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Abstract

The motion of two-dimensional inviscid, incompressible fluid with regions of constant vorticity

is studied for three classes of geophysically motivated problem. First, equilibria consisting of point

vortices located near a vorticity interface generated by a shear flow are found analytically in the

linear (small-amplitude) limit and then numerically for the fully nonlinear problem. The equilibria

considered are mainly periodic in nature and it is found that an array of equilibrium shapes exist.

Numerical equilibria agree well with those predicted by linear theory when the amplitude of the

waves at the interface is small.

The next problem considered is the time-dependent interaction of a point vortex with a single

vorticity jump separating regions of opposite signed vorticity on the surface of a sphere. Initially,

small amplitude interfacial waves are generated where linear theory is applicable. It is found that a

point vortex in a region of same signed vorticity initially moves away from the interface and a point

vortex in a region of opposite signed vortex moves towards it. Configurations with weak vortices

sufficiently far from the interface then undergo meridional oscillation whilst precessing about the

sphere. A vortex at a pole in a region of same sign vorticity is a stable equilibrium whereas in

a region of opposite-signed vorticity it is an unstable equilibrium. Numerical computations using

contour dynamics confirm these results and nonlinear cases are examined.

Finally, techniques based on conformal mapping and the numerical method of contour dynamics

are presented for computing the motion of a finite area patch of constant vorticity on a sphere and

on the surface of a cylinder in the presence of impenetrable boundaries. Several examples of impen-

etrable boundaries are considered including a spherical cap, longitudinal wedge, half-longitudinal

wedge, and a thin barrier with one and two gaps in the case of the sphere, and a thin island and

‘picket’ fence in the case of the cylinder. Finite area patch motion is compared to exact point vortex

trajectories and good agreement is found between the point vortex trajectories and the centroid

motion of finite area patches when the patch remains close to circular. More exotic motion of the

finite area patches on the sphere, particularly in the thin barrier case, is then examined. In the case

when background flow owing to a dipole located on the barrier is present, the vortex path is pushed

close to one of the barrier edges, leading to vortex shedding and possible splitting and, in certain

cases, to a quasi-steady trapped vortex. A family of vortex equilibria bounded between the gap in

the thin barrier on a sphere is also computed.
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Chapter 1

Introduction

The study of two dimensional, inviscid and incompressible flows is an important

area of applied mathematics and related scientific fields and has attracted much at-

tention over the years. Modern mathematical modeling of fluid motion dates back

to the 18th century, the original form of the equations governing inviscid flow being

published in an article by Euler entitled ‘Principes generaux du mouvement des flu-

ides’ published in Mémoires de l’Academie des Sciences de Berlin in 1757. The more

general Navier-Stokes equations governing the motion of both inviscid and viscous

fluids were later written down in the 19th century with major contributions from

Claude-Louis Navier and George Gabriel Stokes.

Until recently, literature concerning the modeling of fully three dimensional fluid

flows has been scarce, especially when compared to the body of work existing for

the two dimensional problem. This is partly due to the difficultly of obtaining exact

fully three dimensional solutions and also, from the numerical modeling perspective,

the advanced numerical methods and massive computational power required for the

1



Chapter 1: Introduction 2

study of large scale three dimensional systems. However, with the development and

continued advancement of numerical schemes such as the finite difference (Smith

1985), finite volume (Versteeg and Malalasekra 1995) and finite element methods

(Hughes 2003), the speed of modern computers and the ability to parallelize code in

a practical manner, the body of research being carried out in such areas is steadily

growing.

In the geophysical arena (which has provided the motivation for the problems con-

sidered in thesis), some of the leading Navier-Stokes solvers include the Community

Climate System Model (http://www.ucar.edu/communications/CCSM/), the MIT

general circulation model for atmospheres and oceans (http://mitgcm.org/) and the

Nucleus for European Modelling of the Ocean model(http://www.nemo-ocean.eu/).

For the aforementioned models, CCSM and NEMO employ a finite difference approach

and the MITgcm a finite volume approach. Also, the Imperial College Ocean model

(http://amcg.ese.ic.ac.uk/index.php?title=ICOM) is an exciting finite element based

ocean model under development at Imperial College London. With the computing

power at their disposal, these models are capable of resolving small scale features

in large domains which can sometimes span the entire globe. However, the stability

of numerical schemes in large aspect ratio domains with dynamics encompassing a

range of spatial length-scales is a significant problem (Webster 2006) and it is often

required to make various approximations. Common approximations (in atmosphere

and ocean models) include assuming the fluid is incompressible and employing the

hydrostatic approximation.

Another drawback of general circulation models (GCMs) is that, due to their com-
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plexity, the mathematical structure and physical processes involved in the problems

under consideration are often ‘lost’ in the numerical scheme. That is to say, results

are often difficult to interpret making such models far less ‘intuitive’. Thus, in order

to analyse important aspects of the dynamic processes at work in atmospheres and

oceans it is often necessary and desirable to cut models down to their ‘bare bones’.

This allows models to be constructed in much friendlier (but still highly nonlinear

and therefore challenging) mathematical frameworks and allows for far easier inter-

pretation of results. Results from these comparatively simpler models can then often

help motivate problems to investigate with GCMs and help interpret the results they

yield.

However, even in the 2D motion of an inviscid and incompressible fluid governed

by the Euler equations, solutions can exhibit a great deal of complexity and are very

relevant to the modeling of atmospheres and oceans (Juckes and McIntyre 1987).

This thesis will be restricted to the analysis of problems involving such 2D flows.

Flows considered in this thesis all involve finite regions of vorticity surrounded

by otherwise irrotational flow. The mathematical formulation governing such flows is

stated in chapter 2.1. The study of vortical flows (in 3D as well as 2D) dates back to

Helmholtz’s seminal paper published in 1858, the English translation of which is ‘On

integrals of the hydrodynamical equations which express vortex motion’. Some other

important contributors to the area of vortex dynamics include William Thomson

(later Lord Kelvin) in the 19th century and Philip Saffman in the last century along

with many other past and contemporary scientists. Many recent results related to the

problems considered in this thesis will be discussed at the beginning of the relevant
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chapters. The structure of this thesis is outlined below.

Chapters 2 and 3 concern the analytical derivation and numerical computation

of vortex equilibria, mainly in singly-periodic domains. The systems investigated

consist of point vortices interacting with a vorticity interface, which in this work is

generated by a shear flow. In chapter 2, equilibria will be found in the linear limit of

small amplitude oscillations at the interface. This linear approximation facilitates the

analytical derivation of equilibria and the purpose of such investigations is two-fold.

First, the existence of linear equilibria can often be a good indication of the existence

of non-linear equilibria and the shapes they may take. Thus, linear equilibria can

motivate and aid the search for the corresponding non-linear equilibria. Second,

importantly, linear theory serves as a mechanism with which to verify results of non-

linear computations.

In chapter 3 the method of contour dynamics is used to investigate the corre-

sponding non-linear equilibria to those computed in chapter 2. Contour dynamics is

a Lagrangian computational method in which the boundaries of vorticity distribu-

tions are represented as a number of discrete points. Originally pioneered by Deem

and Zabusky (1978), contour dynamics is a highly efficient and accurate method for

computing the motion of piecewise constant vorticity distributions. In its original

form, the method was restricted to cases in which the distributions of vorticity re-

mained relatively simple. Later, with the development of contour surgery (Dritschel

1989), the method can now be applied to fluid motions of unparalleled complexity.

Details of the contour dynamics algorithm in many regimes are presented in Dritschel

(1989). During the preparation of this thesis, much effort has been spent adapting a
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2D planar contour dynamics algorithm to work on the surface of the unit sphere and

on the surface of a unit cylinder (2π singly periodic domain). Details on implementing

contour dynamics algorithms in these topographies are given in appendix A.

In chapter 4 the time dependent problem of a single point vortex interacting with

a vorticity interface on the surface of the sphere is considered. The work of this chap-

ter was presented at ‘The Fifth International Conference on Fluid Mechanics’ held

in Shanghai in 2007. In the first part of this chapter linear theory valid for small am-

plitude oscillations at the vorticity interface is used to construct an analytical system

of first order differential equations governing the motion of the system. Behaviour of

the linear system and the stability of stationary points (for both linear and non-linear

regimes) is then considered. Finally, a spherical contour dynamics algorithm is used

to examine the non-linear behaviour of the system. Contour dynamics results are

verified against linear theory for systems in the linear regime and then the evolution

of more non-linear systems explored.

Chapters 5 and 6 consider the motion of point and finite area vortices in bounded

domains on the surface of the sphere and in a 2π-singly-periodic domain respectively.

Much of the work presented in chapter 5 has been published in Nelson and McDonald

(2009a) and Nelson and McDonald (2009b). The work was also presented at the

IUTAM Symposium (150 Years of Vortex Dynamics) held in the Technical University

of Denmark in 2008. In these chapters, a contour dynamics algorithm is used to

calculate velocity fields in the domain as if the boundaries are not present. An

irrotational velocity field is then sought, such that, when added to the velocity field

owing to the ‘unbounded’ vortex will satisfy the required boundary conditions with
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the boundaries present. This method exploits the invariance of Laplace’s equation

under conformal mapping. Finally, conclusions and some possibilities for future work

are discussed in chapter 7.



Chapter 2

Point vortex equilibria near a

vortical interface: linear theory

Two dimensional distributions of vorticity that remain stationary in a translating

or rotating frame of reference have been the subject of much interest in the literature.

Such equilibrium distributions represent exact (or possibly numerical) solutions of the

two dimensional Euler equations and have been given the name V-states (or vortex

crystals). Many of the ‘simplest’ equilibria consist of specially arranged configurations

of singular points of vorticity (known as ‘line’ or ‘point’ vortices). Two of the most

basic examples of such equilibria include two point vortices of equal but opposite

circulations, and two point vortices with equal and same signed circulations. Arranged

in the first configuration, the vortices will translate at constant speed in the direction

perpendicular to the line segment connecting them. In the latter configuration, the

vortices rotate steadily about the centre of their connecting line segment, where the

sense and angular velocity of rotation is determined by the magnitude and sense of

7
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their circulations.

The case of two co-rotating vortices is the N = 2 case of N identical vortices po-

sitioned at the vertices of a regular N sided polygon. Vortices in such a configuration

rotate with constant angular velocity given by Ω = Γ(N − 1)/4πa2, where Γ is the

circulation of the vortices and a is the radius of the circle connecting them (Kelvin

1878; Thomson 1883). The stability of such systems is considered in Saffman (1992).

Many more ‘exotic’ equilibria consisting of N point vortices have since been identified

and examined; a range of both symmetric and asymmetric examples is presented in

Aref (2007).

It is also of interest to determine point vortex equilibria in geometries other than

the planar geometry: from a geophysical perspective the surface of a sphere and the

singly periodic domain (or, equivalently, the surface of a cylinder) are of particular

interest. For example, when considering large scale vortical structures in a planet’s

atmosphere or ocean, the curvature and azimuthal periodicity of the sphere can play

an important role in the dynamics of the system. In systems where periodic generation

of vortices occurs, for example, vortices generated from air flow over topography such

as an island (DeFelice et al. 2000), it is appropriate to model the problem in a periodic

strip. The observations discussed in DeFelice et al. (2000) concern the sighting of a

Karman vortex street over the Southeast Pacific Ocean. Such structures are classic

examples of the double rows of staggered vortices considered by von Karman and

Rubach (1913) and are well known observations in flows past a cylinder. The flow in

the Southern Ocean around the Antarctic continent is also azimuthally periodic and

is best modelled as either a periodic domain or on the surface of the sphere.
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Consider an infinite array of equal strength point vortices placed at z±n = ±an

where n = 1, 2, 3, .. and a ∈ R. It is clear that this is a stationary configuration since

for some n = m, the velocity field at zm = am owing to the vortices with n < m

will cancel exactly with that owing to the vortices with n > m. This configuration

is unstable with respect to small displacements of a single vortex (Saffman 1992).

The idealization of the Karman vortex street is then the latter configuration with a

second row of point vortices, of equal but opposite circulation to the row of vortices

at z±n = ±an, added at z±n = ±a(n + 1/2) + ib, b ∈ R. A treatment of the stability

of this configuration is given in Lamb (1932) and is dependent on the ratio of a to b.

Let k = b/a, then for k = 0.2801 the street is stable to all infinitesimal disturbances,

but not to all finite amplitude disturbances. For k 6= 0.2801, stability is dependent

on the wavenumber of the disturbance.

The problem of three vortices in a periodic domain is reviewed in Aref et al. (2003).

For the case when the circulations of the three vortices sum to zero, a method for

constructing a family of translating relative equilibria is presented. Here relative is

used in the sense that the configurations are not stationary but are invariant in a

translating frame of reference. The construction is based on a mapping of the three

vortex problem in a periodic strip of width L onto a simpler problem where the

advection of a passive particle in a field of fixed vortices is considered. A method

for constructing stationary three vortex equilibria is also detailed along with the

construction of stationary equilibria of more than three vortices in which the sum of

the vortex circulations is non-zero. The system of four vortices in a periodic strip, two

positive and two negative, all with the same absolute magnitude was first considered
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by Domm (1956).

Aref et al. (2003) also review the construction of multi-vortex equilibria on the

surface of a sphere. It is possible to construct a two-vortex equilibria on the sphere by

placing two vortices of equal strength on the same latitudinal circle at diametrically

opposite points. In this configuration the vortices will co-rotate about their latitudinal

circle. Placing the vortices at opposite points of the equator results in them being

‘shielded’ from each other due to the curvature of the sphere and the configuration

will remain stationary. For two vortices with same sign but different magnitude

circulations, an equilibrium is possible through modifying the latitude (but not the

longitude) of one of the vortices of the previous configuration. Both vortices will then

precess steadily about their latitudinal circles. If the sign of one of the vortices is

changed, an equilibrium can be constructed through placing the two vortices on the

same longitudinal line but at different latitudes. If the vortices have equal circulations

they will be at ‘opposite’ latitudes, that is, they will be equidistant from the equator.

Vortices in this configuration then precess steadily about their latitudinal circles.

Some other known equilibria on the sphere include single and double multi-vortex

ring equilibria and equilibria with vortices at the vertices of Platonic solids (Aref

et al. 2003).

The equilibria discussed so far have been constructed solely of point vortices.

For many such equilibria, it is possible to ‘desingularise’ the point vortices into small

patches of piecewise constant vorticity and find (often numerically) the corresponding

non-singular equilibria. From a geophysical perspective it is often useful to consider

problems involving finite area vortices and knowledge of point vortex equilibria can
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often give insight into what steady configurations may exist. The advantage of con-

sidering constant distributions of vorticity as opposed to distributions of variable

vorticity is that the velocity field throughout the fluid is determined by the shape of

the vortex boundaries. This enables the use of some boundary integral methods (and

also analytical methods - see later) such as the computational method of contour

dynamics (see Dritschel 1989). Some early examples of equilibria computed using

this method include rotating and translating equilibria found by Deem and Zabusky

(1978) and later by Wu et al. (1984) and the family of steadily translating patches of

equal but opposite vorticity computed by Pierrehumbert (1980).

Later, with geophysical applications in mind, McDonald (2002) considered the

flow of a rotating, barotropic fluid with piecewise constant (potential) vorticity past

a cylinder with circulation in the presence of an infinitely long escarpment. In this

system, the circulation imposed around the cylinder results in fluid columns cross-

ing the escarpment and the conservation of potential vorticity then requires these

columns to acquire relative vorticity. In general, the vortical interface owing to the

escarpment is capable of supporting wave motion. Such flow situations are observed

in the Earth’s atmosphere and oceans, for example in the Gulf Stream, where intense

vortices frequently interact with strong currents. It is of interest to oceanographers

whether such interactions lead to ‘trapped’ steadily propagating or long-lived vortical

structures. For certain configurations of vorticity it is possible that the wave drag of

a vortex can be made to vanish resulting in a non-radiating equilibrium (see Scullen

and Tuck 1995, for the for the analogous, free-surface gravity wave situation). In Mc-

Donald (2002), the escarpment separated shallow from deep water with the cylinder
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lying in the deep water. It was shown that a non-radiating steady state was possi-

ble for a specific positive circulation imposed about the cylinder. The steady state

contour shapes were calculated analytically in the linear limit of small amplitude

waves, and the method of contour dynamics was utilized to calculate the correspond-

ing non-linear steady states. In McDonald (2004) a similar analysis is conducted

for the situation where the cylinder is replaced with two horizontally aligned point

vortices with equal and positive circulations, two such point vortices being necessary

to achieve a non-radiating state on the interface. This being essentially a result of

destructive interference. Non-linear equilibria have also been determined in domains

other than the plane, in the study of Polvani and Dritschel (1993) a number of single

and multi-vortex equilibria are determined on the surface of the sphere and their

stability analysed.

While much of the progress in this area has been made from utilizing numerical

methods, some examples of exact non-linear desingularised solutions exist. The Lamb

dipole is a well known example of such an exact solution, consisting of a steadily

translating vorticity distribution in which the vorticity varies as a linear function of

the streamfunction. Meleshko and Heijst (1994) give an historical overview of the

Lamb dipole along with some other exact solutions involving distributed regions of

vorticity. More recently, a series of papers by Crowdy (e.g. 1999; 2002a; 2002b) and

Crowdy and Marshall (2004) present a range of exact multi-polar equilibria consisting

of finite-area regions of constant vorticity together with a finite number point vortices.

Analytical solutions are constructed through using the theory of Schwarz functions to

satisfy the required steady boundary conditions. In Crowdy and Cloke (2003) similar
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techniques are utilized to construct exact multi-polar equilibria on the surface of the

sphere. The added step in constructing such multi-polar equilibria on the surface of

a sphere is the stereographic projection of the problem into the complex plane, where

the curvature of the sphere and the Gauss constraint (that is, the total vorticity on the

sphere must sum to zero) introduce some subtleties into the problem. A characteristic

feature of all these exact solutions is that the velocity vanishes identically outside the

vortical region i.e. the equilibria have zero circulation.

Motivated by geophysical applications and the studies of McDonald (2002, 2004),

here systems of vortex equilibria consisting of point vortices in the presence of a shear

flow will be investigated. The shear flow gives rise to a vorticity gradient, which is

modelled here as two regions of constant vorticity separated by an infinitely long

interface. Many ‘long-lived’ vortical structures are observed in the Earth’s atmo-

sphere and oceans and in the atmospheres of the Solar System’s gas giants, with

some structures existing for a great many vortex turnover times. Mediterranean salt

lenses have been tracked as well defined anomalies in the Atlantic Ocean for up to

two years (Armi et al. 1989) and deep ocean eddies in the Greenland Sea for about

a year (Gascard et al. 2002). Many of these structures reside in a background gra-

dient of vorticity, for example, ocean eddies near intense currents such as the Gulf

Stream. The shear flow structure of the Gulf Stream is capable of supporting waves

and vortices moving in the presence of such vorticity gradients will invariably radiate

vorticity waves. Jupiter’s Great Red Spot is another famous example of a long lived

vortical structure interacting with strong background shear flows. In general, a steady

state will therefore requires a configuration of vortices such that the wave radiation
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is eliminated.

Here, the systems considered are (1) two point vortices with equal but opposite

circulation either side of a vorticity interface, (2) a row of periodic vortices in the

presence of a shear flow and (3) an anti-symmetric configuration, with two vortices

per period, in the presence of a shear flow (that is, the periodic analogue of (1)).

This chapter will detail the derivation of analytical solutions valid in the linear limit

of small amplitude disturbances at the vorticity interface. Existence of such linear

equilibria is a good indication that genuine (non-linear) equilibria may exist. The

shapes of linear equilibria can also give a good indication of what shapes their non-

linear counterparts may take. This information is then a useful guide for preparing an

algorithm to compute non-linear equilibria. In chapter 2 the corresponding non-linear

equilibria will be investigated using the method of contour dynamics.

2.1 An anti-symmetric translating equilibrium

The equation governing the 2D flow of inviscid, incompressible fluid in the presence

of a vorticity interface can be written as

Dω∗
T

Dt
= 0, (2.1)

where

ω∗
T = ω∗

0 + ∇2ψ∗(x∗, y∗) + ω∗(x∗, y∗), (2.2)

is the total vorticity represented by the sum of three terms. Here ψ∗ is a stream-

function representing the effect of vorticity owing to point vortices and perturbations

to the interface (here the convention u∗ = −ψ∗
y∗ , v∗ = ψ∗

x∗ is used), ω∗
0 is a constant
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background vorticity and ω∗ is a piecewise constant jump in vorticity owing to the

interface. The vorticity interface, here generated by a shear flow, can be represented

as ω∗(x∗, y∗) = ω̃∗H(y∗) where ω̃∗ is the jump in vorticity across the interface and

H(y∗) is the Heaviside step function. Let U∗ be the free stream velocity such that

(u∗, v∗) → (U∗, 0) as (x∗2 + y∗2)1/2 → ∞. The flow also consists of point vortices: let

Γ∗ be their magnitude and L∗ the magnitude of their distance from the interface. Tak-

ing ω̃∗ and L∗ as the time and length scales of the problem, a nondimensionalization

is carried out giving the following non-dimensional parameters

U =
U∗

ω̃∗L∗
, (2.3)

and

Γ =
Γ∗

ω̃∗L∗2
. (2.4)

Now, in dimensionless units, consider a shear flow with piecewise constant vorticity

and jump ω̃ = −1 at y = 0 such that, (in the absence of point vortices)

ω =











1/2, y > 0,

−1/2, y < 0.

(2.5)

With a free stream velocity of U imposed in the positive x direction, the velocity field

in the absence of point vortices is given by

u− iv =











U − y/2, y > 0,

U + y/2, y < 0.

(2.6)

Two point vortices of circulations Γ and −Γ are placed at r− = (−L/2,−1) and

r+ = −r− respectively. This gives the flow situation depicted in figure 2.1. The effect

of the vortices will be to perturb the vorticity interface, thus inducing waves upon it.
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Now consider the initial unperturbed shear flow. If at some initial time the vortices

are then ‘turned’ on, this will result in some fluid being moved from y < 0 into y > 0

and vice versa. In two dimensions, the scalar vorticity associated with each fluid

particle is conserved. Therefore, the problem can be viewed as the initial shear flow

along with additional regions of vorticity with ∇2ψ = −1 when fluid has crossed from

y < 0 into y > 0, and ∇2ψ = 1 when fluid has crossed from y > 0 into y < 0.

In this section, linear theory is used to construct a non-radiating solution such that

the velocities at the vortices vanishes and the configuration remains stationary. The

parameters of the problem are Γ, L and U .

Figure 2.1: Sketch of the non-dimensional problem being considered. A shear flow
is present with vorticity jump ω̃ = −1 such that ω = 1/2 in y > 0 and ω = −1/2
in y < 0 and the velocity is U at y = 0. Two vortices are placed at y = ±1 and
separated by a horizontal distance of L with circulations of ±Γ. The fluid disturbance
along the vorticity interface is labelled as y = η(x).

Denote the y-direction displacement of the vortical interface by y = η(x), where
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|η| ≪ 1. At the vorticity interface

D

Dt
(y − η) = 0, (2.7)

which gives

v =
Dη

Dt
=
∂η

∂t
+ U · ∇η. (2.8)

For a stationary configuration ∂η/∂t = 0, therefore the linearised problem is to find

y = η(x), |η| ≪ 1, by solving

U
∂η

∂x
= v, on y = 0, (2.9)

where the vertical velocity, v, is given by

v =
∂

∂x

{

− 1

2π

∫ ∞

−∞

∫ η(x′)

0

log
[

(

(x− x′)2 + (y − y′)2
)1/2
]

dy′dx′

+
Γ

2π

(

log
[

(x+ L/2)2 + (y + 1)2
]1/2 − log

[

(x− L/2)2 + (y − 1)2
]1/2
)

}

,

(2.10)

and U is the uniform background flow required to render the configuration stationary.

The integral term in (2.10) represents the contribution to the velocity owing to the

vorticity anomaly due to the displacement of y = η(x), whereas the final two terms

represent the two point vortices. The negative sign appears in front of the term owing

to the vorticity anomaly is, as mentioned above, such that ∇2ψ = −1 for y > 0. As

it is assumed that Γ > 0, the mutual self advection of the point vortices will result

in propagation in the negative x-direction. It is therefore expected that a stationary

configuration has U > 0. Consistent with linear dynamics, the approximation |η| ≪ 1
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and y = 0 are made in (2.10) giving

v = − 1

2π

∫ ∞

−∞

∫ η(x′)

0

x− x′

(x− x′)2 + y′2
dy′dx′ +

Γ

2π

[

x+ L
2

(

x+ L
2

)2
+ 1

− x− L
2

(

x− L
2

)2
+ 1

]

= − 1

2π

∫ ∞

−∞

η(x′)

(x− x′)
dx′ +

Γ

2π

[

x+ L
2

(

x+ L
2

)2
+ 1

− x− L
2

(

x− L
2

)2
+ 1

]

.

(2.11)

The Fourier Transform (FT) of v is given by

ṽ =
1

2π

∫ ∞

−∞

ve−ikxdx, (2.12)

where k is a wavenumber. Taking the FT of (2.11) yields

ṽ =
1

2π

∫ ∞

−∞

{

− 1

2π

∫ ∞

−∞

η(x′)

(x− x′)
dx′ +

Γ

2π

[

x+ L
2

(

x+ L
2

)2
+ 1

− x− L
2

(

x− L
2

)2
+ 1

]}

e−ikxdx

= − i

2
sgnkη̃ +

Γi

4π
sgnke−|k|

(

eik L
2 − e−ik L

2

)

.

(2.13)

Using (2.13) the FT of (2.9) is given by

Uikη̃ =
i

2
sgnkη̃ +

Γ

2π
sgnke−|k| sin

(

kL

2

)

, (2.14)

where

η̃ =
1

2π

∫ ∞

−∞

ηe−ikxdx. (2.15)

Solving (2.14) for η̃ gives

η̃ = −Γi

2π
sgnke−|k| sin(kL/2)

Uk − sgnk/2
. (2.16)
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The dispersion relation for interfacial waves, following the analysis of Bell (1990) is

given by

σ = Uk − 1

2
sgn k, (2.17)

where σ is the frequency. The phase and group velocities are

cp = U − 1

2|k| , cg = U − δ(k), (2.18)

where δ is the delta function. When U = 1/2|k| (2.16) has a simple pole and a steady

wavetrain forms downstream of the vortices and this, in general occurs for all U > 0.

In order for a stable configuration to exist it is required that this wave train vanishes.

Physically, this is equivalent to demanding that the wave trains due to each point

vortex destructively interfere. For this to be the case it is required that the simple

pole of (2.16) located at k = 1/2U vanishes. Setting L/2U = 2nπ, n = 0, 1, 2, ...,

this pole does indeed vanish and hence no wavetrain is located downstream of the

vortices, since from (2.16)

lim
k→1/2U

sin(2nπkU)

Uk − 1/2
= (−1)n2nπ, n = 0, 1, 2, . . . . (2.19)

In the results that follow, n is set to n = 1 giving L = 4πU , the case where the

vortices are at their smallest horizontal separation. The contour shape is determined

by taking the inverse FT of equation (2.14) given by

η(x) =

∫ ∞

−∞

η̃eikxdk, (2.20)

and therefore

η(x) = −Γi

2π

∫ ∞

−∞

sgnke−|k| sin(2kUπ)

Uk − sgnk/(2)
eikxdk =

Γ

πU

∫ ∞

0

e−k sin(2kUπ) sin(kx)

k − 1/(2U)
dk.

(2.21)
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Plotting (2.21) gives a contour which is anti-symmetric about x = 0 whose shape is

determined by U and Γ. The integral is computed numerically using a fourth order

Runge-Kutta method for various values of x. Figure 2.2 shows η(x)/Γ for U = 1.0

and U = 0.187.

Figure 2.2: Profiles of η(x) given by (2.21) (normalised by Γ) with the non-radiating
condition L = 4πU ; the solid line represents U = 1.0 and the dashed line U = 0.1876.

For a stationary configuration to be possible is also required that the x and y

velocities at both point vortices, induced by the contour and the other point vortex,

vanish for some values of U and Γ. In general the y-direction velocity at a position

(x, y) due to a point vortex with circulation γ at a position (a, b) is given by

v =
∂

∂x

γ

2π
log
[

(x− a)2 + (y − b)2
]

1
2 . (2.22)

In the system under consideration γ = Γ at −L/2 and γ = −Γ at L/2. Owing to the

anti-symmetry of the problem, the y-direction velocity induced at each point vortex
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due to the other point vortex is, using L = 4πU , given by

vloc =
UΓ

2(1 + (2πU)2)
. (2.23)

The y-direction velocity at each point vortex induced by the vorticity anomalies due

to the displaced contour is given by

vc = − 1

2π

∫ ∞

−∞

η(x′)(±L/2 − x′)

(±L/2 − x′)2 + 1
dx′,

=
Γi

4π2U

∫ ∞

−∞

∫ ∞

−∞

sgnke−|k| sin(2kUπ)eikx′

k − sgnk
2U

(±L/2 − x′)

(±L/2 − x′)2 + 1
dx′dk.

(2.24)

Using the substitutions ζ = L/2 + x′ when r = r− and ζ = −L/2 + x′ when r = r+

yields

vc =
Γ

4πU

∫ ∞

−∞

e−|k| sin(2kUπ)

k − sgnk
2U

e−|k|e∓ikL/2dk,

=
Γ

2πU

∫ ∞

0

e−2k

k − 1
2U

sin(2kUπ) cos

(

kL

2

)

dk,

=
Γ

4πU

∫ ∞

0

e−2k

k − 1
2U

sin(4kUπ)dk.

(2.25)

Here, U is positive and hence the vortices will have zero velocity in the y-direction

if (2.23)+(2.25)= 0. Figure 2.3 shows plots of vloc(x)/Γ and −vc(x)/Γ for various

values of U . The condition that (2.23)+(2.25)= 0 is satisfied for U = US ≈ 0.1876.

It has been shown that for this pair of vortices it is possible to impose a specific

US and L(= 4πUS) such that the vertical velocity at the vortices vanishes. It now

remains to resolve the condition that renders the vortices stationary in the horizontal
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Figure 2.3: Plot of −vc(x)/Γ (solid line) and vloc(x)/Γ (dashed line) (vertical axis)
against U (horizontal axis).

direction. Now consider the x-direction velocities at each point vortex due to the

other vortex and the contour. The x-direction velocity at a position (x, y) owing to

a vortex at (a, b) is given by

u = − ∂

∂y

γ

2π
log
[

(x− a)2 + (y − b)2
] 1

2 . (2.26)

Again, due to the anti-symmetry of the problem the x-direction velocities at both

vortices are equal and are given by

uloc = − Γ

4π(4π2U2 + 1)
. (2.27)

Horizontal velocities at the vortices owing to the contour are given by

uc =
1

2π

∫ ∞

−∞

η(x′)(±1 − 0)

(±L/2 − x′)2 + 1
dx′. (2.28)
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Proceeding in the same way as determining (2.24), (2.28) gives

uc =
Γ

2πU

∫ ∞

0

e−2k sin2(2πUk)

k − 1
2U

dk. (2.29)

Letting U = US, (2.27) gives uloc = −0.0333Γ and (2.29) gives uc = −0.0751Γ.

Hence, the condition for a stationary equilibrium for y < 0, using (2.6), is given

by −(0.0333 + 0.0751)Γ + US − 0.5 = 0 giving ΓS = −2.882. Figure 2.4 shows the

resultant unique interface shape and point vortex locations. It is seen that for the

required values of US and ΓS the interface amplitude becomes large and actually

crosses the point vortices rendering linear theory invalid. Even if a larger horizontal

vortex separation is used, such as L = 8πU from setting n = 2 in (2.19), this is

still the case. It is concluded that a stationary configuration, according to linear

theory, is thus not attainable for the anti-symmetric analogue of McDonald (2004).

The existence (or non-existence) of linear equilibria however, only give an ‘indication’

of the possible existence (or non-existence) of corresponding non-linear equilibria.

Although this appears to be a “null” result it does not rule out the existence of

corresponding non-linear equilibria. However, as will be reported in chapter 3, no

equilibria of this kind could be found numerically.

2.2 An infinite array of periodic vortices

In this section, the problem of an infinite periodic array of same circulation point

vortices placed periodically below a vorticity jump is considered. Linear theory is

used to find the interfacial shapes of vortex equilibria in the limit that the amplitude

of oscillations on the interface are small. Considered first is the case when the point
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Figure 2.4: Profiles of η(x) with US = 0.1876 and ΓS = −2.882. The horizontal
vortex equilibrium separation is given by L = 4πU and the two + signs mark the
point vortex locations.

vortices are located in the irrotational region of the flow, followed by the case when

the vortices are located in the rotational region. The corresponding non-linear shapes

are found computationally in the following chapter.

2.2.1 Vortices in the irrotational flow region

The problem is initially considered in the plane and the vorticity jump is provided

by a shear flow. Periodicity is expected during the solution process. As seen in section

2.1 the flow is nondimensionalized using the vorticity jump, ω̃∗, and distance of the

vortices from the interface, L∗, as the time and length scales respectively. Consider a
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shear flow with a vorticity jump ω̃ = −1 at y = 0 such that

ω =











1, y > 0,

0, y < 0.

(2.30)

With a free stream velocity of U imposed in the positive x direction, the velocity field

in the absence of point vortices is given by

u− iv =











U − y, y > 0,

U, y < 0.

(2.31)

An infinite row of point vortices with circulations Γ are placed at rn = (nL,−1) where

n ∈ Z. Note that the vortices lie in the irrotational region. The interfacial shape,

η(x), will therefore be an even function on [−L/2, L/2] in order to ensure the vertical

velocity at any given point vortex vanishes, i.e. vloc = 0. In fact, the demand that

vloc = 0 necessarily implies this. The problem therefore consists of three parameters,

U , Γ and L. Unlike the problem considered in section 2.1, due to the periodicity of the

configuration, no radiation condition is required in the current problem. Therefore a

two parameter family of solutions is expected. A schematic of the problem is shown

in figure 2.5.

Consider the x-direction velocity at a point vortex. The stream function owing to

the vorticity anomalies (relative to the background vorticity distribution of the shear

flow) due to the displaced contour is given by

ψcontour =
−1

2π

∫ ∞

−∞

∫ η(x′)

0

log
[

(

(x− x′)2 + (y − y′)2
)1/2
]

dy′dx′. (2.32)

The condition to ensure uloc = 0 is given by

U +
∂

∂y

1

2π

∫ ∞

−∞

∫ η(x′)

0

log
[

(

(x− x′)2 + (y − y′)2
)1/2
]

dy′dx′ = 0. (2.33)
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Figure 2.5: Schematic of the problem under consideration. A shear flow is present
with vorticity jump ω̃ = −1 such that ω = −1 in y > 0 and ω = 0 in y < 0 and the
velocity is U at y = 0. Point vortices of circulation Γ are arranged periodically at
x = nL where n ∈ Z and y = −1. The fluid disturbance along the vorticity interface
is labelled as y = η(x).

Evaluating (2.33) at the vortex location (0,−1) and using the linear approximation

|η| ≪ 1 gives

U +
1

2π

∫ ∞

−∞

∫ η(x′)

0

−1

x′2 + 1
dx′dy′ = 0, (2.34)

and hence the condition for uloc = 0 is given by

U − 1

2π

∫ ∞

−∞

η(x′)

x′2 + 1
dx′ = 0. (2.35)

Now consider the condition at the vortical interface. As in section 2.1, the condition

on the interface is given by

U
∂η

∂x
= v, on y = 0. (2.36)
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Thus

U
∂η

∂x
=

1

2π

∂

∂x

[

−
∫ ∞

−∞

∫ η(x′)

0

log
[

(

(x− x′)2 + (y − y′)2
)1/2
]

dy′dx′

+ Γ

∞
∑

n=−∞

log
[

(

(x+ nL)2 + (y + 1)2
)

1
2

]

]

=
1

2π

[

−
∫ ∞

−∞

∫ η(x′)

0

x− x′

(x− x′)2 + (y − y′)2
dx′dy′ + Γ

∞
∑

n=−∞

x+ nL

(x+ nL)2 + (y + 1)2

]

,

(2.37)

where the sum represents the infinite periodic array of point vortices. Consistent with

linear theory, the approximations that |η| ≪ 1 and y = 0 are once again made in

(2.37) giving

U
∂η

∂x
=

1

2π

[

−
∫ ∞

−∞

η(x′)

x− x′
dx′ + Γ

∞
∑

n=−∞

x+ nL

(x+ nl)2 + 1

]

. (2.38)

Now η(x) is a periodic function and can thus be represented as a Fourier series. As

mentioned at the beginning of the section, it is required that η(x) is an even function

on [−L/2, L/2] and therefore can be written as

η(x) =
a0

2
+

∞
∑

k=1

ak cos

(

2kπx

L

)

, (2.39)

where the real constants ak are given by

ak =
4

L

∫ L
2

0

η(x) cos

(

2kπx

L

)

dx. (2.40)

The summation term on the right hand side of (2.38),
∑∞

n=−∞
x+kl

(x+kl)2+1
, which is an

odd extension in
[

0, L
2

]

can also be written as a Fourier series. However, it simplifies
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the problem to use a different representation of this infinite series. Here, a suitable

form for the streamfunction along y = 0 of an infinite array of point vortices is given

by

ψloc(x, 0) =
Γ

2π
log

∣

∣

∣

∣

β − cos

(

2πx

L

)∣

∣

∣

∣

1
2

, (2.41)

where β = cosh 2π
L

(see Appendix B for details). The y-direction velocity at the

interface owing to the point vortices is thus given by

∂ψloc

∂x
=

Γ

2L

sin
(

2πx
L

)

β − cos
(

2πx
L

) , (2.42)

and equating (2.42) to the summation on the right hand side of (2.38) gives

Γ

2π

∞
∑

n=−∞

x+ kl

(x+ kl)2 + 1
=

Γ

2L

sin
(

2πx
L

)

β − cos
(

2πx
L

) = g(x). (2.43)

The newly introduced function, g(x), can then be written as a Fourier series given by

g(x) =
∞
∑

k=1

bk sin

(

2πkx

L

)

, (2.44)

where

bk =
Γ

2L

∫ L/2

0

sin
(

2πx
L

)

β − cos
(

2πx
L

) sin

(

2πkx

L

)

dx

=
Γ

πL

∫ π

0

sin z sin kz

β − cos z
dz =

Γ

L
e−

2kπ
L .

(2.45)

Substituting (2.45) into equation (2.38) (and swapping n for k) gives

−
∞
∑

n=1

ak
2nπU

L
sin

(

2nπx

L

)

=

− 1

4π

∫ ∞

−∞

a0

x− x′
dx′ − 1

2π

∞
∑

n=1

∫ ∞

−∞

an

cos
(

2nπx
L

)

x− x′
dx′ +

∞
∑

n=1

bn sin

(

2nπx

L

)

.

(2.46)
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It is now required to evaluate the two integrals (which are interpreted as Cauchy

principal value integrals) on the right hand side of (2.46). The results of these two

integrals are given below. The first integral yields

∫ ∞

−∞

a0

x− x′
dx′ = 0. (2.47)

The second integral can be written as

∫ ∞

−∞

cos
(

2nπx′

L

)

x− x′
dx′ = ℜ

∫ ∞

−∞

ei 2nπx′

L

x− x′
dx′. (2.48)

Substituting ζ = x′ − x gives

ℜ
[

−ei 2nπx
L

∫ ∞

−∞

ei 2nπζ
L

ζ
dζ ′

]

= π sin
2nπx

L
. (2.49)

Note that sgn(2nπ/L) = 1 has been used to obtain the result of (2.49). Substituting

(2.47) and (2.49) into (2.46) and equating coefficients of sin(2nπx/L) gives

an =
bn

1
2
− 2nπU

L

. (2.50)

Note that the form of (2.50) gives rise to the possibility of resonance of the nth

mode occurring when 2nπU/L ≃ 1/2. In such circumstances, there is potential for

an to become very large, resulting in large amplitude disturbances at the vorticity

interface. Linear theory is clearly not expected to be a good guide in systems where

such resonances occur.

In the studies of McDonald (2004) and Crowdy (1999, 2002a, b) it was shown that

the equilibria necessarily had zero circulation. This result does not appear naturally

in the present case. But, instead, it is insisted that the net circulation is zero. This

enables a0 to be determined. The zero net circulation case is, however, natural from
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a geophysical point of view: a meandering current sheds eddies so that the eddy

circulation and the vorticity deficit of the current must sum to zero. Considering the

region [−L/2, L/2], a net zero circulation equates to

Γ + γ

∫ L/2

−L/2

η(x) = 0. (2.51)

Here, the vorticity jump across the contour is −1 giving γ = −1 and thus

Γ −
∫ L/2

−L/2

(

a0

2
+ an cos

2nπx

L

)

dx = 0 (2.52)

yielding

a0 =
2Γ

L
. (2.53)

Equations (2.45) and (2.50) along with (2.35) and the result for a0, (2.53), can now

be used to calculate U and thus obtain the shape of the contour η. Substituting into

(2.35) gives

U − a0

4π

∫ ∞

−∞

dx′

1 + x′2
−

∞
∑

n=1

an

2π

∫ ∞

−∞

cos 2nπx′

L

1 + x′2
dx′ = 0. (2.54)

Evaluating the integrals in (2.54) gives

∫ ∞

−∞

dx′

1 + x′2
= π, (2.55)

and
∫ ∞

−∞

cos 2nπx′

L

1 + x′2
dx′ = πe−

2nπ
L . (2.56)

Substituting (2.55) and (2.56) along with (2.50) into (2.54) gives

2U − Γ

L
+

∞
∑

n=1

bn
2nπU

L
− 1

2

e−
2nπ
L = 0, (2.57)

where the constants bn are given in (2.45). Substituting (2.50) for bn, (2.57) can be

written as

2U +
Γ

L

(

∞
∑

n=1

e−
4nπ
L

2nπU
L

− 1
2

− 1

)

= 0. (2.58)
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Values of U can thus be approximated by truncating (2.58) at some n = N and

solving the resultant (N + 1)th order polynomial in U . For a given value of Γ it is

therefore possible for U to take many different values. These possible values of U will

correspond to interfacial shapes of varying amplitudes and also, depending on Γ, some

values of U may be complex. Physically permissible solutions require U ∈ ℜ but also,

within this linear analysis only solutions leading to small amplitude interfacial shapes

are of interest. Note that the summation term on the left hand side of (2.58) decays

exponentially with increasing n. Therefore, to a good approximation, two roots of

U can be approximated by truncating the sum at n = 1 and solving the resulting

quadratic, or three roots by truncating at n = 2 and solving the resulting cubic and

so on.

From the perspective of linear analysis, the roots of U from (2.58) approximated

as a quadratic (or possibly cubic) will be of primary interest. This is due to the fact

that coefficients of higher powers of U decay rapidly and the roots corresponding to

these higher powers of U will generally lead to resonance. Tables 2.1 and 2.2 show

the solutions of (2.58) for n truncated at 1,2,3,4 and Γ = 0.5 for L = π and L = 2π

respectively. Clearly, for any value of Γ, many distinct linear equilibria exist, one for

each possible value of U . However, from solving for the roots of U for many different

values of Γ and plotting the resulting interface shapes, it was seen that only the

roots corresponding to those of the quadratic gave solutions that were ‘possibly’ of

interest. For the values of Γ investigated, all other roots of U led to resonance or were

complex. (Note that ‘possibly’ is used here in the sense that roots of the quadratic

can also lead to large amplitude interface shapes). To illustrate this, figure 2.6 shows
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the shapes of η(x) for the roots of U obtained by truncating (2.58) at n = 4. The

roots corresponding to those of the quadratic are U = 0.017 and U = 0.249. Here,

the only root of interest is U = 0.017: this root leads to a small amplitude interface

shape which is expected for small values of U . The interface in this case is nearly flat

which is owing to the fact that the interface only needs to ‘provide’ a velocity field of

−0.017 in the x-direction at the point vortex to render it stationary.

Therefore, in the analysis that follows, the shapes of η(x) will be plotted for the

roots of U given from truncating the sum in (2.58) at n = 1 and solving the resulting

quadratic. However, to ensure these roots are accurate to at least 3 decimal places,

the corresponding 5th order polynomial will also be solved and the roots checked

against this solution.

L = π, Γ = 0.5
n 1st 2nd root 3rd root 4th root 5th root
1 0.0839667 0.245611 - - -
2 0.0841344 0.124831 0.245612 - -
3 0.0834575 0.0840103 0.124831 0.245612 -
4 0.0625001 0.0834575 0.0840102 0.124831 0.245612

Table 2.1: Table listing the roots of (2.58) for L = π and Γ = 0.5 when n is truncated
at 1, 2, 3 & 4.

L = 2π, Γ = 0.5
n 1st 2nd root 3rd root 4th root 5th root
1 0.0518031 0.487986 - - -
2 0.0537108 0.24805 0.488028 - -
3 0.0540137 0.166357 0.248055 0.48803 -
4 0.0540627 0.12495 0.166357 0.248055 0.488031

Table 2.2: Table listing the roots of (2.58) for L = 2π and Γ = 0.5 when n is truncated
at 1, 2, 3 & 4.
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Figure 2.6: Shapes of the interface η(x) for L = π and Γ = 0.1 over one period of
−L/2 to L/2. Values of U have been obtained from truncating (2.58) at n = 4 and
solving the resulting 5th order polynomial. The solid line corresponds to U = 0.017,
the dashed line U = 0.083, the dot-dash line U = 0.125 and the three-dot-dash line
U = 0.249. (Note that the interface for U = 0.017 is ‘not quite’ flat and only appears
so here due to the scale of the y-axis). The + represents the point vortex location.

To help ascertain the values of Γ for which physically permissible solutions may

exist it is useful to consider the quadratic

U =

[

L

8π
+

Γ

4L

]

± 1

2

[

(

L

4π
+

Γ

2L

)2

− Γ

π

(

e−
4π
L +

1

2

)

]
1
2

, (2.59)

obtained from truncating (2.58) at n = 1, rearranging and then solving for U . De-

manding U ∈ ℜ the constraint on L and Γ is therefore given by

(

L

4π
+

Γ

2L

)2

>
Γ

π

(

e−
4π
L +

1

2

)

. (2.60)

This condition, depending on the value of L, can lead to situations where ‘lower’ and

‘upper’ critical values of Γ exist, in which, physically permissible solutions for U exist

for positive Γ less than this ‘lower’ critical value and for Γ greater than this ‘upper’
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critical value. However, for Γ between these two critical values, solutions of U are

complex and are therefore not physical. Define

R(Γ, L) =

(

L
4π

+ Γ
2L

)2

Γ
π

(

e−
4π
L + 1

2

) . (2.61)

Physically permissible (non-complex) solutions of U will therefore exist when R(Γ, L) ≥

1. Figures 2.7 and 2.8 show plots of R(Γ, L) against Γ. Figure 2.7, in which L = π,

shows the two regions in which real solutions of (2.59) exist. In the region where

1.07 < Γ < 2.30 solutions of (2.59) will be complex and therefore not physically

permissible. For Γ > 0 and not within this region solutions of (2.59) will be real and

therefore physically permissible. Note however, that the larger the value of Γ, the

larger the expected amplitude of the interfacial waves. For waves of O(1) amplitude,

the validity of linear theory is brought into question and can be considered, at best,

a ‘guide’ as to what non-linear equilibria may possibly exist. Figure 2.8 shows the

corresponding plot in which L = 2π. Here the region of ‘small’ Γ where R(Γ, L) > 1

is seen, but after R(Γ, L) initially falls below 1 it does not rise above 1 again until

Γ ≫ 1.

Figures 2.9-2.12 show examples of η(x) for various situations when L = π. When

evaluating η(x) the sum in equation (2.39) is truncated at k = 50 ensuring that

the accuracy of η(x) is determined by the accuracy of U and not by the truncation.

Figure 2.9 shows four interface shapes for Γ below the lower ‘critical’ value of 1.07

and the negative root of (2.59) taken for U . For Γ = 0.1 the interface has a small

amplitude hump symmetrically placed above the point vortex. The primary mode is

clearly the dominant mode in this circumstance. As Γ is increased the amplitude of

this hump also increases and the effect of higher order modes is clearly visible upon
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Figure 2.7: R(Γ, L) (solid line) against Γ for L = π. For values of Γ where R(Γ, L) is
above the dashed line, solutions to the quadratic in U are real and therefore physically
permissible. In the region where R(Γ, L) < 1 no real solutions for U exist. This region
roughly corresponds to 1.07 < Γ < 2.30.

the interface. Figure 2.10 shows the corresponding interface shapes to figure 2.9 with

U taken as the positive root of (2.59). Now, for Γ = 0.1 the freestream velocity

U = 0.249 which is close to 2.5, the condition for an n = 1 resonance (see equation

(2.50)). This results in large values of a1 and therefore large amplitude interfacial

waves dominated by the primary mode. As the value of Γ increases the value of U

decreases, moving further away from the n = 1 resonance value of 2.5 resulting in the

amplitude of the interfacial waves decreasing.

Figures 2.11 and 2.12 show the interface shapes for Γ above the upper ‘critical’

value of 2.30 for U taken as the negative and positive roots of (2.59) respectively. In

figure 2.11 the hump is now placed ‘out of phase’ with the point vortex and the trough

of the interface corresponds to the point vortices horizontal position. The amplitude
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Figure 2.8: R(Γ, L) (solid line) against Γ for L = 2π. For values of Γ where R(Γ, L) is
above the dashed line, solutions to the quadratic in U are real and therefore physically
permissible. In the region where R(Γ, L) < 1 no real solutions for U exist. This region
roughly corresponds to Γ > 2.31.

of waves upon the interface are however large and the trough actually ‘engulfs’ the

point vortex. The amplitude of the interfacial waves increases as Γ increases. In

figure 2.12 the interfacial trough is again placed directly above the point vortex and

the interfacial shapes lie entirely above y = 0. These configurations have similarities

to the Karman vortex street (von Karman and Rubach 1913) in which the upper row

of vortices is desingularised into patches.

Figures 2.13 and 2.14 show the interface shapes for L = 2π with U taken as

the negative and positive root of (2.59) respectively. For low values of Γ, figure 2.13

shows that the interfacial shapes are similar to those seen in figure 2.9. As Γ increases

the amplitude of the interface increases and higher order modes again become more

prevalent in the interface shape. The interfacial shapes seen in figure 2.14 mirror
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Figure 2.9: Shapes of the interface η(x) for L = π over one period of −L/2 to L/2
for values of Γ < 1.07. All η(x) in this figure are evaluated using the ‘lower’ root of
U (see 2.59) and are truncated after the first 50 terms of the Fourier series. The solid
line is for Γ = 0.1 and U = 0.017, the dotted line for Γ = 0.25 and U = 0.042, the
dashed line for Γ = 0.5 and U = 0.084 and the dotted and dashed line for Γ = 0.8
and U = 0.137. The + represents the point vortex location.

closely those of figure 2.10.

Figures 2.9-2.14 show a wide range of interfacial shapes given by linear theory.

However, in many of the configurations shown, the amplitude of the interfacial wave is

large. In such situations, linear theory is not expected to be a good guide as to what

non-linear shapes may exist. In figure 2.9 when Γ = 0.1 and Γ = 0.25 small amplitude

waves are present on the interface with the primary mode being the dominant one. It

is therefore expected that in these circumstances linear theory is a ‘good’ guide as to

what non-linear shapes can be seen. For Γ = 0.5 and Γ = 0.8 in figure 2.9, although

the amplitude of the interfacial waves is not particularly large, higher order modes

are now playing a significant role in the interfacial shape. Therefore, if corresponding
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Figure 2.10: Shapes of the interface η(x) for L = π over one period of −L/2 to L/2
for values of Γ < 1.07. All η(x) in this figure are evaluated using the ‘higher’ root of
U (see 2.59) and are truncated after the first 50 terms of the Fourier series. The solid
line is for Γ = 0.1 and U = 0.249, the dotted line for Γ = 0.25 and U = 0.248, the
dashed line for Γ = 0.5 and U = 0.245 and the dotted and dashed line for Γ = 0.8
and U = 0.240. The + represents the point vortex location.

non-linear shapes do exist, they are likely to be more unstable and therefore difficult

to find numerically as many ‘more’ stable shapes will lie in their vicinity. Figure 2.11

shows a situation where interfacial waves are of very large amplitude and the interface

actually crosses the point vortex. The vortex would now lie in the vortical region of

the flow and this, along with the large amplitude of the waves, invalidate the linear

theory.

The shapes in figure 2.12 represent the ‘out of phase’ versions of some interface

shapes seen in figure 2.9 (i.e. the interface trough is now aligned with the vortex

in place of the peak) and resemble a ‘partially’ desingularised Karman vortex street.

The amplitude of these interfacial waves is however quite large bringing into question
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Figure 2.11: Shapes of the interface η(x) for L = π over one period of −L/2 to L/2
for values of Γ > 2.30. All η(x) in this figure are evaluated using the ‘lower’ root of
U (see 2.59) and are truncated after the first 50 terms of the Fourier series. The solid
line is for Γ = 3.0 and U = 0.271, the dotted line for Γ = 3.5 and U = 0.268 and the
dashed line for Γ = 4.0 and U = 0.266. The + represents the point vortex location.

the validity of the linear theory (that requires η ≪ 1). Nonetheless, the linear theory

still gives an indication that such shapes may exist. Corresponding non-linear shapes

to those discussed here are analysed numerically in the following chapter.
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Figure 2.12: Shapes of the interface η(x) for L = π over one period of −L/2 to L/2
for values of Γ > 2.30. All η(x) in this figure are evaluated using the ‘higher’ root of
U (see 2.59) and are truncated after the first 50 terms of the Fourier series. The solid
line is for Γ = 3.0 and U = 0.456, the dotted line for Γ = 3.5 and U = 0.539 and the
dashed line for Γ = 4.0 and U = 0.621. The + represents the point vortex location.
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Figure 2.13: Shapes of the interface η(x) for L = 2π over one period of −L/2 to L/2
for 0 < Γ < 2.31. All η(x) in this figure are evaluated using the ‘lower’ root of U (see
2.59) and are truncated after the first 50 terms of the Fourier series. The solid line is
for Γ = 0.1 and U = 0.010, the dotted line for Γ = 0.5 and U = 0.054 and the dashed
line for Γ = 1.0 and U = 0.115. The + represents the point vortex location.
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Figure 2.14: Shapes of the interface η(x) for L = 2π over one period of −L/2 to L/2
for 0 < Γ < 2.31. All η(x) in this figure are evaluated using the ‘higher’ root of U
(see 2.59) and are truncated after the first 50 terms of the Fourier series. The solid
line is for Γ = 0.1 and U = 0.498, the dotted line for Γ = 0.5 and U = 0.488, the
dashed line for Γ = 1.0 and U = 0.473 and the dotted and dashed line for Γ = 2.0
and U = 0.420. The + represents the point vortex location.
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2.2.2 Vortices in the rotational flow region

Consider a shear flow with vorticity jump ω̃ = −1 at y = 0 such that the velocity

field in the absence of point vortices is given by

u− iv =











U, y > 0,

U + y, y < 0.

(2.62)

Compare this to (2.31): now the vortical region lies below y = 0. An infinite row of

periodic point vortices with circulation Γ are placed at rn = (nL,−1) (n ∈ Z) and are

now located in the rotational region of the flow. The analysis of this system is very

similar to that of section 2.2.1. The condition on the vortical interface is unchanged

and the condition to render uloc = 0 is modified to

U − 1 − 1

2π

∫ ∞

−∞

η(x′)

x′2 + 1
dx′ = 0. (2.63)

Following the method of section 2.2.1, with the interface condition unchanged and

(2.35) modified to (2.63) leads to an equation for U given by

2(U − 1) +
Γ

L

(

∞
∑

n=1

e−
4nπ
L

2nπU
L

− 1
2

− 1

)

= 0. (2.64)

Truncating (2.64) for various n = N and solving the resultant (N + 1)th order poly-

nomial it is seen that once L is fixed, all but one root (for a given value for Γ) leads to

resonance. The root that does not lead to resonance is the only root with U > 1 and

corresponds to the positive root of the quadratic obtained from truncating (2.63) at

n = 1. Thus in the figures that follow, (2.64) was truncated at n = 4 to obtain a value

of the root with U > 1 accurate to at least three decimal places. Again, to gauge

for which values of Γ ‘useful’ solutions of (2.64) may exist it is useful to consider the
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function R(Γ, L). Truncating (2.64) at n = 1 and rearranging gives

U =

[

L

8π
+

Γ

4L
+

1

2

]

± 1

2

[

(

L

4π
+

Γ

2L
+ 1

)2

−
(

Γ

π
e−

4π
L +

Γ

2π
+
L

π

)

]
1
2

, (2.65)

and thus

R(Γ, L) =

(

L
4π

+ Γ
2L

+ 1
)2

Γ
π
e−

4π
L + Γ

2π
+ L

π

. (2.66)

R(Γ, L) is plotted against Γ in figures 2.15 and 2.16 for L = π and L = 2π respectively.

For both L = π and L = 2π and Γ > 0 the function R(Γ, L) is always greater than

one and thus ‘useful’ linear solutions may exist for all positive values of Γ.

Figure 2.15: R(Γ, L) (solid line) as a function of Γ for L = π. In the region between
0 < R < 1 represented by the horizontal axis and the dashed line, solutions of U will
be complex.

Using (2.39), with the sum truncated at k = 50, shapes of η(x) are evaluated for

L = π and L = 2π: shown in figures 2.17 and 2.18 respectively. For L = π the actual

amplitude of the interfacial oscillation is small for all values of Γ. As Γ is increased and
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Figure 2.16: R(Γ, L) (solid line) as a function of Γ for L = 2π. In the region between
0 < R < 1 represented by the horizontal axis and the dashed line, solutions of U will
be complex.

the uniform background velocity U increases the interface essentially moves further

away from the point vortices. As this shift occurs there is only a small increase in the

amplitude of the wave present on the interface. However, for L = 2π this is not the

case. As Γ is increased, although the minimum y-height of the interface increases,

the amplitude of the interfacial wave increases to a much greater extent than in the

L = π case. These interface shapes again resemble a Karman vortex street with the

upper row of vortices desingularised. As the amplitude of the interfacial oscillations

remain relatively small in the situations considered here, L = π and L = 2π, it is

expected that linear theory will be a good guide as to what non-linear shapes can be

expected across a range of Γ.



Chapter 2: Point vortex equilibria near a vortical interface: linear theory 46

Figure 2.17: Shapes of the interface η(x) for L = π over one period of −L/2 to
L/2. All η(x) in this figure are evaluated using the positive root of U (see 2.64) and
are truncated after the first 50 terms of the Fourier series. The solid line represents
Γ = 0.1 and U = 1.016, the dotted line for Γ = 0.5 and U = 1.079, the dashed
line Γ = 1.0 and U = 1.158, the dot-dash line Γ = 2.0 and U = 1.316 and finally
the three-dot-dash line Γ = 3.0 and U = 1.474. The + represents the point vortex
location.
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Figure 2.18: Shapes of the interface η(x) for L = 2π over one period of −L/2 to
L/2. All η(x) in this figure are evaluated using the positive root of U (see 2.64) and
are truncated after the first 50 terms of the Fourier series. The solid line represents
Γ = 0.1 and U = 1.006, the dotted line for Γ = 0.5 and U = 1.029, the dashed
line Γ = 1.0 and U = 1.059, the dot-dash line Γ = 2.0 and U = 1.123 and finally
the three-dot-dash line Γ = 3.0 and U = 1.189. The + represents the point vortex
location.
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2.3 Vortex street in a shear flow

Similar to section 2.2, linear equilibria can also be constructed for the situation

where a vortex street (i.e. staggered rows of opposite-signed vortices) lies in a shear

flow. Here, the form of the shear flow is given by equations (2.5) and (2.6) i.e. in the

absence of point vortices

u =











U − y/2 y > 0,

U + y/2 y < 0.

(2.67)

Point vortices of equal but opposite circulations are periodically placed at (−L/4 ±

nL,−1) and (L/4 ± nL, 1), where n ∈ Z
+. A schematic of the system is shown

in figure 2.19. Here, the circulation of the vortices, Γ, is not restricted to being

positive but instead can be of arbitrary sign. Due to the anti-symmetric nature

of the configuration, the interfacial contour, η(x), will also be anti-symmetric on

[−L/2, L/2]. This ensures that the y-direction velocity at the point vortices is zero.

The streamfunction for the interfacial disturbance is again given by equation

(2.32). The streamfunction ψpv owing to the periodic array of point vortices is

ψpv =
γ

4π
log
[

sin2
(π

L
(x− xloc)

)

+ sinh2
(π

L
(y − yloc)

)]

, (2.68)

where γ is the circulation of the vortices, L is the period of the configuration and

(xloc, yloc) position of one of the vortices. Here the region between L/2 and L/2 is

being considered and thus xloc ∈ [−L/2, L/2). The condition to render the vortices
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Figure 2.19: Schematic of the problem under consideration. A shear flow is present
with vorticity jump ω̃ = −1 such that ω = 1/2 in y > 0 and ω = −1/2 in y < 0
and the velocity is U at y = 0. Point vortices of circulation Γ and −Γ are placed
periodically at (−L/4 ± nL,−1) and (L/4 ± nL, 1) respectively, where n ∈ Z

+. The
fluid disturbance along the vorticity interface is labelled as y = η(x).

in y < 0 stationary is given by

U − 1

2
+

1

2π

∂

∂y

∫ ∞

−∞

∫ η(x′)

0

[

(

(x− x′)2 + (y − y′)2
)1/2
]

dy′dx′

∣

∣

∣

∣

∣

(−L/4,−1)

+

Γ

4π

∂

∂y
log
[

sin2
(π

L
(x− L/4)

)

+ sinh2
(π

L
(y − 1)

)]

∣

∣

∣

∣

∣

(−L/4,−1)

= 0.

(2.69)

Using the linear approximation |η| ≪ 1 gives

U − 1

2
− 1

2π

∫ ∞

−∞

η(x′)

(L/4 + x′)2 + 1
dx′ − Γ

2L
tanh

(

2π

L

)

= 0. (2.70)

Due to the anti-symmetry of the problem, (2.70) also ensures that the vortices in

y > 0 are also rendered stationary. Now consider the condition on the vortical
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interface (again given by (2.9)) which yields

U
∂η

∂x
=

1

2π

∂

∂x

[

−
∫ ∞

−∞

∫ η(x′)

0

log
[

(

(x− x′)2 + (−y′)2
)1/2
]

dy′dx′

+
Γ

2

(

log
[

sin2
(π

L
(x+ L/4)

)

+ sinh2
(π

L
y
)]

− log
[

sin2
(π

L
(x− L/4)

)

+ sinh2
(π

L
(−1)

)]

)]

.

(2.71)

After some algebra, (2.71) simplifies to give

U
∂η

∂x
=

−1

2π

∫ ∞

−∞

η(x′)

x− x′
dx′ +

Γβ

L

cos(2πx/L)

β2 − sin2(2πx/L)
, (2.72)

where β = cosh(2π/L). The interface shape, η(x), which is anti-symmetric on

[−L/2, L/2] can be written as a Fourier series given by

η(x) =
∞
∑

n=1

bn sin
2πnx

L
, (2.73)

where

bn =
4

L

∫ L/2

0

η(x) sin
2πnx

L
dx. (2.74)

Note owing to the imposed antisymmetry the net circulation is zero. There was no

need to impose this condition as was done in section 2.2. Following the method of

section 2.2, the forcing term at the interface owing to the point vortices is also written

as a Fourier series, here given by

g(x) =
Γβ

L

cos(2πx/L)

β2 − sin2(2πx/L)
=

∞
∑

k=1

ak cos
2πkx

L
, (2.75)

where

ak =
2πΓβ

L2

∫ L/2

−L/2

cos(2πx/L) cos(2πkx/L)

β2 − sin2(2πx/L)
dx =

2Γβ

πL

∫ π

0

cos z cos kz

β2 − sin2 z
dz. (2.76)
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Substituting (2.73) and (2.75) into (2.72) gives

∞
∑

n=1

2πnU

L
bn cos

2πnx

L
= − 1

2π

∞
∑

n=1

∫ ∞

−∞

bn
sin(2πnx′/L)

x− x′
dx′ +

∞
∑

n=1

an cos
2πnx

L
. (2.77)

From the result of (2.49), evaluating the integral on the right hand side of (2.77) gives

∫ ∞

−∞

sin(2πnx′/L)

x− x′
dx = −π cos

2πnx

L
. (2.78)

A relationship between the constants an and bn is therefore given by

bn =
an

2πnU
L

− 1
2

. (2.79)

Again, as in (2.50), when 2πnU/L ≃ 1/2 resonance will occur. Finally, in order to

resolve U and thus the interfacial shapes η(x), (2.73) is substituted into (2.70) giving

U − 1

2
− 1

2π

∫ ∞

−∞

∞
∑

n=1

bn
sin(2πnx′)

(L/4 + x′)2 + 1
dx′ − αΓ

2L
= 0, (2.80)

where α = tanh(2π/L). To evaluate the integral on the left hand side of (2.80) let

ζ = L/4 + x′ giving

∫ ∞

−∞

sin(2πnx′)

(L/4 + x′)2 + 1
dx′ = ℑ

[

e−inπ/2

∫ ∞

−∞

ei2πnζ/L

ζ2 + 1
dζ

]

= −πe−2πn/L sin
nπ

2
.

(2.81)

Using the result of (2.81) in (2.80), the equation for U is given by

U − 1

2
− αΓ

2L
+

1

2

∞
∑

n=1

bne
−2πn/L sin

nπ

2
= 0. (2.82)

Note that due to the sin(nπ/2) term in the summation, only bn for odd n will con-

tribute to (2.82). Following the method and reasoning of section 2.2, that is, the
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relevant roots of U can again be obtained from truncating (2.82) at n = 1 and solving

the resultant quadratic, and using equation (2.79) in (2.82), gives

U − 1

2
− αΓ

2L
+

1

2

a1

2πU
L

− 1
2

e−2π/L = 0. (2.83)

Rearranging (2.83) gives

U =

(

L

8π
+

1

4
+
αΓ

4L

)

± 1

2

[

(

L

4π
+

1

2
+
αΓ

2L

)2

−
(

αΓ + L

2π
+

2βΓ

π2
â1e

−2π/L

)

]
1
2

,

(2.84)

where

â1 =

∫ π

0

cos2 z

β2 − sin2 z
dz. (2.85)

Here, due to the sin(nπ/2) term in (2.82), values of U accurate to three significant

figures can be obtained from truncating the sum at n = 1 and solving the resultant

quadratic, i.e. there is no need to solve a higher order polynomial to achieve this

accuracy as was done in section 2.2. Again, to gauge for which values of Γ physically

permissible solutions of U may exist consider the function

R(Γ, L) =

(

L
4π

+ 1
2

+ αΓ
2L

)2

αΓ+L
2π

+ 2βΓ
π2 â1e−2π/L

. (2.86)

Solutions for U will be non-complex, and therefore physically permissible, forR(Γ, L) ≤

0 or R(Γ, L) ≥ 1. Plots of the function R(Γ, L) against Γ are shown in figures 2.20

and 2.21 for L = π and L = 2π respectively. Figure 2.20 shows that for the case when

L = π, solutions of (2.84) will be real for all Γ ∈ ℜ. When L = 2π, shown in figure

2.21, it is seen that solutions of (2.84) are real except in the region 0 < Γ < 23.57.

However, for Γ = O(10), large amplitude waves will be excited on the vortical inter-

face invalidating the use of linear theory which requires |η| ≪ 1. Therefore, somewhat
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surprisingly, in this case (L = 2π) in the linear limit of small amplitude interfacial

waves, Γ is required to be negative.

Figure 2.20: R(Γ, L) (solid line) as a function of Γ for L = π. In the region between
the dashed lines, 0 < R(Γ, L) < 1, no real solutions of U exist. Here, solutions of U
are real for all Γ ∈ ℜ.

Using (2.76), (2.79) and (2.84) the interface shapes η(x) are determined. When

evaluating η(x), the sum in (2.73) was truncated at n = 50. Plots of η(x) for L = π

are shown in figures 2.22 and 2.23 for U evaluated taking the negative and positive

roots of (2.84) respectively. In figure 2.22, curves of η(x) are plotted for Γ = −4,

(for which U = −0.144) and Γ = −2, (for which U = 0.140). This leads to a

situation where the interface ‘sinks’ towards each point vortex. For both values of

Γ, the velocity due to U and the effect of the shear flow will be negative at each

point vortex (since U < 1/2 in both cases). Thus, for a stationary configuration the

velocity fields owing to the interfacial disturbance and the other point vortex need

to cancel exactly with this velocity field. Having the interface deform towards the
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Figure 2.21: R(Γ, L) (solid line) as a function of Γ for L = 2π. In the region between
the dashed lines, 0 < R(Γ, L) < 1, no real solutions of U exist. Here, solutions for U
will be real for Γ not in the region 0 < Γ < 23.57.

point vortices results in the contributions to the velocity field from the interfacial

disturbance and the other vortex both being in the positive y-direction. For the case

when Γ = −1, the contribution from the other point vortex is comparatively large

and only a small amplitude disturbance at the interface is necessary to render the

configuration stationary. When Γ = −2 the other vortex contribution is smaller and a

larger amplitude interfacial disturbance is now required for a stationary configuration.

For L = π, when Γ is close to zero and when Γ > 0, evaluating equation (2.84) gives

U ≃ 0.25, the condition for an n = 1 resonance. Thus for Γ in this region the

amplitude of interfacial waves is large and linear theory is not applicable.

When evaluating U for L = π taking the positive root of (2.84), negative Γ

leads to an interfacial disturbance in the opposite direction to the case previously

considered, i.e. the interface moves ‘away’ from each point vortex. However, for
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positive values of Γ there is a small disturbance at the interface towards the point

vortices (as previously seen for negative values of Γ). Figure 2.23 shows the shapes

of η(x) for Γ = −1/2, Γ = −1/4 and Γ = 1/2 in this case. As Γ is increased

the amplitude of the interfacial disturbance also increases. As a quick check of the

validity of linear theory, consider the interface given by the dotted line in figure 2.23.

In this case, the interface is nearly flat and therefore at the point vortices the velocity

owing to the interfacial disturbance will be small. In the absence of the vorticity

interface and any ambient flows, the vortex street of figure 2.23 with Γ = 1/2 will

steadily translate with u = −0.077. Therefore, to render the configuration stationary

a contribution to the velocity field at the point vortices of u = 0.005 is required from

the interfacial disturbance. Considering the shape of the interface in question this is

a sensible value. Note that, as in section 2.2, high order resonances can again be seen

in this system for certain values of Γ and U . However, as linear theory is not valid

in such situations no such corresponding interface shapes are shown here (or in the

following figures of this section).

Interfacial shapes with a period of L = 2π are shown for U evaluated using the

negative and positive roots of (2.84) in figures 2.24 and 2.25 respectively. Here, only

negative values of Γ are considered as solutions of (2.84) for 0 < Γ < 23.57 are complex

and thus not physically permissible. Figure 2.24 shows the ‘corresponding’ interface

shapes to those of figure 2.22. The interface shapes seen in figure 2.24 are similar in

shape to those of figure 2.22, however in contrast, as Γ increases the amplitude of the

interfacial wave also increases. When L = 2π and U is evaluated using the positive

root of equation (2.84) the system exhibits similar behaviour to the corresponding
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Figure 2.22: Plots of η(x) for L = π and U evaluated using the negative root of
(2.84). The solid line represents Γ = −4 (for which U = −0.144) and the dashed line
Γ = −2 (for which U = 0.140).

L = π system.

2.4 Summary

Point vortex equilibria near a vortical interface have been derived in the linear

limit of small amplitude oscillations at the interface. The jump in vorticity across

the interface was provided by a shear flow. The first configuration considered was the

anti-symmetric analogue of that considered in McDonald (2004), that is, two vortices

of equal but opposite circulations located either side of a vorticity interface. For this

configuration, no equilibrium states could be found in the linear limit. The condi-

tions necessary to render both point vortices stationary resulted in large amplitude

oscillations at the interface that engulfed the point vortices rendering linear theory
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Figure 2.23: Plots of η(x) for L = π and U evaluated using the positive root of (2.84).
The solid line represents Γ = −1/2 (for which U = 0.431), the dashed line Γ = −1/4
(for which U = 0.465) and the dotted line Γ = 1/2 (for which U = 0.572).

invalid. Although linear theory can serve as a guide in searching for corresponding

non-linear equilbria this non-result cannot rule out their existence.

Three configurations with periodic arrays of vortices near an interface were then

considered. The first was an array of symmetric vortices located in the irrotational

region of the flow. The problem depends on the parameters Γ, U and L which

are the point vortex circulation, free-stream velocity and periodicity of the domain

respectively. One method of obtaining solutions is to represent the interface as a

Fourier series. This results in U being given by a transcendental function dependent

on Γ and L. Solutions of U are obtained by approximating the function as an Nth

order polynomial and solving for U . Many of the solutions of U were complex or led

the resonance and thus a condition was derived that served as a guide as to where

physically permissible values of U may be obtained. A vast array of interfacial shapes
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Figure 2.24: Plots of η(x) for L = 2π and U evaluated using the negative root of
(2.84). The solid line represents Γ = −1 (for which U = 0.320) and the dashed line
Γ = −0.1 (for which U = 0.450).

exist for the possible values of Γ, U and L. Many solutions lead to resonance and

large amplitude oscillations at the interface bringing into question the validity of

linear theory. However, for small Γ, some solutions are seen in which there exists a

small amplitude hump at the interface, placed symmetrically above the point vortex.

Also, some solutions were seen in which the interface amplitude remained relatively

small and higher order modes were playing a significant role in the interface shape.

Next, the above configuration with the vortices now placed in the rotational region

of the flow was considered. The method of solution closely parallels that of the

previous configuration. Solutions in which linear theory is expected to be a good

guide now have a hump at the interface placed out of phase with the point vortex,

resembling a Von-Karman vortex street one row of vortices desingularised. For small

L, interface shapes tended to be higher and flatter i.e. the interface would have a
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Figure 2.25: Plots of η(x) for L = 2π and U evaluated using the positive root of
(2.84). The solid line represents Γ = −1 (for which U = 0.620) and the dashed line
Γ = −0.1 (for which U = 0.544).

small amplitude oscillation and be at a greater vertical distance from the point vortex.

The final configuration considered was that of a vortex street in a shear flow. The

method of solution is again very similar to that of the previous two configurations but

now with an extra point vortex per period. Also, for this problem, both positive and

negative values of Γ were considered. In general, interface shapes resembled sine waves

over one period. Solutions exist in which the interface curves towards and away from

the vortices, i.e. the interface can resemble a positive or negative sine wave. Either

situation could occur for both positive and negative values of Γ. However, for larger

values of L, for example L = 2π, no linear equilibria could be found for which Γ > 0.

The linear equilibria derived in this chapter will motivate and help the search for

non-linear equilibria in chapter 3. It has been shown that a range of linear equilibria

are possible for the configurations considered and it is expected that some of the
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possible non-linear equilibria will be similar in shape. Thus, initially, in chapter 3,

the linear equilibria derived here will be used to initialise the non-linear computations.



Chapter 3

Computation of non-linear

equilibria on a vortical interface

In this chapter the corresponding non-linear equilibria to those found in the linear

limit of small amplitude interfacial oscillations in chapter 2 are computed numeri-

cally. To examine these non-linear equilibria a numerical procedure based on that of

McDonald (2004) is used. In general, the procedure entails using Newton’s method

to iterate the vortical interface to a shape such that is has a constant value of the

streamfunction along it (i.e. the interface becomes a streamline) and the velocity at

all point vortices vanishes. In iterating the interface towards a streamline, the param-

eters Γ and U and, depending on the system under consideration, possibly an extra

parameter measuring the vortex separation will also be calculated. When calculating

symmetric equilibria (c.f. chapter 2.2) the vortex position will remain fixed and when

calculating anti-symmetric equilibria (c.f. chapter 2.3) the distance of the vortices

from the interface will remain fixed. The vorticity distributions under consideration

61
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are piecewise constant, enabling the use of a contour dynamics algorithm (Dritschel

(1989)) to calculate the velocity field owing to the vorticity interface. For the planar

anti-symmetric system considered in chapter 2.1, a planar contour dynamics algo-

rithm is used while for the systems considered in chapters 2.2 and 2.3, a cylindrical

(or singly periodic) contour dynamics algorithm is used to account for the periodicity

of the vortical interface. First, computations of equilibria for the periodic configu-

ration of chapter 2.2 are presented. Equilibria are first computed for the case when

the point vortices are situated in the non-rotational region of the flow and also for

when they are situated in the rotational region. Next, equilibria are computed for

the anti-symmetric periodic configuration of chapter 2.3. Finally, as noted in chapter

2, no non-linear equilibria for the planar anti-symmetric configuration of chapter 2.1

could be found and this is briefly discussed.

3.1 Periodic symmetric equilibria

In computing periodic equilibria a modified version of the cylindrical contour

dynamics algorithm outlined in Dritschel (1989) is used. The vorticity dynamics are

formulated on the surface of an infinitely long, unit radius cylinder (which corresponds

to the case when L = 2π in chapters 2.2 and 2.3). In the algorithm, velocity fields

owing to piecewise constant vorticity jumps are determined using three dimensional

Cartesian coordinates restricted to the surface of the cylinder. From these Cartesian

coordinates the corresponding surface cylindrical coordinates φ̂ and ẑ, where φ̂ ∈

[0, 2π) is the azimuthal angle and ẑ ∈ (−∞,∞) is the along cylinder axis coordinate,

are determined. Note that here, the radial coordinate, r̂, is always given by r̂ = 1.
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Further details of the cylindrical contour dynamics algorithm are given in appendix

A and Dritschel (1989). The cylindrical coordinates φ̂ and ẑ correspond to the planar

Cartesian coordinates x and y respectively and these latter coordinates are used in

the discussion that follows.

The vortical interface is discretized into 2N − 2 nodes which are uniformly dis-

tributed in the x-direction such that x1 = 0 and xN = π. The interface must be

symmetric over one period (where one period is taken to be the interval x ∈ [0, 2π)).

To ensure this property the computational domain is restricted to the interval be-

tween 0 and π, i.e. only the y-location of the nodes i = 1, .., N are adjusted during

the iterative process. The y coordinates of nodes with i > N (i.e. the nodes within

the interval 0 < x < 2π) are thus given by yN+j = yN−j. A schematic of the setup

is shown in figure 3.1. For a given interfacial shape, the velocity at the interface is

computed by summing its self induced velocity, calculated using the contour dynam-

ics algorithm, and the velocity at the interface owing to the point vortex located at

(π, yloc) (where yloc will be set to −1 or −2). The x-direction velocity at uvort the

point vortex, which is entirely due to the interfacial disturbance, is also computed

using the contour dynamics algorithm. Also, note that due to the symmetry of the

interface the requirement that the y-direction velocity at the point vortex is zero is

automatically satisfied. Here, the contour dynamics algorithm is not being used in

its normal time dependent form (Dritschel 1989), but rather is used only to find the

velocity at each node upon the interface and at the point vortex.

Two values of the streamfunction, ψF
i and ψB

i , are calculated at each node in the

computational domain by marching to the right and to the left respectively. When



Chapter 3: Computation of non-linear equilibria on a vortical interface 64

Figure 3.1: Schematic of the computational domain setup for periodic symmetric
equilibria.

marching to the right the streamfunction at the i = 1 node is set so that ψF
1 = 0.

When marching to the left the streamfunction at i = N is set to zero, that is ψB
N = 0.

Values of the streamfunction at each node are calculated according to

ψF
i+1 = ψF

i + v̄idxi − ūidyi, i = 1, .., N − 1, (3.1)

and

ψB
i = ψB

i+1 − v̄idxi + ūidyi, i = 1, .., N − 1, (3.2)

where

ūi =
ui + ui+1

2
, v̄i =

vi + vi+1

2
, i = 1, .., N − 1, (3.3)

and

dxi = xi+1 − xi, dyi = yi+1 − yi, i = 1, .., N − 1. (3.4)
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The streamfunction at each node is then the average of ψF and ψB, i.e.

ψi =
ψF

i + ψB
i

2
. (3.5)

To find an equilibrium the values of yi and U are simultaneously adjusted so that, to

within some numerical tolerance, ψi = 0, i = 1, .., N , and the x-direction velocity at

the vortex, uvort = 0. By fixing the point vortex circulation, Γ, and the distance of

the vortex from the interface, the N + 1 unknowns y1, .., yN and U are given by the

N + 1 equations

ψi(y1, y2, .., yN , U) = 0, i = 1, .., N,

uvort(y1, y2, .., yN , U) = 0.

(3.6)

Equations (3.6) are solved using Newton’s method. For a given iteration, the nth

iteration say, the variables yj and U at the (n+1)th iteration are computed according

to

y
(n+1)
j = y

(n)
j + ∆j , j = 1, .., N

U (n+1) = U (n) + ∆N+1,

(3.7)

where ∆j is the jth element of the vector solution of the (N + 1) × (N + 1) matrix

equation

N
∑

j=1

∂ψ
(n)
i

∂yj
∆j +

∂ψ
(n)
i

∂U
∆N+1 = −ψ(n)

i , i = 1, .., N,

N
∑

j=1

∂u
(n)
vort

∂yj

∆j +
∂u

(n)
vort

∂U
∆N+1 = −u(n)

vort.

(3.8)
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The derivatives in (3.8) are computed numerically according to

∂f

∂l
≈ f(l + δ) − f(l)

δ
, (3.9)

using δ = 10−6. Therefore, in order to calculate the columns of the matrix, for a

configuration yj , U (j = 1, .., N), the contour dynamics algorithm is called to evaluate

the velocity at each node along with uvort. Knowing the velocity at each node enables

the streamfunction to be calculated using (3.5). The values yj at each node (or the

value of U when evaluating elements of the (N + 1)th row) are then varied by δ and

the contour dynamics algorithm is called to evaluate the new velocities, enabling the

evaluation of the new streamfunctions ψi(yj + δ) (i = 1, .., N) and uvort(yj + δ) (or

ψi(U + δ) and uvort(U + δ) when j = N + 1). Using the estimate of the derivative

given in (3.9) the columns of the matrix are hence evaluated. Finally, the matrix

equation (3.8) is solved by Gaussian elimination. Therefore, each iteration of the

above algorithm requires N + 2 calculations of the velocity field at all points, giving

a contour dynamics cost of (N + 2) × (N + 1). In addition, an (N + 1) × (N + 1)

matrix is inverted once per iteration.

In the following computations, the number of nodes in the computational domain

is set to N = 100, giving a resolution in the x-direction of δx = 0.0314. Increasing

the number of nodes within the computational domain (i.e. decreasing δx) results in

the algorithm converging to a slightly different steady state which, although different,

is nevertheless, a genuine equilibria. This is due to the fact that all nodes within the

computational domain are free to move in the y-direction and is not due to a lack of

resolution in the x-direction to obtain convergence. As all nodes are free to move in

the y-direction, it is possible for the entire interface to shift ‘upwards’ or ‘downwards’
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through the course of a simulation. This is equivalent to, say, altering the periodicity

of the domain in chapter 2.2 which, in the linear regime, can introduce a number

of possible new equilibrium shapes. Thus for a point vortex of fixed circulation at

some fixed distance below the y-axis it is expected that the algorithm will converge

to many distinct equilibria depending on the initial conditions used, i.e. depending

on the initial choice of interface shape and free stream velocity U . This is typical of

Newtonian iteration.

In order to monitor the convergence of the computed equilibria, values of both U

and the area of the interfacial disturbance are recorded and it is ensured that these

values have converged to at least six decimal places in all results that follow. This

level of convergence was generally realised within 50 iterations.

The lack of exact solutions for the non-linear equilibria inhibits an analytical inves-

tigation of their stability. Thus, to examine the stability, or robustness of computed

equilibria, they are then used as initial conditions in a fully non-linear time depen-

dent cylindrical contour dynamics code. A robust equilibrium is expected to remain

largely unchanged for a reasonable period of time. Conversely, if an equilibrium is

unstable, due to numerical perturbations it is expected to quickly lose coherence and

behave in a complicated manner. Some of the equilibria are tested in this way.

3.1.1 Point vortex in the irrotational flow region

Consider the configuration where the vortex is in the irrotational region of the

flow (chapter 2.2.1, figure 2.5). The linear equilibria computed in chapter 2.2.1 are

used to initialise the non-linear algorithm described above. For the case in chapter
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2.2.1 when L = π, this equates to multiplying all length scales by a factor of two and

consequently the point vortex circulation by a factor of four and U by a factor of two.

Figure 3.2 shows the non-linear equilibria computed with (Γ = 0.4, U0 = 0.034), (Γ =

1.0, U0 = 0.084) and (Γ = 2.0, U0 = 0.168) as initial conditions (where the brackets

have been introduced for ease of notation and indicate the pair of initial values used

in each case and U0 represents the value of U used to initialise the simulation. Note

that here, Γ remains fixed). These initial conditions correspond to three of the linear

equilibria shown in figure 2.9 ‘stretched’ into a domain with 2π periodicity. When

Γ = 0.4 and Γ = 1, through visual comparison, it is seen that the shapes of η(x)

correspond very closely to their linear counterparts of figure 2.9 (i.e. the equilibria

with (Γ = 0.1, U = 0.017) and (Γ = 0.25, U = 0.042) respectively). However, when

Γ = 2, the higher order modes present in the linear equilibria are clearly absent

in the ‘corresponding’ non-linear case; the shape of the interface is very similar to

when Γ = 0.4 or Γ = 1 but with a higher amplitude. This is not unexpected as,

as mentioned above, all interfacial nodes are free to move in the y-direction making

the algorithm more likely to converge to a more stable equilibrium without higher

order modes. Therefore, if non-linear equilibria in which higher order modes play a

significant role do exist, it is likely that a different algorithm is needed to find them.

Consequently, the constraints seen on the values of Γ that give physically permissible

U (i.e. 2.60 and 2.61) in the linear analysis are not observed here. Also, the equilibria

of chapter 2.2.1 with large amplitude interface oscillations, such as in figures 2.10 and

2.12, could not be realised numerically. In fact, the equilibria of figure 2.12 resemble

closely some of the non-linear equilibria computed when the point vortex is in the
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rotational region of the flow as will be seen in the following section.

When initialising the algorithm with the linear equilibria of chapter 2.2.1 with

L = 2π no corresponding non-linear equilibria could be found. In all cases the

algorithm would either diverge or converge to a result in which a great deal of noise

was present at the edges of the vortical interface. Equilibria could however be found

when the algorithm was initialised with the point vortex unit distance from a flat

interface. However, in such cases the interface would essentially move away from

the vortex to an equilibrium position in which the vertical separation of vortex and

interface was far greater than the initial unit distance. This resulted in equilibria

similar to those shown of figure 3.3 (whose computation is detailed below).

Figure 3.3 shows equilibria resulting from initialising the simulation with the vor-

tex at (π,−2) and a flat interface along y = 0 with (Γ = 4, U0 = 0.3), (Γ = 12, U0 =

0.5) and (Γ = 20, U0 = 0.6). In the three equilibria of figure 3.3 it is seen that the

node at x = 0 is at a location with y < 0. This was a common feature of equilibria

resulting from initialising the simulation with the vortex at (π,−2) for various initial

interface shapes. Another example of an initial interface shape used was a Gaussian

profile. Also, as noted previously, in simulations initiated with the vortex located

at (π,−1) and a flat interface along y = 0, the whole interface would often ‘lift up’

resulting in a vortex-interface separation similar to the separations seen in figure 3.3.

This seemingly preferential vortex-interface separation possibly gives some indication

of an optimum vortex-interface separation for stability. It should also be noted that

initialising simulations with a vortex of the same circulation but with different values

of U0 could lead to the algorithm converging to different equilibria. These equilibria
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would be similar in shape but with different y values at the nodes; that is, the initial

value of U0 would effect the resulting vortex-interface separation.

Figure 3.2: Non-linear profiles of η(x) computed with Γ = 0.4 (solid line), Γ = 1
(dotted line) and Γ = 2 (dashed line). The final computed free stream velocities are,
respectively, U = 0.02545, U = 0.06137 and U = 0.13412. The + indicates the point
vortex position.

To examine the robustness of the computed equilibria they are set as initial con-

ditions in a time dependent cylindrical contour dynamics code. In the contour dy-

namics algorithm velocity fields are calculated at nodes along the interface as well

as at the point vortex. Time integration is carried out using a fourth order Runge-

Kutta method and typically 200-400 nodes are used to represent the vortical inter-

face depending on the size of the equilibrium. The time step is set to dt = 0.01.

Figures 3.4 and 3.5 show the time evolution of the equilibrium previously shown in

figure 3.2 with (Γ = 0.4, U = 0.02545) and the equilibrium shown in figure 3.3 with

(Γ = 12, U = 0.040912) respectively. Even after the 150 time units, the equilibrium
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Figure 3.3: Non-linear profiles of η(x) computed with Γ = 4 (solid line), Γ = 12
(dotted line) and Γ = 20 (dashed line). The final computed free stream velocities are,
respectively, U = 0.02357, U = 0.04091 and U = 0.00310. The + indicates the point
vortex position.

with (Γ = 0.4, U = 0.02545) has moved very little and the little movement which

has occurred is effectively discernible to the naked eye. To give an indication of how

little the numerical equilibrium has moved in this time, at t = 150 the deviation of

the point vortex in the x-direction is of O(10−4), showing that the equilibrium is very

robust. At t = 150, the vortex with (Γ = 12, U = 0.040912) has clearly deviated from

its initial position at t = 0. A faster deviation away from the equilibrium position

is expected in this case due to the larger vortex circulation and interface amplitude

involved. Nevertheless, the equilibria still takes a significant time to deviate from

its initial position and even after large time periods there is only a relatively small

deviation. Similar results to those shown in figures 3.2 and 3.3 were seen for many of

the other numerical equilibria computed giving a good indication that many of the
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equilibria computed when the point vortex is in the irrotational region of the flow are

of a stable nature.

Figure 3.4: Numerical equilibrium with (Γ = 0.4, U = 0.02545) at t = 0 (dashed line
and asterisk) and at t = 150 (solid line and cross). (Over this time period both the
interface and point vortex have moved very little making any differences very difficult
to resolve by eye).

It is also of interest to consider how the magnitude of the vortex circulation

effects the size of the disturbance at the interface. One method of examining this

is to consider how the amplitude of the disturbance varies with vortex circulation,

where amplitude is taken here to mean the difference in y between the highest and

lowest nodes of the computational domain. Figure 3.6 shows the amplitude of the

disturbance at the interface for point vortices of various circulations. In obtaining

the results of figure 3.6, all simulations were initiated with the point vortex at a

vertical distance of two from a flat interface, and U was varied between 0.1 to 0.2,

with larger values of U being used for larger vortex circulations. After the algorithm
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Figure 3.5: Numerical equilibrium with (Γ = 12, U = 0.040912) at t = 0 (dashed line
and asterisk) and at t = 150 (solid line and cross).

has converged, the final vortex-interface separation will play an important role in the

amplitude of the disturbance on the interface, and as the algorithm was chosen such

that all interfacial nodes are free to move in the vertical direction, this separation is

very difficult to control. Through trial and error, the above initial conditions were

found to keep the separation of the vortex from the lowest node in the computational

domain relatively constant. Therefore, although this is a rather crude analysis, it

does give some indication of how the vortex circulation effects the disturbance on the

interface.

Figure 3.6 indicates that for weak point vortices, increasing the circulation results

in the amplitude of the disturbance increasing quite rapidly in an approximately lin-

ear manner. As the vortex circulation gets larger the amplitude of the disturbance

continues to increase, however this increase in amplitude becomes ‘sub-linear’ as in-
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dicated by the decreasing gradient in figure 3.6. That is, increasing the point vortex

circulation results in the interface amplitude increasing with ‘diminishing returns’.

Figure 3.6: The difference in height between the highest and lowest interface nodes
of the equilibria (∆y) for point vortices of various circulations. All simulations were
initiated with point vortices at a y-distance of two from a flat interface and U varying
from 0.1 to 0.2.

To summarise, in this section, various non-linear equilibria have been computed

for the configuration where a point vortex in a singly-periodic domain is located in

the irrotational region of a shear flow. Non-linear equilibria were initially computed

by initialising simulations with the linear equilibria calculated in chapter 2.2.1. For

small vortex circulations, when the vortex-interface vertical separation was two units,

the non-linear equilibria show good agreement with the linear equilibria. However, as

the vortex circulation is increased, the non-linear equilibria resembled scaled versions

of those equilibria with point vortices of smaller circulation. When linear equilibria

with a vortex-interface separation of one unit were used to initialise the algorithm, no
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corresponding non-linear equilibria could be found i.e. convergence was not obtained.

A range of non-linear equilibria were found through initialising the algorithm

with point vortices of various circulations at a vertical distance of two units from

a flat interface. The robustness of these equilibria, along with those found through

initialising the algorithm with corresponding linear equilibria, was tested. It was

seen that the computed equilibria remained largely unchanged for large time periods

giving a good indication that they are of a stable nature.

3.1.2 Point vortex in the rotational flow region

The configuration where the vortex is in the rotational region of the flow is now

considered (see chapter 2.2.2, equation 2.62). The linear equilibria of figures 2.17

and 2.18 are used as initial conditions in the computation of non-linear equilibria. As

mentioned at the beginning of section 3.1.1, for the configuration of chapter 2.2.2 with

a periodicity of π, it is required to multiply all length scales by a factor of two and

consequently the vortex circulation by a factor of four and U0 by a factor of two to

‘stretch’ these equilibria onto the surface of the unit cylinder, which is a 2π-periodic

domain.

Figure 3.7 shows the non-linear equilibria resulting from using the appropriately

adapted equilibria of figure 2.17 as initial conditions, that is, computation of non-

linear equilibria is initiated with (Γ = 0.4, U0 = 2.032), (Γ = 2, U0 = 2.158),

(Γ = 4, U0 = 2.316), (Γ = 8, U0 = 2.632) and (Γ = 12, U0 = 2.948) respectively. These

initial conditions lead to equilibria in which the interface is nearly flat. Through a

visual comparison with the linear equilibria of figure 2.17, it is seen that the cor-
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responding non-linear equilibria have a ‘slightly’ flatter interface and an increased

vortex-interface separation. Slightly surprisingly, in all cases, the resulting value of

U changes very little, if at all.

In figure 3.8, the equilibria resulting from using the linear equilibria of figure 2.18

as initial conditions are shown. Through a visual comparison with figure 2.18, the

non-linear equilibria computed are very similar in shape to their corresponding linear

equilibria and their values of U match up to five significant figures. When Γ = 0.1,

Γ = 0.5 or Γ = 1, it is difficult to distinguish the non-linear from linear equilibria with

the naked eye. When Γ = 2.0 or Γ = 3.0, the amplitude of the disturbance at the

interface is smaller for the non-linear equilibria, that is, the vertical distance between

the highest and lowest interfacial nodes has decreased. For Γ = 2.0, the amplitude

decreases from 0.38790 (linear equilibrium) to 0.30305 (non-linear equilibrium) and

for Γ = 3.0, the decrease in amplitude is from 0.52668 to 0.35594.

As in the previous section, to examine the robustness of computed non-linear

equilibria they are used as initial conditions in a time dependent cylindrical contour

dynamics code. Figures 3.9 and 3.10 show the time evolution of the equilibria of

figure 3.8 with (Γ = 0.1, U = 1.00600) and (Γ = 3.0, U = 1.18900) respectively. As

expected, equilibria with only small disturbances upon the interface remain largely

unchanged over very long time periods. For larger amplitude equilibria, there is a

drift in the interface from its initial configuration. However, this drift only occurs

after a reasonable time, about 50 time units in the case of figure 3.10, giving a good

indication that the computed equilibria are stable configurations.

For an initial vortex-interface separation of two units, more ‘interesting’ equilibria
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Figure 3.7: Non-linear profiles of η(x) computed with Γ = 0.4 (solid line), Γ = 2
(dotted line), Γ = 4 (dashed line), Γ = 8 (dot-dash line) and Γ = 12 (three dot-dash
line) for a point vortex at z = −2. The final computed free stream velocities are,
respectively, U = 2.03200, U = 2.15800, U = 2.31600, U = 2.63200 and U = 2.94798.
The + indicates the point vortex position.

than those of figure 3.7 can be computed by initialising the algorithm with differ-

ent initial conditions, for example, a flat interface or a cosine profile. Figure 3.11

shows some of the interface shapes resulting from initialising the algorithm with a

flat interface for point vortices with circulations ranging from 0.5 to 12 and U ranging

from 2.032 to 2.12. These conditions were chosen through trial and error in order to

obtain equilibria whose minimums had roughly the same y value. It was seen that

for this configuration, the minimum interface height of computed equilibria could be

‘controlled’ by the initial choice of U . The larger the value of U , the higher and flatter

the resulting equilibria. In figure 3.12 a plot of the interface amplitude against point

vortex circulation is shown for the equilibria of figure 3.11 along with some extra
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Figure 3.8: Non-linear profiles of η(x) computed when Γ = 0.1 (solid line), Γ = 0.5
(dotted line), Γ = 1 (dashed line), Γ = 2 (dot-dash line) and Γ = 3 (three dot-dash
line) for a point vortex at z = −1. The final computed free stream velocities are,
respectively, U = 1.00600, U = 1.02900, U = 1.05900, U = 1.12300 and U = 1.18900.
The + indicates the point vortex position.

equilibria computed using point vortices of different circulations. It was ensured that

the interface minimum in these added equilibria was at a very similar level to those of

figure 3.11. Here, in contrast to the previous section, as the point vortex circulation

increases the amplitude of the interface increases at a faster rate.

3.2 Periodic anti-symmetric equilibria

Non-linear equilibria are now calculated for the case of a vortex street in a shear

flow (see chapter 2.3 for details of the configuration). The algorithm used to com-

pute these equilibria is similar to that detailed in 3.1, the required modifications are

detailed below.
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Figure 3.9: Numerical equilibrium of figure 3.8 with (Γ = 0.1, U = 1.00600) at t = 0
(solid line and asterisk) and at t = 150 (dashed line and +). (Over this time period
both the interface and point vortex have moved very little making any differences
very difficult to resolve by eye).

Again, the domain is discretized into 2N − 2 nodes uniformly spaced in the x-

direction. The equilibria under consideration must now be anti-symmetric over one

period. To ensure this property, the computational domain is again restricted to the

interval between 0 and π and only the nodes i = 1, .., N are considered. Then for

i > N the y node locations are calculated according to yN+j = −yN−j. For a given

interfacial shape, the velocity at each node is computed by summing its self induced

velocity, calculated using the contour dynamics algorithm, with the velocity at the

interface owing to the point vortices located at (π − S/2, yloc) and (π + S/2,−yloc)

where S is the horizontal separation of the vortices and yloc will again to set to −1

or −2. Ensuring the vortex at (π − S/2,−1) is stationary is sufficient to ensure

its anti-symmetrically placed partner is also stationary. Thus only the velocity at
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Figure 3.10: Time evolution of the equilibrium of figure 3.8 with (Γ = 3.0, U =
1.18900). The solid line and asterisk mark t = 0, the dotted line and + mark t = 50
and the dashed line and X mark t = 150.

(π−S/2,−1) is considered and is evaluated in both the x and y directions by summing

the velocity field owing to the interface with that due to the other point vortex.

In contrast to the configurations considered in 3.1, in which it was not natural to

fix any nodes in the computational domain, with the anti-symmetric configuration

under consideration it is natural to fix y1 = yN = 0. The streamfunction, ψi, is now

evaluated by setting ψ1 = 0 and then marching to the right such that

ψi+1 = ψi + v̄idxi − ūidyi, i = 1, .., N − 1, (3.10)

where ūi and v̄i and dxi and dyi are given by equations (3.3) and (3.4) respectively.

To find an equilibrium, the N + 1 unknowns yi (i = 2, .., N − 1), U , Γ and S are

simultaneously adjusted such that the interface is iterated towards a streamline and

the velocity at the point vortices vanishes, that is, (uvort, vvort) = (0, 0). The vertical
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Figure 3.11: Non-linear profiles of η(x) with (Γ = 0.1, U = 2.03200) (solid line),
(Γ = 2, U = 2.04000) (dotted line), (Γ = 4, U = 2.05200) (dashed line), (Γ = 8, U =
2.08000) (dot-dash line) and (Γ = 12, U = 2.12000) (three dot-dash line) for a point
vortex at (π,−2). In all cases the final value of U is unchanged to five decimal places.

separation of the vortices from the interface is fixed giving N + 1 equations,

ψi(y2, y3, .., yN−1, U,Γ, S) = 0, i = 2, .., N,

uvort(y2, y3, .., yN−1, U,Γ, S) = 0,

vvort(y2, y3, .., yN−1, U,Γ, S) = 0.

(3.11)

Note that here, the vortices have not been fixed such that their horizontal separation

is π (as was the case in the linear analysis of chapter 2.3) in order to form a system of

(N+1) unknowns and (N+1) variables. But as will be seen in the results that follow,

the horizontal vortex separation naturally converges (to a good level of agreement)

to S = π. Equations 3.11 are again solved using Newton’s method such that the
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Figure 3.12: The difference in height between the highest and lowest interface nodes
of the equilibria (∆y) for point vortices of various circulations. All simulations were
initiated with point vortices at a y-distance of two from a flat interface and U varying
from 2.032 to 2.18.

(n+ 1)th iteration is evaluated according to

y
(n+1)
j+1 = y

(n)
j+1 + ∆j , j = 1, .., N − 2

U (n+1) = U (n) + ∆N−1,

Γ(n+1) = Γ(n) + ∆N ,

S(n+1) = S(n) + ∆N+1,

(3.12)

where ∆j is the jth element of the vector solution of the (N + 1) × (N + 1) matrix
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equation

N−2
∑

j=1

∂ψ
(n)
i+1

∂yj+1
∆j +

∂ψ
(n)
i+1

∂U
∆N−1 +

∂ψ
(n)
i+1

∂Γ
∆N +

∂ψ
(n)
i+1

∂Γ
∆S = −ψ(n)

i+1, i = 1, .., N − 1,

N−2
∑

j=1

∂u
(n)
vort

∂yj+1
∆j +

∂u
(n)
vort

∂U
∆N−1

∂u
(n)
vort

∂Γ
∆N

∂u
(n)
vort

∂S
∆N+1 = −u(n)

vort,

N−2
∑

j=1

∂v
(n)
vort

∂yj+1
∆j +

∂v
(n)
vort

∂U
∆N−1

∂v
(n)
vort

∂Γ
∆N

∂v
(n)
vort

∂S
∆N+1 = −u(n)

vort.

(3.13)

The derivatives in (3.13) are again computed numerically according to (3.9). The

number of nodes in the computational domain is now set to N = 150, giving a

resolution in the x-direction of δx = 0.02094. Increasing the number of nodes within

the computation does not alter the results to the quoted level of accuracy. Typically,

convergence was realised within 50 iterations.

In figure 3.13 the non-linear equilibria resulting from initialising the algorithm

with the linear equilibria of chapter 2.3, figures 2.20 and 2.21 are shown. These

linear equilibria were derived in a π-periodic domain and have thus once again been

‘stretched’ onto the unit cylinder. The initial conditions used in computing these

equilibria were given by (Γ0 = −16, U0 = −0.288, S0 = π), (Γ0 = −8, U0 = 0.280, S0 =

π), (Γ0 = −2, U0 = 0.862, S0 = π), (Γ0 = −1, U0 = 0.930, S0 = π) and (Γ0 =

2, U0 = 1.144, S0 = π), where the circulation given is that of the vortex in the region

x ∈ [0, 2π) and the 0 subscript indicates the initial value of the parameter in question.

In all computations the vortex circulation remained unchanged to 5 decimal places, as
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did the horizontal vortex separation parameter S. (It should be noted that increasing

the x-direction resolution resulted in Γ and S remaining unchanged to five decimal

places. In the following text, for the sake of brevity, the given value of Γ will be

accurate to five decimal places, i.e. Γ = 1 means Γ = 1.00000).

For the vortices with Γ = −16 and Γ = −8 the interface was initially curved

towards them (see figure 2.22). However, in the non-linear equilibria resulting from

these initial configurations, the interface has ‘reversed’ and is now curved away from

the point vortices (figure 3.13). The non-linear equilibria with Γ = −2 and Γ = −1 are

similar in shape but have a lower amplitude in comparison to their linear counterparts

of figure 2.21. The non-linear equilibria for Γ = −16 and Γ = −8 are thus similar in

shape to the equilibria with Γ = −2 and Γ = −1 but have larger amplitudes owing

to the larger circulations of the point vortices involved. Conversely, when Γ = 2, the

resulting non-linear equilibria is of a similar shape but has a greater amplitude than

its linear counterpart, compare figures 2.21 (linear equilibria) and 3.13 (non-linear

equilibria).

Figure 3.14 shows the non-linear equilibria resulting from initialising the algorithm

with the linear equilibria of figure 2.25, thus, the initial conditions are given by

(Γ0 = −1, U0 = 0.620, S0 = π) and (Γ0 = −0.1, U0 = 0.544, S0 = π). In both

cases, the vortex circulation and separation parameter S again remain unchanged

to 5 decimal places and the final free stream velocities are slightly lower than their

initialisation values. Through a visual comparison with the initial interface shapes

shown in figure 2.25 it is seen that the non-linear shapes are very similar. It is worth

noting that when the algorithm was initialised with the linear equilibria of figure 2.24,
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Figure 3.13: Non-linear profiles of η(x) with (Γ = −16.00000, U = −0.20640) (solid
line), (Γ = −8.00000, U = 0.40290) (dotted line), (Γ = −2.00000, U = 0.85410)
(dashed line), (Γ = −1.00000, U = 0.92770) (dot-dash line) and (Γ = 2.00000, U =
1.13250) (three dot-dash line). S = 3.14159 in all cases and the + symbols mark the
locations of the point vortices.

which had the same vortex circulations as the above equilibria but different free stream

velocities and an interface that initially curved towards the point vortices, provided

it was run for a sufficient period of time it would converge to exactly the equilibria of

figure 3.14. The algorithm was also initiated with positive circulation point vortices

and for various initial interface shapes. However, for the initial conditions tried with

vortices of a positive circulation, as indicated by linear theory (see equation (2.86)

and figure 2.21), no convergence could be found.

For the case when the point vortices are located at (π−S/2,−1) and (π+S/2, 1)

the amplitude of the interfacial disturbance in comparison to the vortex circulations

was examined. Figure 3.15 shows that away from Γ ≈ 0 the increase in amplitude is
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Figure 3.14: Non-linear profiles of η(x) with (Γ = −0.100000, U = 0.53628) (solid
line) and (Γ = −1.00000, U = 0.57582) (dotted line). S = 3.14159 in both cases and
the + symbols mark the locations of the point vortices.

approximately linear with the increase in vortex circulation. Also, for vortex circula-

tions much greater than Γ ≈ 1.2 the algorithm would not converge.

The robustness of the equilibria was again examined by using the non-linear pro-

files as initial conditions in a time dependent cylindrical contour dynamics algorithm.

Time integration was carried out using a fourth order Runge-Kutta method and

the time step and resolution parameter between vortex nodes were each set to 0.01

resulting in roughly 400 − 700 nodes in the computational domain depending on

the curvature of the interface. Figures 3.16 and 3.17 show the time evolution of

the systems with the point vortices located at (π − S/2,−1) and (π + S/2, 1) and

(Γ = −0.1, U = 0.53628) and (Γ = −1, U = 0.57582) respectively. Again, the value

of Γ refers to the circulation of the vortex initially in the region x ∈ [0, 2π). S0 was

3.14159 in both cases. When Γ = −0.1 the configuration changed very little over large
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Figure 3.15: The difference in height between the highest and lowest interface nodes
of the equilibria (∆y) for point vortices with 0.1 < Γ < 1.2.

time periods. As shown in figure 3.16, even after 150 time units the configuration is

very similar. As expected, the configuration with Γ = −1 undergoes a greater drift

over the same time period, but, as was the case with the symmetric equilibria of the

previous sections, the equilibria remains visibly unchanged for a reasonable amount

of time (t = 50) and then the drift away from its equilibrium position is slow. Thus,

these results indicate that the anti-symmetric equilibria computed in this section are

also of a stable nature.

3.3 Planar anti-symmetric equilibrium

The planar anti-symmetric configuration of chapter 2.1 (see figure 2.1 for a sketch

of the configuration) is now considered. Planar equilibria are computed using very
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Figure 3.16: Numerical equilibrium of figure 3.14 with (Γ = −0.1, U = 0.53628) at
t = 0 (solid line and asterisk) and at t = 150 (dashed line and +).

Figure 3.17: Numerical equilibrium of figure 3.14 with (Γ = −1.0, U = 0.57582) at
t = 0 (solid line and asterisk), t = 50 (dotted line and +) and at t = 150 (dashed line
and X).
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similar methods to those presented in the previous sections of this chapter, the main

difference being that velocity fields are now computed using a planar contour dynam-

ics algorithm as opposed the cylindrical algorithm. In fact, owing to the similarity

of the problems, the algorithm presented in section 3.2 to iterate towards an equilib-

rium can be used with only two minor modifications: The domain now has 2N − 1

nodes where y2N−1 = y1 (this change only effects the computation of velocity fields

owing to the interface and not the algorithm that iterates towards an equilibrium)

and a wider computational domain must be used and the x-direction node resolution

increased accordingly. This is due to the fact that the interface height, η, only tends

to zero as x → ±∞. It must therefore be insured that the computational domain is

sufficiently wide such that η is very small at its outer boundary. This was the first

algorithm used in attempting to compute a planar anti-symmetric equilibrium. Here,

the computational domain is chosen to be the region x ∈ [−20, 20] and N = 400

giving an x-direction resolution of δx = 0.05.

The algorithm was initialised with various initial conditions including the linear

equilibrium of chapter 2.1 with the interface height scaled down, a flat interface

and various profiles of the form η(x) = ax exp(−x2/b). A range of initial U and

Γ were used in each case. However, convergence was not realised for any of these

combinations. Various adjustments were made to the algorithm including fixing Γ

and the node y2 = 0 along with y1 = 0, extending the algorithm to include all 2N −1

nodes, using an averaged streamfunction (similar to that of section 3.1) and marching

backwards through the domain instead of forwards. However, none of these methods

led to convergence. This inability to obtain convergence from the numerical algorithm



Chapter 3: Computation of non-linear equilibria on a vortical interface 90

along with the null result from linear theory (chapter 2.1) gives a good indication that

no such equilibrium exists.

3.4 Summary

Corresponding non-linear equilibria have been computed for the periodic configu-

rations considered in chapter 2, namely, a row of symmetrically placed vortices near

a vorticity interface and a vortex street in a shear flow. For the symmetric config-

uration, the problem was considered for both when the vortices lie in the rotational

and irrotational region of the flow. Periodicity was accounted for by considering the

problem on the surface of the unit cylinder, where the cylinder represents one period

of the configuration. For the planar anti-symmetric configuration (chapter 2.1), as

with linear theory, no equilibrium state could be found.

Symmetric equilibria in which the vortex lies in the irrotational region of flow have

similar characteristics to some of the small amplitude linear equilibria in that, the

hump on the interface lies symmetrically above the vortex. As the vortex circulation

increases, equilibria have larger amplitude disturbances on the interface or alterna-

tively, there is a larger vortex-interface separation. Which of these states is achieved

is dependent on the choice of initial conditions. Equilibria in which the interface lies

within unit distance of the point vortex, or in which higher order modes are present,

could not be found. Computed equilibria were proven to be robust by using them as

initial conditions in a time dependent code with, only small drifts from equilibrium

positions were observed over long time periods.

When the vortex lies in the rotational region of the flow, linear theory again proves
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to be a good guide as to what shapes can be computed. In these equilibria, the

hump on the interface was now placed anti-symmetrically above the vortex. Again,

for a specific value of Γ, many equilibria could be computed. Equilibria with larger

amplitude oscillations at the interface tend to have a lower vortex-interface separation

along with a lower free stream velocity. Faster free stream velocities lead to a flatter

interface shapes with a greater vortex-interface separation. The equilibria were again

shown to be robust giving a good indication of their stability.

For the vortex street configuration, interface shapes were found in which the inter-

face curved towards the vortices when Γ > 0 and away from them when Γ < 0 (here

Γ refers to the circulation of the vortex in the region x ∈ [0, π]). However, when the

vortices were placed at unit distance from the interface, only equilibria with Γ < 0

could be found. Equilibria were again used as initial conditions in a time dependent

code and again only underwent small deviations over long periods of time giving a

good indication that they are stable. It is hoped that the equilibria computed here

may be of help in explaining the longevity of some vortical configurations observed

in planetary atmospheres and oceans.



Chapter 4

Vortex-wave interaction on the

surface of a sphere

Strong zonal shear flows are frequently observed in the Earth’s atmosphere and

ocean and also on the giant planets. Such shear flows are able to support wave

motion and it is of interest to understand how small, intense vortices interact with

these flows. One area of such interactions in the Earth’s atmosphere is the Gulf

stream. Meanders of the Gulf stream can sometimes detach and form cyclonic or

anti-cyclonic structures. The resulting interaction between these detached eddies and

the Gulf stream play an important role in water vapour mixing across the Atlantic

region and hence in the weather patterns seen across much of Western Europe. With

this region in mind, Stern and Flierl (1987) consider the interaction between a point

vortex and shear flows on the f -plane in which two regions of constant vorticity

owing to the shear flow are separated by a single interface. Results showed that an

anticyclonic vortex located in the region of high vorticity generated a perturbation

92
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upon the interface resulting in a “westward” propagation. Results also demonstrated

that when the vortex was located sufficiently close to the interface, the vortex would

cause the interface to wrap around it. Bell (1990) considers time-dependent vortex-

wave interaction in flows with piecewise constant vorticity of the type considered in

chapter 2 and 3. He shows that for a vortex-wave interaction in a planar shear flow,

a positive (cyclonic) vortex drifts in the direction of increasing potential vorticity by

radiating interfacial waves, while a negative (anti-cyclonic) vortex will drift towards

regions of lower vorticity. Then, with applications to transport and mixing between

rotational and irrotational flows, Atassi (1998) considers the problem of point vortex

interaction with a wall-bounded shear layer. The study showed that the interaction

between the point vortex and shear layer is strongest when the vortex and layer are of

opposite signed vorticity. Strong interactions resulted in the ejection of fluid from the

shear layer and such ejections were associated with a significant rise in the magnitude

of wall pressure.

Much research has been conducted into the interaction of point vortices with to-

pography that give rise to a background potential vorticity distribution (see appendix

B). Near continental margins where sharp variations in depth occur, such as the Gulf

of Mexico, to leading order local variations in potential vorticity are dominated by

sharp topographic gradients and it is of interest to examine how such variations in

depth effect the motion of eddies. McDonald (1998) considers the motion of an intense

point vortex near an infinite escarpment in the plane. Intense in this context means

that the vortex circulation time is much shorter than the time scale associated with

wave propagation. Owing to the conservation of potential vorticity, at small times,
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an intense cyclone’s motion is towards regions of lower potential vorticity whilst an

anticyclones motion is in the opposite direction. Following this initial motion, a

steady motion parallel to the escarpment ensues before the vortex resonates with the

topographic wave field resulting in cyclones drifting slowly towards regions of higher

ambient potential vorticity and anticyclones drifting slowly away from such regions.

The remaining cases of moderate and weak point vortices are considered in Dunn

et al. (2001). White and McDonald (2004) then consider the analogous two-layer

fluid problem. The two-layer stratification is chosen such that the height of topog-

raphy in the upper layer is a small fraction of the overall depth enabling the use of

quasi-geostrophic theory which implies that in the upper layer the vorticity is, again,

piecewise constant. Weak vortices in the lower-fluid layer propagate mainly due to

their image in the topography whilst upper-layer vortices propagate much slower and

produce comparatively small amplitude topographic waves. In Newton and Sakajo

(2007) the interaction of a ring of point vortices with a background vorticity initially

in solid body rotation is considered.

The present chapter considers the time dependent problem of a point vortex on

the surface of the non-rotating unit sphere with a background distribution of vorticity

consisting of two opposite signed caps. Unlike previous work conducted in the plane,

on the sphere there is periodicity in the zonal direction. Also, as mentioned in the

beginning to chapter 2, the curvature of the sphere introduces a shielding effect.

The point vortex forcing induces waves upon the vorticity interface which, in turn,

perturb the zonally symmetric flow. The resultant coupled motion of the point vortex

and waves is investigated. Analytic results valid for linear interfacial waves are first
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presented. A non-linear stability analysis of the coupled motion is then followed by

numerical computations of the problem using a spherical contour dynamics algorithm

based on Dritschel (1989) and applications of the model to planetary vortices are

considered.

4.1 Problem formulation and linear solution

The system consists of a single point vortex of circulation Γ on the unit sphere in

the presence of a background piecewise constant vorticity distribution. In spherical

polar co-ordinates, φ is the azimuthal angle between 0 and 2π and θ is the latitudinal

angle between −π/2 and π/2. The system consists of two caps of vorticity given by

ωS in the southern cap and ωN in the northern cap. The two caps are separated by

an initially flat interface located at θ = θ0. At time t = 0 a point vortex is ‘switched

on’ at a position (φpv(0), θpv(0)). The net vorticity is zero as required by the Gauss

constant,
∫ ∫

S

(ωN + ωS + Γδ(φ− φpv, θ − θpv))dA = 0. (4.1)

A sketch of the configuration is shown in figure 4.1. The linearised problem is initially

considered enabling an analytical derivation of the equations of motion. These linear

equations are valid for (i) short times, or (ii) for weak vortices or (iii) for vortices far

from the interface. Crucially, all these conditions imply the interface displacement is

small.

In seeking a linear solution it is simplest to consider the problem in Cartesian

coordinates, (x, y, z), where x = cos θ cosφ, y = cos θ sinφ and z = sin θ. Let the
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Figure 4.1: Sketch of the problem under consideration. 0 ≤ φ < 2π is the azimuthal
angle and −π/2 ≤ θ ≤ π/2 is the latitudinal angle. The point vortex is located at xpv

and the vorticity jump is initially along a flat interface at the height z0, separating
regions of constant vorticity ωN and ωS.

interface position be given by

z(φ, t) = z0 + ẑ(φ, t), (4.2)

where z0 = sin θ0. The point vortex is located at xpv(t) = (xpv(t), ypv(t), zpv(t)) and

without loss of generality let xpv(0) = ((1 − z2
pv(0))1/2, 0, zpv(0)). From Dritschel and

Polvani (1992), the equations of motion owing to a piecewise constant vorticity jump

ck in an inviscid, incompressible fluid on the surface of a sphere can be written in the

form

dx

dt
= u(x) = − 1

4π
ω̃

∮

ck

log |x − Xk|2dXk, (4.3)

where ω̃ = ωN − ωS is the vorticity jump across the interface ck. The streamfunction

owing to a point vortex of strength Γ on the unit sphere can be written as (Polvani



Chapter 4: Vortex-wave interaction on the surface of a sphere 97

and Dritschel 1993)

ψ =
Γ

4π
log(1 − x · xpv). (4.4)

Note that the global circulation owing to (4.4) is zero, since it includes a uniform

background vorticity of −Γ/4π. The azimuthal and vertical velocities owing to the

point vortex are then retrieved via

dφ

dt
= −∂ψ

∂z
and

dz

dt
=
∂ψ

∂φ
. (4.5)

To solve the linear vortex-wave interaction problem, the perturbation at the interface,

ẑ(φ, t), is written as a time dependent Fourier series

z(φ, t) = z0 +
∞
∑

n=1

(an(t) cos(nφ) + bn(t) sin(nφ)) . (4.6)

First, z-direction perturbations at the interface are considered. Substituting (4.6)

into (4.3) gives the self induced vertical velocity of the vorticity jump on the contour.

The total vertical velocity at the contour is given by summing this with the vertical

velocity field due to the point vortex:

dz

dt
=
∂z

∂t
+ Ω0

∂z

∂φ
= − ω̃

4π

∫ 2π

0

log |x(φ, t) − X(α, t)|2 ∂z
∂φ

∣

∣

∣

∣

α

dα

+
∂

∂φ

Γ

4π
log(1 − x0 · xpv),

(4.7)

where, consistent with linear theory, Ω0 = ω̃/2 is the angular velocity at an unper-

turbed interface (Dritschel and Polvani 1992). Evaluating and linearising the terms

in (4.7) gives

|x(φ, t) − X(α, t)|2 = 2 cos2 θ0(t)(1 − cos(α− φ)),

x0 · xpv = (1 − z2
pv)

1
2 (1 − z2

0)
1
2 cos(φ− φpv) + zpvz0.

(4.8)
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Substitution of (4.6) and (4.8) into (4.7) gives

∞
∑

n=1

(

ȧn cosnφ+ ḃn sin nφ+ n
ω̃

2
(−an sin nφ+ bn cosnφ)

)

=

− ω̃

4π

∫ 2π

0

log |1 − cos(α− φ)|
(

∞
∑

n=1

n (−an sin nα + bn cosnα))

)

dα

+
Γ

4π

[

(1 − z2
pv)

1
2 (1 − z2

0)
1
2 sin(φ− φpv)

1 − (1 − z2
pv)

1
2 (1 − z2

0)
1
2 cos(φ− φpv) − zpvz0

]

.

(4.9)

Evaluation of the integrals in (4.9) yield the following results:

∫ 2π

0

log |1 − cos(α− φ)|
(

∞
∑

n=1

(−nan) sinnα)

)

dα = 2π

∞
∑

n=0

an sinnφ,

∫ 2π

0

log |1 − cos(α− φ)|
(

∞
∑

n=1

nbn sin nα

)

dα = −2π

∞
∑

n=0

bn cosnφ.

(4.10)

Substituting the integrals (4.10) back into (4.9) gives

∞
∑

n=1

[(

ȧn +
ω̃

2
(n− 1)bn

)

cosnφ +

(

ḃn − ω̃

2
(n− 1)an

)

sin nφ

]

=
Γ

4π

[

(1 − z2
pv)

1
2 (1 − z2

0)
1
2 sin(φ− φpv)

1 − (1 − z2
pv)

1
2 (1 − z2

0)
1
2 cos(φ− φpv) − zpvz0

]

=
Γ

4π
F (φ, t).

(4.11)

The RHS forcing term of (4.11) is now written as a Fourier series such that

F (φ, t) =
∞
∑

n=1

(cn(t) cosnφ+ dn(t) sin nφ) , (4.12)
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where

cn(t) =
1

π

∫ 2π

0

F (φ, t) cosnφdφ

=
1

π

∫ 2π

0

(1 − z2
pv)

1
2 (1 − z2

0)
1
2 sin(φ− φpv)

1 − (1 − z2
pv)

1
2 (1 − z2

0)
1
2 cos(φ− φpv) − zpvz0

cosnφdφ,

(4.13)

and

dn(t) =
1

π

∫ 2π

0

F (φ, t) sinnφdφ

=
1

π

∫ 2π

0

(1 − z2
pv)

1
2 (1 − z2

0)
1
2 sin(φ− φpv)

1 − (1 − z2
pv)

1
2 (1 − z2

0)
1
2 cos(φ− φpv) − zpvz0

sinnφdφ.

(4.14)

Gradshteyn and Ryzhik (1965) give an identity to evaluate integrals of the form seen

in (4.13) and (4.14) which can be written as (Dritschel and Polvani 1992)

−m

2π

∫ 2π

0

log(1−zazb−(1−z2
a)

1
2 (1−z2

b )
1
2 cosβ)eimβdβ =

(

1 − z>

1 + z>

1 + z<

1 − z<

)m/2

, (4.15)

where z> stands for the maximum of za and zb and z< for the minimum. For the case

when z0 > zpv, i.e. when the point vortex is located in the southern cap of vorticity,

the integrals of (4.13) and (4.14) give

cn(t) = −2 sin(nφpv)

(

1 − z0
1 + z0

1 + zpv

1 − zpv

)n/2

,

dn(t) = 2 cos(nφpv)

(

1 − z0
1 + z0

1 + zpv

1 − zpv

)n/2

,

(4.16)

where φpv is a function of time determined by integrating the angular velocity of the

point vortex in the azimuthal direction owing to the background vorticity distribution.

This angular velocity is derived below. When z0 > zpv, from (4.15) it is seen that cn(t)
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and dn(t) will be given by swapping z0s with the zpvs in equations (4.16). To obtain

a coupled set of equations relating the time dependent Fourier coefficients an(t) and

bn(t), (4.16) are substituted into (4.11) giving

ȧn(t) +
ω̃

2
(n− 1)bn(t) =

Γ

4π
cn(t),

ḃn(t) − ω̃

2
(n− 1)an(t) =

Γ

4π
dn(t),

(4.17)

where n ∈ Z
+. An immediate consequence of (4.17) is the impossibility of a steady

solution provided z0 6= ±1 i.e. the vortex is not at a pole. In particular, putting

n = 1 in (4.17) implies that ȧ1 and ḃ1 cannot both be simultaneously zero implying

unsteady behaviour for all time. This of course does not preclude the existence of

non-linear steady solutions.

An infinite set of coupled ordinary differential equations for coefficients an(t) and

bn(t), n = 1, 2, 3, . . . has now been derived. In order to close the linear system, the

equations motion for the point vortex, żpv and φ̇pv are now derived. An approximate

solution can then be obtained by truncating at n = N and solving an 2N +2 coupled

system of ODEs to give the resulting dynamics of the interface and point vortex.

First, an equation for the azimuthal velocity, upv, at the point vortex is sought.

The angular velocity is then given by

φ̇ = upv/(1 − z2
pv)

1/2. (4.18)

Using (4.3), the azimuthal velocity at the point vortex is given by

upv = − ω̃

4π

∮

log |xpv −X(α)|2 ∂
∂α

[

(1 − z2(α))
1
2 sinα

]

dα. (4.19)
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Expanding and linearising the log term of (4.19) gives

|xpv − X(α)|2 = 2(1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)), (4.20)

and therefore

upv = − ω̃

4π

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)|

× ∂

∂α

[

(1 − z2(α))
1
2 sinα

]

dα

= − ω̃

4π

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)|

×
(

(1 − z2
0)

1
2 cosα− z0ẑα sinα

(1 − z2
0)

1
2

)

dα,

(4.21)

where ẑ =
∑∞

n=1(an(t) cosnα+bn(t) sinnα) (see (4.6)). Equation (4.21) represents the

flow due to an unperturbed interface plus a small modification due to perturbations

at the interface induced by the point vortex, that is

upv = u0 + u′pv, (4.22)

where (Polvani and Dritschel 1993)

u0 = − ω̃

4π

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)|(1 − z2

0)
1
2 cosαdα

=
ω̃

2
(1 − z0)

(

1 + zpv

1 − zpv

)
1
2

,

(4.23)
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and

u′pv = − ω̃

4π

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)|

× −z0 sinα

(1 − z2
0)

1
2

(−nan sin nα + nbn cosnα)dα

=
ω̃z0

4π(1 − z2
0)

1
2

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cos(α− φpv)|

× sinα(−nan sin nα + nbn cosnα)dα.

(4.24)

To evaluate the integral in (4.24) the substitution β = α − φpv in made and use is

made of the following trigonometric identities

sinα sin β =
1

2
(cos(α− β) − cos(α + β)), (4.25)

and

sinα cosβ =
1

2
(sin(α− β) + sin(α + β)). (4.26)

This yields

u′pv =
∞
∑

n=1

nω̃z0

4(1 − z2
0)

1
2

[

1

n− 1

(

1 − z0
1 + z0

1 + zpv

1 − zpv

)
n−1

2

(an cos(n− 1)φpv − bn sin(n− 1)φpv)−

(

1 − z0
1 + z0

1 + zpv

1 − zpv

)
n+1

2

(an + bnn+ 1) cos(n+ 1)φpv

]

.

(4.27)

An equation for u′pv has now been derived. However, (4.27) is not valid for n = 1

and therefore, this is considered as a special case. Substituting n = 1 into (4.24) and
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again using the substitution β = α− φpv gives

u′pv =
ω̃z0

8π(1 − z2
0)

1
2

∫ 2π

0

log |1 − z0zpv − (1 − z2
0)

1
2 (1 − z2

pv)
1
2 cosβ|

× (a1(cos 2φpv cos 2β − 1) + b1 sin 2φpv cos 2β)dβ

= − ω̃z0

8(1 − z2
0)

1
2

[

(a1 cos 2φpv + b1 sin 2φpv)

(

1 − z0
1 + z0

1 + zpv

1 − zpv

)

+ a1

(

log[1 − z0zpv] + log

[

1 + (1 −R2)
1
2

2

])]

(4.28)

where R = (1 − z2
0)

1/2(1 − z2
pv)

1/2/(1 − z0zpv). Equations (4.18), (4.23), (4.27) and

(4.28) give finally

φ̇pv = − ωs

(1 − z2
pv)

1
2

(

1 + zpv

1 − zpv

)
1
2

− ω̃z0

8(1 − z2
0)

1
2 (1 − z2

pv)
1
2

×
[

(a1 cos 2φpv + b1 sin 2φpv)A+ a1 log

[

(1 − z0zpv)
1 + (1 − R2)

1
2

2

]]

+
∞
∑

n=2

nω̃z0

4(1 − z2
0)

1
2 (1 − z2

pv)
1
2

[

1

n− 1
A

n−1
2 (an cos(n− 1)φpv − bn sin(n− 1)φpv)

− A
n+1

2

(

an + bn
n+ 1

)

cos(n + 1)φpv

]

.

(4.29)

where, consistent with linear theory, A =
(

1−z0

1+z0

1+zpv(0)
1−zpv(0)

)

is a constant. Now, from
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(4.3) the point vortex velocity in the z-direction is given by

żpv = − ω̃

4π

∫ 2π

0

log |xpv −X(α)|2 ∂z
∂α

dα. (4.30)

Substituting in the expression for z given in (4.6) gives

żpv = − ω̃

4π

∫ 2π

0

log |xpv − X(α)|2
∞
∑

n=1

(−nan sinnα + nbn cos nα)dα. (4.31)

Expanding and linearising |xpv − X(α)|2, and then integrating gives

żpv = −
∞
∑

n=1

ω̃

2
A

n
2 (an sinnφpv − bn cosnφpv). (4.32)

Truncating the sums in (4.29) and (4.32) at n = N gives a system of 2N + 2 ODEs

for the 2N + 2 unknowns a1, .., aN , b1, .., bN , φpv and zpv governing the motion of a

point vortex located below a vorticity interface on the surface of the sphere in the

limit of small amplitude waves upon the interface. In the following sections, the short

time behaviour of the system and the effect of truncating the system at n = 1 will

be examined. Following this, the linear system will be truncated at higher n and the

resulting motion examined.
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4.2 Short time behaviour and the n = 1 system

Initially, only the primary mode will be considered. Truncating (4.16), (4.17),

(4.29) and (4.32) at n = 1 gives the following system of ODEs

ȧ1(t) = − Γ

2π
A

1
2 sin φpv,

ḃ1(t) =
Γ

2π
A

1
2 cosφpv,

φ̇pv(t) = − ωs

(1 − z2
pv)

1
2

(

1 + zpv

1 − zpv

)
1
2

− ω̃z0

8(1 − z2
0)

1
2 (1 − z2

pv)
1
2

[

(a1 cos 2φpv + b1 sin 2φpv)A

+ a1 log

[

(1 − z0zpv)
1 + (1 −R2)

1
2

2

]]

,

żpv(t) = − ω̃

2
A

1
2 (a1 sinφpv − b1 cos φpv),

(4.33)

with initial conditions a1(0) = b1(0) = 0, φpv(0) = 0 and 0 ≤ zpv(0) ≤ 1.

Before considering the full n = 1 system, it is insightful to make further relevant

approximations to examine the initial movements of the system. When t is close

to zero it is reasonable to assume that the azimuthal velocity of the point vortex is

constant (i.e. its velocity is that due to an unperturbed interface). This is the velocity

given in (4.23). Taking the southern cap to be of negative vorticity and northern cap

to be of positive vorticity, an eastward azimuthal velocity will be induced at the

vortex. (A westward zonal velocity is induced in the case where the vorticity of the
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caps is reversed). Therefore, for small times, the azimuthal position of the vortex is

approximately

φpv = Ω0t, (4.34)

where Ω0 is given by (4.23) and (4.18). The Fourier coefficients a1 and b1 can now be

integrated to give

a1(t) =
ΓA1/2

Ω0
cos Ω0t−

ΓA1/2

Ω0
,

b1(t) =
ΓA1/2

Ω0
sin Ω0t,

(4.35)

and therefore from (4.33)

żpv =
ω̃AΓ

2Ω0

sin Ω0t. (4.36)

For t << Ω−1
0 (4.36) gives

żpv ≈ ω̃AΓt

2
. (4.37)

Equation (4.37) shows that sgn(żpv) = sgn(ω̃Γ) (where ω̃ = ωN − ωS is the vorticity

jump across the interface) and thus a point vortex in a region of same-signed vor-

ticity will initially move away from the interface, whilst a point vortex in a region

of opposite-signed vorticity will initially move towards it. While this analysis has

been carried out assuming zpv < z0, the same conclusion holds for zpv > z0. The

required modifications for this case are the substitution of Ā =
(

1+z0

1−z0

1−zpv

1+zpv

)

for A

and Ω̄0 = ω̃
2

1+z0

1+zpv
for Ω0 throughout the preceding analysis. Additionally, integrating

(4.36) with respect to time gives

zpv(t) =
ω̃AΓ

2Ω2

(

1 − cos Ωt
)

+ zpv(0). (4.38)
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Thus, equation (4.38) predicts that point vortices undergo periodic oscillation with

zpv(0) being one extremum of the motion.

The full n = 1 system valid for all time is now considered. The coupled system of

equations (4.33) is solved using numerical integration. Here, a fourth order Runge-

Kutta scheme is used and the timestep is set to δt = 0.01. Results confirm that a point

vortex in a region of same-sign vorticity initially moves away from the interface, while

a point vortex in a region of opposite signed vorticity initially moves towards it. Point

vortices with sufficiently weak circulation then undergo periodic meridional oscillation

while orbiting the sphere. The magnitude of ‘sufficiently weak’ is determined by the

initial latitudinal position of the interface, the vorticity jump across it and the point

vortex proximity to it. Figure 4.2 demonstrates this behaviour, showing the initial

movement towards the interface and the periodic meridional oscillation as the vortex

travels around the sphere. In figure 4.3 a snapshot of this system is shown at t = 1.

The forcing at the interface due to the point vortex has caused a peak to form ahead

of the point vortex and a trough to its rear. If the sign of point vortex circulation is

reversed the form of the interfacial wave is also reversed: a peak forms to the rear of

the point vortex while a trough leads it.

Initially (t = 0+) interfacial disturbances induce purely meridional motion. Fol-

lowing this, the interfacial wave always forms to initially oppose the zonal motion

of the vortex. However, as the expression for the interface is only valid for small

amplitude waves, the correction to the zonal velocity is always small. This is a clear

difference to planar topography cases, such as that of McDonald (2004), where the

free stream velocity is independent of the magnitude of the vorticity jump. For a vor-
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Figure 4.2: Vortex trajectory 0 ≤ t ≤ 20 according to n = 1 linear theory. The vortex
has Γ = 1.0, is initially at zpv(0) = 0.2 and the interface has z0 = 0.5. The vorticity
is −1 in the southern cap.

Figure 4.3: A snapshot of the system considered in figure 4.2 at t = 1. The vortex
location is shown by +, and the solid line is the vortical interface.
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tical interface on the sphere, the unperturbed angular velocity, Ω0, and that due to

interfacial perturbations are proportional to the vorticity jump ω̃ across the interface.

This means that a low Ω0 can only result in a weak correction to the zonal flow.

The long time behaviour of the system shown in figure 4.2 was examined up to

times of t ≈ 1000. The motion seen in figure 4.2 persists for these very large times

demonstrating the stability of the system. This is a characteristic of all systems

within this regime i.e. if a configuration is such that the vortex undergoes meridional

oscillation, this oscillation will persist for long periods of time.

When a strong point vortex is in a region of the same signed vorticity, the vortex

will rapidly move away from the interface towards the pole. It is simple to show from

(4.17) that these polar locations are equilibria e.g. if zpv < z0 then when zpv = −1

(the South Pole) ȧ1 = ḃ1 = żpv = 0 and when zpv > z0 then zpv = 1 (the North

Pole) again gives ȧ1 = ḃ1 = żpv = 0. Further, (4.38) indicates that a point vortex

located at a pole in a region of same sign vorticity will be a stable equilibrium. Slight

meridional perturbations to the vortex will result in a velocity at the vortex pushing

it back towards the pole. On the other hand, polar vortices in regions of opposite

signed vorticity are unstable equilibria, since perturbations away from the pole will

induce a meridional velocity pulling the vortex away from the pole.

Linear theory also predicts that if a point vortex in a region of same signed vorticity

is sufficiently strong, it will always reach the pole regardless of its initial proximity

to the vorticity interface. Clearly, for a strong vortex within close proximity to the

interface, large amplitude waves will quickly develop on the interface invalidating

linear theory. This result is therefore not expected to hold true in fully non-linear
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computations. Figure 4.4 shows the trajectory of a point vortex in this regime and

figure 4.5 the corresponding contour at t = 1. In the linear n = 1 calculation, the

vortex passes below z = −1 and then proceeds to oscillate, never returning above

z = −1. Clearly the trajectory is non-physical once the vortex has passed below

z = −1. Nevertheless, the result still gives insight into the stability of vortices in

polar regions and the initial movements of strong point vortices in these regions.

The interface of figure 4.5 is ‘opposite’ in shape to that of 4.3 owing to the different

sign circulation of the vortex i.e. a trough now precedes the vortex. Also, owing

to the large circulation of the vortex, large amplitude waves have developed upon

the interface. For strong point vortices in regions of opposite signed vorticity, linear

theory breaks down as the point vortex rapidly approaches the interface exciting large

amplitude disturbances, and then ‘crossing’ the interface.

4.3 Truncating at n > 1

In this section, the effect of truncating (4.16), (4.17), (4.29) and (4.32) at n > 1

on the resulting dynamics is examined. As in section 4.2, the system of 2N + 2

ODEs resulting from truncating at n = N is solved numerically using a fourth order

Runge-Kutta scheme with timestep δt = 0.01.

Truncating at n > 1 alters the dynamics to varying degrees according to the

vortex strength, vorticity jump across the interface and the vortices proximity to

the interface. Figure 4.6 compares vortex trajectories for solutions truncated at n =

1, n = 3 and n = 50 for a weak vortex initially at a reasonable distance from the

interface. This is a highly linear case and, as expected, the three trajectories are very
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Figure 4.4: Vortex trajectory predicted by n = 1 linear theory for a vortex with
circulation Γ = −10.0, initially located at zpv = −0.95 with interface height z0 = 0.0
and a vorticity of −1 in the southern cap. The motion shown is from t = 0 up to
t = 5.

similar with the n = 3 and n = 50 trajectories being almost identical.

Figure 4.7 compares the trajectories for a vortex initially within closer proximity

to the interface. The n = 3 and n = 50 results rapidly diverge from the n = 1

results. As expected, when higher frequency modes are excited on the interface, a2

and b2 (and possibly higher order modes), are non-negligible. The vortex trajectories

are then no longer meridional oscillations and demonstrate more complex behaviour.

Again, the n = 3 and n = 50 results are almost identical. Figure 4.8 shows a snapshot

of the wave-vortex system at t = 5 using n = 50. Higher order modes are now clearly

present on the interface and although oscillations upon the interface are still relatively

small, the n = 1 equations fail to capture the behaviour of the system except at very

small times. Also zpv in figure 4.7 eventually exceeds the value of z0 and continues
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Figure 4.5: A snapshot of the system considered in figure 4.4 at t = 1. The vortex
location is indicated by the + and the solid line represents the vortical interface.

to rise. As expected, the linear results, except in highly linear cases are valid only

over a short period of time. These results also show that terms with n greater than

three are very small and, in the vast majority of cases, have a negligible effect on the

system’s dynamics.

4.4 A non-linear stability calculation

In section 4.2 only the linear stability of the system was considered. A non-linear

stability argument and account of initial vortex drift based on angular momentum

conservation is now presented. In the system’s initial state, the angular momentum

is given by

L =

∫ ∫

ωzdA, (4.39)
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Figure 4.6: Vortex meridional oscillation in time for the linear solution truncated at
n = 1 (solid line), n = 3 (dotted line) and n = 50 (dashed line). The vortex has
Γ = 0.1, is initially at zpv(0) = −0.5 and the interface has at z0 = 0.5. The vorticity
is −1 in the southern cap.

where ω is the vorticity and A is the sphere’s surface. The vorticity associated with

the point vortex is given by

ωpv = Γδ(φ− φpv, z − zpv) − C, (4.40)

where C is a constant. The angular momentum associated with the point vortex is

therefore given by

Lpv = Γzpv. (4.41)
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Figure 4.7: Vortex meridional oscillation in time for the linear solution truncated at
n = 1 (solid line), n = 3 (dotted line) and n = 50 (dashed line). The vortex has
Γ = 0.1, is initially at zpv(0) = 0.0 and the interface has at z0 = 0.5. The vorticity is
−1 in the southern cap.

For the unperturbed (i.e. at t = 0) vorticity caps, the angular momentum is

Lcap =

∫ 2π

0

(
∫ z0

−1

ωS +

∫ 1

z0

ωN

)

dzdφ

= π
[

(ωN − ωS)(1 − z2
0)
]

= 2πωN(1 − z0).

(4.42)
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Figure 4.8: Snapshot of the vortex (+) and interface for the same system as the
n = 50 vortex trajectory shown in figure 4.7 at t = 5.

The angular momentum due to the perturbed interface is now calculated. In this

calculation it is assumed that the perturbation can be written as z = z0 + ẑ(φ), then

Lpert =

∫ ∫

ωzdA− Lcap,

=

∫ 2π

0

∫ z0+ẑ

−1

ωSzdzdφ +

∫ 2π

0

∫ 1

z0+ẑ

ωNzdzdφ− Lcap,

=
ωS

2

∫ 2π

0

(

(z0 + ẑ)2 − 1
)

dφ+
ωN

2

∫ 2π

0

(

1 − (z0 + ẑ)2
)

dφ− Lcap,

=
ωS

2

∫ 2π

0

ẑ2dφ− ωN

2

∫ 2π

0

ẑ2dφ,

= − ωN

1 + z0

∫ 2π

0

ẑ2dφ.

(4.43)
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In order to examine the stability of the system it is first shown that L is constant.

From (4.39)

L =

∫ 2π

0

∫ π
2

−π
2

ω cos θ sin θdθdφ

=

∫ 2π

0

∫ π
2

−π
2

(

sin θ
∂

∂θ

(

cos θ
∂ψ

∂θ

)

+ tan θ
∂2ψ

∂φ2

)

dθdφ

= −
∫ 2π

0

∫ π
2

−π
2

cos2 θ
∂ψ

∂θ
dθdφ,

(4.44)

from the periodicity in the system. But u = −∂ψ/∂θ and thus

L =

∫ 2π

0

∫ π
2

−π
2

u cos2 θdθdφ

=

∫ ∫

u cos θdA ≡ Ltotal,

(4.45)

where Ltotal is the total angular momentum which is a conserved quantity in the

system. Ltotal=Lpv + Lcap + Lpert (where Lcap = constant) and thus from equations

(4.42) and (4.43) there are two cases to consider: (i) Γ > 0, ωN > 0 and (ii) Γ < 0,

ωN > 0. For (i), if the disturbance amplitude at the interface increases then according

to (4.43) Lpert decreases and thus Lpv must increase, meaning zpv increases. Therefore

a positive vortex at the North Pole is stable and a positive vortex at the South

Pole unstable. For case (ii), again, if the amplitude of the interface increases, Lpert

will decrease and thus Lpv must again increase meaning zpv must decrease. There

is therefore stability for a negative vortex at the South Pole and instability for a

negative vortex at the North Pole.
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These calculations reinforce the results obtained from linear theory and demon-

strate that even in non-linear regimes, provided the interface can be written as

z = z0 + ẑ(φ) (i.e. the interface does not become a multi-valued function of φ),

the poles are stable equilibrium locations for vortices in regions of the same sign

vorticity and unstable for vortices in regions of opposite sign vorticity.

In the following section the results of linear theory are used to verify time-

dependent non-linear contour dynamics results. Vortex trajectories obtained from

contour dynamics will be tested against those predicted by linear theory. Following

this, more ‘exotic’ non-linear behaviour will be considered.

4.5 Non-linear computations

The results of the linear theory presented in sections 4.2 and 4.3 are now used to

validate computations using the contour dynamics algorithm (Dritschel 1988). The

algorithm is described in appendix A. In the following computations, the resolution

parameter between nodes was set to 0.01 and time integration is carried out using a

fourth-order Runge-Kutta scheme with timestep δt = 0.01. Following each timestep,

the interfacial nodes are redistributed according to the local curvature meaning that,

even for highly non-linear cases, accurate vortex trajectories and interface shapes can

be computed.

Figure 4.9 displays the vortex trajectories computed using contour dynamics and

those given by n = 100 linear theory for the highly linear case previously considered

in section 4.6, that is, Γ = 0.1, zpv(0) = −0.5, z0 = 0.5 and ωS = −1 for time up

to t ≈ 20. There is excellent agreement between linear theory and contour dynamics
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in this case. When a large number of terms are included in the linear analysis, the

trajectories are almost identical over long time scales. Figure 4.10 then shows a

comparison of the vortex trajectories given by n = 100 linear theory and contour

dynamics for a more non-linear system: the system considered in figure 4.7 with

Γ = 0.1, zpv(0) = 0.0, z0 = 0.5 and ωS = −1. Linear theory and contour dynamics

are in very good agreement up to t ≈ 5. However, for time greater than t = 5 the

trajectories begin to diverge. From t ≈ 11 onwards the trajectories diverge rapidly

and linear theory completely fails to capture the non-linear motion. Linear theory

predicts that the vortex continues to rise towards the interface, whereas contour

dynamics predicts that after the initial movement of the vortex towards the interface,

it then begins to move away from it.

For systems with moderate strength point vortices, where the waves on the inter-

face can no longer be considered linear, but remain single-valued with respect to the

azimuthal coordinate φ, a point vortex in a region of same/opposite sign vorticity will

undergo periodic oscillation with a mean drift away/towards the contour depending

on the sign of their vorticity relative to the surrounding fluid (see for example the

vortex trajectory in figure 4.11 for a case when the drift is away from the interface).

Vortices in regions of opposite sign vorticity that drift towards the contour eventually

come within close proximity of the contour and induce highly nonlinear wrapping of

the contour. Vortices in regions of same signed vorticity drift away from the contour

and towards the pole with the rate of drift decreasing as the vortex moves further

away from the contour. The system, in effect, becomes more linear as relative dis-

tance between vortex and contour increases. In moderate strength vortex systems,
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complex non-linear waves develop on the contour but the basic structure predicted

by linear theory is still present i.e. a peak or trough on the interface leads the vortex.

Figure 4.11 shows an example of such a vortex trajectory along with the trajectory

predicted by linear theory. Initially, linear theory and contour dynamics are in good

agreement. However, similar to the example considered in figure 4.7, after t ≈ 4,

linear theory fails to capture the motion of the vortex.

Figure 4.12 shows an example of a system in which interfacial wrapping eventually

occurs. The system consists of a vortex with Γ = 3 and zpv(0) = −0.5, the interface

is initially at z0 = 0.5 and ωS = −1. The vortex initially precesses about the sphere

whilst drifting towards the interface. Eventually the vortex comes within close prox-

imity to the interface, inducing the interface to wrap around it, and as a result, the

vortices azimuthal precession is slowed.

Figure 4.9: Comparison of vortex latitude as a function of time computed using
contour dynamics (solid line) and n = 100 linear theory (dashed line) for the same
system shown in figure 4.2.
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Figure 4.10: Comparison of vortex latitude as a function of time computed using
contour dynamics (solid line) and n = 100 linear theory (dashed line) for the same
system shown in figure 4.7.

The stability of polar vortices is examined by placing a vortex at a small distance

from a pole and observing the resulting meridional oscillations given by contour dy-

namics. Oscillations of vortices with negative and positive circulations, initially lo-

cated close to the south pole, in a sea of negative vorticity are shown in figures 4.13

and 4.14 respectively. Figure 4.13 does indeed show that the pole is a stable attrac-

tor for vortices in a sea of same signed vorticity. The vortex initially moves towards

the pole and then undergoes a meridional oscillation that is damped in time. In

such systems, high amplitude waves are excited at the interface, but owing to the

distance of the vortex from the interface, no interfacial wrapping (multivaluedness )

occurs. However, if such a vortex is initially positioned further from the pole and

sufficiently close to the interface, it first drifts towards the pole but the interface is
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Figure 4.11: Vortex latitude as a function of time computed using contour dynamics
(solid line) and N = 50 linear theory (dotted line) for a vortex with Γ = −0.5 and
zpv(t = 0) = −0.5 with interface z0 = 0. The vorticity of the southern cap is −1.

‘pulled down’ towards the vortex and quickly wraps around it, halting its motion

towards the pole. Also, in figure 4.13(b) it is seen that, owing to the large amplitude

waves excited on the interface the azimuthal motion of the vortex is reversed (seen by

the spiralling vortex trajectory) and then oscillates in time, a phenomenon not seen

in linear calculations.

When the circulation of the vortex is reversed (figure 4.14), the vortex initially

moves rapidly away from the pole and towards the interface demonstrating the insta-

bility of the vortex at the pole in this configuration. However, owing to the strength

of the vortex the interface is then ‘pulled down’ and wrapped around the vortex and

complicated non-linear behaviour ensues.
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Figure 4.12: Contour dynamics results at t = 9.5 for a vortex with Γ = 3 with
zpv(0) = −0.5 and vorticity interface (solid line) initially at z0 = 0.5 and ωS = 1. The
dashed line indicates the vortex trajectory from 0 ≤ t ≤ 9.5. The view is centred at
(0, 0).

4.6 Summary and applications to planetary vor-

tices

The dynamics of a point vortex on a sphere with a single vorticity jump separating

two caps of opposite sign constant vorticity have been considered. Linear theory

has been used to derive a coupled system of ODEs describing the evolution of the

vortex and modes along the interface. Analysis of the system showed that a point

vortex in a region of same signed vorticity will initially move away from the interface

while a vortex in a region of opposite signed vorticity will initially move towards it.

Vortices with a sufficiently weak circulation at sufficient distance from the interface

then undergo periodic meridional oscillation whilst precessing about the sphere. In
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(a) (b)

Figure 4.13: (a) Vortex meridional displacement as a function of time computed using
contour dynamics for a vortex with Γ = −10.0, initially at zpv(0) = −0.95 and the
interface initially located at z0 = 0.0. The vorticity is −1 in the southern cap. (b) A
snapshot of the system at t = 100. The dashed line indicates the vortex trajectory
from 0 ≤ t ≤ 100 and the triangle indicates the location of the South Pole.

Figure 4.14: Vortex trajectory given by contour dynamics for a vortex with Γ = 10.0,
initially at zpv(0) = −0.95 and the interface initially located at z0 = 0.0. The vorticity
is −1 in the southern cap.
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configurations where the vortex is initially closer to the interface, higher order modes

are excited upon the interface and the point vortex no longer undergoes a constant

meridional oscillation. In such systems, it is essential to truncate equations (4.16),

(4.17), (4.29) and (4.32) at n > 1 in order to capture the motion of the system over

even short time periods. The linear dynamics were largely insensitive to different

levels of truncation after n = 5. Linear theory also predicts that a polar vortex in

a region of same signed vorticity is at a stable equilibrium, whilst a polar vortex

in a region of opposite signed vorticity is at an unstable equilibrium. This result is

demonstrated to be true for non-linear systems, providing the interface can be written

as a Fourier series.

The fully non-linear problem was studied using a contour dynamics algorithm

for vortex dynamics on the surface of the unit sphere. The short time behaviour of

systems examined using contour dynamics was in good agreement with linear theory.

For highly linear configurations, contour dynamics and linear theory showed good

agreement over large periods of time. In more non-linear configurations, contour

dynamics was in good agreement with linear theory over short periods of time before

more complicated non-linear behaviour dominated the motion of the interface.

Contour dynamics results also verified the existence of the stable equilibrium pre-

dicted by linear theory for a polar vortex in a region of same signed vorticity. Recent

observations obtained by NASA’s Cassini spacecraft (Dyudina et al. 2009) have re-

vealed the existence of an intense polar storm at Saturn’s South Pole. The storm is

cyclonic and as noted in Polvani and Dritschel (1993), the system considered here may

be, to first order, very relevant in studying the global dynamics of Saturn. B A Smith
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(1982) points to evidence suggesting that on Saturn there exists a so called zonal

‘ribbon’ with a strong vorticity gradient near the equator. The global circulation is

anticyclonic to the north of the ribbon and cyclonic to its south resulting in the mean

winds at the equator being generally to the east. There is therefore the possibility

that there exists a strong cyclonic storm surrounded by a cyclonic sea i.e. the polar

storm has the same signed vorticity as its surrounding fluid. As discussed previously

in this chapter, for a cyclonic southern cap, the South Pole would be a stable equilib-

rium for a cyclonic storm such as the one observed at Saturn’s South Pole. This result

therefore offers a possible dynamic explanation explaining the presence and stability

of Saturn’s polar storm.

Systems with moderate strength vortices displayed a variety of possible behaviour.

One characteristic of such systems was that the vortex would generally drift away

from the interface if surrounded by a sea of same signed vorticity and towards it if

surrounded by a sea of opposite signed vorticity. For vortices surrounded by seas of

same signed vorticity, the rate of drift away from the interface would decrease with

distance from the interface and the vortex trajectory would slowly settle down into

a meridional oscillation while precessing around the sphere. As mentioned above,

vortices in seas of opposite signed vorticity drift towards the interface resulting in

the amplitude of disturbances at the interface growing as the vortex gets closer.

Generally, the vortex would get within close enough proximity of the interface to

eventually induce wrapping, thus halting the meridional drift of the vortex.



Chapter 5

Finite area vortex motion on a

sphere with impenetrable

boundaries

Vortex motion in the presence of impenetrable boundaries is an important problem

in vortex dynamics due to its relevance in modeling geophysical flows, especially

oceanographic flows. Oceanic eddies frequently interact with topography such as

ridges and coastlines, the resulting interactions can play an important role in ocean

circulation and various other ocean processes. For example, With such motivation in

mind, Pedlosky (1994) models the flow of the stratified abyssal ocean in the presence

of a partial meridional (north-south) barrier, Sheremet (2001) the passage of a western

boundary current across a gap and Nof (1995) the rotating exchange flow through a

narrow gap between large-scale ocean basins. Since deep ocean vortices, observed to

exist at depths up to 4km (McWilliams 1985), can propagate large distances they will

126
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frequently encounter mid-ocean ridges occurring at similar depths (e.g. the Walvis

Ridge in the South Atlantic). Due to their role in ocean circulation and the transport

of tracers, understanding the circumstances in which they are able to penetrate gaps

in ridges is important. In addition to deep ocean vortex-topography interactions,

surface trapped vortex structures also frequently interact with complex topography.

One such example is the collision of North Brazil Current Rings with the Lesser

Antilles (Fratantoni et al. 1995). For large-scale vortex structures, the curvature

of the Earth can play a significant role in the evolution of the system. Hence it is

desirable to develop methods that accurately compute vortex behaviour on the surface

of a sphere.

For problems involving vortex motion in planar bounded domains governed by the

two-dimensional Euler equations with the vorticity distribution chosen such that it is

a singular point in the domain (a point vortex), progress can be made using conformal

mapping techniques. Provided a conformal mapping exists between the domain and

a relatively simpler domain in which a vortex Hamiltonian (Kirchhoff-Routh path

function) (Saffman 1992) can be constructed, this Hamiltonian along with information

from the mapping gives the Hamiltonian in the original domain from which the vortex

trajectory can be deduced. Such point vortex systems can give a good indication of

the dynamics of a vortex patch with constant vorticity, especially when the boundary

of a vortex remains close to circular since the velocity field exterior to a circular

vortex patch is identical to that of a point vortex with the same circulation. However,

in many geophysical systems it is of interest to consider cases in which the vorticity

distribution is not singular but a finite region of vorticity which is able to deform, and
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when in close proximity to solid objects or other regions of vorticity can filament or

even split. The conformal mapping method is not directly applicable to such cases as a

finite area vortex patch is governed by Poisson’s equation which is not invariant under

conformal mapping. The dynamics exterior to the vortex are, however, governed by

Laplace’s equation and are hence invariant under conformal mapping. Thus, provided

the vorticity distributions being considered are piece-wise constant, contour dynamics

(Dritschel 1989) along with the invariance of the irrotational exterior flow under

conformal mapping can be utilized to examine such systems. Johnson and McDonald

(2004a) consider the planar problem of a point vortex near a gap in a plate with

and without ambient flows for which exact solutions of point vortex trajectories are

obtained through deriving the appropriate vortex Hamiltonian. In the absence of

ambient flows a vortex travelling towards the gap will pass through the gap and

travel back along the other side of the plate if its far-field distance from the plate is

less than half the gap width. Otherwise the vortex will leap across the gap. A method

for computing the motion of finite area patches of constant vorticity near such a gap

for which the invariance of the irrotational exterior flow under conformal mapping

and the numerical method of contour dynamics are utilized are then presented. When

the vortex boundary remains close to circular the centroid of the patch follows that

of the point vortex trajectory very closely. Cases in which the vortex is ‘pinched’

against the gap edge can lead to filamentation and even vortex splitting can occur.

This method is extended to study the motion of point vortices and vortex patches

near two circular cylinders of arbitrary radii (Johnson and McDonald 2004b) and near

a barrier with two collinear gaps (Johnson and McDonald 2005). For point vortices,
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Crowdy and Marshall (2005) generalized the study of Johnson and McDonald (2004b)

to domains of arbitrary connectivity, presenting a method for constructing a vortex

Hamiltonian in a bounded or unbounded domain containing an arbitrary number of

cylinders of arbitrary radii. The method of Crowdy and Marshall (2005) is used to

study the motion of a point vortex through gaps in walls in Crowdy and Marshall

(2006). Trajectories about gaps in a wall off a coastline and in an unbounded ocean

are considered. Some results from Johnson and McDonald (2005) are reproduced and

extended to domains of higher connectivity. In a recent study, Crowdy and Surana

(2008) present a method for implementing contour dynamics in planar domains of

arbitrary connectivity based on constructing the Green’s function in a pre-image

circular domain. Various examples are presented including the motion of a patch

near an infinite wall, a gap in a wall and in a circular basin with multiple circular

islands.

For planetary scale geophysical flows, it is clearly of interest to consider such

problems on the surface of a sphere. As mentioned in chapter 4, moving from the plane

to the sphere introduces new effects into the problem. The periodicity of the sphere

introduces a ‘feed back’ effect and the curvature of the sphere can introduce ‘shielding’

effects. In the absence of topography on the sphere it is required that the total

vorticity on the surface of the sphere is equal to zero: the Gauss integral constraint.

Point vortex motion on the surface of the sphere in the presence of impenetrable

boundaries is considered in the studies of Kidambi and Newton (2000) and Crowdy

(2006). Kidambi and Newton (2000) use the method of images to derive exact point

vortex trajectories for a spherical cap, longitudinal wedge, half-longitudinal wedge,
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channel and rectangle. Due to limitations of the method of images, solutions for the

wedge, half-wedge and rectangle are restricted to bounded geometries between the

azimuthal angles of φ = 0 and φ = π/m where m is a positive integer. Crowdy (2006)

presents a formulation based on a generalization of the Kirchhoff-Routh path function

to the surface of a sphere, abandoning the need for special symmetries demanded by

the method of images. The analog of the ‘gap in a wall’ problem of Johnson and

McDonald (2004a) on the surface of a sphere is also considered. The impenetrable

barrier considered lies along a great circle with longitude (or azimuthal angle) φ =

0, π except for a single, symmetrical gap centred about the south pole for θ ≥ θ0

where 0 ≤ θ ≤ π is the co-latitude. For θ0 less than 0.6082π the south pole is an

elliptic stationary point of the Hamiltonian in contrast to the planar case in which the

centre of the gap is always a hyperbolic stationary point of the Hamiltonian (Johnson

and McDonald 2004a). When θ0 exceeds this value a quantitative change in vortex

behavior occurs and the Hamiltonian has a hyperbolic stationary point at the south

pole and two symmetrical elliptic stationary points emerge at right angles to the

plate. As θ0 is increased further the curvature of the spherical surface plays a lesser

role in the dynamics in the vicinity of the gap and trajectories resemble those of the

planar case close to the gap (Johnson and McDonald 2004a).

In the absence of impenetrable boundaries Dritschel (1988) extends the method of

contour dynamics to the surface of a sphere. This method is has been used to model

waves and vortices on a sphere (in the absence of boundaries) and compute steadily

rotating vortex structures (Dritschel and Polvani 1992; Polvani and Dritschel 1993).

This chapter considers the motion of finite area patches of constant vorticity on
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the non-rotating unit sphere with impenetrable boundaries. Techniques described

in Johnson and McDonald (2004a) and Johnson and McDonald (2005) are extended

to the surface of the sphere and used to examine vortex patch motion in bounded

domains which is then compared to the exact point vortex trajectories (Crowdy 2006).

The domains considered include the exterior to an ellipse of semimajor axis a and

semiminor axis b in the stereographic plane, a longitudinal wedge and half-longitudinal

wedge bounded between zero and an angle φ (where 0 < φ < 2π) and a thin barrier

with two gaps. For the case when the semiminor axis of the ellipse is equal to zero (i.e.

a gap in a plate, Crowdy 2006) the motion of the patch with compatible background

flows is also considered.

As discussed above, Crowdy (2006) shows when the boundary is a gap in a plate,

the point vortex Hamiltonian has an elliptic stationary point located symmetrically

between the two plate edges (provided θ0 < 0.6082π). Thus, the possibility of stable

steady vortices (V-states) located between the gap arises. Families of vortex equilibria

for different gap widths are computed using a numerical method based on that of

Pierrehumbert (1980) and their stability investigated.

Surana and Crowdy (2008) have also considered the motion of vortex patches on

a sphere in the presence of boundaries using a modification of the method of Crowdy

and Surana (2008). Their method also uses stereographic projection of the physical

region of interest and also the patch itself (unlike in this work). They then conformally

map to a canonical circular domain and use the results of Crowdy and Surana (2008)

to show that a contour dynamics formulation exists.

The approach of presented in this chapter is complementary to that of Surana and
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Crowdy (2008). It has the advantage of being straightforward to implement using a

‘standard’ contour dynamics routine on a sphere although here it is restricted (unlike

Surana and Crowdy 2008) to singly and doubly connected domains. However, the

method can, in principle, be used to tackle domains of any connectivity provided the

region of interest can be mapped to a circular domain consisting of the unit disk with

smaller circular disks excised in which the corresponding boundary value problem

can be solved to obtain the appropriate irrotational flow field. The range of examples

considered here complement those of Surana and Crowdy (2008). Additionally in

this chapter background flows are considered, point vortex and patch trajectories are

compared and a family of vortex equilibria residing in a gap are computed.

5.1 Contour dynamics in singly connected domains

on a sphere

The system consists of a shallow layer of constant depth, incompressible and

inviscid fluid in a simply connected bounded domain D on the surface of the unit

sphere. Let Ψ denote the total streamfunction due to a finite number of vortices

(with piecewise constant vorticity) in the domain D such that the no-normal flow

boundary condition

Ψ = 0 on ∂D, (5.1)

is satisfied. Further, let ψ1 be the streamfunction owing to the vortices in the absence

of boundaries ∂D, which gives

ũθ = − 1

sin θ

∂ψ1

∂φ
, ũφ =

∂ψ1

∂θ
, (5.2)
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where φ ∈ [0, 2π) is the azimuthal angle and θ ∈ [0, π] is the latitudinal angle and ũφ

and ũθ are the zonal and latitudinal velocities respectively. Velocities on ∂D owing

to ψ1 are computed using the method of contour dynamics (Dritschel 1988, 1989).

Introduce an irrotational flow, with streamfunction ψ0, defined throughout D such

that

Ψ = ψ1 + ψ0. (5.3)

The no-normal-flow condition on the boundary ∂D requires that

d(ψ1 + ψ0) = 0, (5.4)

and hence from (5.2) the relationship between the irrotational flow field and that

induced by the vortices in D on ∂D is given by

∂ψ0

∂θ
dθ +

∂ψ0

∂θ
dφ = −

(

∂ψ1

∂θ
dθ +

∂ψ1

∂θ
dφ

)

= −ũφdθ + ũθ sin θdφ. (5.5)

Introduce the stereographic projection into the complex z-plane such that

z = cot

(

θ

2

)

eiφ, (5.6)

which conformally maps ∂D to ∂Dz with the north pole being mapped to ∞ and the

south pole to the origin of the z-plane. Velocities in the projected z-plane related to

those on the sphere can be obtained by direct differentiation of (5.6) giving

u(z) − iv(z) = −ir(1 + r2)

2z
(uφ − uθ), (5.7)

where r = |z|. The following two results for a point vortex in the stereographic plane

with zero net circulation are useful (Kidambi and Newton 2000)
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1. The velocity field induced by a point vortex of strength Γ in the stereographic

plane is

u(z) − iv(z) =
(1 + r2)2

4

[

− i

2π

Γ

z − zα

]

, (5.8)

where r = |z| and zα is the position of the point vortex in the stereographic

plane.

2. The velocity field felt by the vortex in the stereographic plane is

u(z)
α − iv(z)

α = − iΓ

8π
(1 + r2

α)z̄α. (5.9)

Importantly, note that in (5.8), only the term in the square brackets is confor-

mally invariant.

The first step in incorporating boundaries in the contour dynamics algorithm is to

compute the velocities ũφ and ũθ on the boundary ∂D using a standard contour

dynamics algorithm for a sphere (i.e. as if boundaries were not present). A contour

dynamics algorithm formulated on the surface of the sphere (appendix A.1) is used to

find the equivalent velocities on ∂Dz , ũ
(z) − iũ(z). Note that stereographic projection

is conformal and so preserves the angle between the velocity vector and the tangent

to the boundary: this property being important when constructing an irrotational

flow field that when added to ũ(z) − iṽ(z) gives zero normal flow on the boundary.

Next, a velocity field u(z) − iv(z) is to be found, such that when added to ũ(z) −

iṽ(z) the normal component of the resulting velocity field vanishes on ∂Dz and, by

conformality of the stereographic projection, on ∂D. It is required that u(z) − iv(z) is

irrotational on the sphere so no extra vorticity is being added to the dynamics.
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To determine u(z) − iv(z), Dz is mapped to the exterior unit circle Dζ in the ζ-

plane using the map ζ = F (z). Importantly, the velocity data ũ(z) − iṽ(z) on ∂Dz is

divided by the factor (1 + r2)/4 (see (5.8)) since it is required that the velocity field

be conformally invariant under this map. Let the velocity field on ∂Dz be ũ
(z)
c − iṽ

(z)
c

after dividing by this factor. Requiring that the total component of u
(z)
c − iv

(z)
c and

ũ
(z)
c − iṽ

(z)
c normal to ∂Dz vanishes gives

ℑ[(u(z)
c − iv(z)

c )dz]∂Dz
= −ℑ[(ũ(z)

c − iṽ(z)
c )dz]∂Dz

. (5.10)

On ∂Dζ , ζ = eiσ (0 ≤ σ < 2π) and noting dw = (u
(z)
c − iv

(z)
c )dz, (5.10) can be written

as

ℑ
[

dw

dσ

]

∂Dζ

= −ℑ
[

iζ

F ′(z)
(ũ(z)

c − iṽ(z)
c )

]

∂Dζ

= g(σ), (5.11)

where g(σ) is a known function on ∂Dζ and w is the complex potential of the velocity

field sought.

Let

w = iC log ζ +

∞
∑

k=1

akζ
−k (5.12)

where C ∈ R and ak are complex constants. The constant C determines the circula-

tion around the obstacle and is arbitrary. Expressing g(σ) as a Fourier series, ak can

be determined efficiently by Fast Fourier Transforms. Thus (5.12) gives

u(z) − iv(z) =
(1 + r2)2

4

dw

dζ

dζ

dz
=

(1 + r2)2

4

[

iC

ζ
+

∞
∑

k=1

−kakζ
−k−1

]

F ′(z). (5.13)

The velocity correction on the sphere is, using (5.7),

uφ − iuθ =
2iz

r(1 + r2)
(u(z) − iv(z)). (5.14)
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Since u(z)−iv(z) is irrotational in the z-plane it is possible to show by direct calculation

that uφ − iuθ given by (5.14) is indeed irrotational on the sphere.

Finally, to advect points on the contour the following three velocity fields are

required:

(i) the self-induced velocity owing to the vorticity of the patch (or patches) itself.

(ii) the velocity correction uφ − iuθ given by (5.14).

(iii) the velocity given by (5.9), where zα is now zi, the ith node of the patch bound-

ary.

To compute (iii) it is necessary to compute Γ = ωA where A is the patch area. This

can be done efficiently using boundary data using the boundary integral expression

A =

∮

∂B

(1 − z)dφ, (5.15)

where z = r cos θ and ∂B is the patch boundary. Additionally, the patch centroid

position given by

X =
T

|T| , (5.16)

where T =
∮

∂B
x × dx, is calculated for later use in comparison of patch trajectories

with those of point vortices.

In practice the sum in (5.13) is truncated at some valueN . Vortex patches in D are

then advected using a fourth order Runge-Kutta method. The procedure presented

in this section is then repeated at the beginning of each time step.
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5.2 Examples

Several examples are now presented for which the dynamics of vortices in singly

connected domains on the unit sphere are computed. In the following examples, ini-

tially a single finite area vortex B with piecewise constant vorticity and circulation

Γ and vortex boundary denoted ∂B moves in the domain D. In all following com-

putations the time step is set to dt = 0.01 and resolution parameter between vortex

boundary nodes set to 0.01. Note that no contour surgery was implemented in the

following examples.

5.2.1 Ellipse in the stereographic plane

The first example considered is that where the domain Dz is exterior to an ellipse

in the stereographic plane such that ∂Dz is given by

(ℜ(z)

a

)2

+

(ℑ(z)

b

)2

= 1, (5.17)

where a and b are the semimajor and semiminor axis of the ellipse respectively. An

illustration of the stereographic projection is given in figure 5.1. The boundary on

the sphere, ∂D, is recovered by mapping (5.17) to the sphere via the inverse of the

stereographic map (5.6). In general ∂D is a closed curve centred about the south

pole.

The conformal map from the region Dz to the region exterior to the unit circle Dζ

is given by

ζ =
z + (z2 − a2 + b2)

1
2

a+ b
, (5.18)
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Figure 5.1: Schematic illustraiting the stereographic projection from the sphere to an
ellipse in the complex z-plane.

with inverse

z =
1

2

(

(a + b)ζ + (a− b)ζ−1
)

. (5.19)

To ensure the vortex system on the sphere has zero net circulation the constant C is

set to be

C = − Γ

2π
. (5.20)

Velocities on ∂B in D are then computed as outlined in the previous section. The

sum in equation (5.13) is truncated at N = 400.

For comparison purposes exact point vortex trajectories in the domain D in the

case where the boundary is an ellipse in the stereographic plane in the absence of a

background flow can be derived using the Kirchhoff-Routh path function for point

vortices on a sphere (Crowdy 2006) and using the maps (5.19,5.20). The point vortex
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trajectories are given by

∣

∣

∣

∣

∣

(1 + zαzα)

(ζ(zα)ζ(zα) − 1)

2ζ(zα)2

(a− b)ζ(zα)2 − a− b

∣

∣

∣

∣

∣

= const, (5.21)

where the subscript α indicates the location of the point vortex. Figure 5.2 shows the

patch motion about an ellipse with a = 0.2 and b = 0.1 where patch is initially circular

with Γ ≈ 0.774 and vorticity ω = 10 and centroid initially located at (φco, θco) =

(0, 2/3π). In this case the motion is contained within the Southern Hemisphere. The

boundary in this case is a “short” obstacle where the north pole is an elliptic stationary

point as determined by contours of (5.21) and thus the vortex patch dynamics will

be more analogous to the motion about an isolated object in the plane and not the

“gap in a wall” problem. The patch motion remains close to circular and thus the

centroid motion of the vortex patch follows the point vortex trajectory very closely.

This orbital motion persists for long times. Figure 5.3 (with a = 4.0, b = 0.0,

Γ ≈ −3.075, ω = −10 and (φco, θco) = (0.2π, 0.25π)) shows the case for which the

ellipse is collapsed so that it is a thin barrier around a portion of a great circle. The

boundary in this case is a “long” barrier and is thus analogous to the planar problem

of the “gap in a wall” (Johnson and McDonald 2004a). In this case, as the patch

passes the edge of the barrier the patch and barrier are within closer proximity than

in the case previously considered, thus a far greater degree of distortion of the patch is

observed. Figure 5.3 shows that for this case, after the patch passes through the gap,

the distortion induced from the interaction with the barrier results in filamentation.

The vortex then proceeds in the expected way with a filament growing in time. Such

filamentation is also typical in the planar case (Johnson and McDonald 2004a).
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Figure 5.2: Southern Hemisphere view of a vortex patch with Γ ≈ 0.774 and ω = 10.
The patch centroid is initially located at φ = 0, θ = 2

3
π, marked by the asterisk (*).

The barrier is an ellipse with a = 0.2 and b = 0.1 in the stereographic plane. The
dashed line represents the exact point vortex trajectory and the + marks the vortex
patch centroid location. The vortex patch location is shown in increments of 4 time
units up to t = 40.

Figure 5.3: View centered at the north pole of a vortex patch with Γ ≈ −3.075209
and ω = −10. The patch centroid is initially located at φ = 0.2π and θ = 0.25π,
marked by the asterisk (*). The barrier is an ellipse with a = 4.0 and b = 0.0 in the
stereographic plane i.e. a thin barrier. The dashed line represents the exact point
vortex trajectory and the + marks the vortex patch centroid location. The patch
location is shown in increments of 1 time unit.
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5.2.2 Thin barriers with background flows

Vortex motion can also be computed in the presence of a compatible background

flow whose streamfunction is here denoted ψB. Compatible flows satisfy

∇2ψB = const, (5.22)

so that the vorticity distribution remains piecewise constant, a necessary condition

for implementing contour dynamics. The velocity field due to ψB is given by

UB − iVB =
∂ψB

∂θ
+ i

1

sin θ

∂ψB

∂φ
, (5.23)

where UB and VB are the zonal and meridional velocities respectively. Addition of this

velocity field to that owing to ψ1 and ψ0 at the patch boundary ∂B prior to advection

then gives the resultant motion of the patch in the domain D in the presence of a

background flow.

For the case when the ellipse is collapsed to a thin barrier, a possible compatible

flow is that due to a dipole located at the south pole with

ψB = R cos
(

φ+
π

2

)

cot

(

π − θ

2

)

, (5.24)

and thus the constant in (5.22) is zero for this flow except at the south pole itself.

Streamlines of this flow for a view from the north pole are shown in figure 5.4(a)

and from the south pole in figure 5.4(b). R in equation (5.24) is a constant that

determines the strength and sense of the background flow. Using (5.23), the velocity

field arising from (5.24) is given by

UB − iVB =
R

2

cos
(

φ+ π
2

)

sin2
(

π−θ
2

) − iR sin
(

φ+
π

2

) cot
(

π−θ
2

)

sin θ
. (5.25)
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Figure 5.4: Streamlines of the background flow given by ψB = R cos
(

φ+ π
2

)

cot
(

π−θ
2

)

for a view (a) centred about the north pole (0, 0) and (b) centred about the south
pole (0, π).

A straightforward modification of the Kirchhoff-Routh path function for the sphere

to account for background flows gives exact point vortex solutions in the presence of

ψB and in this case takes the form

− Γ

4π
log

∣

∣

∣

∣

∣

(1 + zαzα)

(ζ(zα)ζ(zα) − 1)

2ζ(zα)2

aζ(zα)2 − a

∣

∣

∣

∣

∣

+R cos
(

φα +
π

2

)

cot

(

π − θα

2

)

= const.

(5.26)

Here φα and θα, the position of the point vortex in spherical polar co-ordinates have

been maintained for the simplicity of expressing (5.26). Introducing a dipole at the

south pole means that at this point fluid is effectively being ‘sucked’ in one side of

the barrier and expelled on the other. Thus if the path of a vortex takes it into the

region in which fluid is being ‘sucked’ into the barrier the vortex will also be sucked in

and removed from the system. However, the flow in the vicinity of the gap is parallel

to the barrier and hence, in this region at least, is of geophysical interest. Thus for
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this system, the period of interest is when the vortex patch interacts with the gap

and not the long term dynamics of the system. Note that in the equivalent planar

problem the dipole driving uniform flow parallel to the barrier is at infinity.

The first example considered is one in which the patch is initially located in the

gap of the barrier and to one side as shown in figure 5.5 (a = 4.0, b = 0.0, Γ ≈ −3.075,

ω = −10, (φco, θco) = (0.5π, 0.15π) and R = 5Γ/4π). The background flow is such

that it is assisting the motion of the patch towards the barrier edge. Thus as the patch

moves towards and about the plate it is ‘pinched’ against the barrier. This results in

part of the patch being pushed to the ‘left’ of the barrier and part being pushed to its

‘right’. (Where ‘left’ and ‘right’ are used in the sense of the orientation of figure 5.5.)

Following this ‘pinching’, the flow is assisting the motion of the region of the patch to

the left of the barrier and opposing the motion of the patch to its right. The patch is

thus effectively split into two separate patches whose motion becomes less coupled as

the separation between them increases. Recall that no surgery is implemented in this

algorithm and thus the ‘patches’ remain connected via a thin filament. This results

in the right hand patch having insufficient circulation to oppose the background flow

and it remains in a quasi-steady state trapped against the barrier.

Another compatible flow for the thin barrier case is that due to two fixed point vor-

tices with circulations Γa and Γb placed on the equator such that the line joining the

two point vortices is perpendicular to the barrier i.e. the vortices’ stereographically

projected fixed positions are given by za = i and zb = −i respectively. The stream-

function due to a point vortex with circulation Γ at the stereographically projected
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Figure 5.5: View centred at the north pole of a vortex patch with Γ ≈ −3.075209
and ω = −10. The patch centroid is initially located at φ = 0.5π and θ = 0.15π,
marked by the asterisk (*). The barrier is an ellipse with a = 4.0 and b = 0.0 in the
stereographic plane. A background flow is present with streamfunction ψB as in (5.24)
with R = 5Γ/4π. The dashed line represents the exact point vortex trajectory given
by (5.26) and the + marks the vortex patch centroid location. The patch location is
shown in increments of 1 time unit.

position zα on a sphere is

ψpv(z, z̄; zα, z̄α) = − Γ

4π
log

(

(z − zα)(z̄ − z̄α)

(1 + zz̄)(1 + zαz̄α)

)

, (5.27)

(see, e.g. Kidambi and Newton 2000). The streamfunction due to two point vortices

located at za = i and zb = −i with circulations Γa and Γb respectively is thus given

by

ψB = −Γa

4π
log

(

(z − i)(z̄ + i)

2(1 + zz̄)

)

− Γb

4π
log

(

(z + i)(z̄ − i)

2(1 + zz̄)

)

. (5.28)

When ψB=ψB(z, z̄; zα, z̄α), the velocity field (5.23) can be found using

UB − iVB =
2z

sin θ

∂ψB

∂z
, (5.29)

(Crowdy and Cloke 2003), and hence

UB − iVB = − Γaz

2π sin θ

(

1

z − i
− z̄

1 + zz̄

)

− Γbz

2π sin θ

(

1

z + i
− z̄

1 + zz̄

)

. (5.30)
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Exact point vortex trajectories are given by

log

∣

∣

∣

∣

∣

(1 + zαzα)

(ζ(zα)ζ(zα) − 1)

2ζ(zα)2

aζ(zα)2 − a

∣

∣

∣

∣

∣

+
Γa

Γ
log

∣

∣

∣

∣

(z − i)(z̄ + i)

2(1 + zz̄)

∣

∣

∣

∣

+
Γb

Γ
log

∣

∣

∣

∣

(z + i)(z̄ − i)

2(1 + zz̄)

∣

∣

∣

∣

= const.

(5.31)

Figure 5.6 (with a = 0.25, b = 0.0, Γ ≈ −0.774 = −Γa = −Γb, ω = −10 and

(φco, θco) = (π/2, 3π/4)) shows an example of a system with this background flow

in which the thin barrier is short, its projected length in the z-plane is 0.5. The

fixed point vortices located at za = i and zb = −i are of equal circulation and

thus their velocity fields oppose each other at the barrier giving zero net flow along

φ = 0, π. The circulation of these vortices is also opposite to that of the patch and

their combined flow field opposes that due to the patch-barrier interaction. This has

the effect of creating stagnation points either side of the plate. Figure 5.6 shows the

patch beginning close the stagnation point between the barrier and za = i. The flow

field in this area is very weak and the initial motion of the patch is slow. The flow

field induced by the patch-barrier interaction then gradually accelerates the patch

and it moves about the barrier entering the region of fluid where the fixed point

vortex at zb = −i dominates the background flow. The patch is thus decelerated as

it approaches the stagnation point in this region. The patch motion then reverses

due to the effect of the fixed point vortex at zb and the patch circulates once about

zb before returning to the stagnation point. The process then repeats. Very good

agreement is seen between the path of the patch centroid and that of a point vortex

except within close proximity to the stagnation points.

In Figure 5.7 (a = 4.0, b = 0.0, Γ ≈ −0.774, ω = −10, Γa = 1.25Γ = −Γb

and (φco, θco) = (0.075π, 0.35π)) the fixed vortices have opposite circulation and so
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Figure 5.6: View centered at (3π/2, 3π/4) of a vortex patch with Γ ≈ −0.773564 and
ω = −10. The patch centroid is initially located at φ = π/2 and θ = 3π/4 (i.e. the
bottom most centred patch of the figure). The barrier is an ellipse with a = 0.25 and
b = 0.0 in the stereographic plane. A background flow is present with ψB as in (5.28)
with Γa = Γb = −Γ, the fixed point vortex locations are indicated by solid dots. The
dashed line represents the exact point vortex trajectory and the + marks the vortex
patch centroid location. The patch location is shown at t = 0, 15, 20, 22.5, 30, 40, 42.5
and 45.
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reinforce each other along the barrier assisting the initial patch movement towards

the gap. The patch initially passes through the gap but the background flow field

is sufficient to overcome the patch-barrier interaction effect and advects the patch

away from the barrier. The patch then approaches the barriers opposite edge and

the resulting patch-barrier interaction results in the patch passing back through the

gap and travelling past and down the opposite edge of the barrier (on the same side

of the gap as which it begun). The patch’s interaction with the barrier results in a

deformation of the patch followed by some filamentation. Such trajectories are typical

to those seen in the planar case when a uniform background flow parallel to the barrier

is present. Johnson and McDonald (2004a) give examples in which a patch initially

passes through the gap but the background flow parallel to the barrier is sufficient to

overcome the “image” effect and results in the vortex passing back through the gap

as seen here in figure 5.7.

5.2.3 Longitudinal wedge

In Kidambi and Newton (2000) and example B of Crowdy (2006) an expression for

the trajectories of a point vortex in a longitudinal wedge bounded by the longitudes

0 and π/m for m a positive integer in Kidambi and Newton (2000) and for m a

positive real number in Crowdy (2006), were derived. Here the vortex patch motion

in such a region (with arbitrary) is computed and compared to these trajectories. As

in section 5.2.1 the region is stereographically projected into the complex plane and

then mapped to the exterior of the unit disk. Here the sum in (5.13) is truncated

to N = 800 and C is set to zero. A greater value of N is required in this (and the
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Figure 5.7: The motion of a vortex patch with Γ ≈ −0.773564 and ω = −10. The
patch centroid is initially located at φ = 0.075π and θ = 0.35π, marked by the asterisk
(*). The barrier is an ellipse with a = 4.0 and b = 0.0 in the stereographic plane. A
background flow is present with ψB as in (5.28) with Γa = 4Γ/5 = −Γb. The dashed
line represents the exact point vortex trajectory and the + marks the vortex patch
centroid location. The patch location is shown at t = 0, 1, 3, 6, 9, 12, 15, 18, 19.5 and
21.

following) example to ensure the solution is convergent within the same numerical

tolerance as in the previous examples. First note the longitudinal wedge maps to

the infinite plane wedge in the stereographic plane. The infinite plane wedge in the

z-plane is then mapped to the upper half of an intermediate z1-plane using:

z1(z) = zm. (5.32)

The conformal mapping from the upper half of the z1-plane to the exterior of the ζ

unit disk is given by

ζ(z1) =
1 − iz1
1 + iz1

, (5.33)
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and the composite of these two maps, the map from the z-projection of the infinite

wedge to the exterior of the unit ζ disk is given by

ζ(z) =
1 − izm

1 + izm
, (5.34)

with inverse

z(ζ) =

[

i
ζ − 1

ζ + 1

]
1
m

. (5.35)

Note that m here is an arbitrary positive real number. Vortex patch motion is then

computed according to the procedure detailed in section 5.1. Figure 5.8 shows the

motion of a vortex patch in a wedge with m = 1.7 (and Γ ≈ 0.774, ω = 10 and

(φco, θco) = (0.15π, π/2)). In this example the patch does not come within close

proximity to the wedge corners and remains close to circular. The trajectory of the

patch centroid thus follows the exact point vortex trajectory very closely. Figure 5.9

shows the vortex motion within a much wider wedge than the previous example. Here

m = 0.55 (and Γ ≈ 0.774, ω = 10 and (φco, θco) = (0.075π, π/2)). This is equivalent

to the motion of the patch outside a thin wedge and is approaching the limiting case

in which the wedge would become a thin barrier spanning half a great circle. In this

example the vortex patch starts within close proximity to the wedge and initially

travels down the wall towards the point of the wedge at the south pole. As the patch

passes about the south pole it is deformed and some minor filamentation is observed

around the patch edges as it travels back along the other side of the wedge. As a

result of this the patch centroid begins to deviate slightly away from the exact point

vortex trajectory.
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Figure 5.8: Motion of a vortex patch with Γ ≈ 0.773564 and ω = 10 within a wedge
with m = 1.7. The patch centroid is initially located at (0.15π, π/2), marked by the
asterisk (*). The patch location is shown in increments of 4 time units. The solid
line represents the wedge, the dashed line the exact point vortex trajectory and the
+ marks the patch centroid location.

Figure 5.9: Motion of a vortex patch with Γ ≈ 0.773564 and ω = 10 within a wedge
with m = 0.55. The patch centroid is initially located at (0.075π, π/2), marked by
the asterisk (*). The patch location is shown in increments of 1 time unit. The solid
line represents the wedge, the dashed line the exact point vortex trajectory and the
+ marks the patch centroid location at each time interval.
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5.2.4 Half-longitudinal wedge

Consider a spherical triangle domain D containing the south pole and the region

bounded by the longitudes 0 and π/m and the equator. Point vortex motion in this

geometry was also considered by Kidambi and Newton (2000) (m ∈ Z) and, more

generally, Crowdy (2006) (m ∈ R). Thus the domain Dz will be the sector of the

unit circle bounded by the lines arg(z) = 0 and arg(z) = π/m and the arc defined by

|z| = 1. C is set to zero to ensure zero circulation about the half-wedge. Next the

sector in the z-plane is mapped to the upper half of the intermediate z1-plane using

z1(z) =

(

1 + zm

1 − zm

)2

, (5.36)

followed by a map from the upper half of the z1 plane to the exterior of the unit

ζ-disk (5.33). The composite of (5.33) and (5.36) gives

ζ(z) =
1 − i

(

1+zm

1−zm

)2

1 + i
(

1+zm

1−zm

)2 , (5.37)

with inverse

z(ζ) =







[

i ζ−1
ζ+1

]
1
2 − 1

[

i ζ−1
ζ+1

]
1
2

+ 1







1
m

. (5.38)

Figure 5.10 gives an example of the motion of a vortex patch within a half-longitudinal

wedge with m = 0.7 (and Γ ≈ 0.774, ω = 10 and (φco, θco) = (0.15π, 0.75π)) using

N = 800. The patch in this case remains close to circular and as expected the motion

of centroid matches that of a point vortex very closely.
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Figure 5.10: Motion of a vortex within a half-longitudinal wedge with m = 0.7. The
vortex has Γ ≈ 0.773564 and ω = 10. The view is centred on (0, π) and the patch
location is shown at increments of 4 time units. The initial centroid of the vortex
is indicated by the asterisk (*). The solid line represents the wedge boundary, the
dashed line the exact point vortex trajectory and the + marks the patch centroid
location at each time interval.

5.3 A doubly connected domain: Barrier with two

gaps

In this section, the techniques of section 5.1 are extended to compute the motion

of a vortex in a doubly connected domain D, where the domain considered here is a

thin barrier on the surface of the unit sphere with two gaps. Let the barrier lie along

the great circle corresponding to φ = 0, 2π (where φ ∈ [0, 2π) is the azimuthal angle)

except at two gaps G1 and G2 between θ
(G1)
0 and θ

(G1)
1 and between θ

(G2)
0 and θ

(G2)
1

respectively (where θ ∈ [0, π] is the latitudinal angle). The stereographic projection

into the complex z-plane given in (5.6) maps D to Dz. The barrier is projected to

the line ℑz = 0 with gaps lying between z
(G1)
0 and z

(G1)
1 and between z

(G2)
0 and z

(G2)
1 .

Following Johnson and McDonald (2005) the domain is further decomposed into two
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subdomains D1,2, with D1 denoting the upper half of the stereographically projected

z-plane (ℑz > 0) and D2 the lower half. Let the streamfunction induced by the

vortices in the region D1 satisfying the no-normal flow condition along ℑz = 0 be ψ1

so that

ψ1 = 0, on ℑz = 0. (5.39)

Similarly, let the streamfunction induced by the vortices in the region D2 satisfying

the no-normal flow boundary condition on ℑz = 0 be ψ2, so

ψ2 = 0, on ℑz = 0. (5.40)

Denote the total streamfunction induced by all vortices in D = D1 ∪ D2 by Ψ and

introduce an irrotational flow field with streamfunction ψ0 such that

Ψ =



















ψ1 + ψ0 in D1,

ψ2 + ψ0 in D2.

(5.41)

Thus Ψ is continuous across the gaps and ψ1,2 vanish there, so ψ0 is continuous across

the gaps. The streamfunction ψ1 is therefore that of a vortex distribution in D1 with

a rigid wall along ℑz = 0 (or around the great circle corresponding to φ = 0, 2π on

the unit sphere), and correspondingly, ψ2 is the streamfunction owing to a vortex

distribution in D2 with a rigid wall along ℑz = 0.

Velocity fields owing to ψ1 and ψ2 can then be directly computed on the surface of

the sphere using a spherical contour dynamics algorithm. The velocity field owing to

ψ1 is that due to the vorticity distribution in D1, computed using a standard spherical

contour dynamics algorithm (i.e. as if boundaries were not present), along with that

due to its image in the ‘rigid wall’. The velocity field due this image vorticity is again
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computed using a standard spherical contour dynamics algorithm. The velocity field

owing to ψ2 is computed analogously for the distribution of vorticity within D2. The

velocity fields in D1 and D2, owing to ψ1 and ψ2 respectively, are thus known and

it remains to determine the streamfunction ψ0. Once ψ0 has been determined, Ψ is

known everywhere, solving the original problem.

In the stereographic z-plane, let the normal pointing from D1 to D2 be n12. The

normal derivative of the streamfunction, ∂Ψ(z)/∂n12 (where the superscript denotes

the quantity in the stereographic plane) is continuous across the gaps. The jump in

the quantity Ψ(z) − ψ
(z)
0 in moving from D1 to D2 is given by

[

∂

∂n12

(Ψ(z) − ψ
(z)
0 )

]

=
∂ψ

(z)
2

∂n12

− ∂ψ
(z)
1

∂n12

. (5.42)

(Note that here and in the remainder of this section, the notation [.] is taken to mean

the jump in the enclosed quantity in moving from D1 to D2). Therefore, the jump in

ψ
(z)
0 across the gap must be given by

[

∂ψ
(z)
0

∂n12

]

= −∂ψ
(z)
2

∂n12

+
∂ψ

(z)
1

∂n12

= u
(z)
2 − u

(z)
1 , (5.43)

where u
(z)
2 is the tangential velocity induced at a gap owing to ψ

(z)
2 and u

(z)
1 the

tangential velocity at a gap owing to ψ
(z)
1 . The velocity fields at the gaps on the unit

sphere owing to ψ1 and ψ2 are computed as outlined above. Following the method

detailed in section 5.1, these velocities are projected into the stereographic z-plane

giving the required u
(z)
1 and u

(z)
2 .

The around island vortex-induced circulations are evaluated according to

Γ
(m)
V =

∫ z
(m)
1

z
(m)
0

[uV ]|dz|, (5.44)
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Figure 5.11: Stereographic projection of the collinear gaps and the islands of zero
thickness. The island covering the north pole has edges z

(0)
1 and z

(2)
0 and the edges of

the island placed within this islands ‘gap’ are labelled z
(1)
0 and z

(1)
1 .

where the superscript m denotes the island edges, as shown in figure 5.11, and [uV ] is

the jump in the z-plane tangential velocity across the island. The jump in tangential

velocity is again calculated by computing velocities at the islands owing to ψ1 and

ψ2 on the unit sphere using a standard spherical contour dynamics algorithm and

then projecting these velocities into the stereographic z-plane. Denote the complex

potential associated with ψ0 by w0(z), and extend the complex velocity u
(z)
0 − iv

(z)
0 =

dw0/dz, analytic in the upper half-plane to the lower half-plane by

dw0

dz
(z) = −dw0

dz
(z̄), ℑz < 0. (5.45)

The jump in tangential velocity across ℑz = 0 is therefore 2u0 and the condition on

the tangential velocity of the irrotational flow can be written as

ℜ{dw0}/|dz| = ℜ{(u(z)
0 − iv

(z)
0 )dz}/|dz| = u

(z)
0 = −1

2
[uV ], on ℑz = 0. (5.46)

From (5.45) the horizontal velocity is odd about the imaginary axis and therefore the

vortex-induced around island circulations, from (5.44) and (5.46), become

Γ
(m)
V = −2

∫ z
(m)
1

z
(m)
0

u
(z)
0 |dz| = −2ℜ{w0(z

(m)
1 ) − w0(z

(m)
0 )}. (5.47)
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Denote the through gap volume fluxes αm (m = 1, 2), given by the change in ℑw0

across a gap. Using the around island circulation conditions of (5.44), the through-gap

volume fluxes are determined as

αm = ℑ{w0(z
(m)
0 ) − w0(z

(m−1)
1 )}. (5.48)

To solve the harmonic problem and determine w0, the problem is now mapped from

the stereographically projected z-plane into a periodic rectangle, here denoted the

τ -plane. Fist, consider the case when the gaps are collinear with G1 located between

(π, π/2) and (π, θ1) and G2 located between (0, π/2) and (0, θ1) where θ1 ∈ (π/2, π)

such that there is a gap between |ℜz| < 1 in the stereographic plane with the in-

tervening ‘island’ centred about the south pole corresponding to |ℜz| < k where

k = cot(θ1/2) (giving 0 < k < 1). As will be shown later, this configuration can then

be mapped to the problem of two arbitrary placed gaps.

The map

τ = sn−1(z/k), (5.49)

with inverse

z = ksnτ, (5.50)

and

dτ

dz
=

1
√

(k2 − z2)(1 − z2)
, (5.51)

where sn denotes the elliptic function of modulus k, conformally maps the half-plane

ℑz > 0 to the rectangle −K < ℜτ < K, 0 < ℑτ < K ′ in the τ -plane, where

K(k) =

∫ 1

0

[(1 − t2)(1 − k2t2)]−1/2dt, K ′(k) = K
√

1 − k2. (5.52)
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Figure 5.12: (a) Symmetric gaps in the z-plane with semi-infinite domains D1 and
D2 in ℑz > 0 and ℑz < 0 respectively. (b) The periodic rectangle in the τ -plane
onto which the z-plane is mapped. The points A-H in figure (a) are mapped to their
corresponding letters in figure (b).

Note that here, and in the rest of this section the prime does not denote the derivative.

An illustration of this mapping is given in figure 5.12. By reflecting the τ -plane about

ℜτ = K, (5.49) is extended to cover the entire z-plane. Thus one real period of the τ -

plane rectangle, where −K < ℜτ < 3K, corresponds to the entire z-plane. However,

to determine w0 it is sufficient to consider the rectangle −K < ℜτ < 3K. The two

points located at z = ±∞ now coincide at τ = iK ′ and thus the line ℑτ = K ′

corresponds to the barrier spanning half the great circle and ℑτ = 0 to the small

island centred about the South Pole.

In the τ -plane, the velocity condition (5.46) becomes

ℜ{dw0}/|dτ | = −1

2
[uV ]|dz/dτ | on ℜτ = ±K, 0 < ℑτ < K ′, (5.53)
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and (5.48), the through gap flux conditions, become

ℑw0 = α1 = α on ℑτ = 0, |ℜτ | < K,

ℑw0 = α2 = 0 on ℑτ = K ′, |ℜτ | < K.

(5.54)

This condition is satisfied by a uniform stream in the ℜτ -direction such that the

tangential velocity condition (5.53) is not effected. Thus

w0 = α(K ′ − τ)/K ′ + w00, (5.55)

where w00 is the complex potential of an irrotational flow. A suitable expression for

w00 can be obtained through a further mapping of the τ -plane rectangle to the upper

half of an annulus δ1 < |σ| < δ2 in the complex σ-plane. This mapping is given by

σ = exp(πτ/K ′), (5.56)

such that

δ2,1 = exp(±πK/K ′). (5.57)

The complex potential w00 then satisfies

ℑw00 = 0 on φ = 0, π, δ1 < |σ| < δ2,

ℜ{dw00}/|dσ| = −1

2
[uV ]|dz/dσ| on |σ| = δ1,2, 0 < φ < π,

(5.58)

where φ = arg σ. Within the annulus w00 is harmonic and can thus be written as

w00 =
∑′

anσ
n, (5.59)

where n ∈ Z and the prime indicates that the n = 0 term is omitted. Along with

the n = 0 term the allowable log σ term is also omitted from (5.59). Both these
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terms have been absorbed into the constant α in (5.55) and are thus absent in (5.59).

Further, since w00 can be extended in to the lower half of the σ-plane through

w00(σ̄) = w00(σ), (5.60)

the an in (5.59) can be taken as real. On the σ-domain boundaries, |σ| = δ1,2,

dσ/|dσ| = ieiφ and thus (5.58) gives

ℜ{dw00}/|dσ| =
∑

′nanℜ{σn−1ieiφ} =

∞
∑

1

b(1,2)
n sinnφ, (5.61)

where

b(1,2)
n = − n

δ1,2

(anδ
n
1,2 + δ−nδ

−n
1,2 ), n ∈ Z

+. (5.62)

The b
(1,2)
n are the Fourier Sine coefficients in the expansion of −1

2
[uV ]|dz/dσ| on |σ| =

δ1,2, 0 < φ < π and are given explicitly by

b(1,2)
n = − K ′

2π2δ1,2

∫ π

0

[uV ]
(

(k2 − z2
1,2)(1 − z2

1,2)
)

1
2 sin(nφ)dφ, (5.63)

where, using the mappings (5.50) and (5.56)

z2,1 = ksn

[

K ′

π
log σ

]

= ksn

[

±K + iK ′φ

π

]

, (5.64)

which correspond to purely real points lying within the gaps. The coefficients bn can

now be determined numerically using discrete fast Fourier transforms evaluating the

integral in (5.63) at points spaced evenly in φ. The coefficients an in (5.59) are given

by

an =
δ2b

(2)
|n|δ

−n
1 − δ1b

(1)
|n|δ

−n
2

|n|(δn
1 δ

−n
2 − δn

2 δ
−n
1 )

, n = ±1,±2,±3, ... (5.65)

Finally, to determine the velocity field owing to w0 in the stereographic z-plane the

through-gap volume flux α must be determined. The island edges, given ny z = ±k
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in the z-plane, correspond to τ = ±K and σ = δ1,2 giving

ℜ{w0|z=k − w0|z=−k} = −2α
K

K ′
+
∑

′an(δn
2 − δn

1 ), (5.66)

where, again, n ∈ Z and the prime indicates that the n = 0 term is omitted. Thus,

(5.66) along with (5.47) and (5.48) give the through-gap volume flux

α =
K ′

2K

[

1

2
ΓV +

∞
∑

1

δ1b
(1)
n + δ2b

(2)
n

2

]

. (5.67)

Using (5.55), (5.59), (5.65) and (5.3) the complex potential of the required irrotational

velocity field w0 is hence determined. The irrotational velocity field owing to w0 in

the z-plane is then given by

u
(z)
0 − iv

(z)
0 =

dw0

dσ

dσ

dτ

dτ

dz
=

π

K ′

[

ασ/K ′ +
∑

′nanσ
n

((k2 − z2)(1 − z2))
1
2

]

, (5.68)

where σ = exp[(π/K ′)sn−1(z/k)]. These velocities are then projected back to the

sphere and added to those owing to ψ1 and ψ2 to give the total velocity field on the

surface of the sphere. Importantly, in this case the image of the vortex patch has been

explicitly included when determining the velocity fields owing to ψ1 and ψ2. Thus

the difference here to the examples previously considered is that when projecting

velocities back to the sphere the velocity field arising due to the Gauss constraint

(see (5.9)) is not added back on to the total velocity field. Points on the vortex

contour are then advected as detailed in section 5.1.

5.3.1 Background flows

Note that in the formulation presented above, the circulation around the island

is not necessarily zero, the circulation around the thin barrier extending to ∞ in the
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z-plane will however be zero. Due to the topography of the sphere and the fact that

it is an enclosed surface an additional term is required to ensure net zero circulation.

In planar problems a vortex can initially be positioned at ‘infinity’ such that the

fluid surrounding the island is initially stagnant i.e. there is initially no circulation

about the island and owing to Kelvin’s Circulation theorem this will remain so for

all time. However, when considering the problems on the surface of the sphere such

an assumption cannot be made. Thus to ensure a net zero circulation around the

island in the spherical case it is required to place a point vortex of circulation −Γ in

the τ = sn−1(z/k) plane such that it maps to the centre of the island (i.e. the South

Pole in the symmetric gap case) in the z-plane. Label this point τ∞. Using equation

(3.6) of Johnson and McDonald (2005), the background complex potential required

to ensure zero circulation about the island is given by

wB =
−Γ

2πi
log

(

θ1[π(τ − τ∞)/4K]

θ1[π(τ − τ ′∞)/4K]

)

, (5.69)

where τ ′∞ is the reflection of τ∞ about the line τ = iK ′ i.e. τ ′∞ = τ∞ + 2(iK ′ −ℑτ∞).

The Hamiltonian associated with such background flows, required for the computation

of point vortex trajectories, is then given by

HB(τ, τ∞) = −Γℑ[wB]. (5.70)

Of course, this form of the complex potential is not restricted to imposing the net

zero circulation case and can be used to impose an additional circulation around an

object or a background flow due to fixed point vortices such as was done for a singly

connected case in section 5.2.2. The velocity field owing to such a background flow
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in the z-plane is given by

u
(z)
B − iv

(z)
B =

dwB

dτ

dτ

dz
. (5.71)

Such velocity fields are added to (5.68) before projecting back to the sphere.

5.3.2 Point vortex trajectories

The vortex Hamiltonian for the planar analog of this problem is derived in Johnson

and McDonald (2005). The relationship between a Hamiltonian on the sphere Hs to

a Hamiltonian in the complex z-plane Hz is given by (Surana and Crowdy 2008)

Hs({φαi
}, {θαi

}) = Hz({zαi
}) +

1

4π

N
∑

j=1

Γ2
j log

1

(1 + z(αj)z̄(αj))
, (5.72)

where αi denotes the position of the ith vortex in a pre-image ζ domain. For the

case of a single point vortex with circulation Γ1 = Γ located at z = zα1 and when the

two gaps in the barrier are collinear with G1 located between (π, π/2) and (π, θ1) and

G2 located between (0, π/2) and (0, θ1) where θ1 ∈ (π/2, π) such that the resulting

island centred about the south pole corresponds to |ℜz| < k where k = cot(θ1/2), the

vortex Hamiltonian is given by

Hs(z, z̄) =(Γ2/4π) log |(k2 − z2)1/2(1 − z2)1/2ϑ1[iπ(ℑsn−1(z/k) −K ′)/2K]|

+ (Γ2/4π) log |1/(1 + zz̄)| − Γℑ[wB],

(5.73)

where wB is given in (5.69) and here τ∞ = 0. Vortex trajectories (and also finite area

vortex motion) for the case when the island lies asymmetrically between the barrier

spanning half a great circle can be deduced through mapping to the symmetric case.

An island in the sterographically projected ẑ-plane located between x0 < ℑẑ < x1
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(with −1 < x0 < x1 < 1) within a gap corresponding to −1 < ℑẑ < 1 is mapped

back to the symmetric problem in the z-plane via the Mobius map given by

z = (−αẑ + 1)/(ẑ − α), (5.74)

leaving the gap of width of 2 unchanged but moving the island to lie along |ℜz| ≤

k < 1 where

α = exp(cosh−1[(x0x1 +1)/(x0 +x1)]), k = exp(cosh−1[(x0x1−1)/(x0−x1)]). (5.75)

This mapping along with the transformation

H ẑ({ẑα}) = Hz({zα}) + (Γ2/4π) log |dẑ/dz|ẑα
, (5.76)

and equation (5.73) give the appropriate vortex Hamiltonian in the ẑ-plane. Finally,

it is simplest to obtain the vortex Hamiltonian for the case when G1 and G2 are

located at arbitrary locations on the barrier by considering one of the islands to

be centred about the north pole and the other to be located arbitrarily along the

same great circle and then mapping to the case of two collinear gaps and applying

the appropriate transformation to the Hamiltonian (5.72). This corresponds to the

configuration in the Dz̃ domain where the gap is located between −r < z̃ < r (r ∈ R
+)

with the island, whose edges are here denoted z̃(L1) and z̃(L2), contained within the

gap such that −r < z̃(L1) < z̃(L2) < r. The map taking the z̃-plane to the ẑ plane

considered above is simply the contraction

ẑ =
z̃

r
. (5.77)

The domain Dẑ is then mapped to the domain Dz such that the gaps are now collinear

using (5.74). Through a standard rotation on the surface of the sphere, the two islands

can be placed such that they lie along arbitrary sections of a great circle.
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Figure 5.13: Point vortex trajectories for the case when both barriers span π/12 of a
great circle and their centres are seperated by π/4.

Figures 5.13 shows the point vortex trajectories when each island spans π/12

of a great circle with the island centres separated by π/4. A hyperbolic point is

placed symmetrically between the two islands through which the separatrix passes,

separating the trajectories which orbit one island or the other, or both islands. Away

from the islands, the trajectories begin to resemble those of the thin barrier seen in

sections 5.2.1 and 5.2.2. In figure 5.14 trajectories are shown for the case when the

gap is located between |z̃| < 3/4 and the island is located between −1/5 < z̃(L1) <

z̃(L2) < 1/2. The effect of the island is to introduce elliptic points to either side of it,

that is, if the island was not present there would exist a single elliptic point located

at the South Pole. This indicates the possibility of steady vortex structures residing

to either side of the island. Away from the island vortex trajectories resemble those

of the single gap case.
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Figure 5.14: Point vortex trajectories for the case when the gap is located between
|z̃| < 3/4 and the island is located between −1/5 < z̃(L1) < z̃(L2) < 1/2.

5.3.3 Vortex patch motion

Computations of vortex patch motion were carried out using a time step of

dt = 0.01 and resolution parameter between boundary nodes set to 0.01. As noted

in section 5.3, the coefficients an of (5.65) are evaluated using discrete fast Fourier

transforms evaluating the integral in (5.63) at points spaced evenly in φ. Thus, along

with using the spherical contour dynamics algorithm to calculate the required veloc-

ities at the nodes defining the patch boundary, tangential velocities are calculated at

NI nodes spaced evenly along the island in the stereographically projected plane and

at NG discrete points in the z-plane given by

z(1,2)
m = ksn

[

±K +
imK ′

πNG

]

(m = 1, .., NG). (5.78)

For the following examples both NI and NG were set to 200. Note that no surgery

is implemented in the following examples. Also, in the following to examples the

circulation about the island is not set to zero, i.e. the velocity field owing to (5.69)
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Figure 5.15: View centered at (φ, θ) = (0, 0) of the motion of a vortex patch with
Γ = 1.5376 and ω = 5 with its centroid initially located at (φco, θco) = (π/4, π/5).
One barrier spans half a great circle and the island is placed symmetrically within
the barrier such that |ℜz| ≤ 0.7. The dashed line represents the exact point vortex
trajectory and the + marks the patch centroid location. The patch is shown at times
t = 0, 2, 4 and 6.

is not included. Figures 5.15 and 5.16 give examples of patch motion about a sym-

metrically placed and an asymmetrically placed island respectively. In figure 5.15 the

through gap flux forces the patch close to the island and it is ‘pinched’ against the

island edge. Up until the point where the patch is distorted by its interaction with

the topography, as expected, the patch centroid follows the point vortex very closely.

After being squeezed against the island edge, part of the patch passes through the

gap whilst part does not. The through gap volume flux induced by the vortex then

results in the vortex being ‘torn apart’. Such motion is typical in the planar case

when the patch is pinched against an edge of the island (Johnson and McDonald

2005). In figure 5.16 the patch remains relatively undistorted and thus the motion of

its centroid follows that of a point vortex very closely.
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Figure 5.16: View centered at (φ, θ) = (0, 3π/4) of the motion of a vortex patch with
Γ = 0.3867 and ω = 5 with its centroid initially located at (φco, θco) = (π/6, 3π/5).
One barrier spans half a great circle and the island is placed asymmetrically within
the barrier such that −0.1 ≤ ℜẑ ≤ 0.7. The dashed line and + have the same
meanings as in (a). The patch is position is shown in increments of 5 time units.

5.4 Vortex Equilibria in a gap

In this section the numerical method described in section 5.1 is used to compute

vortex equilibria on a sphere in the presence of boundaries, in particular the case of

a thin barrier. The Hamiltonian for a point vortex on a sphere in the presence of a

thin barrier can have, depending on the length of the barrier, an elliptic stationary

point at the centre of the gap (Crowdy 2006). This is in contrast to the planar case,

where the stationary point at the centre of the gap is always hyperbolic (Johnson

and McDonald 2004a). An elliptic stationary point is of significance since it suggests

the possibility of constructing stable vortex patch equilibria (McDonald 2008). Such

stable equilibria may be of interest geophysically since they persist for long times.

The thin barrier is positioned as in section 5.2. That is, a degenerate ellipse centred

at the origin of the stereographic z-plane with semiminor axis b = 0.0, so that the gap
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is centred about the north pole. For the north pole to be an elliptic stationary point of

the point vortex Hamiltonian it is required that the semimajor axis a ≤
√

2 (Crowdy

2006). An initial ‘guess’ of the vortex patch shape is an ellipse in the stereographic

plane laying symmetrically over the north pole. The patch boundary is discretized

into M nodes with co-ordinates (φi, θi) for i = 1, ..,M where φi is discretized evenly

between 0 and 2π. The corresponding initial θi is given by

θi = 2 tan−1

[

apbp
a2

p sin φi + b2p cos φi

]

, (5.79)

where ap,bp are set constants that initially determine the shape and area of the patch.

Note that ap and bp are the semimajor and semiminor axes of an ellipse in the stere-

ographic plane given by

zp = tan

(

θ

2

)

eiφ. (5.80)

Note that here |zp| = tan(θ/2) (not cot(θ/2) as in equation (5.6)) as it is desirable to

centre the patch at the origin in the stereographic plane. Also, note that ap must then

be less than 1/a where a is the semi major axis of the projected z-plane thin barrier.

For this initial vortex shape the velocities on the boundary are computed using the

method outlined in section 5.1, thus enabling the computation of the streamfunction

ψp(φi, θi) upon it. At (φ1, θ1) the streamfunction is set so that ψp(φ1, θ1) = 0. The

streamfunction is then evaluated at other nodes upon the boundary according to

ψp(φi+1, θi+1) ≈ ψp(φi, θi) + uθ
i+ 1

2

sin(θi+ 1
2
)∆φi − uφ

i+ 1
2

∆θi, (5.81)

where the subscript i+ 1
2

indicates the quantity has been averaged between its values

at the nodes i and i + 1. The iterative numerical method of Pierrehumbert (1980),

adapted for the surface of a sphere, is then used to find an equilibrium state. This
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involves fixing the position of nodes 1 and M/2 + 1 and holding φ constant at all

other nodes whilst iterating their θ location until the boundary becomes a stream-

line. Owing to the symmetry of the problem, here only the nodes 1 to M/2 + 1 are

considered, the location of remaining nodes, M/2 + 2 to M , are obtained through

reflection of the boundary about the gap, i.e. θM/2+2 = θM/2 and so forth. Figure

5.17 shows the initial set-up of the patch and nodes. Fixing φi and varying θT
i by

δθi, where the superscript T has been introduced to indicate T th iteration of θi, the

streamfunction varies as

ψp(φi, θ
T
i + δθi) ≈ ψp(φi, θ

T
i ) − uφi

δθi, (5.82)

and thus the new θi location θT+1
i is given by

θT+1
i = θT

i + k
ψp(φi, θ

T
i )

uφi

, (5.83)

where k is a relaxation parameter introduced to ensure numerical convergence (Pier-

rehumbert 1980). Following each iteration the area A and hence circulation of the

vortex patch is recalculated using (5.15). The Gauss constraint on the surface of the

sphere (i.e
∫ ∫

ωsdS = 0) is embedded in the equations of contour dynamics. Thus

when the area of the vortex patch changes, here the vorticity jump, ω̃, is kept con-

stant and the vorticity of the patch, ω, must be modified appropriately. Following

each iteration the patch vorticity and circulation is given by

ω =
ω̃

4π
(4π −A), (5.84)

and

Γ = ωA. (5.85)
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Once the streamfunction becomes constant on the boundary of the patch (to within

some numerical tolerance) a steady solution is realized. The patch area and circula-

tion computed at each iteration are also monitored for convergence. For the results

reported here vortex patches initially had ω = 1, a resolution of 0.01 between adjacent

nodes on the patch boundary was used and the number of nodes on the barrier was

set to N = 400. The relaxation parameter was set to k = 0.6. The fixed boundary

nodes were set as

(φ1, θ1) =

(

π

2
, 2 tan−1

[

apbp
a2

p sin π/2 + b2p cosπ/2

])

(5.86)

and

(φM/2+1, θM/2+1) =

(

3π

2
, 2 tan−1

[

apbp
a2

p sin 3π/2 + b2p cos 3π/2

])

. (5.87)

Convergence was generally realized within 50 iterations. Figures 5.18(a) and 5.18(b)

show the family of vortex equilibria for the case where the gap-width a = 1.0 in the

stereographic z-plane and on the sphere respectively. The patches were initially set

with ap = 0.2 in all cases and bp = 0.2, 0.4, 0.6, 1.0, 1.4 and 2.0 then iterated to the

steady states observed in the figures. Figures 5.19(a) and 5.19(b) show the family of

equilibria when a = 1.4 for the same initial patch configurations as figures 5.18(a)

and 5.18(b).

The robustness of the computed equilibria was examined by using them as initial

conditions in a time-dependent simulation using the algorithm detailed in section

5.1. Since there are inevitably small numerical errors inherent in the algorithm,

unstable equilibria would be expected to diverge from their steady position within

time, whereas stable equilibria would be expected to remain close to their equilibrium
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Figure 5.17: Schematic of initial patch setup between the thin barrier in the stereo-
graphic plane. The position of the fixed nodes, i = 1, and i = M/2 + 1 are indicated
in the diagram.

position. Although this test does not prove stability/instability of the computed

equilibria it gives an extremely good indication of their properties.

For smaller equilibria (bp ≤ 0.6) no significant deviation could be observed for

times up to t = 400. Small oscillations about the equilibrium position were observed

for larger equilibria for t > 200. Figure 5.20 shows the time evolution of a system with

a = 1.0 and θ1,M/2+1 = 0.156π. For this system, at t = 100 the deviation of the patch

can not be seen by the naked eye. Equilibria were also computed for the case when the

Hamiltonian has a hyperbolic point, a ≥
√

2. In contrast, when the robustness of these

equilibria were tested and it was seen that generally the configuration would remain

relatively steady up to t ≈ 25, depending on the size of the patch, but afterwards

small deviations from the steady state would rapidly grow and the patch moves away

from its equilibrium position. Figure 5.21 shows the time evolution of a system with
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Figure 5.18: Vortex equilibria shapes in (a) the stereographic z-plane and (b) on the
surface of the sphere, for a = 1.0 with initial bp = 0.2, 0.4, 0.6, 1.0, 1.4, 2.0 and initial
ap=0.2 in all cases.

a = 2.41429 and θ1,M/2+1 = 0.430π. The patch considered in this computation is quite

large with corresponding large velocities and once a small deviation away from the

equilibrium occurs the system quickly diverges from the equilibrium. Thus the time-

dependent computations lead to the expected conclusion that equilibria are stable

for point vortex equilibria corresponding to the elliptic point of the Hamiltonian

and unstable for point vortex equilibria corresponding to the hyperbolic point of the

Hamiltonian.
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Figure 5.19: Vortex equilibria shapes in (a) the stereographic z-plane and (b) on the
surface of the sphere, for a = 1.4 with initial bp = 0.2, 0.4, 0.6, 1.0, 1.4, 2.0 and initial
ap=0.2 in all cases. Note that increasing a results in a smaller gap c.f. (5.79) and
(5.80).
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Figure 5.20: View centered at the North Pole of time evolution of the system with
a = 1.0 and θ1,M/2+1 = 0.156π. The solid line represents the initial vortex position
and the dashed line the vortex position at t = 100. In this case, the patch position at
t = 100 virtually overlays that of the patch at t = 0 and thus the dashed line cannot
be seen with the naked eye.
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Figure 5.21: Time evolution of the system with a = 2.41429 and θ1,M/2+1 = 0.430π.
The thin solid line represents the initial vortex position, the dotted line its position
at t = 10, the dashed line its position at t = 20 and the dot-dash line its position at
t = 23. The slightly thicker solid line represents the barrier.

5.5 Conclusion

Vortex patch motion on the surface of the unit sphere in the presence of impene-

trable boundaries has been numerically computed. The procedure first involves using

the method of contour dynamics (Dritschel 1989), computing velocities on the sphere

as if the boundaries were not present. An irrotational flow field which when added to

the vortex induced velocities satisfies the no normal flow condition on the boundary

is then computed by projecting the problem into the stereographic plane, mapping

the problem to the exterior of the unit disk or to an annulus in the doubly connected

case and solving the corresponding harmonic problem to find the complex potential

of the irrotational flow. The irrotational flow field is thus known in the stereographic

plane and then mapped back to the surface of the sphere. Addition of this flow field
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to that given by the contour dynamics algorithm in the absence of boundaries gives

the appropriate flow field for the boundaries being present and hence the resulting

vortex patch motion on the surface of the sphere can be computed.

Singly-connected domains considered here included an ellipse in the projected z-

plane, a longitudinal wedge and a half-longitudinal wedge. Patch trajectories about a

thin barrier with a gap were computed with and without the presence of a background

flow. Background flows caused by a dipole fixed in the centre of the barrier and for

point vortices fixed at the equator were considered.

In cases in which the patch remained close to circular the path of the patch centroid

followed that of the corresponding point vortex trajectory very closely even with the

presence of a background flow. When the path of the centroid travelled within close

proximity to the barrier’s edge, deformation of the patch occurred often resulting in

filamentation. Despite this, centroid paths still showed good agreement with exact

point vortex solutions. Exceptions to this can be found when a background flow

parallel to a “long barrier” in the vicinity of the gap is present, where a sufficiently

strong background flow could result in a patch being “squeezed” against the barriers

edge resulting in the vortex splitting. Such splitting occasionally resulted in a quasi-

steady vortex being “trapped” against the barrier’s edge.

Patch centroid motion in domains including the longitudinal and half-longitudinal

wedge again demonstrated very good agreement with the corresponding point vortex

motion. Minor filamentation could be observed in such domains in cases in which

the patch is deformed when passing around an edge of the wedge or when the patch

travels within close proximity of the boundary for some time, resulting from the shear
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flow due to the “image” vorticity and the curvature of the sphere.

The doubly connected case of a thin barrier with two gaps was also considered.

Good agreement is again seen between the motion of point vortices and patches which

undergo little distortion. Behaviour typical to that seen in the planar case is seen

resulting from the through gap fluxes generated by the vortex. New features, such

as elliptic points of the Hamiltonian residing to either side of the island, are also

observed.

This method can also be applied to other doubly connected domains, indeed, the

method can in principle be applied to any domain for which a conformal mapping to

an annulus exists. It is also in principle possible to apply the method to domains of

higher connectivity by mapping to the unit disk with smaller circular disks excised

and solving the corresponding Dirichlet problem to obtain the appropriate irrotational

flow.

Vortex equilibria lying between the gap in the case of a “short barrier” were then

computed. It was shown that a family of equilibria exist for each gap width. Such

equilibria were shown to be stable by examining their robustness in a time-dependent

code. Such stable equilibria do not exist in the corresponding planar case as the point

vortex equilibrium midway between the gap corresponds to a hyperbolic point of the

Hamiltonian for all gap widths.



Chapter 6

Vortex motion in periodic domains

with impenetrable boundaries

Methods described in chapter 5 can also be adapted to compute the motion of finite

area vortices in singly periodic domains with boundaries i.e. vortex motion on the

surface of an infinite circular cylinder. The motion of vortices in periodic domains

is of interest from both an atmospheric and oceanic perspective, for example, the

Southern Ocean is an example of a periodic channel. Thus a periodic domain with

boundaries, such as that later considered in section 6.3, could be thought of as a

‘crude’ model of the Southern Ocean. The steps presented here for computing the

motion of vortices in periodic domains with boundaries are similar to those presented

in chapter 5.1, the main difference being that the unbounded cylindrical contour

dynamics algorithm described in appendix A is now used to compute the velocity

field on the boundary. Similar to the previous chapter, an irrotational velocity field

is sought such that, when added to the velocity field owing to the ‘unbounded’ vortex

178
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generated flow, satisfies the no-normal flow condition on the boundary. The required

irrotational flow is obtained through mapping the harmonic problem from the cylinder

to a domain exterior to the unit circle and solving the resulting harmonic problem

in this simpler domain. In this chapter, two examples will be considered. First, the

case of a horizontal thin island in a periodic domain and second, a vertical semi-

infinite barrier. In both cases numerically computed finite area patch motion will be

compared to exact point vortex trajectories.

6.1 Problem formulation

The system consists of a shallow layer of constant depth, incompressible and

inviscid fluid in a simply connected domain D on the surface of the unit cylinder

(that is a 2π-periodic domain). Let Ψ denote the total streamfunction due to a finite

number of vortices (with piecewise constant vorticity) in the domain D such that the

no-normal flow boundary condition

Ψ = 0 on ∂D, (6.1)

is satisfied. Further, let ψ1 be the streamfunction owing to the vortices in the absence

of boundaries ∂D, which gives

dφ̂

dt
= −∂ψ1

∂ẑ
,

dẑ

dt
=
∂ψ1

∂φ̂
, (6.2)

where φ̂ ∈ [0, 2π] is the azimuthal angle and ẑ is the vertical coordinate. Velocities

on ∂D owing to ψ1 are computed using an unbounded cylindrical contour dynamics

algorithm (Dritschel 1989, and Appendix A.2). Now, introduce an irrotational flow,
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with streamfunction ψ0, defined throughout D such that

Ψ = ψ1 + ψ0. (6.3)

The no-normal-flow condition on the boundary ∂D requires that

d(ψ1 + ψ0)|∂D = 0. (6.4)

Now, for ease of notation, let the azimuthal and vertical velocity fields owing to ψ1

and ψ0 be written as (ũ0, ṽ0) and (u0, v0) respectively. Also, denote the periodic

domain Dz in which the complex coordinate z = φ̂ + iẑ. Requiring that the total

normal component of the velocity field owing to ψ1 + ψ0 vanishes on ∂D gives the

relation

ℑ[(u0 − iv0)dz]∂Dz
= −ℑ[(ũ0 − iṽ0)dz]∂Dz

. (6.5)

The steps in determining (u0, v0) now mirror those detailed in chapter 5.1. On the

unit circle in the ζ-plane (ζ = exp(iσ), 0 ≤ σ < 2π), noting that dw = (uφ − ivz)dz,

(6.5) can be written as

ℑ
[

dw

dσ

]

∂Dζ

= −ℑ
[

iζ

F ′(z)
(u0 − iv0)

]

∂Dζ

= g(σ), (6.6)

where g(σ) is a known function on ∂Dζ , w is the complex potential associated with

the streamfunction ψ0 and F (z) is the mapping from Dz to the domain exterior to the

unit circle Dζ. Similar to chapter 5.1, the complex potential w can again be written

as (5.12), that is

w = iC log ζ +

∞
∑

k=1

akζ
−k (6.7)

where C ∈ R and determines the circulation around the boundary ∂Dz and the ak

are complex constants. Expressing g(σ) as a Fourier series, ak can be determined
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efficiently by Fast Fourier Transforms. The velocity field owing to ψ0 in D is thus

given by

u0 − iv0 =

[

iC

ζ
+

∞
∑

k=1

−kakζ
−k−1

]

F ′(z). (6.8)

To advect the vortex in the periodic domain, (6.8) is added to the velocity field

owing to ψ1 (calculated using an unbounded cylindrical contour dynamics algorithm

at discrete points on the contour defining the vortex patch) and time integration is

carried out using a fourth order Runge-Kutta method. Nodes on the patch boundary

are redistributed at the beginning of each time-step and the procedure presented

above repeated. In practice, the sum in (6.8) is truncated at some k = N .

6.2 Periodic thin islands

Consider a horizontal thin island of length r centred at the middle of a periodic

domain of period L. The series of mappings given by

ζ1(ζ) =
rI

2

(

1

ζ
+ ζ

)

, (6.9)

ζ2(ζ1) =
iζ1 − 1

iζ1 + 1
, (6.10)

z(ζ2) =
L

2πi
log ζ2, (6.11)

where rI is related implicitly to r through

r = L

[

1 − 1

π
tan−1

(

2rI

r2
I − 1

)]

, (6.12)
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maps the exterior of the unit ζ-circle to the periodic z-domain exterior to a horizontal

thin island of length r centred in the periodic domain. It is useful to note that when

rI = 1, r = L/2 i.e. the thin barrier spans exactly half of the periodic domain. Also,

as rI → ∞, r → L, that is, the case of a period array of vortices above an infinite

solid wall is recovered. The first of these maps, (6.9), takes the exterior of the unit

ζ2-circle to the exterior of a thin island between −rI ≤ ζ1 ≤ rI . The second map

takes this thin island to an arc on the unit circle between φ < arg ζ2 < 2π − φ where

φ = tan−1

(

2rI

r2
I − 1

)

, (6.13)

and finally, (6.11) takes this arc to a horizontal thin island between (L− r)/2 < z <

(L + r)/2 in the periodic strip. The branch cut in (6.11) is taken to be along the

positive real axis in Dζ2. The composition of these three maps can be written as

z(ζ) =
L

2πi
log

(

irI(1 + ζ2) − 2ζ

irI(1 + ζ2) + 2ζ

)

. (6.14)

Thus, the derivative of the map required for computing vortex patch trajectories is

given by

zζ =
1

F ′(z)
=

L

2πi

[

2irIζ − 2

irI(1 + ζ2) − 2ζ
− 2irIζ + 2

irI(1 + ζ2) + 2ζ

]

(6.15)

Point vortex trajectories in the periodic z-domain are derived by considering the

vortex Hamiltonian in the unit circle and performing the appropriate transformation.

For the mapping into the periodic domain the standard transformation rule for the

Hamiltonian can be used as all the information about the images of vortices in the

periodic domain are encoded in the transform. This can be verified by mapping the

problem of a single vortex within the unit disk to a row of periodic vortices located

near a horizontal barrier. It can be shown that the velocity field at a vortex obtained
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through the mapping is identical to that of the double vortex street considered in

Acheson (1990). The vortex Hamiltonian for a single vortex at position α in the unit

circle ρ-domain is given by

H(ρ)(α, ᾱ) =
Γ2

4π
log(1 − αᾱ). (6.16)

The map from the interior of the unit circle to the periodic z-domain exterior to

a horizontal thin island is also given by (6.14) (with ρ now replacing ζ) and thus

the derivative required in the transformation (5.76) is given by (6.15) (with ρ again

replacing ζ). Additionally, the map (6.11) has two logarithmic singularities within

the unit ζ-circle located at

ρ = ± i

rI

(

√

1 + r2
I − 1

)

= ±is. (6.17)

Inserting (6.17) into (6.11) shows that these two points map to ℑz = ±∞ in Dz. For

the case when the circulation about the island in the domain Dz is zero it is therefore

necessary to impose an additional background flow by placing two point vortices, each

of circulation −Γ/2, at the points ρ = ±is. The complex potential associated a point

vortex of unit circulation located at η0 in the upper-half η = x+ iy plane is given by

W (η) = − i

2π
log

[

η − η0

η − η̄0

]

. (6.18)

This, along with the map from the interior of the unit circle to the upper half η-plane

given by

η = i
1 − ρ

1 + ρ
, (6.19)

results in a contribution to the Hamiltonian for the background flow due to vortices

of strength −Γ/2 and Γ/2 at ρ = ±is given by

Ψ(α, ᾱ) = ΓℑW =
Γ2

4π
log

∣

∣

∣

∣

α2 + s2

1 + α2s2

∣

∣

∣

∣

. (6.20)
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Using (6.16), (6.20) and (5.76) the z-plane Hamiltonian is therefore given by

H(z)(zα, z̄α) = H(ρ)(α, ᾱ) + Ψ(α, ᾱ) +
Γ2

4π
log |zρ(α)|, (6.21)

where zρ is given by replacing ζ with ρ in (6.15).

Point vortex trajectories for cases when rI = 0.5 and rI = 2.0 are shown in figures

6.1 and 6.2 respectively. L = 2π in both cases. Vortices initially located close to

the plate orbit the plate in a closed trajectory. Vortices further away from the plate

propagate around the cylinder (cross the periodic domain) whilst oscillating up and

down. As the length of the plate increases the oscillation of the vortices decreases.

For each of these possible behaviours, a corresponding vortex patch trajectory

is shown in figure 6.3 (rI = 0.5, r = 1.855) and 6.4 (rI = 2.0, r = 4.429). In

both contour dynamics computations, C = 0 and the sum in (6.8) is truncated at

k = N = 400. The resolution parameter between patch boundary nodes is set to

0.005 and dt = 0.01. In both simulations the patch remains close to circular and thus

the patch centroid follows the point vortex trajectory extremely well. Only cases in

which L = 2π have been shown here as this is the natural case for an algorithm

formed on the surface of the unit cylinder. Cases with different periodicities could

equally be considered by ‘stretching’ the domain into one of a different period as was

done for the periodic configurations of chapter 3.

6.3 Periodic semi-infinite vertical barriers

Another example of a periodic domain is that of a ‘picket’ fence of semi-infinite

pickets. This may be thought of as a crude model of the Southern Ocean in which the
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Figure 6.1: Point vortex trajectories in a 2π periodic domain containing a horizontal
thin island. Here, rI = 0.5 and r = 1.855.

Figure 6.2: Point vortex trajectories in a 2π periodic domain containing a horizontal
thin island. Here, rI = 2.0 and r = 4.429.
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Figure 6.3: Circular vortex patch trajectory in a 2π periodic domain with a horizontal
island (see figure 6.1). Here, rI = 0.5 and r = 1.855, the patch has Γ = 1.257 and is
initially located at z = π + 0.5i (marked by the asterisk). The solid line represents
the island, the dashed line the exact point vortex trajectory, and the + marks the
patch centroid.

Figure 6.4: Circular vortex patch trajectory in a 2π periodic domain with a horizontal
island (see figure 6.2). Here, rI = 2.0 and r = 4.429, the patch has Γ = 1.963 and is
initially located at z = π + i (marked by the asterisk). The solid line represents the
island, the dashed line the exact point vortex trajectory, and the + marks the patch
centroid.
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bottom tip of the South American continent penetrates into the (periodic) Southern

Ocean. To construct the appropriate mappings consider in the ζ-domain exterior to

the unit circle the series of mappings given by

ζ1(ζ) = i
ζ − 1

ζ + 1
, (6.22)

ζ2(ζ1) = ζ2
1 , (6.23)

ζ3(ζ2) = −(ζ2 + 1), (6.24)

z(ζ3) =
L

2πi
log ζ3, (6.25)

where L is the period of Dz. The first of these maps takes the exterior of the unit

ζ-circle to the upper half of the ζ1-plane. The second map doubles the angle of the

boundary along ℜζ2 < 0, thus mapping the ζ1-domain to the domain exterior to the

semi-infinite barrier along ℜζ2 > 0. (6.24) then takes Dζ2 to the domain exterior to

the barrier extending from −∞ < ℜζ3 < −1. Finally, (6.25) takes Dζ3 to the periodic

z-strip exterior to the semi-infinite barrier with ℜz = π and complex coordinate

extending from −∞ < ℑz < 0. The composition of the maps (6.22)-(6.23) can be

written as

z(ζ) = −i log

[ −4ζ

(1 + ζ)2

]

. (6.26)

As in section 6.2, point vortex trajectories and the motion of a vortex patch are now

computed. In computing point vortex trajectories the starting point is again the

vortex Hamiltonian of a single point vortex within the unit circle ρ-domain. The
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sequence of mappings to the z-plane is similar to the sequence given above, the

difference being that the map from the interior of the unit circle to the upper half

plane, given by

ζ1 = i
1 − ρ

1 + ρ
, (6.27)

replaces (6.22). Thus, (6.16) along with the sequence of maps given by (6.27), (6.23),

(6.24) and (6.25) along with the transformation rule for the Hamiltonian (5.76) give

H(z)(zα, z̄α) = H(ρ)(α, ᾱ) +
Γ2

4π
log

[

a

2π

1 − α

α(1 + α)

]

. (6.28)

Point vortex trajectories are shown in figure 6.5 for the case when L = 2π. In a ‘shell’

around the barrier, vortex trajectories are similar to those seen in planar semi-infinite

barrier case, that is, vortices move around a single barrier. Further away from the

barrier, the influence of the periodicity plays a more predominant role in the motion

and trajectories move around the surface of the unit cylinder (i.e. through the 2π

periodic domain) whilst oscillating up and down, the maximum of the oscillation

being directly above the plate.

An example of a vortex patch trajectory is shown in figure 6.6. The resolution

parameter between patch boundary nodes is set to 0.01, dt = 0.01 and the sum in

(6.8) is truncated at k = N = 200. Good agreement is seen between the point vortex

and patch centroid trajectory except for a slight difference when the vortex is above

the plate. This is however expected due to the finite size of the vortex patch.



Chapter 6: Vortex motion in periodic domains with impenetrable boundaries 189

Figure 6.5: Point vortex trajectories in a 2π periodic domain containing a vertical
semi-infinite barrier. Here, L = 2π.

Figure 6.6: Circular vortex patch trajectory in a 2π periodic domain with a vertical
semi infinite barrier. The patch has Γ = 0.796 and is initially located at z = 1/5π +
1/4i (marked by the asterisk). The solid line represents the island, the dashed line
the exact point vortex trajectory, and the + marks the patch centroid.



Chapter 6: Vortex motion in periodic domains with impenetrable boundaries 190

6.4 Summary

In this chapter, a method for computing the motion of vortices in periodic strips

(or on the surface of the unit cylinder) with boundaries has been presented. The

methods for computing these motions are similar to those presented in chapter 5.

Here, two singly connected domains were considered, an array horizontal thin is-

lands and an array of semi-infinite vertical barriers. Vortex trajectories close to the

boundaries were, in both cases, similar to the planar cases involving a single vortex

and an isolated boundary. Further away from the boundaries the periodicity of the

configuration plays a predominant role in the dynamics.

Good agreement is seen between contour dynamics and point vortex trajectories

in cases when the patch remains close to circular. Again, the principle of the method

presented here can be extended to doubly connected periodic domains, using the

methods of chapter 5.3, and potentially domains of a higher connectivity. Although,

in such cases, the required mappings may not be as straightforward as for non-periodic

cases in domains of a higher connectivity.



Chapter 7

Conclusions and future work

Analytical and numerical methods have been applied to a number of problems

involving two dimensional, inviscid and incompressible flows with regions of constant

vorticity. Broadly speaking, the work has considered three types of problem. In

chapters 2 and 3 the shapes of equilibria for point vortices near a vorticity interface

were found analytically in the linear limit of small amplitude interfacial waves and

numerically for fully non-linear systems respectively. Chapter 4 considered the time-

dependent problem of a vortex-wave interaction on the surface of the sphere and

chapters 5 and 6 considered the motion of vortices in bounded domains on the surface

of the sphere and in a 2π-singly-periodic strip respectively.

For the systems considered in chapter 2 the vorticity was generated by a shear flow.

The first system considered was the planar problem of two point vortices of opposite

signed circulations either side of the vorticity interface, that is, the anti-symmetric

analogue of that considered in McDonald (2004). In contrast to McDonald (2004) it

was shown in the linear limit it is not possible to construct such an equilibrium. A

191
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non-linear analogue of this equilibrium could also not be found.

A series of periodic configurations were then considered. The configurations in-

cluded a periodic array of vortices located near an interface in the irrotational region

of the flow, a periodic array of vortices located near an interface in the rotational re-

gion of the flow and an array of anti-symmetrically placed vortices of opposite signed

circulation either side of the interface. A range of equilibria shapes were found for

these configurations. When vortices were placed in the irrotational region of the flow

there tended to be a peak in the interface placed directly above the point vortex.

In contrast, when the vortices were placed in the rotational region of the flow the

maximum height of the interface was in between the vortices and the minimum lo-

cated above the vortices. For the anti-symmetric periodically placed vortex case,

equilibrium shapes were found to be dominated by the primary mode, that is, they

resembled a full sine wave per period. However, surprisingly, the interface tended to

‘sink’ towards vortices with a positive circulation and be ‘pushed away’ from vortices

with a negative circulation. This behaviour is contrast to what is generally observed

in many non-periodic systems.

In chapter 3 a combination of contour dynamics and Newtonian iteration was

used to compute the corresponding non-linear equilibria to those found in chapter 2.

Computational equilibria shapes generally agreed very well with those found in the

linear limit. The computed equilibria were also shown to be robust by using them

as initial conditions in a time dependent contour dynamics code. Small amplitude

equilibria would remain largely unchanged over very long periods of time while larger

amplitude equilibria in which much higher velocity fields were present would remain
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relatively stationary for reasonable periods of time before slowly deforming.

In chapter 4 the time evolution of a system consisting of single point vortex on

the surface of the unit sphere interacting with an initially flat vorticity interface was

examined. A system of first order ODEs was derived in the linear limit of small

amplitude waves at the interface. This system of ODEs was integrated numerically

to examine the behaviour of the system. Further approximations yield analytical

solutions governing the initial movements of the system. Such approximations also

give insight into the stability of vortices located at the two poles. The main results

predicted by linear theory indicate that a point vortex in a sea of same signed vorticity

will initially move away from the vorticity interface whilst a vortex in a sea of opposite

signed vorticity will move towards it. This result leads to the conclusion that a vortex

placed at a pole in a sea of same signed vorticity is at a stable equilibrium and vice

versa. This result is confirmed by an analytical, non-linear, stability analysis.

Evolution of the fully non-linear system is again explored using contour dynamics.

In highly linear cases or over short time periods contour dynamics is in very good

agreement with linear theory. Computations also show that ‘intermediate’ strength

vortices exhibit a drift away from the interface when surrounded by a sea of same

signed vorticity and towards the interface when surrounded by a sea of opposite signed

vorticity. Intermediate is used here in the sense that the system cannot be described

by linear theory over long periods of time but where the vortex is sufficiently strong

to induce rapid contour wrapping. As discussed in Polvani and Dritschel (1993) this

model is, to first order, relevant to studying the dynamics in Saturn’s atmosphere

and may provide a dynamical explanation behind the location of Saturn’s polar storm
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discovered in recent observations (Dyudina et al. 2009).

The final two chapters investigate the motion of vortices in domains with impen-

etrable boundaries. Vortex motion on the surface of the unit sphere is considered in

chapter 5 and motion on the unit cylinder or, equivalently, 2π-singly-periodic domain

in chapter 6. The methodology employed in each chapter is similar. Contour dynam-

ics algorithms formulated in their respective topographies are used to calculate the

flow in the required domain as if boundaries are not present. Utilizing the invari-

ance of Laplace’s equation under conformal mapping, the boundary value problem is

mapped to the exterior of the unit circle and an irrotational flow field found, such

that, when added to that owing to the vortices in the absence of boundaries satisfies

the boundary conditions in the original domain. The main difference in computing

motion in the respective domains (apart from the different contour dynamics algo-

rithm) is that the spherical problem is projected into the stereographic plane and

requires careful consideration of the quantities conserved under projection while the

periodic problem makes use of a log map to map the plane into the periodic domain.

On the sphere, vortex motion in a number of singly connected domains is pre-

sented. Further doubly connected examples of a barrier with two gaps are also pre-

sented. In cases where the vortex remained close to circular, the centroid of the patch

followed the corresponding point vortex trajectories very closely. This is as expected

as the velocity field exterior to a circular vortex patch is identical to that of a point

vortex of same circulation. In cases where background flows were included and in

the doubly connected case, some examples of vortex splitting were observed. In the

periodic problems considered on the surface of the unit cylinder, patch centroid and



Chapter 7: Conclusions and future work 195

point vortex trajectories are again in very good agreement. An alternative procedure

for computing the motion of vortices in domains of potentially arbitrary connectivity

on a spherical shell is presented in Surana and Crowdy (2008).

An obvious problem to now consider is that of adapting the algorithm presented

in chapters 5 and 6 to work in domains of higher connectivity. To do this, a method

such as that discussed in Bird and Steele (1992) could be employed. Preliminary work

to this end has already begun. It would also be desirable to have a ‘contour surgery’

algorithm working on the sphere and cylinder, thus allowing long time integration of

systems in which vortex splitting phenomenon occur. Such an algorithm has already

been completed but requires some ‘fine tuning’ to have it working correctly in all

cases.

Other problems of interest include the vortex flushing problem and the motion

of vortices in the presence of moving boundaries. An example of a vortex flushing

problem is that, if a vortex in the open ocean passes by close to a bay, without actually

entering the bay, what is the rate of mixing between the fluid in the bay with that

of the open ocean? The central idea and challenge here is to compute the motion of

irrotational (i.e. passive) fluid and to quantify the mixing between different regions.

Literature on the aforementioned topics is currently sparse but both problems are

of interest to oceanographers. Additionally, for certain problems such as the vortex

flushing problem, an interesting exercise would be to compare results given by vortex

dynamics to those obtained from a general circulation model such as ICOM. More

‘direct’ comparisons between fundamental and general circulation models could help

clarify the interplay between various parameters in a general circulation models.



Appendix A

Implementation of spherical and

cylindrical contour dynamics

algorithms

Details on the implementation of a 2D contour dynamics algorithm are given in

Dritschel (1989). Below, details on implementing contour dynamics algorithms on the

surface of the unit sphere and on the surface of the unit cylinder with no boundaries

present are outlined. The following is based on Dritschel (1989), while the actual

construction of the associated numerical routines was done by the author.

A.1 Spherical contour dynamics

In general, to follow the motion of a distribution of vorticity is it necessary to

invert the Green’s function in the domain in question and use the resulting velocity
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field to advect the the fluid. The Green’s function for the motion of an inviscid,

incompressible fluid on the surface of the unit sphere is given by

G(θ, φ; θ′, φ′) =
1

4π
log(1 − cos Θ), (A.1)

where θ is the co-latitude, φ the longitude and cos Θ = (cos θ cos θ′+sin θ sin θ′ cos(φ−

φ′) is the inner product of the Cartesian coordinate vectors x = (sin θ cosφ, sin θ sinφ, cos θ)

and x′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′). On the surface of the sphere, the Gauss con-

straint requires that the vorticity ω satisfies

∫ 2π

0

∫ π

0

ωdθdφ = 0. (A.2)

The constraint (A.2) is built into (A.1) and the streamfunction is therefore given by

ψ(θ, φ) =
1

4π

∫ ∫

ω(θ′, φ′) log(1 − cos Θ)dΩ′, (A.3)

where dΩ′ = sin θ′dθ′dφ′ is the incremental solid angle area.

The equations of contour dynamics will now be formulated for a single piecewise

constant patch of vorticity whose boundary is denoted C. Identical equations can

then be applied to any additional distributions of vorticity within the domain. Whilst

traversing the contour C in the anti-clockwise direction, label the change in vorticity

between the left hand and right hand sides of the contour by ω̃.

The azimuthal and longitudinal velocities in spherical polar coordinate can be

written as

dθ

dt
= uθ = − 1

sin θ

∂ψ

∂φ
, (A.4a)

sin θ
dφ

dθ
= uφ =

∂ψ

∂θ
. (A.4b)
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Substitution of (A.3) in (A.4a) and using Green’s theorem gives

uθ = − ω̃

4π

∫

C

log(1 − cos Θ) sin θ′dθ′. (A.5)

Now, instead of deriving a similar equation for uφ, consider the following. In terms

of Cartesian coordinates, |x| = 1 and |x′| = 1 giving 1 − cos Θ = 1
2
|x − x′|2. Then,

noting that − sin θdθ = dz, (A.5) can be written as

dz

dt
= − ω̃

2π
=

∫

C

log |x − x′|dz′. (A.6)

Thus, by symmetry, the three Cartesian velocities must be given by

dx

dt
= − ω̃

2π
=

∫

C

log |x − x′|dx′. (A.7)

The contour C is represented as a number of discrete nodes where interpolation be-

tween nodes takes the form of a cubic spline. The shape of the contour between

adjacent nodes, say i and i+ 1, can be written as

x(p) = xi + pti + η(p)ni + ζ(p)si, (A.8a)

ti = xi+1 − xi, (A.8b)

ni = xi × xi+1, (A.8c)

si = (xi + xi+1)/2, (A.8d)

η(p) = αip + βip
2 + γip

3, (A.8e)
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ζ(p) =
1

2
e2i p(1 − p), (A.8f)

where 0 ≤ p ≤ 1 is the fractional distance between the nodes and ei = |ti| =

(dx2
i + dy2

i + dz2
i )

1
2 . The coefficients αi, βi and γi are calculated according to

αi = −1

3
eiki −

1

6
eiki+1, (A.9a)

βi = −1

2
eiki, (A.9b)

γi =
1

6
ei(ki+1 − ki), (A.9c)

where ki is the curvature at the ith node and is given explicitly by

ki =
2xi · (ti × ti−1)

|tie2i−1 + ti−1e2i |
. (A.10)

Additionally, using (A.10) the local density of nodes then takes the form

ρi = (µ)−1(1 + ki)
a
2 , (A.11)

where µ is a small non-dimensional number and a is the resolution parameter between

nodes. The resolution parameter a controls how sharply the local node density ρi

increases with curvature ki.

Substituting (A.8a) into (A.7) the velocity field u = dx/dt at a point x can be

represented as the the sum of contributions to the velocity field from contour segments

(∆ui) adjoining all adjacent nodes, that is

u =
1

2π

∑

i

ω̃∆ui, (A.12)
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where, to first order (supressing the subscript i)

∆u = T t +Nn + Ss,

T = 1 − dr − (1 − d)r′ − ĉ2h0 + c(αh1 + βh2 + γh3) + b(h1 − h2),

N = αq1 + βq2 + γq3, S =
1

2
e2(q1 − q2), a = |x − xi|2/e2,

b =
1

2
s · (x − xi), c =

n · (x − xi)

e2
, d =

t · (x − xi)

e2
,

ĉ =
|t× (x − xi)|

e2
, e = |t|, h0 =

1

ĉ

[

tan−1

(

1 − d

ĉ

)

+ tan−1

(

d

ĉ

)]

,

h1 = r′ − r + dh0, hn =
1

n− 1
+ 2dhn−1 − ahn−2 (n > 1),

qn = hn+1 − dhn, r = log |x − xi|, r′ = log |x − xi+1|.

(A.13)

In principle, analytical equations for higher order terms can also be derived but this

turns out to be unnecessary as contributions from higher order terms are of a similar

magnitude to the errors arising from interpolation (Dritschel 1989).

Finally, if d > a (corresponding to when the evaluation point, projected onto the

plane perpendicular to si, lies within the circle in the plane whose diameter connects
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xi with xi+1) the following modifications to (A.13) are required

a = |x − xi|2/e2 − η(d)[2c− η(d)],

c =
n · (x − xi)

e2
− η(d),

T = 1 − dr − (1 − d)r′ − ĉ2h0 + c(αh1 + βh2 + γh3) + b(h1 − h2) − ch0η(d),

(A.14)

where

η(d) = αid+ βid
2 + γid

3 (0 < d < 1). (A.15)

These adjustments are required as the assumptions made in evaluating (A.13) no

longer hold for evaluation points sufficiently close to the node over which integration

is taking place (Dritschel 1989). Details on the redistribution of nodes are presented

in Dritschel (1989) and this redistribution closely mirrors that of the planar case (with

the 2D Cartesian vectors replaced by 3D vectors). Additionally, following each time

step nodes are restricted to the surface of the sphere through a radial adjustment and

insisting |xi| = 1.

To verify the routine presented above, velocity fields given by the contour dynamics

code were tested qualitatively against exact solutions for spherical cap distributions

and velocity fields exterior to a vorticity distribution were also tested against those

owing to point vortices at arbitrary locations on the sphere. In all cases excellent

agreement was seen.
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A.2 Cylindrical or singly periodic contour dynam-

ics

The adjustments required to the spherical algorithm presented in A.1 in order to

compute the motion of vortices on the surface of the unit cylinder are now discussed.

Let z be the vertical coordinate on the cylinder and φ be the azimuthal angle such

that x = cosφ and y = sinφ. Laplace’s equation takes the form

∇2ψ =
∂2ψ

∂φ2
+
∂2ψ

∂z2
= ω(φ, z), (A.16)

which has the same form as for a planar flow, expect the φ coordinate is now periodic.

The Green’s function takes the form (Lamb 1932)

G(φ, z;φ′, z′) =
1

4π
log{4 sin2[(φ− φ′)/2] + 4 sinh2[(z − z′)/2]}, (A.17)

so that the azimuthal and vertical velocities can be written as

dφ

dt
= −ω̃

∫

C

G(φ, z;φ′, z′)dφ′, (A.18a)

dz

dt
= −ω̃

∫

C

G(φ, z;φ′, z′)dz′, (A.18b)

where ω̃ is the vorticity of the region of fluid whose boundary is the contour C.

The equations of contour dynamics will again be formulated for a single region of

vorticity on the surface of the cylinder. Additional regions of vorticity are easily

taken into account through summing the velocity field contributions owing to each

vorticity contour. Also, note that, using (A.17) the streamfunction for a point vortex



Appendix A: Implementation of spherical and cylindrical contour dynamics
algorithms 203

of circulation Γ on the surface of the unit cylinder can be written as

ψpv =

∫ ∫

Γδ(φ− φpv, z − zpv)dzdφ

=
Γ

4π
log{4 sin2[(φ− φpv)/2] + 4 sinh2[(z − zpv)/2]}.

(A.19)

This result is used in chapters 2 and 3.

To avoid the problem of φ jumping discontinuously the contour dynamics equa-

tions are formulated in terms of the Cartesian velocities along the x and y coordinates.

These velocities are related to the azimuthal velocity Ω = dφ/dt through

dx

dt
=
d cosφ

dt
= − sin φ

dφ

dt
= −yΩ, (A.20a)

dy

dt
= xΩ. (A.20b)

The differential angle needed for the evaluation of Ω is given by dφ′ = x′dy − y′dx′

and in terms of Cartesian coordinates the Green’s function (A.17) can be written as

G(x;x′) = − 1

4π
log[|x − x′|2 +H(z − z′)], (A.21)

where H(ζ) = exp(ζ) + exp(−ζ) − 2 − ζ2. When |x − x′|2 is small, H(z − z′) is far

smaller as H(ζ) = 1
12
ζ4 +O(ζ6) for small ζ . The Green’s function (A.21) can thus be

split into parts

Ga = − 1

4π
log |x − x′|2, (A.22a)

Gb = − 1

4π
log

[

1 +
H(z − z′)

|x − x′|2
]

, (A.22b)
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to ensure the Green’s function is well behaved for small |x− x′|2. Integrals involving

Ga can then be integrated explicitly to obtain equations similar to those for the

sphere (A.13). Denote the velocity owing to this singular part of the Green’s function

ua. Integrals involving Gb are evaluated using numerical quadrature and denote the

velocity field owing to this non-singular part of the Green’s function ub.

As mentioned above, the explicit velocity field owing to integrals involving Ga

yields very similar results to (A.13). The required modifications to the spherical

algorithm are detailed below. For the shape of the contour between adjacent nodes,

some minor modifications are required. In (A.8) si = (1
2
(xi + xi+1),

1
2
(yi + yi+1), 0)

replaces (A.8d) (i.e. the z-component is set to zero owing to the lack of curvature in

the z-direction), ni = si × ti replaces (A.8c) and ê2i = dx2
i + dy2

i is used in place of e2i

in (A.8f) only. Similarly, x̂i = (xi, yi, 0) replaces xi = (xi, yi, zi) in (A.10).

Substituting the modified version of (A.8) into (A.18) and noting that dz′/dp =

dzi + (dη/dp)nzi and dφ′/dp = nzi − (dη/dp)dzi + [ζ − (p− 1
2
)dζ/dp]nzi (to first order

in η and ζ), the singular part of the Green’s function Ga yields

Ωa =
1

2π

∑

i

ωi[(Ti + Si)nzi −Nidzi], (A.23a)

wa =
1

2π

∑

i

ωi[Tidzi +Ninzi], (A.23b)

where u = −yΩ and v = xΩ. Ti and Ni in (A.23) have the same form as in (A.13)

and Si is modified to

Si =
1

4
ê2(q1 − q2 +

2

3
q3). (A.24)

It now remains to determine ub, the velocity field owing to the non-singular part of

the Green’s function, Gb. Ωb and wb can be evaluated using three-point Gaussian
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quadrature,

Ωb =
1

2π

∑

i

ωi

3
∑

l=1

σlGb(x;x′(pl))
dφ′

dp
(pl), (A.25a)

wa =
1

2π

∑

i

ωi

3
∑

l=1

σlGb(x;x′(pl))
dz′

dp
(pl), (A.25b)

where p1 = 0.112701665379..., p2 = 0.5 and p3 = 1 − p1, σ1 = 5/18, σ2 = 8/18 and

σ3 = σ1 (Abramowitz and Stegun 1965). The total velocity field is then given by

u = ua + ub. (A.26)

Similar to in the spherical case, nodes tend to displace slightly from the cylinder due

to numerical errors and thus following time step the x and y coordinates at each node

are rescaled such that x2
i + y2

i = 1. Again, to verify the algorithm, quantitative tests

in which velocity fields exterior to small patches were tested against those owing to

point vortices were carried out. Excellent agreement was seen.
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The generation of potential

vorticity gradients by step

topography

For simplicity, consider the motion of a 2D, homogeneous, inviscid fluid governed

by the shallow water equations

Du

Dt
= −∇p, (B.1a)

∂H

∂t
+ ∇ · (Hu) = 0, (B.1b)

where u = (u, v) are the horizontal velocity components, the material derivate is given

by D/Dt = ∂t +u ·∇ and p is the pressure owing to the change in depth H = h−hB

where h is the fluid surface height and hB is the height at the fluid base. Note that

(B.1a) and (B.1b) represent the shallow water equations in a non-rotating frame and

thus the effect of the Earth’s rotation has been neglected. A more complete treatment
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of the shallow water equations (with rotation included) is given in Pedlosky (1987).

The vertical component of vorticity is given by

ω = (∇× u) · k = ux − uy. (B.2)

Taking the curl of (B.1a) gives

ωt + u · ∇ω + ω∇ · u = 0, (B.3)

and, from using (B.1b)

Dq

Dt
= 0, (B.4)

where q = ω/H is the potential vorticity. The potential vorticity q associated with

each fluid parcel is thus a constant of the motion, i.e. if a fluid particle moves from

deep to shallow water, its vorticity must decrease.
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