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Abstract

We study finitely generated stably-free modules over infinite integral group

algebras by using the language of cyclic algebras and relating it to well-known

results in K-theory.

For G a free or free abelian group and Q8n, the quaternionic group of

order 8n, we show that there exist infinitely many isomorphically distinct

stably-free modules of rank 1 over the integral group algebra of the group

Γ = Q8n ×G whenever n admits an odd divisor.

This result implies that the stable class of the augmentation ideal Ω1(Z)

displays infinite splitting at minimal level whenever G is the free abelian

group on at least 2 generators. This is of relevance to low dimensional topol-

ogy, in particular when computing homotopy modules of a cell complex with

fundamental group Γ.
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Chapter 1

Introduction

1.1 Motivation

Given a weakly finite ring Λ (c.f. Chapter 3.1), we say a (right) Λ-module S

is stably-free of rank N whenever

S ⊕ Λb = Λa

and a − b = N , for integers a, b,N ≥ 0. Clearly, a stably-free module is

projective. Moreover, we say a group G is of type F , if it is free or free

abelian. The main result of this thesis is given by (c.f. Theorem 6.3.1):

Theorem A. Let G be a group of type F . Moreover, let Q8n be the quater-

nionic group with 8n elements; then for n with at least one odd prime divisor,

there is an infinite collection {Sm}m≥1 of isomorphically distinct stably-free

modules of rank one over the group-algebra Z[Q8n ×G].

There are two motivations for this result, the first being of algebraic, and

the second of topological nature. We start with the former: it is an important

and natural question, to ask what the projective modules over a given ring R

are. Thus it is not surprising that one of the most important algebraic prob-

lems of the last century, posed by Serre in his famous conjecture (c.f. [26]),
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was asking precisely that question, in the case where R is the polynomial ring

in n variables with coefficients in a field. This conjecture prompted research

by Sheshadri [27], Bass [2], Quillen [25] and others, implying the following

statement (c.f. Chapter 3.3):

Theorem. Let G be a group of type F and Λ an abelian principal ideal

domain; then all finitely generated projective modules over Λ[G] are free.

On the contrary, our result shows that in the case when Λ = Z[Q8n], with

n as in the statement of Theorem A, we can produce infinitely many finitely

generated (non-free) projective Λ[G]-modules. Here we make the identifi-

cation Z[Q8n × G] ∼= Z[Q8n][G]. The fact that we have chosen to examine

stably-free modules, which are particularly well-behaved projective modules,

underlines the complexity of the ring Z[Q8n ×G].

It is well known that the ring Z[Q8] already has non-trivial projective

modules (c.f. e.g. [29]). However, as Swan shows in his important paper [28],

it is not until n = 6 that Z[Q4n] possesses nontrivial stably-free modules (in

fact this is the case for all n ≥ 6). Thus it was a natural choice to start

the study of stably-free modules over Λ[G] by letting Λ = Z[Q24], and then

extend the result to quaternionic groups of order 8n, where n admits at least

one odd prime divisor. It should be added that in August 2009 Johnson

proved that the analogue of Theorem A also holds in the case Λ = Z[Q8]

(c.f. [14]).

Particular emphasis should be placed on the point that the ring

Z[Q8n×G] is not a generic algebra, constructed solely to illustrate a particu-

larly complex case of a ring with stably-free (non-free) modules, but rather,

and this is where we move on to topological considerations, that it appears

naturally. Namely, let

P =< x1, . . . , xg|W1, . . . ,Wr >
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be a presentation for the group π := Q8n ×G. Then π can be interpreted as

the fundamental group of a two dimensional CW complex XP , the so called

Cayley complex of P (see [10] p. 183 for further details). The chain complex

of the universal cover X̃P gives rise to a complex of Z[π] modules thus:

C∗(X̃P) =
(

0 // ker(δ2) // Z[π]r
δ1 // Z[π]g

δ1 // Z[π] ε // Z // 0

)
.

Here δ1, δ2 are completely determined by the presentation P , and Z denotes

the trivial Z[π]-module. More generally, by an algebraic 2-complex over π

we mean any exact sequence of (right) Z[π]-modules of the form

E =
(

0 // ker(δ2) // F2
δ2 // F1

δ1 // F0
ε // Z // 0

)
,

where each Fi is finitely generated free and Z denotes the trivial Z-module.

Given two algebraic complexes E , E ′, it follows by Schanuel’s Lemma that

ker(δ2)⊕ F ∼= ker(δ′2)⊕ F ′,

for finitely generated free modules F , F ′. We shall say that ker(δ2) and

ker(δ′2) are stably equivalent. We denote the class of all modules stably

equivalent to ker(δ2) by Ω3 (Z).

This relates to two unanswered questions in low dimensional topology,

the first of which, known as the Realisation Problem, asks:

Given a group Γ, is every algebraic two complex chain homotopy equivalent

to a complex arising from a two dimensional CW complex, i.e. the Cayley

complex of some presentation of Γ?

Clearly, the Realisation Problem is parametrised by the class Ω3 (Z). The

second question, originally phrased by Wall in [30], is called theD(2)-Problem
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(initially it was called the D(n)-Problem which Wall solved in the same pa-

per for all n 6= 2). It asks:

Given a geometrically 3-dimensional CW-complex with zero homology and

cohomology in dimensions higher than two, over all possible coefficient sys-

tems; is it necessary that this complex is homotopy equivalent to one of

geometric dimension two?

It is not hard to see that the D(2)-Problem is parametrised by the fundamen-

tal group of the CW-complex in question. Thus, we say the D(2)-property

holds for a fundamental group, if the above question can be answered affir-

matively for it.

Johnson ([10] p. 256) has shown that the D(2)-Problem is equivalent

to the Realisation Problem for all fundamental groups satisfying certain con-

ditions. This result was then extended by Mannan [19] to hold for all finitely

presented fundamental groups. To date there is no known fundamental group

for which the D(2)-property does not hold. To see why Theorem A above

is motivated by, and of potential relevance to the D(2)-problem we state

the following theorem by Johnson [11] (here Ω1 (Z) is defined analogously to

Ω3 (Z) above and SF+ denotes the set of isomorphism classes of non-zero

stably-free Z[Γ]-modules):

Theorem. Let Γ be a finitely generated group satisfying Ext1(Z,Z[Γ]) = 0;

then the duality map J 7→ J∗ induces a level preserving mapping of trees

δ : Ω1 (Z)→ SF+;

moreover, δ induces a 1− 1 correspondence δ : Ωmin
1 (Z)→ SF1 between the

minimal level of Ω1 (Z) and the isomorphism classes of stably-free modules

of rank 1.
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Groups of the form Γ = Q8n×G, where G is free abelian of rank at least

2, satisfy Ext1(Z,Z[Γ]) = 0 by [13] and Shapiro’s Lemma. So the above

theorem implies a surjective correspondence δ : Ω1 (Z) → SF+. But, by

Theorem A, SF1 is infinite when n admits an odd divisor. Therefore, the

minimal level of Ω1 (Z) is also infinite. One then hopes for a relationship

between Ω1 (Z) and Ω3 (Z), as, for example, in the case of finite groups of

cohomological period 4 where there exists an isomorphism of trees between

Ω1 (Z) and Ω3 (Z) (c.f. [10] p. 153).

1.2 Statement of results

As already mentioned in the previous section, Theorem A is the main result

of this thesis. In order to prove it we use the language of cyclic algebras and

fibre squares. Thus in Chapter 2 we first review properties of cyclic algebras

over general commutative rings, and then restrict ourselves to the types of

rings we are interested in, namely quotients of integral polynomial rings in

one variable, by products of cyclotomic polynomials. Two cyclic algebras

of particular interest are (here p denotes an odd prime, and k > 1 an odd

integer):

C(Λ(p,n)) := C2
(
Fp[x]/(x2n + 1), γ,−1

)
C(Λ(2,k)) := C2

(
F2[x]/(xk−1 + . . .+ 1), γ,−1

)
.

We refer the reader to Chapter 2 for details on the notation. Decomposing

C(Λ(2,k)) as a product of local rings and matrix algebras yields

Theorem B. Let D2k be the dihedral group of order 2k, where k > 1 is odd.

Then

F2[D2k] ∼= F2[x]/(x2 − 1)×
l∏

i=1

M2 (F2di ) .

It should be noted that Theorem B can be proved using fairly basic concepts

in modular representation theory or character theory (c.f. e.g. [1]). However,
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we give a different proof, as we compute an explicit isomorphism. Identifying

C(Λ(p,n)) as a quaternion algebra we are then able to give its decomposition

as a product of matrix algebras thus:

Theorem C.

C(Λ(p,n)) ∼=
m∏
i=1

M2

(
Fp[x]/qdii (x)

)
for distinct monic irreducible polynomials qi(x) ∈ Fp[x] and natural numbers

di.

In Chapter 3 we first review functors from the module category of one

ring to that of another. Here we are particularly interested in functors which

preserve stably-free cancellation, i.e. the property of having no non-trivial

stably-free modules. As already mentioned in the previous section, the work

of Sheshadri [27], Bass [2], Quillen [25] and others, gives a good source of

group algebras of type F groups with stably-free cancellation. Via the func-

tors developed in this chapter we shall transfer the property of having stably-

free cancellation to the algebras we are interested in:

Theorem D. F2[D2n ×G] has stably-free cancellation when G is of type F .

Theorem E. C(Λ(p,n))[G] has stably-free cancellation when G is of type F .

Another necessary step in our proof of the main theorem is to show that

both F2[D2n ×G] and C(Λ(p,n))[G] are weakly Euclidean. Thus in Chapter 4

we first review in depth what it means to be weakly Euclidean, in essence

a condition which makes the the general linear group of a ring particularly

simple. Then, in a similar fashion to Chapter 3, we transfer the property from

rings for which it is already known to hold to the ones we are interested in.

Thus we review recognition criteria by Cohn and Johnson, but also develop

new criteria in the case of matrix algebras and algebras over finite fields. The

main results of Chapter 4 are:

Theorem F. F2[D2n ×G] is weakly Euclidean whenever G is a free group.
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Theorem G. C(Λ(p,n))[G] is weakly Euclidean whenever G is a free group.

In Chapter 5 we first review how fibre squares are constructed and how

they cohere with the cyclic algebra construction. Next we lay the founda-

tions for the proof of Theorem A by constructing several fibre squares which

connect the algebra Z[Q8n×G] to the above mentioned algebras F2[D2n×G]

and C(Λ(p,n))[G]. Finally, we give a brief recapitulation of Milnor’s method

of patching projective modules over certain fibre squares. We end the chap-

ter by showing that all fibre squares constructed here satisfy the necessary

conditions to apply Milnor’s method.

Finally, we prove Theorem A in Chapter 6. In order to do so we need

to construct, and lift stably-free modules. For this we employ a method,

involving Milnor patching, based on an approach by Johnson. We can then

apply this method to the fibre squares constructed in Chapter 5. This firstly

results in (here SF1 stands for the isomorphism classes of rank one stably

free modules of a ring):

Theorem H. Let G be a group of type F . Moreover, let Q4n, D2n de-

note the quaternionic and dihedral groups, of order 4n, 2n, respectively and

C2 (Z[x]/(xn + 1), γ,−1) [G] be the algebra introduced in Proposition 5.2.3,

Chapter 5. There exists a surjective correspondence

SF1 (Z[Q4n ×G])→

SF1 (Z[D2n ×G])× SF1 (C2 (Z[x]/(xn + 1), γ,−1) [G]) .

We then restrict ourselves to the setting of Theorem A, by choosing n = 2sk

for an odd number k ≥ 3. We prove (for a definition of two unique product

groups, see Chapter 6.1):

Theorem I. Let G be a two unique product group, p an odd prime and

s ≥ 1 an integer. There exists an infinite set, {Sm}∞m=1, of isomorphically
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distinct stably-free modules of rank 1 over the the group-algebra

C2
(
Z[x]/(x2

sp + 1), γ,−1
)

of Proposition 5.2.5, Chapter 5.

We prove Theorem A by constructing a chain of surjective correspondences

SF1 (C2 (Z[x]/(xn + 1), γ,−1) [C∞])→

SF1

(
C2
(
Z[x]/(x2

sp + 1), γ,−1
)

[C∞]
)
.

The result then follows by Theorem H and Theorem I.
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Chapter 2

Cyclic algebras and related

concepts

2.1 Basic definitions

All group algebras, as well as their building blocks, considered in this thesis

are constructed as cyclic algebras. We begin by defining the concept (for a

comparison, see [10] p. 43). Given

i) a commutative ring Λ,

ii) an automorphism s : Λ→ Λ such that sn = Id for some

natural number n ≥ 2,

iii) an element a in Λ such that s(a) = a;

we define the cyclic algebra Cn (Λ, s, a) to be the free two-sided Λ-module

of rank n, with basis B = {1, y, . . . , yn−1} (here we make the identification

y0 = 1), satisfying the following relation:

yiλ = si(λ)y for 0 ≤ i ≤ n− 1.
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We note that the set of all elements in Λ which are fixed under s,

Λs := {λ ∈ Λ : s(λ) = λ}, forms a subring of Λ, called the fixed point

ring. Moreover, if we introduce the following rule of multiplication:

y.yi = yi+1 for 0 ≤ i ≤ n− 2

yn = a.1,

Cn (Λ, s, a) may equivalently be regarded as an algebra over the fixed point

ring. Given two cyclic algebras of the same rank, say Cn (Λ1, s1, a1),

Cn (Λ2, s2, a2), there is an isomorphism of rings Λs1
1 × Λs2

2
∼= (Λ1 × Λ2)

s1×s2 ,

since the involutions act componentwise. Thus, there is a natural algebra iso-

morphism of crossproducts of cyclic algebras and cyclic algebras of crossprod-

ucts, given by (λ1y
i
1, λ2y

i
2) 7→ (λ1, λ2)y

i, i. e.

Proposition (c. f. e. g. [10] p. 44) 2.1.1.

Cn (Λ1 × Λ2, s1 × s2, a1 × a2) ∼= Cn (Λ1, s1, a1)× Cn (Λ2, s2, a2) ,

as Λs1
1 × Λs2

2 -algebras.

Given two cyclic algebras of rank n, say Cn (Λ1, s1, a1), Cn (Λ2, s2, a2) and a

ring-homomorphism

p : Λ1 → Λ2,

such that p ◦ s1 = s2 ◦ p, and p(a1) = a2, we say p is a cyclic ring-

homomorphism.

Proposition 2.1.2. Cyclic ring-homomorphisms induce ring-homomorphisms

of the associated cyclic algebras. Moreover, they preserve exact sequences.

Proof. Given two cyclic algebras of rank n, say Cn (Λ1, s1, a1), Cn (Λ2, s2, a2),

together with a cyclic ring-homomorphism

p : Λ1 → Λ2,
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define

π : Cn (Λ1, s1, a1)→ Cn (Λ2, s2, a2) ,

by
n∑
i=1

yi1λi 7→
n∑
i=1

yi2p(λi), (2.1)

for λi ∈ Λ1. By (2.1) it is clear that π preserves sums, and π(ε) = ε, for

ε = 0, 1. Moreover, the rules p◦s1 = s2◦p, p(a1) = a2, ensure that π preserves

products, and thus it is indeed a ring-homomorphism. Furthermore, let

Λ1
p // Λ2

p′ // Λ3 , (2.2)

be a sequence of cyclic ring-homomorphisms which is exact at Λ2. We remind

ourselves that Cn (Λi, si, ai) is free as a Λi-module, for i = 1, 2, 3, respectively.

Therefore, since (2.2) is exact at Λ2, by the construction defined in (2.1),

Cn (Λ1, s1, a1)
π // Cn (Λ2, s2, a2)

π′ // Cn (Λ3, s3, a3) (2.3)

is exact each component yi2, for i = 0, . . . n−1, i. e. it is exact at Cn (Λ2, s2, a2).

For a more general proof of this statement see [4], p. 147.

Two basic examples of cyclic algebras are Z[D2n], the integral group-

algebra of the dihedral group

D2n = 〈x, y | xn = y2 = 1, yx = x−1y 〉, (2.4)

and Z[Q4n], the integral group algebra of the quaternionic group

Q4n = 〈x, y | xn = y2, yx = x−1y 〉. (2.5)

Indeed, let Cn denote the cyclic group of order n (Cn = 〈x|xn = 1〉). Consider

its integral group algebra Z[Cn] together with the involution γ, given by
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x 7→ x−1; then

Z[D2n] = C2 (Z[Cn], γ, 1) . (2.6)

If we consider the cyclic group of order 2n, C2n, again with the involution γ,

then xn = x−n is fixed, and

Z[Q4n] = C2 (Z[C2n], γ, xn) . (2.7)

We now specify the rings and the respective automorphisms over which

we take cyclic algebras. Let ζn denote the n-th primitive root of unity. It is

well known that its minimal polynomial is given by

Φn(x) =
∏

(j,n)=1
j<n

(x− ζjn).

Furthermore, Φn(x) has integral coefficients, that is Φn(x) ∈ Z[x]. We de-

note by ζ̄n the complex conjugate of ζn. It is not hard to see that ζ̄n = ζn−1n .

Moreover, since Φn(x) has real coefficients Φn(ζ̄n) = 0. Thus, complex con-

jugation induces a ring automorphism on Z[ζn] = Z[x]/Φn(x). We generalise

this concept. Given a sequence D = (d1, · · · , dk) of distinct integers di ≥ 1

we denote by ΦD(x) the polynomial ΦD(x) = Φd1(x) · · ·Φdk(x) ∈ Z[x]. Fur-

thermore, let R be a commutative ring. Mostly in the scope of this thesis R

will either be the integers or Fp, i. e. the finite field with p elements for some

prime p. Consider the ring R ⊗ Z[x]/ΦD(x) (we shall always use the tensor

symbol without subscript, when we take tensor products over Z):

Proposition 2.1.3. Given a sequence D = (d1, · · · , dk) of distinct integers

di ≥ 1, let n =
∏k

i=1 di. The involution γ, given by x 7→ xn−1, on R ⊗
Z[x]/(xn− 1) induces an involution γD on R⊗Z[x]/ΦD(x). Moreover, given

a sequence D′ ⊆ D,

p ◦ γD = γD′ ◦ p,
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where p denotes the canonical projection

p : R⊗ Z[x]/ΦD(x)→ R⊗ Z[x]/ΦD′(x).

Proof. We prove the result for R = Z, the general result then follows by

tensoring with an arbitrary commutative ring R. It is well known, that

xn − 1 =
∏
d|n

Φd(x).

This implies that Z[x]/ΦD(x) is naturally a quotient ring of Z[x]/(xn − 1).

This allows us to construct γD as follows: Let f(x) ∈ Z[x]/(xn − 1), and

f(x) + (ΦD) its class modulo (ΦD). Define

f(x) + (ΦD) 7→ γ (f(x)) + (ΦD) .

Now, this map is well-defined, because γ (ΦD(x)) = ±xn−dΦD(x) ∈ (ΦD),

where d = deg (ΦD(x)). Moreover,

p ◦ γD (f(x) + (ΦD)) = p (γ (f(x)) + (ΦD)) = γ (f(x)) + (ΦD′) .

Conversely,

γD′ ◦ p (f(x) + (ΦD)) = γD′ (f(x) + (ΦD′)) = γ (f(x)) + (ΦD′) .

Thus p ◦ γD = γD′ ◦ p, as claimed.

Remark. Note that γD is an automorphism, since R ⊗ Z[x]/ΦD(x) is com-

mutative. Furthermore, γ2D = Id, since γ2 = Id. In most cases when we

actually have to work out the action of γD, it will be straightforward, namely

it will easily be recognisable as the usual x 7→ x−1, where x−1 means the

class of xn−1 modulo (ΦD). Thus we shall usually drop the subscript D, and

just write γ, unless specifically needed. Finally, note that Proposition 2.1.3
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also ensures that canonical projections onto rings of the form R⊗Z[x]/ΦD(x)

are cyclic ring-homomorphisms with respect to γ, and thus induce homomor-

phisms of cyclic algebras.

In the remainder of this thesis we will only deal with cyclic algebras over

rings of the form R⊗Z[x]/ΦD(x) with the associated involution γ, i. e. cyclic

algebras of the form C2(R⊗Z[x]/ΦD(x), γ, a), where a is a non-zero element

fixed under γ. For example, as we have seen in equations (2.6), (2.7), Z[Q4n],

and Z[D2n] are of this form for R = Z, but now we note that these equations

hold for any commutative ring, e. g. for R = F2

F2[D2n] = C2 (F2[Cn], γ, 1) . (2.8)

We are particularly interested in the following two rings:

Λ(p,n) := Fp[x]/(x2n + 1), (2.9)

Λ(2,k) := F2[x]/(xk−1 + . . .+ 1), (2.10)

for an odd prime p, a natural number n and an odd number k ≥ 3. The

fixed point rings are denoted as usual by Λγ
(p,n), and Λγ

(2,k) respectively. Over

these, we have the cyclic algebras:

C(Λ(p,n)) := C2
(
Fp[x]/(x2n + 1), γ,−1

)
(2.11)

C(Λ(2,k)) := C2
(
F2[x]/(xk−1 + . . .+ 1), γ, 1

)
. (2.12)

2.2 The fixed point rings Λγ
(p,n) and Λγ

(2,k)

As explained in Section 2.1, C(Λ(p,n)) and C(Λ(2,k)) are algebras over the fixed

point rings Λγ
(p,n) and Λγ

(2,k), respectively. We shall now examine Λγ
(p,n) and

Λγ
(2,k) in detail.
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Proposition 2.2.1. Let R be a commutative ring. In the ring R⊗Z[x]/ΦD(x)

let k denote a natural number, such that k ≤ deg (ΦD(x)). Then any element

of the kind xk + x−k can be expressed as a linear combination

xk + x−k = θk +
k−1∑
i=0

aiθ
i,

where θ := x+ x−1, and ai ∈ R.

Proof. We prove the result for the ring Z[x]/ΦD(x). The general result then

follows by tensoring with an arbitrary commutative ring R. Note that the

statement holds trivially for k = 1, but also in the case k = 2 as θ2 =

x2 + x−2 + 2. Now assume, inductively, that the statement holds for k − 1,

and note

θk = (x+ x−1)k =
k∑
i=0

(
k

i

)
x2i−k = xk + x−k +X, (2.13)

where X =

{ (
k
k/2

)
+
∑k/2−1

i=1

(
k
i

) (
xk−2i + x−(k−2i)

)
if k is even,∑bk/2c

i=1

(
k
i

) (
xk−2i + x−(k−2i)

)
if k is odd.

Note, by the inductive hypothesis, X is a linear combination in

spanZ{1, θ, . . . θk−1}, but then by (2.13) xk + x−k is in the desired form.

Proposition 2.2.2. Let θp denote the element x+x−1 in the fixed point ring

Λγ
(p,n). Then

B′(p,n) = {1, (x+ x−1), (x2 + x−2), · · · , (xn−1 + x−(n−1))},

B(p,n) = {1, θp, θ2p, . . . , θn−1p },

are both bases for Λγ
(p,n) as a Fp-algebra.

Proof. We know that the action of γ as defined above takes x to x−1, so in

particular on a typical element λ in Λ(p,n), say λ =
∑n

k=−n+1 akx
k, where
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ak ∈ Fp, γ acts as follows:

n∑
k=−n+1

akx
k 7→ −anxn +

n−1∑
k=−n+1

a−kx
k.

From this it follows that a general element fixed under γ is of the type

a0 +
n−1∑
k=1

ak(x
k + x−k)

where each ak is an element of Fp. In particular, B′(p,n) is a basis for Λγ
(p,n)

over Fp. Thus, applying Proposition 2.2.1, we see that in fact B(p,n) is also a

basis.

The analogue of this result for Λγ
(2,k) is

Proposition 2.2.3. Let θ2 denote the element x+x−1 in the fixed point ring

Λγ
(2,k). Then

B′(2,k) = {1, (x+ x−1), · · · , (x(k−3)/2 + x(k+3)/2)},

B(2,k) = {1, θ2, θ22, . . . , θ
(k−3)/2
2 },

are both bases for Λγ
(2,k) as a F2-algebra.

Proof. The result is proven by the same method used to prove Proposition

2.2.2.

Remark. We know that 1 + x + . . . + xk−1 = 0 in Λ(2,k), or equivalently in

Λγ
(2,k). Thus

x(k−1)/2 + x(k+1)/2 = 1 +

(k−3)/2∑
i=1

(
xi + x−i

)
.

Consequently, x(k−1)/2 +x(k+1)/2 does not appear as a basis element in B′(2,k).
In fact, when using the basis B′(2,k), we shall always mean the element
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1 +
∑(k−3)/2

i=2 (xi + x−i), when we write x(k−1)/2 + x(k+1)/2. This is solely

for notational simplicity, as after all they denote the same element.

We may now give a complete characterisation of both Λγ
(p,n), and Λγ

(2,k).

Theorem 2.2.4. Λγ
(p,n) is isomorphic to a direct product of finite local rings

or fields of characteristic p.

Proof. Since B(p,n) is a basis, every element in Λγ
(p,n) can be expressed as a

sum
∑n−1

i=0 aiθ
i
p, where ai ∈ Fp. Moreover, by Proposition 2.2.1 there exists

a polynomial P (x) ∈ Fp[x] of degree n, such that xn + x−n = P (θp). But as

x2n = −1, we know that x−n = −xn, and so P (θp) = 0, i. e. Λγ
(p,n) can be

identified as

Λγ
(p,n) = Fp[θp]/P (θp).

By taking a formal isomorphism θp 7→ x, we may write

Λγ
(p,n)
∼= Fp[x]/P (x).

Then, since is Fp[x] a unique factorisation domain, let

P (x) = c
m∏
i=1

qdii (x)

be the unique factorisation of P (x), into a constant c times powers di ∈ N
of distinct monic irreducible polynomials qi(x) ∈ Fp[x]. As Fp[x] is also

a Euclidean domain we may apply the Chinese Remainder Theorem which

gives

Λγ
(p,n)
∼=

m∏
i=1

Fp[x]/qdii (x),

where each factor Fp[x]/qdii (x) is a finite local ring or field of characteristic p

whenever di = 1.

In the case of Λγ
(2,k) we have a stronger result, since 2 and k are coprime
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(k is defined to be odd). We remind ourselves of some fundamental results on

semisimple algebras. Recall that for a field k a finitely generated k-algebra A
is said to be semisimple if and only if its unique two sided maximal nilpotent

ideal, denoted by rad(A), is equal to zero. Furthermore, we remind ourselves

that all finitely generated, semisimple k-algebras are characterised as follows

(c. f. e. g. [10] p. 20-21):

Theorem (Wedderburn) 2.2.5. Let A be a semisimple, finitely generated

k-algebra. Then there exists an isomorphism of k-algebras

A ∼= Mn1(D1)× . . .Mnm(Dm),

for some natural numbers m, ni and division algebras Di over k, determined

uniquely up to order and isomorphism.

Finally, we shall also need (c. f. e. g. [10] p. 41):

Theorem (Maschke) 2.2.6. Let G be a finite group and k a field with

characteristic coprime to the order of G. Then the group-algebra k[G] is

semisimple.

Theorem 2.2.7. Λγ
(2,k) is isomorphic to a direct product of finite fields of

characteristic 2.

Proof. We note that xk − 1 = (x − 1)(xk−1 + . . . + 1), and in F2[x], x − 1,

and xk−1 + . . .+ 1 are coprime. Therefore,

F2[x]/(xk − 1) ∼= F2[x]/(x− 1)× F2[x]/(xk−1 + . . .+ 1) (2.14)

∼= F2 × Λ(2,k).

We may consider F2[x]/(xk − 1) as a group-algebra, since it is isomorphic to

F2[Ck]. Theorem 2.2.6 implies that F2[x]/(xk − 1) is semisimple, and so, by

definition rad
(
F2[x]/(xk − 1)

)
= {0}. Consequently, by (2.14) rad(Λ(2,k)) =

{0}. But then, Λγ
(2,k), being a subring, has the same property, i.e. rad(Λγ

(2,k)) =
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{0}. Thus it is semisimple by definition. Since it is commutative, Theorem

2.2.5 implies that it is a direct product of finite fields of characteristic 2.

Remark. It is no coincidence that we have used the notation rad(A), which

is normally used to denote the Jacobson radical. In fact, in an Artinian

ring (in our case, A is Artinian, since it is finitely generated) the Jacobson

radical is nilpotent, but it also contains all nilpotent ideals ((c. f. e. g. [4]

p. 181). Therefore, in such rings, the Jacobson radical is precisely the unique

two-sided maximal nilpotent ideal.

2.3 C(Λ(2,k)) and its applications

Having classified Λγ
(2,k) in the previous section, we now consider the cyclic

algebra C(Λ(2,k)). We first show that it is semisimple. Then, we shall use

this result to decompose F2[D2k], for an odd number k ≥ 3, into a product of

local rings and simple algebras. Finally, we use this decomposition to express

F2[D2k ×G], for an arbitrary group G, in a more manageable form.

Theorem 2.3.1.

C(Λ(2,k)) ∼=
l∏

i=1

M2 (F2di ) ,

where F2di denotes the unique finite field with 2di elements, for some di ∈ N.

We will use the following two propositions to prove Theorem 2.3.1:

Proposition 2.3.2.

C(Λ(2,k)) = Λγ
(2,k) u Λγ

(2,k)xu Λγ
(2,k)y u Λγ

(2,k)xy,

with the following rules of multiplication:
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i) yx = γ(x)y = x−1y = (x+ x−1)y + xy;

ii) x2 = 1 + (x+ x−1)x;

iii) y2 = 1.

Proof. By Proposition 2.2.3

B′(2,k) = {1, (x+ x−1), · · · , (x(k−3)/2 + x(k+3)/2)},

is a F2-basis for Λγ
(2,k). First, reminding ourselves of the remark on page 22,

we show by induction that xl ∈ Λγ
(2,k) + Λγ

(2,k)x for all l in {0, 1, . . . , k − 2}.
Clearly 1, x are in Λγ

(2,k) + Λγ
(2,k)x, thus also x−1 = (x + x−1) + x. Now

assume xi, xk−i are in Λγ
(2,k) + Λγ

(2,k)x for all i ≤ r < (k− 1)/2, and note that

xr+1 = (xr + xk−r)x + xk−(r−1). This implies that xr+1 as well as xk−(r+1) =

(xr+1 + xk−(r+1)) + xr+1 are in Λγ
(2,k) + Λγ

(2,k)x, which proves the claim. But

then as

B = {1, x, . . . , xk−2}

is a basis for Λ(2,k) as an F2-algebra, we have shown that Λγ
(2,k) + Λγ

(2,k)x

spans Λ(2,k). Also, since B(2,k) ∩B(2,k)x = {0}, we have Λγ
(2,k) ∩Λγ

(2,k)x = {0}.
Therefore, Λ(2,k) = Λγ

((2,k)uΛγ
(2,k)x, and the action of γ on Λ(2,k) is completely

described by its action on the element x. It follows that C(Λ(2,k)) can indeed

be expressed in the form:

C(Λ(2,k)) = Λγ
(2,k) u Λγ

(2,k)xu Λγ
(2,k)y u Λγ

(2,k)xy.

Finally, note that the relations i)-iii) are self-evident.

Proposition 2.3.3. x+ x−1 is a unit in Λγ
(2,k).
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Proof. The inverse of x+ x−1 is described as follows: We write

µ(1) := x+ x−1,

µ(r) := xr + xk−r

for 2 ≤ r ≤ (k − 1)/2. And

A :=
∑

4r+2≤(k−1)/2

µ(4r + 2),

B :=
∑

4r+3≤(k−1)/2

µ(4r + 3),

C :=
∑

4r+1≤(k−1)/2

µ(4r + 1).

Then if k ≡ 1 mod (4), (µ(1))−1 = A+B, and if k ≡ 3 mod (4), (µ(1))−1 =

A+ C.

We prove Theorem 2.3.1:

Proof. We use the description of C(Λ(2,k)) given by Proposition 2.3.2, and

define a map

ϕ : C(Λ(2,k))→M2(Λ
γ
(2,k))

as follows:

1 7→

(
1 0

0 1

)

x 7→

(
1 x(k−1)/2 + x(k+1)/2

x(k−1)/2 + x(k+1)/2 1 + x+ x−1

)
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y 7→

(
0 1

1 0

)

xy 7→ ϕ(x)ϕ(y)

Now it can easily be checked that

i) ϕ(yx) = ϕ(y)ϕ(x);

ii) ϕ(x2) = (ϕ(x))2;

iii) (ϕ(y))2 = Id.

Whence ϕ is indeed a ring homomorphism. Now, since both C(Λ(2,k)) and

M2(Λ
γ
(2,k)) have (the same) finite cardinality, bijectivity follows directly from

surjectivity. To see that ϕ is indeed surjective, it suffices to show that ϕ(1),

ϕ(x), ϕ(y), ϕ(xy) span M2(R
γ). We note the following identities

ϕ
(
(1 + x+ x−1) + x+ (x(k−1)/2 + x(k+1)/2)y

)
=

(
x+ x−1 0

0 0

)
,

ϕ
(
1 + x+ (x(k−1)/2 + x(k+1)/2)y

)
=

(
0 0

0 x+ x−1

)
,

ϕ
(
(x(k−1)/2 + x(k+1)/2) + x+ (1 + x+ x−1)y + xy

)
=

(
0 x+ x−1

0 0

)
,

ϕ
(
(x(k−1)/2 + x(k+1)/2) + x+ y + xy

)
=

(
0 0

x+ x−1 0

)
.

By Proposition 2.3.3, x+x−1 is a unit in Λγ
(2,k). So the identities above imply

that ϕ(1), ϕ(x), ϕ(y), ϕ(xy) do, in fact, span M2(Λ
γ
(2,k)). Note, by Theorem

2.2.7, Λγ
(2,k) is isomorphic to a product of finite fields of characteristic 2, say

Λγ
(2,k)
∼=
∏l

i=1 F2di . Thus the result follows.

We turn to F2[D2k]:
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Theorem 2.3.4.

F2[D2k] ∼= F2[x]/(x2 − 1)×
l∏

i=1

M2 (F2di ) ,

for an odd number k ≥ 3.

Proof. We know by (2.8) that F2[D2k] = C2(F2[x]/xk− 1, γ, 1). Furthermore,

(2.14) states

F2[x]/(xk − 1) ∼= F2 × Λ(2,k).

Our usual involution γ splits as γ = Id× γ′, where γ′ is just the restriction

of γ to Λ(2,k). Indeed, the idempotents for the isomorphism in (2.14) are

i1 = xk−1 + . . . + 1, and i2 = xk−1 + . . . + x, but γ(i1) = i1, and γ(i2) = i2.

Now γ restricted to F2[x]/(x− 1) ∼= F2 is just the identity, hence the result.

We apply Proposition 2.1.1 to get

F2[D2k] ∼= C2(F2, Id, 1)× C(Λ(2,k)).

We note C2(F2, Id, 1) ∼= F2[x]/x2−1. The result follows by Theorem 2.3.1

As a corollary we have

Theorem 2.3.5. For any group G,

F2[D2k ×G] ∼=
(
F2[x]/(x2 − 1)

)
[G]×

l∏
i=1

M2 (F2di [G]) .

Proof. The result follows by applying the functor −⊗ Z[G] on both sides of

the isomorphism in Theorem 2.3.4.

2.4 Quaternion algebras and C(Λ(p,n))

We start by defining quaternion algebras. Let R be a commutative ring.

Furthermore, let α, β be units in R. We call the algebra, with R-basis
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{1, x, y, xy} and rules of multiplication

x2 = α.1, y2 = β.1, yx = −xy,

a quaternion algebra, and denote it by(
α, β

R

)
.

The basic example of a quaternion algebra is the Hamiltonian integers,

HZ =

(
−1,−1

Z

)
.

Remark. O’Meara defines quaternion algebras over fields, only (c. f. [23]

p. 142). The stricter definition bears better-behaved algebras. For example,

we will see that quaternion algebras over fields are often division algebras.

However, in the context of classifying C(Λ(p,n)) it makes sense to relax the

definition.

Proposition 2.4.1. Let Λ =
(
α,β
k

)
be a quaternion algebra over a field k.

Then the element x = α0.1 + α1.x+ α2.y + α3.xy, is a unit in Λ if and only

if

α2
0 − α2

1α− α2
2β + α2

3αβ 6= 0,

for αi ∈ k.

Proof. See [23] p. 143.

As an immediate corollary we have

Proposition 2.4.2. Let Λ =
(
α,β
k

)
be a quaternion algebra over a field k. Λ

is a division algebra if and only if the equation

α2
0 − α2

1α− α2
2β + α2

3αβ = 0,

has no non-zero solution for all αi ∈ k.
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As already explained in Section 2.1, the involution γ reduces to complex

conjugation on Q(ζd) ∼= Q[x]/(Φd), and therefore Q(ζd)
γ = Q(ζd + ζ̄d) =

Q(ζd) ∩ R. Similarly, Z[ζd]
γ = Z[ζd + ζ̄d] = Z[ζd] ∩ R, which is precisely the

ring of integers of Q(ζd + ζ̄d) (see for example [31] p. 15-17 for more details).

Proposition 2.4.3.

C2 (Q(ζd), γ,−1) ∼=
(

(ζd − ζ̄d)2,−1

Q(ζd + ζ̄d)

)
,

for d ≥ 3.

Proof. See [10] p. 51.

Proposition 2.4.4. C2 (Z[ζd], γ,−1) is an integral domain, for d ≥ 3.

Proof. Clearly, C2 (Q(ζd), γ,−1) ⊇ C2 (Z[ζd], γ,−1). But we know by Propo-

sition 2.4.3 that C2 (Q(ζd), γ,−1) is a quaternion algebra over the field Q(ζd+

ζ̄d). Now as (ζd − ζ̄d)2 is a negative real number and Q(ζd + ζ̄d) is a subfield

of the real numbers, it follows that the equation

α2
0 − α2

1(ζ−ζ̄d)
2 + α2

2 − α2
3(ζ−ζ̄d)

2 = 0,

has no non-zero solution for all αi ∈ Q(ζd + ζ̄d). Therefore, by Proposition

2.4.2 C2 (Q(ζd), γ,−1) is a division algebra. This makes C2 (Z[ζd], γ,−1) a

subring of a division algebra, and therefore an integral domain.

We now move on to classify C(Λ(p,n)). Our aim is to show that it is a

matrix algebra over the fixed point ring Λγ
(p,n). Thus we shall need some

preliminary results on Fp-algebras, for an odd prime p. The following is well

known (c. f. e. g. [23] p. 145, 147, 158):

Proposition 2.4.5. Let F denote a finite field of characteristic p, an odd

prime, and α, β non-zero elements in F. Then(
α, β

F

)
∼=
(

1,−1

F

)
∼= M2(F).
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Now, this result may be generalised to Fp-algebras in the obvious manner:

Proposition 2.4.5 holds, in particular, for Fp, the finite field with p elements.

Let A be any Fp-algebra, and α, β non-zero elements in Fp. Then(
α, β

A

)
∼=
(
α, β

Fp

)
⊗Fp A ∼= M2(Fp)⊗A ∼= M2(A).

Thus we have

Proposition 2.4.6. Let A denote an Fp-algebra, an odd prime, and α, β

non-zero elements in Fp. Then(
α, β

A

)
∼= M2(A).

Proposition 2.4.6 is general enough for our purposes, but for the sake of

completeness we give a criterion for quaternion algebras and matrix algebras

over general commutative rings to coincide. This is achieved by generalising

O’Meara’s proof of Proposition 2.4.5, which hinges on the fact that in a finite

field F there exist elements ξ, η, such that α = ξ2−βη2 (c. f. e. g. [23] p.147).

Proposition 2.4.7. Let R be a commutative ring, such that 2 is invertible.

Furthermore, let α, β be invertible elements in R. If there exist elements

ξ, η ∈ R, such that ξ2 − βη2 = α. Then(
α, β

R

)
∼= M2(R).

Proof. Note, the map ϕ :
(
α,β
R

)
→M2(R) defined by

ϕ(1) =

(
1 0

0 1

)
, ϕ(x) =

(
ξ η

−βη −ξ

)
,

ϕ(y) =

(
0 1

β 0

)
, ϕ(xy) =

(
βη ξ

βξ −βη

)
,
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is an algebra-homomorphism. Moreover, a standard calculation bears that

ϕ is an isomorphism whenever α, β, 2 are invertible.

Finally, we classify C(Λ(p,n)).

Theorem 2.4.8.

C(Λ(p,n)) ∼= M2(Λ
γ
(p,n)).

In particular,

C(Λ(p,n)) ∼=
m∏
i=1

M2

(
Fp[x]/qdii (x)

)
for distinct monic irreducible polynomials qi(x) ∈ Fp[x], and natural numbers

di.

Proof. As we know from Proposition 2.2.2

B′(p,n) = {1, (x+ x−1), (x2 + x−2), · · · , (xn−1 + x−(n−1))},

is a basis for Λγ
(p,n) as a Fp-algebra. Since 2 is invertible in Fp, we may extend

this to

B = {1, (x+ x−1), · · · , (xn−1 + x−(n−1)), xn, (x− x−1), · · · , (xn−1− x−(n−1))},

which is a basis for Λ(p,n) over Fp, and make the following observation: Defin-

ing ω := xn, we calculate

(xk + x−k)ω = (xk + x−k)xn = xn+k + xn−k = xn−k − x−(n−k),

where 1 ≤ k ≤ n− 1. So

B = {1, (x+x−1), · · · , (xn−1+x−(n−1)), ω, (x+x−1)ω, · · · , (xn−1+x−(n−1))ω},

in the new symbols. This allows us to identify Λ(p,n) as Λ(p,n) = Λγ
(p,n) u

Λγ
(p,n)ω. So the action of γ on Λ(p,n) is entirely described by its action on ω,
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which is γ(ω) = γ(xn) = x−n = −xn = −ω. Thus, by definition,

C(Λ(p,n)) =

(
−1,−1

Λγ
(p,n)

)
.

But Λγ
(p,n) is a Fp-algebra, so by Proportion 2.4.6

C(Λ(p,n)) ∼= M2(Λ
γ
(p,n)).

Furthermore, by Theorem 2.2.4, we know that

Λγ
(p,n)
∼=

m∏
i=1

Fp[x]/qdii (x),

for distinct monic irreducible polynomials qi(x) ∈ Fp[x], and natural numbers

di. This proves the claim.

The following is an immediate corollary:

Theorem 2.4.9. For any group G,

C(Λ(p,n))[G] ∼=
m∏
i=1

M2

(
Fp[x]/qdii (x)

)
[G].

Proof. The result follows by applying the functor −⊗ Z[G] on both sides of

the isomorphism in Theorem 2.4.8.
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Chapter 3

Stably-free cancellation

3.1 Projective modules

Given a ring R, we let M(R) be the category whose objects are finitely

generated (right) R-modules together with R-linear maps as morphisms. We

remind ourselves that an object F ∈M(R) is said to be free when it has an

N -element basis, for some natural number N or equivalently when M ∼= RN ,

that is the N -ary Cartesian product of R (c. f. e. g. [18] p. 20). We denote

the subcategory of M(R), consisting of free modules, by F(R). Moreover, an

object P ∈ M(R) is said to be projective, if there exists a Q ∈ M(R), such

that

P ⊕Q ∼= RN ,

for some natural number N . We denote the subcategory of M(R), consisting

of projective modules, by P(R). We are interested in a particular type

of projective module, the so called stably-free module, that is an an object

S ∈M(R), such that

S ⊕RN1 ∼= RN2 , (3.1)
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for some natural numbers N1, N2. The subcategory of M(R), consisting of

stably-free modules, is denoted by SF(R). Clearly, we have

F(R) ⊆ SF(R) ⊆ P(R) ⊆M(R).

Remark. The notions projective, free and stably-free can be defined irrespec-

tive of whether a module is finitely generated (c. f. e. g. [18] p. 17), but as in

the realm of this work we only consider finitely generated modules, we have

made this choice at a categorical level. It should be added, the properties

which we shall prove for finitely generated projective modules are not auto-

matic for their infinitely generated equivalents.

We define the rank of a free and a stably-free module, respectively. The

rank of a free module is defined to be the number of its basis elements.

This number is not necessarily unique. We say a ring R has invariant basis

number, or IBN, if every free module has a unique rank. Most known rings

possess the IBN condition. Furthermore, given S ∈ SF(R), say S satisfies

(3.1); then we may define the rank of S by

rk(S) = N2 −N1.

If R has IBN, rk(S) is a unique integer. But we need a stronger condition

to ensure that rk(S) is always positive. We say a ring R is weakly finite

whenever for any α, β ∈Mn(R),

αβ = In =⇒ βα = In

It is well known that (non-trivial) weakly finite rings have IBN (c.f. e.g. [4]

p. 143). Moreover, stably-free modules over a weakly finite ring necessarily

have a positive rank (c.f. e.g. [4] p. 143). We note, for any group G, the inte-

gral group-algebra Z[G] is weakly finite. This follows from [22] and the fact
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that subrings of weakly finite rings are again weakly finite (c.f. e.g. [4] p. 144).

Given a ring R, the set of isomorphism classes of free modules of rank

N only contains one element, that of RN . We write SFN(R), for the set of

isomorphism classes of stably-free modules of rank N over R, and say R has

stably-free cancellation whenever |SFN(R)| = 1, for all N ∈ N. Moreover,

the set of isomorphism classes of projective modules, albeit without a notion

of rank, is of course also non-trivial in general. Denote the set of isomor-

phism classes of projective modules over R by P(R). We say R is projective

free whenever any given projective R-module is free. Note, a projective free

ring has stably-free cancellation. Thus, given a ring R, the central question

of this chapter, as the name suggests, is whether SFN(R) is trivial. More

precisely: The aim is to show that C(Λ(p,n))[G] and F2[D2n ×G], for various

infinite groups G, have stably-free cancellation.

3.2 Preserving projective modules

We would like to be able to carry properties, such as stably-free cancellation

or being projective free, from one ring over to another. The first step is to

construct a functor between the categories of finitely generated modules over

the rings in question which preserves projective, stably-free or free modules,

respectively. Thus, consider the following:

Proposition (c. f. e. g. [18] p. 162) 3.2.1. Given two rings R, and S, let

F : M(R)→M(S), be a functor satisfying:

i) F (A⊕B) = F (A)⊕ F (B), for any A, B ∈ M(R);

ii) F (R) ∈ P(S).

Then F restricts to a functor P(R) → P(S). If, in fact, F (R) ∈ F(S),

then F also restricts to functors SF(R)→ SF(S) and F(R)→ F(S), respec-

tively.
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Proof. Given P ∈ P(R), there exists Q ∈ P(R), such that P ⊕ Q ∼= Rn for

some natural number n, but then by condition i)

F (P )⊕ F (Q) ∼= F (R)n.

By condition ii) we have that F (R)n ∈ P(S). Thus F (P ) ∈ P(S). In the

special case F (R) ∈ F(S), we have F (R)n ∈ F(S) which yields the stronger

result.

Remark. Note, any additive functor (for a definition see [21] p. 49) satisfies

condition i) above. In fact, additive functors preserve general co-products in

abelian categories (c. f. e. g. [5] p. 78).

Proposition 3.2.2. The following four functors satisfy Proposition 3.2.1.

i) Given a ring homomorphism ϕ : R 7→ R′, then there is a functor ϕ∗ :

M(R)→M(R′) defined as follows: For any object M ∈M(R), and m ∈M ,

define ϕ∗(M) by

m 7→ m⊗ϕ 1R′ .

For any two objects M ,N ∈M(R), and f ∈ HomR(M,N)

ϕ∗(f) = f ⊗ϕ IdR′ .

ii) Let ×li=1Ri be a cartesian product of rings. Then, for 1 ≤ i ≤ l the

canonical projection πi : ×li=1Ri 7→ Ri induces a functor ıi : M(Ri) 7→
M(×li=1Ri): For any object Mi ∈M(Ri), m ∈Mi and r ∈ ×li=1Ri define an

×li=1Ri action on Mi by

m.r = m.πi(r).

We write ıi(Mi) when we interpret Mi as a right R-module. Then for any

two objects M ,N ∈M(Ri) and f ∈ HomRi(M,N)

ıi(f) = f.
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iii) Let R be a ring and Mn(R) the ring of n×n matrices with entries in R.

Further, let R1×n and Rn×1 be the usual row and column vectors, respectively.

There are functors F1×n : M(R) → M (Mn(R)), and Fn×1 : M (Mn(R)) →
M(R), defined as follows: For any object M ∈M(R),

F1×n(M) = M ⊗R R1×n.

For any two objects M ,N ∈M(R), and f ∈ HomR(M,N),

F1×n(f) = f ⊗R IdR1×n .

Conversely, given an object M ∈M (Mn(R)),

Fn×1(M) = M ⊗Mn(R) R
n×1.

For any two objects M ,N ∈M (Mn(R)), and f ∈ HomMn(R)(M,N),

F1×n(f) = f ⊗Mn(R) IdRn×1 .

Proof. It is well known that tensors distribute over direct sums, thus the

functors in i) and iii) satisfy condition i) of Proposition 3.2.1. To see that

the same holds for ıi : M(Ri) 7→ M(×li=1Ri), note that the ×li=1Ri-action

is defined component-wise on M ⊕ N , for arbitrary objects M ,N ∈ M(Ri).

Moreover, we have

ϕ∗(R) = S ∈ F(S), (3.2)

ıi(Ri) = Ri ∈ P(×li=1Ri), (3.3)

F1×n(R) = R1×n ∈ P (Mn(R)) , (3.4)

Fn×1 (Mn(R)) = Rn×1 ∈ F(R). (3.5)

Thus all functors satisfy condition ii), as well.

Remark. All functors in Proposition 3.2.2 are special cases of the functors

39



defined in [18] p. 162-163.

Proposition 3.2.2 ii) equips us with a functor precisely tailored to com-

pare modules over cartesian products, with those over the individual terms in

the product. Similarly, the functors given in iii) compare modules over a ring

with those over the respective matrix algebra. However, the functor given in

i) is more general, in the sense that it is induced by any ring-homomorphism.

We start with an application on ring-isomorphisms.

Proposition 3.2.3. Let ϕ : R ∼= R′ be a ring-isomorphism; then R has

stably-free cancellation (is projective free), if and only if R′ has stably-free

cancellation (is projective free).

Proof. Suppose R′ has stably-free cancellation. Note, ϕ−1 ◦ ϕ = IdR. Thus

for a stably-free module S over R we have

S = (ϕ−1 ◦ ϕ)∗(S) = ϕ−1∗ (ϕ∗(S)) .

By Proposition 3.2.2 ϕ∗(S) ∈ SF(R′), so by assumption ϕ∗(S) is free. But

then, again by Proposition 3.2.2, ϕ−1∗ (ϕ∗(S)) = S is free. A similar argu-

ment applied to the map ϕ ◦ ϕ−1 = IdR′ yields the converse. Moreover, the

statement for projective free rings is proven analogously .

Given a surjective ring-homomorphism R � R′, we ask: Can M(R) be

parametrised by M(R′)? A a partial answer can be given, using the following

proposition

Proposition 3.2.4. If I is a radical ideal of a ring R, then the functor

p∗ : M(R) → M(R/I), induced by the canonical surjection p : R → R/I,

gives an injective map

P(R) ↪→ P(R/I).

That is, given two projective modules P,Q ∈ P(R), such that P/IP ∼= Q/IQ

as R/I-modules, then P ∼= Q as R-modules.
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Proof. See [18] p. 182.

As a corollary we have

Proposition 3.2.5. Let ϕ : R → R′ be a surjective ring-homomorphism

with nilpotent kernel. Then if R′ has stably-free cancellation (is projective

free), the same holds true for R.

Proof. First, note that any nilpotent (right) ideal is automatically radi-

cal (c. f. e. g. [18] p. 180). Moreover, R′ ∼= R/ker(ϕ), thus, by Proposi-

tion 3.2.3, R′ having stably-free cancellation (being projective free) implies

R/ker(ϕ) has stably-free cancellation (is projective free). First, assume R′

has stably-free cancellation, then, by Proposition 3.2.4, 1 ≤ |SFN(R)| ≤
|SFN (R/ker(ϕ)) | = 1, i. e. R has stably-free cancellation. If moreover, R′

is projective free, then for any P ∈ P(R) there exists a natural number N ,

such that

P/IP ∼= (R/ker(ϕ))N ∼= RN/ker(ϕ)RN ,

and, again by Proposition 3.2.4, P ∼= RN .

Next, we consider cartesian products.

Proposition 3.2.6. Let R ∼= ×li=1Ri be a ring-isomorphism. Then, R has

stably-free cancellation, if each Ri has stably-free cancellation for 1 ≤ i ≤ l.

Proof. Let S be a stably-free module of rank N over ×li=1Ri, by Proposition

3.2.2, πi∗(S) ∈ SF(Ri). Thus, by assumption it is free for all 1 ≤ i ≤ l, i. e.

πi∗(S) ∼= RN
i .

Now, note that every module M over ×li=1Ri can be written as

M = ⊕li=1ıi (πi∗(M)) .

41



So ⊕li=1 (ıi ◦ πi∗) is the identity morphism on M(R). But then,

S = ⊕li=1 (ıi ◦ πi∗) (S) ∼= ⊕li=1R
N
i
∼=
(
⊕li=1Ri

)N
,

i. e. S is free of rank N . Finally, by Proposition 3.2.3 , ×li=1Ri has stably-free

cancellation if and only if so has R.

We move on to consider matrix rings. We shall need the original version

of Morita’s theorem, i.e.

Proposition 3.2.7. Let R be a ring and m, n natural numbers. There exists

an isomorphism of Mm(R),Mm(R)-bimodules

Rm×n ⊗Mn(R) R
n×m ∼= Mm(R),

given by the map

M ⊗N 7→MN,

for any M ∈M(Rm×n), and N ∈M(Rn×m).

Proof. See [18] p. 166.

Recall, two rings are said to be Morita equivalent whenever there exists an

equivalence of categories between the category of finitely generated (right)

modules of one ring and that of the other (c. f. e. g. [4] p. 139). Note,

Morita’s theorem (Proposition 3.2.7) shows that, for any ring R, M(R) and

M (Mn(R)) are equivalent, since

(Fn×1 ◦ F1×n)(M) = M ⊗R R1×n ⊗Mn(R) R
n×1 ∼= M ⊗R R ∼= M.

Similarly, given N ∈M (Mn(R)), we get (F1×n ◦Fn×1)(N) ∼= N . As we have

already shown in Proposition 3.2.2 the functors F1×n, Fn×1 restrict to the

categories of finitely generated projective modules, so the above statement

yields that also P(R) and P (Mn(R)) are equivalent. In fact, by the general
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version of Morita’s theorem (c. f. e. g. [5] p. 231) the same holds true for any

pair of Morita equivalent rings. However, the equivalence of the categories

P(R), and P (Mn(R)) is not strong enough for our purposes. For example,

assume R is projective free, then it is not true that Mn(R) is also projective

free, as R1×n is a non-free projective, right Mn(R)-module. Nevertheless, the

functor Fn×1 restricts to a functor on free modules, as we have seen in (3.5).

It is this intrinsic property of Fn×1 which allows us to prove the following

Proposition 3.2.8. Let n be a natural number, R a ring, and Mn(R) the

n × n matrix-algebra over it. If R has stably-free cancellation, then so does

also Mn(R).

Proof. Let S be a stably-free module of rank N over Mn(R). Note, by (3.5),

Fn×1 (Mn(R)) ∼= Rn, thus Fn×1(S) is a stably-free R-module of rank nN .

But, by assumption, R has stably-free cancellation, i. e. Fn×1(S) ∼= RnN .

Now, by Proposition 3.2.7, we know that (F1×n ◦ Fn×1)(S) ∼= S. Moreover,

F1×n(R) = R1×n, as we have already seen in (3.4) and clearly (R1×n)
n ∼=

Mn(R), as right Mn(R)-modules. Therefore, we have

S ∼= (F1×n ◦ Fn×1)(S) ∼= F1×n(RnN) =
(
R1×n)nN ∼= (Mn(R))N ,

i. e. S is free of rank N .

3.3 Rings with stably-free cancellation

We say a group G is of type F , if it is free on m ≥ 2 generators or free

abelian on n ≥ 1 generators. Our main aim in this section is to prove that

both C(Λ(p,n))[G] and F2[D2n × G], with G a group of type F , have stably-

free cancellation. In order to do so, we need a source of simpler algebras

over type F groups, with stably free cancellation. Thus we first review some

important and famous examples from the literature.
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Theorem (Bass, 1964) 3.3.1. Let G be a free group (or monoid), let R

be a principal ideal domain. Then finitely generated projective right (or left)

R[G]-modules are free.

Proof. See [2].

Remark. It should be added that Sheshadri, in 1958, motivated by the fa-

mous conjecture of Serre ([26] p. 243), proved a special case of the above

statement ([27]), assuming that G is a monoid on one generator (i.e. R[G],

the polynomial ring in one indeterminate, with coefficients in R). Moreover,

in 1963, Cohn proved for a commutative field R and a free group G that

R[G] is a free ideal ring ([6], p. 68). Now it is known that free ideal rings, i. e.

integral domains in which every right ideal is free as a module, are projective

free (c.f. e.g. [6] p. 49).

An analogous version of Theorem 3.3.1 for free abelian groups can de-

duced using Quillen’s solution ([25]) to Serre’s Conjecture, that is

Theorem 3.3.2. Let G be a free abelian group (or monoid), let R be a

commutative principal ideal domain. Then finitely generated projective right

(or left) R[G]-modules are free.

Proof. See [16] p. 147.

By theorems 3.3.1 and 3.3.2 it is clear that R[G] is projective free whenever

G is a group of type F and R a commutative principal ideal domain. Before

proving the main theorems of this chapter we shall need the following lemma

Lemma 3.3.3. Let F be a field, m(x) and irreducible polynomial in F[x] and

d ≥ 1 a natural number. Then F[x]/
(
m(x)d

)
[G] is projective free whenever

G is of type F .

Proof. First consider the case d = 1. Since m(x) is irreducible, F[x]/ (m(x))

is a field, and by theorems 3.3.1, 3.3.2 the statement holds. If d > 1, let

44



p : F[x]/
(
md(x)

)
→ F[x]/ (m(x))

be the canonical surjection. Note, ker(p) = (m(x)), i. e. the principal ideal

generated by m(x). Evidently, in F[x]/
(
md(x)

)
we have md(x) = 0. There-

fore ker(p)d = 0, i. e. it is nilpotent. We induce a map

p∗ : F[x]/
(
md(x)

)
[G]→ F[x]/ (m(x)) [G]

by putting p∗ = p⊗Z IdZ[G]. Then p∗ is surjective, since tensoring preserves

surjective maps. Moreover,

ker(p∗) = ker(p)⊗ Z[G] = (m(x))⊗ Z[G] (3.6)

Now, since ker(p)d = 0, (3.6) implies ker(p∗)d = 0. So p∗ is a surjective map,

with nilpotent kernel, onto a ring which is projective free, as the case d = 1

establishes. By Proposition 3.2.5 F[x]/
(
m(x)d

)
[G] is projective free.

Theorem 3.3.4. C(Λ(p,n))[G] has stably-free cancellation whenever G is of

type F .

Proof. By Theorem 2.4.9, there exist natural numbers m, di and irreducible

polynomials qi(x) in Fp[x], such that

C(Λ(p,n))[G] ∼=
m∏
i=1

M2

(
Fp[x]/

(
qdii (x)

)
[G]
)
,

for any group G. Now by Lemma 3.3.3 each Fp[x]/
(
qdii (x)

)
[G] is projective

free, and therefore has stably-free cancellation. Proposition 3.2.8 implies that

each factor M2

(
Fp[x]/

(
qdii (x)

)
[G]
)

has stably-free cancellation. But then,

by Proposition 3.2.6, so does also C(Λ(p,n))[G], being isomorphic to a product

of rings with stably free cancellation.

Next we consider F2[D2n × G], with G of type F . We shall need the
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following

Lemma 3.3.5. Let k ≥ 3 be an odd number and s ≥ 1 an integer. There

exists a surjective map

π : F2[D2s+1k]→ F2[D2sk],

with nilpotent kernel.

Proof. In F2[x], (x2
sk − 1) = (x2

s−lk − 1)2
l
, for any integer l. In particular,

(x2
sk − 1) = (x2

s−1k − 1)2, and there exists a canonical surjection

p : F2[x]/(x2
sk − 1)→ F2[x]/(x2

s−1k − 1),

with kernel ker(p) = (x2
s−1k − 1). Now by (2.8) in Chapter 2, we know

F2[D2sk] = C2 (F2[C2s−1k], γ, 1). Furthermore, since p◦γ = γ ◦p and p(1) = 1,

we see that p is a cyclic ring-homomorphism. Therefore, by Proposition 2.1.2,

p induces a surjective map

π : F2[D2s+1k]→ F2[D2sk],

with kernel

ker(π) = ker pu y ker p = (x2
s−1k − 1)u y(x2

s−1k − 1).

We claim ker(π)2 = 0, i. e. ker(π) is nilpotent. Given any two elements in

k1, k2 ∈ ker(π), say

k1 = (x2
s−1k − 1)f1(x) + y(x2

s−1k − 1)g1(x),

k2 = (x2
s−1k − 1)f2(x) + y(x2

s−1k − 1)g2(x),
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with fi(x), gi(x) ∈ F2[x]/(x2
sk−1). Then, as (x2

s−1k)2 = 1 in F2[x]/(x2
sk−1),

(x2
s−1k − 1)−1 = (x2

s−1k − 1)⇔ γ(x2
s−1k − 1) = (x2

s−1k − 1). (3.7)

In other words, the elements (x2
s−1k − 1) and y commute in F2[D2s+1k]. We

compute thus

k1.k2 = F (x)(x2
s−1k − 1)2 = F (x).0 = 0,

where F (x) ∈ F2[D2s+1k] denotes the element

F (x) = f1(x)f2(x) + f1(x)yg2(x) + yg1(x)f2(x) + yg1(x)yg2(x).

Theorem 3.3.6. F2[D2n × G] has stably-free cancellation whenever G is of

type F .

Proof. Write 2n = 2sk, for a natural number s ≥ 1 and odd number k ≥ 3.

We prove the statement by induction on s. Thus consider the case s = 1, by

Theorem 2.3.5

F2[D2k ×G] ∼=
(
F2[x]/(x2 − 1)

)
[G]×

l∏
i=1

M2 (F2di [G]) ,

for any group G. But then, observing that (x2 − 1) = (x − 1)2 in F2[x],

a similar proof as in Theorem 3.3.4 shows that F2[D2k × G] has stably free

cancellation. Next assume the statement holds for s = σ, and consider the

case s = σ + 1: By Lemma 3.3.5 we have a surjective map

π : F2[D2σ+1k]→ F2[D2σk],
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with nilpotent kernel. As in Lemma 3.3.3, we induce a ring homomorphism

π∗ : F2[D2s+1k ×G]→ F2[D2sk ×G],

by putting π∗ = π ⊗Z IdZ[G]. Then π∗ is surjective. Moreover,

ker(π∗) = ker(π)⊗ Z[G] (3.8)

Now, since ker(π) is nilpotent, (3.8) implies ker(π∗) is nilpotent. So π∗ is a

surjective map, with nilpotent kernel, onto F2[D2sk × G], a ring which has

stably-free cancellation by the inductive hypothesis. By Proposition 3.2.5

F2[D2s+1k ×G] also has stably-free cancellation.
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Chapter 4

Weakly Euclidean rings

4.1 Basic definitions

In this section we discuss so called weakly Euclidean rings which sometimes

in the literature are referred to as generalised Euclidean rings (e. g. see [7]).

We start by giving a few elementary definitions (for a comparison see [18]

p. 319-321). Given a ring R and a natural number n, denote by Mn(R) the

ring of n× n matrices with entries in R. Let εij be the n× n matrix over R

with the only non-zero entry at the i, j-th position, where it is 1R. It is well

known that these εij’s, usually called matrix units, form a basis for Mn(R)

as a right (or left) module over R . It can easily be calculated that matrix

units multiply according to the rule:

εijεkl =

{
0 if j 6= k

εil if j = k
(4.1)

Furthermore, the group of units under matrix multiplication of Mn(R) is

called the general linear group of R, abbreviated to GLn(R). We are in-

terested in certain subgroups of GLn(R). Firstly, the elementary matrices

En(R), i. e. the subgroup consisting of all finite words t1 . . . tk, where each ti
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is an elementary transvection. Here, by an elementary transvection we mean

a matrix of the form eij(r) = In + rεij, where In as usual denotes the n× n
identity matrix, r is any element in R and i 6= j for some 1 ≤ i, j ≤ n.

Indeed, En(R) is a subgroup of GLn(R), as each elementary transvection

eij(r) has inverse eij(r)
−1 = eij(−r). Next we consider the subgroup of di-

agonal matrices denoted by Dn(R). This subgroup consists of all products

d1(u1) . . . dn(un), where di(ui) = In + (ui − 1)εii with ui ∈ R∗ (as usual R∗

denotes the group of units in R). Writing diag(u1, . . . , un) for the diagonal

matrix with unit entry ui at i, i-th position, we may equivalently describe

Dn(R) as the subgroup of GLn(R) which consists of all matrices of the form

diag(u1, . . . , un), as

diag(u1, . . . , un) = d1(u1) . . . dn(un). (4.2)

Finally, we consider the set of all finite length products where each term

is either of the form eij(r) or di(u), where r ∈ R and u ∈ R∗. By the

above discussion it is clear that these products also make up a subgroup of

Gln(R). We shall call this subgroup the restricted linear group and denote it

by GEn(R). Observe that

dk(u)eij(r)dk(u)−1 =


eij(ur) if k = i

eij(ru
−1) if k = j

eij(r) if k /∈ {i, j}.
(4.3)

Therefore, Dn(R) normalizes En(R), and we have

Proposition 4.1.1.

GEn(R) = Dn(R)En(R) = En(R)Dn(R).

Furthermore, define

pk(u) := ek1(−u)e1k(u
−1)ek1(−u)ek1(1)e1k(−1)ek1(1).
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Then for any u ∈ R∗ we have dk(u) = d1(u)pk(u). So for u1, . . . , un in R∗, by

(4.2),

diag(u1, . . . , un) = d1(u1)d1(u2)p2(u2) . . . d1(un)pn(un). (4.4)

Now by observation (4.3), given an element E in En(R) and a unit u ∈ R∗

there exists E ′ ∈ En(R) such that E dk(u) = dk(u)E ′. Evidently, each pi(ui)

is an element in En(R), and therefore the right-hand side of Equation (4.4)

may be rewritten as

diag(u1, . . . , un) = d1(u1) . . . d1(un)E = d1(u1 . . . un)E, (4.5)

for some E in En(R). Now by Proposition 4.1.1 every element in GEn(R)

may be written as diag(u1, . . . , un)E, for some E in En(R) and u1, . . . , un in

R∗. But by (4.5) there exists an E ′ in En(R), such that diag(u1, . . . , un)E =

d1(u1 . . . un)E ′E. We formulate this observation as

Proposition 4.1.2.

GEn(R) = d1(R
∗)En(R).

Here d1(R
∗) denotes the set of all elements d1(u), with u in R∗.

We say a ring R is weakly Euclidean if its the restricted linear group exhausts

its general linear group, in other words, whenever GLn(R) = GEn(R).

4.2 Examples of weakly Euclidean rings

Having defined the notion of a weakly Euclidean ring, the natural question

to ask is: Which rings are weakly Euclidean? As a first result we have

Theorem 4.2.1. Every Euclidean domain is weakly Euclidean.

Proof. The proof is simply the existence proof of the Smith normal form in

the case of a Euclidean domain (c.f. e.g. [9] p. 80).

Dieudonné considers (possibly non-commutative) division rings in [8] p. 29:
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Theorem 4.2.2. Every division ring is weakly Euclidean.

Klingenberg elaborates on Dieudonné’s result in [15] p. 76, showing:

Theorem 4.2.3. Every local ring, possibly non-commutative, is weakly Eu-

clidean.

The following result by Cohn (see [7] p.373) is particularly important,

as it will enable us to recognise all relevant examples of weakly Euclidean

domains.

Theorem 4.2.4. Let G be a free group, and k a field. Then the group algebra

k[G] is weakly Euclidean.

In fact, Cohn gives examples of several different classes of weakly Euclidean

rings in [7]. However, these classes do not necessarily encompass the specific

rings we encounter in the scope of this thesis.

4.3 Recognition criteria

We will now review a few recognition criteria particularly useful to us.

Proposition 4.3.1. The direct product of a finite number of weakly Eu-

clidean rings is again weakly Euclidean.

Proof. See (3.1) in [7], p. 371.

Proposition 4.3.2. Let R be weakly Euclidean; then Mk(R), the ring of

k × k matrices over R, is again weakly Euclidean.

Proof. Given X ∈ GLn(Mk(R)) then clearly X ∈ GLnk(R). But R is weakly

Euclidean, thus

X = DE,
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for some D ∈ Dnk(R), E ∈ Enk(R). Firstly, consider D. As an element in

GLnk(R) it has the form

D = diag(u1, . . . , unk),

for u1, . . . , unk ∈ R∗. Equivalently, as an element in GLn(Mk(R)),

D = (U1, . . . , Un),

where Ui = diag(u(i−1)k+1, . . . , uik), and clearly Ui ∈ GLk(R). Therefore, D

is an element in Dn(Mk(R)). Moreover, E, viewed as an element in Enk(R),

is a finite product of elementary transvections ei,j(s), with 1 ≤ i, j ≤ nk,

i 6= j, s ∈ R. Now, view ei,j(s) = Ink + sεi,j as an element in GLn(Mk(R)).

First, suppose the (i, j)-th entry is inside one of the blocks in the k × k-

block-diagonal, say it is in the (λ, λ)-th block. But then the block containing

the (i, j)-th entry is of the form eı,(s) ∈ GLk(R), 1 ≤ ı,  ≤ k, with ı 6= .

Therefore,

ei,j(s) = diag(Ik, . . . , Ik︸ ︷︷ ︸
λ−1

, eı,(s), Ik, . . . , Ik)

which is an element in Dn(Mk(R)). If, however, the (i, j)-th entry is not

inside one of the blocks in the k× k-block-diagonal, then it is in the (ι, κ)-th

block, 1 ≤ ι, κ ≤ n, with ι 6= κ. Denoting this block by Bs, it is clear that

ei,j(s) = eι,κ(Bs)

which is an element in En(Mk(R)). In either case E is a finite product in

GEn(Mk(R)), thus so is also X = DE.

The next criterion, due to Johnson (c. f. [12]), requires some work to

establish. We start with a definition. A ring homomorphism ϕ : A→ B has

the lifting property for units if
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i) the induced map ϕ∗ : A∗ → B∗ on the unit groups A∗,

B∗ is surjective.
We say ϕ has the strong lifting property for units, if additionally the following

holds

ii) given a ∈ A such that ϕ(a) ∈ B∗, then a ∈ A∗.

Theorem 4.3.3. Let ϕ : R → S be a surjective ring homomorphism with

strong lifting for units; then if S is weakly Euclidean, so is also R.

In order to prove this statement we shall need the following.

Lemma 4.3.4. Let ϕ : R→ S be a ring homomorphism with strong lifting for

units and let X be an element in GLn(R), such that ϕ(X) = In. Then X ∈
GEn(R). Here ϕ : Mn(R)→Mn(S) denotes induced ring homomorphism by

applying ϕ componentwise.

Proof. The result is proved by induction on n. Note the case n=1 is trivial,

thus we assume n ≥ 2 in what follows. We write X = (xij). Since ϕ(xnn) = 1,

condition ii) of the strong lifting property implies that xnn ∈ R∗, and we may

define

D := D := diag(1, . . . , 1︸ ︷︷ ︸
n−1

, x−1nn)

E+ :=
n−1∏
r=1

ern(−xrnx−1nn)

E− :=
n−1∏
r=1

enr(−x−1nnxnr),

i. e. D,E+, E− ∈ GEn(R). A straightforward calculation and an abuse of the

diag(a1, . . . , an)-notation yield

E+XE−D = diag(X ′, 1), (4.6)
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for some X ′ ∈ GLn−1(R). Furthermore, since ϕ(xnr) = ϕ(xrn) = 0 for r < n

and ϕ(x−1nn) = ϕ(xnn) = 1, we have that

ϕ(E+) = ϕ(E−) = ϕ(D) = In.

This implies that ϕ(E+XE−D) = In, and hence that ϕ(X ′) = In−1. Now

rewriting (4.6) gives

X = E−1− diag(X ′, 1)E−1+ D−1,

with E−1− , E−1+ , D−1 ∈ GEn(R). It remains to show that diag(X ′, 1) ∈
GEn(R). If n = 2 the statement clearly holds as X ′ ∈ GL1(R) = R∗.

Next consider the case n = k, i. e. X ′ ∈ GLk−1(R), such that ϕ(X ′) =

Ik−1. Therefore, by the inductive hypothesis X ′ ∈ GEk−1, but then clearly

diag(X ′, 1) ∈ GEk(R).

We prove Theorem 4.3.3.

Proof. Given X ∈ GLn(R), our hypothesis implies ϕ(X) ∈ GLn(S) =

GEn(S), and thus may be written as ϕ(X) = diag(u1, . . . , un)E, for some

u1, . . . , un ∈ S∗ and E ∈ En(S). Now condition i) of the strong lifting prop-

erty allows us to choose u′1, . . . u
′
n ∈ R∗, such that ϕ(u′i) = ui. Furthermore,

E, by definition, is a finite product of elementary transvections

E =
m∏
r=1

eijr(kr),

with kr ∈ S. By the surjectivity of ϕ, for each term eijr(kr) in E we can find

eijr(k
′
r) with k′r ∈ R such that ϕ(eijr(k

′
r)) = eijr(kr). Then clearly for

E ′ :=
m∏
r=1

eijr(k
′
r),
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we have ϕ(E ′) = E, and E ′ ∈ En(R). Therefore, if we define

Y := diag(u′1, . . . , u
′
n)E ′,

then ϕ(Y ) = ϕ(X) as well as Y ∈ GEn(R). But then

ϕ(XY −1) = ϕ(X)ϕ(Y )−1 = ϕ(X)ϕ(X)−1 = In,

and Lemma 4.2.1 implies

XY −1 = Z, (4.7)

for some Z ∈ GEn(R). Multiplying (4.7) with Y on the right, we see that

X = ZY ∈ GEn(R), as Z and Y are in GEn(R).

Remark. Recognition criterion 4.3.3 allows us to give a simple proof of Klin-

genberg’s result (Theorem 4.2.3): Let R be a local ring with maximal ideal

m. Then the canonical map p : R→ R/m has strong lifting (all non-units in

R map to zero). Now R/m is a division ring, thus by Theorem 4.2.2 weakly

Euclidean, and the result follows by Theorem 4.3.3.

4.4 Further examples of weakly Euclidean rings

Let Fp denote the field with p elements, for a prime p. We consider a special

case of strong lifting of units involving Fp-algebras.

Proposition 4.4.1. Let A be an Fp-algebra, and let ϕ : A→ B be a surjec-

tive ring homomorphism with nilpotent kernel. Then ϕ has the strong lifting

property.

Proof. Since ϕ is surjective, it is enough to prove that condition ii) of the

strong lifting property holds. Thus assume a ∈ A such that ϕ(a) ∈ B∗. Let

b ∈ B∗ be its inverse, with preimage b′ ∈ A under ϕ, i. e. ϕ(b′) = b. Then the
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equations ϕ(a)b = 1, and bϕ(a) = 1, in B, may be lifted to equations

ab′ = 1 + k1

b′a = 1 + k2

in A, where k1, k2 ∈ kerϕ. By assumption, there exists a natural number

m with km1 = km2 = 0. Choose n such that pn ≥ m. But then, as A is an

Fp-algebra

(ab′)p
n

= (1 + k1)
pn = 1p

n

+ k1
pn = 1.

Similarly (b′a)p
n

= 1. Therefore, a has inverse b′(ab′)p
n−1 = (b′a)p

n−1b′, and

a ∈ A∗.

We turn to the cyclic group algebras already discussed in Chapter 2. First

we consider C(Λ(p,n))[G], for a free group G. Analogously to Theorem 3.3.4

we prove

Theorem 4.4.2. C(Λ(p,n))[G] is weakly Euclidean whenever G is a free group.

Proof. By Theorem 2.4.9, there exist natural numbers m, di and irreducible

polynomials qi(x) in Fp[x], such that

C(Λ(p,n))[G] ∼=
m∏
i=1

M2

(
Fp[x]/

(
qdii (x)

)
[G]
)
,

for any group G. Now by the proof of Lemma 3.3.3 there exist surjective

maps

p∗i : Fp[x]/
(
qdii (x)

)
[G]→ Fp[x]/ (qi(x)) [G],

with nilpotent kernel, for 1 ≤ i ≤ m. By Proposition 4.4.1 all p∗i have

the strong lifting property. Also each Fp[x]/ (qi(x)) is a field, as qi(x) is

irreducible. Therefore, by Theorem 4.2.4, each Fp[x]/ (qi(x)) [G] is weakly

Euclidean whenever G is a free group. But then, by Theorem 4.3.3, so is

also Fp[x]/
(
qdii (x)

)
[G], for 1 ≤ i ≤ m and G a free group. Furthermore,
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Proposition 4.3.2 implies that each factor M2

(
Fp[x]/

(
qdii (x)

)
[G]
)

is weakly

Euclidean. Finally, by Proposition 4.3.1, so is also C(Λ(p,n))[G], being iso-

morphic to a finite product of weakly Euclidean rings.

Finally, we consider the group algebra F2[D2n ×G], for a free group G

Theorem 4.4.3. The group algebra F2[D2n ×G] is weakly Euclidean when-

ever G is a free group.

Proof. Similarly to Theorem 3.3.6, this theorem is proven by induction on

s ≥ 1, where 2n = 2sk, for an odd number k ≥ 3. Thus consider the case

s = 1, by Theorem 2.3.5

F2[D2k ×G] ∼=
(
F2[x]/(x2 − 1)

)
[G]×

l∏
i=1

M2 (F2di [G]) ,

for any group G. But then, observing that (x2 − 1) = (x − 1)2 in F2[x], a

similar proof as in Theorem 4.4.2 shows that F2[D2k×G] is weakly Euclidean

whenever G is a free group. Next assume the statement hold for s = σ, and

consider the case s = σ + 1: By the proof of Theorem 3.3.6 there exists a

surjective map

π∗ : F2[D2s+1k ×G]→ F2[D2sk ×G]

with nilpotent kernel. Then Proposition 4.4.1 implies that π∗ has the strong

lifting property. Now by the inductive hypothesis F2[D2sk × G] is weakly

Euclidean. But then, by Theorem 4.3.3, so is also F2[D2s+1k ×G].
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Chapter 5

Fibre squares

5.1 Fibre squares of cyclic algebras

We start by defining a fibre square: Let

Λ
ρ− //

ρ+

��

Λ−

ϕ−

��
Λ+

ϕ+ // Λ0

(5.1)

be a commutative square of ring-homomorphisms. We say (5.1) is a fibre

square, if for each pair (λ+, λ−) ∈ Λ+ × Λ− with ϕ+(λ+) = ϕ−(λ−) there

exists exactly one λ ∈ Λ, such that ρ+(λ) = λ+, ρ−(λ) = λ−. Moreover,

we call Λ the fibre product of Λ+ and Λ− over Λ0. There is an equivalent

description of fibre squares given by

Proposition (c. f. e. g. [18] p. 435) 5.1.1. The following are equivalent

i) (5.1) is a fibre square

ii) there exists an exact sequence of additive groups

0 // Λ
(ρ+ρ−)

// Λ+ ⊕ Λ−
(ϕ+−ϕ−) // Λ0 (5.2)
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Proof. Note, im
(
ρ+
ρ−

)
⊆ ker(ϕ+ − ϕ−), if and only if (5.1) commutes. More-

over, ker(ϕ+−ϕ−) ⊆ im
(
ρ+
ρ−

)
, if and only if for each pair (λ+, λ−) ∈ Λ+×Λ−

with ϕ+(λ+) = ϕ−(λ−) there exists one λ ∈ Λ, such that ρ+(λ) = λ+,

ρ−(λ) = λ−. Finally, there exists exactly one such λ, if and only if
(
ρ+
ρ−

)
is

injective.

Now assume we are given cyclic algebras Cn (Λ, s, a), Cn (Λ+, s+, a+),

Cn (Λ−, s−, a−) and Cn (Λ0, s0, a0) together with a fibre square of cyclic ring-

homomorphisms

Λ
r− //

r+

��

Λ−

p−

��
Λ+

p+ // Λ0

.

By Proposition 5.1.1 this is equivalent to saying there exists an exact sequence

of additive groups

0 // Λ
(r+r−)

// Λ+ ⊕ Λ−
(p+−p−) // Λ .

But r+,r−, p+ and p− are cyclic ring-homomorphisms, thus by propositions

2.1.1 and 2.1.2 they induce an exact sequence of additive groups

0 // Cn (Λ, s, a)
(ρ+ρ−)

// Cn (Λ+, s+, a+)⊕ Cn (Λ−, s−, a−)
(π+−π−)// Cn (Λ0, s0, a0) .

Then applying Proposition 5.1.1 again we see that there exists a fibre square

Cn (Λ, s, a)
ρ− //

ρ+

��

Cn (Λ−, s−, a−)

π−
��

Cn (Λ+, s+, a+)
π+ // Cn (Λ0, s0, a0)

.

Thus we have

Proposition 5.1.2. A fibre square of cyclic ring-homomorphisms induces a
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fibre square of the associated cyclic algebras.

Let G be a group then the algebra Z[G] is free as a two-sided Z-module.

It is well known (c. f. e. g. [17] p. 162) that the functor − ⊗R P is exact for

any ring R and projective R-module P . Thus the functor −⊗Z[G] is exact,

and by Proposition 5.1.1 applying −⊗ Z[G] to (5.1) yields

Λ[G]
ρ−⊗Id//

ρ+⊗Id
��

Λ−[G]

ϕ−⊗Id
��

Λ+[G]
ϕ+⊗Id// Λ0[G]

, (5.3)

i. e.

Proposition 5.1.3. Given a fibre square of ring-homomorphisms such as

(5.1) and a group G, the functor − ⊗ Z[G] induces a fibre square of group-

algebra homomorphisms such as (5.3).

5.2 Examples of fibre squares

The following will be our source of fibre squares:

Proposition(c. f. e. g. [18] p. 435) 5.2.1. If I and J are ideals of a ring

Λ, the square of canonical maps

Λ/(I ∩ J) //

��

Λ/J

��
Λ/I // Λ/(I + J)

is a fibre square. In particular, all maps are automatically surjective.

We want to apply Proposition 5.1.1 to the ring Z[x], i. e. the ring of polynomi-

als in one indeterminate, with integer coefficients. It is well known that Z[x]
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is a unique factorisation domain. Thus the following result on commutative

unique factorisation domains will prove to be useful (c. f. e. g. [3] p. 502)

Proposition 5.2.2. Let a1, a2 be two elements in a commutative unique

factorisation domain R. Write (a1)∩(a2) for the intersection of the principal

ideals generated by a1 and a2, respectively. Then

(a1) ∩ (a2) = (lcm(a1, a2)) ,

i. e. the principal ideal generated by the least common multiple of a1 and a2.

Consider the polynomial x2n − 1 ∈ Z[x], for a natural number n. Evidently,

x2n−1 = (xn−1)(xn+1). Since, as we already noted in Chapter 2, x2n−1 =∏
d|2n Φd, it is a product of distinct irreducible polynomials. In particular,

xn − 1, xn + 1 are co-prime, and therefore lcm(xn − 1, xn + 1) = x2n − 1.

Moreover, it can easily be verified that (xn − 1) + (xn + 1) = (xn − 1) + (2).

Thus, by propositions 5.2.1 and 5.2.2 we have a fibre square

Z[x]/(x2n − 1) //

��

Z[x]/(xn + 1)

��
Z[x]/(xn − 1) // F2[x]/(xn − 1)

(5.4)

of canonical surjections. Now, by Proposition 2.1.3, we may define the usual

involution γ on each of the rings in (5.4). Moreover, they commute with the

canonical surjections. Clearly, γ fixes the elements xn, −1, 1, 1, in the rings

Z[x]/(x2n− 1), Z[x]/(xn + 1), Z[x]/(xn− 1), F2[x]/(xn− 1), respectively. By

Proposition 5.1.2 we have a fibre square

C2 (Z[x]/(x2n − 1), γ, xn) //

��

C2 (Z[x]/(xn + 1), γ,−1)

��
C2 (Z[x]/(xn − 1), γ, 1) // C2 (F2[x]/(xn − 1), γ, 1)

. (5.5)

We note that all maps are again surjective, since cyclic ring homomorphisms
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are exact functors (c. f. Proposition 2.1.2). Moreover, by the discussion

in Chapter 2, we recognise C2 (Z[x]/(x2n − 1), γ, xn), C2 (Z[x]/(xn − 1), γ, 1),

and C2 (F2[x]/(xn − 1), γ, 1), as Z[Q4n], Z[D2n] and F2[D2n], respectively. By

Proposition 5.1.3, applying the exact functor − ⊗ Z[G], for any group G,

yields

Proposition 5.2.3. For any group G there exists a fibre square of surjective

ring-homomorphisms

Z[Q4n ×G] //

��

C2 (Z[x]/(xn + 1), γ,−1) [G]

��
Z[D2n ×G] // F2[D2n ×G]

. (5.6)

Note, in the fibre square (5.6) the only unknown ring is

C2 (Z[x]/(xn + 1), γ,−1) [G]. In order to understand this ring better, we shall

factorise it as a fibre product. We make the following restriction:

n = 2sk,

where k > 1 is odd and s ≥ 1. Choose k′, a divisor of k, such that k =

pk′, for some prime p, and consider the polynomial x2
sk + 1 ∈ Z[x]. Note

x2
sk + 1 =

∏
d|k Φ2s+1d(x) and x2

sk′ + 1 =
∏

d|k′ Φ2s+1d(x), so x2
sk′ + 1 divides

x2
sk + 1. Moreover, if we define

φ(x) := (x2
sk + 1)/(x2

sk′ + 1),

then φ(x) and x2
sk′ + 1 are co-prime, and therefore lcm(φ(x), x2

sk′ + 1) =

x2
sk + 1. We make the following observation:

φ(x) =

p∑
i=1

(−1)i+1x2
s(k−ik′) = (x2

sk′ + 1)

p−1∑
i=1

(−1)i+1ix2
s(k−(1+i)k′) + p.

Thus (φ(x)) +
(
x2

sk′ + 1
)

= (p) +
(
x2

sk′ + 1
)
, and by propositions 5.2.1 and
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5.2.2 we have a fibre square

Z[x]/(x2
sk + 1) //

��

Z[x]/(x2
sk′ + 1)

��
Z[x]/ (φ(x)) // Fp[x]/(x2

sk′ + 1)

(5.7)

of canonical surjections. Now, just as in the case of (5.4), we may define

γ on each of the rings in (5.7), which in each case fixes the element -1.

Thus the canonical surjections become cyclic ring-homomorphisms, and, by

Proposition 5.1.2, induce a fibre square of cyclic algebras. Furthermore, for

a given group G we apply the exact functor −⊗ Z[G] which by Proposition

5.1.3 gives

Proposition 5.2.4. Let s, k, k′, p and φ(x) be defined as above. For any

group G, there exists a fibre square of surjective ring-homomorphisms

C2
(
Z[x]/(x2

sk + 1), γ,−1
)

[G] //

��

C2
(
Z[x]/(x2

sk′ + 1), γ,−1
)

[G]

��
C2 (Z[x]/ (φ(x)) , γ,−1) [G] // C

(
Λ(p,2s−1k′)

)
[G]

, (5.8)

where C
(
Λ(p,2s−1k′)

)
[G] = C2

(
Fp[x]/(x2

sk′ + 1), γ,−1
)

[G], as defined in (2.11),

Chapter 2.

A useful special case of Proposition 5.2.4 is given by:

Proposition 5.2.5. For any odd prime p, there exists a fibre square of sur-

jective ring-homomorphisms

C2
(
Z[x]/(x2

sp + 1), γ,−1
)

//

��

C2 (Z[ζ2s+1 ], γ,−1)

��
C2 (Z[ζ2s+1p], γ,−1) // C

(
Λ(p,2s−1)

) (5.9)
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Proof. Apply Proposition 5.2.4 with G =< Id >, the trivial group, k =

p, and k′ = 1. Moreover, note that x2
s

+ 1 = Φ2s+1(x) and x2
sp + 1 =

Φ2s+1(x).Φ2s+1p(x), thus φ(x) = Φ2s+1p(x), by definition.

5.3 Milnor patching

We close this chapter with a brief recapitulation on Milnor’s method of con-

structing projective modules over fibre products, by ‘patching’ projective

modules over the constituent factors (c. f. [20] p. 19-24). In our exposition

we shall specifically focus on so called locally free modules and the sufficient

condition, given by Milnor, for these to be projective. Thus, let

Λ
ρ− //

ρ+

��

Λ−

ϕ−

��
Λ+

ϕ+ // Λ0

(5.10)

be a fibre square of ring-homomorphisms. By Proposition 3.2.2 in Chapter

3, we know that each of the above ring-homomorphisms induces a functor

of the respective module categories. In particular these functors restrict to

the categories of finitely generated free, stably-free and projective modules,

respectively. So, for example ρ− : Λ→ Λ− induces a functor ρ−∗ : M (Λ)→
M (Λ−), which preserves finitely generated free, stably-free and projective

modules, respectively. Thus, given a projective module P− ∈ P (Λ−) and a

projective module P+ ∈ P (Λ+), such that there exists an isomorphism

h : ϕ−∗ (P−)→ ϕ+∗ (P+) ,

as Λ0-modules, define M (P−, P+, h) to be the additive subgroup of P− ⊕
P+ consisting of all pairs (p−, p+), such that hϕ−∗(p−) = ϕ+∗(p+). The
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corresponding fibre square of additive groups is given by

M (P−, P+, h) //

��

P−

hϕ−∗
��

P+
ϕ+∗ // ϕ+∗ (P+)

, (5.11)

where the unlabelled arrows represent canonical maps. Moreover,

M (P−, P+, h) can be made into a right Λ-module via the following Λ-action

(p−, p+).λ = (p−.ρ−(λ), p+.ρ+(λ)) .

We say M (P−, P+, h) is finitely generated locally free of rank N whenever

P− ∼= ΛN
− , and P+

∼= ΛN
+ . In such a case ϕσ∗ (Pσ) ∼= Λ0

N , for σ = +,−, and

thus h can be regarded as en element in GLN(Λ0). So we define the set of

finitely generated locally free Λ-modules of rank N to be

LFN(Λ) =
{
M
(
Λ−

N ,Λ+
N , h

)
: h ∈ GLN(Λ0)

}
.

In particular, we note (c. f. e. g. [18] p. 441):

M
(
ΛN
− ,Λ

N
+ , Id

) ∼= ΛN . (5.12)

The following gives a useful parametrisation of the isomorphism classes in

LFN(Λ)

Proposition (c. f. e. g. [18] p. 442) 5.3.1. Let h, h′ ∈ GLN(Λ0). Then

M
(
ΛN
− ,Λ

N
+ , h

) ∼= M
(
ΛN
− ,Λ

N
+ , h

′)
if and only if there exist ασ ∈ GLN(Λσ), for σ = +,−, such that

h′ = ϕ+(α−1+ )hϕ−(α−),
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where ϕσ is applied entrywise. Thus writing LFN(Λ) for the set isomorphism

classes in LFN(Λ), we see that

|LFN(Λ)| = |ϕ+ (GLN(Λ+)) \GLN(Λ0)/ϕ− (GLN(Λ−))|

We say the fibre square (5.10) satisfies the patching condition whenever

LFN(Λ) ⊆ P(Λ). Moreover, let us call the fibre square (5.10) a Milnor

square whenever at least one of ϕ−, ϕ+ is surjective. In [20], p. 21, Milnor

first shows

Lemma 5.3.2. Milnor squares satisfy the patching condition.

He then continues to prove (c. f. [20] p. 23)

Theorem (Milnor) 5.3.3. If (5.10) satisfies the patching condition, then

M (P−, P+, h) ∈ P(Λ). Moreover, it is finitely generated, and the modules

P−, P+ are naturally isomorphic to ρ−∗ (M (P−, P+, h)) and

ρ+∗ (M (P−, P+, h)), respectively. Conversely, given a projective module P ∈
P(Λ), there exist P− ∈ P (Λ−), P+ ∈ P (Λ+) and h : ϕ−∗ (P−)→ ϕ+∗ (P+),

such that P ∼= M (P−, P+, h).

Thus for the fibre squares discussed in the previous section we have

Proposition 5.3.4. The fibre squares (5.6), (5.8) and (5.9) are all Milnor

squares, in particular they satisfy the patching condition, and therefore also

Milnor’s theorem (5.3.3, above).

Remark. Swan points out in [28] p. 140 that there exist fibre squares which

are not Milnor squares, but still satisfy the patching condition. In partic-

ular, he mentions Karoubi squares. These are fibre squares which satisfy

E-surjectivity, a property which implies the patching condition. In fact,

Johnson has used Karoubi squares to show there exist infinitely many (iso-

morphically distinct) stably-free modules over the group-algebra Z[Q8×C∞]

(c.f. [14]).
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Chapter 6

Constructing and lifting

stably-free modules

6.1 Constructing stably free modules

As explained in the introduction, our main task is to produce infinitely many,

isomorphically distinct stably-free modules of rank 1 over the group-algebra

Z[Q8n ×G], where n admits an odd divisor and G is of type F . Thus given

a Milnor square

Λ
ρ− //

ρ+

��

Λ−

ϕ−

��
Λ+

ϕ+ // Λ0

, (6.1)

we ask, what further conditions are necessary in order to construct infinitely

many, isomorphically distinct stably-free modules of rank one over the ring Λ.

Consider locally-free modules. We remind ourselves that the set of locally-

free modules of rank one over Λ is defined as

LF1(Λ) = {M (Λ−,Λ+, h) : h ∈ U(Λ0)} ,
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where U(Λ0) denotes the units in Λ0. Moreover, by Proposition 5.3.1, the set

of isomorphism classes LF1(Λ) is parametrised by the bijective correspon-

dence

LF1(Λ)↔ ϕ+ (U(Λ+)) \U(Λ0)/ϕ− (U(Λ−)) .

As we know from Theorem 5.3.3 in the previous chapter, (6.1) being a Milnor

square ensures that LF1(Λ) ⊆ P(Λ). However, it is not automatically true

that every element in LF1(Λ) is stably free. Thus the following conditions

are sufficient to construct a set {Sn}∞n=1 ⊆ LF1(Λ), say Sn = M (Λ−,Λ+, hn),

of isomorphically distinct stably-free modules of rank 1:

i) The set ϕ+ (U(Λ+)) \U(Λ0)/ϕ− (U(Λ−)) contains an infinite subset

{(hi)}∞i=1. Equivalently, it is infinite.

ii) Sn ⊕ Λ ∼= Λ2 for all n ∈ N.

We follow an approach by Johnson to produce sufficient conditions on a

Milnor square for i) and ii) to hold. Since we are interested in stably-free

modules over infinite group algebras, we shall restrict ourselves to precisely

that case. Thus let G be a group, and Λ a ring. As usual, an element x in

Λ[G] is a sum

x =
∑
g∈G

λgg

with all, but finitely many ag ∈ Λ equal to zero. Let us define the support

of x, or Supp(x) for short, to be the finite subset of G consisting of elements

g, such that λg 6= 0 in x =
∑

g∈G λgg. Furthermore, we define a map χ :

Λ[G]→ N, by

x 7→ |Supp(x)|.

We say a unit in u ∈ U (Λ[G]) is trivial whenever χ(u) = 1. Evidently, this

is the case, if and only if u = λug, where λu ∈ U (Λ) and g ∈ G. We denote

by T the subgroup of trivial units of U (Λ[G]). Note, there is a two-sided
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action of T on Λ[G], T× Λ[G]×T→ Λ[G], given by

(u1, x, u2) 7→ u1xu2.

Given u = λug ∈ T and x ∈ Λ[G], we observe

Supp(ux) = gSupp(x); (6.2)

Supp(xu) = Supp(x)g. (6.3)

Therefore, we have

Proposition 6.1.1. Given x and y in Λ[G], such that they are equivalent

elements in the set T\Λ[G]/T then χ(x) = χ(y).

Proof. If x and y are equivalent in T\Λ[G]/T, then x = u1yu2, for some

u1, u2 ∈ T. But then by observations (6.2) and (6.3)

χ(x) = χ(u1yu2) = χ(y).

Next we prove

Proposition 6.1.2. Let G be an infinite group and Λ a ring which contains

a non-zero, nilpotent element; then the set T\U (Λ[G]) /T of double cosets

is infinite. In particular, it has an infinite subset
{(
x(n,+)

)
: n ∈ N

}
, where

x(n,+) = 1 + λ

n−1∑
i=1

gi,

for distinct elements gi ∈ G and λ a non-zero element in Λ, such that λ2 = 0.

Proof. Since G is infinite we may choose a family of subsets Gn =

{g1, . . . , gn−1} ⊆ G − {Id}, such that |Gn| = n − 1, for arbitrary n ∈ N.
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Let us write xn for the associated element

xn =
n−1∑
i=1

gi

in Λ[G]. Clearly, Supp(xn) = Gn. Moreover, since Λ has a non-zero, nilpotent

element it contains an element λ, such that λ 6= 0, but λ2 = 0. Thus, writing

x(n,+) = 1 + λxn and x(n,−) = 1− λxn, we see

x(n,+)x(n,−) = (1 + λxn)(1− λxn) = 1− λ2x2n = 1

and similarly x(n,−)x(n,+) = 1. This shows that x(n,+) is a unit. Notice,

since Supp
(
x(n,+)

)
= 1 ∪ Gn, we have χ

(
x(n,+)

)
= n. Writing

(
x(n,+)

)
for the class of x(n,+) in T\U (Λ[G]) /T, suppose

(
x(n,+)

)
∼
(
x(m,+)

)
, for

some m ∈ N. Then Proposition 6.1.1 implies n = m. Therefore, the set{(
x(n,+)

)
: n ∈ N

}
⊆ T\U (Λ[G]) /T is infinite.

We now consider examples of group algebras with trivial units, only. A

group G is said to be a two unique products group, or t.u.p.-group for short,

if, given any two nonempty, finite subsets A and B of G with |A|+ |B| > 2,

there exist at least two distinct elements g and h in G which have unique

representations in the form g = ab, h = cd, where a, c ∈ A and b, d ∈ B. We

note, every right ordered group is t.u.p. (c.f. e.g. [24], p. 588). Therefore,

free abelian groups are t.u.p.-groups.

Proposition 6.1.3. Let Λ be an integral domain, possibly non-commutative;

then for any t.u.p.-group G, Λ[G] has only trivial units.

Note, a proof of Proposition 6.1.3, in the case when Λ is a field, is given

in [24], p. 589. The proof can without modification be extended to that of

Proposition 6.1.3. For the sake of completeness, we add a proof at this point.

Proof. Given x, y ∈ Λ[G], with xy = 1 and yx = 1, note that assuming

χ(x) = 1 implies χ(y) = 1, as Λ has no non-trivial zero-divisors. Similarly,
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if χ(y) = 1, then χ(x) = 1. Thus assume χ(x) ≥ 2, χ(y) ≥ 2. Put X =

Supp(x) and Y = Supp(y). Since G is a t.u.p.-group there exist distinct

g1, g2 ∈ G which are uniquely represented in XY , say g1 = ab, g2 = cd,

where a, c ∈ X and b, d ∈ Y . Firstly, this implies that g1, g2 appear only

once, respectively, in the product xy. Moreover, since a, c and b, d are in

the support of x and y, respectively then g1 = ab, g2 = cd have non-zero

coefficients in xy, as Λ is an integral domain. Therefore, g1, g2 ∈ Supp(xy),

and χ(xy) ≥ 2 which is a contradiction, since xy = 1.

As discussed in Proposition 5.1.2, Chapter 5, a ring homomorphism ϕ : Λ→
Λ′, and a group G, induce an algebra homomorphism ϕ∗ : Λ[G] → Λ′[G],

where ϕ∗ = ϕ⊗ IdZ[G]. Thus, in the case of group algebras of t.u.p. groups,

a set of sufficient conditions for i) above to hold is given by

Theorem 6.1.4. For σ = +,− let ϕσ : Λσ → Λ0 be ring homomorphisms

where Λσ is an integral domain, and Λ0 contains a non-trivial

nilpotent element; then for any t.u.p. group G the set

ϕ∗+ (U(Λ+[G])) \U(Λ0[G])/ϕ∗− (U(Λ−[G])) has quotient T\U (Λ0[G]) /T. In

particular, it is infinite.

Proof. As usual, let T denote the trivial units in U(Λ0[G]). By Proposi-

tion 6.1.3 U(Λσ[G]) only has trivial units, and therefore ϕ∗σ (U(Λσ[G])) ⊆ T.

This implies that T\U (Λ0[G]) /T is indeed a quotient of

ϕ∗+ (U(Λ+[G])) \U(Λ0[G])/ϕ∗− (U(Λ−[G])). Moreover, by Proposition 6.1.2,

T\U (Λ0[G]) /T is infinite then by the above so is also

ϕ∗+ (U(Λ+[G])) \U(Λ0[G])/ϕ∗− (U(Λ−[G])).

Next, we give sufficient conditions for ii) above to hold

Theorem 6.1.5. Given a Milnor square

A
ρ− //

ρ+

��

A−

ϕ−

��
A+

ϕ+ // A0

,
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suppose A0 has a subring R, such that there exists a ring-isomorphism A0
∼=

M2(R), i.e. A0 is isomorphic to the ring of 2× 2 matrices over R. Then for

any r ∈ R there exists a locally free module of rank one, S(r), over A, such

that

S(r)⊕ Λ ∼= Λ2.

Proof. For notational simplicity, we make the explicit identification A0 =

M2(R). Thus note, for any r ∈ R, the element

1 + rν =

(
1 r

0 1

)
∈ Λ0, where ν =

(
0 1

0 0

)
,

is a unit. We make the following definition

S(r) := M (A−, A+, 1 + rν) .

Now, it is not hard to see (c.f. e.g. [18], p. 440) that

S(r)⊕ A ∼= M
(
A2
−, A

2
+, (1 + rν)⊕ 1

)
.

By Proposition 5.3.1 and (5.12) in Chapter 5, it remains to show

(1 + rν)⊕ 1 =

(
1 + rν 0

0 1

)
∼

(
1 0

0 1

)

in ϕ+ (GL2(A+)) \GL2(A0)/ϕ− (GL2(A−)). By assumption A0 = M2(R),

and therefore every 2 × 2 matrix over A0 may equivalently be regarded as

4× 4 matrix over R. In particular,
1 r 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ≡
(

1 + rν 0

0 1

)
.
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Conversely the following invertible 4× 4 matrices over R

α =


1 0 r 0

0 1 0 0

0 0 1 0

0 0 0 1

 , β =


1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1

 ,

may be regarded as the 2× 2 elementary transvections (c.f. Chapter 4) over

A0, i.e. α ≡ e12(η), and β ≡ e21(ν), where

η =

(
r 0

0 0

)
, ν =

(
0 1

0 0

)
∈ A0.

A simple computation yields

e12(η)e21(ν)e12(−η)e21(−ν) ≡


1 r 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ≡
(

1 + rν 0

0 1

)
.

Also, since (6.1) is a Milnor square we may assume, without loss of generality,

that ϕ+ : A+ → A0 is surjective. Therefore, there exist elements η̃, ν̃ ∈ A+,

such that ϕ+(η̃) = η, ϕ+(ν̃) = ν. Thus applying ϕ+ entrywise, we see that

ϕ+ (e12(η̃)e21(ν̃)e12(−η̃)e21(−ν̃)) =

ϕ+(e12(η̃))ϕ+(e21(ν̃))ϕ+(e12(−η̃))ϕ+(e21(−ν̃)) =

e12(η)e21(ν)e12(−η)e21(−ν) =(
1 + rν 0

0 1

)
,

i.e. (
1 + rν 0

0 1

)
∼

(
1 0

0 1

)
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in ϕ+ (GL2(A+)) \GL2(A0)/ϕ− (GL2(A−)).

We say ring Λ is constrained whenever it factorises as a Milnor square

such as (6.1), such that

(a) Λ+, Λ− are, possibly non-commutative, integral domains.

(b) Λ0 has a subring R, such that there exists a ring isomorphism Λ0
∼=

M2(R), i.e. Λ0 is isomorphic to the ring of 2× 2 matrices over R.

Theorem 6.1.6. Let Λ be a constrained ring and G a t.u.p group; then there

exists an infinite set, {Sn}∞n=1, of isomorphically distinct stably-free modules

of rank 1 over the group-algebra Λ[G].

Proof. Let us assume Λ has factorisation (6.1). By Proposition 5.1.3, Chapter

5, applying the functor − ⊗ Z[G] to (6.1) induces a fibre square of group

algebras

Λ[G]
ρ−⊗Id//

ρ+⊗Id
��

Λ−[G]

ϕ−⊗Id
��

Λ+[G]
ϕ+⊗Id// Λ0[G]

.

Then, since Λ0
∼= M2(R) for some subring R, we see that Λ0[G] ∼= M2(R[G]).

Thus, by Theorem 6.1.5,

S(r) = M (Λ−[G],Λ+[G], 1 + rν)

is stably-free, of rank one. Here ν =

(
0 1

0 0

)
∈ Λ0[G] and r ∈ R[G].

Moreover, viewing Λ0 as a subring of Λ0[G], we see that ν ∈ Λ0, and ν 6= 0,

ν2 = 0. Thus, by Proposition 6.1.2 the elements

x(n,+) = 1 + ν
n−1∑
i=1

gi,
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for distinct gi ∈ G, give rise to an infinite subset
{(
x(n,+)

)
: n ∈ N

}
⊆

T\U (Λ[G]) /T. Now, by Theorem 6.1.4 T\U (Λ0[G]) /T is a quotient of

ϕ∗+ (U(Λ+[G])) \U(Λ0[G])/ϕ∗− (U(Λ−[G])) (here ϕ∗σ = ϕσ ⊗ IdZ[G] for σ =

+,−), and therefore
{(
x(n,+)

)
: n ∈ N

}
may equally be regarded as an infinite

subset of ϕ∗+ (U(Λ+[G])) \U(Λ0[G])/ϕ∗− (U(Λ−[G])). Consequently, defining

Sn := M
(
Λ−[G],Λ+[G], x(n,+)

)
,

we see, either by 5.3.1, Chapter 5, or, equivalently, the discussion at the

beginning of this section that Sn ∼= Sn′ , if and only if n = n′. Finally, we

note that
∑n−1

i=1 gi ∈ R[G]. This ensures that {Sn}∞n=1 ⊆ {S(r) : r ∈ R[G]},
i.e. Sn is stably-free of rank one for all n ∈ N.

6.2 Lifting stably free modules

As we have seen in the previous section, constrained rings give rise to group

algebras with infinitely many, isomorphically distinct stably free modules of

rank one. However, many of the algebras which we are interested in, are

too complex, to satisfy the conditions necessary to be constrained. Thus a

feasible approach would be, to factor a given ring as a fibre product, and find

sufficient conditions for the stably free modules over the constituent factors

to be lifted to stably free modules over the original ring. The following result

by Johnson (c.f. [14]), does precisely that.

Theorem (Johnson) 6.2.1. Let

A
ρ− //

ρ+

��

A−

ϕ−

��
A+

ϕ+ // A0

(6.4)

be a Milnor square, such that A0 is weakly Euclidean and has stably-free
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cancellation. Then there exists a surjective correspondence

ρ+∗ × ρ−∗ : SF1(A)→ SF1(A+)× SF1(A−),

given by the functors ρσ∗ : M(Aσ)→M(A0), where σ = +,−.

The proof of this statement occupies the rest of this section. We start with a

definition. Let Λ be a ring and k ≥ 1 an integer. By S(k, 1) we mean the stan-

dard short exact sequence 0 // Λk ı // Λk+1 π // Λ // 0 , i.e. where

ı


y1
...

yk

 =


0

y1
...

yk

 , and π


x

y1
...

yk

 = x.

We shall need

Lemma 6.2.2. Let (6.4) be a fibre square satisfying the patching condition

and let S+, S− be stably-free modules of rank 1 over A+, A−, respectively,

such that

S+ ⊗ϕ+ A0
∼= S− ⊗ϕ− A0

∼= A0.

Moreover, assume that the ring A0 is weakly Euclidean. Then there exist an

A0-isomorphism h : S− ⊗ A0 → S+ ⊗ A0 and an element E ∈ Ek+1(A0)

(c.f. Chapter 4), k ≥ 1, such that we have an A-module isomorphism

M(S+, S−, h)⊕ Ak ∼= M(Ak+1
+ , Ak+1

− , E).

Proof. Choose A0-isomorphisms ησ : Sσ ⊗ϕσ A0 → A0 for σ = +,−, re-

spectively. Now, Sσ is stably-free of rank 1, i.e. Sσ ⊕ Akσσ
∼= Akσ+1

σ , for

some kσ ≥ 1. Choose k = max{k+, k−}, thus Sσ ⊕ Akσ
∼= Ak+1

σ , and we

may choose specific exact sequences 0 // Akσ
iσ // Ak+1

σ

pσ // Sσ // 0 of

Aσ-homomorphisms. Applying the exact functor − ⊗ϕσ A0 we get exact
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sequences:

Fσ : 0 // Ak0
iσ∗ // Ak+1

0

pσ∗ // A0
// 0 ,

for σ = +,−. Here, iσ∗ = ϕσ∗(iσ) = iσ⊗ϕσ Id and pσ∗ = ϕσ∗(pσ) = pσ⊗ϕσ Id.

Let the A0-linear map jσ : Ak+1
0 → Ak0 be a left splitting for Fσ, i.e. jσiσ∗ =

Id, and define Xσ : Ak+1
0 → Ak+1

0 by Xσ := ησpσ∗ ⊕ jσ. This gives the

following isomorphism of short exact sequences

Fσ
Xσ

��
S(k, 1)

=


0 // Ak0

iσ∗ // Ak+1
0

pσ∗ //

Xσ
��

Sσ ⊗ϕσ A0
//

ησ

��

0

0 // Ak0
ı // Ak+1

0
π // A0

// 0

 .

Then by the Five Lemma Xσ is an A0-isomorphism. By assumption A0

is weakly Euclidean. Therefore, by Proposition 4.1.2, Chapter 4, Xσ =

d1(uσ)Eσ, for a unit uσ ∈ A∗0 and product of elementary transvections Eσ ∈
Ek+1(A0). Thus let u−1σ ∈ A∗0 be the inverse of uσ. Note that d1(u

−1
σ ) ∈

GLk+1(A0) gives rise to the following automorphism of S(k, 1)

S(k, 1)

d1(u
−1
σ )

��
S(k, 1)

=


0 // Ak0

ı // Ak+1
0

π //

d1(u
−1
σ )

��

A0
//

u−1
σ

��

0

0 // Ak0
ı // Ak+1

0
π // A0

// 0

 .

Recall, d1(u
−1
σ ) = d1(uσ)−1, and so the composition d1(u

−1
σ )◦Xσ, interpreted

as an isomorphism d1(u
−1
σ ) ◦Xσ : Fσ → S(k, 1), is of the form

Fσ

��
S(k, 1)

=


0 // Ak0

iσ∗ // Ak+1
0

pσ∗ //

Eσ
��

Sσ ⊗ϕσ A0
//

u−1
σ ησ

��

0

0 // Ak0
ı // Ak+1

0
π // A0

// 0

 .
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Inverting the isomorphism for σ = + and composing we get an isomorphism

X+d1(u+)d1(u
−1
− )X− : F− → F+, i.e.

F−

��
F+

=


0 // Ak0

i−∗ // Ak+1
0

p−∗ //

E
��

S− ⊗ϕ− A0
//

h
��

0

0 // Ak0
i−∗ // Ak+1

0

p+∗ // S+ ⊗ϕ+ A0
// 0

 , (6.5)

where E = E−1+ E−, and h = η−1+ u+u
−1
− η−. Note, for σ = +,− our original

choices of exact sequences 0 // Akσ
iσ // Ak+1

σ

pσ // Sσ // 0 are split ex-

act, thus so are also Fσ. But then (6.5) gives rise to a short exact sequence

of A-modules thus

0 // M(Ak+, A
k
−, Id)

(i+,i−)// M(Ak+1
+ , Ak+1

− , E)
(p+,p−)// M(S+, S−, h) // 0 .

Now, (6.4) satisfies the patching condition, and therefore, by Theorem 5.3.3,

M(S+, S−, h) is projective. Moreover, by (5.12), M(Ak+, A
k
−, Id) ∼= Ak. So

that M(S+, S−, h)⊕ Ak ∼= M(Ak+1
+ , Ak+1

− , E), as claimed.

We prove Theorem 6.2.1.

Proof. Given stably free modules of rank one, S+, S−, over A+, A−, respec-

tively. We see that

S+ ⊗ϕ+ A0
∼= S− ⊗ϕ− A0

∼= A0,

as A0 has stably-free cancellation. Moreover, since 6.4 is a Milnor square it

satisfies the patching condition (c.f. Lemma 5.3.2, Chapter 5). Thus, Lemma

6.2.2 gives an A0-isomorphism h : S− ⊗ A0 → S+ ⊗ A0 and an element

E ∈ Ek+1(A0), k ≥ 1, such that we have an A-module isomorphism

M(S+, S−, h)⊕ Ak ∼= M(Ak+1
+ , Ak+1

− , E).
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Recall, E ∈ Ek+1(A0) is a finite length product of k + 1× k + 1 elementary

tranvections. As already discussed in Chapter 4, in general such an element

is of the form eij(a0) = Ik+1+a0εij, where a0 ∈ A0 and 1 ≤ i, j ≤ k+1. Now,

since (6.4) is a Milnor square, we may assume, without loss of generality, that

ϕ+ : A+ → A0 is surjective. Therefore, there exists an element a+ ∈ A+, such

that ϕ+(a+) = a0. Thus applying ϕ+ entrywise, we see that ϕ+ (eij(a+)) =

eij(a0), i.e. eij(a0) ∼ Ik+1 in ϕ+ (GLk+1(A+)) \GLk+1(A0)/ϕ− (GLk+1(A−)).

But then since ϕ+ applied entrywise gives a group-homomorphism ϕ+ :

GLk+1(A+) → GLk+1(A0), we see that the same holds true for any finite

product of elementary transvections. In particular, E ∼ Ik+1. So by Theo-

rem 5.3.1 and (5.12) in Chapter 5

M(Ak+1
+ , Ak+1

− , E) ∼= M(Ak+1
+ , Ak+1

− , Ik+1) ∼= Ak+1.

Consequently, M(S+, S−, h)⊕Ak ∼= Ak+1, i.e. M(S+, S−, h) is a stably-free

A-module of rank one. Finally, Theorem 5.3.3 ensures that

ρσ∗ (M(S+, S−, h)) = Sσ, for σ = +,−, which proves the claim.

6.3 The main theorem

We state the main theorem thus

Theorem 6.3.1. Let G be a group of type F . Moreover, let Q8n be the quater-

nionic group with 8n elements; then for n with at least one odd prime divisor,

there is an infinite collection {Sm}m≥1 of isomorphically distinct stably-free

modules of rank one over the group-algebra Z[Q8n ×G].

To prove this statement we apply the framework for constructing and lifting

stably-free modules discussed in the previous two sections of this chapter. We

shall use the fibre squares (5.6), (5.8) and (5.9), constructed in Chapter 5.

The results established in chapters 2 to 4 show that the algebras making up

these fibre squares do indeed have the necessary properties to apply theorems
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6.1.6 and 6.2.1. We shall prove two important intermediary theorems which

will imply Theorem 6.3.1. But first a technical proposition which shows that

the essential case to consider is G = C∞, the infinite cyclic group.

Proposition 6.3.2. Let Λ be a ring, G a group of type F and C∞ the infinite

cyclic group. Then the induced group-algebra epimorphism γ : Λ[G]→ Λ[C∞]

gives a surjective correspondence

γ∗ : SFN (Λ[G])→ SFN(Λ[C∞]) ,

for any integer N ≥ 1.

Proof. Let γ∗ : M(Λ[G])→M(Λ[C∞]) be the functor which is given by γ∗ =

− ⊗γ Λ[C∞]. Now since G is of type F and γ : G → C∞ is surjective,

there exists a group homomorphism δ : C∞ → G, such that γ ◦ δ = IdC∞ .

Moreover, the the same holds true for the induced map δ : Λ[C∞] → Λ[G].

But then the functor δ∗ : M(Λ[C∞])→M(Λ[G]), δ∗ = −⊕δ Λ[G], is a right

inverse to γ∗. Let S1, S2 be two stably-free modules of rank N over Λ[C∞],

such that S1 � S2. Firstly, note δ∗(S1), δ∗(S2) are stably free of rank N

(c.f. Proposition 3.2.2, Chapter 3). Finally, if δ∗(S1) ∼= δ∗(S2), then, since

γ∗ ◦ δ∗ is the identity functor on M(Λ[C∞]), we have S1
∼= S2 which is a

contradiction.

Recall the algebra C2 (Z[x]/(xn + 1), γ,−1) [G] introduced in Proposition

5.2.3, Chapter 5.

Theorem 6.3.3. Let G be a free group. Moreover, let Q4n, D2n denote the

quaternionic, and dihedral groups, of order 4n, 2n, respectively. There exists

a surjective correspondence

SF1 (Z[Q4n ×G])→

SF1 (Z[D2n ×G])× SF1 (C2 (Z[x]/(xn + 1), γ,−1) [G]) .
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Proof. Note, by Proposition 5.3.1,

Z[Q4n ×G] //

��

C2 (Z[x]/(xn + 1), γ,−1) [G]

��
Z[D2n ×G] // F2[D2n ×G]

.

is a Milnor square. Moreover, by propositions 4.4.3 and 3.3.6, F2[D2n×G] is

weakly Euclidean, and has stably-free cancellation. Therefore, we may apply

Theorem 6.2.1 which yields the result.

Theorem 6.3.4. Let G be a t.u.p group, p an odd prime and s ≥ 1 an integer.

Recall, the algebra C2
(
Z[x]/(x2

sp + 1), γ,−1
)

of Proposition 5.2.5, Chapter 5.

There exists an infinite set, {Sm}∞m=1, of isomorphically

distinct stably-free modules of rank 1 over the group-algebra

C2
(
Z[x]/(x2

sp + 1), γ,−1
)

[G].

Proof. By Proposition 5.3.1,

C2
(
Z[x]/(x2

sp + 1), γ,−1
)

//

��

C2 (Z[ζ2s+1 ], γ,−1)

��
C2 (Z[ζ2s+1p], γ,−1) // C

(
Λ(p,2s−1)

)
is a Milnor square. Also, by Proposition 2.4.4, C2 (Z[ζ2s+1 ], γ,−1) as well

as C2 (Z[ζ2s+1p], γ,−1) are integral domains. Furthermore, by Theorem 2.4.8

C(Λ(p,2s−1)) ∼= M2(Λ
γ
(p,2s−1)) for the subring Λγ

(p,2s−1) ⊆ C(Λ(p,2s−1)). Therefore,

C2
(
Z[x]/(x2

sp + 1), γ,−1
)

is constrained, and we may apply Theorem 6.1.6

which yields the result.

We now prove the main theorem.

Proof. Firstly, note that, by Proposition 6.3.2, it is enough to prove the

statement for G = C∞. Moreover, since C∞ is free (of rank one), as well as

a t.u.p. group, theorems 6.3.3 and 6.3.4 certainly apply for G = C∞. Thus
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consider Q4n, and let n = 2sk, where s ≥ 1, is an integer and k ≥ 3 an odd

number. We write k =
∏r

j=1 pj
dj for the prime decomposition of k into the

odd primes pj, dj > 0. By renumbering we may write k =
∏r′

j=1 pj. We make

the following definitions:

ni := 2s
∏i

j=1 pj 1 ≤ i ≤ r′

φi(x) := (xni+1 + 1)/(xni + 1) 1 ≤ i ≤ r′ − 1.

We note that ni+1/ni = pi+1. So for 1 ≤ i ≤ r′ − 1 Proposition 5.2.4 gives

the following fibre square of ring homomorphisms

C2 (Z[x]/(xni+1 + 1), γ,−1) [C∞] //

��

C2 (Z[x]/(xni + 1), γ,−1) [C∞]

��
C2 (Z[x]/ (φi(x)) , γ,−1) [C∞] // C

(
Λ(pi+1,2−1ni)

)
[C∞]

which, by Proposition 5.3.1, is a Milnor square. Now, by Theorem 3.3.4,

C
(
Λ(pi+1,2−1ni)

)
[C∞] has stably-free cancellation. Moreover, by Theorem

4.4.2, it is weakly Euclidean. So, Theorem 6.2.1 gives us a surjective map on

isomorphism classes of stably free modules of rank 1

ψi : SF1 (C2 (Z[x]/(xni+1 + 1), γ,−1) [C∞])→

SF1 (C2 (Z[x]/(xni + 1), γ,−1) [C∞]) ,

for 1 ≤ i ≤ r′ − 1. Clearly, nr′ = n, and n1 = 2sp1, so we have a surjective

correspondence Ψ := ψ1 ◦ . . . ◦ ψr′−1

Ψ : SF1 (C2 (Z[x]/(xn + 1), γ,−1) [C∞])→

SF1

(
C2
(
Z[x]/(x2

sp1 + 1), γ,−1
)

[C∞]
)
.

But we know, by Theorem 6.3.4, that there exist infinitely many,

isomorphically distinct stably-free modules of rank one over
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C2
(
Z[x]/(x2

sp1 + 1), γ,−1
)

[C∞], thus by the above they have correspond-

ing equivalents over C2 (Z[x]/(xn + 1), γ,−1) [C∞]. Finally, the result follows

by Theorem 6.3.3.

84



Bibliography

[1] J.L. Alperin, Local representation theory, Cambridge studies in advanced

mathematics 11, Cambridge University Press, 1986.

[2] H. Bass, Projective modules over free groups are free, Journal of Algebra,

1, 1964, 367-373.

[3] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Addison-

Wesley Publishing Company, 1972.

[4] P.M. Cohn, Algebra Volume 2, second edition, John Wiley & Sons, 1989.

[5] P.M. Cohn, Algebra Volume 3, second edition, John Wiley & Sons, 1991.

[6] P.M. Cohn, Free Ideal Rings, Journal of Algebra, 1, 1964, 47-69.

[7] P.M. Cohn, On the structure of the GL2 of a ring, Publications
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