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Abstract

The initiation of DNA replication at the onset of S phase in eukaryotic cells is a
critically important and tightly regulated process. Multiple origins of replication in
the genome must be co-ordinately regulated such that duplication of the chromosomes
is complete before cell division, whilst also ensuring that no sections of the DNA are
over-replicated. In G1 phase of the cell cycle, a large “pre-replicative complex’ (pre-
RC) forms at origins consisting of a hexameric Origin Recognition Complex (ORC)
as well as Cdc6, Cdtl and another hexameric complex known as the
Minichromosome Maintenance (MCM) complex. At the onset of S phase, two cell
cycle regulated protein kinases, the Cyclin Dependent Kinase (CDK) and Cdc7, are
activated. Phosphorylation of various proteins by these two enzymes triggers
formation of large ‘replisome’ complexes, initiation of DNA replication from each
origin, and disassembly of the pre-RCs. Pre-RC re-assembly is subsequently

inhibited until kinase activity falls again after cell division.

In this study, we have set about identifying substrates of both CDK and Cdc7
involved in DNA replication in the budding yeast Saccharomyces cerevisiae. Two
techniques are employed, the in vitro phosphorylation of arrays of peptides and
phosphorylation of pre-RCs assembled in cell-free yeast extracts. Peptide arrays
provide a high throughput technique for screening large numbers of potential
substrates in a single experiment, whilst pre-RC phosphorylation allows consideration
of both tertiary and quaternary structures of the in vivo kinase substrate. Several
potential novel substrates of both CDK and Cdc7 are revealed. Pre-RC
phosphorylation also reveals a previously unreported phosphorylation of Orcl by a

third kinase which has been identified as Casein Kinase 11 (CKII).
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Chapter 1: Introduction

The eukaryotic cell cycle is divided into four distinct stages; DNA replication, which
occurs during the Synthetic (S) phase, cell division, which occurs during the Mitotic
(M) phase, and two Gap phases, G1 and G2, which precede S and M phases
respectively. The initiation of DNA replication at the onset of S phase is a highly
regulated, multi-step process. It is of critical importance to the cell not only to ensure
that the entire genome is duplicated before cell division, but also to prevent re-
replication of sections of the chromosomes in a single cell cycle. Initiation represents
perhaps the most critical point of regulation in the process of DNA replication, and
must only be allowed to occur at the correct stage of the cell cycle and when
environmental conditions are permissive. It is of no surprise, therefore, that the

protein machinery responsible and its regulatory mechanisms are complex.

Our current view of replication initiation derives from the paradigm of the replicon
theory, proposed in 1963 by Francois Jacob, Sydney Brenner and Francois Cuzin
(Jacob et al, 1963). They hypothesised that in order to begin replication a trans-
acting “initiator’ element would bind to a cis-acting ‘replicator’ in the DNA, which
would then trigger downstream replication events. This has proved true for simple
prokaryotic and viral systems, also explains aspects of eukaryotic replication. In
prokaryotes, the initiator protein DnaA binds to a single sequence specific origin of
replication in the chromosome, oriC, leading to DNA unwinding and recruitment of
replisome components (Messer, 2002). This marks the major regulatory step in the
initiation of replication, coupling initiation to cell size and preventing origin re-

initiation (Donachie & Blakely, 2003; Kaguni, 2006). In the eukaryotic virus Simian
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Virus 40 (SV40), the Large T Antigen protein (TAg) similarly recognises the viral
origin and triggers DNA unwinding and replisome formation. In eukaryotes,
however, large genome sizes have given rise to the requirement for multiple origins of
replication that, with the exception of the budding yeast Saccharomyces cerevisiae,
remain largely poorly defined and are unlikely to be sequence specific (Cvetic &
Walter, 2005). Origins are bound by the six-subunit Origin Recognition Complex
(ORC). In G1 phase of the cell cycle a larger pre-replicative complex (pre-RC) forms
from which replication can initiate after subsequent activation (Bell & Dutta, 2002).
Pre-RC formation and activation is regulated at multiple levels to ensure once-and-

only-once replication in each cell cycle (Diffley, 2004).

In both prokaryotic and eukaryotic cells, a replisome must be assembled subsequent
to the formation either of the oriC-DnaA or pre-RC complexes. Replisomes consist
of helicase and polymerase components capable of catalysing the unwinding of the
DNA and the coordinated synthesis of both leading and lagging strands (Benkovic et
al, 2001). In eukaryotes, formation of the replisome is regulated independently of
pre-RC formation, and phosphorylation of several core replisome components by two
cell cycle regulated protein kinases, the Cyclin Dependent Kinase (CDK) and Cdc7, is
an absolute requirement for replisome formation and activation (Bell & Dutta, 2002).
The roles of protein kinases in the positive regulation of replication initiation provide

the focus of this study.
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1.1 Initiation of DNA replication in Escherichia coli

Prokaryotes provide a useful model for understanding both the positive and negative
regulation of initiation. E. coli, in common with all prokaryotes, contains a single
chromosomal origin of replication, oriC, which binds the initiator protein, DnaA.

DnaA is capable of causing DNA unwinding in vitro (Bramhill & Kornberg, 1988).

DNA unwinding by DnaA

E. coli oriC consists of a 245bp region (Oka et al, 1980) containing two elements, an
AT rich DNA unwinding element (DUE) containing three tandem repeats of a 13mer
sequence (Bramhill & Kornberg, 1988), and a DnaA binding region. The DnaA
binding region contains five DnaA boxes R1-5 (Fuller et al, 1984; Matsui et al, 1985)
of which three (R1, 2 and 4) bind tightly to DnaA with a Ky of between 3 and 9nM
and conform exactly to the DnaA box consensus sequence 5’-TT(A/T)TNCACA-3’.
The remaining two (R3 and R5) differ from the consensus by a single base and bind
DnaA much more weakly, requiring cooperativity with an adjacent DnaA box
(Schaper & Messer, 1995; Speck et al, 1999). In addition to these five sites, oriC also
contains several other DnaA binding sites, including three I sites which differ from
the DnaA box consensus by 3-4 bases (Grimwade et al, 2000) and also several 6-mer
sites contained in the 13-mer repeats of the DUE, termed S-M sites (Speck & Messer,
2001). Crucially, binding to these sites is specific to the ATP-bound but not ADP-
bound form of DnaA (Ryan et al, 2002; McGarry et al, 2004; Speck & Messer, 2001,
Ozaki et al, 2008). Although DnaA binding to double stranded S-M sites is relatively
weak, binding to the single-stranded DNA once the DUE is unwound is considerably

stronger (Speck & Messer, 2001; Ozaki et al, 2008). DnaA binding to oriC was
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observed to introduce a 40° kink in the DNA which was initially proposed to be
responsible for inducing DNA unwinding by torsional stress (Schaper & Messer,

1995).

DnaA is an oligomeric ATPase of the AAA+ family (Neuwald et al, 1999; Messer et
al, 2001) and has four structural domains (Messer et al, 1999). Domain | mediates
oligomerisation via a hydrophobic patch on its surface (Abe et al, 2007) as well as
binding to several other proteins including the DnaB helicase and DiaA (see below).
Domain Il appears to be a flexible linker domain and does not show sequence
conservation between species (Messer et al, 1999), whilst domain 11 is the AAA+
domain. In common with other AAA+ proteins, the DnaA AAA+ domain contains an
‘arginine finger’ (Arg285) which interacts with ATP bound to an adjacent subunit.
Domain 11 therefore contributes to DnaA oligomerisation in the ATP bound but not
the ADP bound form of the protein. Arg285 is essential for cooperative binding of
DnaA to the ATP-DnaA sensitive | sites (Kawakami et al, 2005). Domain IV is the
major DNA binding domain, forming contacts with both the major and minor groove
of the DnaA box consensus (Fujikawa et al, 2003). DNA binding also appears to be
mediated by two residues in domain 111, Val211 and Arg245, which are required for

binding to the single but not double stranded S-M sites (Ozaki et al, 2008).

In vitro, DnaA is sufficient to cause unwinding of the DUE, but requires the presence
of ATP (Bramhill & Kornberg, 1988). The process is not dependent on ATP

hydrolysis however, since ATPyS can substitute for ATP in open complex formation
(Sekimizu et al, 1987). The open complex can be visualised by electron microscopy

and contains between 20 and 30 molecules of DnaA (Fuller et al, 1984). The
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structure of AMP-PCP bound A. aeolicus DnaA reveals a helical filament, formation
of which is dependent on the presence of ATP (Erzberger et al, 2006). Helical
initiator proteins have been predicted to form a sub-family of AAA+ ATPases,
members of which include E. coli DnaC and the eukaryotic ORC complex (see
below) (lyer et al., 2003; Erzberger et al., 2006; Mott et al., 2008). The DNA is
proposed to wrap around the outside of the DnaA filament, although when modelled
to this structure, the Val211 and Arg245 residues of Thermotoga maritime DnaA are
on the inside of the helix (Ozaki et al, 2008). DnaA binding to oriC can be followed
by in vitro footprinting; DnaA remains bound in its ADP-bound state to DnaA boxes
R1, 2 and 4 throughout the cell cycle, forming a larger complex immediately before
the onset of replication (Cassler et al, 1995). Together, these findings enable a model
of DNA unwinding by DnaA to be proposed. As the ATP-bound form of DnaA
builds up in the cell, structural changes in the protein allow the helical filament to
form which leads to DNA unwinding, stabilised by interactions between the single-

stranded DNA and the DnaA residues Val211 and Arg245.

In addition to DnaA, unwinding of oriC is also influenced by several other proteins,
including the two histone like proteins IHF and Fis. The sites of interaction of these
proteins with oriC are known, with Fis binding between DnaA boxes R2 and R3 and
IHF adjacent to site R1 (Gille et al, 1991, Filutowicz & Roll, 1990). Fis inhibits DNA
unwinding in vitro, and prevents DnaA binding to R3 (Hiasa & Marians, 1994). In
contrast, IHF stimulates DNA unwinding (Hwang & Kornberg, 1992) and overcomes
the inhibition by Fis (Hiasa & Marians, 1994). At the onset of DNA replication, Fis
binding to oriC is replaced by IHF coincident with the binding of DnaA to site R3

(Cassler et al, 1995). In common with DnaA, binding of IHF to oriC introduces a
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kink into the DNA (Swinger & Rice, 2004). A third histone like protein, HU, also
stimulates DNA unwinding in vitro, although its mechanism of action is unclear
(Ryan et al, 2002). Finally, DnaA oligomerisation is promoted by binding to a protein
called DiaA, a recently discovered homo-tetrameric protein that binds multiple DnaA

molecules (Keyamura et al, 2007).

Regulation of replication initiation

As in eukaryotic cells, it is important for prokaryotes to prevent over-replication of
the DNA by immediate re-initiation from replication origins which have recently
fired. E. coli ensures that this is the case by three independent mechanisms; the
regulated hydrolysis of ATP by DnaA, sequestration of newly synthesised, hemi-
methylated oriC by binding to the protein SegA, and depletion of DnaA by binding to

a nearby locus, datA.

Regulatory inactivation of DnaA (RIDA)

ATP hydrolysis by DnaA is triggered by the formation of the replisome, being
stimulated by the DNA PollIl holoenzyme B clamp (described below) and a second
protein named Hda (Kurokawa et al, 1998; Katayama et al, 1998; Kato & Katayama,
2001; Katayama & Crooke, 1995; Su'etsugu et al, 2004). An Hda dimer forms a
complex with the B clamp once it is loaded onto the DNA and promotes DnaA ATP
hydrolysis by providing an arginine finger to the DnaA ATP binding domain (Xu et
al, 2009). Hda has been predicted to trigger ATP hydrolysis in the DnaA unit at the
end of the helical filament, thus causing sequential filament disassembly (Erzberger et
al., 2006). Hda mutations increase ATP bound DnaA levels from 20 to 70 percent of

the total population, resulting in over-initiation (Kato & Katayama, 2001; Riber et al,
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2006; Fujimitsu et al, 2008). This mechanism of regulation is known as the

Regulatory Inactivation of DnaA, RIDA.

oriC sequestration

oriC contains eleven repeats of the dam methyltransferase recognition site GATC,
which have been shown to remain hemi-methylated for approximately one third of a
cell generation. By contrast, other regions of the genome are re-methylated within
minutes of their replication (Cleary et al, 1982; Campbell & Kleckner, 1990).
Methylated oriC minichromosomes are incapable of transforming dam- strains,
accumulating as hemi-methylated plasmids which cannot be replicated. Hemi-
methylated templates are active for oriC mediated replication in vitro, however,
(Russell & Zinder, 1987; Boye, 1991) so some mechanism must exist in vivo to
prevent the replication of hemi-methylated oriC sites. An experiment to identify
mutant strains in which hemi-methylated plasmids were capable of being replicated in
a dam- background identified the protein SeqA, which was subsequently shown to
bind oriC during the period for which it remains hemi-methylated. As with Hda, loss
of SeqA resulted in over-initiation, leading to the conclusion that SegA binding to
hemi-methylated oriC inhibits initiation. (Lu et al, 1994; von Freiesleben et al, 1994).
In support of this, SegA has been shown to prevent DnaA binding specifically to sites
R5, 12 and I3, although it allows binding to the strong DnaA boxes R1, R2 and R4

(Nievera et al, 2006).

DnaA sequestration

The datA locus is immediately adjacent to oriC and contains five recognisable DnaA

boxes. However, it has been shown to bind approximately five-fold more DnaA
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molecules than oriC (Kitagawa et al, 1996). The close proximity of datA to oriC
means that it is replicated immediately after initiation and therefore provides a local
sink for DnaA molecules immediately after replication. In support of this hypothesis,
changing the position of the locus has been shown to have an effect on coordinated
chromosome replication, although the locus itself is not essential for viability
(Kitagawa et al, 1998). Together, the three processes of RIDA, oriC and DnaA
sequestration provide overlapping mechanisms whereby E. coli prevents over-
replication. As in eukaryotes (described below), utilising multiple redundant
mechanisms of regulation ensure that disruption of one alone is insufficient to

overcome overall control.

Coordination of initiation with cell size

Initiation of replication in E. coli occurs at a fixed size, known as the initiation
volume, which is insensitive to fluctuations in DnaA levels (Donachie, 1968). This is
therefore thought to be regulated by the ratio of ADP-bound to ATP-bound DnaA
rather than absolute levels of the protein (Donachie & Blakely, 2003). Inhibition of
DNA synthesis during replication leads to an increase in the relative amount of ATP
to ADP-bound DnaA from 20 to 80 percent, and resumption of replication leads to
multiple synchronous rounds of re-replication and a fall in the amount of ATP bound
DnaA (Kurokawa et al, 1999). Recycling of ADP to ATP by DnaA has been shown
to be stimulated by acidic phospholipids in the cell membrane (Crooke et al, 1992)
(Sekimizu & Kornberg, 1988), and recently by specific sequences in the DNA
(Fujimitsu et al, 2009). Newly synthesised DnaA is also expected to bind ATP
(Kaguni, 2006; Sekimizu et al., 1987). Thus the levels of ATP bound DnaA fall

immediately after initiation, but gradually increase during cell growth until a
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threshold is reached at which oriC open complex formation is triggered and

replication initiates.

Replication initiation in other prokaryotes

DnaA and oriC are widely conserved throughout eubacteria, and of those species so
far analysed, only Synechocytis does not contain a recognisable oriC containing
clusters of DnaA boxes (Richter et al, 1998). Bactillus subtilis oriC, for example,
spans 560bp and contains three clusters of DnaA boxes, separated between the second
and third clusters by the DnaA gene and with an AT rich region after the third
(Ogasawara et al, 1985). This arrangement of DnaA boxes and the DnaA gene is
conserved in multiple bacteria, including Micrococcus luteus, Mycoplasma
capricolum, Spirioplasm citri, Mycobacterium, Heliobacter pylori and Streptomyces,
and has thus been proposed to represent a common primordial oriC structure
(Ogasawara et al, 1991). Other examples of oriCs include Streptomyces lividans,
which has a 600bp oriC containing 19 DnaA boxes (Jakimowicz et al, 1998), and
Thermus thermophilus, which contains thirteen DnaA boxes in two opposingly

orientated clusters of six with one central box (Schaper et al, 2000).

DnaA structures are also adapted to the species in which they are found. For
example, both Streptomyces and Thermophilus have GC rich DNA, and both have
origins rich in DnaA boxes. However, whilst Streptomyces has a weaker DnaA box
consensus containing a G or C at position 3, it contains a high affinity DnaA protein
(Majka et al, 1999). Thermophilus, on the other hand, has a weaker binding DnaA

protein but maintains the strong DnaA box consensus (Schaper et al, 2000).
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Events downstream of DNA unwinding

In prokaryotes, DNA unwinding at the origin by DnaA is sufficient to trigger
replisome formation and initiation of replication. Components of the E. coli
replisome were initially identified by mapping of temperature-sensitive mutants
defective in DNA replication (Carl, 1970) (Wechsler & Gross, 1971) and include the
Pollll holoenzyme (described below), the hexameric DnaB helicase, the hexameric
helicase loader DnaC, the primase DnaG and single-stranded binding protein (SSB).
A double hexameric complex of DnaBgDnaCg forms in an ATP dependent manner in
solution (Wahle et al, 1989) and is recruited to the open complex via interactions
between DnaA and both DnaB and DnaC, and DnaC interactions with single-stranded
DNA (Learn et al, 1997; Marszalek & Kaguni, 1994; Sutton et al, 1998; Mott et al,
2008). DnacC is a structural paralog of DnaA, and is proposed to interact with the
AAA+ domain at the end of the DnaA spiral (Mott et al, 2008). Recruitment of the
DnaB-DnaC leads to the formation of a ‘pre-priming complex’, observed by EM to

contain DnaA and DnaB but not DnaC (Funnell et al, 1987).

The pre-priming complex can be stabilised with a DnaB mutant defective in helicase
activity. Analysis of complexes formed with this mutant shows that two DnaB
hexamers are loaded in a head to head fashion, increasing the extent of unwinding in
the open complex from 23 to 65 base pairs in the absence of helicase activity (Fang et
al, 1999). DnacC is responsible for the loading of the DnaB hexamer via a ‘ring-
breaker’ mechanism (Davey & O'Donnell, 2003). When bound in the presence of
ATP, DnaC holds the ring shaped DnaB hexamer open, allowing entry of the DNA
into the central cavity. This triggers ATP hydrolysis, release and closure of DnaB

(Davey et al, 2002). The DnaB hexamers each encircle single-stranded DNA, and
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migrate along the DNA with 5’-3” polarity (Kaplan, 2000; LeBowitz & McMacken,
1986). After loading of the DnaB hexamers, DnaC leaves the complex (Fang et al,
1999). The two active DnaB helicases slide past each other, and after sufficient
unwinding the primase DnaG is recruited through interactions with DnaB (Fang et al,
1999). Recruitment of the polymerase holoenzyme to the primed site through

interactions with DnaB and DnaG completes replisome formation.

The Pollll holoenzyme is a complex structure consisting of two Pollll core enzymes,
one for the leading and one for the lagging strand, a  clamp processivity factor for
each polymerase and a heptameric clamp loading complex. Each polymerase consists
of a trimer of a, &€ and 6 subunits, of which a contains polymerase and & exonuclease
activity(Maki et al, 1985; Maki & Kornberg, 1985; McHenry & Crow, 1979;
Studwell-Vaughan & O'Donnell, 1993). Both Pollll core enzymes are held onto the
DNA by a dimeric B clamp, each monomer of which forms a crescent and which
therefore together encircle the DNA and hold the polymerase in place, increasing its
processivity from only 10 nucleotides per binding event to more than 50kb (Kong et
al, 1992; Kuwabara & Uchida, 1981; LaDuca et al, 1986; Stukenberg et al, 1991).
The B clamp is itself loaded onto the DNA by the clamp loader complex which
coordinates both Pollll core enzymes as well as the DnaB helicase and DnaG

primase, and which therefore forms the heart of the replisome.

The clamp loader consists of y, 7, 3, 8’, %, @ subunits in a stoichiometry of y1 1, 618’1
x1 @1 (Glover & McHenry, 2000; Onrust et al, 1995; Pritchard et al, 2000). The y and
T proteins are products of the same gene (dnaX), with t being a larger product with

two extra domains responsible for binding to Pollll o and DnaB (Gao & McHenry,
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2001a; Gao & McHenry, 2001b). A pentamer of 38’ys is @ minimal enzyme capable
of loading the  clamp, and forms a circular complex of structurally related subunits
(Jeruzalmi et al, 2001a). & binds to B, holding the dimer open by reducing the
curvature of each of the crescent monomers (Jeruzalmi et al, 2001b). B binding by &
is stimulated by ATP binding by y3, which are AAA+ family ATPases (Hingorani &
O'Donnell, 1998; Naktinis et al, 1995). Binding to DNA then stimulates ATP
hydrolysis, resulting in release of  around the DNA (Bloom et al, 1996; Turner et al,
1999). Pollll and the clamp loader compete for binding to 3, so release of the clamp

allows binding to the polymerase (Lopez de Saro et al, 2003; Naktinis et al, 1996).

The extra subunits of the complete clamp loader complex serve to coordinate the
replisome machinery. Binding of Pollll and DnaB by the two extra domains of the t
subunits couple the leading and lagging strand polymerases to the helicase, and allows
recycling of the lagging strand polymerase at each Okazaki fragment. The y subunit
binds to DnaG and to single-stranded DNA (Glover & McHenry, 1998; Kelman et al,
1998), and is therefore responsible both for the recruitment of the entire assembly to

the primed origin, and also recycling of DnaG.
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1.2 Eukaryotic replication initiation

Eukaryotic origins of replication

Unlike prokaryotes, the large size of eukaryotic genomes necessitates the coordinate
activity of multiple origins of replication which must be regulated such that the
genome is replicated in a timely fashion, whilst also ensuring that no origin fires twice
in a single round of replication. Regulation is therefore more complex, since

initiation cannot be universally inhibited following firing from a single origin.

The initial identification of a eukaryotic origin came from the observation that a
specific DNA sequence, termed the Autonomously Replicating Sequence (ARS1) was
capable of allowing the extrachromosomal maintenance of plasmids in
Saccharomyces cerevisiae (Stinchcomb et al, 1979). The S. cerevisiae genome is
estimated to contain approximately 200 to 400 origins (Rivin & Fangman, 1980) and
approaches to identify them have included plasmid maintenance assays (Shirahige et
al, 1993), two dimensional gel electrophoresis (Friedman et al, 1997), microarrays
(Raghuraman et al, 2001; Wyrick et al, 2001; Yabuki et al, 2002) and mapping single-

stranded DNA in hydroxyurea treated cells (Feng et al, 2006).

S. cerevisiae ARS elements are between 100 and 200bp in length and contain an
essential A element containing the ARS Consensus Sequence (ACS) 5’-
(A/MTTTA(T/IC)(AIG)TTT(A/T)-3’ (Van Houten & Newlon, 1990) as well as B
elements, three of which are found in ARS1 and any two of which are sufficient to
maintain its origin function (Marahrens & Stillman, 1992). Together, the A and B1

elements in ARSL1 function as a binding site for the eukaryotic initiator, the origin
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recognition complex (ORC, described below) (Rao & Stillman, 1995) (Rowley et al,
1995). The B2 element is AT rich and was proposed to act as the site of DNA
unwinding, since experiments showed that it could be functionally substituted with
other easily unwound sequences (Huang & Kowalski, 1993) (Huang & Kowalski,
1996). However, comparison of different DNA sequences able to give B2 function at
ARS1 did not show a correlation between the stability of the element and
functionality (Wilmes & Bell, 2002). Instead, they were required to contain a second,
imperfect match to the ARS consensus sequence, which may act by binding ORC or
another pre-RC component (Wilmes & Bell, 2002) (Marahrens & Stillman, 1992)
(Bell & Stillman, 1992). The B3 element contains a binding site for the transcription
factor Abf1, which can be functionally replaced with binding sites for other
transcriptional activators (Diffley & Stillman, 1988) (Diffley & Stillman, 1989)
(Marahrens & Stillman, 1992). Similar analysis of ARS307 revealed the presence of
two B elements, although there is very little conservation of this region between
origins (Theis & Newlon, 1994). Abfl also acts as an enhancer at other origins, for
example ARS121, although most origins are found in non-transcribed regions of the
genome (Walker et al, 1990). The start site for replication in ARS1 has been mapped

to a single base pair between the B1 and B2 elements (Bielinsky & Gerbi, 1999).

Origins of replication in the fission yeast Schizosaccharomyces pombe were similarly
identified by plasmid transformation, and have also been shown to be active in their
chromosomal loci (Clyne & Kelly, 1995). However, S. pombe ARS elements are
much larger than those of S. cerevisiae, stretching from 0.5 to 1 kb, and do not appear
to contain any sequence specific binding consensus for ORC. Instead, S. pombe

origins appear to be composed of stretches of AT rich sequences and are therefore
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helically unstable. Deletion of small patches abrogates origin function, but patterns of
AT rich elements show no conservation between origins and do not share sequence
identity. Further, AT rich patches can be replaced with alternative, random stretches
of AT rich DNA (Clyne & Kelly, 1995) (Okuno et al, 1999). Genome wide analysis
has identified 384 *‘A+T rich islands’, and of 20 randomly tested for ARS activity, 18
were active origins (Segurado et al, 2003). S. pombe Orc4 has been shown to contain
repeats of an AT hook DNA binding motif, which is unique to fission yeast ORC and
which partially explains origin specification in this species (Chuang & Kelly, 1999).
Microarray mapping of origin binding proteins as well as BrdU incorporation into
early firing origins in hydroxyurea treated cells identified 460 sites of pre-RC
formation, of which 218 overlapped with the predicted AT rich island origins

(Hayashi et al, 2007).

In metazoans, origins of replication move even further away from the replicon model
of sequence defined replicator elements in the DNA. In both Xenopus and
Drosophila embryonic systems, initiation appears to initiate at random throughout the
genome (Hyrien & Mechali, 1992) (Mahbubani et al, 1992) (Shinomiya & Ina, 1991),
although specificity is introduced during development, (Hyrien & Mechali, 1993)
(Hyrien et al, 1995) (Sasaki et al, 1999). The random nature of initiation events in
Xenopus and Drosophila embryos gives rise to a problem known as the ‘random
completion problem’, since replication in these systems must complete within a finite
time (Hyrien et al, 2003). The solution to this conundrum is still unclear, but may
involve either structural definition of origins at fixed distances or the formation of an

excess of complexes capable of acting as origins of replication which are then
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regulated by a system of lateral inhibition. An increase in the rate of origin firing

through S phase has also been proposed (Goldar et al, 2008).

Some evidence for sequence specific recruitment of ORC to origins of replication in
Drosophila has been found from studies of chorion gene locus amplification in
follicle cells. Replication of one of these loci was found to depend on two regions,
ACES3 and orif}, of which ACE3 stimulates ORC binding to orif3 and which together
can direct amplification of an extragenic locus (Lu et al, 2001). In vivo evidence
indicates that ORC binding to these regions is sequence dependent (Austin et al,
1999) requiring multiple elements in both ACE3 and orif3 (Zhang & Tower, 2004).
However, in vitro the affinity of dmORC for origin and non-origin DNA is similar
(Remus et al, 2004). Any plasmid transfected into Drosophila Schneider cells will

undergo autonomous replication, regardless of sequence (Smith & Calos, 1995).

Mammalian cells show a similar lack of sequence specificity, and plasmid replication
assays have shown that any piece of human DNA of sufficient length will allow
plasmid propogation in human kidney 293S cells (although bacterial DNA sequences
are less efficient), initiating from random sites as in Drosophila (Heinzel et al, 1991)
(Krysan et al, 1993). However, a handful of approximately 20-30 origins have been
identified, which fall into two categories (Todorovic et al, 1999); ‘zones of initiation’,
containing multiple potential sites of initiation, and origins where initiation begins at a
single specific site in each cell cycle. Zones of initiation include the human rDNA
locus and the Chinese hamster Rhodopsin and DHFR loci (Coffman et al, 2006;
Vaughn et al, 1990). Site specific origins include the human lamin B2 gene, a 500bp

region in which the site of initiation has been defined to a single nucleotide. The



lamin B2 origin can direct ectopic initiation, and is thus a true replicator sequence
(Altman & Fanning, 2004). A further example is the human B-globin locus, which
can similarly drive ectopic replication (Aladjem et al, 1998). However, initiation
from this locus is also sensitive to deletions in a region 50kb upstream (Kitsberg et al,

1993).

No sequence identity is found between different mapped mammalian origins, and
biochemical studies of human ORC indicate that beyond a slight preference for AT
rich DNA, DNA binding is completely sequence independent (Vashee et al, 2003).
Mechanisms of origin selection other than sequence specificity of ORC binding may
include transcriptional regulation, DNA methylation, histone modification or
recruitment of ORC via another sequence specific binding protein. Transcription may
regulate origin selection either positively or negatively, and is likely to exert its
effects through changes in chromatin structure. Almost all origins in S. cerevisiae are
found in intergenic regions, and the transition from random to specific initiation in
Xenopus occurs as transcription begins at the mid-blastula transition (Hyrien et al,
1995). However, transcriptional activators are required for the function of some
origins, such as Abfl at ARS1 in S. cerevisiae. DNA methylation at CpG sites
appears to inhibit initiation, and under-methylated CpG islands are often associated
with origins of replication (Delgado et al, 1998). Conversely, histone acetylation
seems to promote initiation, and tethering histone deacetylases to the DNA decreases
origin activity (Aggarwal & Calvi, 2004). Evidence for ORC recruitment by
interaction with other chromatin bound factors comes from both Drosophila and
human cells (Beall et al, 2002; Norseen et al, 2008; Tatsumi et al, 2008) (Atanasiu et

al, 2006).

26



Origin recognition by the Origin Recognition Complex (ORC)

The first factor to be identified as specifically binding to the sequence specific origins
of S. cerevisiae was Abf1, identified by its ability to cause an ARS specific DNA gel
shift when purified from a yeast extract (Diffley & Stillman, 1988; Diffley &
Stillman, 1989). Similar experiments employing a footprinting technique identified a
six subunit complex termed the Origin Recognition Complex (ORC) (Bell &
Stillman, 1992). ORC and Abf1 bind to ARS1 constitutively through the cell cycle
and form a footprint on ARSL1 in vitro resembling that seen in vivo in cells arrested in
G2/M (Diffley et al, 1994), with ORC protecting the A and B1 elements and Abfl
binding to element B3 (Marahrens & Stillman, 1992). Temperature sensitive
mutations subsequently confirmed the requirement of ORC for DNA replication;
various S. cerevisiae Orc2 temperature-sensitive mutants arrest at the non-permissive
temperature with unreplicated DNA, and show a defect in plasmid maintenance (Bell
et al, 1993; Foss et al, 1993; Micklem et al, 1993). Both orc2-1 and orc5-1
temperature-sensitive alleles show defects in initiation from ARS1 when grown at the
permissive temperature, measured by bubble arc formation in two-dimensional gel
electrophoresis (Loo et al, 1995). ORC analogues have been identified in a diverse
range of eukaryotic organisms, indicating that they represent a conserved method of
origin recognition, even in organisms in which the origin is not sequence specific

(Duncker et al, 2009).

The ORC complex is a heterohexamer made up of subunits Orc1-6, named in order of
size (Bell et al, 1995), and binds to the DNA in an ATP dependent manner requiring

both the A and B1 element of ARS1 (Bell & Stillman, 1992) (Rao & Stillman, 1995)
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(Rowley et al, 1995). Sequence specific DNA binding of the S. cerevisiae complex is
dependent on all subunits of the complex except Orc6, and Orcl, 2 and 4 all appear to
bind to the major groove of the ACS. In addition, Orc5 crosslinks to both A and B1
elements (Lee & Bell, 1997). Although in S. cerevisiae Orc6 is not required for DNA
binding, in Drosophila it is, and in both organisms it is an essential subunit of the
complex (Li & Herskowitz, 1993; Balasov et al, 2007) It has been shown to be
required for the recruitment of downstream components (see below) (Chen et al,
2007). The exact mechanism of DNA binding by the complex remains unclear
however; the AT hook of S. pombe Orc4 is the only definitive DNA binding motif

and is not conserved in other organisms.

Recent structural studies have provided information about the mechanism of DNA
binding in archaeal ORC homologues (Dueber et al, 2007; Gaudier et al, 2007; Liu et
al, 2000). Archaea appear to have origins reminiscent of those in prokaryotes,
containing repeats of an “origin recognition box’ (ORB) in proximity to an AT rich
region, but initiator proteins resembling those of eukaryotes (Grabowski & Kelman,
2003). Specifically, most species contain one or a few copies of an Orc1/Cdc6
homologue which is responsible for recognising the ORB. Orc1/Cdc6 from both
Aeropyrum pernix and Solfolobus solfataricus bind the DNA through both a canonical
winged helix DNA binding motif and their AAA+ domain. DNA binding introduces
a 35° kink in the DNA and causes DNA unwinding (Gaudier et al, 2007)(Gaudier et
al., 2007). Although the exact correlation between DNA binding mechanisms in
archaeal and eukaryotic ORC proteins remains unknown, the winged helix domain
may be conserved in eukaryotic Orcl (Liu et al, 2000), and the eukaryotic ORC

AAA+ domain shares with its archaeal counterpart an extended DNA binding loop.
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The DNA interaction via both domains may therefore be a structural feature common
to both eukaryotic and archaeal proteins, although ORC binding to the DNA in

eukaryotes does not induce DNA unwinding (Gaudier et al, 2007).

ORC has ATPase activity, and Orc1-5 have all been identified as members of the
AAA+ ATPase family (Klemm et al, 1997; Speck et al, 2005). Of these, Orc1 and
Orc5 have been shown to bind and hydrolyse ATP, although it is the Orcl ATPase
activity, inhibited by double stranded DNA, that is important for the function of the
complex, discussed below (Bowers et al, 2004; Klemm et al, 1997). ATPase activity
in this subunit requires an ‘arginine finger’ from the adjacent Orc4 subunit, and
mutation of this residue results in a non-functional complex (Bowers et al, 2004). An
EM structure of the Drosophila ORC complex shows a filament structure similar to
that observed for DnaA (Clarey et al, 2008; Clarey et al, 2006; Erzberger et al, 2006),
and binding of ATP to the complex induces tightening of the filament which could
explain ATP specific binding of ORC to ARS1. EM structures and subunit tagging
experiments have assigned the positions of individual ORC subunits within the

filament (Chen et al, 2008).

Although ORC appears to be constitutively associated with origins in S. cerevisiae
(Diffley et al, 1994), it may be regulated in a cell specific manner in other organisms.
In Xenopus, ORC seems to be released from the chromatin after initiation (Rowles et
al, 1999; Sun et al, 2002). Mammalian Orc1 also seems to be reduced on the

chromatin during mitosis (Kreitz et al, 2001; Natale et al, 2000). In support of this,
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mammalian G1 nuclei can replicate in a Xenopus extract depleted of ORC, whilst G2

nuclei cannot (Yu et al, 1998).

Pre-replicative complex formation

The solution to the problem of coordinate regulation of multiple origins of replication
has been shown to be a system of origin ‘licensing’ in which individual origins are
licensed for initiation during G1 phase of the cell cycle, de-licensed at the onset of
replication, and re-licensing inhibited until the subsequent G1 phase. Cell fusion
studies showed that addition of a G1 phase nucleus to an S phase cell would induce
replication in the G1 phase nucleus, but the same was not true of a G2 phase nucleus
(Rao & Johnson, 1970). Experiments in Xenopus showed that DNA added to an egg
extract could undergo formation of a nuclear envelope and a single round of
replication (Blow & Laskey, 1986). G2 nuclei added to a G1 extract did not replicate,
however, unless the nucleus was permeabilised (Blow & Laskey, 1988). This led to
the “licensing factor’ theory, which hypothesised that DNA is bound by a licensing
factor in G1 phase which is inactivated or destroyed on entry into S phase, and which
is prevented from relicensing replicated chromatin until breakdown of the nuclear
envelope at metaphase (Blow & Laskey, 1988). In fact, regulation of origin licensing

is through the activity of the cyclin dependent kinase, as will be described.

Following the pattern of footprinting of ARS1 in vivo during the cell cycle reveals the
existence of two complexes, a minimal complex present in G2-M phases consisting of
ORC and Abfl, and a more extensive complex present in G1 phase. These were
termed the pre and post replicative complexes (Diffley et al, 1994). In this respect,

eukaryotic origins are similar to their prokaryotic counterparts, in which two distinct
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complexes can also be resolved by footprinting during the cell cycle (Cassler et al,
1995). Formation of the pre-RC is considered responsible for the licensing of G1

phase nuclei.

The components of the pre-RC were defined in the latter half of the 1990s, and
comprise Cdc6, Cdtl and the hexameric MiniChromosome Maintenance (MCM)
complex. Origin licensing can be reconstituted in vitro using these minimal purified
components (Gillespie et al, 2001; Kawasaki et al, 2006). The end point of licensing
is thought to be loading of the MCM complex in a salt stable manner onto the DNA,
and ORC, Cdc6 and Cdt1 are all dispensable for replication in a Xenopus extract after
this point (Rowles et al, 1999). Early evidence indicated that the MCM complex may
function as the replicative helicase, and there is now convincing data that this is
indeed the case (described below) (Koonin, 1993; Lee & Hurwitz, 2000; Moyer et al,

2006; Pacek et al, 2006).

Cdc6 was first identified as a gene required for the initiation of DNA replication in S.
cerevisiae in a screen for cell division mutants (Hartwell et al, 1973). Temperature
sensitive cdc6 mutants were shown to result in a plasmid loss phenotype which could
be complemented by increasing the number of ARS elements on the DNA (Hogan &
Koshland, 1992), a phenotype similar to that later seen with ORC subunits (Loo et al,
1995). Over-expression of Cdc6 could complement the temperature-sensitive
phenotype of orc5-1 (Liang et al, 1995) and it was shown to be required for pre-RC
formation but not binding of ORC to the origin (Cocker et al, 1996; Santocanale &
Diffley, 1996). Like ORC subunits 1-5, Cdc6 is a member of the AAA+ ATPase

family, and is highly related to Orcl. As with Orcl, mutation of the ATP binding or

31



hydrolysis motifs in Cdc6 results in a non-functional protein (Perkins & Diffley,
1998; Weinreich et al, 1999). Homologues of Cdc6 have been identified in other
eukaryotes by sequence similarity to the yeast protein (Coleman et al, 1996; Kelly et
al, 1993; Williams et al, 1997), and in Xenopus, immunodepletion of Cdc6 inhibits the
replication of double but not single-stranded DNA, which can be restored by the

addition of recombinant Cdc6 (Coleman et al, 1996).

The MCM proteins were identified as S. cerevisiae mutants defective either in
plasmid maintenance (mini-chromosome maintenance) or cell cycle progression
(Maine et al, 1984; Moir et al, 1982). Six proteins, Mcm2-7, are highly related,
sharing a central 240 amino acid domain termed the MCM box, and appear to
function together as a complex (Koonin, 1993; Madine et al, 1995; Labib et al, 2001).
Although the sequence outside of the central conserved domain is highly divergent
between proteins, it is conserved between species, arguing for a specific role of each
protein. In support of this, deletion of any individual protein is lethal (for example

(Gibson et al, 1990)).

Evidence for the role of the MCM proteins in the formation of the pre-RC came first
from experiments in Xenopus egg extracts, in which the search for a positive licensing
factor led to the identification of Mcm3, which had previously been suggested to act
as a G1 phase specific licensing factor in yeast and Xenopus due to its behaviour
cycling in and out of the cell nucleus (Kubota et al, 1995; Yan et al, 1993; Hennessy
et al, 1990). A complex of MCM proteins was shown to bind to the chromatin during
G1 and be displaced during S and G2 phases (Donovan et al, 1997; Madine et al,

1995). Cdc6 was required for this recruitment of the MCM complex to chromatin

32



(Aparicio et al, 1997; Donovan et al, 1997; Tanaka et al, 1997), but neither ORC nor
Cdc6 was required for its maintenance. The MCM complex was shown to be required
for formation of the G1 phase footprint on ARS305 (Labib et al, 2001) and was
shown to be stable on the chromatin at salt concentrations up to 300mM NaCl
(Donovan et al, 1997). Both ORC and Cdc6 can be removed from the chromatin after
MCM association without affecting the ability of the licensed DNA to replicate in a
Xenopus extract. The essential function of ORC/Cdc6 was therefore inferred to be the
loading of a salt stable MCM complex onto the chromatin (Rowles et al, 1999).
Interestingly, in both Xenopus and yeast it appears that MCM complexes are loaded in
more than ten-fold excess of the number of active origins, the reason for which

remains unclear (Lei et al, 1996).

Cdtl was discovered first in S. pombe (Hofmann & Beach, 1994), and homologues
were later identified in Xenopus, Drosophila, human cells and S. cerevisiae (Devault
et al, 2002; Maiorano et al, 2000; Tanaka & Diffley, 2002; Whittaker et al, 2000). It
was shown to behave in a manner similar to Cdc6, and is similarly required for the
loading of the MCM complex both in vivo and in vitro (Devault et al, 2002; Maiorano
et al, 2000; Nishitani et al, 2000). In S. cerevisiae, Cdtl binds constitutively to
Mcm2-7 (Tanaka & Diffley, 2002), and the Mcm2-7 binding C terminal domain of
mouse Cdtl has recently been shown to form a winged helix fold (Khayrutdinov et al,

2009).

Although the mechanism of Mcm2-7 loading by ORC, Cdc6 and Cdt1 is still unclear,

recent biochemical studies have provided some details. Cdc6 and Cdtl interactions

with the chromatin are independent, and the Cdt1 interaction is transient, being
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stabilised by the presence of the non-hydrolysable ATP analogue ATPyS (Gillespie et
al, 2001; Maiorano et al, 2000; Randell et al, 2006). As well as binding constitutively
to Mcm2-7, Cdtl in S. cerevisiae also interacts with the C terminus of Orc6. A fusion
of Orc6 with Cdtl is capable of driving a single round of Mcm2-7 complex loading,
although reiterative loading is prevented (Chen et al, 2007). Blocking ATP
hydrolysis by Orcl by introducing a mutation into the arginine finger of Orc4 blocked
the reiterative loading of Mcm2-7, but a single round of loading was permitted
(Bowers et al, 2004). However, blocking ATP hydrolysis entirely by both ORC and
Cdc6 completely abolished salt stable loading of the complex (Randell et al, 2006). A
model for Mcm2-7 complex loading by ORC, Cdc6 and Cdtl has therefore emerged.
Orc6 acts to recruit and Mcm2-7-Cdtl complex, whilst ATP hydrolysis by Cdc6 and
Orcl act sequentially to catalyse the loading of the complex and its release from the

pre-RC in order to allow reiteration of the process.

Interestingly, EM structures of S. cerevisiae ORC either alone or in complex with
Cdc6 show that Cdc6 contributes to the structure to form an asymmetric ring with a
diameter similar to the Mcm2-7 complex. The six AAA+ domains of Orcl1-5 and
Cdc6 could therefore form a ring loader machine with function comparable to the
RFC (below) or E. coli clamp loader complexes (Perkins & Diffley, 1998; Speck et al,

2005).
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Mcm2-7 complex structure and function

The initial suggestion that an MCM complex acts as the replicative helicase came
from the observation that the central AAA+ domain shares common motifs with a
family of DNA and RNA helicases (Koonin, 1993), coupled with the fact that unlike
ORC and Cdc6 the complex appears to migrate with the replisome after initiation
(Aparicio et al, 1997). Degradation of Mcm2-7 during S phase was shown to prevent
replication fork progression (Labib et al, 2000). As well as the complete hexamer,
various subcomplexes can also be readily purified, including Mcm4,6,7, Mcm2,4,6,7
and Mcm3,5 (Lee & Hurwitz, 2000). Of these, helicase activity was observed in the
Mcm4,6,7 complex, but puzzlingly not in the complete hexamer (Ishimi, 1997; Lee &
Hurwitz, 2000). EM reconstruction of the structure of the Mcm4,6,7 complex
revealed a hexameric ring (Sato et al, 2000), a structure not only analogous to E. coli
DnaB, but also to the replicative helicases from a variety of other systems, including
SV40, Papillomavirus and the bacteriophages T4 and T7 (Dong et al, 1995; Egelman
et al, 1995; Li et al, 2003a; Sedman & Stenlund, 1996; VanLoock et al, 2002; Yang et
al, 2002). Further evidence that the complex is likely to act as the replicative helicase
came from archaea, which all contain at least one homologue of the eukaryotic
Mcm2-7 proteins. Archaeal MCM proteins from several species have been shown to
form oligomeric complexes with a robust helicase activity (Chong et al, 2000;
Gomez-Llorente et al, 2005; Grainge et al, 2003; Kelman et al, 1999; Pape et al, 2003,
Shechter et al, 2000). The most recent experiments with the eukaryotic complex have
demonstrated both a weak helicase activity in the complete Mcm2-7 hexamer
(Bochman & Schwacha, 2008) and a robust helicase activity when combined with two
accessory factors, Cdc45 and GINS (described below) (Moyer et al, 2006; Pacek et al,

2006).
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Despite the availability of several structures of the archaeal proteins, however (Bae et
al, 2009; Brewster et al, 2008; Fletcher et al, 2003; Liu et al, 2008), reviewed in
(Sakakibara et al, 2009), the mechanism of action of the complex remains unclear.
Several models have been suggested, including a steric exclusion model analogous to
E. coli DnaB, in which the complex migrates along single-stranded DNA and forces
the duplex apart by excluding the other strand from the central chanel (Kaplan et al,
2003; Lee & Hurwitz, 2001), a rotary pump model, in which hexamers are located at
distant sites and pump DNA towards the replisome (Laskey & Madine, 2003), a
model based on the SVV40 virus large T antigen, which operates as a double hexamer
and extrudes single-stranded DNA at the hexamer interface (Wessel et al, 1992), and
a ploughshare model in which a structural unit, which may be part of the MCM
complex or be formed by another protein, forces the DNA apart as it leaves the
central channel (Takahashi et al, 2005). It is interesting to speculate that Cdc45 and

GINS may in part be required to provide the ploughshare that this model predicts.

Activation of the pre-RC

Unlike in prokaryotes, where formation of the large ATP-DnaA complex is sufficient
to cause DNA unwinding and replisome formation, pre-RCs in eukaryotes are not
immediately active for replication fork formation. There is no evidence for
unwinding of the DNA on pre-RC formation, despite loading of a central part of the
helicase, and indeed, the temporal gap between pre-RC formation in G1 and firing of
the origin at the start of S phase would make this impractical. Activation of the
replisome is via the activity of two cell cycle regulated protein kinases, the cyclin

dependent kinase (CDK) and Cdc?7.
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CDK

CDK is the principal driver of the eukaryotic cell cycle, and its activity is regulated by
the presence of a variety of regulatory subunits, termed “cyclins’ due to oscillation of
their expression and stability during the cell cycle. In yeast only one CDK exists,
Cdc28 in S. cerevisiae and Cdc2 in S. pombe (Nurse & Bissett, 1981). These regulate
different stages of the cell cycle by association with different sets of cyclins, which
can be categorised according to their expression pattern as acting in G1 phase, S
phase or M phase of the cell cycle. In S. pombe there are four cyclins, the G1 phase
cyclin Pucl (Forsburg & Nurse, 1991; Martin-Castellanos et al, 2000), the S phase
cyclins Cigl and Cig2, and the M phase cyclin Cdc13 (Mondesert et al, 1996; Moreno
et al, 1989). In S. cerevisiae there are nine, CIn1-3 and Clb1-6 (Nasmyth, 1993).
ClInl1-3 are G1 cyclins, expressed in late G1 phase in response to nutrient availability
in order to trigger commitment to the cell cycle by activating the expression of the B
type cyclins (Levine et al, 1995). The S phase cyclins CIb5 and Clb6 act initially to
trigger DNA replication (Schwob & Nasmyth, 1993; Donaldson et al, 1998; Epstein
& Cross, 1992) and subsequently the M phase cyclins Clb1-4 drive mitosis (Fitch et
al, 1992). Degradation of cyclins at the end of mitosis occurs by a mechanism
common to all eukaryotic cells and is triggered by activation of the anaphase
promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase which targets the
cyclins for destruction via the proteasome (reviewed in (Zachariae & Nasmyth,
1999)). APC activity is regulated by association with two regulatory subunits, Cdc20
and Cdh1, of which APC*®?° js activated first, by phosphorylation of various APC
subunits by M phase CDK activity leading to Cdc20 association (Fang et al, 1998;
Shteinberg et al, 1999). This targets the M phase cyclins for destruction, leading to

dephosphorylation of the APC and dissociation of Cdc20. Cdhl binding, which is in
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contrast inhibited by CDK phosphorylation of Cdh1, is now allowed and maintains
APC activity. ApCCint targets Cdc20 for degradation, and its activity remains high

until Cdhl is re-phosphorylated in late G1 phase (Zachariae et al, 1998).

In higher eukaryotes, CDK activities are slightly more complex. Four CDKSs regulate
the cell cycle, CDK1, 2, 4 and 6, and a host of other CDKSs control other cellular
processes, such as transcription (Morgan, 1997). CDKSs 4 and 6 associate with cyclin
D in response to growth factors in order to trigger commitment to division by
degrading the protein pRb (Bartek et al, 1996; Sherr, 1995). pRb binds to and
suppresses the activity of E2F family members, which are transcriptional activators
(van den Heuvel & Dyson, 2008). Activation of E2F leads to transcription of
downstream cyclins, therefore leading to cell cycle progression. CDK2 interacts with
cyclin E to trigger the initiation of DNA replication, and subsequently binds cyclin A
throughout S phase. Mitosis is triggered subsequent to S phase by the association of

CDK1 with cyclin B (Nigg, 1995).

In both yeast and higher eukaryotes, CDK activity is also dependent on
phosphorylation at a conserved threonine (Thr160 in human CDK2) by the CDK
Activating Kinase (CAK). In S. cerevisiae this is the 44-kDa protein Cakl (Espinoza
et al, 1996; Kaldis et al, 1996; Thuret et al, 1996), whilst in higher eukaryotes, the
CAK activity is itself a CDK, Cdk7-Cyclin H (Nigg, 1996). Cdk7-cyclin H is also
involved in transcription, phosphorylating the C terminal domain of RNA polll
(Fisher, 2005). Although CDK phosphorylation by CAK is necessary for function, it
does not seem to be rate-limiting or regulated during the cell cycle (Espinoza et al,

1996). CDK activity is also regulated by the presence of inhibitory subunits (CKIs)
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such as S. cerevisiae Farl and Sicl, S. pombe Rum1, and the higher eukaryotic
Cip/Kip and Ink4 families (Morgan, 1997). In S. cerevisiae, SIC1 transcription is
triggered in late mitosis by the nuclear import of the transcription factor Swi5, and
Sicl is degraded at the end of G1 following phosphorylation by the Cdc28-Clin
complex (Schwob et al, 1994; Verma et al, 1997). It therefore provides a mechanism

of inhibiting CDK activity throughout G1 phase of the cell cycle.

Finally, CDK activity is also regulated by inhibitory phosphorylation of the conserved
tyrosine Tyrl5, which provides a mechanism of regulation of CDKs in an all-or-
nothing manner due to positive feedback loops. The classic model of Tyr15
regulation is that of phosphorylation of Cdc2 by Weel and dephosphorylation by
Cdc25 in S. pombe (Coleman & Dunphy, 1994). CDK dependent Weel
phosphorylation during mitosis inhibits activity, whilst similar phosphorylation of
Cdc25 increases its activity, hence triggering CDK1 dephosphorylation at the
beginning of mitosis. Other kinases, such as polo-like kinase, also contribute to the
Weel and Cdc25 phosphorylation during G2 phase (Coleman & Dunphy, 1994).
Considerable structural information is available regarding the mechanism of
activation of CDK activity by cyclins and CAK activity, as well as Tyr15

phosphorylation and binding by CKIs, and is reviewed in (Morgan, 1997).

The earliest evidence that CDK activity is required for activation of origins of
replication came from studying replication in vitro of the viral SV40 system, in which
the viral origin recognition protein (large T antigen, TAg) required CDK dependent
phosphorylation to initiate replication (McVey et al, 1989). A more direct role for

activation of chromosomal replication was demonstrated in Xenopus, where depletion
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of CDK prevented egg extracts from initiating replication, although they remained
capable of formation of intact nuclei and of elongating replication forks formed in
undepleted extracts (Blow & Nurse, 1990). Treatment of extracts with a protein
kinase inhibitor also inhibited initiation (Blow, 1993). In S. cerevisiae, a cInl cIn2
clb5 clb6 deletion mutant arrested with unreplicated DNA (Schwob & Nasmyth,

1993).

The exact substrates involved in triggering DNA replication have until recently
remained elusive however. CDK requires a minimal consensus sequence of S/T-P for
substrate phosphorylation, and a basic residue at the +3 position strengthens this
consensus, S/T-P-x-K/R (Songyang et al, 1994). Recruitment via an ‘RxL’ motif is
also known to aid substrate specificity, thought to be mediated by binding to the
cyclin subunit (Adams et al, 1996; Wilmes et al, 2004). Screening for in vitro
phosphorylation of GST Tagged proteins from budding yeast identified 360 targets of
Cdc28, including Orcl, Orc2, Orc6, Cdc6 and Mcm3 (Ubersax et al, 2003). Although
most of these substrates did not show specificity to either Clb2 or Clb5 bound Cdc28,
several of the replication proteins were phosphorylated tenfold more rapidly by Clb5-
Cdc28 than by Clb2-Cdc28 (Loog & Morgan, 2005). The essential substrates
however have been shown to be the two downstream factors Sld2 and Sld3,
phosphorylation of each of which stimulates binding to a third factor, Dpb11 (Tanaka
et al, 2007; Zegerman & Diffley, 2007; Tak et al, 2006). The roles of each of these
proteins will be described below. CDK also plays a negative role in regulating pre-

RC formation, which will also be described in a subsequent section.
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Cdc7

The Cdc7 kinase is regulated similarly to CDK; it is expressed constitutively but its
activity is regulated by association with a cyclically expressed regulatory subunit,
Dbf4. It has therefore been termed the Dbf Dependent Kinase, DDK. Cdc7 was
discovered in Hartwell’s cell division mutant screen (Hartwell et al, 1973) and Dbf4
in a screen for mutants defective in the initiation of DNA replication (Johnston &
Thomas, 1982a; Johnston & Thomas, 1982b). Cdc7 was shown to be a serine-
threonine kinase (Patterson et al, 1986; Yoon & Campbell, 1991) and its activity
varied with the cell cycle, despite protein levels remaining constant (Yoon et al,
1993). Dbf4 and Cdc7 were shown to interact both genetically and physically
(Dowell et al, 1994; Kitada et al, 1992), and Dbf4 levels to fluctuate during the cell
cycle, driven both by changes in expression (Chapman & Johnston, 1989) and in
protein stability, regulated like the cyclins by the anaphase promoting complex
(Ferreira et al, 2000; Oshiro et al, 1999; Weinreich & Stillman, 1999). S. cerevisiae
Cdc7-Dbf4 was shown through one-hybrid assays to interact with replication origins
in a manner dependent on the ORC binding ACS sequence (Dowell et al, 1994) and is
required for the firing of individual origins, rather than as a global S phase trigger
(Bousset & Diffley, 1998; Donaldson et al, 1998). Origin interaction is via Dbf4,
since the Cdc7 and Dbf4 interacting domains of Dbf4 could be functionally separated,
locating to the C and N termini of the protein respectively (Dowell et al, 1994). Cdtl
has recently been proposed to play a role in recruiting Cdc7-Dbf4 to origins in human

cells through an interaction with the catalytic subunit (Ballabeni et al, 2009).

Cdc7 and Dbf4 both have homologues in higher eukaryotes. Hsk1 was cloned from

S. pombe as a kinase with 65% similarity to Cdc7, and was required for DNA
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replication (Masai et al, 1995). Homologues were subsequently found in a variety of
higher eukaryotes (Jiang & Hunter, 1997; Kim et al, 1998). The S. pombe Dbf4
homologue Dfpl was identified as an activating subunit which purified with Hsk1
(Brown & Kelly, 1998), and independently through two-hybrid screening (Takeda et
al, 1999). Human Dbf4, named *Activator for S-phase Kinase’ (ASK) was also
identified by two-hybrid screening (Kumagai et al, 1999). Expression of both Dfpl
and ASK is regulated like Dbf4 in a cell cycle dependent manner (Brown & Kelly,
1998; Kumagai et al, 1999; Takeda et al, 1999) and are responsible for the activation
of Hsk1 and mammalian Cdc7 respectively. Depletion of Cdc7 from Xenopus egg
extracts resulted in a complete loss of replication activity (Jares & Blow, 2000).
Sequence comparison of Dbf4 homologues has identified three conserved motifs at
the N and C termini and in the central portion of the protein, termed motifs N, M and
C. Motifs M and C are both required for binding and activation of Cdc7, whilst motif
N is required for chromatin association (Ogino et al, 2001). As well as its role in
replication, Cdc7 also has separate functions in several processes including meiosis,
the DNA damage checkpoint and control of mitotic exit (Marston, 2009; Ogi et al,

2008; Miller et al, 2009) .

Origin activation by Cdc7

A steadily growing body of evidence suggests that the substrates of Cdc7-Dbf4
include subunits of the Mcm2-7 complex. A Cdc7 bypass mutant exists (bobl) which
contains a proline to leucine point mutation in Mcm5 (Hardy et al, 1997), although
Mcmb does not itself appear to be a Cdc7 substrate. Instead, other members of the
complex are efficiently phosphorylated by the kinase. Purified Cdc7-Dbf4 from S.

cerevisiae phosphorylates Mcm2, 3, 4, 6 and 7 in vitro, as well as undergoing



autophosphorylation on both subunits (Weinreich & Stillman, 1999). Mcm2-7
complex subunit phosphorylation by Cdc7 was also reported in S. pombe and higher
eukaryotes, with Mcm2 reported as the primary substrate, both alone and in the
context of an Mcm2-4-6-7 complex (Brown & Kelly, 1998; Jiang et al, 1999; Kihara
et al, 2000; Kumagai et al, 1999; Lei et al, 1997; Masai et al, 2000; Sato et al, 1997,
Takeda et al, 1999). Phosphorylation of the Mcm2-7 complex has been shown to be
stimulated by loading onto the DNA (Francis et al, 2009). Phosphorylation of human
Mcm2 and Mcm4 by Cdc7 is within the N terminus, and mapping of phosphorylation
sites has shown a requirement for an acidic or phosphorylated residue in the +1
position (Cho et al, 2006; Ishimi et al, 2001; Masai et al, 2006; Montagnoli et al,
2006). Multiple Cdc7 phosphorylation sites in S. cerevisiae Mcm4 were also shown
to be located in the N terminus of the protein, and efficient phosphorylation required a
binding site immediately C terminal to the region of phosphorylation (Sheu &
Stillman, 2006). Phosphorylation sites in the N terminus were required for S phase
progression, but the entire region could be functionally substituted with the N
terminus of Mcm2, which has also been shown to be phosphorylated in two residues,
S164 and S170, of which S170 is essential for growth but can be bypassed with cdc7-
bobl (Bruck & Kaplan, 2009). Cdc7-Dbf4 seems to be recruited to Mcm2 by a
similar mechanism as to Mcm4. It thus appears that Mcm2 and Mcm4 represent
essential Cdc7 substrates, although whether they form a minimal set is unknown. A
previous report has suggested that phosphorylation of the N termini of Mcm2 and

Mcm4 is redundant (Masai et al, 2006).

One possible explanation for the bypass of kinase function by the modification of a

protein which is not itself a substrate is that phosphorylation of adjacent subunits in
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the complex induces a structural change which is mimicked by the Mcm5 point
mutation (Hoang et al, 2007). In support of this, Mcm5 has been mapped to a
position adjacent to Mcm2 in the complex (Davey et al, 2003). Structural changes are
induced in the M. thermoautotrophicus protein when an equivalent mutation is
introduced (Fletcher et al, 2003). However, phosphorylation of neither the Mcm2-4-
6-7 complex nor the complete Mcm2-7 hexamer activates its helicase activity, so
phosphorylation may provide a binding site for other downstream factors. In support
of this phosphorylation of the N terminus of Mcm4 has been shown to facilitate its
interaction with the downstream factor Cdc45 on the chromatin (Masai et al, 2006).
However, Cdc45 is also an in vitro target of Cdc7 (Nougarede et al, 2000), as is Pola
(Weinreich & Stillman, 1999), so it remains unclear whether or not the Mcm2-7
complex subunits do in fact represent the only important substrates of Cdc7 in vivo.

There is as yet no phospho-site specific bypass of the kinase.

Interaction of CDK and Cdc7 activities

The ability of a phosphorylated residues in the +1 position to stimulate substrate
phosphorylation by Cdc7 (Cho et al, 2006) implies that the two kinases may function
together in the phosphorylation of Cdc7 substrates. Indeed, multiple SSP motifs are
found in the N termini of Mcm2, Mcm4 and Mcm6. However, the temporal order of
CDK and Cdc7 function has been a matter of some debate. Reports have shown that
CDK activity is required upstream of Cdc7 function in S. cerevisiae (Nougarede et al,
2000), but the reverse was demonstrated in Xenopus (Walter, 2000). Facilitation of
Mcm2 phosphorylation by Cdc7 by prior phosphorylation by CDK has been
confirmed in vitro with the human proteins, but no evidence exists in vivo (Cho et al,

2006; Masai et al, 2000; Masai et al, 2006). It could be, however, that CDK functions



at two points in triggering replication initiation, first by priming substrates for
phosphorylation by Cdc7, and second by triggering the binding of Sld2 and SId3 to
Dpbl1l. CDK has been shown to prime the phosphorylation of at least one other
substrate of Cdc7, involved in double strand break formation in meiosis (Wan et al,

2008).

Prevention of re-replication

As well as its positive role in stimulating DNA replication at the onset of S-phase,
CDK activity also plays a well-documented negative role in inhibiting reformation of
the pre-RC, thus acting as a master-regulator of the oscillatory nature of pre-RC
formation and DNA replication. During the period in G1 when CDK activity is low,
origin licensing is allowed but licensed origins cannot fire. At the onset of S phase,
CDK activity rises and origin firing from pre-RCs occurs, but re-licensing is inhibited
until CDK activity falls again at the onset of anaphase (Diffley, 2004). Insulatory
mechanisms also exist to ensure that re-initiation does not occur during periods when
CDK activity is at intermediate levels. Thus, for example, in S. cerevisiae the G1
cyclins CIn1-3 are capable of preventing pre-RC formation but are poor at triggering
replication initiation (Drury et al, 2000; Labib et al, 1999; Schwob & Nasmyth, 1993;
Tanaka & Diffley, 2002). Pre-RC reformation is therefore inhibited before forks are
allowed to fire. Similarly, at the end of mitosis CIb5 is destroyed by APC®%?° pefore
CIb2, which is destroyed by APC®™™. CIb2, like CIn1-3 is poor at stimulating
initiation but is sufficient to inhibit pre-RC formation (Donaldson, 2000). Origin
licensing and firing are therefore clearly isolated from each other at both the

beginning and end of G1 phase.
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Although CDK inhibition of re-replication was first demonstrated in S. pombe, in
which deletion of the mitotic cyclin Cdc13, overexpression of the CKI Rum1 or
transient inhibition of a temperature-sensitive Cdc2 mutant all resulted in re-initiation
(Broek et al, 1991; Hayles et al, 1994; Moreno & Nurse, 1994), the regulatory
mechanisms involved are best understood in budding yeast. Inactivation of CDK in
G2 phase in S. cerevisiae induces reformation of the pre-RC, and subsequent
reactivation causes re-replication (Dahmann et al, 1995). Conversely, activation of
CDK in G1 phase prevents pre-RC formation (Detweiler & Li, 1998). All of the
components of pre-RC formation are regulated, and these mechanisms act together to
produce a complete block to re-initiation. Cdc6 is periodically expressed and
degraded (Drury et al, 1997; Piatti et al, 1995), due both to inhibition of nuclear
import of its transcriptional activator Swi5 by CDK phosphorylation (Moll et al,
1991) and targeting of the protein for degradation by CDK phosphorylation dependent
ubiquitination by the E3 ligase SCF®* (Drury et al, 1997; Drury et al, 2000). Later
in mitosis, Cdc6 is partially stabilised by association with Clb2, allowing protein
levels to build up although its licensing activity remains inhibited (Drury et al, 2000;
Mimura et al, 2004). The Mcm2-7 complex is regulated by periodic accumulation in
the nucleus, and this regulation is not dependent on Cdc6 and is therefore independent
of pre-RC formation (Labib et al, 1999; Nguyen et al, 2000). Inactivation of CDK
activity in mitosis leads to nuclear accumulation of the complex, and the inverse is
true during G1 (Labib et al, 1999; Nguyen et al, 2000). Cdt1 regulation seems
intimately related to this; Cdtl and Mcm2-7 remain constitutively associated with
each other, and in the absence of either, neither one shows nuclear accumulation.
Furthermore, addition of a nuclear localisation signal to Mcm7 causes constitutive

nuclear localisation of both Mcm2-7 and Cdtl (Tanaka & Diffley, 2002). Nuclear
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localisation of the Mcm2-7-Cdtl complex appears to be regulated by a composite
nuclear localisation signal (NLS) in Mcm2 and Mcm3, and an adjacent nuclear export
signal (NES) in Mcm3 (Liku et al, 2005). Phosphorylation of multiple CDK
phosphorylation motifs clustering around the NLS/NES site in Mcm3 causes nuclear
export of the complex, whilst the introduction of alanine mutations in the

phosphorylated residues cause nuclear retention (Liku et al, 2005).

Finally, phosphorylation of Orc2 and Orc6 by CDK also inhibits their function,
although it does not seem to affect their origin association (Nguyen et al, 2001). In
addition, CIb5 binds to an RXL motif in Orc6 and this also appears to be inhibitory to
origin function (Wilmes et al, 2004). Deregulation of all three of the regulatory
mechanisms, Cdc6, Cdtl/Mcm2-7 and ORC, is required to induce significant re-
replication by FACS analysis (Nguyen et al, 2001), although some re-replication may
also occur after deregulating ORC and Cdc6 alone (Green et al, 2006; Tanny et al,
2006). The partial redundancy of the mechanisms involved means that inactivation of
one alone is insufficient to cause re-replication, and underlines the importance of

regulation of this step in DNA replication.

In S. pombe, it initially appeared that inhibition of pre-RC reformation was simpler
than in S. cerevisiae, since stabilisation of the Cdc6 homologue Cdc18, the expression
and degradation of which is regulated like S. cerevisiae Cdc6 in a CDK dependent
manner, was sufficient to induce re-replication (Jallepalli et al, 1997; Jallepalli et al,
1998; Lopez-Girona et al, 1998; Muzi Falconi et al, 1996; Nishitani & Nurse, 1995).
However, physiological levels of stable Cdc18 do not deregulate replication, so at

least one other mechanism must also exist (Muzi Falconi et al, 1996; Nishitani &
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Nurse, 1995). It has since been shown that Cdt1 and ORC are also regulated,
although unlike in S. cerevisiae, Cdt1 is regulated by degradation rather than nuclear
import (Gopalakrishnan et al, 2001; Hu & Xiong, 2006; Nishitani et al, 2000). The M
phase CDK Cdc2-Cdc13 also appears to bind to S. pombe Orc2, sterically inhibiting
pre-RC formation (Vas et al, 2001; Wuarin et al, 2002). Cdt1 overexpression
combined with a stable copy of Cdc18 is sufficient to cause re-replication

(Gopalakrishnan et al, 2001; Nishitani et al, 2000; Yanow et al, 2001).

In higher eukaryotes, prevention of re-licensing is in addition controlled by the
presence of another protein factor termed Geminin, discovered in Xenopus as an APC
substrate and found to bind and inhibit the activity of Cdtl (McGarry & Kirschner,
1998; Tada et al, 2001; Wohlschlegel et al, 2000). Geminin binding to Cdtl inhibits
its binding to the Mcm2-7 complex, and therefore pre-RC formation (Li & Blow,
2005; Saxena et al, 2004). Not all Geminin is degraded at anaphase, about half of the
total population remains stable. It therefore appears that ubiquitination alone in the
absence of degradation is sufficient to inhibit its Cdt1 binding activity (Li & Blow,
2004). A further mechanism of regulation which seems unique to higher eukaryotic
cells is the CDK independent degradation of Cdt1 by ubiquitination triggered by its
interaction with PCNA on the chromatin (Arias & Walter, 2005; Arias & Walter,
2006). Thus, Cdtl is degraded specifically in S phase, when PCNA is present on the
chromatin in the replisome (see below). Cdtl binding to PCNA may create a binding
site for the E3 ubiquitin ligase Cul4-Ddb1*? (Arias & Walter, 2005; Jin et al, 2006;

Arias and Walter, 2006).
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In combination with degradation of Geminin, stabilisation of Cdt1 causes re-
replication, although deregulation of either protein alone is insufficient (Arias &
Walter, 2006; Li & Blow, 2005; Yoshida et al, 2005). In mammalian cells, there is
also evidence that Cdtl degradation is triggered by CDK phosphorylation, leading to
ubiquitination via SCF"? (Li et al, 2003b; Liu et al, 2004; Sugimoto et al, 2004;
Takeda et al, 2005). Cdtl is protected from degradation by this pathway by binding
to Geminin, thus allowing Cdt1 levels to build up during mitosis (Ballabeni et al,
2004). In this way Geminin plays a positive as well as negative role in licensing,
acting analogously to CIb2 in S. cerevisiae, protecting Cdc6 from degradation prior to
G1 phase. Although with the exception of SCF mediated degradation of Cdtl these
mechanisms are only indirectly dependent on CDK activity via regulation of the cell
cycle, there is also evidence that CDK phosphorylation of ORC regulates its activity,
potentially by Orcl proteolysis and regulation of chromatin binding of the complex

(Mendez et al, 2002; Ohta et al, 2003; Tatsumi et al, 2003).

Events downstream of origin activation

The SV40 replisome

Many of the factors involved at the eukaryotic replication fork were identified from in
vitro reconstitution of the replication of plasmids containing an SV40 origin of
replication. Replication in this system requires multiple cellular components, as well
as the viral protein Large T Antigen (TAQ) (Li & Kelly, 1984; Stillman et al, 1985).
TAg is a hexameric protein that acts as both the SV40 origin recognition complex and
the replicative helicase, hence considerably simplifying the system of eukaryotic

replication, removing the requirement for any of the pre-RC components and the

49



cellular replicative helicase, as well as overcoming cell cycle regulatory mechanisms
(Fanning & Zhao, 2009). Analysis of the remaining required cellular components led
to the identification of the requirement for two replicative polymerases, Pol o and Pol
d, the trimeric single-stranded DNA binding protein RPA, the clamp loader complex
Replication Factor C (RFC) and the trimeric clamp complex Proliferating Cell
Nuclear Antigen (PCNA) (Melendy & Stillman, 1991; Prelich et al, 1987b; Wobbe et
al, 1987; Prelich et al, 1987a; Podust et al, 1992; Fairman et al, 1989; Tsurimoto et al,

1989; Waga et al, 1994; Waga & Stillman, 1994).

Pol o was initially thought to be the only replicative polymerase and is the only
enzyme capable of initiating synthesis de novo, associating with a primase as well as a
polymerase activity (Conaway & Lehman, 1982). It consists of four subunits, of
which polymerase activity is contained in the largest and primase activity in the
smallest (Kaguni et al, 1983a; Kaguni et al, 1983b). In fact, Pol a has only low
processivity, and is replaced after primer synthesis by another, high processivity
polymerase. Pol a is therefore thought to act as the eukaryotic primase. Pol 5 is one
such high processivity polymerase, and is stabilised by interactions with the PCNA
clamp analogously to the E. coli Pollll - B complex. Pol & consists of four subunits in
S. pombe and higher eukaryotic cells, and three in S. cerevisiae (Burgers & Gerik,
1998; Podust et al, 2002; Zuo et al, 2000). In addition to Pol o and Pol 8, a third
polymerase, Pol &, is required for replication in vivo but is dispensable for SV40
replication in vitro (Morrison et al, 1990; Waga & Stillman, 1994). ChIP studies have
localised Pol ¢ to origins prior to S phase and shown that it moves away from the
origin with the replication fork after the onset of S phase (Aparicio et al, 1997; Feng

et al, 2003). It is a tetrameric complex, with polymerase activity in the largest subunit
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(Chilkova et al, 2003). Intriguingly, however, the catalytic domain of the protein
could be deleted without affecting viability (Kesti et al, 1999). It may therefore be
that the only essential role of the protein is at the initiation step of DNA replication
(Feng et al, 2003). It is now believed that in wild-type cells, Pol ¢ replicates the
leading strand, whilst Pol & replicates the lagging strand (Pursell et al, 2007; Nick

McElhinny et al, 2008).

The RFC clamp loader is a pentameric complex responsible for loading of the PCNA
clamp at a primed site. The five subunits (Rfc1-5) are similar to each other,
containing a common RFC box, as well as to the & and y subunits of the E. coli clamp
loader. The pentameric structure implies a similarity to the minimal E. coli 65y3
clamp loader complex, and a crystal structure in complex with PCNA and ATPyS has
been solved (Bowman et al, 2004). Rfcl provides the primary interaction with
PCNA, and has been proposed to act analogously to E. coli 8, whilst Rfc2-4 are
thought to be y-like, forming a trimeric ATPase subassembly (Cai et al, 1997). The
entire complex forms a helical filament which could thread the DNA (Bowman et al,
2004). PCNA itself is highly structurally analogous to 8, except that it is composed
of a trimer of proteins with two domains each, rather than a dimer of proteins each
with three domains. In each case, the product is a six-domain ring encircling the
DNA (Krishna et al, 1994). A model for PCNA loading by RFC is emerging in which
ATP binding by the RFC complex promotes both PCNA and DNA interactions,
holding PCNA open in a spiral conformation. ATP hydrolysis causes closure of the
ring and release of the complex around the DNA (Gomes et al, 2001; Chen et al,
2009; Johnson et al, 2006). RFC competes with the polymerase for binding to the

clamp, so release of PCNA allows recruitment of Pol & or Pol &€ (Mossi et al, 1997,
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Oku et al, 1998). Recognition of the primer-template junction by RFC has been
suggested to be due to the structure of the filament, which could not accommodate a

rigid double stranded B helix (Bowman et al, 2004).

The model for replisome formation during SV40 replication is therefore as follows.
Origin recognition by TAg causes unwinding which is stabilised by RPA, which binds
and recruits Pol o (Dornreiter et al, 1992). Pol o synthesises the leading strand
primer and perhaps some downstream DNA, then disengages due to its intrinsically
low processivity. The primer-template junction is now recognised by the RFC-PCNA
complex, leading to PCNA loading. Release of PCNA after loading leads to Pol & or
Pol ¢ recruitment through interaction with PCNA As the fork is extended, Pol o

primes each Okazaki fragment.

Maturation of Okazaki fragments requires in addition the flap endonuclease Fenl,
which removes the RNA primer, and DNA ligase | (Barker & Johnston, 1983;
Johnston, 1983). Other proteins, such as RNase HI and the yeast helicase Dna2 could
also be involved (Bae & Seo, 2000; Budd & Campbell, 1997; Turchi et al, 1994).
Fenl interacts with and is stimulated by PCNA, hence RNA primer removal is
stimulated by completion of the upstream Okazaki fragment (Li et al, 1995;
Vijayakumar et al, 2007). The eukaryotic replisome has been extensively reviewed in

(Waga & Stillman, 1998) and (Johnson & O'Donnell, 2005).
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Other factors involved in replisome formation

Several other proteins are required for replisome formation and function in vivo which
are not required for SV40 replication in vitro and which do not form part of the pre-
replication complex. Principal amongst these are Cdc45 and the GINS tetramer
(SId5, Psfl, Psf2 and Psf3) which as mentioned, function together with Mcm2-7 to
form the replicative helicase, therefore functionally replacing SV40 TAg at the
replication fork. Mcm10 is another factor which is required for replication fork
formation and elongation in vivo, whilst Dpb11, Sld2 and Sld3, the essential CDK
substrates, are required for replisome formation but are not directly required for

elongation.

Cdc45 has long been known to be involved in the replisome (Moir et al, 1982;
Hopwood & Dalton, 1996). It is recruited to origins in a CDK and Cdc7 dependent
manner (Zou & Stillman, 2000), travels with the replication fork after initiation
(Aparicio et al, 1997) and is required for replisome progression (Tercero et al, 2000).
Experiments in both Xenopus and S. cerevisiae have shown that it is essential for
recruitment of the DNA polymerases o and € to the chromatin, and origin binding of
Cdc45 and Pola appears to be sequential, with recruitment of the polymerase but not
Cdc45 blocked in the absence of DNA unwinding (Aparicio et al, 1999; Mimura &
Takisawa, 1998; Walter & Newport, 2000; Zou & Stillman, 2000). Various reports
have also demonstrated interaction with ORC, RPA, the Mcm2-7 complex, Pola and
Sld3 (Kamimura et al, 2001; Kukimoto et al, 1999; Mimura et al, 2000; Saha et al,

1998; Uchiyama et al, 2001; Walter & Newport, 2000; Zou & Stillman, 2000).
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The GINS complex, by contrast, is a relative newcomer to the set of replication
proteins. The SId5 subunit was identified as a protein synthetically lethal with
Dpb11, and the other subunits, Psfl1, Psf2 and Psf3, by genetic and physical
interactions with Dpb11 and with each other. The four proteins were found to form a
stable complex which can be purified from cell extracts (Takayama et al, 2003). The
complex was also identified in a screen for temperature-sensitive DNA replication
factors (Kanemaki et al, 2003). Mutants in SId5 and Psf1 are defective in DNA
replication, showing similar phenotypes to mutants in components of the pre-RC,
Cdc45, Sld2, Sld3 and Dpb11. GINS associates with origins at the point of their
activation and travels with the replication fork (Takayama et al, 2003). The
association of the complex with the chromatin requires SId3, and Cdc45 interaction
with the chromatin requires GINS, suggesting a sequential pathway of recruitment
(Yabuuchi et al, 2006). GINS has been suggested to bind and stimulate both Pol a
and Pol €, and the archaeal homologue has also been found to interact with the
archaeal primase (De Falco et al, 2007; Marinsek et al, 2006; Seki et al, 2006).
Disruption of GINS complex during G1 phase in S. pombe results in the loss of both
Pole and Cdc45 recruitment to the chromatin, but not of Pola, which must be
recruited by a different pathway (Pai et al, 2009). In agreement with the finding
described below that GINS forms an integral part of the eukaryotic replicative
helicase, the archaeal homologue was suggested to couple polymerase and helicase
components of the fork, a function which may well be shared with its eukaryotic

counterpart (Marinsek et al, 2006).

Identification of the Mcm2-7, Cdc45, GINS complex as the complete replicative

helicase came from the observation that the three complexes are enriched at the site of



DNA unwinding when helicase and polymerase activities at the fork are uncoupled
(Pacek et al, 2006). Mcm2-7, Cdc45 and GINS were also observed to associate after
purification of a larger ‘replisome progression complex’, enriched for helicase
components at the replication fork (Gambus et al, 2006). Purification of Cdc45 from
Drosophila led to the enrichment of Mcm2-7 and GINS, which were therefore
inferred to form a stable complex termed the CMG complex. This was shown to have
helicase activity, the first demonstration of helicase activity in the complete Mcm2-7
hexamer (Moyer et al, 2006). Both EM and crystal structures of the human GINS
complex are available, revealing multiple inter-subunit interactions to form a stable
complex, and suggesting that the C terminal domain of Psf1 is of critical importance
for the function of the complex, possibly by mediating the interaction with Cdc45 or
Mcm2-7 (Boskovic et al, 2007; Chang et al, 2007; Choi et al, 2007; Kamada et al,
2007). Interestingly, GINS was also shown to bind single-stranded DNA, possibly

stabilising DNA unwinding by the Mcm2-7 complex (Boskovic et al, 2007).

The roles of the remaining proteins in replisome formation and activity, however, are
much less clear. Mcm10 was discovered in the minichromosome maintenance screen
and also in a screen for mutants defective in DNA synthesis during mitosis (Maine et
al, 1984; Solomon et al, 1992). It is required both for both initiation and elongation
stages of DNA replication (Kawasaki et al, 2000; Merchant et al, 1997). Mcm10
localises to origins and shows a weak interaction with ORC, although it can associate
with chromatin independently (Kawasaki et al, 2000). Mcm10 shows genetic
interactions with various replication fork components, including DNA Pol € and 3
subunits, Mcm7 and Cdc45, and a physical interaction between Mcm10 and Mcm?7 is

important for its function since the mcm7-1 allele suppresses the phenotype of
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mcm10-1 by restoring the binding between the two mutant proteins (Homesley et al,
2000; Kawasaki et al, 2000). Initial experiments in S. cerevisiae suggested that the
protein is constitutively chromatin bound and is required for Mcm2-7 but not ORC
association with the chromatin (Homesley et al, 2000), but this was later disputed
(Sawyer et al, 2004). Experiments in Xenopus, S. pombe and S. cerevisiae all suggest
that it functions downstream of pre-RC assembly but upstream of Cdc45 recruitment
and DNA unwinding, but although Xenopus Mcm10 chromatin association was
shown to require Mcm2-7, S. pombe Mcm10 was also shown to bind chromatin
constitutively (Gregan et al, 2003; Sawyer et al, 2004; Wohlschlegel et al, 2002)
Suggested roles for the protein include the recruitment and activation of Cdc7 (Lee et
al, 2003), stabilization and recruitment of DNA Pola (Chattopadhyay & Bielinsky,
2007; Ricke & Bielinsky, 2004; Yang et al, 2005; Zhu et al, 2007), recruitment of
Cdc45 (Gregan et al, 2003; Sawyer et al, 2004), interaction with PCNA (Das-Bradoo
et al, 2006) and primase activity (Fien & Hurwitz, 2006). However, the significance
of these activities and how they are coordinated is unclear. The protein also binds
both single and double stranded DNA and has been reported to form hexameric
oligomers (Okorokov et al, 2007; Robertson et al, 2008; Warren et al, 2008) Binding
to single-stranded DNA and to Pola have been shown to be competitive (Warren et

al., 2009)

Dpb11 was first identified as a gene required for S phase progression which
suppresses mutations in Pol € (Araki et al, 1995). The two proteins interact physically
and are recruited to origins of replication in a mutually dependent manner (Masumoto
et al, 2000). S. cerevisiae Dpb11 is homologous to S. pombe Cut5 and the higher

eukaryotic TopBP1. These proteins all contain multiple phosphopeptide binding



BRCT repeats, four of which are found in the S. cerevisiae protein (Araki et al, 1995;
Bork et al, 1997; Makiniemi et al, 2001; McFarlane et al, 1997). Finally, Sld2 and
Sld3 were both identified in a screen for genes which are synthetically lethal at the
permissive temperature with the temperature-sensitive dpb11-1 mutant (Kamimura et

al, 1998; Kamimura et al, 2001).

Sld2 and SlId3 have both been shown to be substrates of CDK involved in promoting
DNA replication initiation (Tak et al, 2006; Tanaka et al, 2007; Zegerman & Diffley,
2007). The essential site of phosphorylation of SId2 is at residue T84, and
phosphorylation has been shown to promote binding to Dpb11 via BRCT repeats
three and four. Phosphorylation of Sld2 T84 can be bypassed with an aspartate point
mutation (Tak et al, 2006). The essential sites of phosphorylation of SId3 have been
shown to be T600 and S622, and phosphorylation similarly promotes binding to
Dpbl11, via BRCT repeats 1 and 2. Phosphorylation of SId3 can be bypassed by
creating a fusion with Dpb11 (Zegerman & Diffley, 2007). When combined, the two
phosphomimicking mutants allow replication in S phase in the absence of CDK
activity, or in G1 phase when combined with the cdc7-bob1 Cdc7 bypass (Zegerman
& Diffley, 2007). In addition Sld3 has also been demonstrated to bind Cdc45, and
recruitment of the two proteins to the chromatin is mutually dependent (Kamimura et
al, 2001). A mutation in Cdc45 also bypasses the requirement for SId3
phosphorylation, and similarly allows DNA replication in the absence of CDK
activity when combined with eth SId2 T84D mutation (Tanaka et al, 2007). Despite
the apparent importance of Sld2 and SId3 in S. cerevisiae, however, no definite higher

eukaryotic homologues have been reported. ReqQ4 has been suggested to be a higher
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eukaryotic homologue of Sld2, but as yet no homologue of SId3 is known (Matsuno et

al, 2006; Sangrithi et al, 2005).

Thus, even with these minimal components the eukaryotic replisome is already a
large, interconnected complex. In vivo, the situation is further complicated by the
presence of many other accessory components also involved in the process of
elongation. A replisome progression complex (RPC) consisting of proteins associated
with the helicase component of the replisome was isolated by tandem purification of
GINS and Mcm2-7, and contained in addition to the factors outlined above Mrcl,
Tofl, Ctf4, Csm3, Sptl16, Pob3 and Topl (Gambus et al, 2006). Sptl6 and Pob3
make up the FACT histone chaperone thought to be important for transcription and
replication through chromatin (Okuhara et al, 1999), Tofl and Csm3 are involved in
fork pausing at barriers to replication (Calzada et al, 2005; Mohanty et al, 2006;
Tourriere et al, 2005), Mrcl is involved in damage signalling to Rad53 and
stabilisation of paused replication forks (Alcasabas et al, 2001; Katou et al, 2003,
Osborn & Elledge, 2003), Ctf4 interacts with Pol o and may be important for sister
chromatid cohesion (Hanna et al, 2001; Kouprina et al, 1992; Miles & Formosa,
1992) and Topl (topoisomerase 1) is important for reducing DNA supercoiling (Kim
& Wang, 1989). Mrcl has also been shown to be important for stabilising the Pol ¢
interaction with the replisome, interacting directly with the catalytic subunit (Lou et
al, 2008) and thus playing a role coordinating the polymerase and helicase
components. Given its interaction with Pol o, GINS may also share this role, as could
Ctf4 (Gambus et al, 2009; Tanaka et al, 2009). The structure of the complete
replisome and the manner of coordination of leading and lagging strand synthesis

with each other and with the helicase remains to be elucidated.
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1.3 Conclusions

Much progress has been made in the field of DNA replication since James Watson
and Francis Crick first described its structure in 1953 (Watson & Crick, 1953). Many
areas of the field are now in a relatively advanced state. Replication has been
particularly well characterised in E. coli, but the process is also well understood in
eukaryotes. The essential factors have mostly been identified and positioned within
the processes of initiation and elongation. A clear picture of the pre-replicative
complex has emerged, and the process of its cell cycle regulation has been extensively
studied. The essential substrates of at least one of the two required protein kinases are
known, and a simplified viral replication fork has been reconstituted in vitro.
However, as the field progresses many questions of detail emerge, and the
complexities of the complete eukaryotic replisome remain perplexing. The structures
of many of the components remain to be solved, and their interactions elucidated.
How does ORC interact with the DNA, and what is the mechanism of Mcm2-7
complex loading? What causes DNA unwinding and how is it coordinated with
replication fork formation? What is the function of Cdc7 and do the Mcm2-7
complex subunits represent its only physiological substrates? If so, what is the
functional consequence of their phosphorylation? What is the significance of Sld2 and
Sld3 phosphorylation and their interaction with Dpb11? How do the factors of the
replisome fit together to form a coordinated replication fork? Clearly, there is much

scope for future study.

This thesis will focus on the roles protein kinases in the initiation of DNA replication

initiation, and aims to analyse the substrates and sites of phosphorylation of CDK and
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Cdc7 in S. cerevisiae. Phosphorylation of Orcl by casein kinase Il (CKII) is also
revealed. Ultimately, the field of eukaryotic replication initiation will be greatly
aided by complete reconstitution of the process in vitro, and purification and

characterisation of the regulatory kinases is an important step in this process.
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Chapter 2: Materials and Methods

2.1 General DNA techniques

Oligonucleotide preparation
Oligonucleotides were obtained from Sigma-Aldrich. Lyophilized DNA was pelleted
by brief centrifugation, dissolved in the required volume of sterile water to give a

final concentration of 100uM and stored at -20°C.

PCR amplification from genomic DNA or plasmid templates

General PCR reactions were carried out using a Peltier Thermal Cycler PTC-200 (MJ
Research) using conditions as follows: 50ul reaction volumes containing 100ng
template DNA (yeast genomic DNA or purified plasmid DNA), 20pmoles each
primer, 1x High Fidelity Phusion PCR buffer (Finnzymes), 0.2mM each dATP,
dCTP, dGTP and dTTP (TaKaRa) and 1 unit Phusion DNA polymerase (Finnzymes).
Standard cycling conditions were 30 cycles of 95°C (2 min), 95°C (30 sec), 50°C (30
sec), 72°C (2 min), 72°C (2 min) where the first and last steps were included only in
the first and last cycles respectively. Modifications were made where necessary. For
colony PCR from yeast cultures, please see Yeast Manipulation. PCR products were
purified after amplification using a High Pure PCR kit (Roche) according to the

manufacturer’s instructions.

61



Agarose gel electrophoresis

0.8% agarose gels were prepared in TAE (40mM tris-acetate, 1ImM EDTA, pH 8.0)
containing 0.5pug ml™ ethidium bromide. DNA was loaded in 1x DNA loading buffer
(1.5% Ficoll, 20mM Tris HCI pH 7.5, ImM EDTA, 0.1% Orange G, 0.1% Xylene
Cyanol) and gels run at 70V in TAE until the desired separation was reached. For
analysis of PCR reactions, 2ul samples were run and visualised using a UV
transilluminator (BioRad). For cloning reactions, 200ng cleaved backbone or insert
DNA was run and visualised using a Dark Reader (Clare Chemical Research),
followed by bands excision and DNA purification into a final volume of 50ul using a
High Pure PCR kit (Roche). For colony PCR, 10ul samples of each reaction were run

and visualised using a UV transilluminator (BioRad).

Enzymatic reactions

Restriction endonucleases and T4 DNA ligase were obtained from NEB and used
with buffers and protocols supplied with the enzymes. Restriction digests were
generally carried out for 1 hour at the specified optimal temperature. DNA ligations
were carried out for 2 hours at room temperature or overnight at 16°C. For cloning,
200ng backbone or insert DNA were cleaved with the relevant restriction
endonucleases and purified by agarose gel electrophoresis as described above. 2pl
backbone and 6ul insert DNA were ligated in a final reaction volume of 20ul and half

of the total DNA transformed into E. coli strain DH5q.
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Sequencing
Sequencing reactions were performed using a BIG DYE ABI PRISM Terminator
Cycle Sequencing Ready Reaction Kit according to the manufacturers instructions,

using appropriate oligos of 20bp length.

2.2 E. Coli manipulation

Cell growth

Cells were grown in suspension in LB (0.5% bacto-tryptone, 0.25% bacto-yeast
extract, 170mM NaCl, pH7.0) at 37°C, or 24°C for protein expression. For solid
phase growth, LB was supplemented with 2% agar. Medium was obtained from the
Cancer Research UK cell production facility. For selective growth, medium was
supplemented with ampicillin (100pg ml™), kanamycin (50ug ml™) or

chloramphenicol (25pg ml™). 1000x antibiotic stocks were stored at -20°C.

Transformation

Competent cells were prepared as follows. E. coli strain DH5a. was freshly streaked
from frozen stocks and 100ml cultures grown to ODssg 0.4 in v broth (0.5% yeast
extract, 2% tryptone, 10mM KCI, 20mM MgSQ,). Cells were pelleted at 3000rpm,
4°C for 10 minutes and re-suspended in 33ml ice-cold solution RF1 (100mM RbCI,

50mM MnCl,, 30mM potassium acetate pH 7.5, 15mM CaCl,, 15% wi/v glycerol, pH
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5.8 with acetic acid, filtered). Cells were incubated on ice for 10 minutes before re-
pelleting and resuspension in 8ml ice-cold solution RF2 (10mM MOPS pH 6.8,
10mM RbCI, 10mM KCI, 100mM CaCl,, 15% w/v glycerol, pH 6.8 with NaOH,
autoclaved). Cells were incubated on ice for a further 10 minutes before aliquoting in
200ul fractions and freezing at -80°C. Competent E. coli of strain BL21 RIL were a
gift of D. Booze. Cells were transformed by thawing 70ul aliquots of competent cells
on ice and incubating with DNA (10ul ligation reaction or 100ng purified plasmid
DNA) on ice for 30 minutes. Cells were heat shocked at 42°C for 90 seconds, cooled
on ice and 1ml LB medium added. Cells were grown at 37°C for 1 hour before

pelleting and plating on selective LB.

Plasmid DNA preparation

Plasmid DNA was amplified by the growth of 1.5 ml cultures of cells overnight in
selective LB. Cells were pelleted by centrifugation at 3000g for 3 minutes and
plasmids purified using a Mini-Prep kit (QIAGEN) according to the manufacturer’s

instructions.

Protein expression

Protein expression vectors were transformed into E. coli strain BL21 RIL. Cultures
were grown to a density of approximately ODsg5=0.5 and protein expression induced
by the addition of 1mM IPTG to the medium. For verification of protein expression,
500ul samples were taken from a 10ml culture growing at 37°C at 1 hour time points
for 5 hours after induction. Cells were pelleted at 13,000rpm for 1 minute and
resuspended in 200ul Laemmli buffer. Samples were boiled for 10 minutes,10pl

aliquots separated by SDS-PAGE and proteins visualised by Coomassie staining. For
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batch purification, 1 litre cultures were grown at 24°C and protein expression induced
for 16 hours overnight.

Extract production

Cells were pelleted by centrifugation at 4000rpm for 10 minutes and resuspended in
25ml lysis buffer (50mM Tris HCI, pH 7.5, 1M NaCl, 0.05% NP-40, 1ImM EDTA,
2mM Bmercapto-ethanol (BME), 10% w/v glycerol) per 1 litre of cell culture. One
Complete Protease Inhibitor tablet (Roche) was dissolved in 500ul sterile water and
added to the cell suspension before lysing the cells by sonication for three 30sec
intervals, incubating for 1 minute on ice between each cycle. Lysed cells were
centrifuged in a Beckman ultracentrifuge using a Ti70 rotor at 50,0009 for one hour.
Soluble cell extract was decanted from pelleted cell debris and used for subsequent

protein purification steps.

2.3 Yeast manipulation

Cell Growth

Cells were grown in suspension in YP (1% yeast extract, 2% bacto-peptone)
supplemented with 2% glucose, raffinose or galactose. Temperatures were 30°C for
wild type, or 24°C for temperature-sensitive strains. For solid phase growth, medium
was supplemented with 2% agar. For selective growth, drop-in medium (2% agar, 1x
yeast nitrogen base, 2% glucose) was supplemented with the appropriate amino acids;
adenine, 5mg ml™, uracil 2mg ml™, leucine, 10mg ml™, tryptophan 2mg ml™,

histidine 10mg mlI™. Cell cycle arrest was achieved in exponentially growing cultures
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using a factor (G1 arrest) at 5ug ml™, or 100ng ml™ for ABar1 strains, or Nocodazole
(mitotic arrest) (Sigma Aldrich) at 5ug ml™. « factor was obtained from the Cancer

Research UK peptide synthesis facility.

Transformation

10ml cultures of cells were grown to a density of 1x10 cells mI™ in YP supplemented
with 2% glucose. Cells were pelleted by centrifugaion at 3000rpm for 2 minutes at
room temperature and washed in 10mls of sterile water. Cells were re-pelleted,
resuspended in 1ml sterile water, transferred to an Eppindorf tube and pelleted once
more by brief centrifugation in a benchtop microfuge. Cells were washed in 1ml
sterile LI/TE (0.1M lithium acetate pH 7.5, 10mM Tris HCI pH7.5, 1ImM EDTA)
prepared fresh from 10x stocks, re-pelleted and finally re-suspended at a density of
2x10° cells mI™ in 50pl Li/TE. 5pl herring sperm DNA (10mg ml™ in sterile water,
phenol chloroform extracted and sonicated to shear into approximately 2kb
fragments) and 1-2ug plasmid or PCR product DNA were added to the cells, followed
by mixing and addition of 300ul Li/PEG (0.1M lithium acetate pH7.5, 10mM Tris
HCI pH7.5, ImM EDTA, 40% w/v polyethylene glycol (PEG) 3550), prepared fresh
from stock solutions. Cells were mixed vigorously and incubated at 30°C with
agitation for 30mins. DMSO was added to a final concentration of 10% and heat
shock was carried out at 42°C for 15mins. Cells mixed once more, cooled on ice and
pelleted by brief centrifugation in a microfuge. Transformed cells were resuspended
in 40ul TE and plated on appropriate selective medium. For transformation with
pSS1 and pSS2, plasmids were first linearised in the ura3 region with Ncol restriction

endonuclease for 1.5 hours.
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Colony PCR

For verification of DNA integration into the genome, PCR amplification of the
transformed locus was carried out directly from selections of yeast colonies growing
on selective plates. Small quantities of cells were transferred using a Gilson pipette
tip to 20ul reaction vessels containing 1x ExTaq buffer (TaKaRa), 20pmoles each
primer and 0.2mM each dATP, dGTP, dCTP and dATP. 2 units of ExTaq (TaKaRa)
were added and PCR carried out using a Peltier Thermal Cycler PTC-200 (MJ
Research) for 34 repeats of the following cycling conditions: 94°C (2 min), 94°C (2
min), 55°C (2 min), 72°C (2 min), 72°C (2 min). The first and last steps were
included in only the first and last cycles, respectively. 10ul samples of each reaction

were analysed directly by agarose gel electrophoresis.

TCA protein extraction

Whole cell protein extractions were carried out by TCA precipitation (Foiani et al.,
1994). Samples of approximately 1x10° cells were collected and pelleted by
centrifugation at 3000rpm for 2 minutes. The cell pellet was washed in 1ml sterile
water, transferred to an Eppindorf tube and re-pelleted by brief centrifugation in a
benchtop microfuge. Cells were finally resuspended in 200ul 20% tri-chloroacetic
acid (TCA). An equal volume of 0.2mm diameter sterilized glass beads were added
and cells broken open by vortexing for 1 minute. Supernatent was recovered and
beads washed twice in 5% TCA, adding each wash to the previous supernatent.
Precipitated proteins were pelleted by centrifugation at 3000rpm for 10 minutes,

supernatent discarded and proteins resuspended in 200ul 1x Laemmli buffer. pH was

neutralised with 5-10ul 2M Tris base. Samples were boiled for 10 minutes and cell



debris pelleted by centrifugation at 3000 rpm for 10 minutes. The supernatent was
transferred to a fresh Eppindorf tube and 10ul samples analysed by SDS-PAGE and

Western blotting.

Genomic DNA preparation

For preparation of genomic DNA, a 10ml culture was grown to a density of 2x10’
cells mI™, cells pelleted by centrifugation at 3000rpm for 2 minutes, transferred to an
Eppindorf tube and re-pelleted by brief centrifugation in a benchtop microfuge. Cells
were resuspended in 200ul lysis buffer (L00mM NaCl, 10mM Tris HCI pH 8.0, 1mM
EDTA) and 200ul 25:24:1 phenol:chloroform:isoamyl-alcohol added. Cells were
broken open by vortexing for 30 seconds in the presence of a 200ul volume of 0.2mm
diameter sterile glass beads. 200ul TE was added (100mM Tris HCI pH 8.0, 1mM
EDTA) and mixed by vortexing again for 5 seconds. The mixture was centrifuged for
2 mins at 13,000 rpm and the aqueous phase transferred to a fresh Eppindorf tube.
DNA was ethanol precipitated by the addition of two volumes of 100% ethanol and
re-centrifuging for 2 minutes at 13,000 rpm. The DNA pellet was washed in 70%
ethanol, allowed to dry at room temperature and resuspended in 50ul TE with 50ug
ml™* RNaseA. RNA was degraded by incubation at 37°C for 1 hour and DNA stored

at -20°C.

Protein expression

For induction of CIb5 and Dbf4 expression in strains ySS4, ySS5 and ySS9,
asynchronous cultures were grown to a density of approximately 2x10’ cells mI™ YP

supplemented with 2% raffinose, and 2% galactose added for 2.5 hours before extract
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production as described below. For ORC and Cdc6 overexpression in a G1 arrest of
strain ySC17, cells were grown to 2x10’ cells mI™ in YP supplemented with 2%

glucose, arrested in G1 phase with o factor for 4 hours, pelleted by centrifugation at
4000rpm for 20 minutes and medium replaced with fresh YP containing o factor and

2% galactose. Protein expression was allowed to continue overnight at 24°C.

Extract preparation

For protein purification, extracts were prepared as follows. Cells were pelleted by
centrifugation at 4000rpm for 20 minutes, washed twice in 500ml wash buffer (25mM
Hepes KOH pH7.5, 0.8M sorbitol) followed by resuspension in 50ml of lysis buffer
(25mM Hepes KOH pH7.5, 100mM NaCl, 2mM CaCl,, 0.02% NP-40, 10% w/v
glycerol). Cells were re-pelleted by centrifugation at 3500 rpm for 5 minutes and
supernatent discarded. Lysis buffer was added containing a mixture of 5x protease
inhibitors and 10mM BME, to a total of one-quarter of the volume of the cell pellet.
1x protease inhibitors consisted of 1 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride
hydrochloride (AEBSF), 2 ug/ml aprotinin, 1 mM benzamidine hydrochloride, 10
ug/ml leupeptin, and 1 pg/ml pepstatin A. Cells were flash frozen by dripping the
cell suspension into liquid nitrogen using a Gilson pipette. Frozen cells were broken
open using a Freezer Mill (model 6850, Glen Creston) and ground cell powder
thawed on ice. An equal volume of lysis buffer supplemented with 1x protease
inhibitors and 2mM BME was added and salt concentration raised to 300mM NaCl to
extract chromatin bound proteins. Extract was rotated at 4°C for 30 minutes before
clarification by ultracentrifuagtion at 50,000rpm for 1 hour at 4°C (Optima L-100 XP

Ultracentrifuge, Beckman Coulter). Aqueous phase extract was separated from cell



debris and the lipid phases and used immediately for subsequent purification steps.
For ySC17 extract preparation for the loading assay, the protocol followed was as
above, with the following modifications. Lysis buffer was (100mM Hepes KOH pH
7.5, 0.8M sorbitol, 50mM potassium glutamate, 10mM MgCl, and 2mM EDTA), and
after thawing powdered cell extract, the twofold dilution and chromatin extraction

steps were omitted. Extract was aliquoted into 100ul fractions, flash frozen in liquid

nitrogen and stored at -80°C.

2.4 Insect cell manipulation and baculovirus production

Cell growth

Sf9 and Hi5 cells were grown at 24°C in Grace’s medium (Invitrogen) supplemented
with 10% Fetal Bovine Serum (FBS). Cells at appropriate densities on plates or in

suspension were obtained from the Cancer Research UK cell production facility.

Baculovirus production

Virus production utilised the Invitrogen Bac-to-Bac system (Invitrogen) and was
carried out according to manufacturers’ instructions. Briefly, Cdc7 was cloned into
pFastBacl between EcoRI and Stul restriction sites, and Dbf4 into pFastBacHTA
between BamHI and Sall restriction sites to create a 6x-His tagged construct.
Plasmids were transformed into DH10Bac cells (Invitrogen) which were then plated
on solid L-agar containing tetramycin (10pg ml™), kanamycin (50ug mi™),

gentomycin (7 ug ml™), XGal (100ug ml™) and IPTG (40pg mi™). White colonies
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were selected and Bacmids purified according to the specified protocol.
Recombinants were screened for correct recombination by PCR amplification of the
bacmid template using M13 forward and reverse primers. Bacmid DNA was used to
transfect Sf9 cells using Cellfectin Reagent (Invitrogen) according to the following
protocol. 1ug bacmid DNA was combined with 6ul cellfectin in a total volume of
200ul Grace’s medium, unsupplemented (Invitrogen). After incubation for 15min at
room temperature, transformation mixture was added to Sf9 cells in 6 well plates
containing 1x10° cells per well, freshly washed into 800ul unsupplemented Grace’s
medium. DNA was incubated with the cells for 5 hours at 24°C, after which time
medium was removed and replaced with 2ml Grace’s medium supplemented with
10% FBS. Transfected cells were allowed to grow for 96 hours, after which time the
medium was removed and stored in the dark at 4°C as viral stock P1. P2 amplified
viral stock was created by infection of a 30ml suspension culture of Sf9 cells at 1x10°
cells mI™* with 1ml P1 stock for 72 hours at 24°C. P3 amplified viral stock was
created by infection of a 300ml suspension culture of Sf9 cells at 1x10° cells mI™ for
72 hours at 24°C. Cells were pelleted and medium stored in the dark at 4°C as final

viral stock P3.

Protein expression

Protein expression was carried out in Hi5 cells, and optimal conditions were
determined empirically. Titrations of 1, 2, 5, 10 and 50ul of viral stock were
incubated with Hi5 cells in 24 well plates containing 6x10° cells per well for 24, 48,
72 or 96 hours at 24°C. After the required incubation, medium was removed and

cells resuspended in 200ul Laemmli buffer. 10ul samples were separated by SDS-
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PAGE and proteins visualised by Coomassie staining. Final batch purifications were
performed in sets of twenty 150mm plates containing Hi5 cells at approximately 60%
confluence. 300ul Dbf4 virus and 1200ul Cdc7 virus were mixed and incubated with

the cells for 96 hours.
Extract production

Proteins were purified from a nuclear extract prepared as follows. Cells were washed
from the plates into ice-cold PBS (137mM NacCl, 2.7mM KCI, 10mM NayPOy,
1.7mM KH,POy,, pH 7.4) containing in addition 10mM MgCl,. Cells were
centrifuged at 3000rpm for 10 minutes, washed in ice-cold PBS containing 10mM
MgCl,, repelleted and resuspended in 10 volumes of hypotonic buffer (25mM Hepes
KOH pH 7.5, 15mM NaCl, 2mM MgCl,, 0.1mM EDTA, 2mM B-ME, 0.2mM PMSF
and 1x Complete Protease Inhibitor cocktail (Roche)). Cells were incubated on ice
for 15 minutes and broken open using an ice cold dounce homogenizer using a B
pestle. Supernatent was transferred to a 50ml falcon tube and the salt concentration
adjusted to 100mM NaCl. Nuclei were pelleted by centrifugation at 3,500rpm for 15
minutes, supernatent discarded and nuclei resuspended in (25mM Hepes KOH pH
7.5, 100mM NaCl, 2mM MgCl,, 0.1mM EDTA, 2mM B-ME, 0.2mM PMSF and 1x
Complete Protease Inhibitor cocktail (Roche)). One tenth volume of a cold saturated
solution of ammonium sulphate was added and rotated for 30 minutes at 4°C.
Nuclear extract was spun at 50,000 rpm for one hour in an ultracentrifuge (Optima L-
100 XP, Beckman Coulter). The pellet was discarded and proteins in the supernatent
precipitated with 0.3g ml™ solid ammonium sulphate. Precipitate was pelleted by
centrifugation at 12,000rpm for 15 minutes, supernatent discarded and proteins
resuspended in purification buffer (25mM Tris HCI pH 7.5, 500mM NacCl, 0.05% NP-

40, 5mM imidazole, 10% glycerol, 2mM BME, 1x Protease Inhibitor Cocktail



(Roche)). If necessary, precipitated proteins were stored overnight at -80°C before

resuspension.

2.5 Protein analysis

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

10% polyacrylamide gels were prepared according to (Sambrook & Russell, 2000)
using a Mini-Protean 11 gel system (BioRad) or Anachem MV2-DC gel system
(Anachem). An appropriate volume of concentrated Laemmli buffer (Sambrook &
Russell, 2000) was added to samples to make a final concentration of 1x (50mM Tris
HCL pH 6.8, 2% SDS, 0.1% bromophenol blue, 10% glycerol) before boiling for 10
minutes. Proteins were loaded onto gels polyacrylamide and run at 200V until the
desired separation had been achieved. Benchmark markers (Invitrogen) were used to
determine protein sizes by silver or Coomassie staining (0.5 or 5ul respectively), or

Benchmark Pre-stained markers (10ul) (Invitrogen) for Western blotting.

Western blotting

Following SDS-PAGE, gels were equilibrated in transfer buffer (48mM Tris base,
39mM glycine, 0.0375% SDS, 20% methanol) and transferred to Hybond ECL
nitrocellulose membrane (Amersham) using a semi-dry blotter (Owl) at 0.5A for 30
minutes. Where necessary, protein was visualised on the membrane by staining with

Ponceaus (2% w/v PonceausS, 3% w/v tri-chloroacetic acid), incubating in stain
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solution for 1 minute followed by destaining in water until protein bands were visible.
Membranes were blocked in TBS-T (25mM Tris HCI pH 8, 140mM NaCl, 2.5mM
KCI, 0.1% Tween-20, 0.2% NP-40) containing 5% dried milk (Marvel) for 30
minutes at room temperature followed by incubation with the appropriate primary
antibody in TBS-T containing 5% milk for 1 hour at room temperature or overnight at
4°C overnight. Membranes were washed for 10 minutes in TBS-T and incubated with
horseradish peroxidase (HRP) conjugated secondary antibody in TBS-T containing
5% milk for one hour at room temperature, unless the primary antibody was already
coupled to HRP. Membranes were given three 10 minute washes in TBS-T followed
by visualisation HRP-conjugated antibodies with Enhanced Chemiluminesence (ECL)

reagents (Amersham) according to the manufacturer’s instructions.

Protein staining

Proteins were visualised after SDS-PAGE by silver staining or Coomassie staining
according to the following protocols. For silver staining, gels were washed
sequentially for 15 minutes each in 50% methanol, 5% methanol and 32uM DTT.
Gels were then rinsed in a solution of 1mg ml™ silver nitrate followed by a further 15
minute incubation in the same. Gels were rinsed three times in sterile H,O followed
by a solution of 300uM sodium carbonate supplemented with 0.02% formaldehyde.
Gels were then incubated in the same until protein bands were visible. Staining was
quenched by the addition of crystalline citric acid and gels washed thoroughly in H,O.
For Coomassie staining, proteins were first fixed for 20 minutes in a solution of 50%
methanol and 10% acetic acid, followed by rinsing and incubation in H,O for 10
minutes. Gels were then incubated in GelCode Blue Stain Reagent (Thermo

Scientific) for 30 minutes at room temperature, followed by washing in H,O.
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%2p visualisation

Radiolabel incorporation into dried gels or peptide array membranes were visualised
as specified either by autoradiography or using a phosphorimager. For
autoradiography, gels were exposed for the appropriate time to X-ray film
(Amersham Hyperfilm MP, GE Healthcare) in a film cassette at -80°C. For
phosphorimager analysis, gels were exposed to a phosphorscreen (Molecular
Dynamics) for varying times between 30 minutes to 16 hours before analysis using a
STORM 840 phosphorimager (Molecular Dynamics). Where necessary,
phosphorimager results were further quantified using ImageQuant software

(Molecular Dynamics).

Mass spectrometry

For analysis of purified ORC and pre-replicative complexes, proteins were separated
on a NUPAGE 3-8% Tris-Acetate Gel (Invitrogen) run in 1x NuPAGE Tris-acetate
SDS running buffer (Invitrogen) using X-SureLock gel apparatus (Invitrogen). Gels
were stained using GelCode Blue Stain Reagent (Thermo Scientific) without prior
fixing of proteins. Sample containing lanes were each cut into 30 equally sized slices
which were stored in 500ul sterile H,O and analysed by electrospray ionization mass

spectrometry by the Cancer Research UK Protein Analysis facility.

2.6 Protein purification methods
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TAP tag purification

Yeast extracts for purification of TAP tagged proteins were prepared as described
above. A 200l bed volume of calmodulin affinity resin (Stratagene), preequilibrated
in binding buffer (25mM Hepes KOH pH 7.5, 100mM NaCl, 2mM CacCl,, 0.02% NP-
40, 10% w/v glycerol), was added per 10ml of extract. Extract was rotated at 4°C for
3 hours, after which time beads were collected in a gravity flow column (BioRad,
Poly-Prep) and washed twice with 10ml binding buffer. Proteins were eluted in five
200ul aliquots of elution buffer (25mM Hepes KOH pH 7.5, 100mM NacCl, 0.02%
NP-40, 10% w/v glycerol, ImM EDTA, 1mM EGTA). Elution fractions were
combined in a non-stick Eppendorf tube and a 50ul bed volume of IgG sepharose
beads (GE Healthcare), preequilibrated in elution buffer, was added. Beads were
rotated overnight at 4°C, then collected in a gravity flow column and washed twice
with 3ml calmodulin affinity resin elution buffer. Beads were then resuspended in a
final volume of 500ul calmodulin affinity resin elution buffer in a non-stick
Eppindorf tube and 6x-His tagged TEV protease (Cancer Research UK peptide
synthesis facility) added at a concentration of 0.1mg ml™. Cleavage was allowed to
proceed for 4 hours at 4°C. Beads were collected in a gravity flow column and flow
through containing eluted proteins collected. Beads were rinsed with a further 200ul
buffer. TEV was removed by application of the eluate to a 200ul bed volume Ni-
NTA agarose (Qiagen). Samples were taken at each step of the purification and
diluted twofold in Laemmli buffer for analysis by SDS-PAGE, silver staining and

Western blotting.

HisTrap purification
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Extracts containing 6xHis tagged proteins were applied to a 1ml HisTrap column (GE
Healthcare) using an AKTA-Prime FPLC machine (GE Healthcare). The column was
washed extensively in H,O followed by binding buffer (25mM TrisHCI pH 7.5,
500mM NaCl, 5mM imidazole, 0.05% NP-40, 10% glycerol, 2mM BME, 0.2mM
PMSF). Extract was applied at a flow rate of 0.5ml min™, followed by manual
washing with wash buffer (25mM TrisHCI pH 7.5, 500mM NaCl, 40mM imidazole,
0.05% NP-40, 10% glycerol, 2mM BME, 0.2mM PMSF) until weakly binding
contaminants were observed by UV absorbance to be washed away. Bound proteins
were then eluted over a 20 ml gradient from 40mM to 1M imidazole, continuously
collecting 500l fractions. Peak protein elution fractions were determined by UV
absorbance, samples diluted twofold in 2x Laemmli buffer and analysed by SDS-
PAGE followed by Coomassie staining. Fractions containing the protein of interest
were pooled and dialysed where necessary into an appropriate buffer for subsequent
purification steps. Columns were subsequently washed back into H,O and stored at

4°C.

GSTrap purification

Extracts containing GST tagged proteins were applied to a Iml GSTrap column (GE
Healthcare) using an AKTA Prime FPLC machine (GE Healthcare). The column was
washed extensively in H,O followed by binding buffer (25mM Hepes KOH pH 7.5,
500mM NacCl, 0.05% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA, 2mM BME,
0.2mM PMSF) before application of cell extract at a flow rate of 0.5ml min™. The
column was washed in a further 10ml of binding buffer before stepping into an
elution buffer (25mM Hepes KOH pH 8, 500mM NacCl, 0.05%, 20mM reduced

glutathione, NP-40, 10% glycerol, ImM EGTA, 1mM EDTA, 2mM BME, 0.2mM
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PMSF). Fresh elution buffer was made before each purification, and pH adjusted
where necessary. Ten 500ul fractions were collected and samples diluted twofold in
2x Laemmli buffer. Proteins were analysed by SDS-PAGE followed by Coomassie
staining, and peak fractions containing the protein of interest were pooled and
dialysed where necessary into an appropriate buffer for subsequent purification steps.
Columns were subsequently washed extensively with elution buffer followed by H,O,

and stored at 4°C.

Gel filtration

Gel filtration purification steps were carried out using a Superdex 200 HR 10/30 (GE
Healthcare) using an AKTA Prime FPLC machine (GE Healthcare). Proteins were
first concentrated into 500ul using a Microcon Ultracel YM-10 (Millipore) filter
device in a benchtop microfuge. The gel filtration column was washed into elution
buffer (25mM Hepes KOH pH 7.5, 500mM NaCl, 0.05% NP-40, 10% glycerol, 1mM
EGTA, ImM EDTA, 2mM BME, 0.2mM PMSF), sample applied and proteins
collected in 500ul fractions over 1 column volume (24ml). Peak protein elution
fractions were determined by UV absorbance, samples diluted twofold in 2x Laemmli
buffer and analysed by SDS-PAGE followed by Coomassie staining. Fractions
containing the protein of interest were dialysed into a buffer containing (25mM Hepes
KOH pH 7.5, 100mM NacCl, 0.05% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA,

2mM BME, 0.2mM PMSF), flash frozen in liquid nitrogen and stored at -80°C.

lon exchange chromatography



For purification by ion exchange chromatography, proteins were dialysed into buffer
containing 25mM Hepes KOH pH 7.5, 100mM NaCl, 0.05% NP-40, 10% glycerol,
1mM EGTA, 1ImM EDTA, 2mM BME, 0.2mM PMSF and applied to a 1ml Q
sepharose column (Amersham Pharmacia) using an AKTA Prime FPLC machine (GE
Healthcare) according to the manufacturers’ instructions. The column was washed
extensively in H,O followed by binding buffer, and protein applied at a flow rate of
0.5 ml min™* followed by washing with 10ml of binding buffer. Bound protein was
eluted over a 10ml gradient from 100mM to 1M NacCl, collecting 500ul fractions.
Peak protein elution fractions were determined by UV absorbance, samples diluted
twofold in 2x Laemmli buffer and analysed by SDS-PAGE followed by Coomassie
staining. Fractions containing the protein of interest were dialysed into a buffer
containing 25mM Hepes KOH pH 7.5, 100mM NaCl, 0.05% NP-40, 10% glycerol,
1mM EGTA, 1ImM EDTA, 2mM BME, 0.2mM PMSF, flash frozen in liquid nitrogen
and stored at -80°C. For purification of A phosphatase treated Cdc7-Dbf4, samples
were applied to a 100ul MonoQ column using a SMART FPLC machine (Pharmacia).
Protein was eluted over a 2ml gradient between 100mM and 1M NacCl, collecting

50ul fractions which were analysed as above.

2.7 Peptide array methods

Membrane synthesis and background detection
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Membranes were designed to specification and synthesises by the Cancer Research
UK peptide synthesis facility using and Intavis Multipep peptide synthesiser (Intavis
Bioanalytical Instruments AG, Cologne, Germany) on PEG derivatized cellulose
membranes (Intavis). For detection of background binding of *P YATP, peptides
were dissolved in the Cdk2-CyclinA reaction buffer (25mM Hepes KOH pH 7.5,
100mM potassium acetate, 0.05% NP-40, ImM EGTA, 1mM EDTA, 10% glycerol)
for 2-3 hours. When all peptides were seen to have dissolved, buffer was removed
and replaced with 2.5ml (a sufficient volume to cover the membrane surface) fresh
buffer per membrane, containing in addition 5mM MgCl,, 10uM ATP and 10uCi
%2py ATP per membrane. Membranes were covered to prevent evaporation and
incubated for 1 hour at room temperature. Membranes were subsequently rinsed in an
excess of reaction buffer, then incubated overnight at room temperature in 0.5%
phosphoric acid in order to compete away non-specifically bound ATP. Membranes
were then given three further washes in 0.5% phosphoric acid, rinsed in 96% ethanol
and allowed to dry at room temperature. Radiolabel was visualised using a
phosphorimager (STORM 840, Molecular Dynamics) after exposure overnight to a

phosphor screen (Molecular Dynamics).

Cdk2-CyclinA phosphorylation

Peptides were dissolved again in reaction buffer as described above. Buffer was
removed and replaced with 2.5ml per membrane fresh buffer containing in addition
0.5uM Cdk2-cyclinA, 5mM MgCl,, 10uM ATP and 10uCi *2PyATP per membrane.
Vessels were covered and reactions allowed to proceed at room temperature for 1

hour. The reaction was stopped by the addition of an excess of 1% SDS and heating
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to 65°C for 1 hour to denature and remove membrane bound CDK, before incubating
overnight in 0.5% phosphoric acid. Membranes were then subjected to three further
washes in 0.5% phosphoric acid, then sequential washes in methanol at 50%, 25%,
12.5% and 6.25% to remove SDS from peptide bonds. Membranes were rinsed in
96% ethanol and allowed to dry at room temperature before visualisation of radiolabel
as above. Radiolabel incorporation into each spot on the array was quantified using

ImageQuant software (Molecular Dynamics).

A phosphatase treatment and data analysis

Phosphorylated peptides were re-dissolved in A phosphatase buffer (50mM Tris HCI
pH 7.5, 100mM NacCl, 0.1mM EGTA, 2mM DTT) followed by incubation in 2.5ml
per membrane of the same containing in addition 2mM MnCI;, and 30,000U per
membrane A phosphatase (NEB). Membranes were washed in 1% SDS for 1 hour at
65°C, followed by multiple washes in sterile H,O and sequential methanol washes as
described above. Membranes were rinsed in 96% ethanol, dried and radiolabel
visualised and quantitated as above. Signal at each spot following phosphatase
treatment was subtracted from signal prior to phosphatase treatment. Final
background normalisation was achieved by subtraction of average levels of
background seen at sites containing no peptide. The final data set was plotted as heat

maps using software designed by the Cancer Research UK bioinformatics group.

Cdc28-ClIb5 and Cdc7-Dbf4 phosphorylation
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For Cdc28-CIb5 phosphorylation, radiolabel remaining on the arrays after
phosphorylation with Cdk2-CyclinA was allowed to decay to negligible levels over a
six month period. Phosphorylation reactions, phosphatase treatment and data analysis
was carried out as described for Cdk2-CyclinA with a slight variation in buffer
conditions (25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl,, 100uM ATP,
1mM EGTA, 1mM EDTA, 0.05% NP-40, 10% glycerol, 10uCi **P yATP per
membrane). 200ng purified Cdc28-Clb5 was used per membrane. Reactions were
allowed to proceed for 1 hour at 30°C. For phosphorylation with Cdc7-Dbf4, fresh
synthesised membranes were used. Peptides were dissolved in the reaction buffer
described for Cdc28-Clb5, and approximately 33ug Cdc7-Dbf4 used per membrane.
Reactions were allowed to proceed for 1 hour at 30°C. ATP was added to each 2.5ml
aliquot of buffer immediately prior to addition to the membrane in order to prevent
Dbf4 autophosphorylation before peptide phosphorylation. In each case, membrane
washing procedures, A phosphatase treatment and data analysis were as described

above.

Cdk2-cyclinA stimulation of Cdc7-Dbf4 phosphorylation

Arrays were phosphorylated with Cdk2-cyclinA as described above, but in the
absence of %P yATP. Membranes were subsequently washed in 1% SDS at 65°C for
1 hour followed by an overnight incubation in 0.5% phosphoric acid and sequential
washes in methanol as described above. Buffer was then changed to that described
for Cdc7-Dbf4 phosphorylation, and phosphorylation carried out as described in the

presence of 3P yATP.
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Cdc7-Dbf4 binding assays

Peptides were solubilised in PBS-T containing 1% BSA (137mM NacCl, 2.7mM KCl,
10mM NayPOg4, 1.7mM KH2PO4, pH 7.4 with HCI, 0.5% NP-40, 0.1% Tween-20, 1%
BSA), then incubated for 1 hour at room temperature in 2.5ml per membrane of the
same containing in addition 10ug cdc7-Dbf4. Membranes were subsequently washed
3 times for 15 minutes per wash in PBS-T followed by a further incubation overnight
at 4°C in 10ml per membrane PBS-T 1% BSA and anti-Dbf4 antibody (CR-UK) or
HRP-conjugated anti-His antibody (AbCam) at a 1:1000 dilution. Membranes were
washed briefly in PBS-T, and for detection of Dbf4 antibody, incubated for 1 hour at
room temperature in 10ml per membrane PBS-T containing HRP-conjugated
ProteinA. Membranes were washed three times for 15 minutes per wash in PBS-T,
and HRP-conjugated antibodies detected using ECL reagents (Amersham) according

to the manufacturers instructions.

2.8 Loading assays

DNA production and binding to streptavidin beads

Biotinylated DNA for loading assays was prepared by amplification of 1kb fragments

of DNA containing wild type or A box linker substitution DNA from plasmids
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pars/WTA and pARS/858-865 (Marahrens and Stillman, 1992) respectively using
primers RSP23 (AGCGGATAACAATTTCACACAGG) and ARS13’bio (biotin-
CTGTTTTGTCTTGGAAAAAAAGCACTACC), where ARS13’bio was biotinylated
at the 5’ end. 8 independent 50ul PCR reactions were carried out with each template,
products purified into a final volume of 200ul TE (10mM Tris HCI pH 7.5, 1ImM
EDTA). 600ul suspended volume of magnetic streptavidin beads (Dynabeads M-280
Streptavidin, Invitrogen) were washed in a buffer containinglOmM Tris HCI pH 7.5,
1mM EDTA and 2M NacCl, then resuspended in 200ul of the same. A magnetic rack
was used to isolate the beads between wash steps. DNA was added and beads rotated
for 2 hours at room temperature. DNA bound beads were subsequently washed three
times in a buffer containing 10mM Hepes KOH pH 7.5, 1ImM EDTA and 1M
potassium acetate, then given three further washes in a buffer containing 10mM
Hepes KOH pH 7.5 and 1ImM EDTA. Beads were finally resuspended in 200l of the
same. 10ul samples of PCR products and DNA bound to beads (0.5% of the total)
were analysed side by side by agarose gel electrophoresis to ensure efficient binding
of DNA to the beads, after first denaturing the biotin-streptavidin interaction by

resuspending the bead sample in 1% SDS and boiling for 10 minutes.

Loading assays

Loading assays were performed using ySC17 extract prepared as described above.
10ul aliquots of DNA beads were taken per reaction and 7.5ul of buffer removed.
17.5ul of 2x assay buffer added to make a final concentration of 50mM Hepes KOH

pH 7.5, 20mM magnesium acetate, 0.2mM EDTA, 0.1mM ZnCl,, 1.6mg mlI™
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poly(dIdC) (Sigma-Aldrich), 40uM creatine phosphate, creatine kinase, 20uM DTT,
6mM ATP and a 2x protease inhibitor mix (1x protease inhibitors were as specified
for ySC17 extract production). 20ul extract was added and incubated with agitation
at 24°C for 20 minutes. Beads were then washed three times in a buffer containing
50mM Hepes KOH pH 7.5, 300mM potassium glutamate, 10% glycerol, 5mM
magnesium acetate, ImM EDTA and 1ImM EGTA. Beads were subsequently
resuspended in 40ul Laemmli buffer, boiled for 10 minutes and 10ul aliquots
analysed by SDS-PAGE followed by silver staining and Western blotting. For
analysis of supernatants by Western blotting, a sample equivalent to 0.5ul of extract

was run.

Loading assay phosphorylation

Loaded DNA was washed as described above, then resuspended in an appropriate
volume of buffer to give a final volume of 18ul after kinase addition. Buffer
conditions were (25mM Hepes KOH pH 7.5, 100mM NacCl, 0.02% NP-40, 10%
glycerol, ImM EGTA, 1mM EDTA). For phosphorylation with Cdc7-Dbf4, 5ul
endogenously purified enzyme was used. For phosphorylation with Cdc28-Clb5, 1pul
endogenously purified enzyme was used. For phosphorylation in the absence of
exogenously added kinase, beads were resuspended directly into a final volume of
18ul. 2ul of a 10x concentration ATP, MgCl, mix was added to give final
concentrations of 100uM ATP, 5mM MgCl, and 5uCi 2P yATP per reaction.

Phosphorylation was allowed to proceed for 1 hour at 30°C. Beads were
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subsequently washed three times in reaction buffer and resuspended in a final volume

of 40ul Laemmli buffer.

2.9 Other experimental methods

Kinase assays

In general, kinase assays were performed in 20ul reactions, with buffer conditions,
reaction times, substrate and enzyme concentrations as specified below. In almost all
cases, control reactions were carried out in the absence of kinase. Reactions were
begun by the addition of a 2ul of a 10x concentration solution of ATP and MgCl,, and
stopped by the addition of an equal volume of 2x Laemmli buffer and boiling for 10
minutes. Histone H1 phosphorylation by Cdc28-ClIb5: 20ug histone H1, 5ul
(100ng) endogenous Cdc28-Clb5, (25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM
MgCl;, 100uM ATP, 0.02% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA, 0.1mg
ml™ BSA, 5uCi %P yATP per reaction), 20 minutes at 30°C. MCM subunit
phosphorylation by Cdc7-Dbf4: 2ug each Mcm2-7 subunit/Cdt1, 2ul (40ng)
endogenous Cdc7-Dbf4, (25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl,,
100pM ATP, 0.02% NP-40, 10% glycerol, 1mM EGTA, 1mM EDTA, 5uCi P

YATP per reaction) for 30 minutes at 30°C. Mcm2-N phosphorylation by
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phosphatase and mock treated baculovirus Cdc7-Dbf4: 0.5ug Mcm2-N with 100ng
phosphatase and mock treated enzyme respectively, (25mM Hepes KOH pH 7.5,
100mM NaCl, 5mM MgCl,, 100uM ATP, 0.02% NP-40, 10% glycerol, 1ImM EGTA,
1mM EDTA, 5uCi *P yATP per reaction), 30 minutes at 30°C. Timecourse of
Mcm2-N phosphorylation by baculovirus Cdc7-Dbf4: 5ug Mcm2-N with 0.8ug
Cdc7-Dbf4, (25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl,, 100uM ATP,
0.02% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA, 5uCi 2P yATP per
reaction), varying time periods at 30°C. Mcm2-N phosphorylation by baculovirus
Cdc7-Dbf4 after Cdc7-Dbf4 pre-phosphorylation: 5ug Mcm2-N with 0.4ug de-
phosphorylated Cdc7-Dbf4, (25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl,,
100pM ATP, 0.02% NP-40, 10% glycerol, 1mM EGTA, 1mM EDTA, 5uCi P
YATP per reaction), 10 minutes at 30°C. Pre-phosphorylation of Cdc7-Dbf4 was
achieved by adding Mcm2-N substrate to each reaction after the appropriate time
period. Mcm10 phosphorylation by baculovirus Cdc7-Dbf4: 10ug Mcm10 with 1ug
Cdc7-Dbf4, (25mM Hepes KOH pH 7.5, 1200mM NaCl, 5mM MgCl,, 100uM ATP,
0.02% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA, 5uCi *2P yATP per
reaction), 30 minutes at 30°C. Sld2, SId3 and Dpb11 phosphorylation by Cdc7-
Dbf4: 4ug Sld2, Sld3 or Dpb11 with 5ul (100ng) endogenous Cdc7-Dbf4, (25mM
Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl;,, 100uM ATP, 0.02% NP-40, 10%
glycerol, ImM EGTA, 1mM EDTA, 5uCi *2P yATP per reaction), 30 minutes at
30°C. Orcl phosphorylation by Myc tagged kinases: 2ul purified Orcl with the
indicated volume of normalised ProteinA beads containing the relevant kinase,
(25mM Hepes KOH pH 7.5, 100mM NaCl, 5mM MgCl,, 100uM ATP, 0.02% NP-40,

10% glycerol, ImM EGTA, 1mM EDTA, 5uCi *2P yATP per reaction), 1 hour at
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30°C. ORC phosphorylation: 400ng each complex, (25mM Hepes KOH pH 7.5,
100mM NaCl, 5mM MgCl,, 100uM ATP, 0.02% NP-40, 10% glycerol, ImM EGTA,

1mM EDTA, 5uCi **P yATP per reaction), 1 hour at 30°C.

A phosphatase treatments

For A phosphatase treatment of Cdc28-Clb5, 10ul (200ng) of enzyme purified from
ySS8 was diluted twofold into a final buffer containing 25mM Hepes KOH pH7.5,
200mM NacCl, 0.02% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA and 2mM
MnCl,. 40U of A phosphatase (NEB) was added and reactions allowed to proceed for
30 minutes at 30°C. Reactions were stopped by the addition of an equal volume of
Laemmli buffer and boiling for 10 minutes. One quarter of the total reaction was
separated by SDS-PAGE and analysed by silver staining. For Cdc7-Dbf4, essentially
the same procedure was followed but with 2ug of baculovirus purified Cdc7-Dbf4. To
purify phosphatase and mock treated Cdc7-Dbf4, 200ul aliquots were dialysed into
reaction buffer as above, 4000U A phosphatase added to the appropriate sample.
Reactions were allowed to proceed for 30 minutes at 30°C. Cdc7-Dbf4 was
subsequently purified away from A phosphatase on a 100ul MonoQ column using a

SMART FPLC machine (Pharmacia) as described above.
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Antibody crosslinking to proteinA agarose

To crosslink monoclonal 9E11 antibody to ProteinA agarose (Pierce), a 200ul bed
volume of beads was washed in 0.2M sodium borate (0.2M Boric acid pH adjusted to
9.0 with NaOH) and incubated with 1mg 9E11 (Cancer Research UK antibody
production facility) for 1 hour at room temperature, with rotation. Beads were
subsequently washed in 0.2M sodium borate pH 9 and resuspended in a final volume
of 1.5ml. 0.8mg of DMP (Sigma-Aldrich) was added and pH readjusted to 9.0 with
NaOH. Crosslinking was allowed to proceed for 1 hour at room temperature, after
which time beads were washed into 0.2M ethanolamine (pH 8.0 with HCI) and
incubation continued for 2 hours at room temperature. Beads were washed three
times with PBS (137 mM NaCl, 2.7 mM KCI, 10 mM Sodium Phosphate dibasic, 2
mM Potassium Phosphate monobasic, pH 7.4) and resuspended in a final volume of

1.5ml. Antibody crosslinked beads were stored at 4°C.

Protein immunoprecipitation

To pull down 9xMyc tagged kinases from yeast extracts, 20ul of 9E11 crosslinked
ProteinA beads per reaction, or an equivalent volume of beads with no antibody, were
washed into (25mM Hepes KOH pH 7.5, 100mM NacCl, 0.02% NP-40, 10% glycerol,
1mM EGTA, 1mM EDTA) and added to 100ul aliquots of extract from the relevant
strain. Beads were incubated with rotation for 1 hour at 4°C, after which time the
beads were washed twice in (25mM Hepes KOH pH 7.5, 500mM NaCl, 0.02% NP-
40, 10% glycerol, ImM EGTA, 1mM EDTA) and once in (25mM Hepes KOH pH

7.5, 100mM NacCl, 0.02% NP-40, 10% glycerol, ImM EGTA, 1mM EDTA) before
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finally resuspending in a final volume of 50ul. For Western blotting, 0.5ul samples
of input and flow through extract, and 5ul samples of bead bound proteins were made
up to 10ul in Laemmli buffer and separated by SDS-PAGE. To normalise the
concentrations of each of the kinases after purification on ProteinA beads, samples
were titrated and signal strengths compare by Western blotting. Beads were diluted in

the required volume of buffer to equalise protein concentrations.

Ypk1 depletion

Ypk1 was partially depleted from extract of strain ySS14 by the following procedure.
100ul of 9E11 crosslinked ProteinA beads or an equivalent volume of beads
containing no antibody were pelleted by centrifugation at 3000rpm for 30 seconds.
Buffer was removed and replaced with 100ul aliquots of cell extract. Beads were
incubated with rotation at 4°C for 1 hour. Beads were subsequently removed from
the extract by centrifugation of the suspension into a 1.5ml Eppindorf tube through a
200ul Gilson pipette tip with the end cut off, containing a single 0.5mm diameter
sterile glass bead. Beads were retained in the pipette tip whilst extract passed
through. The procedure was twice repeated to give a final depleted extract. For
Western blot analysis, 0.5ul samples of extract were made up to 10ul in Laemmli

buffer and separated by SDS-PAGE.

Fluorescence Activated Cell Sorting (FACS) analysis
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For analysis of rates of S phase progression, 100ml cultures were grown to 1x10’ cells
ml™ and arrested in G1 with o factor. Cells were subsequently pelleted by
centrifugation at 3000rpm for 10 minutes and resuspended in fresh buffer containing
5ug ml™ nocodazole. For each sample to be analyses, 1x10’ cells were taken and
fixed in Iml 70% ethanol and stored overnight at 4°C. Fixed cells were then washed
with 1ml 50mM Tris HCI pH 7.6, and resuspended in 1ml Tris HCI pH 7.6 containing
0.2mg mI™ RNaseA. Cells were incubated for 4 hours at room temperature with
rotation. Cells were then pelleted and resuspended in 0.5ml 5mg mI™ pepsin (Sigma)
dissolved in 55mM HCI. Cells were now incubated at 37°C for 30 minutes, then
washed once with 1ml FACS buffer (180mM Tris HCI pH7.6, 190mM NaCl, 70mM
MgCl,). Cells were resuspended in 0.5ml FACS buffer containing 50pg ml™
propidium iodide (Sigma). Cells were then sonicated briefly and 50ul samples
diluted in Iml 50mM Tris HCI pH 7.6 before analysis on a FACS Scan machine

(Becton Dickenson).
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2.10 Yeast strains

Strain name | Genotype Use

W303 MATa ade2-1 ura3-1 his3-11,15 Background strain
trpl-1 leu2-3,112 can1-100

ySC17 MATa ade2-1 ura3-1 his3-11,1 Loading assay
canl-100 barl::HisG (Bowers et al., 2004)
trpl::p404-GAL1-10-ORC3,4
lys2::plys2-GAL1-10-ORC2,5
his3::p403-GAL1-10-ORC1,6
pep4::KanMX
ura3::pSF322CDC6

ySC4 MATa ade2-1 ura3-1 his3-11,15 Background strain for
trpl-1 leu2-3,112 canl-100 protein purification
cdc15-2 omns
barl::kanMX
pep4::HIS3

ySS4 (ySC4) Cdc7-Dbf4 purification
ura3-1::pSS1 GAL1-10-DBF4-TAP'®"- | (this study)
URA3

ySSS5 (ySC4) Cdc28-ClIb5 purification
ura3-1::pSS2 GAL1-10-CLB5-TAP'®P- | (this study)
URA3

ySS9 (ySC4) Cdc28-ClIb5 purification
ura3-1::pSS2 GAL1-10-CLB5-TAP'®P- | (this study)
URA3 Sicl::TRP1

yDR11 MATa ade2-1 ura3-1 his3-11,15 ORC purification
canl-100 barl::HisG (D. Remus)
trpl::p404-GAL1-10-ORC3,4
lys2::plys2-GAL1-10-ORC2,5
his3::p403-GAL1-10-ORC1,6
pep4::KanMX
GAL1-10-ORC1::GAL1-10-ORC1-
TAPTP-URA3

yDR14 (ySC4) Mcm2-TAP'™"
MCM4::MCM4-TAP™“P-URA3 (D. Remus)

yDR15 (ySC4) Mcm2-TAP
MCM2::MCM2-TAP'“"-URA3 (D. Remus)
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ySS9 (ySC17) Ckal Myc tag
CKAL::CKA1-9MYC-hphNT1 (this study)

ySS10 (ySC17) Ypkl Myc tag
YPK1::YPK1-9MYC- hphNT1 (this study)

ySS11 (ySC17) Gind Myc tag
GIN4::GIN4-9MYC- hphNT1 (this study)

ySS12 (ySC17) Ckal Myc tag
CMK1::CMK1-9MYC- hphNT1 (this study)

ySS13 (ySC17) Ckal Myc tag, ACka2
CKAL::CKA1-9MYC- hphNT1 (this study)
CKA2::natNT2

ySS14 (ySC17) Ypkl Myc tag, AYpk2
YPK1::YPK1-9MYC- hphNT1 (this study)
YPK2:: natNT2

ySS15 (ySC17) AGin4
GIN4:: hphNT1 (this study)

ySS16 (ySC17) ACmk1, ACmk2
CMK1:: hphNT1 (this study)
CMK2:: natNT2

2.11 Antibodies

Primary Dilution Secondary Dilution
PAP (Sigma) 1:1000 - -

Cdc28 (CR-UK) 1:10,000 HRP-anti Mouse IgG | 1:10,000
9E10 (CR-UK) 1:1000 HRP-anti Mouse IgG | 1:10,000
9E11 (CR-UK) 1:1000 HRP-anti Mouse 1gG | 1:10,000
Orc6 (CR-UK) 1:1000 HRP-anti Mouse IgG | 1:10,000
Cdc6 (CR-UK) 1:1000 HRP-anti Mouse 1gG | 1:10,000
Mcm2 (yN-19, Santa- | 1:2000 HRP-anti Goat 19G 1:10,000
Cruz)

Abfl (CR-UK) 1:10,000 HRP-ProteinA 1:10,000
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Chapter 3: Proteomic approaches to the identification of

protein kinase substrates

3.1 Introduction

The onset of DNA replication is triggered in eukaryotes by the activity of two cell
cycle regulated kinases, the cyclin dependent kinase (CDK, Cdc28 in S. cerevisiae)
and the Dbf4 dependent kinase Cdc7 (DDK). Of these, CDK is the better understood,
with an established consensus motif for substrate phosphorylation (Songyang et al,
1994) and, although not known at the beginning of this study, just two essential S
phase promoting substrates; Sld2 and SId3 (Tak et al, 2006; Tanaka et al, 2007;
Zegerman & Diffley, 2007). Phosphorylation of each of these proteins stimulates
binding to a third protein, Dpb11, and the combination of a fusion of Dpb11 to Sld3
with a phosphomimicking mutant of SId2 in S. cerevisiae results in a bypass of the
requirement for CDK in S phase (Zegerman & Diffley, 2007). However, the
functional significance of Sld2 and Sld3 binding to Dpb11 is unknown and it remains
possible that other non-essential substrates also contribute to ensuring timely and

complete replication.

In contrast, the complete set of essential substrates of Cdc7 has not yet been
determined, although a considerable body of evidence indicates that they include
subunits of the MCM complex, in particular Mcm2 and Mcm4 (Bruck & Kaplan,

2009; Sheu & Stillman, 2006; Weinreich & Stillman, 1999). A mutant in which Cdc7



function in S. cerevisiae is bypassed does exists, and contains a point mutation in
Mcmb5 (Hardy et al, 1997). However, Mcmb5 is not itself a target of the enzyme
(Weinreich & Stillman, 1999). Phosphorylation sites in the N termini of both Mcm2
and Mcm4 have been mapped in both metazoans and S. cerevisiae (Cho et al, 2006;
Ishimi et al, 2001; Masai et al, 2006; Montagnoli et al, 2006; Sheu & Stillman, 2006;
Bruck & Kaplan, 2009). Several other proteins are also phosphorylated by Cdc7 in
vitro, including Cdc45 and the catalytic subunit of Pol o (Nougarede et al, 2000;

Weinreich & Stillman, 1999).

At the start of this study we were therefore interested in identifying substrates of both
CDK and Cdc7 involved in promoting replication. We began by using a peptide array
phosphorylation approach. Endogenous Cdc7-Dbf4 and Cdc28-ClIb5 were both
purified from S. cerevisiae, yielding active kinases although in limited quantities.
Cdc7-Dbf4 was also purified after over-expression in insect cells using a baculovirus
protein expression system. Peptide arrays were synthesised covering a complete set
of S. cerevisiae replication proteins. Array phosphorylation experiments were then

performed, first with human Cdk2-cyclinA then with purified S. cerevisiae enzymes.

A peptide array technique has previously been successfully used to identify individual
phosphorylated residues in substrates of the kinase Rad53, which have been validated
in vivo (Zegerman and Diffley, submitted). The technique has several advantages as
an approach to kinase substrate identification. Large numbers of proteins can be
screened in a single experiment, and phosphorylated residues identified easily.
However, it also suffers the disadvantage that potential substrates are presented to

kinases outside of the context of full-length proteins, without consideration of
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secondary or tertiary protein structures or the possible requirement for distant kinase

binding sites for substrate recognition.

This chapter will begin by presenting the principle of design of the peptide arrays,
followed by the purification of each kinase and the results of array phosphorylation by

each in turn.

3.2 Construction of peptide arrays

The robotic synthesis of arrays of peptides directly onto cellulose membranes has
been well described in a recent review (Hilpert et al, 2007). Peptides are synthesised
by the sequential oligomerisation of amino acids in grids onto a cellulose sheet pre-
activated with a poly-ethylene glycol (PEG) linker. Previous reports have described
the use of such arrays both for the identification of protein kinase substrates (for
example (Loog et al, 2000)) and the identification of protein binding sites (Thorslund

et al, 2007).

We therefore set out to use peptide arrays to identify possible substrates of Cdc28 and
Cdc7 from a complete set of S. cerevisiae replication proteins. Six membranes were
synthesised containing a semi-exhaustive set of replication proteins each split into sets
of 26 amino acid peptides. Each peptide was designed to overlap the previous one by
13 amino acids such that each residue was represented on the array twice, with the
exception of the first and last 13 amino acids of each protein. Each membrane in the

set contained 600 peptides in a 20x30 grid, where each spot was on average 4mm in
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diameter and contained approximately 50nmol of peptide. Each membrane was
150x200mm in size. Array synthesis was carried out by the Cancer Research UK
peptide synthesis facility using an Intavis Multipep peptide synthesiser (Intavis
Bioanalytical Instruments AG , Cologne, Germany) and PEG derivatised membranes
(Intavis). Figure 1 illustrates the principle of the array technique, showing the overlap
between the first four peptides of Sld3, the first protein on membrane 1, along with a
diagram of how the peptides are arranged on each membrane and a Ponceau S stain of
membrane 1. The uneven staining of peptides appears to be sequence specific, and is
likely to be due to the differing hydrophobicities of the peptides. The position of each
peptide in the array is given by the coordinates (A,1) (A,2)...(T,30), with x and y

coordinates given by letters and numbers respectively.

Table 1 lists the proteins present on the membranes, along with the sites of their
respective peptides. The entire set of pre-RC components is present; Orc1-6, Cdcb6,
Cdtl and Mcm2-7, as are the downstream components Cdc45, the four GINS subunits
(SId5, Psf1-3), Dpbl11, Sld2, Sld3 and Mcm10. Also included are the remaining
essential components of the replisome; the three polymerases Pol a (Poll), & (Pol3)
and ¢ (Pol2) along with their accessory subunits (Pol12, Pril and Pri2 for Pol o;
Pol31 and Pol32 for Pol &; Dpb3 and Dpb4 for Pol €), the five RFC components Rfcl-
5, PCNA (Pol30), and the three subunits of RPA (Rfal-3). The Okazaki fragment
maturation factors Fenl, Dna2 and Cdc9 are present, as are the three topoisomerases
Topl, 2 and 3. Finally, several factors involved in regulating chromosome stability
are also included; Mrcl and Tofl which are involved in stabilising paused replication
forks and signalling to Rad53 (Katou et al, 2003; Osborn & Elledge, 2003), Sgs1 and

Srs2, which are helicases involved in the suppression of inappropriate recombination
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(Pfander et al, 2005; Versini et al, 2003), Elgl which is also involved in the
suppression of recombination and forms an alternative RFC complex with Rfc2-5
(Ben-Aroya et al, 2003), Ctf4 and Ctf18, which are required for sister chromatid

cohesion (Hanna et al, 2001; Mayer et al, 2001), and Smc5, Smc6, Nsel and Nse3,

which form a complex involved in the DNA damage response (Zhao & Blobel, 2005).

Proteins are grouped on the arrays in such a way as to give the most logical peptide

distribution between membranes.

The sequence of individual peptides over the complete set of membranes is provided

in Appendix 1 at the end of the thesis.
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Figure 1. Peptide array synthesis.

A. An illustration of protein division into 26mer amino acid peptides. Each peptide
overlaps the previous one by 13 amino acids such that each residue is represented on
the array twice, with the exception of the first and last 13 residues of each protein.

The first four peptides of SId3 are shown, the first protein on membrane 1.

B. The layout of peptides on each membrane. Six columns and the first six rows are
shown for representational purposes, although the actual membranes each contain 20

columns and 30 rows.

C. A Ponceau S stain of membrane 1. The uneven staining of peptides is explained

by the differing hydrophobicities of each peptide.

99



Sid3

Al
A2
A3
A4

—

(CCC )6 )¢

METWEVIASVKEATKGLDLSLDHPLI
TKGLDLSLDHPLIIKSEDVPSNILQL

IKSEDVPSNILOLLQQKNRRQLKHIC
LQQKNRRQLKHICMKS

{(f{.\..:.l_OIO*..
CCCC Y X A C
CREE B¢

--------

100



Table 1. Protein arrangement on the six membranes. Proteins present on each of
the six membranes in the array are listed, along with the locations of their peptides on
each membrane. Proteins are arranged in such a way as to give the most logical
peptide distribution across the membranes. Individual peptide sequences are provided

in Appendix 1 at the end of the thesis.
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Protein Peptides Array Protein Peptides Array
Sld3 A1-B21 Orc2 A1-B17
Orc1 B23-E2 Orc3 B19-D5
Orc4 E4-F13 Cdc7 D7-E14
Orc5 F15-G20 Clbé E16-F14
Orc6 G22-H24 Cdc28 F16-G7
Cdc6 H26-J4 Sld2 G9-H12
Cdt1 J6-K21 Cdc45 H14-J)2
Mcm2 K23-M30 Dpb11 J4-11
Mcm3 N2-P15 Sld5 L3-L24
Mcm4 P17-R27 Psf1 L26-M10
Mcm5 R29-T27 Psf2 M12-M27
Mcmé6 A1-C18 Psf3 M29-N12
Mcm?7 C20-G15 Pol12 N14-P7
Mcm10 G17-H29 Pri1 P9-Q9
Dbf4 11-J24 Pri2 Q11-R21
Pol1 J26-N17 Pol31 R23-529
Pol2 N19-525 Pol30 T1-T19
Clb5 S27-T30 Rfa3 T21-T29
Dna2 A1-D27 Pol3 A1-C24
Mrcl D29-G22 Rfal C26-E12
Tof1 G24-J28 Rfa2 E14-F3
Top1 J30-L28 Pol32 F5-F30
Top2 L30-P18 Rfc1 G2-17
Top3 P20-R9 Rfc2 19-J5
Dpb2 R11-T3 Rfc4 J7-J30
Rfc3 T5-T30 Rfc5 K2-K28
Sgs1 A1-D21 Feni K30-L28
Srs2 D23-G22 Csm3 L30-M23
Smc5 G24-117 Cdc9 M25-022
Smcé6 J19-M13 Nse1l 024-P18
Ctf4 M15-025 Nse3 P20-Q12
Ctf18 027-Q22

Elg1 Q24-523

Dpb3 S25-T9

Dpb4 T11-T25
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Prior to phosphorylation of the arrays with either CDK or Cdc7, it was determined
whether any of the peptides bound ATP independently of enzyme activity. The
peptides were first dissolved in the buffer that would subsequently be used for CDK
phosphorylation, which was then removed and replaced with a small volume (2.5ml
per membrane) of the same buffer containing in addition 100uM ATP and 10uCi *P
YATP per membrane. Buffer was dripped onto the membranes using a Gilson pipette
in order to ensure that coverage was complete, and vessels covered during incubation
to prevent evaporation. Membranes were incubated for 1 hour at room temperature,
after which time non-specifically bound phosphate was competed away by incubation
overnight in 0.5% phosphoric acid. Membranes were then washed three more times
in 0.5% phosphoric acid, rinsed in 96% ethanol and allowed to dry at room
temperature. Radiolabel on the dried membranes was visualised using a
phosphorimager (STORM 840, Molecular Dynamics) after overnight exposure to a
phosphor screen (Molecular Dynamics). No background *2P binding to any of the
peptides was observed after this treatment, indicating that radiolabel incorporation

after incubation with protein kinase was likely to be due to peptide phosphorylation.

3.3 Cdk2-cyclinA phosphorylation of peptide arrays

The project was begun with the purification of endogenous Cdc28-CIb5 and Cdc7-
Dbf4 from S. cerevisiae, which will be described later. However, quantities of these
enzymes was limiting, and the initial array phosphorylation experiment was therefore
carried out with human cyclinA-CDK2. This enzyme can be readily purified in an

active form after co-expression with the CDK activating kinase (CAK) in E. coli, and
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was expected to give a measure of specificity of peptide phosphorylation in vitro,
since CDK is known to require an S/T-P motif for substrate phosphorylation
(Songyang et al, 1994). The human enzyme may also show similar substrate

specificity to its yeast homologue. Purified enzyme was a gift from D. Booze.

Array phosphorylation was carried out as described in Materials and Methods. After
the control experiment in the absence of kinase, peptides were re-dissolved in reaction
buffer which was then replaced as before with 2.5ml per membrane of the same buffer
containing in addition 10uM ATP and 5mM MgCl,, as well as Cdk2-cyclinA at a
concentration of 0.5uM and 10uCi **P yATP per membrane. Phosphorylation was
carried out for 1 hour at room temperature, after which time the reaction was stopped
by the addition of an excess of 1% SDS and heating to 65°C for 1 hour. The SDS
incubation step was designed to denature and remove bound CDK from the
membranes. Non-specifically bound phosphate was then competed away as before
with 0.5% phosphoric acid overnight, followed by three further washes in 0.5%
phosphoric acid and four sequential washes in 50%, 25%, 12.5% and 6.25% methanol
to remove SDS from peptide bonds. Membranes were then rinsed in 96% ethanol and
allowed to dry at room temperature, followed by visualisation of radiolabel using a
phosphorimager. Radiolabel incorporated into each spot was quantified using

ImageQuant software (Molecular Dynamics).

A promising pattern of radiolabel incorporation into the arrays was observed at this
stage (Figure 3). In order to verify that radiolabel incorporation was due to peptide

phosphorylation, the membranes were treated with A phosphatase (Cohen & Cohen,

1989; Zhuo et al, 1993). Peptides were re-dissolved in A phosphatase buffer and
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incubated with A phosphatase (NEB, 30,000U per membrane) for 1 hour at 30°C.
Membranes were once again washed in 1% SDS and methanol, followed by drying,
visualisation and quantification of the radiolabel. A general reduction in specific but
not background signal of approximately 50% was observed, varying slightly between
peptides. The signal in each spot of the array after phosphatase treatment was then
subtracted from the signal prior to phosphatase treatment to give a specific peptide
phosphorylation signal. Since some background noise was still present at this stage,
manifested in apparent phosphate incorporation into sites that did not contain peptide,
average background signal at these sites was further deducted from the general data

set.

The data was then plotted as a series of “heat maps’, using software designed by the
Cancer Research UK bioinformatics group. The results are shown in Figure 2. Heat
maps are laid out as grids arranged in an identical manner to the membranes, with
darker red spots indicating strong phosphorylation and white spots indicating an
absence of phosphorylation. Phosphorylation is measured in arbitrary units and the
scale is kept constant between membranes, indicated on the right hand side. Also
marked on the grids are the positions of individual proteins, with protein names given
at the N terminus of each. For comparison, an image of 3P incorporation into

membrane 1 prior to A phosphatase treatment is also shown, in Figure 3.
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Figure 2. Cdk2-cyclinA phosphorylation of peptide arrays. Membranes containing
arrays of peptide spots were phosphorylated by human cyclinA-Cdk2 in the presence
of ¥p yYATP. Radiolabelled spots were quantified, membranes treated with A
phosphatase and radiolabel re-quantified in order to ensure that 3P incorporation was
due to peptide phosphorylation. Post phosphatase radiolabel levels were subtracted
from the pre-phosphatase levels, as were background levels observed at sites
containing no peptide. Results are plotted as a series of heat maps, with darker red
spots indicating stronger phosphorylation. The number of each membrane is
indicated alongside the relevant plot, and the positions of each protein on the array
indicated. The scale is kept constant between membranes to allow comparison and is

indicated on the right hand side.
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Figure 3. Membrane 1 phosphorylated with Cdk2-cyclinA. Raw data prior to A
phosphatase treatment. Membranes were incubated with 0.5uM Cdk2-cyclinA in the
presence of 3P yATP for 1 hour at room temperature. Membranes were washed and

dried, and radiolabel incorporation visualised using a phosphorimager.
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The data set appeared immediately interesting. Multiple peptides were observed to be
phosphorylated, most often as expected in sets of two or more adjacent peptides.
Amongst the most strongly phosphorylated proteins were Orcl1, Orc6 and Cdc6 on
membrane 1, Mcm10 on membrane 2, SId2 and Pol12 on membrane 5, and Pol32,
Rfcl, Rfc2, Rfch, Fenl, Csm3 and Cdc9 on membrane 6. In addition, the majority of
proteins present on the arrays were phosphorylated to some extent at one or more
locations. The experiment is expected to give a saturated set of possible kinase
substrates, since peptides are presented to the kinase without consideration of the
tertiary structure of the protein in which they are found in vivo. Other phosphorylated
proteins include SId3, Orc4, Orc5, Cdtl, Mcm2, Mcm3 and Mcm4 on membrane 1;
Mcm7, Dbf4 and Poll on membrane 2; Dna2, Mrcl, Tofl and Top2 on membrane 3;
Sgsl on membrane 4; Orc2, Dpb11, Pril and Pri2 on membrane 5; and Rfc4 on

membrane 6.

Substrates of Cdc28 are known to include Orc2, Orc6 and Cdc6 and Mcm3,
phosphorylation of which all contribute to the inhibition of pre-RC formation outside
of G1 phase (Diffley, 2004; Liku et al., 2005), as well as Sld2 and Sld3, which are the
minimal essential S-phase promoting CDK substrates (Zegerman & Diffley, 2007;
Tanaka et al., 2007). The essential sites in Sld2 and Sld3 are known to be T84 in
Sld2, and T600 and S622 in SId3. The exact sites of phosphorylation in Orc2, Orc6
and Cdc6 are not known, but they all contain multiple putative S/T-P sites. The sites
in Cdc6 have been show to act in a partially redundant fashion, with mutations in
various combinations of sites all contributing to the regulation of protein stability
(Elsasser et al, 1999). Mcm3 has been shown to phosphorylated in at least one of five

strong consensus motifs, S761, S765, S781, T786 and S845 (Liku et al., 2005).
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Analysis of peptide sequences on the phosphorylated arrays therefore allows both
verification of phosphorylation of known sites, and the prediction of unknown sites.
In SId3, T600 and S622 are located on membrane 1 at peptides B16-18, and in Sld2,
site T84 is located in membrane 5 at peptides G14-15. Unexpectedly, of the sites on
membrane 1, B16 and 17 are only weakly phosphorylated and B18 not at all, perhaps
indicating phosphorylation of T600 but not S622. On membrane 5, G15 was similarly
weakly phosphorylated, but not G14. It therefore appears that not all known in vivo
sites are being phosphorylated in vitro. There are several possible explanations for
this. First, cyclinA-Cdk2 is not the enzyme directly responsible for Sld2 and SId3
phosphorylation in vivo. Second, presentation of peptides outside the context of the
full length protein may negatively affect kinase activity, for example by removing a
distant binding site. Third, it cannot be expected that the essential in vivo substrates

are necessarily the most readily phosphorylated either in vivo or in vitro.

In Orc2, phosphorylation is also relatively weak, but is observed at sites A1-2 and
Al17 (membrane 5). These contain the putative S/T-P phosphorylation sites S16, T24,
T217 and T219 respectively, of which site S16 is contained in a strong S-P-x-K
consensus. In Cdc6, phosphorylation is considerably stronger, including in particular
peptides H26-29 and 123-24 (membrane 1). These correspond to S/T-P sites T7, T23,
S43 and S372, all of which are contained in strong consensus sites. Orc6 was
phosphorylated on peptides G30-H4 (membrane 1), corresponding to S106, T114,
S116, S123, T146 and S172. Of these, S106, S116, S123 and T146 are all contained
in a strong consensus sequence. However, another unexpected observation was the
appearance of phosphorylation of Orc6 in peptides H9-11. These sites do not contain

an S/T-P consensus. The reason for their phosphorylation in these experiments is
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therefore unclear, since previous reports have shown an absolute requirement for the
proline residue in the +1 position, and all known substrates conform to this consensus
(Songyang et al, 1994). Mcma3 is phosphorylated in peptides containing sites S761,
S765, S781 and T786, although not site S845. Mcm3 is also phosphorylated at two

minimal consensus sites S167 and S695.

In order to examine the possible extent of phosphorylation of peptides which did not
contain an S/T-P motif, the heat maps were re-annotated and overlaid with S/T-P
motifs and stronger S/T-P-x-K/R motifs, marked with a blue box or a central blue dot
respectively. These are shown in Figure 4. It should be noted that where an S/T-P or
S/T-P-x-K/R motif is present only at a single site rather than a pair, it is either in the
first or last 13 residues of a protein, or the S/T-P site falls exactly at residues 13-14 of
the peptide in which it is contained. In this context the site is not repeated since only

the proline is contained in the second peptide of the sequence.

As well as giving an indication of the extent of non S/T-P motif phosphorylation, this
analysis also gives a measure of the specificity of the kinase towards different S/T-P
containing peptides. If CDK phosphorylation is dependent simply on the presence of
an S/T-P or S/T-P-x-K/R consensus then the pattern of phosphorylation would be
expected to coincide exactly with the presence of these motifs, with peptides
containing multiple S/T-P-x-K/R or S/T-P motifs phosphorylated more strongly than
those with only a single site, and a complete absence of phosphorylation in peptides
which do not contain a consensus site. If other factors also contribute to kinase

specificity, then a different pattern would be expected.
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Figure 4. Annotation of phosphorylated arrays withCDK consensus motifs. Re-
annotation of the CDK phosphorylated heat maps, with CDK consensus motifs (S/T-
P) annotated with blue boxes and stronger consensuses sites (S/T-P-x-K/R) with a

blue dot inside the box.
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It is immediately clear from these figures that the correlation of phosphorylation with
the presence or absence of a consensus sequence is not direct. Many sites containing
S/T-P motifs remain unphosphorylated above background levels and, whilst in the
majority of cases the most strongly phosphorylated peptides do contain one or more
S/T-P motifs, this is not always the case. Notable exceptions include the sites in Orc6
already mentioned, as well sites in Mrc1 on membrane 3, and Rfcl, Rfc2, Csm3 and

Cdc9 on membrane 6.

Leaving aside sites showing strong phosphorylation in the absence of a consensus
motif, several interesting potential substrates are revealed. These include Orcl,
Mcm3, Mcm7 and Mcm10, Poll, Dna2, Top2, Sgsl, Pol12, Pol32 and Rfcl. The
reason for the specificity of phosphorylation of sites in these proteins over other S/T-P
containing peptides is currently unclear, and further verification is necessary to
determine whether CDK phosphorylation occurs of these sites occurs in vivo. The
lack of phosphorylation of essential sites in Sld2 and SId3 makes it difficult to
conclude directly from these experiments whether they represent physiologically
important events. However, it is possible that CDK phosphorylation contributes to
regulation of these proteins. It is interesting that phosphorylation of the strong
consensus motifs in Mcma3 is specific for S761, S765, S781 and T786 but not S845,
and this may represent genuine specificity of phosphorylation in vivo. The four
phosphorylated sites are closely clustered around the nuclear localisation signal in the

protein (Liku et al., 2005)

A selection of sites phosphorylated in the absence of an S/T-P motif is shown in Table

2, with serine and threonine residues marked in red.

114



Table 2. CDK phosphorylated sites in the absence of an S/T-P motif. Peptide

sequences are listed, and serine and threonine residues marked in red.
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Membrane Site Peptide sequence

1 E1l7 ETISSGSLTEVFEKILLLLDSTTKTR
E18 KILLLLDSTTKTRNEDSGEVDRESIT
H9 HESDPTSEEEPLGVQESRSGRTKQNK
H10 VQESRSGRTKQNKAVGKPQSELKTAK
H11l AVGKPQSELKTAKALRKRGRIPNSLL

3 G8 QKPVDQKNKKVIISEDFVQKSLSFLK
G11 SRIQHGNDEAIEDLYTLKQNSSIKSF
Gl14 NTIIDLEKRPEDEDEVENGDTSLVGV
G15 DEVENGDTSLVGVFKHPSIIKSFASR
G16 FKHPSIIKSFASRTDINDKFKEGNKT
G18 VKILKSYKTVGSSKASITYMGKTRKL
G19 KASITYMGKTRKLIAPKRKTEGSHRY
M18 VYLNGKSLKIRNFKNYVELYLKSLEK
N18 KIFHSLQGNDKDYIDLAFSKKKADDR
025 PEELYGTYEYLLGMRIWSLTKERYQK

4 Al7 SEDAKRLQLSRDIRPQLSNMSIRIDS
Al8 RPQLSNMSIRIDSLEKEIIKAKKDGM

5 K19 ICPRGHKDDFKCKIKKPYYTSISSEK
K20 IKKPYYTSISSEKKYQNNDPKIDKTI
K23 MKDTKNELLQKIRETDSGRKKRSVSS
M19 WLTTKELDRKIQYEKTHPDRFSELPW
M20 EKTHPDRFSELPWNWLVLARILFNKA
M21 NWLVLARILFNKAKDDFHDPIHELRG
M22 KDDFHDPIHELRGKIQDLREIRQIKV
021 TVLIPSTKDAISNHAAYPQASLIRKA
022 HAAYPQASLIRKALQLPKRNFKCMAN
025 SNVDTFKDLKEVIKGGTTSSRYRLDR
026 KGGTTSSRYRLDRVSEHILQQRRYYP
027 VSEHILQQRRYYPIFPGSIRTRIKPK
P26 PFFVSIMLEDENPWEDDQHAIQTLLP
P27 WEDDQHAIQTLLPALYDKQLIDSLKK
Q17 IWAIDRLKILLEIESCLSRNKSIKEI
Q18 ESCLSRNKSIKEIETFTIIKPQFQKL
Q19 ETFTHKPQFQKLLPENTESLEDRKK
R13 YGLEGNRINYKPWDCHTILSKPRPGR

6 F6 FTEVKPVLFTDLIHHLKIGPSMAKKL
F7 HHLKIGPSMAKKLMFDYYKQTTNAKY
G15 PTLERGASEALAKRYGARVTKSISSK
G16 RYGARVTKSISSKTSVVVLGDEAGPK
G17 TSVVVLGDEAGPKKLEKIKQLKIKAI
G24 RDNVVREEDKLWTVKYAPTNLQQVCG
G25 VKYAPTNLQQVCGNKGSVMKLKNWLA
G26 NKGSVMKLKNWLANWENSKKNSFKHA
G27 NWENSKKNSFKHAGKDGSGVFRAAML
G28 GKDGSGVFRAAMLYGPPGIGKTTAAH
H7 NERNLPKMRPFDRVCLDIQFRRPDAN
H8 VCLDIQFRRPDANSIKSRLMTIAIRE
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H10

KFKLDPNVIDRLIQTTRGDIRQVINL

H1l QTTRGDIRQVINLLSTISTTTKTINH
H12 LSTISTTTKTINHENINEISKAWEKN
H21 WSLLPLHAVLSSVYPASKVAGHMAGR
H24 AKYYRLLQEIHYHTRLGTSTDKIGLR
H25 TRLGTSTDKIGLRLDYLPTFRKRLLD

15 EETQDSSTDLKKDKLIKQKAKPTKRK
16 KLIKQKAKPTKRKTATSKPGGSKKRK
17 KQKAKPTKRKTATSKPGGSKKRKTKA
19 MFEGFGPNKKRKISKLAAEQSLAQQP
110 SKLAAEQSLAQQPWVEKYRPKNLDEV
111 WVEKYRPKNLDEVTAQDHAVTVLKKT
112 TAQDHAVTVLKKTLKSANLPHMLFYG
113 LKSANLPHMLFYGPPGTGKTSTILAL
114 PPGTGKTSTILALTKELYGPDLMKSR
116 ILELNASDERGISIVREKVKNFARLT
117 IVREKVKNFARLTVSKPSKHDLENYP
J11 IGKTTSVHCLAHELLGRSYADGVLEL
J12 LLGRSYADGVLELNASDDRGIDVVRN
J13 NASDDRGIDVVRNQIKHFAQKKLHLP
J14 QIKHFAQKKLHLPPGKHKIVILDEAD
J15 PGKHKIVILDEADSMTAGAQQALRRT
J16 SMTAGAQQALRRTMELYSNSTRFAFA
K4 KSLSDQPRDLPHLLLYGPNGTGKKTR
K11 QMEQVDFQDSKDGLAHRYKCVIINEA
K12 LAHRYKCVIINEANSLTKDAQAALRR
K13 NSLTKDAQAALRRTMEKYSKNIRLIM
L2 FGRKVAIDASMSLYQFLIAVRQQDGG
L3 YQFLIAVRQODGGQLTNEAGETTSHL
L4 QLTNEAGETTSHLMGMFYRTLRMIDN
LS MGMFYRTLRMIDNGIKPCYVFDGKPP
L6 GIKPCYVFDGKPPDLKSHELTKRSSR
L7 DLKSHELTKRSSRRVETEKKLAEATT
L8 RVETEKKLAEATTELEKMKQERRLVK
L16 LVLRGLDLTIEQFVDLCIMLGCDYCE
L17 VDLCIMLGCDYCESIRGVGPVTALKL
L18 SIRGVGPVTALKLIKTHGSIEKIVEF
L24 LCDDKKFSEERVKSGISRLKKGLKSG
L25 SGISRLKKGLKSGIQGRLDGFFQVVP
L26 IQGRLDGFFQVVPKTKEQLAAAAKRA
L27 KTKEQLAAAAKRAQENKKLNKNKNKV
M2 GLDGSVVDPTIADPTAITARKRRPQV
M3 PTAITARKRRPQVKLTAEKLLSDKGL
M4 KLTAEKLLSDKGLPYVLKNAHKRIRI
M5 PYVLKNAHKRIRISSKKNSYDNLSNI
M6 SSKKNSYDNLSNIQFYQLWAHELFP
M7 IQFYQLWAHELFPKAKFKDFMKICQT
M8 KAKFKDFMKICQTVGKTDPVLREYRV
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M25 MRRLLTGCLLSSARPLKSRLPLLMSS
M26 RPLKSRLPLLMSSSLPSSAGKKPKQA
M27 SLPSSAGKKPKQATLARFFTSMKNKP
N11 LGENLLMKTISETCGKSMSQIKLKYK
N12 CGKSMSQIKLKYKDIGDLGEIAMGAR
N13 DIGDLGEIAMGARNVQPTMFKPKPLT
N14 NVQPTMFKPKPLTVGEVFKNLRAIAK
N15 VGEVFKNLRAIAKTQGKDSQLKKMKL
N16 TQGKDSQLKKMKLIKRMLTACKGIEA
N17 IKRMLTACKGIEAKFLIRSLESKLRI
N18 KFLIRSLESKLRIGLAEKTVLISLSK

01 LDCEAVAWDKDQGKILPFQVLSTRKR

The initial control testing the non-specific binding of **P yATP to the membranes
makes it unlikely that *2P labelling of these sites is kinase independent, and
furthermore, the signal was reduced following A phosphatase treatment, arguing that
phosphate incorporation is due to peptide phosphorylation. Phosphorylation of these
peptides is therefore difficult to explain. They do not appear to contain any
immediately apparent sequence similarity. It is possible that their phosphorylation is
due to the activity of a contaminating kinase, although this is also unlikely since any
contaminating activity should be present at much lower levels than CDK. Further
control experiments such as re-phosphorylating the arrays in the presence of a CDK
inhibitor would be possible to test this, but have not been attempted here. It is also
possible that in the context of this assay, CDK is active against substrates which do
not conform to its consensus. However, if this is the case then it is strange that many
sites which do contain an S/T-P motif, which should be more readily phosphorylated,
do not show phosphate incorporation. This includes peptides which contain known
phosphorylation sites in vivo. A repeat experiment using a re-synthesised copy of
membrane 6 gave an identical pattern of phosphorylation, arguing against inaccurate

peptide synthesis as the cause (data not shown). It is also to be noted that amongst the
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peptides listed above, four do not contain either a serine or a threonine residue (M21-
22 on membrane 5, H7 and J14 on membrane 6). Any phosphate incorporation into
these sites must therefore be through alternative residues. For example, it is known
that A phosphatase removes phosphate from phosphorylated histidine residues (Zhuo

etal., 1993).

From this experiment it was concluded that in this assay, CDK seems to show some
specificity towards the phosphorylation of individual consensus motifs, resulting in
the identification of several putative targets of the kinase, including both previously
known and unknown substrates. The amount of specificity was unexpected,
however, as was *2P incorporation into peptides which do not contain S/T-P motifs. It
remains possible that some of the results may be biased by the experimental
technique. Although each peptide in the array is expected to behave in an identical
manner, it is possible that the peptides differ in their accessibility to the kinase. It is
also unclear to what extent the PEG membrane linker might interfere with kinase
function. CDK may under these conditions phosphorylate some serine and threonine

residues outside of its usual consensus sequence, the reason for which is unclear.

3.4 Cdc28-Clb5 phosphorylation of peptide arrays

Since cyclinA-Cdk2 is not itself the enzyme responsible for phosphorylation of the
proteins on the array, and showed some slightly unexpected results, we wished to
determine how the S. cerevisiae enzyme would perform in the same assay.
Endogenous Cdc28-ClIb5, purified at the outset of the project, was therefore used to

phosphorylate the peptide arrays.
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Endogenous S. cerevisiae enzymes were purified using the Tandem Affinity
Purification (TAP) tag method (Puig et al, 2001; Rigaut et al, 1999). The TAP tag
used in these purifications was almost identical to that originally described (Rigaut et
al, 1999), containing a calcium sensitive calmodulin binding peptide (CBP), two IgG
binding units from Staphylococcus aureus proteinA and a TEV cleavage site for final
protein elution. However, the TEV cleavage site was moved from between the
calmodulin and IgG binding domains to the immediate C terminus of the tagged
protein in order to ensure that purified proteins contained as little exogenous material
as possible (Figure 5A). The modified TAP tag was termed TAP'®", and plasmids
were a gift of D. Remus. Purification of TAP tagged proteins was as follows; proteins
were bound to a calmodulin affinity resin in the presence of calcium and eluted from
the resin in the presence of EGTA. Proteins were then bound to 1gG sepharose and
finally eluted by cleavage of the tag with TEV protease (Figure 5B). The TEV
protease used in these experiments itself contained a hexa-His tag, and was therefore

removed as a final step of the purification by binding to a nickel affinity resin.

TAP™ tagged CIb5 was overexpressed under the control of the GAL1-10 promoter,
and was obtained by sub-cloning CLB5 amplified by PCR from S. cerevsisiae strain
W303 genomic DNA into plasmid pLD52, a pRS306 based yeast transformation
vector (Sikorski & Hieter, 1989) which contained GAL1-10 CDC6-TAP™". The
GAL1-10 promoter is galactose inducible, being highly stimulated by the transcription
factor Gal4 when cells are grown in the presence of galactose, but inhibited in the
presence of glucose (Lohr et al, 1995). This therefore allows the controlled over-
expression of proteins in vivo. It is less robustly repressed when cells are grown in

the presence of raffinose, allowing rapid induction of protein expression. CDC6 was
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excised from between the GAL1-10 promoter and TAP' tag in pLD52 and CLB5
inserted in its place, creating plasmid pSS2. CLB5 was sequenced and pSS2
transformed into S. cerevisiae strain ySC4, which contained a Pep4 protease deletion
in order to minimise protein degradation in cell extracts when used for purification

(Ammerer et al, 1986).

A selection of transformants was tested for expression of TAP tagged Clb5 after
growth in galactose containing medium. A whole cell TCA precipitation was made
from samples of 1x10° cells and proteins analysed by SDS-PAGE and Western
blotting using an HRP coupled anti-peroxidase antibody, recognising the 1gG binding
section of the TAP tag. Of the positive transformants, one was selected and named
ySS5. Protein over-expression was then followed over a 5 hour timecourse after
addition of galactose to a cell culture grown to mid-log phase (approximately 2x10’
cells mI™) in the presence of raffinose. Samples of 1x10° cells were taken at 30
minute intervals, TCA preps made and proteins analysed by SDS-PAGE and Western
blotting as described (Figure 5C). Protein expression was observed to be maximal

after approximately 1.5 hours.
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Figure 5. Purification of TAP'?

tagged proteins and expression of Clb5-TAP

A. The TAP™" tag contains a calmodulin binding peptide (CBP) and two S.
aureus proteinA (protA) IgG binding units, as well as a TEV cleavage site
adjacent to the C terminus of the tagged protein (modified slightly from the
original description) (Rigaut et al., 1999). Tagged CLB5 was cloned into
plasmid pLD52 downstream of the GAL1-10 promoter.

B. TAP'® tagged proteins are purified by sequential binding and elution from
calmodulin affinity resin and IgG sepharose. Final elution from IgG is by
TEV protease cleavage. Following purification, Hexa-His tagged TEV is
removed by binding to Ni-NTA agarose (Qiagen).

C. Overexpression profile of GAL1-10 CLB5-TAP™". Samples of 1x10° cells
were taken at 30 minute intervals after induction of protein expression, TCA
preps made and proteins analysed by SDS-PAGE followed by Western

TCP
P

blotting against the TA tag using an HRP coupled anti-peroxidase

antibody. Expression is maximal after approximately 1.5 hours.
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Since Sicl binds and inhibits the activity of Cdc28 through the G1 phase of the cell
cycle (Schwob et al, 1994), SIC1 was next deleted in strain ySS5 by integration of the
TRP1 marker into the SIC1 locus after amplification by PCR from plasmid pRS304
(Sikorski & Hieter, 1989). Transformants were selected by growth on selective plates
in the absence of tryptophan and correct integration verified by colony PCR of the

SIC1 locus. One positive clone was selected and named ySS8.

Purification of ClIb5-Cdc28 was then carried out according to the scheme outlined
above and described in Materials and Methods. 8 litre cultures of both ySS5 and
ySS8 were grown in raffinose to mid log phase, and galactose added to induce protein
expression for 2.5 hours. A cell extract was made and TAP tagged proteins bound to
calmodulin affinity resin (Stratagene) in the presence of calcium. Bound protein was
eluted in a calcium free buffer and subsequently re-bound to IgG beads and eluted

with TEV protease. Protease was removed by binding to a nickel affinity resin.

Protein purification at each step was followed by Western blotting against Clb5 and
Cdc28 (Figure 6A and C) and silver staining (Figure 6B and D). Cdc28 purified with
Clb5 as a complex. Clb5 shows two major degradation products and, in the absence
of Sicl, partial phosphorylation which can be removed by treatment with A
phosphatase (Figure 6E). Two contaminating bands were observed which were

common to the purification from both ySS5 and ySS8.

The activity of Cdc28-Clb5 towards histone H1 was tested in a series of kinase assays
(Figure 6F). 5ul, approximately 100ng, of kinase purified from either ySS5 or ySS8

was used to phosphorylate 20ug histone H1 in the presence of **P yATP. Control
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reactions were carried out in the absence of kinase. Purified histone H1 was a gift
from A. Errico. Reactions were allowed to proceed for 20 minutes at 30°C before
stopping by the addition of an equal volume of 2x Laemmli buffer and boiling for 10
minutes. A quarter of the total reaction was separated by SDS-PAGE and proteins
visualised by Coomassie staining. Stained gels were dried and radiolabel visualised

by autoradiography.

Figure 6F shows that Cdc28-Clb5 was highly active against histone H1 only in the
absence of Sicl. Phosphorylation was sufficient to cause saturated incorporation of
%2p into histone H1, resulting in an upward shift in the resolving position of the

protein in SDS-PAGE.
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Figure 6. Cdc28-CIb5 purification and activity

A. CIb5-Cdc28 purification from ySS5. CIb5 is followed at each step of the
purification by Western blotting using a Clb5 polyclonal antibody (Santacruz).
Lanes show calmodulin flow through (lane 1), I1gG input and flow through
(Lanes 2 and 3), and nickel resin input and flow through (Lanes 4 and 5).
TAP™ tagged and untagged CIb5 are indicated.

B. Silver stain of CIb5 purification from ySS5. Lanes are as described above, but
do not include the calmodulin flow through. CIb5 and its major degradation
products are indicated, as are Cdc28 and TEV protease. Contaminating bands
are indicated with an asterisk.

C. Clb5-Cdc28 purification in the absence of Sicl from ySS8. CIb5 and Cdc28
are followed at each step of the purification by Western blotting using a
polyclonal antibody against CIb5 (Santacruz) and a monoclonal antibody
against the PSTAIRE loop of Cdc28. Lanes are as described above with the

addition of the calmodulin input material (lane 1). Clb5-TAP™®"

, untagged
Clb5 and Cdc28 are indicated.

D. Silver stain of ClIb5-Cdc28 purification from ySS8. Lanes are as described
above but do not include either calmodulin input or flow through. CIb5 and its
major degradation product are indicated, as are Cdc28 and TEV protease.
Contaminating bands are indicated with an asterisk.

E. CIb5 purified in the absence of Sicl is phosphorylated. Lanes show input, and
Clb5-Cdc28 either treated or mock treated with A phosphatase

F. Clb5-Cdc28 can phosphorylate histone H1 in vitro in the absence of Sicl.

Coomassie stain and autoradiographs are shown in upper and lower panels

respectively.
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Cdc28-ClIb5 purified in the absence of Sicl was therefore used in the array
phosphorylation experiments. Array phosphorylation was carried out as before, with
slight changes in the salt and ATP concentrations in the reaction buffer. Between
Cdk2-cyclinA and Cdc28-Clb5 phosphorylation experiments, radiolabel remaining on
the arrays was allowed to decay to negligible levels over a period of approximately 6
months. Approximately 200ng of purified enzyme was used per membrane.
Reactions were allowed to proceed for 1 hour at 30°C and were stopped with 1% SDS
followed by washing, drying, visualisation, quantification, A phosphatase treatment,

re-quantification and data analysis as before.

Heat maps are shown in Figure 7, showing CDK consensus sites as in Figure 4. Once
again, for comparison the raw data is shown for membrane 1 prior to phosphatase

treatment, in Figure 8.
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Figure 7. Cdc28-Clb5 phosphorylation of peptide arrays. Heat maps following
phosphorylation of the membranes with Cdc28-CIb5 are shown, along with CDK

consensus sites annotated as in Figure 3.
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Figure 8. Membrane 1 phosphorylated with Cdc28-Clb5. Raw data prior to A
phosphatase treatment. Membranes were incubated with Cdc28-CIb5 in the presence
of 3P yATP for 1 hour at 30°C. Membranes were washed and dried, and radiolabel

incorporation visualised using a phosphorimager
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In this experiment, however, the pattern of phosphorylation differed even more
markedly from the pattern of S/T-P consensus motifs. Levels of overall
phosphorylation were lower, presumably due to the lower enzyme concentrations
used, and large numbers of peptides with no S/T-P motif were apparently
phosphorylated. There does not appear to be any enrichment for phosphorylation of
peptides which do contain a consensus motif. It was therefore very difficult to
determine genuine CDK phosphorylation events from background events. Again, it is
possible that a contaminating enzyme is responsible for the activity, although it is
strange that CDK phosphorylation events are not more prominent, given its activity
against histone H1. Again, no control experiment, such as phosphorylation of the
arrays with Cdc28-ClIb5 purified in the presence of Sicl, was attempted. It is also
possible that there is now some background *P yATP binding which was not seen in

the initial control experiment.

To some extent, the pattern of phosphorylation overlaps with that of cyclinA-Cdk2.
On membrane 1, for example, some sites phosphorylated in Sld3, Orc1, Orc6, Cdc6,
Cdtl and Mcm3 containing S/T-P motifs are the same in both experiments. In
addition, on this membrane several of the sites apparently phosphorylated in the
absence of a CDK consensus also remain the same. For example, the sites in Orc6 at
H9-11, and in Cdtl at J8, K8-9 and K12. This makes the activity of a contaminating
kinase unlikely, since it would not be the same activity in both preparations, one from
E. coli and the other from yeast. On membrane 2, the sites in Mcm10 at G21-22
containing a consensus are phosphorylated in both experiments, as are the sites in
Sgsl at B17-18 on membrane 4. On membrane 5, sites in Sld2 (E19, 029, 022-23

and O26-27) are common to both experiments, as are the sites in Pol12 at N20-22.
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The peptide at N21 on this membrane is the strongest phosphorylated in both
experiments. On membrane 6, the pattern of phosphorylation in Rfcl at sites G4-8
remains broadly the same, with the strongest phosphorylation in peptides G4 and G6-
7. In addition, the three peptides in Cdc9 most strongly phosphorylated by cyclinA-
Cdk2 in the absence of a CDK consensus, at sites M26-27, are also phosphorylated by
Clb5-Cdc28, as is the peptide K4 in Rfc5. Phosphorylation of the essential sites in
Sld2 and SId3 is no more prominent than before, although the T84 containing

peptides in Sld2 are phosphorylated which were not previously.

Several proteins were chosen to attempt to validate CDK phosphorylation in vivo.
These were Rfcl, Pol32, Cdc9, Sld2, SId3 and Orc2. On the arrays, both Rfcl and
Pol32 are phosphorylated at sites containing S/T-P motifs in experiments with both
cyclinA-Cdk2 and Clb5-Cdc28, whilst Cdc9 is phosphorylated in both experiments at
sites that do not contain an S/T-P consensus. Sld3, Sld2 and Orc2 are known to be
substrates of CDK in vivo and therefore act as positive controls. Of the three test
proteins, both Pol32 and Cdc9 have been previously reported as substrates of Cdc28-

Clb2 (Ubersax et al., 2003).

Strains in which these proteins had been tagged with 13 Myc were therefore arrested
in either o factor or nocodazole to block the cells in G1 phase or mitosis. Proteins
from a sample of 1x10° cells were then TCA precipitated, samples separated by SDS-
PAGE and Myc tagged proteins identified by Western blotting with the monoclonal
9E10 antibody in order to look for a phosphorylation mediated shift specifically in

mitosis, when CDK activity is high (Figure 9).
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Sld3 Sld2 Cdc9  Rfcl Pol32 Orc2
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P 9E10

Figure 9. Validation of CDK substrates. 200ml cultures of strains containing
13xmyc tagged copies of Sld3, Sld2, Cdc9, Rfcl, Pol32 or Orc2 were arrested in G1
or mitosis with o factor (o) or nocodazole (Noc), total protein from a sample of 1x10®
cells was TCA precipitated, and samples separated by SDS-PAGE and analysed by
Western blotting to identify a shift in myc-tagged proteins when arrested in mitosis.
Longer exposures are shown in the cases of SId3 and Sld2. Only Sld2 was seen to

shift clearly in the presence of CDK.
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Of the six proteins, only Sld2 was seen to shift specifically in the presence of
nocodazole but not o factor. The lack of shift does not necessarily imply a lack of
phosphorylation, however, and both Sld3 and Orc2 are known to be phosphorylated in
vivo. Orc2 is known to give a phosphorylation dependent shift in SDS-PAGE when
not tagged (Van et al., 2001). Attempts were therefore also made to examine the
possible phosphorylation of Rfc1 by CDK in vitro, by pulling down Myc-tagged Rfcl
from extracts made of cultures arrested either in G1 or mitosis followed by protein
analysis by SDS-PAGE and Western blotting against both the myc tag and using an
antibody recognising phosphorylated S/T-P motifs. However, although Rfcl was
pulled down specifically from the Rfc1-myc tagged strain, no specific signal was seen
from the pSP antibody in the asynchronous or nocodazole arrested cultures. Instead,
only a general background signal was observed from all three cultures (data not
shown). The relevance of any of the CDK substrates identified in these experiments
in vitro therefore remains unclear. Further experiments are required to validate the
potential sites of phosphorylation in vivo and to determine their possible effects on the

process of DNA replication.

3.5 Purification of Cdc7-Dbf4

Although interpretation of the CDK array phosphorylation results proved
complicated, we were also interested at the outset of the project in identifying Cdc7-
Dbf4 substrates using the array phosphorylation technique. Endogenous Cdc7-Dbf4
was first purified in parallel to Clb5-Cdc28. As described for CLB5, DBF4 was

subcloned into pLD52, sequenced and transformed into ySC4, making strain ySS4.
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Protein expression was once again checked over a 5 hour timecourse, and protein
purified from an 8 litre culture. Cells were grown to mid-log phase in raffinose
before galactose addition, protein induction for 2.5 hours and extract production as
before. Purification was carried out exactly as described previously. Figure 10A
shows the result of Cdc7-Dbf4 purification performed in this way, illustrating the load
and flow through fractions for the 1gG and nickel affinity steps of the purification
after separation by SDS-PAGE and silver staining. Cdc7 purified with Dbf4 as a
stoichiometric complex. Two contaminants are present which run at the same size by

SDS-PAGE as those seen in the Clb5-Cdc28 purification.

The activity of the purified kinase was tested in a series of reactions with individual
Mcm2-7 complex subunits and Cdt1, each purified to homogeneity from E. coli (gift
of D. Remus). Each reaction was performed with 2ug of substrate in a 20ul volume of
reaction buffer with 5ul, approximately 100ng, purified kinase in the presence of P
yYATP. Control reactions were carried out in the absence of kinase. Reactions were
allowed to proceed for 30 minutes at 30°C and were stopped by the addition of an
equal volume of 2x Laemmli buffer followed by boiling for 10 minutes. A quarter of
the total reaction was separated by SDS-PAGE followed by Coomassie staining and
gel drying (Figure 10B). Phosphorylated proteins were visualised by autoradiography
and were quantified using ImageJ software (NIH, open source) to determine the

strength of each phosphorylated band (Figure 10C).
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Figure 10. Purification of Cdc7-Dbf4 from S. cerevisiae

A. Purification of TAP'" tagged Dbf4 from S. cerevisiae. Lanes show input
(lane 1), flow through (lane 2) and elution (lane 3) from the 1gG column, and
flow through from the nickel agarose binding step (lane 4). Cdc7 and Dbf4

are indicated, and contaminating bands marked with asterisk.

B. Phosphorylation of individual Mcm subunits and Cdtl by purified Cdc7-
Dbf4. 2ug of each Mcm subunit was incubated with 100ng of purified Cdc7-
Dbf4 in a total reaction volume of 20ul at 30°C for 30 minutes in the
presence of ¥P yATP. Control reactions were performed in the absence of
kinase. Reactions were stopped by the addition of an equal volume of
Laemmli buffer and boiling for 10 minutes, and a quarter of the total reaction
separated by SDS-PAGE followed by Coomassie staining (upper panel).

Gels were dried and visualised by autoradiography (lower panel).

C. Phosphorylation of each MCM subunit in the presence of Cdc7-Dbf4 was
quantified using ImageJ software (NIH, open source). Phosphorylation is
measured in arbitrary units and is plotted alongside background signal

observed in the absence of kinase.
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The principle substrates of Cdc7-Dbf4 in these reactions were Mcm2, 4, 6 and 7, with
very weak phosphorylation of Mcm3 and Cdt1 also observed. Mcm5 was not
phosphorylated at all, in agreement with previous reports (Weinreich and Stillman,
1999). Although both Mcm4 and Mcmé6 clearly shifted when phosphorylated by
Cdc7, neither was seen to shift by Coomassie staining of the final product, indicating

that only a small fraction of the total population was phosphorylated in these assays.

Since the activity of the enzyme in these assays was low, we also set out to purify
larger quantities of enzyme in order to obtain sufficient amounts to phosphorylate the
peptide arrays. For this purpose we utilized the Invitrogen BactoBac baculovirus
protein expression system to co-express Cdc7 and Dbf4 in insect cells. Viruses were
produced containing either Cdc7 or hexa-His tagged Dbf4 and subjected to three
rounds of amplification in Sf9 cells. Hi5 cells were used for final protein expression,
and a virus titration and timecourse used to determine optimal protein expression
conditions. Batch purifications were performed from twenty 150mm petri dishes
containing Hi5 cells at approximately 60% confluence. Viruses were mixed at a ratio
of 4:1 Cdc7:Dbf4 in order to induce stoichiometric levels of protein expression,

determined empirically, and induction carried out for 96 hours.

A nuclear extract was prepared as described in Materials and Methods and used for
the initial step of purification on a Iml HisTrap column using an AKTA Prime FPLC
machine (GE Healthcare). Extract was loaded onto the HisTrap column and washed
with buffer containing 40mM imidazole to remove background contaminants,
followed by elution of bound proteins over a 20ml gradient between 40mM and 1M

imidazole, continuously collecting 500ul fractions. Peak protein containing fractions
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were identified by UV absorbance, samples separated by SDS-PAGE and visualised

by Coomassie staining (figure 11A, left hand panel).

Peak fractions were pooled and dialyzed into a buffer containing 100mM NaCl before
a second round of purification by ion exchange chromatography on Q sepharose,
again using an AKTA Prime FPLC machine. Proteins were loaded onto a 1ml Q
sepharose column and eluted over a 20ml gradient from 100mM to 1M NacCl,
collecting 500l fractions as before. Peak protein containing fractions were once
again identified (figure 11A, right hand panel), pooled and dialysed into buffer
containing 100mM NacCl before flash freezing in liquid nitrogen and storing at -80°C.
Final protein concentration was determined to be approximately 0.4mg ml™ by

comparison to BSA standards after SDS-PAGE and Coomassie staining.

Dbf4 purified as a phosphoprotein, showing a visible shift by SDS-PAGE which
could be collapsed by treatment with A phosphatase (figure 11B). In order to test the
effect of Dbf4 autophosphorylation on enzyme activity, 200ul samples were therefore
either treated or mock treated with A phosphatase and re-purified on a 100l MonoQ
column using a SMART FPLC machine (Amersham Pharmacia Biotech AB). 50ul
fractions were continuously collected over a 2ml gradient between 100mM and 1M
NaCl. Samples of peak fractions identified by UV absorbance were separated by

SDS-PAGE and proteins visualised by Coomassie staining (Figure 11C).
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Figure 11. Purification of Cdc7-Dbf4 from insect cells

A. Cdc7-Dbf4 was purified from a nuclear extract of Hi5 cells by sequential
HisTrap (left panel) and Q sepharose (right panel) chromatographic steps.
Samples of peak fractions identified by UV absorbance in each case were
separated by SDS-PAGE and protein visualised by Coomassie staining. Peak
fractions were pooled, dialysed, flash frozen in liquid nitrogen and stored at -

80°C.

B. Samples of purified Cdc7-Dbf4 were either mock treated (-) or treated with A
phosphatase (+) for 30 minutes at 30°C. A sample of each reaction was

separated by SDS-PAGE and proteins visualised by Coomassie staining.

C. 200ul aliquots of purified Cdc7-Dbf4 were either mock treated (Mock) or
treated with A phosphatase and subsequently re-purified on a 100l MonoQ
column. Samples of peak fractions were separated by SDS-PAGE and
proteins visualised by Coomassie staining. Peak fractions were dialysed, flash

frozen in liquid nitrogen and stored at -80°C
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The initial experiments designed to test the activity of the insect cell purified Cdc7-
Dbf4 encountered the problem that strong Dbf4 autophosphorylation was seen which
coincided with the size of phosphorylated Mcm2 and Mcm4, making analysis of
substrate phosphorylation difficult. To circumvent this problem, an N terminal
truncation of Mcm2 termed Mcm2-N, known at the time to contain sites of Cdc7
phosphorylation in the human protein and recently demonstrated also with the S.
cerevisiae homologue (Bruck & Kaplan, 2009; Cho et al, 2006; Ishimi et al, 2001)
was purified after expression in E. coli. A strain expressing GST tagged Mcm?2
residues 1-194, termed Mcm2-N, was a gift of L. Drury. Protein expression was
induced with ImM IPTG in a 1 litre culture overnight at 24°C, followed by extract
production as described in Materials and Methods. Mcm2-N was purified in two
steps over GSTrap and gel filtration columns. At each step, peak fractions were
identified by UV absorbance and verified by SDS-PAGE and Coomassie staining
(Figure 12A). Fraction 19 of the gel filtration step was determined to be
approximately 90% pure and was therefore dialysed, flash frozen in liquid nitrogen

and stored at -80°C. Protein concentration was approximately 1mg ml™.

In order to determine whether phosphorylation of Dbf4 during purification affected
the activity of the enzyme, A phosphatase and mock treated enzymes were used to
phosphorylate Mcm2-N. Enzyme concentrations were first equalised. The two
purified complexes were titrated and their relative concentrations determined by silver
staining of samples after separation by SDS-PAGE (Figure 12B). It was
approximated that mock treated and re-purified Cdc7-Dbf4 was present at twice the
concentration of phosphatase treated enzyme. Approximately 100ng of each enzyme

was then used to phosphorylate 0.5ug Mcm2-N in 20ul reactions in the presence of
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%2p yATP. Phosphorylation was allowed to continue for half an hour at 30°C before
stopping by the addition of an equal volume of Laemmli buffer and boiling for 10
minutes. One quarter of the total reaction was separated by SDS-PAGE followed by
silver staining, gel drying and visualisation of phosphorylated proteins using a

phosphorimager (Figure 12C).

Phosphatase treatment of the enzyme appeared to have little effect on its ability to
phosphorylate Mcm2-N in this assay. The population of mock treated Dbf4 is shifted
to a higher molecular weight in the gel, visible by both silver staining and *2P
incorporation, since it is already phosphorylated at the start of the experiment. This
indicates that phosphorylation of Dbf4 in the cell extracts is not due to
autophosphorylation, since if this were the case no increase in shift would be expected
following in vitro phosphorylation. Dbf4 phosphorylation in Hi5 cell extracts could
be due to CDK activity, since virally infected insect cells arrest in G2-M (Braunagel
et al, 1998). Dbf4 has previously been reported to be a CDK substrate, containing
several minimal CDK consensus sites and two strong CDK consensus sequences at its

N terminus (Ubersax et al., 2003).

Since de-phosphorylation of purified Dbf4 seemed to have little effect on the activity
of the enzyme, most further experiments were performed with crude, untreated

enzyme.
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Figure 12. Purification and phosphorylation of Mcm2-N

A. An N terminal fragment of Mcm2, Mcm2-N, was purified over 2 steps using
GSTrap and Superdex 200 columns. Peak fractions were identified by UV
absorbance and samples separated by SDS-PAGE. Proteins were visualised
by Coomassie staining. Fraction 19 was determined to be approximately 90%

pure and was dialysed, flash frozen in liquid nitrogen and stored at -80°C.

B. Phosphatase treated and mock treated Cdc7 were titrated over twofold
dilutions in order to normalise the concentrations of the two enzymes.
Relative enzyme concentrations were approximated by silver staining of
titrated samples. Mock treated enzyme was determined to be present at

approximately twice the concentration of the phosphatase treated enzyme.

C. The activity of mock and phosphatase treated Cdc7-Dbf4 was compared in a
phosphorylation assay with the N terminal fragment of Mcm2. 100ng of each
enzyme was used to phosphorylate 0.5pg Mcm2-N in the presence of 3P
YATP for 30 minutes at 30°C. Samples of each reaction were separated by
SDS-PAGE and proteins visualised by silver staining (left panel), and
phosphorylated proteins visualised using a phosphorimager after gel-drying

(right panel).
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A timecourse of Mcm2-N phosphorylation by Cdc7-Dbf4 was next tested.
Approximately 0.8ug of purified Cdc7-Dbf4 was incubated with 5ug Mcm2-N for
varying times in individual reaction volumes of 20ul. Each reaction was stopped after
the appropriate time by the addition of an equal volume of Laemmli buffer and
boiling for 10 minutes. One quarter of each reaction was separated by SDS-PAGE
and proteins visualised by Coomassie staining (Figure 13A, upper panel). Stained
gels were dried and radiolabelled proteins visualised using a phosphorimager (Figure
13A, lower panel). Mcm2-N and Dbf4 phosphorylation at each time point were
quantified using ImageQuant software (Figure 13B). Mcm2-N phosphorylation at the
5 minute timepoint was anomalously low. However, maximal phosphorylation of
Mcm2-N was observed between 2 and 5 minutes, and coincided with maximal

autophosphorylation of Dbf4.

In order to investigate whether Dbf4 autophosphorylation had any effect on the
activity of the kinase, an experiment was set up in which Mcm2-N was
phosphorylated for 10 minutes after prior phosphorylation of Dbf4 for varying time
periods. For this experiment, A phosphatase treated Cdc7-Dbf4 was used as a starting
material. Each reaction was set up in a total volume of 20ul, and 0.4ug Cdc7-Dbf4
was pre-incubated with ATP in each reaction vessel for the required time before the
addition of 5ug Mcm2-N substrate peptide. Phosphorylation of Mcm2-N was
subsequently stopped 10 minutes after substrate addition with Laemmli buffer as
described previously. Samples of each reaction were separated by SDS-PAGE and
proteins visualised by Coomassie staining (Figure 13C, upper panel). The Coomassie

stained gel was dried and phosphorylated proteins visualised using a phosphorimager
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(Figure 13C, lower panel). Mcm2-N phosphorylation was quantitated using

ImageQuant software (Figure 13D).

A clear decrease in the activity of Cdc7 towards Mcm2-N was observed after
increasing periods of pre-phosphorylation of the kinase, although activity was never
abolished. This indicates that autophosphorylation of Dbf4 inhibits the activity of the
kinase, although perhaps not completely. It is unknown at this stage whether this
represents a mechanism of regulation of the kinase in vivo, and it is possible that de-
phosphorylation of the kinase is required to trigger its activity at the onset of S phase.
This also provides further evidence that phosphorylation of Dbf4 in the insect cell
extracts is not due to autophosphorylation, since the purified phosphorylated protein

retains its activity against Mcm2-N (Figure 12C).
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Figure 13. Activity of Cdc7-Dbf4

A. Timecourse of Mcm2-N phosphorylation by Cdc7-Dbf4. After incubation for
varying time periods, reactions were stopped and a sample separated by SDS-
PAGE. Gels were Coomassie stained (upper panel), dried, and
phosphorylated proteins visualised using a phosphorimager (lower panel)

B. 3P incorporation into Mcm2-N (pink) and Dbf4 (blue) was quantified at each
timepoint using ImageQuant software. Phosphorylation, measured in arbitrary
units, was plotted. Maximal phosphorylation of both Mcm2-N and Dbf4 was
seen after 5-10 minutes.

C. Cdc7-Dbf4 phosphorylation of Mcm2-N after pre-phosphorylation of Dbf4 for
varying time periods. Cdc7-Dbf4 was incubated with ATP in 20ul reaction
volumes for varying time periods before the addition of Mcm2-N substrate
peptide. Mcm2-N phosphorylation was allowed to continue for 10 minutes
before stopping the reactions as above, separating proteins by SDS-PAGE and
visualising by Coomassie staining (upper panel). The Coomassie stained gel
was dried and phosphorylated proteins visualised using a phosphorimager
(lower panel).

D. Mcm2-N phosphorylation at each time point was quantified using ImageQuant

software and plotted against the time of Dbf4 pre-phosphorylation.
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3.6 Peptide array phosphorylation with Cdc7-Dbf4

We next used purified Cdc7-Dbf4 to phosphorylate the peptide arrays. Arrays were
re-synthesised and the experiment carried out using the same protocol as described
previously. Buffer was used as described for Cdc28-Clb5, now containing
approximately 33ug Cdc7-Dbf4 in 2.5ml buffer per membrane. ATP was added to
each aliquot of buffer immediately prior to addition to the membrane, in order to
prevent inhibition of Cdc7 activity before peptides had been phosphorylated.
Reactions were allowed to proceed for 1 hour at 30°C and were stopped by heating to
65°C in 1% SDS for 1 hour followed by overnight incubation in 0.5% phosphoric
acid, methanol washes, drying and visualisation by phosphorimager Treatment with A
phosphatase and data analysis was carried out as described previously, and the results
are shown in Figure 14. As before, raw data for membrane 1 prior to phosphatase

treatment is shown in Figure 15.
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Figure 14. Array phosphorylation with Cdc7-Dbf4. Arrays were phosphorylated
and A phosphatase treated as described. Heat maps are displayed with protein

positions marked and the scale indicated on the right hand side.

151



12000
10000
8000
6000
- 4000

o
) 1
| — | _ - - Edﬁ_ 7 L 7 - | — ] 1 1 1 N
| sao] ] e £qdg n
< ==
M 1613 o ] o
& I I a
O O N [ET o
ziog [ | z z z
= #[] = e ] =
- o ewsd[ ] =
= s eyl ] ] ETIH
L1 [vbd] | - 1 gus] F- b v ] | =
wqa| — — 2] ] -
L] T z
LICETI | v Saws ] U] s v
" w = zEiod w
+ w
1 - E zepy s
=] 785 [a} fa)
oW [ bt o ey [ ] [ ] U
@ ) [ ] [ ] ©
guan) < 1sbs | < f0d | <
T T T T T T T T T T ; : : - 7
"e] o w f=] w
& R 2 2 2 R 2 2 . Q 2 2 2 o
< o)
i L 1 1 1 1 1 L L L L L
[ 1|} e E =TI M= 11 T DERd]-—
(%] v I_ wy
mEuE o« zqda o« L€Iod o«
o o Zuid =
pwon [ ] a gdor [ ] o e [ ] [-%
o i Fo . FO
sl z ziied [ ] z
= = 5d zisd =
o wauf T o e [ | ses[ ]| 2
[
b4 x b4
1P [— Ldo F= . L1qda F—
_ . -_— —_
9P T T SwpD [ T
9210 9 oL 9 pis[] 9
sno[ | w w 80| | e
10 [ 1 [ 1 sqp| | -
o eI o P [a)
o = w
130 @ ) oo | @
s | < zeuq| < 0| <
T T T T T T T T T T T T T T T
n (=] v i=1 [al
A R 2 e " 8 R 2 2 " ] R 2 2
m

152



NN W
0w o

N NN N
Ao

N NN
= b W

e el A ¥ |
= NWRAUOANOOWO=NWAUONOWOO

ABCDEFGHIJKLMNOPQRST

Figure 15. Membrane 1 phosphorylation with Cdc7-Dbf4. Raw data prior to A
phosphatase treatment. Membranes were incubated with 33ug Cdc7-Dbf4 in the
presence of 3P yATP for 1 hour at 30°C. Membranes were washed and dried, and

radiolabel incorporation visualised using a phosphorimager.
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Unfortunately, it was once again difficult to determine specific phosphorylation
events in this experiment from general background levels of *P. A slightly more
robust appearing pattern of phosphate incorporation was observed prior to A
phosphatase treatment, but this showed several similarities to the pattern of apparent
phosphorylation of sites which did not contain an S-T/P motif after phosphorylation
with Cdc28-ClIb5, strengthening the argument that background ATP binding is
observed in these experiments which was not seen in the initial control experiment.
Very little of this signal was removed by A phosphatase, and it could not therefore be
attributed to peptide phosphorylation. The results after analysis showed general *2P
incorporation above background levels across membranes 1 and 6, whilst only a few
isolated sites showed **P incorporation above background levels on membranes 2, 3,
4 and 5. There was no enrichment for phosphorylation of known sites in the N

termini of Mcm2 and 4.

Peptides showing **P incorporation above an arbitrary threshold of 4000 are listed in
Table 3. Of those sites listed, just under a third contain the reported S/T-D/E
consensus sequence and therefore agree with previous reports of Cdc7-Dbf4
selectivity (Cho et al, 2006; Masai et al, 2006; Montagnoli et al, 2006). However, one

of the peptides, membrane 1 site T5, does not contain a serine or threonine residue.
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Table 3. Peptides phosphorylated by Cdc7-Dbf4. Peptides with **P incorporation
over 4000 units. Serine and threonine residues are marked in red, and S/T-D/E

consensus sites in green.
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Membrane | Site | Peptide sequence

1 A5 MKSRKEYFLLEEYGPGFWVKWPYNYF
A7 NGYSLPERRTEVVTTVERERAKRETL
A9 KTWDELKFKELLHLWSEEPKGSCKLE
A29 | DAIEASNGTIQEHKKNILDKSKEASL
B6 SRSSIINSVPSSPALRRVDANLFSRK
B7 ALRRVDANLFSRKSIASPTPELLNSR
B29 | LNNVVELWALTYLRWFEVNPLAHYRQ
Cl17 | KLGKDDIDASVQPPPKKRGRKPKDPS
C18 | PPKKRGRKPKDPSKPRQMLLISSCRA
C20 | NNTPVIRKFTKKNVARAKKKYTPFSK
C29 | SDSATTIYVAGTPGVGKTLTVREVVK
D29 | EQLRIISWDFVLNQLLDAGILFKQTM
E28 LSDPRSNLNRHIRMNFETFRSLPTLK
H27 | RNLFDDAPATPPRPLKRKKLQFTDVT
H28 | PLKRKKLQFTDVTPESSPEKLQFGSQ
R1 SKSQILQYVHKITPRGVYTSGKGSSA
S6 TAITQVAKRISILSRAQSANNNDKDP
T5 MVLADGGVVCIDEFDKMRDEDRVAIH

3 17 IVSRLFSDERIQLLSNLPKIGSKYSL
110 LKVLEQYSDDKTLVIEGKSRRQKKFN
J9 PDDQILSKSDAAYFKDLDNNASDKLK

4 G15 | KPKTRNRKSKRGDKVKVEEVIDLKSE

6 Al10 | IDAEQSVLNGIKDENTSTVVRFFGVT
A23 | SSCQLEVSINYRNLIAHPAEGDWSHT
B10 | ETRRRLAVYCLKDAYLPLRLMEKLMA
B19 | TTLCNKATVERLNLKIDEDYVITPNG
B21 | DYFVTTKRRRGILPIILDELISARKR
B22 | PIILDELISARKRAKKDLRDEKDPFK
B27 | AYGRTMILKTKTAVQEKYCIKNGYKH
C10 | TNPQPHAVLAERMKRREGVGPNVGDR
C19 | PLRKGEGPLCSNCLARSGELYIKALY
C27 | IFTNKQRYDNPTGGVYQVYNTRKSDG
D27 | IPEAYALKGWYDSKGRNANFITLKQE
E29 LFVKDDNDTSSGSSPLQRILEFCKKQ
F30 | KQETPSSNKRLKKQGTLESFFKRKAK
G2 MVNISDFFGKNKKSVRSSTSRPTRQV
G21 | RKLEEQHNIATKEAELLVKKEEERSK
G26 | NKGSVMKLKNWLANWENSKKNSFKHA
H23 | INFTAWLGQNSKSAKYYRLLQEIHYH
H30 | TTAHKKIPATVKSGFTRKYNSMTHP
K30 | MGIKGLNAIISEHVPSAIRKSDIKSF
M12 | PMVEEHVTSAEERPIVADSFAQDKRN
M18 | TFRVQGPVGLEENEKKLLLGWLDAHR
N30 | DFIQDLDTTKNLILDCEAVAWDKDQG
P16 | ESCREENEETGENSLSQIWHVDCFKH
P22 VARKMVRYILSRGESQNSIITRNKLQ
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Interpretation of the results therefore once again proved difficult, and will be
discussed further below. However, in addition to the peptide array phosphorylation
experiment, phosphorylation of Sld2, SId3, Dpb11 and Mcm10 by Cdc7-Dbf4 was
also tested in vitro with full length proteins. Mcm210, purified as a hexa-His tagged
protein after expression in E. coli, was a gift of B. Pfander. Sld2, Sld3 and Dpb11
were also purified after expression in E. coli, as part of this study. Sld3 and Dpb11
were both hexa-His tagged, and purified by sequential HisTrap and gel filtration
chromatographic steps as described in Materials and Methods. Sld2 was insoluble as
a His tagged protein and was instead tagged with GST and purified in a single step
using a GSTrap column (GE Healthcare). Phosphorylation of Sld2, SId3 and Dpb11
was carried out using endogenously purified Cdc7-Dbf4, whilst phosphorylation of
Mcm10 was carried out with enzyme purified from Hi5 cells. Each reaction was
carried out in a total reaction volume of 20ul, with approximately 4ug Sld2, Sld3 and
Dpb11 and 10pug Mcm10. Approximately 1ug insect cell purified Cdc7-Dbf4 was
used for phosphorylation of Mcm10, and for phosphorylation of Sld2, Sld3and
Dpb11, 100ng of endogenously purified enzyme was used. Control reactions were
carried out either in the absence of kinase (in the case of Sld2, Sld3 and Dpb11) or in
the absence of substrate (in the case of Mcm10). Reactions were each allowed to
continue for 30 minutes at 30°C. After this time, reactions were stopped and proteins
analysed by SDS-PAGE and Coomassie staining. Stained gels were dried and
phosphorylated proteins visualised either by autoradiography (Sld2, SId3 and Dpb11)
or using a phosphorimager (McmZ10). The results are shown in Figure 16. As can be
seen, phosphorylation of all four proteins, particularly Dpb11, SId3 and Mcm10,

occurs in the context of the full length proteins.

157



Figure 16. Cdc7-Dbf4 phosphorylation of Sld2, SId3, Dpb11 and Mcm10

A. Phosphorylation of Sld2, Sld3 and Dpb11 by Cdc7-Dbf4. Endogenous Cdc7
was used to phosphorylate Sld2, SlId3 and Dpb11 in 20ul reactions for 30
minutes at 30°C. Reactions were stopped by the addition of an equal volume
of Laemmli buffer and boiling for 10 minutes. Samples were separated by
SDS-PAGE and proteins visualised by Coomassie staining (upper panel).
Stained gels were dried and phosphorylated proteins visualised by
autoradiography (lower panel). Control reactions were carried out in the

absence of kinase.

B. Phosphorylation of Mcm10 by Cdc7-Dbf4. Insect cell purified Cdc7 was used
to phosphorylate Mcm10 in a 20ul reactions for 30 minutes at 30°C. The
reaction was stopped by the addition of an equal volume of Laemmli buffer
and boiling for 10 minutes. Samples were separated by SDS-PAGE and
proteins visualised by Coomassie staining (upper panel). Stained gels were
dried and phosphorylated proteins visualised using a phosphorimager (lower

panel). A control reaction was carried out in the absence of substrate.
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Several in vitro substrates of Cdc7-Dbf4 are therefore known; Mcm2, Mcm3, Mcm4,
Mcm6, Mcm7, Poll (Weinreich & Stillman, 1999), Cdc45 (Nougarede et al, 2000),
Mcm10, Sld3, Dpb11, Sld2 and both Cdc7 and Dbf4 themselves. Of these, as
mentioned, no enrichment was observed on the membranes for phosphorylation of the
N termini of Mcm2 or Mcm4 above the general levels of peptide *P incorporation
seen on membrane 1. Similarly, Mcm6, Mcm7, Mcm10 and Dbf4 did not show
phosphorylation on membrane 2, with the exception of a single site in Mcm10, H7.
This peptide contains two serine residues, although no S/T-D/E consensus. Sld2 and
Dpb11 were not phosphorylated on membrane 5, and Cdc45 only at very low levels at
peptides H18, 116 and 118. H18 and 116 both contain S-E sites, as well as multiple
other serine and threonine residues. 118 contains one serine and two threonine

residues. However, phosphorylation of three sites did not occur in pairs of peptides.

An attempt was made to stimulate phosphorylation of the N termini of Mcm2 and
Mcm4 by pre-phosphorylation of a freshly synthesised copy of membrane 1 with
CDK in the absence of ¥P, followed by removal of CDK and phosphorylation with
Cdc7 in the presence of *?P (see Materials and Methods). Stimulation of
phosphorylation of these regions might be expected since they contain several S-S-P
motifs, candidates for priming by CDK phosphorylation. Stimulation of Cdc7
phosphorylation of Mcm2 and Mcm4 by prior phosphorylation with CDK has been
previously reported (Masai et al, 2000; Masai et al, 2006; Cho et al, 2006) .
However, no significant stimulation was seen, a result not entirely unexpected since

no phosphorylation of these sites by CDK was seen in the earlier experiment.
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One plausible explanation for the lack of Cdc7-Dbf4 activity in the array
phosphorylation experiments despite the activity of the enzyme against purified full
length proteins is the suggestion that Cdc7-Dbf4 requires a distant binding site for
efficient substrate phosphorylation (Sheu and Stillman, 2006; Bruck and Kaplan,
2009). Although it is not clear whether this is required for phosphorylation of every
substrate, it would certainly affect the results of phosphorylation of individual
peptides of substrates in which it is required. Coupled with low efficiency of
substrate phosphorylation due to auto-phosphorylation and inhibition of Dbf4, this
makes the density of genuine phosphorylation events is very low. Attempts to
identify Cdc7-Dbf4 binding peptides by a Western blot approach (see materials and

methods) unfortunately also proved unsuccessful due to high background levels.

The peptide array approach therefore unfortunately proved unproductive in the
identification of Cdc7-Dbf4 kinase substrates. Some conclusions could be drawn
regarding potential substrates of CDK, however, and Cdc7 phosphorylation of Sld2,

Sld3, Dpb11 and Mcm10, and Cdc7-Dbf4 auto-inhibition were all demonstrated with

full length or truncated proteins in solution. The implications of these findings will be

explored further in the Discussion. However, an alternative approach to the
identification of kinase substrates was chosen to continue the study, involving
phosphorylation of a complete pre-RC assembled in vitro. The results of these

experiments will be described in the following chapter.
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Chapter 4: Phosphorylation of Orcl by Casein Kinase 11

4.1 Introduction

As an alternative strategy to identify substrates of both CDK and Cdc7, we decided to
phosphorylate pre-replicative complexes assembled in vitro. Assembly of Pre-RCs in
a cell free yeast extract and their subsequent purification has been described
previously (Bowers et al, 2004; Seki & Diffley, 2000). Phosphorylation of these
complexes in vitro with purified kinases has several advantages over the peptide array
technique described in the previous chapter. Proteins are full length and therefore
contain all tertiary structural elements and distant binding sites required for kinase
recruitment and activity. In addition, since the proteins are present in the context of a
fully formed pre-RC, the quaternary structure of the complex is also taken into
account. On the other hand, the technique has the disadvantage that the set of
substrates tested and their concentrations are more limited, being restricted only to
pre-RC components and not their downstream partners. Ultimately, reconstitution of
DNA replication from a eukaryotic origin in vitro will be necessary in order to fully
determine the functions of each of the components involved. Successful
phosphorylation of assembled pre-replicative complexes will be a necessary step in

this reconstitution.
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4.2 The loading assay

The previously described in vitro assembly of pre-RCs involves the incubation of
ARS containing DNA in a G1 phase extract of S. cerevisiae in the presence of ATP
(Bowers et al, 2004; Seki & Diffley, 2000). For this purpose, a strain of S. cerevisiae
(ySC17) is used that overexpresses all six subunits of ORC as well as Cdc6 in order to
promote complex formation in vitro (Bowers et al, 2004). S. cerevisiae strain ySC17
also contains a Pep4 deletion in order to minimize protein degradation in the extract.
The process is termed the ‘loading assay’, since MCM complexes are loaded onto the
DNA. As a control reaction, DNA is used which contains a Xhol linker substitution
in the A element of the ARS (Marahrens & Stillman, 1992) in order to prevent ORC
binding and downstream complex formation. Fragments of DNA approximately 1kb
in length are amplified by PCR from plasmid templates, using a biotinylated 3’ primer
such that all product DNA molecules are biotinylated at the 3’ end in order to
subsequently isolate DNA bound complexes. DNA is bound to streptavidin beads,
and bead bound DNA incubated in extract diluted twofold in a loading buffer
containing ATP, an ATP regenerating system comprising creatine phosphate and
creatine phosphokinase, and poly(dldC) competitor DNA. DNA is incubated in the
extract for 20 minutes at 24°C, isolated, washed, resuspended in Laemmli buffer and
bound proteins analysed by SDS-PAGE followed by silver staining and Western
blotting. Paramagnetic streptavidin beads (dynabeads M280, Invitrogen) are used in
order to enable isolation of the DNA between steps using a magnetic rack

(Invitrogen).
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Previous experiments have demonstrated that this results in sequence specific ORC
binding and salt-stable loading of the MCM complex (Bowers et al, 2004). The
principle of the assay is demonstrated in Figure 17A. Figure 17B shows the
successful binding of wild-type (wt) and ACS mutant (A-) DNA to streptavidin beads.
Amplification of wt and A- DNA was carried out in eight separate PCR reactions per
template, products purified, combined and incubated with magnetic streptavidin beads
for 2 hours at room temperature. Beads were washed and resuspended in a final
storage buffer volume of 200ul. 0.5% of input and bead bound DNA was then
analysed by agarose gel electrophoresis after first denaturing the biotin-streptavidin
interaction by boiling bead bound DNA in 1% SDS. Figures 17C and D demonstrate
a successful loading assay performed with this DNA. Protein overexpression and
extract production in a G1 phase arrested culture of ySC17 was carried out as
described in Materials and Methods. Assembly of the pre-RC was then carried out in
20ul aliquots of extract diluted twofold in reaction buffer. Buffer was removed from
10pl of bead bound DNA per reaction and was incubated with extract at 24°C for 20
minutes with agitation. Beads were then isolated, washed three times in a low salt
buffer and resuspended in a final volume of 40ul Laemmli buffer. DNA bound
proteins from a quarter of the total reaction were separated by SDS-PAGE and
analysed by silver staining (Figure 17C) or Western blotting against Orc6, Cdc®6,
Mcm2 and Abfl (Figure 17D). Silver staining shows clear binding of the ORC
complex specifically to wild type DNA, whilst the Western blots show in addition
specific loading of the MCM complex, albeit at sub-stoichiometric levels. Cdc6
appears to bind non-specifically, which may be due to precipitation in the reaction.
ADbf1 acts as a loading control as it binds in an ORC independent manner to the B3

element of the ACS (Diffley et al., 1988).
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Figure 17. The loading assay

A. Principle of the loading assay. Streptavidin bound, biotinylated DNA
containing either wild type (wt) ARS1 or ARSI containing a linker
substitution in the ACS (A-) is incubated in a G1 arrested extract of strain
ySC17, containing elevated levels of ORC and Cdc6. Pre-RCs are assembled
which can be subsequently purified.

B. DNA binding to streptavidin beads. ARS1 wild type (wt) and A box mutated
(A-) sequences were amplified by PCR from plasmid templates using a
biotinylated 3’ primer such that all PCR products were biotinylated at the 3’
end. DNA was purified and bound to magnetic streptavidin beads for 2 hours
at room temperature. 0.5% of input and bead bound DNA was analysed by
agarose gel electrophoresis after first denaturing the biotin-streptavidin
interaction by boiling the bead bound DNA in 1% SDS.

C. Silver stain of assembled pre-RCs. Loading assays were carried out with wt
and A- DNA as described in Materials and Methods. 25% of bead bound
material was separated by SDS-PAGE and proteins visualised by silver
staining. Subunits of ORC are indicated.

D. Western blots of DNA bound (Load) and unbound (Sup") material from the
loading assay described in (C). Primary antibodies were used against Orc6,

Cdc6, Mcm2 and Abfl.
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4.3 Phosphorylation of the pre-replicative complex

We were therefore interested in the result of phosphorylation of pre-replicative
complexes formed in this way with CDK, Cdc7 or both enzymes together. Pre-RCs
were assembled, purified, resuspended in phosphorylation buffer and incubated for 1
hour at 30°C either alone or in the presence of approximately 100ng of endogenously
purified Cdc7-Dbf4, 20ng of endogenously purified Cdc28-CIb5 (in the absence of
Sicl), or both enzymes together. Different quantities of each enzyme were used due
to differences in activities. Reactions were all carried out in a total volume of 20ul
and were stopped by the addition of an equal volume of Laemmli buffer and boiling
for 10 minutes. A quarter of the total volume of each reaction was separated by SDS-
PAGE and proteins visualised by silver staining. The silver stained gel was dried and

radiolabelled proteins visualised by autoradiography (Figure 18)
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Figure 18. Pre-replicative complex phosphorylation

Four sets of loading assays were performed with wt and A- DNA and were
subsequently incubated for 1 hour at 30°C in the presence of **P yATP either alone
(lanes 1 and 2) with both Cdc7-Dbf4 and Cdc28-CIb5 (lanes 3 and 4), Cdc28-Clb5
alone (Lanes 5 and 6) or Cdc7-Dbf4 alone together (lanes 7 and 8). Samples of each
reaction were separated by SDS-PAGE and analysed by silver staining (upper panel).
Silver stained gels were dried and phosphorylated proteins visualised by
autoradiography (lower panel). Phosphorylation of Orc2 and Orc6 by CDK, as well

as an unidentified protein present on the wt DNA in all four experiments, is indicated.
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The silver stain shows specific binding of the ORC complex to the wt DNA as
expected. In the case of reactions containing Cdc28, strong phosphorylation was seen
of proteins running at the sizes of Orc2 and Orc6, both known in vivo targets of CDK.
No additional phosphorylated bands were seen specifically in reactions containing
Cdc?7, a result that can be explained by the low abundance of its predicted substrates,
subunits of the Mcm2-7 complex, and the relatively low activity of the enzyme. It
was later shown that the 1 hour 30°C incubation during the phosphorylation reaction
reduces DNA bound MCM to levels undetectable by Western blotting. Any
remaining Cdc7 activity is therefore overshadowed by other phosphorylation events.
Unexpectedly, however, wt DNA specific phosphorylation of another band was also
seen in all four reactions, including the control reaction performed in the absence of
exogenously added kinase. It therefore appeared that a protein kinase present in the
assay which was either binding specifically to the pre-RC, or active against a protein
present specifically on the wild type DNA. We were therefore interested in
identifying this kinase and its substrate, in order to determine whether it plays a role

in the process of pre-replicative complex formation.

4.4 The phosphorylated protein is Orcl

We began by identifying the phosphorylated substrate. For this purpose, ySC17
extract used in the loading assay was combined in a 1:1 ratio with extracts from

strains in which one of three candidate proteins had been TAPT®"

tagged, in order to
cause a shift in the phosphorylated band after **P incorporation. The three candidates

chosen were Orcl, Mcm2 and Mcm4, all of which resolve in SDS-PAGE at the
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approximate position of the unidentified phosphorylated band. Extracts were mixed

in order to maintain the high levels of ORC and Cdc6 present in ySC17.

Loading assays with both wt and A- DNA were therefore carried out using these
extracts and were phosphorylated in the absence of exogenously added kinase as
described above. The results are shown in Figure 19. A shift in the phosphorylated
band was clearly seen when TAP™" tagged Orc1 was included in the reaction (the
lower phosphorylated band in this reaction is likely to be untagged Orcl from the
ySC17 extract). By contrast, no shift in the phosphorylated protein was observed
when Mcm2 or Mcm4 were tagged. An overall reduction in the intensity of the
phosphorylated band in the latter two cases is likely to be due to the reduction in the
quantity of ORC present in the reaction. This experiment therefore demonstrates that

the substrate of the unexpected phosphorylation event in the loading assay is Orcl
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Figure 19. Orcl is the substrate of phosphorylation

Loading assays with wt and A- DNA were performed either with ySC17 extract alone
(lanes 1-2), or with a mixture of ySC17 and extracts in which one of three candidate
substrate proteins, Orcl (lanes 3-4), Mcm2 (lanes 5-6) or Mcm4 (lanes 6-7), had been
TAP tagged. Loaded proteins were subsequently phosphorylated in the absence of
exogenously added kinase. 25% of the total DNA bound material was separated by
SDS-PAGE and proteins visualised by silver staining (lower panel). Members of the
ORC are indicated. The silver stained gel was dried and **P incorporation visualised
by autoradiography (lower panel). A clear shift in the phosphorylated band was seen
when Orc1-TAP was included in the reaction, demonstrating that Orcl is the substrate

of phosphorylation.
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4.5 Identification of potential Orcl phosphorylating kinases

An experiment was next carried out to identify possible kinases responsible for Orcl
phosphorylation. Two approaches were taken. First, ORC was purified in a single
step from an extract of the Orc1-TAP'" tagged strain used in the previous
experiment, yDR11, which overexpresses all six ORC subunits. Extract from a 10
litre culture of this strain after induction of protein expression during a G1 phase
arrest was a gift of D. Remus. Tagged proteins were bound to calmodulin affinity
resin and eluted in 200ul fractions, resulting in purification of all six ORC subunits,
as well as an N terminal degradation product of Orcl. Samples of each elution
fraction were separated by SDS-PAGE and proteins visualised by Coomassie staining
(Figure 20A). When tested, this single step purified ORC showed a phosphorylation
activity against Orc1 when incubated with 3P yATP, although ORC purified to
homogeneity (purified by gel filtration, TEV cleavage and ion exchange after
calmodulin step, gift of D. Remus) did not. Samples of each complex were taken and
incubated in 20pl reaction volumes in the presence of *?P at 30°C for 30 minutes.
Reactions were stopped with Laemmli buffer, proteins separated by SDS-PAGE and
visualised by silver staining. The silver stained gel was dried and **P incorporation
visualised by autoradiography (Figure 20B). Interestingly, the N terminal degradation
product of Orcl remained unphosphorylated, indicating that phosphorylation occurs

in the N terminus of the protein.

In order to identify kinases co-purifying with ORC, the peak fraction (fraction 4) of
the Orcl purification was concentrated tenfold and half of the total protein separated

by SDS-PAGE. The gel was stained with Coomassie and the ORC containing lane

172



cut into slices and analysed by mass-spectrometry. The six subunits of the ORC were
identified as well as five protein kinases; all four subunits of casein kinase Il (CKII),
Ypkl, Gin4 and the two calcium/calmodulin dependent kinases Cmk1 and Cmk2
(Figure 20C). A complete list of proteins identified by mass spectrometry in this

assay is given in Appendix 2.

In parallel with this experiment, loading assays were also analysed by mass-
spectrometry after scaling up of reactions with both wild type and A- DNA ten-fold.
This was intended to determine whether any of the kinases identified as co-purifying
with ORC also co-purified with the pre-RC. However, no kinases were identified in
this way, presumably due to the low abundance of the enzyme binding to the pre-RC.
A list of proteins identified as binding specifically to wild type DNA is given in

Appendix 3.
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Figure 20. ORC purification and kinase identification
A. ORC was purified in a single step from a 10 litre extract of strain yDR11

which over-expresses all six subunits of the complex with a TAP™"

tag on
Orcl. Tagged protein was bound to calmodulin affinity resin and eluted in ten
200ul fractions in the absence of calcium. Samples of each fraction were
separated by SDS-PAGE and proteins visualised by Coomassie staining.
Subunits of ORC as well as an N terminal degradation product of Orc1l are
indicated.

B. ORC was shown to purify with a kinase activity which phosphorylates Orcl.
Samples of the complex purified in a single calmodulin affinity step as well as
ORC purified to homogeneity (gift of D. Remus) were tested for kinase
activity by incubation with 3P for 30 minutes at 30°C . Samples of each
reaction were separated by SDS-PAGE and visualised by silver staining
(panels 1 and 3). Silver stained gels were dried and phosphorylated proteins
visualised by autoradiography (panels 2 and 4).

C. Fraction 4 of the crude ORC purification was concentrated tenfold, proteins
separated by SDS-PAGE and analysed by mass-spectrometry. Proteins
identified included the six subunits of ORC as well as five protein kinases; all
four subunits of CKII, Ypk1, Gin4 and both S. cerevisiae calcium dependent
kinases, Cmk1 and Cmk2. The table gives the number of peptides identified
as well as the percentage confidence of protein identification, generated by
Scaffold software (Proteome Software Inc.) A complete list of identified

proteins is given in Appendix 2.
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Of the five kinases identified, casein kinase Il (CKII) is a tetrameric protein which has
been isolated from a large number of eukaryotic organisms (Hathaway & Traugh,
1982). It was one of the first identified protein kinases and has an a3, structure in
which the o subunits contain the catalytic activity whilst the § subunits are regulatory,
the functions of which are unclear (Domanska et al., 2005; Kubinski et al., 2007). In
S. cerevisiae, although not in all eukaryotes, two isoforms of both o and 3 subunits
exist, a,, a’, p and p’, forming a tetramer which can be purified as a catalytically
active enzyme (Bidwai et al, 1994; Padmanabha & Glover, 1987). The a and o’
subunits are polypeptides of 44 and 35kDa respectively and are encoded by the genes
Ckal and Cka2 (Reed et al, 1994). The two o subunits are redundant but deletion of
both genes is lethal (Padmanabha et al, 1990). Lethality can be rescued with the
Drosophila o subunit, implying a conservation of function across evolution
(Padmanabha et al, 1990). Active enzyme may consist of a.a’Bp’, oofp’, a’2pp’ or
the o’ subunit alone (Domanska et al, 2005), although when present it appears that the
B subunits are both required to function together (Kubinski et al, 2007). The different
complexes show slightly different substrate selectivities and sensitivities to inhibitors

(Domanska et al, 2005).

The enzyme is constitutively active (Poole et al, 2005) and has been shown to
phosphorylate a large number of substrates in a variety of processes including tRNA
and rRNA synthesis, apoptosis, cell survival and transformation (Meggio and Pinna,
2003). It has a preference for substrates rich in acidic residues, particularly at the +1
and +3 positions, and its broad substrate spectrum and constitutive activity have led to
the suggestion that it plays a general role in protein structure, stabilising the unfolding

of o helices (Meggio & Pinna, 2003). In yeast, a temperature-sensitive allele of Cka2
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in the absence of Ckal results in arrest in either G1 or anaphase at the non-permissive
temperature, implying at least two essential functions (Hanna et al, 1995). CKIl in
mammalian cells has been linked to a variety of anti-apoptotic, pro-survival pathways
and is elevated in a variety of tumours. It is therefore under investigation as a

potential anti-tumour therapeutic target (Sarno & Pinna, 2008).

Ypkl is a budding yeast kinase homologous to mammalian Serum and Glucocorticoid
Inducible Kinase (SGK) and is involved in the sphingolipid mediated second
messenger signalling pathway (Spiegel and Milstien, 2002). It is regulated by an
activating phosphorylation by the upstream kinase Pkh1 (Sun et al, 2000) and has
been shown to be involved in receptor endocytosis (deHart et al, 2002). The kinase is
redundant with its homologue Ypk2 (Casamayor et al, 1999). The two kinases have
also been implicated in the maintenance of cell wall integrity (Roelants et al, 2002)
and show different localisations, with Ypk1 reported to remain largely cytosolic
whilst Ypk2 enters the nucleus (Roelants et al, 2002). Ypk1 has been shown to be
synthetically lethal with the phospho-binding 14-3-3 protein Bmh2 (Gelperin et al,
2002), and 14-3-3 proteins have been speculated to play a role in pre-RC formation
(Zannis-Hadjopoulos et al, 2008). Any interaction between Ypk1 activity and 14-3-3
binding is therefore potentially interesting. It was notable that Bmh2 was identified in
the mass spectrometric analysis of both the ORC purification and the wt, but not the

A-, loading assay (Appendix 2 and 3).

Gind is a kinase which has been reported to be involved in the switch from polar to

isotropic bud growth at the mitotic transition in S. cerevisiae (Altman & Kellogg,

1997). It is activated by phosphorylation by Cdc28-Clb2 and functions in a pathway
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with the protein Ncpl (Altman & Kellogg, 1997). Gin4 deletions are viable but have
a pronounced elongated bud phenotype (Altman & Kellogg, 1997). Gin4 may also be
involved in the regulation of the transition to mitosis, affecting the degradation of the
S. cerevisiae Weel homologue Swel (Asano et al, 2006; Okuzaki et al, 2003). It has

been shown to interact directly with septins at the bud neck (Barral et al, 1999).

Finally, Cmk1 and 2 are two calmodulin dependent kinase in S. cerevisiae which are
homologous to the broad specificity mammalian CaM kinase 11 family (Ohya et al,
1991). The activity of Cmkl1 is not absolutely dependent on the presence of calcium
and calmodulin, but is strongly stimulated in their presence (Ohya et al, 1991).
Neither Cmk1 nor Cmk2 are essential, since a double deletion remains viable, and
their functions are unknown. Calmodulin is an essential protein in S. cerevisiae but
its function is not dependent on binding to calcium, since calcium binding deficient

mutants are viable (Geiser et al, 1993).

The activities of Gin4, Cmk1 and Cmk2 in the loading assay are unlikely, since CDK
activity required for Gin4 activation is absent in the G1 phase extracts used for the
assay, and no calcium is present in the reaction buffer. However, at least in the cases
of Cmk1 and Cmkz2, activity cannot be ruled out at this stage. The purification of
Cmk1 and Cmk2 can be explained by the fact that both kinases bind calmodulin
(Ohya et al, 1991). Similarly, the purification of Gin4 may be explained by the

presence of septins Cdc3 and Cdc12 in the purification (see Appendix 2).
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4.6 Ckal and Ypkl are present in the loading assay

In order to determine whether any of these kinases bind specifically to the pre-RC in
the loading assay, strains were generated in the ySC17 background in which Ckal,
Ypkl, Gin4d or Cmk1 were each tagged with nine tandem copies of the Myc tag. 9-
Myc sequences coupled to a hygromycin resistance marker were amplified by PCR
from plasmid pYM20 (Janke et al, 2004) using primers containing regions of
homology to the C termini of each of the target kinases. PCR products were
transformed into S. cerevisiae strain ySC17 and transformants selected by growth in
the presence of hygromycin. Correct integration was verified by analysis of TCA
precipitated cell extracts by SDS-PAGE and Western blotting against the Myc tag
using the monoclonal 9E10 antibody. The result is shown in Figure 21A,
demonstrating the sizes at which each of the tagged proteins resolves by SDS-PAGE.
Gin4 seems to be present at a considerably lower abundance in the cell than the other
kinases, requiring a 20-fold longer Western blot exposure before it became visible. In
each case, smaller tagged products were present in some clones due to spontaneous
deletion of tandem Myc repeats during the transformation process. Individual
transformants of CKA1-MYC, YPK1-MYC, GIN4-MYC, and CMK1-MYC strains were
selected and named ySS9, 10, 11 and 12 respectively. A G1 phase extract

overexpressing ORC and Cdc6 was made from each as described for ySC17.

Loading assays were then performed with extracts from each strain and DNA bound
proteins analysed by SDS-PAGE followed by silver staining and Western blotting
against the Myc tag (Figure 21B). Ckal was seen to bind specifically to the wt DNA,

whilst Ypk1 was present on both wt and A- DNA. Ckal did also showed some non-
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specific binding to the A- DNA, however, and there was some variability between
experiments. In some cases, the non-specific binding of Ckal appeared
approximately equal to the specific binding (data not shown). Neither Gin4 nor
Cmk1 were seen to bind to either wt or A- DNA. Gin4, however, already a low
abundance protein, was not visible by Western blotting in the cell extract (data not

shown), and may be insoluble under the conditions used for extract production.
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Figure 21. Ckal and Ypk1 are present in the loading assay

A. Ckal (lanes 1-3), Ypkl (lanes 4-6), Cmk1 (lanes 7-9) and Gin4 (lanes 10-12)
were tagged with 9 tandem repeats of the Myc tag in a ySC17 background.
After transformation, three transformants were selected and the presence of
tagged proteins verified by making a TCA precipitation of cell contents and
analysing a sample by SDS-PAGE followed by Western blotting using the
monoclonal 9E10 antibody against the Myc tag. Shorter products arise due to
spontaneous deletion of tandem Myc repeats during transformation. A 20-fold
longer exposure of the Western blot is shown for the three GIN4-MYC clones.

A cross reacting band is marked with an asterisk.

B. Loading assays were performed with wt and A- DNA and extract from ySC17
or from each of the four Myc-tagged strains. 25% of DNA bound material
was separated by SDS-PAGE and proteins visualised by silver staining (upper

panel) or Western blotting against the Myc tag (lower panel)
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4.7 Casein kinase Il can phosphorylate Orcl in vitro

We next tested whether any of the four myc-tagged kinases were capable of
phosphorylating Orcl in vitro. For this purpose, full length Orc1 was cloned and
expressed as a hexa-His tagged protein in E. coli, and purified in a single step using
nickel-NTA agarose. Relatively pure protein results from this single step purification,
and is shown in Figure 22A. Next, monoclonal 9E11 anti-myc antibody was
crosslinked to proteinA beads in order to purify Myc-tagged proteins from ySS9, 10,
11 and 12 extracts. 1mg of purified antibody was bound to 100ul bed volume of
proteinA agarose and crosslinked with DMP as described in Materials and Methods.
Samples of input and unbound antibody, as well as bead bound protein released from
beads by boiling in Laemmli buffer both before and after DMP crosslinking, were
separated by SDS-PAGE and visualised by Western blotting (Figure 22B). The
crosslinking procedure successfully renders the antibody-proteinA interaction

resistant to denaturation in SDS.

Proteins were then immunoprecipitated from 100ul aliquots of each extract, using
20ul of 9E11 bound proteinA beads or an equivalent quantity of beads containing no
crosslinked antibody. Beads were incubated in extract for 1 hour at 4°C, after which
time bead bound proteins were isolated, washed and resuspended in a final volume of
50ul. Samples were taken of input, unbound and bead bound fractions, separated by

SDS-PAGE and used for Western blotting against the Myc tag (Figure 22C).

Ckal, Ypkl and Cmk1 were all purified from the extract as expected. However, once

again, no Myc tagged protein was visible by Western blotting in the input or bead
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bound fractions of the GIN4-MYC extract. Only Ckal, Ypkl and Cmk1 were
therefore used in the subsequent experiment. Bead bound kinases were titrated and
analysed by Western blotting in order to approximate relative enzyme concentrations,
and Ypk1 and Gin4 containing beads diluted in order to equalise the concentrations of

the three proteins (data not shown).

Purified kinases were then used to phosphorylate Orcl in vitro. The following
reactions were performed; 2ul of purified Orcl in the absence of proteinA beads,
Orcl in the presence of 10ul of proteinA beads containing proteins purified from
ySC17, CKA1-MYC, YPK1-MYC and CMK1-MYC strains, 10ul of proteinA beads
containing proteins purified from ySC17, CKA1-MYC, YPK1-MYC and CMK1-MYC
strains in the absence of Orcl, and Orcl in the presence of twofold titrations (10, 5
and 2.5ul each) proteinA beads containing proteins purified from ySC17, CKAL1-
MYC, YPK1-MYC and CMK1-MYC strains. Reactions were performed in the same
buffer conditions used in the loading assay phosphorylation experiments. Reactions
were performed for 1 hour at 30°C and were stopped by the addition of an equal
volume of Laemmli buffer and boiling for 10 minutes. 25% of each reaction was
separated by SDS-PAGE and analysed by silver staining and Western blotting against
Myc-tagged proteins (Figure 22D, upper and middle panels). Silver stained gels were
dried and radiolabel incorporation visualised using a phosphorimager (figure 22D,
lower panel). The results demonstrate that Ckal but not Ypk1 or Cmk1 are capable
of phosphorylating Orcl in vitro. A small amount of Ckal and Cmk1

autophosphorylation was also seen.
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Figure 22. Ckal can phosphorylate Orcl in vitro

A. Orcl was expressed as a hexa-His tagged protein in E. coli and purified in a single
step using nickel-NTA agarose. A sample of purified protein was separated by SDS-
PAGE and visualised by Coomassie staining.

B. Monoclonal 9E11 anti-Myc antibody was crosslinked to proteinA agarose using DMP
as described in Materials and Methods. Samples of input (In) and unbound (FT)
antibody as well as bead bound antibody before (Pre) and after (Post) crosslinking
were separated by SDS-PAGE after boiling in Laemmli buffer and visualised by
Coomassie staining. Crosslinking renders the antibody-ProteinA interaction resistant
to denaturation by SDS.

C. 9E11 crosslinked proteinA beads (9E11)or proteinA beads containing no antibody
(Mock) were used to pull down Myc tagged proteins from ySC17, CKA1-MYC,
YPK1-MYC, GIN4-MYC and CMK1-MYC strains. Samples of input (In), flow
through (Sup’) and bead bound (Pull down) proteins in each case were separated by
SDS-PAGE and analysed by Western blotting using monoclonal 9E10 antibody.

D. Bead bound kinases were used to phosphorylate Orcl in vitro. Reactions were as
follows; 2ul of purified Orcl in the absence of proteinA beads (lane 1), Orcl in the
presence of 10ul of proteinA beads containing proteins purified from ySC17, CKA1-
MYC, YPK1-MYC and CMK1-MYC strains (lanes 2-5), 10ul of proteinA beads
containing Ckal, Ypk1 and Cmk1 in the absence of Orc1 (6-8), and Orcl in the
presence of twofold titrations (10, 5 and 2.5ul each) proteinA beads containing
proteins purified from ySC17, CKA1-MYC, YPK1-MYC and CMK1-MYC strains
(lanes 9-20). 25% of each reaction was separated by SDS-PAGE followed by silver
staining (upper panel) and Western blotting against the Myc tag (middle panel).
Silver stained gels were dried and **P incorporation visualised using a

phosphorimager (lower panel).
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4.8 CKIlI is responsible for kinase activity in the loading assay

The above experiments provided strong evidence that CKII is the kinase responsible
for Orcl phosphorylation in the loading assay. Gin4, Cmk1 and Cmk2 are likely to
be inactive in the conditions used in the assay, and only Ckal and Ypk1 appear to be
present on the loaded DNA. Of these, only Ckal is capable of phosphorylating Orcl
in vitro. Nevertheless, we wished to categorically rule out the involvement of the
remaining kinases in Orcl phosphorylation. Since Gin4, Cmk1 and Cmk2 are non-
essential proteins, it is possible to verify that they are not involved in Orcl

phosphorylation by creating deletion strains.

To this end, strains were constructed in which either Gin4 or both Cmk1 and Cmk2
had been deleted in the ySC17 strain background. In addition, strains in which Cka2
and Ypk2 had been deleted were also created in the CKA1-MYC and YPK1-MYC
backgrounds respectively. Either hygromycin or nourseothricin resistance markers
were amplified by PCR from plasmids pFA6-hphNT1 or pFA6-natNT2 (Janke et al,
2004) respectively, depending on the strain to be transformed, using primers
containing regions of homology to the relevant genes. PCR products were
transformed into the relevant background strains and transformants selected by
growth in the presence of antibiotic. Successful integration and deletion was
confirmed by colony PCR of the relevant locus. Cmk1 and Cmk2 deletions were
made sequentially using hygromycin and nourseothricin markers. YPK1-MYC
AYPK2, CKAL-MY CACKA2, AGIN4 and ACMK1ACMK?2 strains were named

respectively ySS13, 14, 15 and 16.
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Extracts were made from each of the deletion strains as described for ySC17 and used
for loading assays which were then phosphorylated in the absence of exogenously
added kinase. Samples of each reaction were separated by SDS-PAGE and proteins
analysed by silver staining (Figure 23A, upper panel) and Western blotting against
Orc6 to verify levels of specifically bound ORC (Figure 23A, middle panel). The
silver stained gel was dried and ?P incorporation visualised using a phosphorimager

(Figure 23A, lower panel).

ORC binding to wild type DNA was as expected in each of these strains. Although
there was a partial reduction in ORC DNA binding, visible by Western blotting, and
Orcl phosphorylation in both the AGIN4 and ACMK1ACMK2 strains, neither showed
a complete loss of Orcl phosphorylation, hence ruling out these three kinases as
responsible for Orcl phosphorylation. Interestingly, the CKA1-Myc ACKA2 strain
showed a sharp reduction in the level of Orcl phosphorylation, providing further
evidence that CKII is the kinase responsible for the phosphorylation of Orcl. It
appears that the C terminal Myc tag interferes with the interaction of Ckal with its

substrates.

In addition, an attempt was made to deplete Ypk1 kinase from the YPK1-MYC AYPK2
strain. A 100ul aliquot of proteinA beads coupled to 9E11 or an equivalent volume of
beads containing no antibody was taken, pelleted and buffer removed. Beads were
resuspended in a 200l aliquot of YPK1-MYC AYPK?2 extract and incubated with
rotation for one hour at 4°C. Beads were then removed and the extract subjected to
two further rounds of depletion by the same protocol. Samples of input and depleted

extract were analysed by SDS-PAGE and Western blotting against the Myc tag
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(figure 23B). The technique was only partially successful, resulting in a decrease of
approximately 50% of tagged protein in the extract. However, a loading assay
performed with mock treated or depleted extract showed a clear reduction in the
amount of detectable DNA bound Ypk1 following protein depletion (figure 20C,
upper and middle panel). This was not, however, associated with a reduction in Orcl
phosphorylation when the loaded proteins were subsequently phosphorylated in the
absence of exogenously added kinase (Figure 23C, lower panel). This therefore
further argues against the possibility of Ypk1 being responsible for Orcl

phosphorylation in the loading assay.
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Figure 23. Effect of kinase deletion or depletion on Orcl phosphorylation

A. Extracts from ySC17 (lanes 1-2), CKA1-MYC ACKAZ2 (lanes 3-4), YPK1-MYC
AYPK2 (lanes 5-6), AGIN4 (lanes 7-8) and ACKM1ACMK2 (lanes 9-10)
strains were used in loading assays, and purified pre-RCs subsequently
phosphorylated in the absence of exogenous kinase. 25% of each reaction was
separated by SDS-PAGE and proteins visualised by silver staining (upper
panel) and Western blotting against Orc6 (middle panel). The silver stained
gel was dried and *?P incorporation visualised using a phosphorimager (lower
panel).

B. Ypk1 was depleted from the YPK1-MYC AYPK2 strain by three successive
rounds of incubation with 9E11 bound proteinA beads or beads containing no
antibody. Samples of input and depleted (Dep) or mock depleted (Mock)
extracts were separated by SDS-PAGE and analysed by Western blotting
against the Myc tag. Depletion was only partially successful, showing a
reduction of approximately 50% of the total tagged protein.

C. Mock depleted (lanes 1-2) and depleted (lanes 3-4) extracts were used for
loading assays and were subsequently phosphorylated in the absence of
exogenous kinase. 25% of each reaction was separated by SDS-PAGE and
proteins visualised by silver staining (upper panel) and Western blotting
against the Myc tag (middle panel). The silver stained gel was dried and *?P

incorporation visualised using a phosphorimager (lower panel).
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4.9 The role of Orcl phosphorylation in vivo

From these experiments it was therefore concluded that CKIlI is the enzyme
responsible for the in vitro phosphorylation of Orcl in the loading assay. However, it
is still unclear whether this event plays a role in DNA replication in vivo. Since the
CKA1-MYC ACKAZ2 strain showed a dramatic reduction in Orc1 phosphorylation
observed in the loading assay, we wondered whether this defect was associated with a
reduction in the efficiency of MCM loading in vitro or in the rate of S phase
progression in vivo. Loading assays were therefore performed with both this strain
and ySC17 without subsequent phosphorylation in order to maintain Mcm2-7
complex association with the DNA. Samples from supernatent and DNA bound
fractions in each case were taken and analysed by SDS-PAGE followed by silver
staining (Figure 24A) and Western blotting against both Orc6 and Mcm2 (Figure 24B,
left panel). DNA bound samples were also titrated in twofold dilutions of 10, 5 and
2.5ul and were similarly analysed by Western blotting in order to compare relative

protein amounts present in each reaction (Figure 24B, right panel).

In both cases, sequence specific ORC binding and Mcm2-7 loading was observed.
Since the CKA1-MYC ACKA2 strain extract appeared to bind approximately 50% less
ORC to the DNA than strain ySC17, signal intensities of Orc6 and Mcmz2 bands in the
titration Western blot were quantified using imageJ software (NIH, open source).
Loaded MCM protein was then normalised relative to the amount of DNA bound
ORC for each point in the titration (Figure 24C). The amount of MCM loaded per
DNA bound ORC molecule appeared to remain constant between the two extracts,

demonstrating that the reduction in Orc1 phosphorylation does not affect the
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efficiency of Mcm2-7 complex loading in vitro. No test was made of the salt stability
of the loaded complex, however. It also remains possible that Orc1 phosphorylation
plays a role in ORC binding to the DNA, resulting in the observed reduction in ORC
DNA binding observed in the CKA1-MYC ACKAZ strain extract. The CKA1-MYC
ACKAZ strain is viable, however, so either sufficient ORC phosphorylation remains
for function in vivo, or Orcl phosphorylation does not have an essential function.
Other essential functions of CKII must also be unaffected by Myc tagging of the Ckal

subunit.

In a final experiment, we also tested the rate of DNA replication in both ySC17 and
the CKA1-MYC ACKAZ2 strain. Cultures were arrested in G1 phase with o factor
followed by release into a mitotic arrest with nocodazole. Samples were taken at 20
minute time points after release, as well as during the G1 arrest, and were analysed for
DNA content by FACS analysis, as described in Materials and Methods (Figure 24D).
No defect in the rate of DNA synthesis was observed in the CKA1-MYC ACKA2
strain, however, and although a subset of the population in each case failed to escape
from the G1 arrest, replicating cells in both cases had completed DNA replication by

approximately 40-60 minutes after release.
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Figure 24. The role of Orcl phosphorylation in vivo

A. Loading assays were performed with ySC17 extract and extract from the
CKA1-MYC ACAK2 strain. 25% of each reaction was separated by SDS-
PAGE and visualised by silver staining.

B. Supernatent (Sup") and bead bound (Load) fractions were also analysed by
Western blotting against Orc6 and Mcm2 (left hand panels). Twofold
titrations (10, 5 and 2.5ul samples) of DNA bound samples were similarly
analysed by SDS-PAGE and visualised by Western blotting (right hand
panels).

C. Orc6 and Mcm2 signals were quantified at each point in the titration using
ImageJ software (NIH, open source). The amount of loaded MCM complex
was normalised relative to the amount of DNA bound ORC.

D. FACS analysis of DNA content of ySC17 or CKA1-MYC ACAK2 cells either

growing asynchronously (asynch), arrested in o factor (alpha), or at 20 minute

time points after release from o factor into nocodazole.
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Although CKII phosphorylation of Orcl is clear in vitro, therefore, these experiments
have so far failed to demonstrate a role for the event in vivo. However, Orcl
phosphorylation in vitro is not completely abolished in the CKAL-MYC ACKAZ strain,
so it remains possible that complete loss of kinase function, for example by using a
temperature-sensitive mutant, may reveal an essential function that is not uncovered
here. We have also not successfully demonstrated Cdc7 mediated phosphorylation of
members of the Mcm2-7 complex, or other pre-RC factors, which we initially set out
to do. On the other hand, CDK activity, albeit in a negative regulatory role, was
clearly demonstrated. Recent developments in reconstitution of the pre-RC using
purified components (Remus et al, in press) will facilitate the study of Cdc7 function,

by increasing both the purity and the concentration of its substrates.
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Chapter 5: Discussion

5.1 Peptide array phosphorylation experiments

In the first approach taken here to identify novel substrates and functions of CDK and
Cdc7, enzymes were purified and used to phosphorylate arrays of peptides in vitro.
Arrays contained complete sequences of all essential replication proteins in S.
cerevisiae, as well as some proteins involved in the regulation of genome stability.
Proteins were split into sets of 26mer peptides attached to a solid cellulose support.
Three experiments were performed in which arrays were phosphorylated with human
Cdk2-cyclinA, S. cerevisiae Cdc28-CIb5 and S. cerevisiae Cdc7-Dbf4. At the outset
of the project, the essential S phase promoting substrates of CDK were unknown, as
were the reported essential Cdc7 phosphorylation sites in the N termini of Mcm2 and
Mcm4 and the requirement for a distant binding site for recruitment of the kinase.
(Tak et al, 2006; Tanaka et al, 2007; Zegerman and Diffley, 2007; Sheu and Stillman,
2006; Bruck and Kaplan, 2009). Also unknown was the requirement for acidic or
phosphorylated residues in the +1 position for Cdc7 phosphorylation (Cho et al, 2006;
Masai et al, 2006; Montagnoli et al, 2006; Bruck and Kaplan, 2009). The array
experiments were therefore designed with two aims; to identify substrates for both

kinases, and to determine a possible substrate consensus for Cdc?7.

The approach was met with limited success, however. In the first experiment,
phosphorylation of arrays with human Cdk2-cyclinA revealed preferential
phosphorylation of several proteins, including SId3, Orc1, Orc4, Orc5, Orc6, Cdc6,

Cdtl, Mcm3, Mcm7, Mcm10, Top2, Sld2, Pol12, Pril, Pol32, Rfcl, Rfc2, Rfc4, Rfc5,
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Fen 1 and Cdc9, as well as sites of phosphorylation in multiple other proteins.
Analysis of phosphorylated peptides revealed the unexpected finding that some of the
phosphorylated peptides did not contain an S/T-P consensus sequence, a requirement
for substrate phosphorylation by CDK (Songyang et al, 1994). Many peptides that did
contain an S/T-P consensus, on the other hand, remained unphosphorylated. In
addition, known sites of phosphorylation in Sld2 and Sld3 either showed low levels of
phosphorylation or none at all relative to background signal. The reason for these
observations still remains unclear. It is possible that peptides were behaving on the
array in unpredictable ways, with some sites accessible to the kinase whilst others are
not. It is also possible that CDK was phosphorylating residues outside of its normal
consensus in these experiments. Despite this, however, phosphorylation of S/T-P
consensus sites in proteins including Orc1, Cdc6, Mcm7, Mcm10, Top2, Sgs1, Sld2,
Pol12, Pol32, Rfcl and Rfc4 was revealed, the in vivo significance of which remains
to be investigated. Although verification of several substrates that appeared to be

phosphorylated on the arrays was attempted, only Sld2 was confirmed.

In the second experiment, arrays were phosphorylated with endogenous Cdc28-Clb5.
Although the purified enzyme was highly active against histone H1, the relatively low
yields of purification of this enzyme meant that a low concentration of enzyme was
used. The results of the experiment revealed an even less predictable pattern of
phosphorylation than human Cdk2-cyclinA, with no apparent enrichment for
phosphorylation of peptides containing an S/T-P consensus. Although to some extent
the pattern could be seen to overlap with that produced in the earlier experiment, the
random appearance of phosphorylation events in this experiment made interpretation

extremely difficult. In some cases, *2P incorporation was seen in peptides that did not
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contain a serine or threonine residue. The results of this experiment may be attributed
to either CDK phosphorylation outside of its consensus, a contributing
phosphorylation by a contaminating kinase, or a background binding of **P yATP that

was not observed in control experiments.

What conclusions can therefore be drawn from these experiments about the substrates
of CDK involved in replication? To some extent, the experiments were superseded
over the course of the study by the identification of phosphorylation of SId2 and Sld3
(Tak et al, 2006; Tanaka et al, 2007; Zegerman and Diffley, 2007), at sites which were
in any case not identified in this study. The lack of phosphorylation of known sites
coupled with the apparent phosphorylation of sites that cannot be substrates in vivo
makes it difficult to determine whether the CDK phosphorylation events observed here
are physiologically relevant. However, some of the S/T-P and S/T-P-x-K/R
phosphorylation events are potentially interesting. Two sites in membrane 2 strongly
phosphorylated by Cdk2-cyclinA, peptides G21-22, for example, represent
phosphorylation of Mcm10 at residue S63, an S-P-x-K motif. This falls within a
conserved N terminal domain which has been reported to be responsible both for
oligomerisation (Robertson et al., 2008) and binding to Dbf4, stimulating
phosphorylation of the Mcm2-7 complex (Lee et al., 2003). It is therefore possible
that either one of these may be affected by phosphorylation of the protein. An EM
structure of Mcm10 revealed a ring shaped hexamer with similarities to the structures
of SV40 TAg and the archaeal MCM proteins (Okorokov et al., 2007), leading to the
speculation that it may encircle the DNA and couple helicase and polymerase
components at the fork. CDK phosphorylation may therefore promote this

oligomerisation and thereby stimulate replication fork formation. Alternatively,
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phosphorylation may promote binding to Dbf4, hence providing a mechanism of CDK
stimulation of Cdc7 activity aside from priming SSP motif phosphorylation (Lee et al.,

2003).

Rfcl also appears to be phosphorylated in several N terminal minimal CDK consensus
sites. The structure of RFC in complex with PCNA contained an N terminal
truncation of Rfcl which was functional for clamp loading (Bowman et al., 2004), so
the precise function of the N terminal domain is unknown. It may be involved in
protein-protein interactions, however, and has been reported to bind DNA (Allen et al.,
1998). Another potential substrate was the Pol12 subunit of Pola, which was strongly
phosphorylated at several N terminal minimal consensus motifs. Phosphorylation of
Pol12 in a cell cycle dependent manner not dependent on Cdc7 has previously been
demonstrated (Foiani et al., 1995). Phosphorylation is dependent on the interaction
between Pol12 and Poll, but does not affect formation of the complex (Ferrari et al.,
1996). Although Pol12 is essential for DNA replication in vivo, it does not seem to
affect polymerase or primase activities in vitro (Foiani et al., 1994; Brooke et al., 1991
a,b). The human protein has been shown to form a tight complex with SV40 TAg, and
it may play a similar role in tethering the polymerase to a full replication fork (Collins
etal., 1993). The S. pombe protein has also been shown to bind Orc2 (Uchiyama &
Wang, 2004). However, any direct regulatory role for phosphorylation of the protein,
for example in regulating the interactions between other Pola subunits or replication

fork proteins remains to be elucidated.

Other possible substrate revealed in the Cdk2-cyclinA array phosphorylation

experiment included Poll, Dna2, Top2, Sgsl, Smc5, Pol32 and Rfc4, all of which
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were phosphorylated by Cdk2-cyclinA within CDK consensus motifs. However, since
none of these substrates has so far been verified in vivo, discussion of possible
functions of phosphorylation events remain entirely speculative. Phosphorylation
events may alter the protein structure or stability, create or destroy protein-protein

interactions or directly alter enzymatic activities.

In the third experiment, arrays were phosphorylated with S. cerevisiae Cdc7-Dbf4
purified after co-expression in insect cells using a baculovirus protein expression
system. Activity of this kinase was verified by phosphorylation of the N terminus of
Mcm2. However, the array phosphorylation experiment revealed only very low or no
activity of Cdc7-Dbf4. Prior to phosphatase treatment of the membranes, the pattern
of phosphate incorporation resembled that seen when arrays were phosphorylated by
Cdc28-Clb5, creating an argument that in neither experiment was *P incorporation
dependent on kinase activity. Only a small amount of this signal was removed by
treatment with A phosphatase. Of those peptides that showed radiolabel incorporation
above an arbitrarily chosen threshold, approximately a third contained the reported
S/T-D/E consensus sequence (Cho et al, 2006; Masai et al, 2006; Montagnoli et al,
2006; Bruck and Kaplan, 2009). Once again, no enrichment for known substrates was
observed. Neither could phosphorylation of SSP motifs be stimulated by prior
phosphorylation of the membrane with CDK. It therefore seems likely that Cdc7-
Dbf4 is essentially inactive for peptide phosphorylation in this system. There are two
contributing explanations for this. The first is that Cdc7-Dbf4 has an auto-inhibitory
activity, which therefore limits the activity of the kinase in vitro (Figure 13). The
second is that recruitment motifs were absent from the peptides, which have been

shown to enhance phosphorylation of at least two substrates in vitro (Sheu and
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Stillman, 2006; Bruck and Kaplan, 2009). Low levels of kinase activity coupled to
low efficiency of substrate recognition results in only minimal levels of substrate

phosphorylation.

Cdc?7 array phosphorylation therefore revealed little about the function of the kinase.
Neither known nor novel substrates appeared to be efficiently phosphorylated.
However, the observation that the kinase has auto-inhibitory activity is interesting, and
merits further study. It is possible that the cell regulates Dbf4 or Cdc7
autophosphorylation, and that this contributes to the cell cycle dependent regulation of
the kinase. One possibility is that CDK phosphorylation of either Dbf4 or Cdc7
promotes de-phosphorylation by the activity of a protein phosphatase. A phosphatase
with activity against Cdc7 and Dbf4 remains to be identified. Dbf4 contains multiple
S/T-DIE sites throughout its sequence, explaining the large shift in the resolving
position of the protein in SDS-PAGE. It also contains two strong CDK consensus
sites at its extreme N terminus, residues S3 and S11, as well as three other minimal
S/T-P sequences. Cdc7 on the other hand contains only four S/T-D/E motifs, all at its
C terminus. It contains four CDK consensus sites, including one at the C terminus
amongst the S/T-D/E sites. Interestingly, Cdc7 contains only one strong CDK
consensus, and this is found in an S-S-P motif at the N terminus of the protein. CDK
phosphorylation of Cdc7 may therefore potentiate rather than prevent
autophosphorylation (Appendix 1, membranes 2 and 5). The C terminus of Cdc7 has
been reported to be responsible for binding to Dbf4 (Jackson et al., 1993). No
phosphorylation of sites in either Cdc7 or Dbf4 was seen when peptide arrays were
phosphorylated with Cdk2-cyclinA, although Dbf4 but not Cdc7 phosphorylation by

CDK has been reported previously (Ubersax et al., 2003).
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An alternative possibility for regulation of Cdc7-Dbf4 autophosphorylation is that
some other Cdc7-Dbf4 interacting factor prevents Cdc7 and Dbf4 autophosphorylation
in either a constitutive or cell cycle dependent manner. Such a factor may be
identified by mass-spectrometric analysis of endogenous enzyme, or by pull down
from a whole cell extract with larger quantities of purified kinase. This approach may
also reveal new substrates of the kinase that contain a docking site for Dbf4, which
may be an important avenue for future research. lIdentification of a conserved docking

sequence for Cdc7-Dbf4 would enable prediction of kinase substrates in silico.

In addition to the array phosphorylation experiment performed with Cdc7-Dbf4,
phosphorylation of Sld2, SId3, Dpb11 and Mcm10 was also demonstrated with full-
length proteins in vitro. S/T-D/E sites are found throughout Mcm10, Sld3 and Dpb11,
and in the C terminal half of SId2. An interesting observation is the presence of three
S-S-P motifs (S127, S137 and S171) clustered in the N terminal half of SId2 in the
vicinity of the essential CDK phosphorylation site T84. As for Mcm10, it is
interesting to speculate that SId2 may coordinate the activity of the two kinases; Sld2
phosphorylation by Cdc7 after phosphorylation by CDK may contribute to regulation
of Sld2 function. Although CDK phosphorylation of Sld2 and SId3 has been shown to
promote binding of both proteins to Dpb11, further functional significance of
phosphorylation is unknown, as is the consequence of binding to Dpb11. Also unclear
is whether both Sld2 and Sld3 bind Dpb11 in a ternary complex. The precise

functions of all three proteins in replication fork formation remain to be determined.

Future in vitro approaches to the identification of substrates of both Cdc7 and CDK

could involve phosphorylation of complete set of full length proteins in solution. Not
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only would this allow a comprehensive list of replication substrates to be built up, but
experiments could also investigate changes in protein-protein interactions or enzyme
activities resulting from phosphorylation. One possibility is that Cdc7
phosphorylation of the Mcm2-7 subunits promotes their interaction with Cdc45 and
the GINS complex, leading to activation of the helicase (Masai et al, 2006). The
mcmb5-bobl bypass of kinase function suggests that this may be the only essential
function of the kinase, although other subsidiary functions cannot be ruled out.
Stimulation of Cdc7 activity by prior substrate phosphorylation by CDK, for example
in Sld2, could also be investigated. Such an approach would lack the benefits of a
high throughput screen however, and limits the number of potential substrates which
could be tested. Achieving quantitative phosphorylation of Cdc7-Dbf4 substrates may
be aided by the development of a more active form of purified Cdc7-Dbf4.
Identification of the residues in Dbf4 or Cdc7 which are important for auto-inhibition
of the kinase in vitro will enable a constitutively active form of the kinase to be

purified.

Previous approaches to proteomic scale identification of protein kinase substrates have
included the use of a bulky ATP analogue sensitive Cdc28 mutant to selectively
radiolabel CDK substrates in S cerevisiae extracts (Ubersax et al., 2003). 360 CDK
targets were identified in this way out of 695 proteins tested (approximately 10% of
the yeast proteome), of which 181 were strongly phosphorylated. This screen detected
phosphorylation of Sld2, although it did not detect phosphorylation of Sld3. Of the
putative substrates of Cdk2-cyclinA detected on the peptide array, only Poll, Dna2
and Pol32 were detected in the earlier screen. Another report used arrays of

approximately 4000 GST tagged full length S. cerevisiae proteins printed onto chips to
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identify substrate sets for 78 different yeast kinases (Ptacek et al., 2005). This screen
identified 43 substrates of Cdc28-ClIb5, of which 10 overlapped with the Cdc28
mutant study (Ubersax et al., 2003). Differences between the two screen may result
from slightly different selectivities of the wild-type and mutant kinases, and the fact
that one screen was performed in cell extracts whilst the other was performed on an
array. Much further work is required to build a complete picture of the ‘kinome’ of
eukaryotic organisms, and to understand the functional significance of

phosphorylation events.

5.2 Pre-replicative complex phosphorylation

As an alternative approach to kinase substrate identification, pre-replicative complexes
which had been assembled in vitro using cell free yeast extracts (Seki and Diffley,
2000; Bowers et al., 2004) were also phosphorylated with both endogenous Cdc28-
Clb5 and Cdc7-Dbf4 kinases. Although this approach too failed to identify Cdc7
substrates, other laboratories have demonstrated phosphorylation of loaded Mcm2-7
complexes (Francis et al., 2009). Cdc28 was observed to phosphorylate its known
substrates Orc2 and Orc6. However, an unexpected phosphorylation of Orcl was also
observed, catalysed by a kinase which was purified with the pre-replicative complex.
This kinase was shown to be casein kinase Il (CKII), a broad specificity, constitutively
active kinase with a variety of functions in vivo (Poole et al., 2005; Meggio and
Pinna., 2003). Like Cdc7, CKII phosphorylates acidic substrates (Meggio and Pinna,

2003; Sato et al., 1997).
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What could be the consequence of Orcl phosphorylation by CKII? CKII has been
shown to influence protein function in a variety of ways. Phosphorylation of Akt/PKB
in Jurkat cells appears to enhance its catalytic activity (Maira et al., 2005),
phosphorylation of the PTEN phosphatase appears to affect the stability and cellular
localisation of the protein (Al-Khouri et al., 2005; Vazquez et al., 2001; Das et al.,
2003), phosphorylation of the NF«kB inhibitor IkBa enhances its degradation (Shen et
al., 2001), whilst phosphorylation of the haematopoietic lineage cell-specific protein 1

(HS1) inhibits its cleavage by caspases (Ruzzene et al., 2002).

An extract of S. cerevisiae in which CKII phosphorylation of Orc1 was severely
reduced in vitro by deletion of the o’ subunit in combination with a C terminal 9xMyc
tag on the o subunit failed to show a specific defect in Mcm2-7 loading in vitro,
although ORC binding to the DNA was slightly reduced. Neither did the strain show a
reduction in the rate of DNA synthesis in vivo. More experiments are required to
verify Orcl phosphorylation by CKII in vivo, as well as the sites of phosphorylation.
Interestingly, an N terminal truncation of Orc1 was not phosphorylated in vitro,
implying that CKII phosphorylation is in the N terminus of the protein. The N
terminus of Orcl (residues 1-234) contains a protein binding Bromo-Adjacent
Homology (BAH) domain, and has been shown to be required for the silencing
function of the protein, but is dispensable for its replication function (Bell et al., 1995;
Zhang et al., 2002). The predicted size of the N terminal truncation in these
experiments according to its resolving position in SDS-PAGE is consistent with a
deletion slightly larger than this, although the exact position of the cleavage remains to

be determined.
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CKII has been shown to have a strong preference for acidic residues in the +1 and +3
positions (Meggio and Pinna., 2003). Interestingly, Orcl contains a cluster of four
such sequences at positions S237, T247, S258 and S264 (array 1 sites C10-C13), lying
just downstream of the BAH domain in a region predicted to be disordered (Duncker
et al., 2009). These are therefore strong candidates for CKII phosphorylation. An
alignment of S. cerevisiae, S. pombe, Drosophila, mouse and human Orc1 homologues
reveals that these motifs are conserved in the N termini of each protein. The
alignment is shown in Figure 25, which also marks the position of weaker S/T-D/E
and S/T-x-x-D/E motifs (Meggio and Pinna, 2003). The S. cerevisiae BAH domain is
predicted to be contained within residues 48-188 of the protein, whilst the AAA+
domain is at the C terminus, residues 471-628. The region of the N-terminus known
to be non-essential for replication extends to residue 234 (Duncker et al., 2009; Bell et
al., 1995; Zhang et al., 2002). Of the conserved S/T-D/E-x-D/E sites in the Orcl
homologues, most are found within the 1-234 region, with S. pombe, Drosophila, and
mouse proteins all containing consensus motifs in this area. However, the mouse and
human proteins contain one and two consensuses respectively downstream of S.
cerevisiae region 1-234. It could be however that any role for CKII phosphorylation
of Orcl is in the silencing function of the protein. ORC binds to the HMR and HML E
and I silencer regions to control silencing at the mating type locus, acting to recruit a
complex of Sirl, Sir2, Sir3 and Sir4 (Loo and Rine, 1995; Bell et al., 1995; Zhang et
al., 2002). Higher eukaryotes lack homologues of the S. cerevisiae Sir proteins, but
ORC has been shown to bind heterochromatin protein HP1 (Auth et al., 2006).
Mutation of the four potential CKII phosphorylation sites in S. cerevisiae Orcl to
alanine would reveal whether serine or threonine residues at these positions are

essential, and whether they have any effect on either silencing or replication. If the
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sites are non essential, loading assay phosphorylation experiments similar to those
described here would determine whether they are indeed the sites of CKIllI
phosphorylation, and if so, would allow a more robust determination of the effect of

CKII phosphorylation of Orcl on replication.
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Figure 25. Alignment of S. cerevisiae, S. pombe, Drosophila, mouse and human
Orcl homologues. S/T-D/E-x-D/E consensus sites are highlighted in yellow., whilst
the predicted BAH domain and AAA+ domain of S. cerevisiae Orcl are highlighted in
red and green respectively. Weaker potential CKII consensus sequences S/T-D/E or
SIT-x-x-D/E are also given in green letters. The region of Orcl conserved between
ORC subunits extends from the AAA+ domain to the C terminal end of the protein

(Duncker et al., 2009).
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5.3 Final comments

An important goal for the future of the eukaryotic DNA replication field is the
reconstitution in vitro of replication from an ARS. Pre-RC formation has been
successfully achieved using both cell extracts and purified S. cerevisiae proteins (Seki
and Diffley, 2000; Bowers et al., 2004; Kawasaki et al., 2006; Remus et al.,
submitted). The next step in this process is achieving quantitative phosphorylation of
the Mcm2-7 subunits with Cdc7-Dbf4, as well as any other important substrates of the
kinase. Identification of essential and non-essential Cdc7-Dbf4 substrates is therefore
an important future goal of DNA replication research. In conjunction with Sld2 and
Sld3 phosphorylation by Cdc28, phosphorylation of Cdc7-Dbf4 substrates will allow
pre-RC “activation’ and will enable the subsequent assembly of downstream factors,
DNA unwinding and replication initiation. Analysis of intermediates of this process,
using mutant proteins and different combinations of downstream replication factors,
will allow determination of the function of each component of the complex. Although
much work lies ahead before the process can be fully understood, these are exciting
times for research into DNA replication, as genetically identified components become

increasingly well biochemically characterised.
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Appendices

1. Peptides present in the peptide array
Reproduction of Table 1, proteins present inthe array.................cc.vvuie 259
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3. Loading assay, specifically bound proteins.............cccooviiiii e, 335
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Appendix 1. Peptides on each membrane in the peptide array. Table 1is

reproduced, giving the positions of each of the proteins in the array. Peptide locations
and sequences are then tabulated. The name of each protein is given at the location of
the first peptide, and the membrane number at the top of every page. Potential kinase

consensus motifs are indicated according to the colour scheme below:

Serine/threonine: SIT

Minimal CDK consensus: SIT-P

Full CDK consenus: S/T-P-x-K/R
Cdc7 consensus: S/T-D/E
CDK priming site: SIT-SIT-P
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Protein Peptides Array Protein Peptides Array
Sld3 A1-B21 Orc2 A1-B17
Orc1 B23-E2 Orc3 B19-D5
Orc4 E4-F13 Cdc7 D7-E14
Orc5 F15-G20 Clbé E16-F14
Orc6 G22-H24 Cdc28 F16-G7
Cdc6 H26-J4 Sld2 G9-H12
Cdt1 J6-K21 Cdc45 H14-J)2
Mcm2 K23-M30 Dpb11 J4-11
Mcm3 N2-P15 Sld5 L3-L24
Mcm4 P17-R27 Psf1 L26-M10
Mcm5 R29-T27 Psf2 M12-M27
Mcmé6 A1-C18 Psf3 M29-N12
Mcm?7 C20-G15 Pol12 N14-P7
Mcm10 G17-H29 Pri1 P9-Q9
Dbf4 11-J24 Pri2 Q11-R21
Pol1 J26-N17 Pol31 R23-529
Pol2 N19-525 Pol30 T1-T19
Clb5 S27-T30 Rfa3 T21-T29
Dna2 A1-D27 Pol3 A1-C24
Mrcl D29-G22 Rfal C26-E12
Tof1 G24-J28 Rfa2 E14-F3
Top1 J30-L28 Pol32 F5-F30
Top2 L30-P18 Rfc1 G2-17
Top3 P20-R9 Rfc2 19-J5
Dpb2 R11-T3 Rfc4 J7-J30
Rfc3 T5-T30 Rfc5 K2-K28
Sgs1 A1-D21 Feni K30-L28
Srs2 D23-G22 Csm3 L30-M23
Smc5 G24-117 Cdc9 M25-022
Smcé6 J19-M13 Nse1l 024-P18
Ctf4 M15-025 Nse3 P20-Q12
Ctf18 027-Q22

Elg1 Q24-523

Dpb3 S25-T9

Dpb4 T11-T25
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Appendix 3. Proteins binding to ORC. Proteins identified by mass spectrometry.
Protein names, the number of unique peptides and the confidence of protein

identification are indicated. Taxonomy of all proteins is Saccharomyces cerevisiae

unless otherwise indicated.
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No. of unique
Protein peptides Confidence
Origin recognition complex subunit 1 23 100%
Origin recognition complex subunit 4 21 100%
Origin recognition complex subunit 3 15 100%
Calcium/calmodulin-dependent protein kinase | 13 100%
Heat shock protein SSB1 13 100%
Seventh homolog of septin 1 13 100%
Heat shock protein SSA1 12 100%
Origin recognition complex subunit 6 12 100%
Bud site selection protein 3 11 100%
Origin recognition complex subunit 5 11 100%
Cell division control protein 12 10 100%
Uncharacterized transcriptional regulatory protein
YKL038W 10 100%
Calcium/calmodulin-dependent protein kinase 11 9 100%
Origin recognition complex subunit 2 9 100%
Protein ZDS1 7 100%
Putative serine carboxypeptidase YBR139W 7 100%
Cell division control protein 3 7 99%
Glucosidase 2 subunit alpha precursor 6 100%
Histone acetyltransferase type B catalytic subunit 6 98%
Coatomer subunit beta 6 93%
60S ribosomal protein L8-B 5 100%
ATP-dependent RNA helicase DED1 5 100%
Putative uncharacterized protein
- Vanderwaltozyma polyspora DSM 70294 5 100%
40S ribosomal protein S3 4 100%
Mitochondrial clpX-like chaperone MCX1 4 100%
37S ribosomal protein S7, mitochondrial precursor 4 99%
40S ribosomal protein S4 4 99%
Uncharacterized protein YMR107W 4 96%
Glutamyl-tRNA synthetase, cytoplasmic 4 90%
Guanine nucleotide-binding protein subunit beta-like
protein 4 90%
Glucosidase 2 subunit beta precursor 4 88%
Heat shock protein homolog SSE2 4 86%
Uncharacterized protein YJL145W 4 82%
Import inner membrane translocase subunit TIM44,
mitochondrial precursor 4 81%
Serine/threonine-protein kinase GIN4 4 69%
Cell division control protein 10 3 100%
Ubiquitin-specific protease 3 99%
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Casein kinase Il subunit alpha 3 98%
60S ribosomal protein L19 3 97%
40S ribosomal protein S18 3 96%
Protein PBP4 3 94%
ATP synthase D chain, mitochondrial 3 93%
Putative thiosulfate sulfurtransferase YOR285W 3 88%
40S ribosomal protein S17-A 3 74%
40S ribosomal protein S24 3 65%
Casein kinase Il subunit alpha’ 3 60%
60S ribosomal protein L16-B 3 59%
Myb-like DNA-binding protein BAS1 3 45%
60S ribosomal protein L13-A 2 96%
PAB1-binding protein 1 2 96%
40S ribosomal protein S6 2 93%
40S ribosomal protein S8 2 93%
Histone acetyltransferase type B subunit 2 2 93%
40S ribosomal protein S7-A 2 90%
Ribosomal RNA-processing protein 15 2 90%
Transcription initiation factor TFIID subunit 10 2 90%
ATP synthase epsilon chain, mitochondrial 2 89%
ATP synthase gamma chain, mitochondrial precursor 2 87%
40S ribosomal protein S16 2 86%
Enolase - Saccharomyces cerevisiae YJM789 2 84%
Protein MKT1 2 82%
Streptavidin precursor - Streptomyces avidinii 2 82%
Glyceraldehyde-3-phosphate dehydrogenase 2 2 79%
40S ribosomal protein S5 2 78%
ALB protein - Bos taurus (Bovine) 2 78%
60S ribosomal protein L2 2 76%
Vacuole morphology and inheritance protein 14 2 75%
N(2),N(2)-dimethylguanosine tRNA methyltransferase,

mitochondrial precursor 2 73%
Glutathione S-transferase | 2 71%
Protein BMH?2 2 67%
Casein kinase 11 subunit beta' 2 66%
GU4 nucleic-binding protein 1 2 64%
Transcription factor SPT8 2 64%
60S ribosomal protein L10 2 53%
Uncharacterized protein YKL054C 2 51%
Elongation factor 2 2 50%
DNA-binding protein REB1 2 44%
60S ribosomal protein L26-A 2 39%
60S acidic ribosomal protein PO 2 33%
Heat shock protein SSA2 2 15%
60S ribosomal protein L7-A 1 90%
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Casein kinase Il subunit beta 1 90%
RNA exonuclease 4 1 90%
Thioredoxin - Escherichia coli B 1 90%
60S ribosomal protein L6-A 1 84%
Regulator of ribosome biosynthesis 1 83%
Eukaryotic initiation factor 4F subunit p150 1 82%
Transcription elongation factor SPT5 1 82%
60S ribosomal protein L9-A 1 80%
60S ribosomal protein L7-B 1 79%
Phosphoglycerate mutase 1 1 79%
60S ribosomal protein L14-A 1 78%
40S ribosomal protein S27-A 1 77%
40S ribosomal protein S9-A 1 76%
Nucleoporin NUP57 1 73%
40S ribosomal protein S28-A 1 72%
60S ribosomal protein L18 1 71%
Transcription initiation factor TFIID subunit 6 1 70%
60S ribosomal protein L17-A 1 67%
40S ribosomal protein S13 1 60%
60S ribosomal protein L20 1 58%
40S ribosomal protein SO-A 1 55%
Ubiquitin fusion degradation protein 4 1 53%
60S ribosomal protein L36-A 1 52%
60S ribosomal protein L3 1 50%
Protein AVL9 1 50%
Serine/threonine-protein kinase YPK1 1 50%
Heat shock protein 42 1 47%
40S ribosomal protein S26-A 1 36%
60S ribosomal protein L30 1 36%
Mitochondrial ATPase complex subunit ATP10 1 33%
60S ribosomal protein L31-A 1 30%
Phosphatidylinositol transfer protein CSR1 1 29%
RNA annealing protein YRAL 1 26%
Uncharacterized protein YPL146C 1 26%
60S ribosomal protein L35 1 24%
40S ribosomal protein S12 1 22%
Importin subunit alpha 1 20%
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Appendix 3. Loading assay, specifically bound proteins. Proteins identified by
mass spectrometry. Protein names, the number of unique peptides and the confidence
of protein identification are indicated. Taxonomy of all proteins is Saccharomyces

cerevisiae.
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No. of unique

Protein peptides Confidence
Origin recognition complex subunit 1 25 100%
Origin recognition complex subunit 4 19 100%
Origin recognition complex subunit 2 10 100%
Origin recognition complex subunit 5 10 100%
Cell division control protein 6 7 100%
Histone acetyltransferase type B catalytic subunit 5 99%
DNA repair and recombination protein RAD52 5 94%
DNA-directed RNA polymerase | subunit RPA34 4 100%
Histone acetyltransferase type B subunit 2 4 99%
Protein BMH?2 3 98%
DNA replication licensing factor MCM3 3 33%
Nuclear polyadenylated RNA-binding protein 4 2 94%
Protein LSM12 2 94%
Protein MKT1 2 89%
ARS-binding factor 2, mitochondrial precursor 2 87%
60S ribosomal protein L19 2 68%
Coatomer subunit zeta 2 59%
RNA polymerase Il transcriptional coactivator SUB1 2 50%
DNA-(apurinic or apyrimidinic site) lyase 1 2 44%
DNA replication licensing factor MCM®6 2 29%
M1-1 protoxin precursor 1 90%
Coatomer subunit epsilon 1 89%
Repression factor of MSEs protein 1 1 7%
60S ribosomal protein L13-A 1 75%
40S ribosomal protein S7-A 1 70%
Negative growth regulatory protein NGR1 1 50%
Ubiquitin domain-containing protein DSK?2 1 50%
Nucleolar protein 3 1 49%
Histone H1 1 47%
Proliferating cell nuclear antigen 1 36%
60S ribosomal protein L17-A 1 34%
ISWI chromatin-remodeling complex ATPase ISW1 1 29%
RNA-binding suppressor of PAS kinase protein 1 1 27%
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