaging vector plasmid and 1 µg of 

envelope expression plasmid (Table 2.2.2). 18 µL of Fugene-6 was diluted in 

200 µL of Optimem and the plasmid mix added. After an incubation of 15 

minutes at room temperature, the mixture was added to 80% confluent 293T 

cells, seeded in a 10 cm dish the day before. The following day the medium 

of transfected cells was replaced with 8 mL of fresh DMEM supplemented 

with 10% (v/v) FBS. Virus-containing supernatant were harvested at 48 and 

72 hours post-transfection, filtered through 0.45 µm filters and either used to 

infect target cells or stored at -80oC. 

Pseudotyped viruses described in chapter five were produced from 1x106 

293T cells seeded in a 6-well plate, using 6 µL of Fugene-6 diluted in 100 µL 

of Optimem. Plasmid mix was composed of 600 ng of retroviral vector, 400 

ng of packaging vector plasmid, 400 ng of envelope-expressing plasmid and 

200 ng of plasmid encoding the tetherin gene, with or without HIV-1 vpu 

gene. 
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2.3.3 EGFP(PERV) production 

293T cells were seeded in a 10cm dish and, the day after, transfected with 3 

µg of pCRPERV-A14/220 encoding full length replication-competent PERV-

A14/220. 48 hours later, 1x105 cells were seeded in a 6-well plate and, the 

day after infected with a VSV-G-pseudotyped MLV vector carrying the EGFP 

gene, prepared as described (section 2.3.2). Cells were kept in culture. In the 

supernatant, a mixed population of viruses was expected: PERV-A14/220 

wild type and PERV-A14/220 particles carrying the MLV-based retroviral 

vector encoding the EGFP gene, EGFP(PERV). After two months in culture, 

titre of EGFP(PERV) (section 2.3.4) was stabilised at 2±0.8x105 EGFP 

transducing units per mL, titered on 293T cells. The PERV-A14/220 [wild 

type and EGFP(PERV)] titre detected using an anti-PERV CA antibody and 

colony counting (section 2.3.5) was 3±0.1x106 293T cells infectious unit per 

mL. The multiplicity of infection (MOI) was calculated as: 

 

2.3.4 EGFP-pseudotyped virus titration 

5x104 cells were plated in a 12-well plate one day prior to transduction. Serial 

dilutions of virus-containing supernatant were prepared in DMEM 

supplemented with 8 µg/mL polybrene (hexadimethrine bromide, Sigma). 500 

µL of each dilution was added to the target cells. After 48 hours, cells were 

trypsinised, fixed in 500 µL of 1% (w/v) paraformaldheyde in PBS and 

assessed for EGFP expression by flow cytometry. The titre in EGFP 

transducing unit per mL (Etu/mL) was calculated as average of the data 

points where less than 30% of the cells were EGFP positive, according to the 

following formula:  

 

   

    Titre x Volume of infection (ml) 
   MOI= 
     Number of cells 

   EGFP-positive cells x number of seeded cells x dilution factor 
         Titre (Etu/mL)= 

     Volume of infection 
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2.3.5 PERV titration 

Titration of PERV infectious particles in the supernatant of producing cells 

was performed using a colony formation assay (Bartosch et al., 2002). 3x104 

293T cells were seeded in a 48-well plate the day prior to infection. Serial 

dilutions of the virus-containing supernatant were prepared in DMEM 

supplemented with 4 µg/mL polybrene. 200 µL of each dilution was added to 

the cells. After 72 hours, cells were fixed with an ice-cold 1:1 mixture of 

methanol and acetone. Cells were washed twice in PBS and blocked for 10 

minutes at room temperature with 10% (v/v) FBS in PBS, followed by a hour 

incubation with anti-PERV capsid antibody (Table 2.5) diluted in washing 

buffer (2% (v/v) FBS in PBS). Following two washes, a hour incubation with 

secondary goat anti-rabbit IgG conjugated to alkaline phosphatase (AP) 

(Jackson Immunoresearch) diluted 1:250 in washing buffer was performed. 

After two washes in washing buffer, and two more in PBS, AP was detected 

using NBT/BCIP (Nitro blue tetrazolium chloride/ toluidine salt of 5-Bromo-4-

chloro-3-indolyl phosphate) ready-to-use tablets (Roche) according to the 

manufacturer’s instructions. AP-positive colonies were counted using the 

visible light microscope, and the titre determined as infectious units per mL 

(i.u./mL): 

 
 

2.3.6 Cell transduction 

Retroviral and lentiviral vectors, prepared as described in section 2.3.2, were 

used to deliver PERV-A receptors and tetherin genes. Target cells were 

seeded the day prior to transduction in a 12-well plate (p12) or a 6-well plate 

(p6) at the density of 5x104 (p12) or 1x105 (p6) cells per well. 0.5 mL (p12) or 

1 mL (p6) of the 0.45 µm-filtered pseudotyped virus containing supernatant 

was added to the cells in the presence of 8 µg/mL polybrene. After 48 to 72 

hours, cells were employed in the different assays. 

 

   Number of AP-positive colonies x dilution factor 
Titre (i.u./mL) =  
     Volume of infection 
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2.3.7 Flow cytometry staining 

Cells were harvested using 5mM EDTA in PBS, and washed twice in PBS. 

5x105 cells per stain were blocked for a hour on ice with 10% (v/v) FBS in 

PBS. Cells were incubated with primary antibody diluted in washing buffer 

(2% (v/v) FBS in PBS) for an hour on ice. After two washes, cells were 

incubated with 1:100 dilution of phycoerythrin (PE)-conjugated secondary 

anti-mouse IgG antibody (Jackson Immunoresearch) in washing buffer for 45 

minutes on ice. The samples were washed twice in washing buffer, 

resuspended in 500 µL of 1% (w/v) paraformaldehyde in PBS and analysed 

by flow cytometry using the Becton Dickinson FACSCalibur and Cell Quest 

software. 

When staining both intracellular and extracellular proteins, cells were fixed 

prior to the immunostaining with 4% (w/v) paraformaldehyde in PBS for 20 

minutes at room temperature, and permeabilised with 0.2% (w/v) saponin 

(Fluka) in PBS for 10 minutes at room temperature. Saponin, at the 

concentration of 0.2% (w/v), was added to all the buffers during the 

immunostaining. 

2.3.8 PERV envelope binding assay 

Cells were detached using 5mM EDTA in PBS, washed twice, and 5x105 

cells for each sample were resuspended in 0.5 mL of soluble PERV Env-

containing supernatant. Two different soluble PERV Env proteins were used.  

In chapter three, c-myc tagged PERV-A14/220 SU Env was produced by 

transfection of 293T cells with mycPERV Env plasmid (2.2.13) as described 

(2.3.1). Cells were incubated with soluble mycPERV Env for an hour at 37oC, 

and washed twice in washing buffer (2% (v/v) FBS in PBS). Samples were 

incubated with anti-human myc antibody diluted in washing buffer for an hour 

on ice. Following two washes, cells were resuspended in washing buffer 

containing 1:200 dilution of PE-conjugated secondary anti-mouse IgG 

antibody. After 45 minutes incubation on ice, cells were washed, fixed in 1% 

(w/v) paraformaldehyde in PBS, and analysed by flow cytometry. 

In chapter four, soluble PERV-A360 and PERV-C360 Env were used. The 

first N-terminal 360 amino acids of PERV-A NIH and PERV-C were 
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introduced, in frame, upstream of amino acids 96-323 of the rabbit 

immunoglobulin γ-heavy chain gene (rIgG) in the plasmid pSK100 

(Gemeniano et al., 2006). Soluble proteins were produced by transfection of 

293T cells. One day post-transfection the medium was replaced with 8 mL of 

DMEM supplemented with 10% (v/v) FBS and 1x proteinase inhibitor 

cocktail, Complete mini (Roche). The concentration of PERV Env-rIgG fusion 

proteins was determined by an enzyme-linked immunosorbent assay (ELISA) 

(section 2.3.9). 5x105 cells were incubated for a hour on ice with 0.5 mL of 

transfected 293T cell supernatant containing 200 ng/mL of PERV-A360 or 

PERV-C360 Env proteins. Cells were washed twice and incubated for 45 

minutes on ice in washing buffer containing a 1:50 dilution of fluorescein 

isothiocyanate (FITC)-conjugated anti-rabbit IgG (Jackson Immunoresearch). 

Following two washes, cells were fixed in 1% (w/v) paraformaldehyde in PBS 

and analysed by flow cytometry. 

2.3.9 Enzyme-linked immunosorbent assay (ELISA) 

Maxisorp 96-well plate (Nunclon) was coated overnight at 4oC with 500 ng of 

monoclonal anti-rabbit IgG (γ-chain specific) clone RG-96 (Sigma) per well 

diluted in 100 µL of coating buffer (pH 9.6). One day later, wells were washed 

three times with PBS and blocked with 4% (w/v) bovine serum albumin (BSA) 

in PBS for 30 minutes at room temperature. Two-fold serial dilutions of the 

PERV Env containing supernatant were added to each well and incubated for 

an hour at room temperature. Wells were washed three times with 0.1% (v/v) 

Tween-20 in PBS before adding horseradish peroxidase (HRP)-conjugated 

polyclonal anti-rabbit IgG (Dako) diluted 1:1000 in 2% (w/v) BSA in PBS. 

After a hour incubation at room temperature wells were washed 3 times with 

0.1% (v/v) Tween-20 in PBS and once in PBS before adding 100 µL of 

SureBlue TMB (tetramethylbenzidine) substrate (Kirkegaard & Perry 

Laboratories) per well. The reaction was allowed to proceed for 15 minutes 

and then stopped with 100 µL of 1M HCl. The optical density of each well 

was read at wavelength 450nm. The amount of IgG was calculated from a 

standard curve obtained by two fold serial dilution of rabbit IgG (Dako), range 

250-7.8 ng/mL. Samples were run in duplicate. 
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2.3.10  Immunofluorescence microscopy 

The day post transfection (section 2.3.1), 293T cells expressing HA-tagged 

huPAR-2 were split in three and plated on cover slides and incubated for 

further a 48 hours. Cells were fixed by incubation with 4% (w/v) 

paraformaldehyde in PBS for 20 minutes at room temperature. The 

permeabilised samples were obtained by incubation with 0.1% (w/v) saponin 

in PBS for 10 minutes at room temperature. For the permeabilized samples, 

0.1% (w/v) saponin was added to all the buffers. Slides were washed in PBS 

and placed on a 30 µL drop of washing buffer (2% (w/v) BSA in PBS) 

containing a dilution of the primary antibody (Table 2.5) and incubated for a 

hour at 37oC in a humidified chamber. Cells were then washed three times 

and placed on a 30 µL drop of washing buffer containing the secondary 

antibody FITC-conjugated anti-mouse IgG (diluted 1:100) for 45 minutes at 

37oC in a humidified chamber. After three washes, the cover slides were 

mounted in Vecta Shield mounting medium containing propidium iodide 

(Vector Laboratories). Images were acquired using DM IRE2 confocal 

microscope (Leica).  

Immunostaining of PERV particles attached on the cell surface (section 

4.2.9) was performed as described above. However, permeabilisation was 

conducted by incubating the cells with 0.2% (v/v) Triton X-100 (Sigma) in 

PBS for 10 minutes at room temperature. The secondary antibody used was 

FITC-conjugated anti-rabbit IgG, diluted 1:100 in washing buffer. 

2.3.11  Western blotting 

Cells from a confluent well of a 6-well plate were lysed in 100 µL of radio 

immunoprecipitation assay (RIPA) buffer supplemented with 1x proteinase 

inhibitor cocktail, Complete mini, for 30 minutes on ice. Cell debris were 

removed by centrifugation at 12000g at 4ºC for 8 minutes. 1 mL of the viral 

particles, containing supernatant of virus-producing cells seeded in the 6-well 

plate was pelleted by centrifugation for 4 hours at 16000g at 4ºC, and 

resuspended in 50 µL of 2x Laemmli buffer. After the addition of Laemmli 
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buffer to 24 µL of the cell lysate, these samples and 24 µL of the 

concentrated viral particles were boiled for 5 minutes and separated by 10% 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

(Table 2.1). For the glycosylation study (section 3.2.3), 24 µL of cell lysate 

was incubated with 3 µL of G7 buffer and 3 µL of PNGase F [500U/µL] (New 

England Biolabs) for 2 hours at 37oC. 10 µL of 4x Laemmli buffer was added 

and the samples boiled for 5 minutes. 

Proteins were transferred onto a methanol-activated polyvinylidene fluoride 

(PVDF) membrane (Amersham Biosciences) using a semidry blotting system 

(Amersham Biosciences). The membrane was blocked in 5% (w/v) non-fat 

dried milk (Oxoid) in PBS and then probed for an hour at room temperature 

with a primary antibody diluted in 2% (w/v) milk in PBS (Table 2.5), followed 

by three washes with 0.1% (v/v) Tween-20 in PBS. The membrane was then 

incubated with an HRP-conjugated secondary antibody diluted in 2% (w/v) 

milk/PBS (1:3000 for anti-rabbit IgG or 1:10000 for anti-mouse IgG) for 1hr at 

room temperature. Following three washes with 0.1% (v/v) Tween-20 in PBS, 

and one in PBS alone, signals were detected by incubation with ECL 

chemiluminescence reagent (Amersham Biosciences) and exposure to X-ray 

film (Hyperfilm, Amersham Biosciences). 
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2.4 Appendix 
 

Table 2.1 Buffers and solutions 
 

1X PBS (phosphate-buffered saline) 1.9 mM NaH2PO4, 8.1 mM Na2HPO4, 
154 mM NaCl, pH 7.4 

1x TAE (tris-acetate-EDTA) 40 mM Tris (pH 7.8), 20 mM sodium 
acetate, 1 mM EDTA 

TE (tris-EDTA) 10 mM Tris-Cl, 1mM EDTA, pH 8.0 

EB (Qiagen) 10 mM Tris-Cl, pH 8.5 

AE (Qiagen) 10 mM Tris-Cl, 0.5mM EDTA, pH 9.0 

6x loading buffer 30% (v/v) glycerol, 0.25%;(w/v) 
bromophenol blue, 0.25% (w/v) 
xylene cyanol FF 

Solution A  10 mM MnCl2, 50 mM CaCl2, 10 mM 
2-(N-morpholino)ethanesulfonic acid 
(MES) pH6.3 

ELISA coating buffer 0.16% (w/v) Na2CO3, 0.29% (w/v) 
NaHCO3, 0.02% (w/v) NaN3, pH 9.6 

Luria-Bertani (LB) broth 1% (w/v) bacto-tryptone (BD), 0.5% 
Bacto yeast extract (BD), 1% NaCl 
(Sigma), pH 7.0 

LB agar 1% (w/v) bacto-tryptone, 0.5% Bacto 
yeast extract, 1% NaCl, 1.5% (w/v) 
bacto-agar (BD), pH 7.0 
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Western blotting solutions 

RIPA buffer 50 mM Tris-HCl (pH 7.5), 150 mM 
NaCl, 1% (v/v) Igepal ca-630, 0.5% 
(w/v) sodium deoxycholic acid, 10% 
(w/v) SDS, 1% (v/v) Triton X-100 

4x Laemmli buffer 200 mM Tris-HCl (pH 6.8), 40% (v/v) 
glycerol, 8% (w/v) SDS, 0.2% (w/v) 
bromophenol blue, 10% (v/v) β-
mercaptoethanol 

1x running buffer 0.3% (w/v) Trizma (Sigma), 1.9% 
(w/v) glycine (Sigma), 0.1% (w/v) 
SDS 

1x semi-dry transfer buffer 0.3% (w/v) Trizma, 1.4% (w/v) 
glycine, 0.1% (w/v) SDS, 20% (v/v) 
methanol 

 

10% SDS-polyacrylamide gel recipe 

components Resolving (mL) Stacking (mL) 

40% acrylamide mix (Bio-Rad) 12.5 1.25 

1.5 M Tris (pH 8.8) 12.5  

1 M Tris (pH 6.8)  1.25 

10% SDS 0.5 0.1 

10% ammonium persulfate 0.5 0.1 

TEMED (tetramethylethylenediamine) 0.02 0.01 

Distilled water 24 7.25 

Final volume 50 10 
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Table 2.2 List of the plasmids 

Table 2.2.1 Transfection plasmids 

Name Gene Reference 

*pcDNAhuPAR-1 huPAR-1 Ericsson et al., 2003 

*pcDNAhuPAR-2 huPAR-2 Ericsson et al., 2003 

pcDNAmuPAR muPAR Ericsson et al., 2003 

N-HA pcDNAhuPAR-2  N-terminal HA tagged 
huPAR-2 

Mattiuzzo et al., 2007; 
section 2.2.12 

C-HA pcDNAhuPAR-2 C-terminal HA tagged 
huPAR-2 

Mattiuzzo et al., 2007; 
section 2.2.12 

pcDNAhuPAR2N178A C-terminal HA tagged 
huPAR-2 carrying mutation 
N178A 

Mattiuzzo et al., 2007; 
section 2.2.12 

*pcDNAratPAR ratPAR Mattiuzzo et al., 2007 

*pCRIIBlunt18S rRNA nt 101-1932 human rRNA 
NCBI acc no. M10098.1 

Mattiuzzo et al., 2007; 
section 2.2.10 

pCAGGSmycPERV 
Env 

N-terminal myc-tagged 
PERV-A14/220 SU Env 

Mattiuzzo et al., 2007; 
section 2.2.13 

pSKPERV-A360Env  a.a. 1-360 PERV-A NIH Env Gemeniano et al., 
2006 

pSKPERV-C360 Env a.a. 1-360 PERV-C Env Gemeniano et al., 
2006 

pCR-huTHN Human tetherin Neil et al., 2008 

pcDNAPK15THN Pig tetherin from PK15 cells Section 2.2.15 

*pcDNAIOWATHN Pig tetherin from ST-IOWA 
cells 

Section 2.2.15 

pcDNAVpu HIV-1 NL4.3 Vpu Neil et al., 2006 

All plasmids carried an ampicillin-resistance gene with the exception of 
pCRIIBlunt18S rRNA, which encodes kanamycin resistance gene (Table 2.2.2) 

*These plasmids were used as quantitative PCR standards 
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Table 2.2.2 Pseudotyped virus production 

Name drug 
resistance 

Gene Reference 

pCNCG Ampicillin NeoR ;EGFP (Soneoka et al., 1995) 

pCNCR Ampicillin NeoR;RFP A kind gift from Prof. 
Greg Towers 

pCFCR∆EcoRI Ampicillin Fv1;RFP (Ylinen et al., 2005) 

pSIN-DUAL Ampicillin HygroR; (Escors et al., 2008) 

pHRSIN-CSGW Ampicillin EGFP (Demaison et al., 2002) 

pCMV intron Ampicillin MoMLV GagPol (Collins et al., 1995) 

phCMV-PERV-
A14/220  

Ampicillin PERV-A14/220 
GagPol 

(Wood et al., 2009) 

pCMV8.91 Ampicillin HIV-1 GagPol (Zufferey et al., 1997) 

pMDG Ampicillin VSV-G (Naldini et al., 1996) 

FBPERV14/220 
SALF 

Ampicillin PERV-A14/220 
Env 

A kind gift from Dr. 
Birke Bartosch 

phCMV-MLVA Ampicillin MLV-A Env (Sandrin et al., 2002) 

pCRPERV14/220  Kanamicin PERV-A14/220 
genome 

(Bartosch et al., 2004) 

NeoR geneticin ( G-418 sulphate) resistance; HygroR Hygromycin B 
resistance 

Antibiotic concentration in LB broth and agar plate was ampicillin 100 µg/mL; 
kanamycin 50 µg/mL. 
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Table 2.2.3 pCFCR∆EcoRI-derived constructs 

Name Gene 

pCFCR-huPAR2 C-terminal HA-tagged huPAR-2 

pCFCR-huPAR1 C-terminal HA-tagged huPAR-2 

pCFCR-muPAR C-terminal HA-tagged muPAR 

pCFCR-ratPAR C-terminal HA-tagged ratPAR 

pCFCR-rhPAR-1 C-terminal HA-tagged rhPAR-1 

pCFCR-rhPAR-2 C-terminal HA-tagged rhPAR-2 

pCFCR-AGMPAR-1 C-terminal HA-tagged AGMPAR-1 

pCFCR-AGMPAR-2 C-terminal HA-tagged AGMPAR-2 

pCFCR-cynPAR-1 C-terminal HA-tagged cynPAR-1 

pCFCR-cynPAR-2 C-terminal HA-tagged cynPAR-2 

pCFCR-baPAR-1 C-terminal HA-tagged baPAR-1 

pCFCR-baPAR-2 C-terminal HA-tagged baPAR-2 

H2M a huPAR-2 with a.a. 1-161 from muPAR 

H2M b huPAR-2 with a.a.108-110 from muPAR 

H2Mc  huPAR-2 with a.a 109 from muPAR 

H2M d muPAR with a.a. 109 from huPAR-2 

H2M e muPAR with a.a. 108-110 from huPAR-2 

H2M f muPAR with a.a. 1-161 from huPAR-2 

H1M g huPAR-1 with a.a. 109 from muPAR 

huPAR-1S109 huPAR-1 with a.a.109 from rhPAR-1 

rhPAR-1L109 rhPAR-1 with a.a.109 from huPAR-1 

Genes are cloned between EcoRI and NotI restriction sites 
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Table 2.2.4 pSIN-DUAL-derived constructs 

Name gene 

pDUAL-huTHN Human tetherin 

pDUAL-PK15THN PK15 cells-derived tetherin 

pDUAL-IOWATHN ST-IOWA cell-derived tetherin 

Genes are cloned between BamHI and NotI restriction sites 
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Table 2.3 List of the primers 
 
 

 Table 2.3.1 Construction of HA-tagged chimeric receptors 

name Sequence (5’         3’) T (oC) 
annealing 

Comment 

GF1 TTA CAA GAA TTCd GCC ACC ATG 
GiTT TAC CCA TAC GAT GTT CCA GAT 
TAC GCTh GCA GCA CCC ACG CTG 
GGC CGT CTG GTG CTG A 

60 N-HA huPAR-2 
EcoRI and Kozak 
sequence 

GR1 GAT CCT AAG CGG CCG CeTC AGG 
GGC CAC AGG GGT CTA 

60 huPAR-2 NotI 

GF2 GAT TGA TGA ATT CdAC CAC CAT 
GGiC AGC ACC CAC G 

60 huPAR-2 EcoRI 
and Kozak 
sequence 

GR2 GAT CTT GCG GCC GCeT CAA GCG 
TAT TCT GGA ACA TCG TAT GGG 
TAhA AGC TTcG GGG CCA CAG GGG 
TCT ACA CAG TCC TTT CTG CTT TG 

60 C-HA huPAR-2 

GR3 GAA GGT AAG CTTc GAG GCC ACA 
CTG GTC 

60 huPAR-1 HindIII 

GF4 GAT TGA TGA ATT CdAC CAC CAT 
GGiC AGC ACC TCC G 

56 muPAR EcoRI 
and Kozak 
sequence 

GR4 GAA GGT AGG CTTc GAG GCC ACA 
CTG GTC 

56 muPAR HindIII 

GR5 CGT GGC ATC TAG ATT AAG CTTc 
GGG GCC ACA GGG GTC 

60 huPAR-2 HindIII 

MF1 CCT GTG TGC TAG CCC TAG TGC AA 48 huPAR-2 NheI 

MR1 TTG CAC TAG GGC TAG CAC ACA GG 48 huPAR-2 NheI 

MF2 GCC CCA GTG GCA GGG AAG CCG 
TAC TCT GTG GCC TTC CTA 

52 H2Me 
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 cHindIII, dEcoRI, eNotI, hinfluenza virus HA tag, iKozak sequence. 

MR2 TAG GAA GGC CAC AGA GTA CGG 
CTT CCC TGC CAC TGG GGC 

52 H2Me 

MF3 GCC CCA GTG GCA GGG CAG CCC 
CAC TCT GTG GCC TTC CTA 

52 H2Md; H1Mg 

MR3 TAG GAA GGC CAC AGA GTG GGG 
CTG CCC TGC CAC TGG GGC 

52 H2Md; H1Mg 

MF4 GCC CCA GTG GCA GGA CAG CTC 
CAC TCA GTG GCC TTC CTA 

52 H2Mb 

MR4 TAG GAA GGC CAC TGA GTG GAG 
CTG TCC TGC CAC TGG GGC 

52 H2Mb 

MF5 GCC CCA GTG GCA GGA AAG CTC 
TAC TCG GTG GCC TTC CTA 

52 H2Mc 

MR5 TAG GAA GGC CAC CGA GTC GAG 
CTT TCC TGC CAC TGG GGC 

52 H2Mc 

MF6 AGA GGT GCC AGC GGT GGG CGC T 52 huPAR-2 N178A 

MR6 AGC GCC CAC CGC TGG CAC CTC T 52 huPAR-2 N178A 

MF7 GAC CCC TGT GGC CCC ATC GAT 
TAC CCA TAC GAT GTT 

56 huPAR-2ClaIHA 

MR7 AAC ATC GTA TGG GTA ATC GAT 
GGG GCC ACA GGG GTC 

60 huPAR-2ClaIHA 

MR8 GTT CTT TCC GCC TCA GAA GC 56 pcDNA3 

MF9 GCA GGA CAG TCG CAT TCT GTG G 60 huPAR-1S109 

MR9 CCA CAG AAT GCG ACT GTC CTG C 60 huPAR-1S109 

MF10 GCA GGA CAG TTG CAT TCC GTG 58 rhPAR-1S109 

MR10 CAC GGA ATG CAA CTG TCC TGC 58 rhPAR-1S109 
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Table 2.3.2 cloning primers 

name Sequence (5’       3’) T (oC) 
annealing 

Comment 

EF1 AGC TGG AGA TCTa GAG CAG AAA 
CTC ATC TCT GAA GAG GAT CTGg 
CTT GTG ACC AGT CCG AAC TCC CAT 
AAA CCC TTA TCT CTC ACC 

58 PERV Env 

ER1 ATG TTC TTA GCT AGCb CTA TTC ATC 
AAG GAT TGC TTT TTC CGG 

58 PERV Env 

EF2 GCC AGA GGA GGT ACCf GCC ACC 
ATG GAT GCA ATG AAG AGA G 

62 mycPERV Env 

ER2 GGG TAA GAT CTaG GCT CCT CTT 
CTG AAT CGG GCA TGG ATT TCC 
TGG CTG GGC 

62 mycPERV Env 

CF1 GAT TGA TGA ATT CdAC CAC CAT 
GGiC AGC ACC 

56 ratPAR 

CR1 TGA CTG AGC GGC CGCe TCA AGG 
GCC ACA CTG ATC CAC 

56 ratPAR 

CR2 GCA GGT AAG CTTc AGG GCC ACA 
CTG ATC 

56 ratPAR 

CF3 TAC CTG GTT GAT CCT GCC AGT A 60 18S rRNA 

CR3 TTA CGA CTT TTA CTT CCT CTA GAT 
AG 

60 18S rRNA 

CF4 GTC CAG AAT TCdA CCA CCA TGGi 
CAG CAC CCA TG 

60 rhPAR-2 

CR4 CAA GGA TCG ATlG GGG CCA CAG G 60 rhPAR-2 

CF5 GTT CCA GAA TTCd ACC ACC ATG 
GiCA GCA CCC ACA CCC AGC 

60 rhPAR-1 

CR5 CAA GGA TCG ATlG GAG TCA CAG 
GGG TCT GC 

60 rhPAR-1 

CF6 GTT CCA GAA TTCd ACC ACC ATG 60 AGMPAR-1 
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aBglII, bNheI, cHindIII, dEcoRI, eNotI, fKpnI, ghuman c-myc tag, hinfluenza 
virus HA tag, iKozak sequence, lClaI. 

 

Table 2.3.3 Sequencing primes 

Name  Sequence (5’      3’) T (oC) 
annealing 

Comment 

T7promoter CGA CTC ACT ATA GGG AGA 
CCC 

52 pcDNA3 

BGH polyA TTA GGA AAG GAC AGT GGG 
AGT 

52 pcDNA3 

Chicken 
promoter-F 

TTC TCC ATC TCC AGC CTC 
GGG 

48 pCAGGS 

RabbitpolyA-R CCC ATA TGT CCT TCC GAG 
TGA 

48 pCAGGS 

M13-F GTT TTC CCA GTC ACG AC 56 pGEM 

M13-R GGA AAC AGC TAT GAC CAT G 58 pGEM 

 

GiCA GCA CC ACA CCC GGC 

CF7 ACA CCT CAG GTC AGC AG 50 poTHN 

CR7 ATG TCA CCT AGT TTG TAT TCC 50 poTHN 
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Table 2.3.4 Quantitative PCR primers 

 

name Sequence (5’         3’) Comment 

QF1 CTG CCT TCC AGG GTC TTC TG huPAR-1 

QR1 TGA GGA CTC TTC CAC CTC TTC CT huPAR-1 

QF2 TCA GGG CCT GAA CTT CAA CTG huPAR-2 

QR2 GCA ATG GCA AAG CCT CTT CT huPAR-2 

QF3 TCA AGG TGT CTC CCA TCA ATT TC ratPAR 

QR3 CGT CAA CAC CCA AAA GAA TGT G ratPAR 

QF4 TCG AGG CCC TGT AAT TGG AA 18S rRNA 

QR4 CTT GCC CTC CAA TGG ATC CT 18S rRNA 

QF5 AGC CTA CTT GGG ATG ATT GTC AA PERV gag 

QR5 GGC CCC AGG AAC ATT TTT TC PERV gag 

QF6 GTA CCC ACA GGG GGC TTA GGA TC NHP PAR-1 

QR6 CTT GGT GGC TCT TGC AAT GGT G NHP PAR-1 

QF7 GCA GGG CCT GAA CTT CCA TTG NHP PAR-2 

QR8 AAG GCA CCCA TGG GCT GAG AAC NHP PAR-2 

QF9 GTG AGC TGC TTG AGG GAA TC poTHN 

QR9 TTG ACA TTC CTG CTG TGC TC poTHN 

QF10 ACC TGC AAC CAC ACT GTG ATG huTHN 

QR10 CAA GCT CCT CCA CTT TCT TTT GTC huTHN 
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Table 2.3.5 Quantitative PCR probes 

Name  Sequence (5’      3’) Comment 

P1 CCA CCA TCT GTA CCC ACA huPAR-1 

P2 CAG GAG CAG AGG AGG huPAR-2 

P3 CTG AGC GTT TCT CTG ratPAR 

P4 AGT CCA CTT TAA ATC CTT 18S rRNA 

All probes are dual-labelled 5’-FAM/3’-TAMRA. 
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Table 2.4 List of the cell lines 
 

Name ATTC no. Description 

293T1 (DuBridge et al., 
1987) 

Human embryonic kidney. Epithelial. 
Express SV40 large T antigen  

COS-7 CRL-1651 African green monkey kidney. 
Fibroblast. Express SV40 large T 
antigen 

FRhK-4 CRL-1688 Rhesus macaque kidney. Epithelial 

HeLa  CCL-2 Human cervical carcinoma. Epithelial 

HSN (Currie and Gage, 
1973) 

Rat fibrosarcoma. Fibroblast 

HT1080 CCL-121 Human fibrosarcoma.Epithelial 

MDTF (Lander and 
Chattopadhyay, 

1984) 

Mus dunni tail fibroblast 

MPK2 CCL-166 Mini pig kidney. Fibroblast 

NIH3T3 CRL-1658 Mouse NIH/Swiss embryonic fibroblast 

NRK CRL-6509 Rattus norvegicus Kidney. Epithelial 

PK152 CCL-33 Sus scrofa kidney. Epithelial 

QT6 CRL-1708 Quail fibrosarcoma. Epithelial 

RAT2 CRL-1764 Rattus norvegicus fibroblast 

ST-IOWA2 (Quinn et al., 2004) Sus scrofa testis. Fibroblast 

VERO CCL-81 African green monkey kidney. 
Epithelial 

XC CCL-165 Rattus norvergicus epithelial 

ATCC American Type Culture Collection 

Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) 
supplemented with foetal bovine serum (FBS) 10% (v/v) (Biosera) at 37ºC 
with 5% CO2. 
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1 293T cells were grown in DMEM supplemented with Glutamax (Gibco) and 
15% (v/v) FBS at 37ºC with 10% CO2 

2 Pig cell lines were grown in DMEM supplemented with 10% (v/v) FBS and 
0.1 mM non-essential amino acids (Gibco). 

 

Table 2.5 Primary antibodies 
 

Name animal source Dilution Reference 

PERV capsid Rabbit, anti-serum 1:250 (IM) 
1:100 (IF) 
1:1000(WB) 

Bartosch et al 
2004 

HA.11 Mouse, monoclonal 1:100 (IF, FC) 
1:1000 (WB) 

Covance 
 MMS-101R 

human c-myc 
(9E10) 

Mouse, monoclonal 1:100 (FC) Santa Cruz 
biotechnologies 
sc-40 

human actin 
AC-40 

Mouse, monoclonal 1:1000 (WB) Sigma, A 4700 

Human CD71 
3H3077 

Mouse, monoclonal 1:100 (IF,FC) Santa Cruz 
biotechnologies, 
sc-70772 

IM in situ immunostaining; IF immunofluorescence; FC flow cytometry; WB 
western blotting 
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Chapter 3 

3  Host range determinants of PERV-A receptors 
 

3.1 Introduction 

A better understanding of PERV biology is required to predict the possible 

risk associated with infection in xenotransplantation recipients and to develop 

therapeutics to prepare for such an eventuality. Three subgroups of 

replication-competent PERV have been described that differ in their envelope 

sequence, and therefore host range (section 1.4.1). The studies on PERV 

entry have followed two lines of investigation: viral envelope and cellular 

receptor. 

By comparison with the sequence of MLV Env, functional regions of PERV 

Env have been predicted (Le Tissier et al., 1997). These regions are the 

variable region A (VRA) and B (VRB), which in MLV are responsible for the 

receptor usage (Battini et al., 1995; Battini et al., 1992), and the proline rich 

region (PRR) considered important for the correct display of Env proteins on 

the viral surface and during the fusion process (Lavillette et al., 1998; Weimin 

Wu et al., 1998). For PERV Env, the characterisation of the determinants for 

viral infectivity was initially done through the comparison of the high-titre 

human recombinant PERV-A14/220 isolate with a prototype cell line-derived 

PERV-A. The PRR in the C-terminal of the SU derived from PERV-C 

envelope was shown to increase the titre of the recombinant PERV-A/C 

envelope up to 500 fold if in association with an amino acid mutation (V140I) 

between the VRA and VRB (Harrison et al., 2004). PRR was shown to be 

necessary for PERV-A, but not PERV-B, binding to the target cells 

(Gemeniano et al., 2006; Watanabe et al., 2005). Changing 4 amino acids in 

the C-terminal region of pig-tropic PERV-C SU with the correspondents in the 

human tropic PERV-A SU enabled PERV-C Env binding and entry into 

human cells (Argaw et al., 2008). Furthermore, PERV can infect cells lacking 

its receptor. PERV-A can infect non permissive rat and mouse cells in 

presence of soluble GALV receptor binding domain (RBD) (Lavillette and 
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Kabat, 2004). The proposed mechanism was the activation in trans of 

conformational changes in the receptor which lead to the fusion between the 

viral and cellular membrane. This alternative pathway for infection was 

described for MLV (Barnett and Cunningham, 2001; Lavillette et al., 2001) 

and suggested for FeLV-T, which can infect cells only in presence of FeLV-B 

SU or a soluble factor called Felix, a RBD domain of an endogenous 

retrovirus (Anderson et al., 2000; Barnett et al., 2003). 

Only the receptor for PERV subgroup A has been identified. PERV-A 

receptor (PAR) was cloned using a similar approach described previously for 

other gammaretrovirus receptors (section 1.5.1). A human cDNA library 

derived from PERV-A permissive cells was delivered via retroviral 

transduction into resistant rabbit SIRC cells. The retroviral vector contained a 

drug resistance gene which allowed the selection of the transduced cells (i.e. 

those which bear a cDNA encoding for a protein able to support PERV-A 

entry). The cDNA clone selected, named huPAR-1, corresponded to the 

human sequence FLJ11856, coding for a protein characterised by a domain 

of unknown function DUF1011. In the GenBank database a second human 

gene homologous to huPAR-1 (huPAR-2, accession number FLJ10060) and 

a murine homologue (muPAR, accession number AK008081) were identified. 

Rabbit SIRC cells, expressing either huPAR-1 or huPAR-2, were sensitive to 

PERV-A and PERV-A14/220 but not PERV-B or –C. Expression of muPAR 

did not mediate PERV-A infection. The hydrophobicity profiles of huPAR-1 

predicted multiple transmembrane domains (10 or 11) similar to other 

gammaretrovirus receptors (section 1.5.2). The mRNA for huPARs was 

found in a wide variety of human tissues by Northern blot analysis (Ericsson 

et al., 2003). From the NCBI EST profile, huPAR-1 appears to be 

ubiquitously expressed while huPAR-2 ESTs were detected mainly in the 

placenta and few other body sites (Figure 3.1).  
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3.1 EST profile for huPAR-1 and huPAR-2 
Approximate gene expression patterns as inferred from EST counts reported in Unigene 
database (www.ncbi.nlm.niih.gov/unigene) for huPAR-1 (grey, Hs.6459) and huPAR-2 
(black, Hs.632247) on 15th December 2009. 

As a result of its predicted structure, huPAR-1 was identified as a G protein-

coupled receptor (GPR172A or GPCR41). However, all the γ–retrovirus 

receptors identified at present function as transporters (section 1.5.4). 

Characterisation of huPAR physiological function has been controversial. In a 

study aimed at identifying the human homologue of rat γ-hydroxybutyrate 

(GHB) receptor, two cDNA clones from a human frontal cortex cDNA library 

were selected. One of these shared the same amino acid sequence of 

huPAR-1 and the second one was a variant with a frame shift which caused 

an addition of 42 residues in the C-terminus (Andriamampandry et al., 2007). 

This paper presents several problems. Negative controls were not always 

included, the physiological uptake of GHB in different tissues does not 

correspond to the EST profile and mRNA distribution of huPAR-1, and there 

is no data showing the expression in vivo of the alternative huPAR-1 form 

with the longer C-tail.  
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HuPAR-2 has been described as a riboflavin (vitamin B2) transporter (RFT1) 

(Yonezawa et al., 2008). A rat kidney cDNA library was used to select the 

cDNA of a multitransmembrane protein of uncharacterised function. The 

sequence corresponded to the rat protein similar to GPR172B (huPAR-2) 

(GenBank accession number XM_001075182). Riboflavin was identified as 

substrate of rat RFT (rRFT) from the screening against 25 compounds. The 

human homologue (huPAR-2) named hRFT was also shown to be able to 

increase uptake of radiolabelled riboflavin when expressed in HEK-293 and 

Caco-2 cells. A major problem in this paper was the lack of mention of 

huPAR-1, which is as closely related to rRFT as huPAR-2 (section 3.2.5) and 

ubiquitously expressed (Figure 3.1). By knocking down hRFT in HEK-293 

cells, a significant reduction in the riboflavin uptake was observed. However, 

huPAR-2 expression is low in these cells in comparison with huPAR-1 

(section 4.2.4). It would be important to test whether huPAR-1 has the same 

function as huPAR-2 and measure its expression in huPAR-2 knocked down 

cells to better interprete the data. Overall, further investigation is needed to 

assess the physiological function of PARs. 

In this chapter, PERV-A entry in human and rodent cells has been 

investigated. The aim was to identify determinants in PERV-A receptor 

critical for its interaction with the virus. This could provide information for the 

development of strategies to characterise and eventually prevent PERV-A 

infection. 

A major part of this chapter has been published (Mattiuzzo et al., 2007). 

  



104 

 

3.2 Results 

3.2.1 PERV-A resistant murine cells express a non-functional receptor 

Two human PERV-A receptors (huPAR-1 and huPAR-2) and their murine 

homologue (muPAR) have been identified (Ericsson et al., 2003). Alignment 

of the amino acid sequences revealed that huPAR-1 shares 86.1% and 

81.1% identity with huPAR-2 and muPAR, respectively. HuPAR-2 and 

muPAR have 79.6% identical amino acids (Figure 3.2). However, while 

huPAR-1 and huPAR-2 expression on PERV-A resistant rabbit SIRC cells 

successfully mediated virus entry, muPAR did not (Ericsson et al., 2003). 

Furthermore, PERV host range studies showed that murine cells are 

resistant to PERV-A infection (Takeuchi et al., 1998; Wilson et al., 2000). The 

role of muPAR in PERV-A resistance in murine cells has been investigated. 

Human 293T cells, mus dunni MDTF and quail QT6 cells were transduced 

with a MLV-based retroviral vector carrying huPAR-1, huPAR-2 or muPAR 

genes. 5x104 transduced cells were infected with EGFP pseudotype rescued 

by PERV-A14/220 [EGFP(PERV), section 2.3.3]. After 48 hours, cells were 

analysed by flow cytometry and the efficiency of infection determined by the 

percentage of EGFP positive cells. PERV-A14/220 pseudotyped virus did not 

infect murine MDTF or quail QT6 cells. Murine cells bearing a functional 

receptor (huPAR-1 or huPAR-2) were susceptible to EGFP(PERV) infection, 

suggesting that PERV-A block in these cells occurred at entry level (Figure 

3.3). MuPAR was unable to mediate EGFP(PERV) infection in resistant 

MDTF and QT6 cells. This result was in agreement with a previous report 

showing that muPAR does not function as a PERV-A receptor (Ericsson et 

al., 2003). 
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Figure 3.2 PAR amino acid sequences alignment 

Amino acid sequences retrieved from Entrez protein database (www.ncbi.nlm.nih.gov/entrez) 

of huPAR-1 (NP_078807.1), huPAR-2 (NP_060456.3), muPAR (NP_083919) and ratPAR 

(NP_001103140) were aligned using ClustalW software (Larkin et al., 2007). 

   

 
muPAR           MAAPPLGRLVLTHLLVALFGMGSWAAVNGIWVELPVVVKELPEGWSLPSYLSVLVALGNL 60 
ratPAR          MAAPPLGRLVLTHLLVALFGMGSWIAVNGIWVELPVVVKELPEGWSLPSYLSVLVALGNL 60 
huPAR-2         MAAPTLGRLVLTHLLVALFGMGSWAAVNGIWVELPVVVKDLPEGWSLPSYLSVVVALGNL 60 
huPAR-1         MAAPTPARPVLTHLLVALFGMGSWAAVNGIWVELPVVVKELPEGWSLPSYVSVLVALGNL 60 
                ****. .* *************** **************:**********:**:****** 
 
muPAR           GLLLVTLWRRLARGKGEQVPIRVVQGLGIVGTGLLASLWNHVAPVAGKPYSVAFLTLAFV 120 
ratPAR          GLLLVTLWRRLAPGKSERIPIQVVQGLSIVGTGLLAPLWSNMALVAGQLHSVAFLTLAFV 120 
huPAR-2         GLLVVTLWRQLAPGKGEQVPIQVVQVLSVVGTALLAPLWHHVAPVAGQLHSVAFLTLALV 120 
huPAR-1         GLLVVTLWRRLAPGKDEQVPIRVVQVLGMVGTALLASLWHHVAPVAGQLHSVAFLALAFV 120 
                ***:*****:** **.*::**:*** *.:***.***.** ::* ***: :*****:**:* 
 
muPAR           LALACCASNVTFLPFLSHLPPPFLRSFFLGQGLSALLPCVLALGQGVGRLECLHVPANRT 180 
ratPAR          LALSCCASNVTFLPFLSHLPPPFLRSFFLGQGLSALLPCVLALAQGVGRLECLHVPANGT 180 
huPAR-2         LAMACCTSNVTFLPFLSHLPPPFLRSFFLGQGLSALLPCVLALVQGVGRLECPPAPTNGT 180 
huPAR-1         LALACCASNVTFLPFLSHLPPRFLRSFFLGQGLSALLPCVLALVQGVGRLECPPAPINGT 180 
                **::**:************** ********************* ********  .* * * 
 
muPAR           TGPPIEVSPINFPERFSATTFFWVLTALLGTSAAAFQGLLLLLPSPTSEPT--TGTGLRV 238 
ratPAR          TGPPIKVSPINFPERFSAGTFFWVLTALLGTSAAAFQGLLLLLPSPPPEAT--MGTGLRV 238 
huPAR-2         SGP-----PLDFPERFPASTFFWALTALLVTSAAAFRGLLLLLPSLPSVTTGGSGPELQL 235 
huPAR-1         PGP-----PLDFLERFPASTFFWALTALLVASAAAFQGLLLLLPPPPSVPTGELGSGLQV 235 
                .**     *::* ***.* ****.***** :*****:*******. .. .*   *. *:: 
 
muPAR           ETPGTEEEEEEEE-ASPLQEPPGQVAGIVSSPDPKAHQLFSSRSACLLGLLAITNALTNG 297 
ratPAR          ETPGTEEEEEEEE-ASPLQEPPGQVASIVSSPDPKAHRLFSSRSACLLGLLAITNALTNG 297 
huPAR-2         GSPGAEEEEKEEEEALPLQEPPSQAAGTIPGPDPEAHQLFSAHGAFLLGLMAFTSAVTNG 295 
huPAR-1         GAPGAEEEVEESS---PLQEPPSQAAGTTPGPDPKAYQLLSARSACLLGLLAATNALTNG 292 
                 :**:*** :*..   ******.*.*.  ..***:*::*:*::.* ****:* *.*:*** 
 
muPAR           VLPAVQSFSCLPYGRLAYHLAVVLGSCANPLACFLAMAVLCRSLAGLCGLSLLGMLLGSY 357 
ratPAR          VLPAVQSFSCLPYGRLAYHLAVVLGSSANPLACFLAMAVLCRSLAGLYGLCLLGMFFGTY 357 
huPAR-2         VLPSVQSFSCLPYGRLAYHLAVVLGSAANPLACFLAMGVLCRSLAGLVGLSLLGMLFGAY 355 
huPAR-1         VLPAVQSFSCLPYGRLAYHLAVVLGSAANPLACFLAMGVLCRSLAGLGSLSLLGVFCGGY 352 
                ***:**********************.**********.********* .*.***:: * * 
 
muPAR           LMTLAALSPCPPLVGTSAGVVLVVLSWVLCAGTFSYIKVAISSMLHSGGRPALLAAGVAI 417 
ratPAR          LMTLAVLSPCPPLVGTSAGVVLVVLSWVLCAGVFSYIKVATSSMLHSGGRPALLAAGVAI 417 
huPAR-2         LMALAILSPCPPLVGTTAGVVLVVLSWVLCLCVFSYVKVAASSLLHGGGRPALLAAGVAI 415 
huPAR-1         LMALAVLSPCPPLVGTSAGVVLVVLSWVLCLGVFSYVKVAASSLLHGGGRPALLAAGVAI 412 
                **:** **********:*************  .***:*** **:**.************* 
 
muPAR           QVGSLLGAVAMFPPTSIYRVFRSGKDCVDQCGL 450 
ratPAR          QVGSLLGAIAMFPPTSVYPVFRSGEDCVDQCGP 450 
huPAR-2         QVGSLLGAGAMFPPTSIYHVFQSRKDCVDPCGP 448 
huPAR-1         QVGSLLGAVAMFPPTSIYHVFHSRKDCADPCDS 445 
                ******** *******:* **:* :**.* *.  
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Figure 3.3 HuPAR and muPAR-mediated PERV-A infection  

PERV-A permissive human 293T cells and resistant murine MDTF and quail QT6 cells were 

transduced with a VSV-G pseudotyped MLV-based retroviral vector carrying huPAR-1 

(grey), huPAR-2 (white) or muPAR (striped) genes. 5x104 PAR-transduced or parental 

(black) cells were infected with 500 µL of 293T supernatant containing EGFP(PERV) 

particles. Infection efficiency was measured as percentage of EGFP positive cells assessed 

by flow cytometry analysis. Histograms represent the average of two independent 

experiments (± standard error of the mean). Arrows indicate that the infection was under the 

detection limit of 0.1%. 
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3.2.2 Identification of critical amino acids in muPAR for its receptor 
function 

Critical sites in the γ-retrovirus receptor for infection have usually been 

identified by comparing a functional and a non-functional receptor (section 

1.5.2). Following the same approach, human-mouse chimeric receptors were 

generated and expressed in PERV-A resistant QT6 cells. HuPAR-2 was 

chosen over huPAR-1 because it could mediate a higher infection efficiency 

either in QT6 cells (Figure 3.3) or in rabbit SIRC (Ericsson et al., 2003). The 

NheI restriction site was introduced into huPAR-2 at the same position as in 

muPAR and used to create chimera H2M a and f in which the first 483 

nucleotides were exchanged between the two receptors. C-terminal HA-

tagged chimeric constructs were expressed in QT6 cells by transduction with 

a MLV-based retroviral vector. Receptor expression was assessed by cell 

surface immunostaining using an anti-HA antibody. Ability to mediate PERV-

A entry was tested by infection with EGFP(PERV). H2M f was unable to 

support PERV-A infection in QT6 cells while the converse muPAR mutant 

did, indicating that critical sites were included within the first 483 nucleotides 

(Figure 3.4). Using the alignment of the amino acid sequences, 3 residues 

shared between huPAR-1 and -2 (QLH) but different in muPAR (KPY) were 

identified in the N-terminal 161 amino acids. Mutant huPAR-2 containing 

murine KPY residues (H2M b) were compared against muPAR carrying 

human QLH amino acids (H2M e) for the ability to support PERV-A infection. 

Only the chimeric receptor bearing human QLH residues could confer to QT6 

cells susceptibility to EGFP(PERV) infection (Figure 3.4). The analysis was 

narrowed down to identify one single amino acid which if expressed in 

huPAR-2 (P at position 109, H2M d) could reduce PERV-A infection in 

H2Md-transduced QT6 cells under the detectable limit. Conversely, when 

mutant muPAR carrying the substitution P109L (H2M c) was expressed in 

QT6 cells EGFP(PERV) infection was detected (Figure 3.4). Furthermore to 

test the importance of the amino acid 109, a chimeric huPAR-1 with mutation 

L109P was generated (H1M g). QT6 cells expressing H1M g were not 

susceptible to EGFP(PERV) infection (Figure 3.4). These results suggested 

that proline 109 in muPAR is responsible for PERV-A resistance in mouse 
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cells. These observations were confirmed by a recently published report 

(Marcucci et al., 2009). 

 

 

Figure 3.4 Identification of critical residues in PAR for PERV-A infection 

Quail QT6 cells were transduced with MLV-based retroviral vector carrying HA-tagged 

huPAR-2 (white), muPAR (black), huPAR-1 (grey) or chimeric receptor genes. Receptor 

expression was assessed by immunostaining using an anti-HA antibody and flow cytometry 

analysis. Representative histograms of HA-staining of PAR-expressing QT6 cells are 

showed in Figure 3. 6. Percentage of HA positive cells for each receptor is reported (black 

diamond). 5x104 cells were infected with EGFP(PERV) at MOI on 293T cells of 2. Efficiency 

of EGFP transduction is expressed as percentage of EGFP positive cells. Histograms 

represent the average of three independent experiments (± standard error of the mean). 

Arrows indicate that the infection was under the detectable limit of 0.1%. 
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3.2.3 Investigation of huPAR-2 topology 

To understand the mechanism by which one single amino acid substitution 

could dramatically change the function of PAR, the localisation of this residue 

in the receptor structure was investigated. Firstly, the topology of huPAR was 

predicted. Previous hydrophobicity profile analysis predicted 10 or 11 

transmembrane domains (Ericsson et al., 2003). I submitted huPAR-2 amino 

acid sequence to TMHMM server v2.0 (www.cbs.dtu.dk/services/TMHMM) 

(Krogh et al., 2001) and the update model showed 11 transmembrane 

domains, 5 extracellular loops (ECL), an intracellular N-terminus and 

extracellular C-terminus. To gather evidence supporting this prediction, the 

orientation of the extremities was assessed.  

Two constructs were generated: huPAR-2 HA-tagged either at the N-terminal 

or at the C-terminal end. The receptors were transfected into 293T cells and 

their expression analysed at the immunofluorescence microscope or by flow 

cytometry analysis. Only the C-terminus HA-tagged huPAR-2 was visualised 

by cell surface staining using an anti-HA antibody. A similar staining was 

obtained using an anti-human transferrin receptor antibody (anti-CD71), a 

protein expressed on the cell surface of active proliferating cells. N-terminal 

tagged huPAR-2 was observed only after saponin treatment, which 

permeabilises cells allowing the antibodies to stain intracellular target (Figure 

3.5 A and B). These results are in agreement with the updated topology 

prediction of 11 transmembrane domains. 

Further evidences supporting the predicted topology were obtained through a 

glycosylation study. HuPAR-2 has been predicted to contain one N-

glycosylation site at amino acid 178 using NetNGlyc 1.0 software 

(www.cbs.dtu.dk/services/NetNGlyc) (Blom et al., 2004). N-glycosylation 

sites are usually located in extracellular regions of membrane proteins and 

asparagine 178 in huPAR-2 is indeed located in the predicted third ECL. 

Therefore, proving that asparagine 178 is an N-glycosylation site would add 

strength to the topology proposed. A mutant HA-tagged huPAR-2 bearing the 

amino acid substitution asparagine 178 to alanine (N178A) was generated 

and upon transfection of QT6 could support EGFP(PERV) infection with a 
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similar efficiency than the wild type (Figure 3.6 A). 293T cells were 

transfected with HA-tagged huPAR-2 wild type or the mutant N178A and cell 

lysates were processed with PNGase F, an enzyme which removes N-linked 

oligosaccharide chains. Proteins were separated by SDS-PAGE and 

immunoblotted using an anti-HA antibody. The western blot analysis showed 

a shift of the signal in the wild type huPAR-2 treated with PNGase F from 55 

KDa to 48 KDa (Figure 3.6 B), indicating that huPAR-2 carries N-linked 

oligosaccharide chains. Furthermore, the mutant N178A produced a 48 KDa 

band with or without PNGase F treatment (Figure 3.6 B), confirming that 

N178 is indeed an N-glycosylation site.  

The results obtained in this section, by the analysis of huPAR-2 topology, 

supported the proposed model described above (Figure 3.6 C). Similar 

models were obtained by submitting huPAR-1 and muPAR amino sequence 

to TMHMM server v2.0 and NetNGlyc 1.0 software. 
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Figure 3.5 Cellular localisation of huPAR-2 C- and N-terminal ends 

1x106 293T cells were seeded and the day after transfected with C- or N-terminal HA-tagged 

huPAR-2 constructs. 72 hours later, cells were fixed and permeabilised (right column) or not 

(left column) with saponin. Cells were immunostained with a mouse anti-HA (C-HA huPAR-2 

and N-HA huPAR-2) or anti-transferrin receptor (anti-CD71) antibody. A) Cells were 

incubated with an FITC-conjugate anti-mouse IgG antibody (green) and nuclei 

counterstained with propidium iodide (red), contained in the mounting solution. Images show 

representative fields acquired using DM IRE2 confocal microscope (oil immersion objective 

63X). B) Cells were incubated with a PE-conjugated anti-mouse antibody and processed by 

flow cytometry. Percentage of HA- and CD71-positive cells (bold line) was calculated by 

comparison to cells treated only with the secondary antibody (grey filled). Histograms 

showed one representative of two independent experiments. 
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Figure 3.6 N-linked glycosylation of huPAR-2 

A) QT6 cells were transfected with pcDNA3 (EP), C-terminal HA tagged huPAR-2 wild type 

(huPAR-2) or the mutant with asparagines 178 substituted with an alanine (huPAR-2N178A). 

After 48 hours, 5x104 transfected cells were seeded and the day after infected with 

EGFP(PERV) at MOI on 293T cells of 2. Three days later cells were examined by flow 

cytometry. Dot plots showed a representative experiment. B) 1x106 293T cells were seeded 

and the day after transfected with pcDNA3 (-), untagged huPAR-2 (wild type), C-terminal 

HA-tagged huPAR-2 (C-HA wild type) or HA-tagged huPAR-2 mutant with the asparagine 

178 substituted with an alanine (C-HA N178A). After 48 hours, cells were lysed in RIPA 

buffer and treated (+) or not (-) with PNGase F. Proteins were separated in a 10% SDS-

PAGE and immunoblotted using an anti-HA antibody or an anti-actin antibody as input 

control. C) HuPAR-2 topology model derived by hydrophobicity algorithms (Krogh et al., 

2001) and the experiment results (Figure 3.5 and 3.6B). 
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3.2.4 Proline 109 abrogates PERV-A Env binding to PAR 

Amino acid 109 was located in the second ECL according to huPAR-2 

topology. To investigate the mechanism responsible for the abrogation of 

PERV-A infection by proline 109 in muPAR, receptor binding to PERV-A Env 

was analysed.  

Quail QT6 cells were transduced with a MLV-based vector carrying HA-

tagged huPAR-1, huPAR-2, muPAR, huPAR-2P109 and muPARL109 genes. 

Receptor expression was assessed by immunostaining using an anti-HA 

antibody and flow cytometry analysis. Transduced cells expressed similar 

levels of receptors as showed by HA staining (Figure 3.7 A). Parental and 

receptor-transduced cells were incubated with soluble, c-myc tagged PERV-

A14/220 (mycPERV) Env protein and immunostained using an anti-myc 

antibody. No difference was observed between parental QT6 cells incubated 

in the presence or absence of mycPERV Env (Figure 3.7 B wt). Expression 

of huPAR-1 and -2, but not muPAR, produced a shift towards higher 

fluorescence intensity in presence of mycPERV Env, indicating that human 

receptors can mediate the binding to viral Env. QT6 cells expressing huPAR-

2 bearing a proline at amino acid 109 were unable to bind soluble mycPERV 

Env in this assay. These results suggested that proline 109 in muPAR could 

be responsible for the lack of infection in mouse cells by altering PERV Env 

binding to the receptor. However, muPAR with the amino acid substitution 

P109L did not rescue the binding to mycPERV Env (Figure 3.7 B), even if it 

supported PERV-A infection (Figure 3.4). This discrepancy between the 

binding and infection results could be due to a better binding of the trimeric 

Env present on viral particles than the soluble monomeric form used in this 

assay. Moreover, other regions in the muPAR molecule could be important 

for the binding. For example, through the comparison of huPAR-1 and 

huPAR-2, the region comprised between amino acids 152-285 (from the third 

ECL till the seventh transmembrane region) was identified as responsible for 

ten-fold functional superiority of huPAR-2 over huPAR-1 (Marcucci et al., 

2009).  
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Figure 3.7 Soluble PERV-A binding to PARs 

QT6 cells were transduced to express HA-tagged huPAR-1, huPAR-2, muPAR or the 

chimeric receptors, huPAR-2 with the leucine at amino acid position 109 substituted with a 

proline (huPAR-2/P109) or muPAR with the converse mutation (muPAR/L109). A) Receptor 

expression was assessed by immunostaining using an anti-HA antibody. Percentage of HA-

positive cells (bold line) was calculated by comparison with wild type cells (grey filled). B) 
5x105 cells were incubated with 1 mL of 293T cells supernatant either untransfected (grey 

filled) or transfected with N-terminal c-myc tagged soluble PERV-A14/220 SU Env (bold 

line). Cells were immunostained using an anti-human c-myc antibody and a PE-conjugated 

anti-mouse IgG secondary antibody. Histograms show a representative result of three 

independent experiments. 
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3.2.5 Cloning and characterisation of rat PERV-A receptor 

Rat cells are resistant to PERV-A infection (Takeuchi et al., 1998). To 

investigate whether a non-functional receptor could be responsible for PERV-

A resistance, similar to mouse cells, rat PERV-A receptor (ratPAR) was 

cloned. In the NCBI database a homologue to huPAR was identified 

(accession number XM_343272). RatPAR has amino acid identities of 90.4% 

with muPAR, and 79.3% and 79.0% with huPAR-1 and huPAR-2, 

respectively (alignment shown in Figure 3.2). Specific primers were designed 

based on the sequence XM_343272 and employed in a PCR using cDNA 

from PERV-A resistant rat NRK cells as a template. The ratPAR sequence 

cloned had 2 amino acids different from the sequence deposited in GenBank. 

Amino acid sequence alignment showed that ratPAR shared the same ECL2 

sequence with huPAR-1 and huPAR-2 (Figure 3.8 A). HA-tagged receptors 

were delivered by transduction with a retroviral vector into human 293T, rat 

NRK and quail QT6 cells. The receptors function, to support PERV-A entry, 

was tested by infection with pseudotyped EGFP(PERV) and monitoring 

EGFP expression by flow cytometry. PERV-A resistant cells became 

susceptible upon expression of huPAR-1, huPAR-2 and ratPAR but not 

muPAR (Figure 3.8 B). RatPAR could also mediate PERV-A infection in QT6 

cells as efficiently as huPAR-1 (Figure 3.8 B). Furthermore, QT6 cells 

expressing similar levels of huPAR-1 and ratPAR receptors (Figure 3.8 C, HA 

staining), bound with the same efficiency to soluble PERV Env (Figure 3.8 C, 

mycPERV Env binding). These results showed that ratPAR acted as a 

functional receptor for PERV-A infection and suggested that a different 

mechanism was responsible for PERV-A resistance in rats. 
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Figure 3.8 Characterisation of rat PERV-A receptor 

A) Amino acid sequences of huPAR-2, huPAR-1, muPAR and ratPAR were aligned using 

ClustalW programme. Partial sequences, containing second extracellular loop (ECL2, 

underlined) are shown. B) Human 293T and PERV-A resistant rat NRK and quail QT6 cells 

were transduced with an MLV-based retroviral vector carrying huPAR-1 (grey), huPAR-2 

(white), muPAR (diagonally striped) or ratPAR (horizontally striped) genes. 5x104 PAR-

transduced or parental (black) cells were infected with 500 µL of 293T supernatant 

containing EGFP(PERV) particles. Infection efficiency was measured as percentage of 

EGFP positive cells assessed by flow cytometry analysis. Histograms represent the average 

of two independent experiments (± standard error of the mean). Arrows indicate the infection 

was under the detection limit of 0.1% C) QT6 cells were transduced to express huPAR-1 or 

ratPAR. Receptor expression was assessed by immunostaining using an anti-HA antibody 

(top panels). Percentage of HA-positive cells (bold line) was calculated by comparison with 

wild type cells (grey filled). 5x105 cells were incubated with one mL of 293T cells supernatant 

either untransfected (grey filled) or transfected with N-terminal c-myc tagged soluble PERV-

A14/220 SU Env (bold line) (bottom panels). Cells were immunostained using an anti-human 

c-myc antibody and a PE-conjugated anti-mouse IgG secondary antibody. Histograms show 

a representative result of three independent experiments.  
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3.2.6 Endogenous expression of ratPAR in rat cells  

Because rat cells encode a functional receptor, a possible explanation for 

their resistance to PERV-A infection could be a low level of ratPAR 

expression. An anti-PAR antibody is not available; therefore the mRNA level 

of ratPAR was measured and compared to huPAR-1 mRNA from highly 

susceptible human 293T and HeLa cells. 

Total mRNA was extracted from human and rat cells and the copy numbers 

for huPAR-1 and ratPAR were estimated. On average rat cells expressed a 4 

times lower level of ratPAR than huPAR-1 in human cells, with the exception 

of HSN cells where the difference was up to 25-fold (Figure 3.9). However, to 

determine whether the difference in the receptor mRNA levels between rat 

and human cells could be responsible for the lack of PERV-A infection in rat 

cells, further experiments were required.  
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Figure 3.9 Endogenous expression of PERV-A receptors 

Total RNA was extracted from human 293T, HeLa and HT1080 cells (white) and rat NRK, 

HSN, XC and Rat2 cells (grey). 1 µg was reverse described and one eighth was used in a 

probe-based quatitative RT-PCR using primers QF1, QR1 and probe P1 (for huPAR-1) and 

QF3,QR3 and probe P3 (for ratPAR) (Table 2.3.4). PAR copy numbers were determined by 

comparison with a standard curve and normalised to one copy of 18S rRNA. Samples were 

run in duplicate. Histograms represent the average of three independent experiments (± 

standard error of the mean). Efficiency of infection was determined by infection of 5x104 cells 

with EGFP(PERV) at MOI on 293T of 2 and expressed as percentage of EGFP-positive 

cells. PERV-A infection on HT1080 was not performed. However, HT1080 cells were 

reported to be permissive to LacZ(PERV-A) transduction (Takeuchi et al., 1998).  
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3.2.7 Analysis of post-entry restriction factor in rat cells 

Before analysing whether rat resistance to PERV-A infection was due to a 

low expression of ratPAR, other possible mechanisms of retroviral block were 

investigated. The most well described restriction factors acting against 

retroviruses post-entry but prior to provirus integration are Fv1 and TRIM5α 

(section 1.6.1). Their expression in otherwise permissive cells caused a 

reduction in sensitive virus titre of more than 10-fold (Hartley et al., 1970; 

Stremlau et al., 2004; Towers et al., 2000). The viral determinant for 

restriction was mapped in both cases to the CA protein (Besnier et al., 2003; 

Kozak and Chakraborti, 1996; Perron et al., 2004; Towers et al., 2002). 

To analyse whether a similar mechanism occurred with PERV-A in rat cells, 

VSV-G pseudotyped viruses carrying an MLV-based retroviral vector 

expressing EGFP were produced by transfection of 293T cells together with 

packaging plasmid expressing PERV-A14/220 or Moloney MLV (MoMLV) 

GagPol. MoMLV GagPol was used as control because it has been shown to 

be resistant to post-entry restriction (Keckesova et al., 2004; Kozak, 1985; 

Perron et al., 2004). After 48 hours, the pseudotyped viruses were titrated on 

human 293T and rat NRK cells. On 293T cells no difference was observed in 

the infection efficiency between pseudotyped viruses bearing PERV-A14/220 

GagPol or MoMLV GagPol (Figure 3.10, 293T). In rat NRK cells, PERV-

A14/220 GagPol caused a 4-fold reduction in the pseudotyped viruses 

compared to MoMLV GagPol (Figure 3.10, NRK). Although these results may 

suggest the possibility of a weak restriction factor present in rat cells, such a 

small degree of reduction cannot explain the lack of PERV-A infection 

observed (Figure 3.8 B). Moreover, in rat HSN cells the efficiency of 

transduction obtained with VSV-G pseudotyped PERV-A14/220 or 

amphotropic MLV4070 in which env gene was substituted with egfp gene 

was similar (Harrison et al., 2004). Taken together these observations 

suggested that post-entry restriction is not responsible for PERV-A resistance 

in rat cells. 
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Figure 3.10 Analysis of post-entry block to PERV-A infection in rat cells 

VSV-G pseudotyped particles containing MLV-based retroviral vector expressing EGFP, and 

Moloney MLV (white) or PERV-A14/220 (grey) GagPol were produced by transfection of 

293T cells. Viral titres were determined by infection of 293T or NRK cells and monitoring of 

EGFP expression by flow cytometry. Histograms represent the average of two independent 

experiments (± standard error of the mean). 
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3.2.8 Evaluation of N-liked glycosylation in rat cells on PERV-A 
infection 

Removal of N-linked glycosylation by tunicamycin treatment of resistant cells 

was shown to rescue retroviral infectivity (section 1.5.5). In this section a 

possible role for N-linked glycosylation in PERV-A resistance in rat cells 

would be investigated. 

Rat NRK, HSN, XC, Rat2 cells were treated overnight with tunicamycin. 

Human 293T and murine MDTF cells were used as (positive and negative, 

respectively) controls for PERV-A infection. For each cell line tunicamycin 

dose was chosen according to the toxicity observed (Figure 3.11). Cells were 

infected with EGFP(PERV) and 72 hours later analysed using flow cytometry. 

EGFP transduction of untreated rat cells was under the detection limit. 

However, upon tunicamycin treatment, a low PERV-A infection could be 

observed in NRK and Rat2 cells (Figure 3.11). Removal of N-linked 

glycosylation slightly enhanced PERV-A infectivity in some, but not all, rat 

cells, suggesting that receptor masking by N-glycosylation could not be the 

cause of PERV-A resistance in rats. 
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Figure 3.11 Tunicamycin treatment of rat cells 

5x104 rat NRK, HSN, XC, Rat2, human 293T and murine MDTF cells were treated (grey) or 

not (white) with tunicamycin at the concentration stated. The day after, cells were infected 

with 500 µL of 293T supernantant containing EGFP(PERV). PERV-A transduction efficiency 

was assessed by flow cytometry analysis and expressed as percentage of EGFP cells. 

Histograms represent the average of two independent experiments (± standard error of the 

mean). Arrows indicate that the infection was under that the detection limit of 0.1%. 
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3.2.9 Analysis of inhibitors secreted from rat cells 

Another receptor-mediated block to retroviral infection described in literature 

was the secretion of inhibitors from resistant cells (Miller and Miller, 1992, 

1993). To investigate whether a similar mechanism was acting to prevent 

PERV-A infection in rat cells, huPAR-2 and ratPAR-transduced QT6 cells 

were grown overnight and then infected with VSV-G pseudotyped MLV 

carrying EGFP gene or EGFP(PERV) in the presence of conditioned media 

from rat NRK cells. No clear difference was observed in the EGFP 

transduction efficiency, indicating that no inhibitors to PERV-A infection were 

secreted from rat cells (Figure 3.12). 
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Figure 3.12 PERV-A infection in conditioned media of rat cells 

5x104 huPAR-2 (A) and ratPAR (B)-transduced QT6 cells were incubated overnight with 

media alone (grey) or conditioned media from confluent rat NRK cells (diluted 1:1) (white). 

The day after cells were infected with VSV-G pseudotyped MLV particles carrying a retroviral 

vector encoding EGFP at MOI on 293T cells of 0.2 or EGFP(PERV) at MOI on 293T cells of 

2. Titres were determined by EGFP monitoring by flow cytometry. Histograms represent the 

average of two independent experiments (± standard error of the mean). 
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3.2.10 PERV-A infection dependence on ratPAR expression  

To understand whether endogenous ratPAR expression in rat cells was too 

low to support PERV-A infection, a correlation between the amount of 

exogenous ratPAR and pseudotyped EGFP(PERV) infection was 

investigated. Rat NRK, HSN and XC cells were transduced with a retroviral 

vector carrying the ratPAR gene and infected with EGFP(PERV). RatPAR 

mRNA copy number in RatPAR-transduced cells was measured by probe-

based quantitative RT-PCR and plotted against PERV infection efficiency, 

expressed as EGFP positive cells. All three rat cell lines became susceptible 

to PERV-A infection when the level of ratPAR mRNA was increased 40 to 

500-fold by the exogenously expressing ratPAR (Figure 3.13 A). 

To provide evidence for the dependence of PERV-A infection on ratPAR 

expression level, QT6 cells were transduced with a retroviral vector carrying 

HA-tagged ratPAR gene. Clonal populations were isolated and the level of 

ratPAR expression on the cell surface of these cells determined as mean 

fluorescence intensity of HA staining. RatPAR-transduced QT6 cells 

expressing different amounts of receptors were infected with EGFP(PERV). 

Pseudotyped PERV-A infection efficiency was dependent on the ratPAR 

expression level (Figure 3.13 B).  

These results showed that upon overexpression of ratPAR, rat cells become 

sensitive to PERV-A infection and the efficiency of PERV-A entry correlates 

with the amount of receptor expressed. This suggested that in rat cells 

ratPAR is expressed at a subthreshold level and cannot mediate PERV-A 

infection. 
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Figure 3.13 PERV-A infection dependence on ratPAR expression 

A) Rat NRK (circle) HSN (square) and XC (triangle) cells were transduced with a MLV-based 

retroviral vector carrying ratPAR gene. Two independent transductions were performed for 

NRK and HSN cells. Total RNA from ratPAR-transduced (black) or parental (white) cells was 

extracted and 1 µg were reverse transcribed. One eighth of the final volume was employed 

in a probe-based quantitative RT-PCR, using primers QF3 and QR3 and probe P3 (table 

2.3.4). The amount of ratPAR mRNA was inferred by comparison with standard curve and 

normalised to 1010 copies of 18S rRNA. Samples were run in duplicate. Dots represent the 

average of two independent experiments. 5x104 ratPAR-transduced and parental cells were 

seeded and the day after infected with EGFP(PERV) at MOI on 293T cell of 2. After 72 
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hours, PERV-A infection efficiency was determined by flow cytometry as percentage of 

EGFP positive cells and plotted against the amount of ratPAR mRNA. Dots represent the 

average of three independent experiments. B) Quail QT6 cells were transduced with a 

retroviral vector carrying HA-tagged ratPAR gene and single clone populations were 

isolated. For each individual QT6 clones, the amount of ratPAR on cell surface was 

determined by immunostaining using anti-HA antibody. The clones were divided according to 

mean fluorescence intensity (MFI), i.e. ratPAR expression: low (MFI:10-60), medium (60-

200) and high (>200). Dots represent the average of the MFI from two independent 

experiments. Each clone was plotted according to PERV-A infection efficiency, determined 

by infection of 5x104 cells with EGFP(PERV) at MOI on 293T cells of 2 and expressed as 

percentage of EGFP positive cells. Data represent the average of two independent 

infections.  
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3.3 Discussion 

PERV-A can enter human cells through two paralogous proteins, huPAR-1 

and huPAR-2 (Ericsson et al., 2003). Rodent cells are resistant to PERV-A 

infection (Takeuchi et al., 1998). In this chapter, the mechanism of non-

permissivity to PERV-A infection in murine and rat cells has been 

investigated to better understand the molecular mechanism of PERV-A entry. 

The murine homologue to huPAR, muPAR, has been identified (Ericsson et 

al., 2003). Murine MDTF and quail QT6 cells are resistant to PERV-A entry. 

Upon expression of huPAR-1 and huPAR-2, but not muPAR, these cells 

become susceptible to virus infection (Figure 3.3), suggesting that PERV-A 

block occurs at entry level and that muPAR is not a functional receptor for 

PERV-A.  

In other γ-retrovirus receptors, it has been shown that few amino acid 

changes between homologous receptors in different species determine the 

ability to mediate virus entry (Albritton et al., 1993; Eiden et al., 1996; Johann 

et al., 1992; Lundorf et al., 1998; Marin et al., 2003a; Tailor et al., 1993; 

Yoshimoto et al., 1993). Chimeric receptor of huPAR-2 and muPAR have 

been generated and tested for their receptor function (Figure 3.4). One single 

amino acid substitution in huPAR-2 from leucine at position 109 to the murine 

corresponding proline was able to abrogate PERV-A infection. Conversely, 

muPAR bearing leucine109 instead of a proline, could mediate PERV-A entry 

in resistant quail QT6 cells. No other part of the receptor had the same 

dramatic effect on the function. These data were confirmed by a recently 

published report (Marcucci et al., 2009). 

Because proline 109 in muPAR could abrogate PERV-A infection, its 

localisation in the structure of the receptor was investigated. HuPAR-1, 

huPAR-2 and muPAR have the same topology model according to a 

transmembrane protein prediction software (TMHMM) characterised by 11 

transmembrane domains, 5 ECLs, an intracellular N-terminus and 

extracellular C-terminus (figure 3.6 C). The analysis of the orientation of the 

extremities (Figure 3.5) and the unique N-glycosylation site (Figure 3.6 B) 
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provided evidences in support of the predicted topology. From this model 

amino acid 109 is localised in the ECL2. I hypothesised that this region could 

be PERV-A binding site and that the change in the structure of the loop due 

to the pro-to-leu substitution in muPAR could prevent virus binding and 

hence infection. Supporting data for this hypothesis was obtained by soluble 

PERV-A SU binding to QT6 cells that were expressing different PAR. 

Successful binding was observed for functional receptor huPAR-1 and 

huPAR-2 but not for muPAR. However, in QT6 cells expressing the mutant 

huPAR-2 with the substitution leu-to-pro at amino acid 109, the binding was 

abrogated (Figure 3.7 B). However, the exchange of proline 109 with a 

leucine in muPAR did not rescue the binding to soluble PERV-A SU, even if it 

did support infection (Figure 3.7 B). A possible explanation is that the trimeric 

form of Env present on the viral particle surface binds better than the 

monomeric soluble form used in the assay. Furthermore, other regions in the 

muPAR could be involved to achieve a binding efficiency which equals to 

huPAR.  

Rat cells as well as mouse cells are resistant to PERV-A infection (Figure 

3.3, Figure 3.8 B). However the mechanism appeared different. Firstly, the 

amino acid sequence of the ECL2 in ratPAR is identical to that of huPAR-1 

and huPAR-2, and does not share the proline 109 (Figure 3.8 A). 

Furthermore, upon overexpression of their own ratPAR, rat cells become 

susceptible to PERV-A infection, indicating that ratPAR is able to mediate 

PERV-A entry (Figure 3.8 B). In addition, when QT6 cells express similar 

amount of huPAR-1 and ratPAR, the efficiency in soluble PERV-A SU Env 

binding is similar (Figure 3.8 C). As these results indicated that rat cells 

encode a functional PERV-A receptor, other mechanisms of resistance were 

investigated. 

For other γ-retroviruses it has been shown that overexpression of the 

receptor rescued viral infection in the resistant cell lines of their origin (Tailor 

et al., 2000). The mechanism for this resistance was explained as masking, 

interference or a subthreshold level of expression of the receptor (Eiden et 

al., 1994; Lavillette et al., 2002a; Marin et al., 2000; Miller and Miller, 1992, 



133 

 

1993; Tailor et al., 2000). These mechanisms were evaluated for PERV-A 

infection in rat cells. Firstly, the presence of a post-entry restriction factor 

acting on PERV-A GagPol was examined. In fact, although data presented in 

this chapter indicated that rat cells are insensitive to PERV-A infection by a 

receptor-mediated block, overexpression of a functional receptor in rat cells 

could also cause the entry of a greater amount of virus and saturate a 

restriction factor acting post-entry. As the best described restriction factor 

blocking retroviral infection prior integration are Fv1 and TRIM5α and they 

both target the viral capsid (section 1.6.1), VSV-G pseudotyped retroviral 

particles containing PERV-A14/220 GagPol were compared in their efficiency 

of EGFP transduction in rat cells with similar pseudotyped virus bearing the 

non restricted MoMLV GagPol. The titre obtained with PERV-A 14/220 

GagPol was 4 times lower than that obtained with MoMLV GagPol (Figure 

3.10). This reduction is lower than that obtained for sensitive N-tropic MLV 

and HIV-1 with Fv1 and TRIM5α (Stremlau et al., 2004; Towers et al., 2000) 

and it is not enough to fully block PERV-A infection in rat cells. Therefore, 

although the presence of a weak restriction factor in rat cells, acting on 

PERV-A14/220 GagPol, cannot be excluded, it did not explain the 

mechanism of resistance to PERV-A infection in rat cells. 

Likewise, removal of N-linked polysaccharide chains by tunicamycin 

treatment could partially rescue PERV-A infection in some rat cell lines. 

However, because the effect was not observed in all the rat cell lines tested 

and the degree of infection was more than 10-fold lower than in 293T cells 

(Figure 3.11), the receptor masking by N-linked glycosylation could not be 

considered the main mechanism of resistance to PERV-A infection. Presence 

of inhibitory factors in the media of cells was not detected by EGFP(PERV) 

infection of different cell lines in the presence of conditioned media from rat 

NRK cell (Figure 3.12).  

Endogenous ratPAR mRNA expression in rat cells was measured by 

quantitative RT-PCR and compared to the level of huPAR-1 mRNA in PERV-

A susceptible human cells. On average rat cells express 4 times less 

receptor than human cells (Figure 3.9). To test whether this difference could 
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be responsible for the resistance of rat cells to PERV-A infection, the amount 

of exogenously expressed ratPAR mRNA was correlated to the efficiency of 

EGFP transduction of the pseudotyped PERV-A14/220. Rat cells became 

PERV-A sensitive when the amount of ratPAR mRNA was increased of 40 to 

500-fold (Figure 3.13 A). Moreover, it was possible to correlate a higher 

efficiency of PERV-A infection with a higher level of ratPAR expression in 

QT6 cell clones expressing different amount of HA-tagged receptor (Figure 

3.13 B). These results suggested that ratPAR expression in rat cells is under 

the threshold level which allowed PERV-A infection. However, it is not clear 

whether this subthreshold level is due to a low transcription (i.e. mRNA 

expression) or other mechanisms which prevent the display of ratPAR on the 

cell surface. 

In conclusion, two closely related species, rat and mice, have different 

mechanisms to escape PERV-A infection. Murine cells encode a homologue 

of huPAR which is defective in PERV-A receptor function. Since one single 

amino acid exchange in muPAR can rescue PERV-A infection, this indicates 

a critical region in the receptor, likely involved in the virus binding. In contrast, 

rat cells express a functional receptor. My results suggest that the level of 

ratPAR expression is below a threshold level required to support PERV-A 

entry, but the mechanism for this is not clear. These results could help 

identifying possible targets for the development of therapeutics that block 

PERV-A infection, such as neutralising antibodies and peptides mimicking 

the receptor. 
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Chapter 4 

4  Evaluation of PERV-A receptors in non-human 
primates 

 

4.1 Introduction 

Although PERV infection has not been detected in retrospective analysis of 

patients treated with porcine cells and tissues (Clemenceau et al., 2001; 

Cunningham et al., 2001; Elliott et al., 2000; Heneine et al., 1998; Paradis et 

al., 1999; Patience et al., 1998), this risk in xenotransplantation in future 

cannot be excluded. Retroviruses are responsible for several human and 

animal pathologies (section 1.3.4) and therefore the possible consequences 

following PERV infection must be investigated. Small animals as well as non-

human-primates (NHP) have been employed as models. 

The most common small animal model chosen has been either severe 

combined immunodeficiency (SCID) or nude mice. In SCID mice, due to a 

mutation in a DNA-dependent protein kinase, T and B cells are unable to 

differentiate and therefore both humoral and cellular immune response are 

not functional. Nude mice have no T cell response. Immunocompromised 

mice were considered a good model because they mimic the 

immunosuppression in xenotransplantation patients. Infection by PERV of 

mouse tissues has been quite controversial. Initial reports showed that PERV 

produced from pig pancreatic cells transplanted in SCID mice could infect 

mouse tissues but the virus appeared not to be transcriptionally active in 

murine cells, suggesting a non-productive infection (Deng et al., 2000; van 

der Laan et al., 2000). Although microchimaerism was observed, the ratio 

between PERV-specific sequences and porcine cell sequences in mouse 

tissues was higher than in pig cells, inferring amplification of PERV genomes 

by PERV infection of mouse cells. Similar results were obtained in nude mice 

(Clemenceau et al., 2002; Zhang et al., 2005). However, when 

microchimaerism was avoided by injection of cell-free viruses, PERV 

infection of murine cells was not detected in vitro or in SCID mice (Irgang et 
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al., 2005). Following the cloning of human PERV-A receptors, the 

homologuous muPAR was found not functional in supporting PERV-A 

infection (Ericsson et al., 2003). The murine model was therefore considered 

not permissive to PERV-A infection, which is more problematic than PERV-B 

because PERV-A is present in the pig genome at higher level than PERV-B 

(Le Tissier et al., 1997) and can recombine with PERV-C to produce high-

titre human tropic recombinant PERV (Bartosch et al., 2004; Harrison et al., 

2004; Oldmixon et al., 2002; Wilson et al., 2000). However, 

immunodeficiency mice were still used to test PERV infection of human cells 

in vivo. SCID mice were injected with human peripheral blood leukocytes and 

porcine cells were transplanted. Human cells were infected by PERV in vivo 

(Kuddus et al., 2004; McKane et al., 2003). The interpretation of these results 

was complicated by the discovery that PERV particles could be pseudotyped 

in vivo with endogenous xenotropic MLV which can mediate infection 

(Martina et al., 2005; Yang et al., 2004). A different model which allowed 

investigation of PERV infection in a fully competent animal was represented 

by transgenic mice expressing huPAR-2. In this system not only could PERV 

infection be observed in mouse cells but the immune response could be also 

evaluated. After infection with cell-free virus (to avoid microchimaerism) 

PERV DNA, RNA and proteins were detected in several murine tissues and 

some mice developed anti-PERV antibodies (Martina et al., 2006). 

NHP represent an ideal animal model to evaluate the immunological 

response to pig xenografts because similar to humans, NHPs possess 

circulating anti-αGal antibody (section 1.1.1). In several studies conducted 

using transgenic pigs, the animal of choice was mainly baboon (Papio 

hamadras) or cynomolgus monkey (Macaca fascicularis) [reviewed in:(Ekser 

et al., 2009)]. Surveillance for PERV infection of these animals could assess 

the risk of PERV transmission to xenotransplant recipients. Pig-to-NHP 

transplantation could offer the opportunity to study long term exposure to the 

xenograft and to analyse more tissues, two advantages in comparison to the 

retrospective studies in humans exposed to porcine materials. Studies 

conducted on NHP injected with cell-free high titre viruses, cells or solid 

organ transplantation in immunosuppressed animals showed no evidence of 
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PERV infection [(Elliott et al., 2005; Isaac et al., 2005; Moscoso et al., 2005; 

Nishitai et al., 2005; Specke et al., 2009) and reviewed in (Denner, 2003)]. 

The use of NHP to assess the risk of PERV transmission has been debated. 

Initial studies showed that NHP cell lines were non-permissive for PERV 

infection (Martin et al., 1999; Patience et al., 1997; Takeuchi et al., 1998; 

Wilson et al., 2000). Other reports, which used PCR or RT-PCR to detected 

PERV sequences, suggested that NHP cells are susceptible (Blusch et al., 

2000a; Specke et al., 2001; Templin et al., 2000). Using a high titre PERV 

derived from NIH minipigs and adapted in vitro through three passages in 

human cells it was possible to show that PERV carrying a reporter gene (β-

galactosidase) could infect rhesus macaque and African green monkey 

(AGM) cell lines. In the infected NHP cells, PERV provirus and transcripts 

were detected but no reverse transcriptase activity was found in the 

supernatant of these cells, suggesting that PERV infection of NHP cells was 

not productive (Ritzhaupt et al., 2002). However the mechanism responsible 

for the poor infectivity and the lack of PERV replication in NHP cells was not 

explained. 

The cloning of PERV-A receptors (Ericsson et al., 2003) and the isolation of 

the high-titre recombinant PERV-A14/220 (Oldmixon et al., 2002) allowed the 

re-evaluation of PERV infection in NHP cells. In this chapter, the aim was to 

clarify the reasons for the low susceptibility of NHP cells to PERV infection 

and provide information which can be used in the choice of the NHP species 

to use as animal model to study PERV transmission. 
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4.2  Results 
 

4.2.1  The low PERV permissivity is mainly caused by reduced entry in 
NHP cells. 

Infection and replication of PERV-A were monitored in different NHP cell 

lines as shown in figure 4.1. 

PERV entry was analysed by infection of 5x104 AGM COS7 and VERO cells 

and rhesus macaque FRhK4 cells with serial dilution of the EGFP(PERV) 

supernatant (section 2.3.3). PERV-A titre on COS7 and FRhK4 cells was 

more than two orders of magnitude lower than that on human 293T cells 

(2x105 Etu/mL). The level of infection of AGM VERO cells was under the 

detection limit (10 Etu/mL) (Figure 4.2 A). To test whether weak PERV-A 

receptor activity could be responsible for the low infectivity, COS-7, VERO 

and FRhK4 cells were transduced with a retroviral vector carrying huPAR-2 

gene. EGFP(PERV) titre on huPAR-transduced NHP cells increased at least 

37 times in comparison with the parental cells (Figure 4.2 A). Although the 

level of huPAR-2 expression in NHP cells was not assessed, expression of a 

functional receptor increased the permissivity of NHP cells to PERV infection, 

suggesting a possible role for NHP PAR in the low level of infectivity.  

After EGFP(PERV) infection, wild type and huPAR-transduced cells were 

kept in culture for the following experiments. 

A week post-infection, the level of PERV gag gene in the NHP cell genome 

was investigated. 200 ng of genomic DNA was processed in a SYBR Green-

based quantitative PCR reaction using PERV gag specific primers (table 

2.3.4). PERV Gag copy number in the different NHP cells correlated with the 

titre determined by EGFP expression. Notably, PERV gag was detected in 

wild type VERO cells, although EGFP expression was under the sensitivity 

limit of the infection assay (Figure 4.2 B).  

1 µg of total RNA, extracted from wild type and huPAR-transduced cells two 

weeks post-infection, was reverse transcribed and one eighth was processed 

in SYBR Green-based quantitative RT-PCR. Similar to the results obtained 
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from the genomic DNA analysis, the level of transcription of PERV Gag 

correlated with the EGFP(PERV) titre (Figure 4.2 C). 

To determine whether PERV can productively infect NHP cells, the presence 

of infectious viral particles in the supernatant of infected cells was 

investigated. 1x106 HuPAR-transduced and parental cells were seeded and 

the day after their supernatant was collected and serial dilutions were used to 

infect 293T cells. PERV titre was determined 3 days later by colony counting 

of the infected cells, immunostained with an anti-PERV CA antibody.  

No infectious viruses were present in the supernatant of wild-type FRhK4 and 

VERO cells for up to three weeks post infection. For VERO cells, 5 i.u./mL 

detected at weeks 2 and 3 were at the borderline of this assay sensitivity, 

hence not a clear indication of a productive infection. Instead, viral titre in the 

supernatant of wild type COS7 and huPAR-transduced cells grew in the first 

two weeks and stabilised at week three (Figure 4.2 D). Interestingly, the 

difference in the titre produced from COS7 wild-type versus huPAR-

transduced cells was similar to the difference in the (EGFP)PERV infection of 

this cell line. Taken together, these results suggested that once PERV 

successfully entered the NHP cells, provirus could integrate in the host 

genome, viral genes be transcribed and infectious particles produced. 

Therefore, an inefficient cell entry was likely to be responsible for the low 

susceptibility of NHP cells to PERV-A. 
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Figure 4.1 Diagram of the analysis of PERV infection in NHP cell 
Four critical steps (A-D, results shown in corresponding panels in Figure 4.2) in the 

virus life cycle (left column) were analysed using the methods described in the 

middle column performed at specific post-infection time points (right column). 
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Figure 4.2 Monitoring of PERV infection in NHP cells 

Rhesus macaque FRhK4 cells and AGM COS7 and VERO cells were transduced with a 

VSV-G pseudotyped MLV-based vector carrying human PAR-2 gene (huPAR-2). 5x104 

huPAR-2 transduced (grey bars) or wild type (white bars) cells were infected with serial 

dilution of PERV(EGFP) with the highest MOI (on 293T cells) being 2. A) 72 hours post 

infection, efficiency of EGFP delivery was determined by flow cytometry. Titres were 

calculated as previously described (section 2.3.4). and expressed as EGFP transducing 

units (Etu)/mL. EGFP(PERV) infection on VERO cells was under the detection limit 

(<10Etu/mL, arrow). Histograms represent the average of three independent experiments (± 

standard error of the mean). B) One week post-infection, genomic DNA was extracted and 

200 ng was employed per reaction in a SYBR Green-based quantitative PCR using PERV 

gag specific primers QF5,QR5 (Table 2.3.4). C) Two weeks post-infection, total RNA was 

extracted and 1 µg was reverse transcribed. One eighth was employed in a SYBR Green-

based quantitative RT-PCR using PERV gag specific primers. The amount of gag copies 

was inferred by a standard curve and normalised per 18S rRNA copy. Each sample was run 

in duplicate. Histograms represent the average of two independent experiments (± standard 

error of the mean). D) At the different time points indicated, 1x106 huPAR2-transduced (grey 

square) or wild type (white circles) FRhK4, COS7 and VERO cells were seeded. The day 

after, supernatant was collected and 5 fold dilutions used to infect 293T cells. 72 hours later, 

cells were immunostained with an anti-PERV CA antibody. Alkaline phosphatase positive 

colonies were counted at the visible light microscope and titres determined as infectious unit 

per mL (i.u./mL). Data represent the average of two independent experiments (± standard 

error of the mean). 
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4.2.2  Functional analysis of the NHP PERV-A receptors 

The NCBI database was searched for homologous sequences to huPAR-1 

and huPAR-2 in NHP. Chimpanzee and rhesus macaque PAR-1 and PAR-2 

were identified. Baboon PAR-2 (baPAR-2) has been cloned previously 

(Ericsson et al., 2003). NHP PARs have been cloned by RT-PCR of the RNA 

extracted from primary cells or cell lines as summarised in table 4.1. Both 

baPAR-2 and rhesus macaque PAR-1 (rhPAR-1) sequences, cloned from 

primary baboon PBMC and FRhK4 cells respectively, had one amino acid 

different (L19F or C309Y) from the sequences deposited in GenBank. 

However, rhPAR-2 cloned from FRhK4 cells had the same amino acid 

sequence as XP_001099620.1. 

Amino acid sequences were aligned using ClustalW programme. 

Extracellular domain 2 (ECL2) was located according to the huPAR-2 

topology (section 3.2.3). The sequence of ECL2 was well conserved among 

different species with the exception of a serine instead of a leucine at amino 

acid 109 in rhPAR-1, cynomologus monkey PAR-1 (cynPAR-1) and baboon 

PAR-1 (baPAR-1) (Figure 4.3 A). This mutation was of particular interest 

because it was located at a.a. 109, which has been previously described as 

critical for PERV-A infection and binding (section 3.2.2 and 3.2.4). 

To test the ability of the NHP receptors to support PERV-A entry, NHP PARs 

were HA-tagged at the C-terminus and subcloned into a MLV-based retroviral 

vector. PERV-A resistant QT6 cells were transduced using VSV-G 

pseudotyped MLV particles carrying PAR genes. More than 50% of the cells 

expressed the receptors as assessed by flow cytometry analysis after 

immunostaining with an anti-HA antibody (Figure 4.3 B diamond). PAR-

expressing cells were infected with EGFP(PERV) and the titre determined by 

monitoring EGFP signal. The titres have been represented as percentage of 

the titre obtained on huPAR-1-QT6 cells (Figure 4.3 B bars). All the PARs 

tested conferred permissivity to PERV-A entry in QT6 cells, with the 

exceptions of cynPAR-1, baPAR-1, rhPAR-1. These receptors share the 

serine at a.a. 109, which is different from the other receptors (Figure 4.3 A). 

To test whether the L109S change was responsible for the inability to support 
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PERV-A entry, a huPAR mutant carrying a serine instead of leucine in ECL2 

(huPAR-1S109) and a rhPAR-1 with the opposite mutation (rhPAR-1L109) 

were generated. Once expressed in QT6 cells rhPAR-1L109 could efficiently 

mediated PERV-A entry. Instead, the ability of huPAR-1S109 to function as 

receptor was reduced up to 85% (Figure 4.3 B). The amino acid substitution 

in position 109 appeared to have a negative effect on the receptor function. 

 

 

Receptor  species  NCBI acc no.  cell origin  primers 
huPAR‐1  Homo sapiens  NP_078807.1  Ericsson et al 2003 
chimPAR‐1  Pan troglodytes  XP_0010990939.1 not cloned 
AGMPAR‐1  Cercopithecus aethiops  n/a  COS7;VERO  CF6;CR5 
baPAR‐1  Papio anubis  n/a  PMBC  CF6;CR5 
rhPAR‐1  Macaca mulatta  XP_001090939.1  FRhK4  CF5;CR5 
cynPAR‐1  Macaca fascicularis  n/a  primary splenocytes  CF6;CR5 
huPAR‐2  Homo sapiens  NP_060456.3  Ericsson et al 2003 
chimPAR‐2  Pan troglodytes  XP_523560.1  not cloned 
AGMPAR‐2  Cercopithecus aethiops  n/a  COS7;VERO  GF2;GR5
baPAR‐2  Papio hamadras  Q863Y8.1  Ericsson et al 2003    
   Papio anubis     PBMC  CF4;CR4 
rhPAR‐2  Macaca mulatta  XP_001099620.1  FRhK4  CF4;CR4 
cynPAR‐2  Macaca fascicularis  n/a  primary splenocytes  CF4;CR4 

 
Table 4.1 List of NHP PERV-A receptors 

PERV-A receptors used in this chapter are listed. NCBI accession number is reported for the 

deposited protein sequences. For the receptors cloned in this thesis, the cell lines or primary 

cells from which total RNA have been extracted and the primers used for PAR amplification 

are indicated. 
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Figure 4.3 Functional analysis of NHP PARs 

A) Human (huPAR-1 and huPAR-2), mouse (muPAR), rat (ratPAR), chimpanzee (chimPAR-

1 and chimPAR-2), rhesus macaque (rhPAR-1 and rhPAR-2) PAR and baboon PAR-2 

(baPAR-2) sequences were present in the NCBI database (Table 4.1). African green monkey 

(AGMPAR-1 and AGMPAR-2), cynomolgus macaque (cynPAR-1 and cynPAR-2) PAR and 

baboon PAR-1 (baPAR-1) sequences were obtained by RT-PCR of RNA extracted from 

NHP cell lines and primary cells using specific primers (Table 4.1). Amino acid sequences 

were aligned using ClustalW software. Extracellular loop 2 (ECL2) in huPAR-2 as defined in 

section 3.2.3 is indicated (red line) and the three amino acids different between muPAR and 
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huPARs are highlighted (red). All the primates and rat PAR sequence share the same three 

amino acids as huPARs (bold). RhPAR-1, cynPAR-1 and baPAR-1 had one amino acid 

different (red). B) C-terminal HA-tagged PAR sequences were cloned into a MLV-based 

vector and introduced into quail QT6 cells by transduction of VSV-G pseudotype retroviral 

particles. Percentage of HA-positive cells was calculated by cell surface staining of the 

transduced cells (black diamond). 5x104 PAR expressing QT6 cells were seeded and the 

day after infected with serial dilution of (EGFP)PERV-containing supernatant. The highest 

MOI as determined on 293T cells was equal to 2. After 72 hours, EGFP expression was 

monitored and titres inferred. EGFP(PERV) titre on huPAR-1 expressing QT6 cells was 

1.7±0.5x104 Etu/mL and arbitrarily chosen as 100% infection. Histograms represent the 

average of three independent experiments (± standard error of the mean). 
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4.2.3 Serine 109 abrogates PERV-A binding 

The mutation of amino acid 109 from leucine to proline in muPAR (section 

3.2.2) or serine in rhPAR-1, cynPAR-1 and baPAR-1 reduced the ability of 

PERV-A to use these proteins as receptors. MuPAR and huPAR-1P109 

binding to soluble PERV-A Env was undetectable. The effect of the serine in 

ECL2 on the binding was investigated. QT6 cells expressing huPAR-1 or 

huPAR-1S109 were incubated with soluble PERV-A360 Env (section 2.3.8). 

The cells were stained using a FITC-conjugated anti-rabbit IgG antibody and 

processed in flow cytometry (Figure 4.4 A). Incubation with PERV-A360 

produced a shift toward higher fluorescence intensity only in cells expressing 

huPAR-1 but not for those carrying huPAR-1S109. Conversely, rhPAR-1 was 

unable to bind soluble PERV-A360 but a positive signal was detected for 

rhPAR-1L109 (Figure 4.4 B). These results suggested that S109 in rhPAR-1 

not only negatively affects the receptor function but also the binding to 

PERV-A Env.  

 

 

Figure 4.4 PERV-A Env binding of rhPAR-1 

5x105 QT6 cells, stably expressing HA-tagged PARs, were incubated with 100 ng of PERV-

A360 Env protein and a secondary FITC-conjugated anti-rabbit IgG antibody. Cells were 

analysed by flow cytometry. Cells carried the following receptors huPAR-1 (A, black filled). 

huPAR-1S109 (A, grey line), rhPAR-1 (B, black filled) and rhPAR-1L109 (B, grey line). 

Graphs show a representative result of two independent experiments. 
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4.2.4 Expression of endogenous PERV-A receptors 

AGM cells encode two functional receptors while rhesus macaque cells carry 

only one, rhPAR-2. To understand the poor permissivity of NHP cells to 

PERV-A, the expression of PARs in NHP cells were investigated. Although 

the amount of the receptors displayed on the cell surface would be more 

informative, due to the lack of an anti-PAR antibody, the mRNA level was 

measured by quantitative RT-PCR. PERV-A susceptible human cell lines 

293T, HT1080, HeLa and primary PBMC were used as a comparison.  

PAR-1 mRNA level was found similar in NHP and human cells. Primary cells 

express about five times less PAR-1 mRNA than the cell lines (Figure 4.5). 

The amount of PAR-2 mRNA was more variable. All human cells and AGM 

VERO had a low level of PAR-2, at least 2.5 order of magnitude inferior of 

PAR-1. Instead, FRhK4 cells, primary baboon PBMC and cynomolgus 

splenocytes expressed ten times more PAR-2 mRNA than human cells and 

VERO, with the difference between PAR-1 and PAR-2 mRNA reduced to 

about 5 fold in primary cells (Figure 4.5). 

Rhesus macaque, cynomolgus monkey and baboon express the mRNA for a 

not functional receptor (PAR-1) at a similar level to human cells. PERV-A 

infection in these NHP is probably mediated by PAR-2, whose mRNA is 

expressed at a lower level than PAR-1, hence the poor permissivity to PERV-

A. These data showed also that AGM VERO and COS7 cells had two 

functional receptors and their mRNA was expressed at a similar level to 

highly permissive human cell lines. Therefore, other causes will be evaluated 

to understand PERV-A infection in NHP cells. 
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Figure 4.5 Expression of mRNA for endogenous PAR 

Total RNA was extracted from NHP and human cell lines and primary cells and 1 µg was 

reverse transcribed. One eighth of the final volume of the reaction was employed in a SYBR 

Green-based quantitative RT-PCR. Primers used were QF6,QR6 for NHP PAR-1 (white 

bars, left) QF1, QR1 for huPAR-1 (white bars, right) QF7,QR7 for NHP PAR-2 (grey bars, 

left) and QF2,QR2 for human PAR-2 (grey bars, right) (Table 2.3.4). PAR copy number was 

inferred from standard curves and normalised per 18S rRNA copy. Histograms represent 

average of at least two independent experiments (± standard error of the mean). 
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4.2.5  Lack of a post-entry restriction acting on PERV Gag-Pol 

Restriction factors acting in a way similar to Fv1 and TRIM5α are the best 

characterised (section 1.6.1). Their expression in, otherwise permissive, cells 

have been showed to reduce retroviral titre more than 10-fold (Stremlau et 

al., 2004; Towers et al., 2000). The viral determinant for restriction was 

mapped in both cases on the CA protein (Besnier et al., 2003; Kozak and 

Chakraborti, 1996; Perron et al., 2004; Towers et al., 2002). Their block can 

be abrogated by virus input saturation (i.e. using a high multiplicity of 

infection) (Towers et al., 2002). 

VSV-G pseudotyped viruses with a MLV-based retroviral vector expressing 

EGFP were generated by transfection of 293T cells together with packaging 

plasmid expressing GagPol of either PERV-A14/220 or unrestricted MoMLV 

(Keckesova et al., 2004; Kozak, 1985; Perron et al., 2004). 48 hours post 

transfection, the pseudotyped viruses were titrated on human 293T, AGM 

COS7 and VERO cells. Titre of the MoMLV/VSV-G virus was similar between 

human and AGM cells. PERV-A14/220 GagPol titre was reduced only 5-fold 

in AGM cells in comparison to 293T cells (Figure 4.6 A), suggesting that 

there is no strong restriction factor acting on PERV GagPol.  

To further demonstrate that the major determinant of low PERV permissivity 

in AGM cells is at receptor level and not at a post-entry step, psudotyped 

viruses with different Env proteins were generated. 293T cells were co-

transfected with an MLV-based retroviral vector carrying EGFP gene, a 

plasmid encoding PERV-A14/220 GagPol and either PERV-A14/220 or MLV-

A Env expressing plasmid. Viruses were titrated on 293T, COS7 and VERO 

cells by monitoring EGFP expression. MLV-A Env was able to rescue the titre 

of the pseudotyped viruses in AGM cells to a similar level than that seen in 

human cells, suggesting that the inhibition of PERV infection in AGM cells 

occurs at cell entry level (Figure 4.6 B). 

The presence of a saturable post-entry restriction factor was further 

investigated. Two different viruses were produced by three plasmid 

transfection of 293T cells, both have PERV-A14/220 Gag-Pol and PERV-
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A14/220 Env. MLV-based retroviral vector encoding EGFP (PERV/EGFP) or 

pcDNA (PERV) were cotransfected. Human 293T, murine NIH3T3 and AGM 

COS7 and VERO cells were incubated with different amount of PERV. After 

6 hours, cells were infected with a fixed volume of PERV/EGFP supernatant. 

No difference was registered in the PERV/EGFP titre using different ratio 

(v/v) of the two viruses (Figure 4.6 C). These data suggested that no 

restriction factors acting in a Fv1 or Trim5 similar way can be held 

responsible for the poor susceptibility of NHP cells to PERV-A. 
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Figure 4.6 Analysis of post-entry block of PERV-A in AGM cells 

A) VSV-G pseudotyped viruses carrying MLV-based retroviral vector encoding the EGFP 

gene were produced by co-transfection of 293T cells with packaging plasmids for PERV-

A14/220 GagPol (grey) or MoMLV GagPol (white). Titres on human 293T, AGM COS7 and 

VERO cells were determined by flow cytometry analysis of EGFP expression. Histograms 

represent the average of two independent experiments (± standard error of the mean). B) 
Pseudotyped viruses were generated by co-transfection of 293T with MLV-based retroviral 

vector carrying EGFP gene, PERV-A14/220 GagPol and PERV-A14/220 Env (grey) or MLV-

A Env (white). 293T, COS7 and VERO cells were infected with serial dilution of the virus-

containing supernatant and titres determined by monitoring EGFP expression. Histograms 

represent the average of two independent experiments (± standard error of the mean). 

Arrows indicated a titre under the detectable limit (10 Etu/mL) C) Two pseudotyped viruses 

were produced by three plasmid transfection of 293T cells, both having PERV-A14/220 

GagPol and Env. MLV-based vector carrying EGFP gene for the reporter virus 

(PERV/EGFP) or pcDNA3 for the saturation virus (PERV) were co-transfected. 5x104 293T 

(grey), COS7 (white), VERO (black) or NIH3T3 (striped) cells were seeded. Prior to infection, 

cells were incubated with different amount of saturation virus, with a range between 0 and 

500 µL for COS7, VERO and NIH3T3 cells and between 0 and 100 µL for 293T cells. After 6 

hours cells were infected with 250 µL (COS7, VERO and NIH3T3) or 50 µL (293T) of the 

PERV/EGFP-containing supernatant. The fixed amount of reporter virus was chosen to 

achieve a percentage of infection of about 1% in 293T and COS7 cells. Histograms 

represent the average of two independent experiments (± standard error of the mean). 
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4.2.6 Absence of inhibitor secreted from NHP cells 

Secretion of inhibitor molecules in the medium has been described as 

mechanism for MLV-A and GALV inhibition in hamster cells (Miller and Miller, 

1992, 1993).  

Human 293T cells were incubated overnight with dilutions of the conditioned 

medium from COS7, VERO or 293T cells and infected with serial dilution of 

PERV(EGFP) in presence of conditioned medium. After 72 hours, EGFP was 

monitored by flow cytometry and the titre calculated. No significant effect was 

observed (Figure 4.7). No factors able to reduce the infection of PERV-A 

were detected in the supernatant of NHP cells. 

 

 

 

 

 

Figure 4.7 PERV-A infection in conditioned media from NHP cells. 

5x104 293T cells were seeded and incubated overnight with 0.45µm filtered conditioned 

media (or dilutions as indicated) harvested from confluent 293T (white), COS7 (grey) or 

VERO (black) cells. The day after, cells were infected with serial dilution of EGFP(PERV) in 

conditioned media. Titres were determined by flow cytometry analysis. Histograms represent 

the average of two independent experiments (± standard error of the mean). 
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4.2.7 Tunicamycin treatment of NHP cells partially rescued PERV-A 
infection but not binding 

Removal of N-linked glycosylation by tunicamycin treatment of the target 

cells has been showed rescuing retroviral infectivity in certain cell lines 

(section 1.5.5). 

To test whether N-linked glycosylation could play a role in AGM cells low 

susceptibility to PERV-A infection, 293T, COS7 and VERO cells were 

infected with serial dilution of EGFP(PERV) after overnight treatment with 

tunicamycin. Drug concentration was chosen for each cell line according to 

its toxicity (Figure 4.8 legend). Titres were inferred from EGFP expression. 

Tunicamycin had no effect on PERV infection of 293T cells. Instead, the viral 

titre on tunicamycin-treated AGM cells was more than 10 fold higher than 

untreated cells (Figure 4.8 A). These data suggested that removal of N-linked 

glycosylation in AGM cells could relieve a possible block to PERV-A infection 

or compensate an independent inhibition mechanism. To better understand 

the role of tunicamycin in the improvement of the susceptibility to PERV-A, I 

analysed the effect this drug had on PERV-A binding on AGM cells. 

COS7, VERO and 293T cells were grown overnight in presence of 

tunicamycin. The day after, 5x105 treated and untreated cells were incubated 

with soluble PERV-A360 Env or PERV-C360 Env, as negative control. 

Binding to the cells was detected by staining with a FITC-conjugated anti-

rabbit IgG antibody and analysed by flow cytometry (Figure 4.8 B). PERV-

A360 Env, but not PERV-C360, successfully bound to 293T cells. As for 

infectivity, no difference was notable after tunicamycin treatment. No binding 

was detected to AGM cells either tunicamycin-treated or untreated. These 

results could suggest that tunicamycin treatment can partially rescue PERV-

A infectivity in AGM cells but not the binding. However, the lack of binding 

when infection was measured could be due to a low sensitivity of this assay.  
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Figure 4.8 Tunicamycin treatment of NHP cells 

A) 5x104 cells were treated for 16 hours with tunicamycin at the final concentration of 100 

ng/mL (293T cells) or 200 ng/mL (COS7 and VERO cells). Tunicamycin-treated (grey) or 

untreated (white) cells were infected with serial dilution of EGFP(PERV). After 72 hours, 

titres were inferred by EGFP expression monitored by flow cytometry. Histograms represent 

the average of four independent experiments (± standard error of the mean). B) 5x105 

tunicamycin-treated (+T) and untreated 293T, COS7 and VERO cells were incubated with 

100 ng in 0.5 mL of soluble PERV-A360 Env (A) or the same amount of PERV-C360 Env 

(C), as negative control. PERV Env binding was detected using a FITC-conjugated anti-

rabbit IgG antibody and flow cytometry analysis. Graphs show a representative result of 

three independent experiments.  
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4.2.8  Analysis of tunicamycin effect on PAR-overexpressing cells 

To improve the study of the tunicamycin effect on different PARs and cells, 

huPAR-1 and AGMPAR-1 were stably overexpressed on COS7 and VERO 

cells as well as on quail QT6 cells. Receptors were delivered using an MLV-

based retroviral vector and cells were transduced between 2 and 3 times until 

more than 98% of the cells expressed the HA-tagged PARs. 

The level of the HA-tagged receptor on the cell surface was determined by 

staining of the cells with an anti-HA antibody and flow cytometry analysis. 

The mean fluorescence intensity (MFI) for each cell population was 

normalised to the MFI of the wild type cells (Figure 4.9 A and B). 5x104 cells 

were seeded and incubated overnight in presence of tunicamycin. The day 

after, cells were either infected with EGFP(PERV) or processed for the 

binding to PERV-A360 Env. Whilst PERV infection of 293T and quail QT6 

cells was not affected by tunicamycin treatment, the susceptibility of AGM 

cells to PERV-A infection was increased regardless the receptor (huPAR-1 or 

AGMPAR-1) expressed (Figure 4.9 A). This result indicated that tunicamycin 

partial rescue of permissivity to PERV-A in AGM cells was cell-specific and 

did not depend on the receptor expressed. 

The binding of PERV-A360 Env was quantified by flow cytometry analysis. 

The MFI obtained by incubating cells with soluble PERV-A360 Env was 

normalised to the MFI produced using PERV-C360 Env. Binding to AGM 

cells was measurable only when PARs were overexpressed. Tunicamycin 

treatment reduced the amount of Env bound to the cells. From analysis using 

a visible light microscope of the tunicamycin-treated cells and from the 

morphological gate of the cells during flow cytometry analysis, the reduction 

in the binding did not appear to be due to toxicity of the tunicamycin 

treatment.  

To further confirm tunicamycin effect on PERV-A infection and binding, single 

clone populations, expressing different amounts of huPAR-1 or AGMPAR-1, 

were generated. Quail QT6 and AGM COS7 cells were transduced with a 

retroviral vector carrying C-terminal tagged huPAR-1 or AGMPAR-1. Single 
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clones were picked and receptor level on cell surface was measured by 

staining with an anti-HA antibody and flow cytometry analysis. MFI for each 

clone was normalised to the MFI of the wild type cells. Cell clones were 

treated overnight with tunicamycin and processed for PERV-A infection and 

PERV-A360 Env binding as described above for the PAR-transduced bulk 

population. Tunicamycin treatment increased susceptibility to PERV-A 

infection only for COS7 cell clones while QT6 cell clones were unaffected 

(Figure 4.10 A and B). No difference in the binding to PERV-A360 Env was 

observed between tunicamycin-treated and untreated cell clones (Figure 4.10 

C and D). 

Taken together these results showed that PERV-A infection in AGM cells, but 

not human or quail cells, was increased by tunicamycin treatment, although 

the mechanism is unclear. Results on soluble PERV-A Env binding to AGM 

cells suggested that tunicamycin treatment do not enhance virus binding to 

the receptor. 
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Figure 4.9 Tunicamycin treatment of exogenous PAR-expressing cells 

Quail QT6, AGM COS7 and VERO cells were stably transduced with VSV-G pseudotyped 

MLV-vector carrying HA-tagged huPAR-1 or AGMPAR-1. More than 98% of the cells were 

positive for anti-HA antibody staining (graphs in Figure 4.12). MFI for each population has 

been normalised to (i.e. divided by) the MFI of the wild type (HA staining-negative) cells 

(black diamond). Cells were treated for 16 hours with tunicamycin at the final concentration 

of 100 ng/mL (293T cells), 200 ng/mL (COS7 and VERO cells) or 25 ng/mL (QT6 cells). A) 
Tunicamycin-treated (grey) or untreated (white) cells were infected with serial dilution of 

EGFP(PERV). After 72 hours, titres were inferred by EGFP expression monitored by flow 

cytometry analysis. Histograms represent the average of two independent experiments (± 

standard error of the mean). B) 5x105 tunicamycin-treated (grey) and untreated (white) cells 

were incubated with 100 ng in 0.5 mL of soluble PERV-A360 Env or PERV-C360 Env. PERV 

Env binding was detected using a FITC-conjugated anti-rabbit IgG antibody and flow 

cytometry analysis. Histograms represent the binding measured as MFI obtained with PERV-

A360 Env normalised to MFI recorded with PERV-C360 Env. 
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Figure 4.10  Dependence of  PERV-A infection and Env binding on PAR expression 
level 

Quail QT6 (black) and AGM COS7 (white) cells were stably transduced with VSV-G 

pseudotyped MLV-vector carrying HA-tagged huPAR-1 (diamond) or AGMPAR-1 (circle). 

Single cell clones were grown and the level of the receptor tested by staining with an anti-HA 

antibody. Clones with different MFI (normalised on the MFI of wild type cells) were selected. 

5x104 tunicamycin treated (B) or untreated (A) cells were seeded and, the day after, infected 

with serial dilutions of EGFP(PERV). Titres were inferred from EGFP expression and 

showed in correlation with the HA surface staining. Each dot represents the average of two 

independent experiments. 5x105 tunicamycin-treated (D) or untreated (C) cells were 

incubated with 100 ng in 0.5 mL of PERV-A360 Env or PERV-C360 Env. PERV Env binding 

was detected by immunostaining with a FITC-conjugated anti-rabbit IgG antibody and 

showed as MFI Env-A360 normalised on the MFI Env-C360. Dots in the graph represent the 

average of two independent experiments. 
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4.2.9 Tunicamycin does not affect PERV-A attachment to the cell 
surface 

Different cell surface molecules other than the receptor could mediated 

PERV-A adsorption to the cells and facilitate the interaction with the cognate 

receptor and indirectly influence the infectivity. Tunicamycin treatment 

prevents N-linked glycosylation of all the cellular proteins. Therefore, I 

investigated whether tunicamycin-mediated enhancement of PERV-A 

infection in NHP cells could be due to an increased attachment to 

deglycosylated proteins other than the receptor.  

2x105 293T, QT6, COS7 and VERO cells were seeded on a cover slip and 

treated overnight with tunicamycin. The day after, cells were incubated with 

4.5x106 i.u/mL of PERV-A and stained with an anti-PERV CA antibody and 

visualised by confocal microscopy. Although a quantitative analysis has not 

been conducted, the representative fields showed that no clear difference in 

the amount of viruses attached on the cell surface after tunicamycin 

treatment was observed for AGM cells (Figure 4.11). 

  



163 

 

 

 



164 

 

Figure 4.11 PERV-A attachment to the cell surface 

2X105 cells were seeded on a cover glass and treated or not with different concentration of 

tunicamycin: 100 ng/mL (293T cells), 200 ng/mL (COS7 and VERO cells) or 25 ng/mL (QT6 

cells). The day after, cells were incubated with 1.5 mL of EGFP(PERV), fixed, permeabilised 

and immunostained with an anti-PERV CA antibody followed by the FITC-conjugated 

secondary antibody. Cover glasses were mounted on a slide with mounting solution 

containing propidium iodide to counterstain the nuclei (red). Images show representative 

fields acquired using DM IRE2 confocal microscope (oil immersion objective 63X). Viral 

particles appeared as green dot associated to the cells. Cells incubated with media alone, 

without virus, have been used as negative control. 
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4.2.10 No evidence of PAR intracellular entrapment in NHP cells 

One of the mechanisms proposed for tunicamycin-mediated rescue of 

retroviral infection was that the lack of N-linked glycosylation could cause 

misfolding of inhibitory molecule such as an ERV Env (Lavillette et al., 2000). 

Results presented above suggested that NHP low permissivity to PERV-A 

infection could not be due to a cellular molecule secreted in the supernatant 

(section 4.2.6). However, AGM cells could produce a molecule which 

interacts with the newly synthesised PARs preventing their display on the cell 

surface. To test this hypothesis, the cell surface level of PAR was compared 

to their intracellular amount. 

QT6, COS7 and VERO cells expressing HA-tagged huPAR-1 or AGMPAR-1 

(section 4.2.8) were fixed and immunostained using an anti-HA antibody in 

presence (intracellular) or absence (extracellular) of saponin, a chemical 

which permeabilised the cell plasma membrane. Although, a higher level of 

intracellular receptor was expected, the MFI of saponin-treated cells was 

lower in all the cells in comparison with those surface-stained (Figure 4.12). 

This could be due to technical problems. The ratio between HA stainings with 

or without saponin was calculated after normalisation against MFI of wild type 

cells (table 4.2). No significant AGM cell-specific difference was observed. 
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Figure 4.12 Expression of exogenous PAR in the stably transduced cells 

Quail QT6, AGM COS7 and VERO cells were stably transduced with VSV-G pseudotyped 

MLV-vector carrying HA-tagged huPAR-1 (A) or AGMPAR-1 (B). Cells were fixed and 

permeabilised (+) or not (-) with saponin 0.2% (w/v) in PBS. Receptor level was inferred by 

immunostaining using an anti-HA antibody and a PE-conjugated anti-mouse IgG antibody. 

Cells were analysed by flow cytometry. 
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Table 4.2 Ratio of HA staining of saponin-treated or untreated cells 

Mean fluorescence intensity (MFI) values were calculated using CellQuest software and 

normalised on MFI values of the wild type cells. For each sample MFI ratio represented the 

MFI obtained with a cell surface staining (i.e. no saponin) divided by MFI of saponin-treated 

cells. 
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4.3  Discussion 

NHP are considered an ideal animal model to evaluate the risk of PERV 

transmission in the context of xenotransplantation [reviewed in (Denner, 

2003)]. Pig-to-NHP transplantation is currently used to test the immunological 

response to xenograft [reviewed in (Ekser et al., 2009)]. Furthermore, in 

comparison to retrospective studies on patients treated with porcine materials 

PERV transmission in NHP could be investigated in a variety of tissues not 

limited, as in human recipients, to PBMC and serum. NHP could also be 

treated with drugs to simulate the immunosuppression required in 

xenotransplantation. However, PERV infection in NHP cells in vitro does not 

occur with the same ease than in certain human cells (Blusch et al., 2000a; 

Martin et al., 1999; Specke et al., 2001; Takeuchi et al., 1998; Templin et al., 

2000; Wilson et al., 2000). Therefore, inferring information applicable to 

human xenotransplantation from the pig-to-NHP transplantation model could 

be misleading. Understanding the reason for the poor susceptibility of NHP 

cells to PERV infection could clarify the suitability and the limitations, and 

help in the choice, of an ideal animal model. 

A previous study of PERV transmission in NHP cells concluded that PERV 

infection in NHP cells was not productive (Ritzhaupt et al., 2002). In this 

chapter, I evaluated PERV infection in NHP cells and give indications of 

possible reasons behind the poor susceptibility of NHP cells to PERV-A. 

Using a pseudotyped PERV-A14/220 virus carrying an EGFP reporter gene, 

different steps in the virus life cycle were evaluated. Upon transduction of 

NHP cells, EGFP expression was confirmed in AGM COS7 and rhesus 

macaque FRhK4 cells (Figure 4.2 A). Furthermore PERV gag gene was 

detected in both cellular genomic DNA and RNA (Figure 4.2 B and C). These 

data agreed with previous studies in which following PERV infection, viral 

sequences were detected by PCR in the genomic DNA and RNA of infected 

NHP cells (Blusch et al., 2000a; Ritzhaupt et al., 2002). To understand 

whether PERV can productively infect NHP cells, the presence of infectious 

particles in the supernatant of PERV-infected NHP cells was investigated. 

AGM COS7 cells produced virions able to infect 293T cells up to three weeks 
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post PERV infection, albeit at low titres (Figure 4.2 D). To further confirm the 

ability of PERV infected NHP cells to produce infectious viral particles and to 

understand which step in the virus life cycle was responsible for the low 

permissivity to PERV, NHP cells were transduceded with the human PERV-A 

receptor-2 (Ericsson et al., 2003). Indeed, pseudotyped EGFP(PERV) titre on 

huPAR-2 expressing NHP cells was at least 37 times higher. PERV infection 

on AGM VERO cells, which was undetectable in the wild type cell, was at 

similar levels to huPAR2-transduced COS7 and FRhK4 cells (Figure 4.2 A). 

Infectious virions were produced in all NHP cells, as determined by the 

infection assay on 293T cells (Figure 4.2 D). These results suggested that 

low efficiency in PERV entry is the major cause for the low permissivity of 

NHP cells.  

To better evaluate PERV entry in these cells, NHP PARs were analysed. 

Two PARs in human cells were identified (Ericsson et al., 2003) but only one 

in mice, rats and pigs. From sequences present in the NCBI database, it was 

likely that primates have two PARs as humans. While chimpanzee and 

rhesus macaque homologues to huPAR-1 and huPAR-2 sequences were 

already deposited in GenBank, PAR sequences for AGM, baboon and 

cynomolgus monkey was cloned by RT-PCR of RNA extracted from NHP 

cells. BaPAR-2 has been previously cloned (Ericsson et al., 2003). Protein 

sequence alignment revealed that rhPAR-1, cynPAR-1 and baPAR-1 have 

one amino acid difference from huPARs in the second extracellular loop at 

position 109, where muPAR possesses the critical proline responsible for the 

PERV-A resistance (section 3.2.2). The ability of the different NHP PARs to 

support PERV-A entry was tested. PERV-resistant quail QT6 cells were 

transduced to stably express NHP PARs. The receptors were HA-tagged at 

the C-terminal to verify their display on the cell surface. PERV-A titre on 

PAR-expressing QT6 cells was measured and revealed that all NHP PAR 

receptors were functional except for those containing serine at a.a. 109 

(Figure 4.3 B). To confirm the role of this serine in the rhPAR-1 function as 

receptor, two chimeric receptors were generated: huPAR-1 in which leucine 

109 was changed into a serine (huPAR-1S109) and rhPAR-1 with a leucine 

in position 109 instead of the serine. Infection assay on QT6 cells expressing 



170 

 

these chimeric receptors revealed that rhPAR-1L109 was able to mediate 

PERV-A entry in QT6 cells (Figure 4.3 B) and binding to a soluble PERV-A 

Env (Figure 4.4 B). Conversely, PERV-A titre on QT6 cells expressing 

huPAR-1S109 was strongly reduced (Figure 4.3 B) and the receptor was 

unable to mediate the binding to PERV-A Env (Figure 4.4 A). These data 

suggested that a single amino acid substitution in PAR-1 of rhesus macaque, 

cynomolgus monkey and baboon cells disrupted their function as receptor, 

leaving these NHP with only one functional receptor (PAR-2). Instead, AGM 

cells encode two functional receptors, as in human cells.  

Low sensitivity to PERV-A infection in AGM cells mirrored the resistance in 

rat cells. In both cases, cells encode functional receptors. In rat cells a 

subthreshold level of ratPAR expression was associated to PERV-A 

resistance, AGM PARs expression in AGM cells was investigated. The lack 

of an anti-PAR antibody prevented the analysis of the receptor displayed on 

the cell surface. Therefore PAR mRNA was analysed by quantitative RT-

PCR (Figure 4.5). The two functional receptors in AGM COS7 and VERO 

cells were expressed at a similar level to PARs in human cells. However, the 

mRNA level of expression could not correlate with the amount of protein 

expressed on the cell surface. Furthermore, other mechanisms could be 

preventing PERV-A infection in AGM cells. The reason for the low 

permissivity of AGM cells to PERV-A were investigated further. 

Post-entry restriction factors acting in a Fv-1 or TRIM5α similar way were 

evaluated by comparison of the infection efficiency on 293T and AGM COS7 

and VERO cells of pseudotyped retroviral particles carrying either PERV-

A14/220 or MoMLV GagPol. The titre obtained with PERV-A14/220 GagPol 

in AGM cells was 5 fold lower than that on 293T cells (Figure 4.6 A), while 

the difference of PERV-A infection between 293T cells and AGM cells is 

more than 200 times (Figure 4.8 A, untreated). Therefore, although a weak 

post-entry restriction factor could contribute to the low permissivity of PERV-

A in AGM cells, this could not be considered the main mechanism of 

inhibition. Furthermore, infection with a pseudotyped PERV-A14/220 bearing 
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MLV-A Env could rescue the titre on AGM cells (Figure 4.6 B), suggesting 

that the major block to PERV-A infection in AGM cells occurs at entry level.  

Infection of 293T cells in conditioned media from AGM cells did not alter 

PERV-A titre, suggesting that no inhibitor is secreted from these cells (Figure 

4.7). Receptor entrapment in cytosolic compartment was also analysed. QT6, 

COS7 and VERO cells were stably transduced to express huPAR-1 or 

AGMPAR-1. Cell surface display of the receptor was measured by HA-

staining. After permeabilisation, the total amount of HA-tagged receptor in the 

cells was evaluated. If a mechanism was present in AGM cells which prevent 

the trafficking to the cell surface, I would expect that the ratio between the 

cell surface-displayed and total amount of PAR in NHP would be 

considerably lower than in QT6 cells. My data did not show evidence for 

reduced surface display of exogenously expressed PAR in NHP cells (Figure 

4.12 and Table 4.2) However, it cannot be excluded that endogenously 

expressed AGM PAR already saturates possible inhibitors of PAR trafficking. 

Tunicamycin-treatment of AGM cells prior to PERV infection could enhance 

the virus permissivity in these cells (Figure 4.8 A) but did not affect binding 

(Figure 4.9). These results have been confirmed also for PAR-

overexpressing AGM cells, but not for quail QT6 cells (Figure 4.9). 

Tunicamycin-mediated enhacement of PERV infection was similar in AGM 

cells expressing huPAR-1 and AGMPAR-1, suggesting that the effect is cell-

specific (Figure 4.9 and 4.10). In particular, when the same level of PAR-1 

(i.e. same MFI) was expressed on the cell surface of QT6 and COS7 cells, 

titres obtained on QT6 cells were more than 10-fold higher than those on 

COS7 cells. Tunicamycin treatment drastically reduced this difference (Figure 

4.10). 

Immunofluorescence analysis of PERV attachment on the cell surface of 

AGM cells did not show any difference after tunicamycin-treatment (Figure 

4.11). This suggested that tunicamycin-mediated enhancement of PERV 

infection does not involve a change in the N-linked glycosylation of other cell 

surface molecules, implicated in virus adsorption. Therefore, it is possible 

that tunicamycin enhances PERV-A infection through removal of N-linked 
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polysaccharide chains from PAR in AGM cells. This possibility could be 

tested by the comparison of AGMPAR and an N-glycosylation deficient 

mutant, lacking the asparagine at position 178 (section 3.2.3) in their ability to 

mediate PERV-A entry in AGM cells.  

In summary, the results from this chapter suggested that poor susceptibility 

of rhesus macaque, cynomolgus and baboon cells to PERV-A infection is 

due to a serine in the critical ECL2 of PAR-1 which not only prevent PERV-A 

entry but also binding. Infection observed in these monkey cells may be 

mediated by a functional PAR-2. However, the level of expression of its 

mRNA is lower than PAR-1 in human cells, hence the poor permissivity of 

these cells to PERV-A. Therefore, rhesus macaque and cynomolgus 

monkey, which have been the prevalent choice as animal models in pig-to-

NHP transplantation [reviewed in (Ekser et al., 2008)], are probably not the 

most suitable model to predict the risk of PERV transmission in pig-to-human 

transplantation. Because AGM cells express two functional receptors at 

similar level than human cells, they could represent a better animal model to 

evaluate PERV infection. However, no clear explanation was obtained for the 

poor susceptibility of AGM cells to PERV-A. From the results presented in 

this chapter, tunicamycin-treatment could increase PERV-A infection in AGM 

cells, but through an unknown mechanism.  
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Chapter 5 

5 . Inhibition of PERV release from pig cells by 
tetherin 

 

5.1 Introduction 

Genetically modified pigs have been developed to overcome the 

immunological barrier in xenotransplantation (section 1.1.1). The same 

strategy has been also employed to reduce the risk of PERV associated 

zoonosis. Multi-transgenic animals are seen as an optimised source of 

xenografts, characterised by low probability of PERV infection, absence of 

hyperacute immune reaction and reduced cellular rejection (Sykes, 2008). 

Currently, only two groups have adopted this strategy and produced 

transgenic pigs expressing small interfering RNAs for the inhibition of PERV 

expression (Dieckhoff et al., 2009; Dieckhoff et al., 2008; Ramsoondar et al., 

2009). Both groups found a reduction in PERV gene transcription. However, 

PERV proteins were not detectable in either non-transgenic controls or in the 

transgenic animals, which renders the interpretation of their results difficult 

(Dieckhoff et al., 2008; Ramsoondar et al., 2009). Other molecules have 

been investigated and could potentially be employed in the development of 

safer transgenic pigs for use as animal donors in human transplantation: 

intracellularly expressed antibodies directed against PERV Gag (Dekker et 

al., 2003), sugar modifying enzymes to remodel PERV envelope glycoprotein 

(Miyagawa et al., 2006) and the restriction factor human APOBEC3G 

(Dorrschuck et al., 2008; Jonsson et al., 2007).  

In this chapter, another possible candidate molecule whose expression in 

transgenic animals could reduce the risk posed by PERV has been 

evaluated. Tetherin (BST-2, CD317, HM1.24) has recently been described as 

a restriction factor in human cells able to block the release of some groups of 

enveloped viruses (section 1.6.4). Tetherin (THN) expression varies in 

different cell types and can be induced by type I interferon (IFN) (Blasius et 

al., 2006; Neil et al., 2008). Its mechanism of action involves the tethering of 
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nascent viral particles to the cell membrane of the virus-producing cells (Neil 

et al., 2008). THN-mediated block to virus production appears to be able to 

inhibit the production of a broad range of enveloped viruses. In fact, 

members of other retroviral families, including alpharetrovirus, betaretrovirus, 

deltaretrovirus, gammaretrovirus, lentivirus and spumavirus (Jouvenet et al., 

2009; Neil et al., 2008), filoviruses such as Marburg virus and Ebola virus 

(Jouvenet et al., 2009; Sakuma et al., 2009), and the arenavirus Lassa virus 

(Sakuma et al., 2009) are all sensitive to inhibition by human THN. In 

addition, a proteomic study revealed that CD317 protein levels decreased in 

the presence of human herpesvirus 8 K5 protein (Bartee et al., 2006), 

suggesting a possible antagonising role similar to that of HIV-1 Vpu. While 

THN-mediated block of virus release seems to be part of the innate type I 

IFN-dependent generally immunity to enveloped viruses, the viral 

countermeasures to this restriction are species-specific. Among primate 

lentiviruses only few encode a Vpu protein (Bailes et al., 2003; Bibollet-

Ruche et al., 2004; Courgnaud et al., 2003; Courgnaud et al., 2002; Gao et 

al., 1999). HIV-1 Vpu can antagonise human THN but is ineffective against 

other primate THNs (Gupta et al., 2009a; Jia et al., 2009; McNatt et al., 2009) 

or non primate THNs (Goffinet et al., 2009; Gupta et al., 2009a; McNatt et al., 

2009). The determinants of susceptibility to HIV-1 Vpu have been mapped to 

the transmembrane region of THN (Gupta et al., 2009a; Jia et al., 2009; 

McNatt et al., 2009; Rong et al., 2009). Vpu antagonised THN by removing 

the restriction factor from the cell membrane via a β–TrCP/E3 ubiquitin ligase 

complex (Douglas et al., 2009; Mitchell et al., 2009) similar to the mechanism 

described for the surface down-modulation of CD4 by HIV-1 Vpu (Margottin 

et al., 1998). Viruses lacking Vpu protein have developed other counteracting 

systems. In rhesus macaque simian immunodeficiency virus (SIVmac), the 

accessory protein Nef has assumed the function of overcoming THN-

mediated restriction (Jia et al., 2009; Zhang et al., 2009). For other viruses, 

the anti-THN role is played by the envelope glycoprotein, possibly with a 

different mechanism from Vpu. Specifically, Ebola glycoprotein antagonised 

THN-mediated restriction (Kaletsky et al., 2009), and tantalus monkey SIV 

Env was able to counteract tantalus monkey, rhesus macaque, sooty 
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mangabees monkey and human THNs (Gupta et al., 2009b). Furthermore, 

HIV-2 envelope enhances the production of HIV-1 particles in a Vpu-like 

pattern (Abada et al., 2005; Bour et al., 1996; Bour and Strebel, 1996; Ritter 

et al., 1996), suggesting its possible role as a countermeasure for THN block. 

To understand whether THN can be used to generate transgenic pigs with 

reduced PERV production, a porcine homologue to human THN has been 

cloned and characterised. The ability of human and porcine THN to inhibit the 

release of PERV from virus-producing cells has been investigated. In fact, 

contrary to previous studies where infection by an exogenous virus in THN-

expressing cells was examined, the situation is reverse in pig cells. PERV is 

already integrated and continuously produced, while THN would been 

exogenously delivered. 
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5.2 Results 

5.2.1 PERV-producing porcine cells express a homologue of human 
tetherin 

Human THN (huTHN) mRNA sequence (Genbank accession number: 

NM_004335.2) was submitted as template in the pig EST database using the 

basic local alignment search tool software [BLAST, (Altschul et al., 1997)]. 

The first 18 hits share the same sequence (data not shown). Among these, 

sequence EW580921.2 was arbitrarily chosen to design primers that anneal 

to the hypothetical transcriptional start and end of the porcine tetherin 

candidate. As huTHN gene has been reported to be IFN-inducible and silent 

in certain cell lines (Neil et al., 2008), we used three pig cell lines as a 

potential cDNA source for pig homologue to huTHN. Total RNA from PK15, 

MPK and ST-IOWA cells, was extracted and reverse transcribed as 

previously described (section 2.2.9). The cDNA was employed as template in 

a PCR using the porcine THN primers CF7 and CR7 (Table 2.3.2). The 

expected 533bp band was visualised in an agarose gel (Figure 5.1 A) and 

the PCR products cloned into pGEM T-easy vector. The analysis of the 

sequences obtained from MPK and ST-IOWA PCR products revealed a 

perfect match with the EST EW580921.2. However, the PK15 product 

sequence presented two mismatches at nucleotides 351 and 427, which are 

non-synonymous substitutions (Figure 5.1 B). Direct sequencing of the PK15 

THN cDNA showed that PK15 cells express two types of cDNA: one the 

same as EW580921.2 and the other with changes at positions 351 and 427 

(Figure 5.1, chromatograms). 

 

Human cell lines, 293T and HeLa, express significantly different level of 

huTHN. As a consequence, while retroviral particles successfully bud from 

293T cells, they are withheld on the cell surface of HeLa cells by a THN-

mediated mechanism (Neil et al., 2008). To determine the level of porcine 

THN expressed in pig cells, cDNA from PK15, MPK and ST-IOWA was 

processed by quantitative RT-PCR and compared to the huTHN mRNA level 

in 293T and HeLa cells (Figure 5.2). THN mRNA expression in pig cells is 
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estimated to be 35 times higher than human 293T cells but 5 times lower 

than HeLa cells. The implication for virus production will be analysed in the 

following sections. 

 

 

 
Figure 5.1 Cloning of a porcine homologue of human tetherin 

A)1µg of total RNA from pig PK15, MPK and ST-IOWA cell lines was reverse transcribed 

using QuantiTect Reverse Transcription kit and one quarter of the volume of the resulting 

cDNA used as template in a RT-PCR using primers CF7 and CR7 (Table 2.3.2). The 

products were run in a 1.5% agarose gel and visualised by High Performance ultraviolet 
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transilluminator (UVP). The band sizes were approximately determined by comparison with 

GeneRuler 100bp DNA ladder (M). B) PCR products were gel extracted, cloned into pGEM 

T-easy vector, and sequenced using primers M13F and M13R (Table 2.3.3). The porcine 

sequences were aligned against huTHN sequence using ClustalW programme. The two 

different amino acids between PK15 and MPK/IOWA THN sequences were indicated (•). The 

nucleotide polymorphisms in PK15THN were visualised in chromatograms obtained by direct 

sequencing of the PCR product using primers CF7 and CR7. 

 

 

 

 

Figure 5.2 Endogenous expression of porcine tetherin in pig cells 

1 µg of total RNA from pig PK15, MPK and ST-IOWA, and human 293T and HeLa cell lines 

was reverse transcribed in a final volume of 20 µl. For each reaction, 2.5 µl of cDNA were 

added to the QuantiTect SYBR Green PCR mix together with the specific primers: QF9 and 

QR9 for pig THN, QF10 and QR10 for huTHN, and QF4 and QR4 for 18S rRNA gene. 

Samples were run in triplicate. The amount of copies for each gene was extrapolated from 

analysis of the standard curves. Histograms represent porcine and human THN number of 

copies normalised to one 18S rRNA copy. 
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5.2.2 Porcine tetherin blocks release of retroviral particles 

MPK and PK15 cells produce infectious PERV particles although porcine 

tetherin is well expressed in these cells. The ability of porcine THN to inhibit 

viral release similarly to huTHN has been investigated. Due to the two amino 

acids difference in their sequences, both PK15 tetherin (PK15THN) and 

MPK/ST-IOWA tetherin (IOWATHN) were analysed. 

EGFP-expressing viruses were prepared by transfection of 293T cells with 

MLV-based retroviral vector CNCG, carrying the reporter EGFP gene, and 

packaging plasmids encoding PERV-A14/220 GagPol and PERV-A14/220 

Env (PERV2a/PERV2a), or Moloney MLV GagPol and amphotropic MLV Env 

(MoMLV/MLV-A). Viral titres were determined by infection of 293T cells with 

serial dilutions of the supernatant from the producing cells, followed by 

monitoring EGFP expression.  

Co-transfection of human or porcine THN reduced PERV-A and MLV titres 

30 to 80-fold in comparison to those with an empty plasmid (pcDNA3) (Figure 

5.3 A). Cell lysate of PERV2a/PERV2a-producing cells and the 

corresponding supernatant were immunoblotted using a polyclonal rabbit 

anti-PERV CA antibody. Expression of human and porcine THN did not affect 

the amount of cell-associated Gag (Figure 5.3 B, cell lysate), but reduced the 

presence of mature virions (processed capsid protein p30) in the supernatant 

(Figure 5.3 B, SN). Furthermore, no significant difference in the reduction of 

released titre could be observed between huTHN, PK15THN and IOWATHN. 

These data agreed with an observation by Gupta and colleagues in our 

collaboration showing that huTHN and IOWATHN equally inhibit HIV-based 

lentiviral vector pseudotyped with VSV-G (Gupta et al., 2009b). 

These results confirmed that both porcine THNs we cloned were able to 

block the release of retroviral particles. The two amino acid mutations in the 

PK15THN sequence did not affect its restriction function. 
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Figure 5.3 Porcine tetherin blocking of PERV and MLV release 

A) EGFP expressing viruses, PERV2a/PERV2a and MoMLV/MLV-A, were produced by 

three plasmid transfection of 1x106 293T cells together with 200 ng of huTHN plasmid (grey), 

PK15THN (black), IOWATHN (striped) or an equal amount of empty plasmid (white). Viral 

titres were determined by infection of 293T cells with serial dilutions of the supernatant and 

monitoring EGFP expression by flow cytometry. Histograms represented the average of two 

independent experiments (± standard error of the mean). B) Two days post-transfection, 

virus-producing cells were harvested and lysed in RIPA buffer. Supernatant from these cells 

was concentrated by centrifugation and resuspended in Laemmli buffer. A quarter of the total 

cell lysate and the supernatant were separated in a 10% SDS-PAGE. Proteins were 

immunoblotted using rabbit polyclonal anti-PERV capsid antibody. In the cell lysates (upper 

panel) capsid precursor (p60), the intermediate forms and the processed capsid (p30) were 

visible. In the supernatant (SN, bottom panel) p30 was the main form represented. 
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5.2.3 Porcine tetherin is insensitive to HIV-Vpu 

As eukaryotic cells evolve many factors to block viral infection (section 1. 6), 

viruses develop countermeasures to overcome them. Due to selective 

pressure, restriction factors and antagonistic viral proteins are often species-

specific, although sometimes some cross-species effect can be observed. 

HIV-1 Vpu is able to inhibit the restriction posed by THN in human cells (Neil 

et al., 2008), and its effect on porcine THN has been investigated.  

PERV2a/PERV2a, carrying the reporter gene EGFP, has been produced by 

three plasmid transfection of 293T cells in the presence of either human or 

porcine THN, or an empty vector, as negative control. By co-transfection of 

an expression plasmid encoding HIV-1 vpu gene, PERV2a/PERV2a titre in 

the presence of human THN was rescued to the control level (empty plasmid, 

EP). However, HIV-1 Vpu expression did not rescue the reduction of viral titre 

caused by porcine THNs, PK15THN and IOWATHN (Figure 5.4 A). Western 

blot analysis of the producing-cell lysates confirmed that similar amount of 

Gag was produced in the cells (Figure 5.4 B, cell lysates), but it was 

differentially released in the supernatant (Figure 5.4 B, SN), consistent with 

the infection assay (Figure 5.4 A). 

These results showed that the block to PERV budding by porcine THN 

cannot be overcome by HIV-1 Vpu. The same insensitivity of porcine THN to 

HIV-1 Vpu has also been shown using VSV-G pseudotyped HIV particles as 

assay virus (Gupta et al., 2009b). 
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Figure 5.4 Porcine tetherin block is not antagonised by HIV-1 Vpu 

A) PERV 2a/PERV2a carrying the reporter gene EGFP was produced by transfection of 

293T cells together with 200 ng of huTHN, PK15THN, IOWATHN or equal amount of empty 

plasmid (EP). 200 ng of an expression plasmid encoding HIV-1 Vpu (white) or the backbone 

alone (pcDNA3, grey) was also co-transfected. Released virus was titred on 293T cells and 

monitored by flow cytometry. Histograms represented the average of two experiments and 

the error bars the standard error of the mean. B) PERV2a/PERV2a was produced in the 

presence of human (huTHN) or porcine (PK15THN and IOWATHN) tetherin and with (+) or 

without (-) HIV-1 Vpu protein. Producing cells and supernatants (SN) were processed by 

SDS-PAGE and immunoblotted using an anti-PERV CA antibody. Precursor and 

intermediate forms of PERV capsid were visualised in the cell lysate (upper panel), while 

fully processed p30 was the main form present in the supernatant (SN, bottom panel). 
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5.2.4 No evidence for tetherin countermeasure expressed by PERV-
A14/220 

Few lentiviruses encode a Vpu-like protein (Bibollet-Ruche et al., 2004). In 

other primate lentiviruses, such as rhesus macaque SIV, anti-tetherin 

function has been assumed by Nef protein (Jia et al., 2009; Zhang et al., 

2009). Furthermore, it has recently been shown that envelope glycoprotein of 

tantalus monkey SIV, can antagonise tantalus, rhesus, sooty mangabees 

monkey tetherins as well as human tetherin (Gupta et al., 2009b). Similarly, a 

filovirus, Ebola virus, overcomes human tetherin-mediated restriction with its 

own envelope glycoprotein (Kaletsky et al., 2009). However, there are no 

reports on how simple retroviruses such as MLV or PERV can avoid tetherin-

mediated restriction. 

293T cells were transfected with a retroviral vector expressing the reporter 

gene EGFP, PERV2a GagPol and VSV-G expressing plasmids, and porcine 

THN-encoding plasmids. To investigate the ability of PERV-A14/220 

(PERV2a) envelope to antagonise THN block, increasing amounts of 

PERV2a Env plasmid were added to the plasmid mix. After 48 hours, the 

virus released in the supernatant was titrated on murine, PERV-A-resistant, 

NIH3T3 cells. These cells were chosen to monitor VSV-G-mediated EGFP 

transduction specifically, and avoid a contribution in the titre from PERV2a-

pseudotyped viral particles. In the absence of PERV2a Env, PK15THN and 

IOWATHN reduced the viral titre about 10-fold compared to an empty 

plasmid (EP). The addition of PERV2a Env had no effect on PERV2a/VSV-G 

titre (Fig 5.5 A, pcDNA3), and did not rescue its reduction caused by porcine 

THN (Fig 5.5 A). These data suggested that PERV-A Env cannot counteract 

THN-mediated restriction.  

As PERV2a Env alone could not inhibit the restriction posed by THN, I tested 

whether any other part of the PERV2a genome could. EGFP(MLV) viruses 

bearing MLV-A Env were produced by transfection of 293T cells together 

with 200 ng of IOWATHN plasmid. Serial dilutions of the full length PERV2a 

genome were co-transfected. The viral titre was determined by infection of 

murine NIH3T3 cells. The PERV2a genome was unable to rescue the 10-fold 
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reduction of the viral titre caused by IOWATHN (Figure 5.5 B). To 

corroborate this result, the effect of PERV expression on HIV-1 inhibition by 

THN was also examined. An HIV-based vector expressing EGFP (pHRSIN-

CSGW) was transfected into 293T cells together with packaging plasmids 

p8.91, encoding HIV-1 GagPol and pMDG, carrying the VSV-G gene. Human 

or porcine THN was co-transfected in the presence of 200 ng of PERV2a 

genomic plasmid or an irrelevant construct as negative control (pCNCR). The 

amount of virus released in the supernatant was titrated on 293T cells. The 

PERV2a genome was unable to overcome the 20- to 85-fold reduction in 

EGFP(HIV) titre (Figure 5.5 C). 

Taken together these results showed no evidence of an antagonistic effect of 

PERV2a genome against either human or porcine THN.  
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Figure 5.5 PERV-A14/220 Env or genome does not counteract tetherin 

A) EGFP encoding MoMLV/MLVA viruses were produced by co-transfection of 293T cells 

with 200 ng of porcine THN, PK15THN (white circles), IOWATHN (black squares) or an 

empty plasmid (grey triangles). In addition, a mixture of PERV-A14/220 Env plasmid 

(PERV2a Env) and empty plasmid pcDNA3, with the total amount of plasmids being 400 ng, 

was cotransfected. The quantity of PERV2a Env plasmid is indicated in the graph. Viral 

particles released in the supernatant were titred by EGFP-transduction of NIH3T3 cells and 

the mean of the titre indicated with the standard error of the mean. B) Retroviral particles 

carrying the EGFP gene with MoMLV core and amphotropic MLV Env were produced in 

293T cells in the presence of 200 ng of IOWATHN plasmid (black squares) or empty plasmid 

(grey triangles). Increasing amounts of full length PERV2a genome was co-transfected 

together with the empty vector pcDNA3 to equalise the total quantity of plasmids to 400 ng. 

Titre was determined by transduction of NIH3T3 cells and monitoring for EGFP expression 

by flow cytometry. C) VSV-G pseudotyped HIV particles expressing EGFP were produced by 

transfection of 293T together with of 200 ng of huTHN, PK15THN, IOWATHN or empty 

plasmid (EP). 200 ng of PERV2a genome (white) or MLV-based vector carrying RFP gene 

(CNCR, grey), used as an irrelevant control, were added to the transfection mix. Serial 

dilutions of the supernatant were employed to transduce 293T cells. Titres were inferred by 

EGFP expression measured by flow cytometry and the average represented as histograms 

(± standard error of the mean). 
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5.2.5 Porcine tetherin is able to reduce the release of PERV particles 
from pig cells 

HuTHN is type I IFN-inducible. Upon treatment of 293T cells with INF-α, the 

huTHN mRNA amount increases more than 20-fold (Neil et al., 2008). The 

same dose of INF-α in 293T cells reduces the yield of Vpu-deleted HIV-1 

particles released in the supernatant about 10-fold (Neil et al., 2007). To 

understand whether THN can reduce the amount of PERV particles budding 

from pig cells, the endogenous THN response to type I IFN was assessed, 

and the effect of IFN treatment on PERV production in PK15 cells examined. 

Pig PK15 cells were treated for 24 hours in the presence of 2000U/mL of 

type I INF-β. Cells were lysed and the mRNA extracted. The amount of 

porcine THN was quantified by SYBR Green-based quantitative RT-PCR. 

IFN-β induced an increase in porcine THN mRNA level 15 times that of 

untreated cells (Figure 5.6 A). 

Serial dilutions of the supernatant from untreated and IFNβ–treated PK15 

cells were employed to infect 293T cells. After 72 hours, PERV titre was 

determined by in situ immunostaining of the infected cells using an anti-

PERV CA antibody. The PERV titre from IFN-β-treated cells was reduced to 

26% that obtained from untreated cells (Figure 5.6 B). The immunoblot of cell 

lysates and supernatant from untreated and IFN-β-treated PK15 cells 

showed a similar amount of cell associated PERV Gag (Figure 5.6 C, cell 

lysates) but a reduction of processed Gag in the supernatant (Figure 5.6 C, 

SN). 

These results showed that similar to huTHN, its porcine homologue is indeed 

type I IFN-inducible. INF-β treatment of PK15 cells reduced PERV release, 

possibly via pig THN induction. These data support the hypothesis that 

overexpressing THN in porcine PERV-producing cells could in fact reduce 

the release of infectious virus. 
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Figure 5.6 Porcine tetherin can reduce PERV particle release from pig cells 

1x106 PK15 cells were seeded in a 6-well plate and 2 hours later 2000U/mL of IFN-β was 

added to the media. A) The day after, cell were lysed and total RNA extracted. 1 µg was 

reverse transcribed and one eighth was employed as template in a SYBR Green-based 

quantitative RT-PCR, using primers QF9 and QR9 for porcine THN and QF4 and QR4 for 

18S rRNA gene (table 2.3.4). Samples were run in triplicate and the number of porcine THN 

copies were normalised per copy of 18S rRNA. Histograms represent the average of two 

independent experiments (± standard error of the mean). B) 24 hours after the addition of 

IFN-β, the supernatant from PK15 cells was used to infect 293T cells and two days later, 

PERV titre was determined by in situ immunostaining of infected 293T cells using rabbit anti-

PERV CA antibody. Histograms represent the average of two independent experiments (± 

standard error of the mean). The reduction in PERV titre in IFNβ-treated cells was found to 

be significant by t-test (p=0.002) C) PK15 cells treated for 24 hours with IFNβ and untreated 

cells were harvested and lysed in RIPA buffer. Their supernatant was spun down and 

resuspended in Laemmli buffer. One fourth of the cell lysate and the supernatant was 

processed by 10% SDS-PAGE and PERV proteins detected using anti-PERV CA antibody. 

In the cell lysates (upper panel) capsid precursor (p60), the intermediate forms and the 

processed capsid (p30) were visible. In the supernatant (SN, bottom panel) p30 was the 

main form represented. 
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5.2.6 Exogenous expression of tetherin in PK15 cells decreases PERV 
release 

A critical step in the evaluation of THN as a novel strategy to improve the 

biosafety of porcine donors in xenotransplantation is the ability of 

exogenously expressed human or porcine THN to inhibit the release of 

continuously produced PERV particles from pig cells and this needs to be 

analysed. 

Human or pig THN gene was introduced into porcine PK15 cells by HIV-

based retroviral particles, carrying also the hygromycin B resistance gene. 

After 24 hours, hygromycin B was added to the media and the cells were 

cultivated for the following two weeks to obtain a cell population which was 

hygromycin B resistant and expressed THN. 

Firstly, the expression of the THN in PK15 cells was assessed. Total RNA 

from transduced and selected cells was processed in a SYBR Green-based 

quantitative RT-PCR, and the amount of THN mRNA was quantified. Bulk 

population of PK15THN and IOWATHN-transduced cells expressed, on 

average, 10-fold more pig THN mRNA than parental cells (Figure 5.7 A). In 

huTHN-transduced cells, the amount of huTHN was at a similar level to that 

in HeLa cells (Figure 5.2).  

Once the overexpression of THN was assessed, PERV particle release in the 

supernatant was analysed. The day before infection, THN-expressing PK15 

and parental cells were seeded in equal number. Serial dilutions of their 

supernatant were employed to infect 293T cells, and titre was determined by 

in situ immunostaining of infected cells using an anti-PERV CA antibody. 

PERV titre from PK15THN and IOWATHN stably expressing cells showed a 

reduction of 60% in comparison to that from parental cells. Expression of 

huTHN reduced PERV titre to 23% that of untransduced cells (Figure 5.7 B). 

These data was supported by western blot analysis of the cell lysates and 

supernatants from THN-transduced PK15 cells. Whilst the amount of Gag in 

the cell lysate appeared to be the same between all the samples (Figure 5.7 

C, cell lysate), the presence of mature particles in the supernatant of PK15 
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overexpressing THN was reduced up to 16% that of the parental cells (Figure 

5.7 C, SN and band intensity). 

These results suggested that overexpression of THN can be employed to 

reduce the level of viral particles budding from porcine PERV-producing cells.  
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Figure 5.7 Exogenous expression of tetherin in PK15 cells decreases PERV release 

PK15 cells were stably transduced by VSV-G pseudotyped HIV-based vector encoding both 

human or porcine THN and hygromycin B resistance genes. The day following transduction, 
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Hygromycin B at the concentration of 200 µg/mL was added to the media and the cells 

cultivated for two weeks. A) 1µg of RNA extracted from THN-transduced PK15 or parental 

cells was reverse transcribed in a reaction volume of 20 µL. SYBR Green-based quantitative 

RT-PCR was conducted on 2.5 µL of cDNA using primers QF9 and QR9 for porcine THN, 

QF10 and QR10 for huTHN, and QF4 and QR4 for the 18S rRNA gene. Samples were run in 

triplicate. The amount of copies for each gene was inferred by standard curves. Histograms 

represent porcine (poTHN, grey) and human (huTHN, white) THN copies normalised to one 

18S rRNA copy. B) 1x106 THN-transduced PK15 or parental cells were seeded and the day 

after, serial dilutions of their supernatant was used to infect 293T cells. Titres were 

determined by in situ immunostaining using an anti-PERV CA antibody. Titres of THN-

transduced PK15 were calculated as percentage of the titre from parental cells. Histograms 

represent the average of two independent experiments (± standard error of the mean). The 

statistical validity of PERV titre reduction in transduced-PK15 was assessed with t-test. P 

values were 0.001 for huTHN, 0.028 for PK15THN and 0.013 for IOWATHN. C) Supernatant 

from 1x106 THN-transduced PK15 or parental cells was spun down and resuspended in 

2xLaemmli buffer. Cells were lysed in RIPA buffer. One fourth of the cell lysate and the 

supernatant was separated by SDS-PAGE and immunoblotted using an anti-PERV CA 

antibody. The chemiluminescence signal was detected by incubation with ECL western 

blotting reagent and exposed to a X-ray film. The 3 differently processed capsid forms were 

detected in the cell lysate (upper panel) while in the supernatant (SN) p30 was the most 

present (bottom panel). Band intensities were determined by analysis of the film with the 

Kodak 1D programme.  
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5.3 Discussion 

Genetically modified pigs have been generated to overcome the 

immunological barrier in pig-to-human transplantation (section 1.1.1). The 

same approach has been employed to reduce the risk of PERV transmission 

by generating transgenic pigs expressing shRNAs against PERV transcripts 

(Dieckhoff et al., 2009; Dieckhoff et al., 2008; Ramsoondar et al., 2009). In 

this chapter a newly described restriction factor, THN, has been investigated 

as a possible candidate to use in the development of genetically modified pig 

donors which will enhance biosafety in xenotransplantation.  

PERV particles have been observed budding from porcine cell lines and 

primary cells (section 1.4.1). Initially, I evaluated whether porcine cells 

encode a homologue to THN and its expression level. By BLAST analysis, a 

possible candidate was found in the porcine EST database. As THN is 

differentially expressed in human cell lines (Neil et al., 2008), three pig cell 

lines were used as source of cDNA to clone porcine THN. The sequences 

obtained matched with the EST sequence deposited in the NCBI database, 

with the exception of two non-synonymous nucleotide changes in the PK15 

THN (Figure 5.1 B). PK15 cells appeared to possess two heterologous THN 

alleles. Indeed, by direct sequencing of the cDNA from PK15 cells, the 

chromatograms showed a polymorphism for both changes (Figure 5.1 B). 

Since the physiological function of THN remains unclear, speculation on the 

significance of these polymorphisms is difficult. However, the impact of these 

two amino acid changes on THN-mediated restriction has been analysed in 

this chapter (PK15THN).  

Both porcine THNs have similar ability to huTHN for reducing PERV and 

MLV production when co-transfected with the virus-encoding plasmids in 

293T cells (Figure 5.3 A). As showed by western blot analysis, THN 

expression had no impact on viral protein synthesis, but did on the release of 

the viral particles in the supernatant (Figure 5.3 B). The expression of porcine 

THN in different cell lines was evaluated by quantitative PCR and compared 

to that in the human cell lines 293T, which is highly permissive to virus 

production, and HeLa cells, from which retroviral particles could be efficiently 
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released only in the presence of factors antagonising huTHN, such as HIV-1 

Vpu (Figure 5.2). Porcine THN mRNA was expressed at similar level among 

pig cells. In comparison to human cells, the three porcine cell lines appeared 

to have 35 times more mRNA for THN than 293T cells but 5 times less than 

HeLa cells. 

As PERV-producing cells express a discrete level of a porcine THN, it is 

possible that PERV possesses some countermeasure which acts against this 

endogenous level of THN and allows PERV production. Therefore, PERV 

countermeasures for THN were investigated. At least three different viruses, 

tantalus monkey SIV, HIV-2 and Ebola virus, use their envelope to counteract 

THN-mediated restriction (Abada et al., 2005; Bour et al., 1996; Bour and 

Strebel, 1996; Gupta et al., 2009b; Kaletsky et al., 2009; Ritter et al., 1996). 

The ability to antagonise THN restriction has been evaluated for PERV-

A14/220 Env protein. The addition of increasing amount of a plasmid 

encoding PERV-A14/220 Env did not alter the titre of PERV virus produced 

from 293T cells in the presence of human or porcine THNs (Figure 5.5 A). 

The same results were obtained by introducing increasing amount of a 

plasmid encoding the whole genome of PERV-A14/220 (Figure 5.5 B and C). 

These data suggested that PERV-A14/220 does not possess an anti-THN 

function. 

Inhibition of PERV particle release by endogenous porcine THN from pig 

cells was tested. Human THN is type I IFN-inducible (Blasius et al., 2006; 

Neil et al., 2008). Treatment of PERV-producing PK15 cells with IFN-β 

caused an upregulation of porcine THN mRNA (Figure 5.6 A) and a reduction 

of PERV titre (Figure 5.6 B). The decrease of PERV production was 

associated with a diminished amount of PERV Gag in the supernatant 

(Figure 5.6 C). These results suggest that IFN-β-induced overexpression of 

porcine THN can inhibit the release of PERV particles in porcine cells. 

Whether or not endogenous THN is acting in pig cells to control PERV 

production under normal physiological condition is unclear.  

The final goal was to assess whether exogenously expressed THN could 

block PERV release from porcine cells. PERV-producing PK15 cells were 
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stably transduced with a lentiviral vector carrying the human or porcine THN 

gene and a hygromycin B resistance gene, for selection of transduced cells. 

The mRNA level of THN was similar to that of huTHN in HeLa cells (Figure 

5.7 A and 5.2). PERV titre from THN-overexpressing cells was 23% that 

obtained from wild type cells (Figure 5.7 B) and this correlated with a 

reduction of PERV Gag in the supernatant (Figure 5.7 C).  

These results showed that by overexpressing THN it was possible to reduce 

virus release from continuously producing cells. Although these data are 

encouraging, a complete block of PERV production was not achieved. To 

improve the system, clones, producing higher amount of THN could be 

examined. Previous works using shRNAs have showed a similar degree of 

reduction in PERV production. Reverse transcriptase activity in the 

supernatant of primary porcine cells was reduced to 25% when shRNA 

against PERV Pol was expressed (Dieckhoff et al., 2007a) and titre of 

infectious particles generated from porcine endothelial cell expressing 

shRNA against PERV proteins was 85% lower than parental cells (Miyagawa 

et al., 2006). Genetically modified pigs could be generated expressing THN 

together with other anti-PERV strategies (e.g. shRNAs), which target a 

different step of the retroviral life cycle and therefore are unlikely to interfere 

with each other, to decrease the risk of PERV transmission. 
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Chapter 6 

6 Discussion 

Porcine cells and tissues have been used to treat human diseases (Chari et 

al., 1994; Deacon et al., 1997; Fink et al., 2000; Groth et al., 1994; 

Reichenbacher, 1975) and, at present, two clinical trials are taking place in 

Russia and New Zealand to treat type I diabetes by injection of porcine, 

insulin-producing cells (DIABECELL(R)) (http://www.lctglobal.com/lct-

diabecell-diabetes-treatment.php). Initial studies of pig-to-human 

transplantation in the 1990s have been interrupted following the discovery 

that porcine endogenous retroviruses produced from pig cells can infect 

human cells in vitro (Patience et al., 1997). Yet, retrospective studies on 

patients exposed to porcine materials failed to detect any evidence of PERV 

transmission. Moreover, no disease has been associated with PERV in pigs, 

although higher PERV expression was found in melanomas of Munich 

miniature swine Troll, when compared with normal tissue (Dieckhoff et al., 

2007b). The risks of a cross-species infection are unpredictable, as human 

history exemplified (Kramer et al., 2007; de Wit and Fouchier, 2008; 

Alexander and Brown, 2000; Gao et al., 1999; Keele et al., 2006; Paton et al., 

1999; Chua et al., 1999; Chua, 1999; Smith et al., 2009; Garten et al., 2009; 

Drosten et al., 2003). Potential pathologies associated with PERV infection 

could be deduced by similarity with diseases described for other member of 

the γ-retrovirus genus, which PERV belongs to: development of tumours, 

leukaemia and neurodegeneration (section 1.3.4). Therefore, during the past 

12 years, many studies have been conducted on four main aspects of PERV: 

1) Virus biology: replication-competent PERV subgroups and their tropism 

(Akiyoshi et al., 1998; Le Tissier et al., 1997; Patience et al., 2001; Takeuchi 

et al., 1998; Wilson et al., 2000), viral determinant for infectivity (Argaw et al., 

2008; Gemeniano et al., 2006; Marcucci et al., 2008; Watanabe et al., 2005), 

recombination (Bartosch et al., 2004; Harrison et al., 2004; Oldmixon et al., 

2002; Wilson et al., 2000) and critical PERV loci in the pig genome (Herring 

et al., 2001). 
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2) Diagnostic tools to monitor PERV expression in both porcine donor and 

human recipient (Bartosch et al., 2002; Blush et al., 2000; Chiang et al., 2005 

Fisher et al., 2003; Galbraith et al., 2000; Lovatt et al., 1999; Matthews et al., 

1999; Shah et al., 2003; Switzer et al., 1999; Tacke et al., 2001; Xu et al., 

2003). 

3) Virus-host interaction. This aspect has been particularly difficult to study 

due to the lack of evidence of PERV infection in humans and the 

unavailability of a suitable animal model. The receptors used by PERV 

subgroup A to infect human cells have been identified (Ericsson et al., 2003) 

and many animal models evaluated (Clemenceau et al., 2002; Deng et al., 

2000; Elliott et al., 2005; Isaac et al., 2005; Moscoso et al., 2005; Nishitai et 

al., 2005; Ritzhaupt et al., 2002; Specke et al., 2009; Specke et al., 2001; 

Templin et al., 2000; van der Laan et al., 2000; Zhang et al., 2005). 

4) Strategies to prevent PERV infection. Most of these are focussed on the 

improvement of the safety of the animal donor, like selection of low risk 

PERV transmission animals (Garkavenko et al., 2008a; Garkavenko et al., 

2008b; Hector et al., 2007) or discovery of inhibitory molecules which can be 

employed for the generation of transgenic pigs (Dekker et al., 2003; 

Dieckhoff et al., 2009; Dieckhoff et al., 2008; Dorrschuck et al., 2008; 

Jonsson et al., 2007; Miyagawa et al., 2006; Ramsoondar et al., 2009). 

Vaccine and anti-viral drugs have also been considered (Fiebig et al., 2003; 

Powell et al., 2000; Qari et al., 2001; Shi et al., 2007; Stephan et al., 2001; 

Wilhem et al., 2002). 

In this thesis two of these aspects have been explored: virus-host interaction, 

specifically the study of the cellular receptor used by PERV-A to infect cells, 

and the evaluation of a new strategy to reduce the risk of PERV 

transmission. 

In chapter three, PERV-A receptor was characterised in order to gain a better 

understanding of the mechanism of virus entry in human cells. Two functional 

PERV-A receptors (huPAR-1 and huPAR-2) have been identified in human 

cells (Ericsson et al., 2003). Critical regions for PERV-A infection in the 
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receptor have been characterised using chimeric receptors between huPAR-

2 and the murine homologue, muPAR, which does not support PERV-A 

infection (Ericsson et al., 2003 and Figure 3.3). A single amino acid (a.a. 109) 

was shown to be important not only for PERV-A infection but also for the 

virus binding (Figures 3.4 and 3.7). These results, together with experimental 

evidence of the receptor topology (Figures 3.5 and 3.6), suggested that the 

second extracellular loop, where a.a. 109 is located, is the virus binding site, 

or at least a part of it. These data may help develop reagents that block 

PERV entry, such as neutralising antibodies and peptides mimicking the 

receptor. Furthermore, the characterisation of an important structural domain 

in the PERV-A receptors, obtained in chapter three, allowed the investigation 

of the mechanism behind the poor susceptibility to PERV-A of non-human 

primate (NHP) cells, conducted in chapter four. 

As mentioned above, a major problem in the prediction of the consequences 

of PERV infection is the lack of a suitable animal model. Because NHP are 

currently employed in xenotransplantation to evaluate the immunological 

response to porcine xenografts, it would be ideal to monitor PERV 

transmission at the same time. However, to extrapolate information that may 

be applied to pig-to-human transplantation, NHP cells should be as 

permissive to PERV-A as are human cells. Instead, data presented in the 

literature suggest this not to be the case (Blusch et al., 2000a; Martin et al., 

1999; Specke et al., 2001; Takeuchi et al., 1998; Templin et al., 2000; Wilson 

et al., 2000). It was initially reported that although PERV can infect NHP 

cells, it cannot replicate in them, because of an unknown mechanism 

(Ritzhaupt et al., 2002). However, my results suggest that once PERV 

successfully enters NHP cells, infectious particles could be produced (Figure 

4.2). These results were obtained by endowing NHP cells with huPAR-2, 

suggesting that virus entry is a critical step in the low permissivity of NHP 

cells. Indeed, rhesus macaque, cynomolgus monkey and baboon PAR-1 

receptors were unable to support PERV-A infection (Figure 4.3). By 

comparison with the data obtained from the analysis of muPAR (Figure 3.4), 

it was possible to determine that a.a. 109 was the main determinant for the 

inability of rhPAR-1, cynPAR-1 and baPAR-1 to mediate virus infection. The 
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low permissivity to PERV-A of cells from these NHP species is probably due 

to a PAR-2-mediated entry. However, the level of expression of PAR-2 is 

lower than huPAR-1 in human cells (Figure 4.5). These results suggest that 

rhesus macaque, baboon and cynomolgus monkey represent a less than 

ideal model to evaluate the risk of PERV transmission in humans. Yet, they 

are the most used NHP species in pig-to-NHP transplantation [reviewed in 

Eckser et al., 2009)] and most PERV transmission studies on NHP animals in 

vivo were conducted on baboons and rhesus monkeys (Moscoso et al., 2005; 

Nishitai et al., 2005; Simon et al., 2003; Specke et al., 2009; Switzer et al., 

2001).  

More promising could be the use of African green monkey as a model. Both 

AGMPAR-1 and AGMPAR-2 are able to support PERV-A infection (Figure 

4.3), and they are expressed in at least two AGM cell lines, COS7 and 

VERO, at a similar level to human cell lines (Figure 4.5). However, AGM cells 

are poorly infected by PERV-A. It is interesting to note that the resistance to 

PERV-A by rodents and NHPs is similar. In both cases, some genera in the 

same order (mus or macaca and papio) have a mutation in the receptor (at 

the same amino acid) which disrupts its ability to support PERV-A entry, 

while others (rattus or chlorocebus) encode functional receptors but are still 

refractory to PERV-A infection. In chapter four and three, I tried to unveil the 

mechanism behind the poor (or lack of) susceptibility to PERV-A in AGM and 

rat cells. In both cases, I couldn’t obtain a clear answer. RatPAR expression 

is lower in rat cells than huPAR-1 in human cells (Figure 3.9), and PERV-A 

infection depends on PAR expression levels (Figure 3.13), suggesting that 

ratPAR is expressed at a subthreshold level. However, an explanation for the 

low expression of ratPAR could not be found. In AGM cells, the expression 

level of PARs is similar to those in human cells (Figure 4.5). In addition, once 

the same amount of huPAR-1 and AGMPAR-1 was expressed on the cell 

surface of PERV-A resistant QT6 cells, the efficiency of EGFP transduction 

was similar (Figure 4.9 A), suggesting a comparable affinity of the receptors 

for the virus. Some of the receptor-mediated block mechanisms described for 

γ–retroviruses have been investigated and none of them could clearly be 

held responsible for the low permissivity of NHP cells to PERV-A (Figure 4.3-



201 

 

5-6-7-8). Since tunicamycin treatment could rescue infectivity (Figure 4.8-9-

10), its possible mechanism was investigated. My first hypothesis was that a 

heavy N-glycosylation of the receptor could prevent PERV binding, and that 

tunicamycin treatment could relieve this block. However, tunicamycin 

treatment did not increase receptor binding (Figure 4.8-9-10), suggesting that 

receptor masking by a heavy glycosylation was not the cause of the poor 

PERV-A susceptibility. Secondly, I looked at PERV attachment to the cell 

surface of tunicamycin-treated and untreated cells. No difference was 

observed (Figure 4.11). Therefore, I excluded that tunicamycin treatment was 

affecting a different molecule, other than the receptor, involved in the 

adsorption of the virus on the cell surface. Finally, I looked at the ratio 

between the amount of receptor expressed on the cell surface versus the 

total amount in the cell, to investigate a possible mechanism of entrapment of 

the receptor in the cytosol which could be relieved by tunicamycin treatment. 

There was no evidence of a difference between AGM cells and QT6 cells 

(Figure 4.12). To conclude, AGM with a functional PAR could potentially be a 

suitable animal model to evaluate the risk associated with PERV 

transmission to humans in xenotransplantation. However, further 

investigations should be conducted to clarify the mechanism behind the poor 

permissivity of AGM cells to PERV-A and to examine PERV-A infection in 

primary cell culture. 

In chapter five, I evaluated a newly described restriction factor as a possible 

strategy to prevent PERV transmission. Tetherin (also known as BST2, 

CD317, HM1.24) has been shown to retain enveloped viruses from different 

families on the surface of the producing cells, inhibiting virus release (Neil et 

al., 2008, Jouvenet et al., 2009; Sakuma et al., 2009). This anti-viral 

mechanism appears to be part of the innate immune system response 

(Blasius et al. 2006; Neil et al., 2008). To examine whether a similar 

mechanism was present in pigs, the porcine homologue to huTHN was been 

cloned (Figure 5.1) and its activity against PERV and another retrovirus 

(MLV-A) confirmed (Figure 5.3). The efficiency of pig THN in inhibiting viral 

particles release in the supernatant of the producing cells was similar to that 

of huTHN (Figure 5.3). A stable expression of either human or porcine THN 
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in pig PK15 cells could significantly reduce the virus production (Figure 5.7). 

From these results two main points of discussion emerged.  

Firstly, by overexpression of THN in porcine cells, PERV production could 

only be reduced but not completely blocked. This system could be improved 

by selection of a clonal population with higher expression of THN and 

minimal production of PERV. Indeed, similar strategies, already employed to 

reduce PERV transmission, never achieved a total lack of virus production 

from porcine cell lines or primary cells. Expression of shRNA directed against 

PERV Pol led to a 25% reduction in reverse transcriptase activity in the 

supernatant of shRNA-transduced pig PBMC (Dieckhoff et al., 2007a). 

Similar results were obtained when antibodies against PERV p15 Matrix were 

expressed in PK15 cells where, in a clonal population, RT activity was 

reduced to 7% that from parental cells (Dekker et al., 2003). Suggested 

improvement to the system by these articles was the expression of multiple 

shRNAs or antibodies, respectively. However, by combining different 

strategies which act in different steps of the viral life cycle a better protection 

could be achieved. In this case, THN could represent an ideal candidate to 

be employed together with shRNAs, which target viral transcripts before 

translation. In addition, THN has an advantage over other systems through 

its ability to target a broad range of enveloped viruses (multiple genera of 

retroviruses, filoviruses and potentially herpesviruses). Therefore, 

overexpression of THN in the cells of a pig donor could represent a safer 

strategy also against unknown enveloped viruses. However, a long term 

observation of the cells overexpressing THN should be conducted to exclude 

pathological effects. 

Secondly, porcine THN is expressed in the PERV-producing cell lines PK15 

and MPK (Figure 5.2). Upregulation of THN mRNA by less than 20-fold by 

INF-β-treatment induced a reduction of viral particles released in the 

supernatant (Figure 5.6). Furthermore, from the results presented in Figures 

5.4 and 5.5, no countermeasures against THN have been found in the PERV 

genome. It is puzzling to understand what is happening in pigs in vivo. To 

assess whether THN is somehow controlling PERV release, THN-knock 
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down pig cells could be examined. If PERV titre increases upon THN-knock 

down, it would suggest that endogenous porcine THN is acting against PERV 

in vivo. Furthermore, since different human cells express unequal amount of 

THN (Neil et al., 2008), various porcine primary cells and tissues should be 

tested for tetherin production. In the scenario that THN was expressed at a 

low level, speculation could be made that PERV has not developed an anti-

THN countermeasure because there was not enough selective pressure. 
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