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UNIVERSITY COLLEGE LONDON

Abstract
Department of Chemical Engineering

Doctor of Philosophy

by Giovanna Fiandaca

Pressure Swing Adsorption (PSA) is the most efficient option for middle scale separation

processes. PSA is a cyclic process whose main steps are adsorption, at high pressure,

and regeneration of the adsorbent, at low pressure. The design of PSA cycles is still

mainly approached experimentally due to the computational challenges posed by the

complexity of the simulation and by the need to detect the performance at cyclic steady

state (CSS). Automated tools for the design of PSA processes are desirable to allow

a better understanding of the the complex relationship between the performance and

the design variables. Furthermore, the operation is characterised by trade-offs between

conflicting criteria.

A multi-objective flowsheet design framework for complex PSA cycles is presented. A

suite of evolutionary procedures, for the generation of alternative PSA configurations

has been developed, including simple evolution, simulated annealing as well as a popu-

lation based procedure. Within this evolutionary procedure the evaluation of each cycle

configuration generated requires the solution of a multi-objective optimisation problem

which considers the conflicting objectives of recovery and purity. For this embedded op-

timisation problem a multi-objective genetic algorithm (MOGA), with a targeted fitness

function, is used to generate the approximation to the Pareto front. The evaluation of

each alternative design makes use of a number of techniques to reduce the computational

burden.

The case studies considered include the separation of air for N2 production, a fast cycle

operation which requires a detailed diffusion model, and the separation of CO2 from

flue gases, where complex cycles are needed to achieve a high purity product. The novel

design framework is able to determine optimal configurations and operating conditions

for PSA for these industrially relevant case studies. The results presented by the design

framework can help an engineer to make informed design decisions.
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Chapter 1

Why Pressure Swing Adsorption

1.1 CO2 Capture and Storage

Significant changes in the way energy is produced will have to be implemented and many

different options will have to be pursued to face global warming. In 1998 a scientific

intergovernmental body was set up by the World Meteorological Organisation (WMO)

and by the United Nations Environment Programme (UNEP): the Intergovernmental

Panel on Climate Change (IPCC). The scope of IPCC is to provide the decision-makers

and others interested in climate change with an objective source of information by as-

sessing the latest scientific, technical and socio-economic literature produced worldwide

regarding the risk of human-induced climate change, its observed and projected impacts

and options for adaptation and mitigation. In the mid-term, suggested actions include

the improvement in the fuel efficiency (in power production, transportation and so on),

while in the long term the successful strategy should be the use of alternate power sources

such as nuclear, solar, renewable energy sources, enhancement of biological sinks [2]. At

its 20th Session in 2003 in Paris, France, the IPCC committee agreed on the develop-

ment of the Special Report on Carbon Dioxide Capture and Storage (CCS). CSS was

presented as an option for the mitigation of climate change in the portfolio of actions

for the stabilisation of atmospheric greenhouse gas concentrations. Since fossil fuel will

remain the main energy source for a number of decades, development of CO2 capture

technology with subsequent storage in suitable geological structures is essential in the

short term. According to the IPCC panel estimate by 2050 around 20-40% of global

fossil fuel CO2 emissions could be technically suitable for capture, including 40-60% of

emissions from electricity generation and 30-40% of emissions from industry [1].

14
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CCS is a process consisting of the separation of CO2 from industrial and energy-related

sources (e.g. power plants, steel mills, cement kilns and fermentation processes [19]),

transport to a storage location and long-term isolation from the atmosphere.

Potential storage methods are [1]:

• storage in geological formations (e.g. oil and gas fields, unminable coal beds and

deep saline formations),

• ocean storage (direct release into the ocean water column or onto the deep seafloor),

• industrial fixation of CO2 into organic carbonates.

CO2 may be reused for industrial purposes (e.g. in the food industry), but this is not

going to contribute significantly to the reduction of CO2. The capability of storage in

geological formations has to be estimated yet, as well as the matches between large CO2

source points and geological storage formation.

The net reduction of CO2 emissions achievable by CCS depends many factors: the

fraction of CO2 captured, the increased CO2 production due to the additional energy

required for the capture, the transport and the fraction of CO2 retained in storage over

long term. The estimated result is that a power plant with CCS could reduce CO2

emissions to the atmosphere by approximately 80-90% compared to a plant without

CCS. In the least-cost portfolio of mitigation options, the economic potential of CCS

would contribute 15-55% to the cumulative mitigation effort worldwide until 2100; the

inclusion of CCS in the mitigation portfolio would reduce the costs of stabilising CO2

concentrations by 30% or more [1]. CO2 has already been captured in the oil, gas and

chemical industry, as well as from power station flue gases; however, only a small fraction

of the carbon dioxide produced is captured because the actual technology available for

CO2 capture would require an equipment 10 times larger than a typical power plant size

to achieve a reduction of the emissions of the 75% [15].

1.1.1 Capture Technologies

There are different types of CO2 capture systems:

• post-combustion (combustion + CO2 separation),

• pre-combustion (gasification/reform + H2 and CO2),

• oxyfuel combustion (O2 separation from air + combustion),
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• industrial separation (industrial process + CO2 separation).

The above methods are illustrated in Fig. 1.1

Figure 1.1: Overview of CO2 capture processes [1]

The choice of the most appropriate capture system depends on the concentration of

CO2, the pressure and the temperature of the gas stream and the fuel type. Costs of the

various components of a CCS system vary widely, depending on the reference plant and

the wide range in CO2 source, transport and storage situations. However, the relevance

of the costs associated to the capture of CO2 highlights the need of an improvement

in capture technologies, aimed at higher energy efficiency. A high performance of the

separation is needed since for the disposal of CO2 to ocean and depleted oil field, it is

necessary to concentrate the CO2 up to 99% to reduce compression and transportation

costs [92].

1.2 CO2 separation: different options

Many different options are available for the separation of CO2 and all of them can be

more or less satisfactory depending on the conditions of the flue gas to be treated. The

design of an efficient process for the separation of CO2 should then be cost-effective in

the most typical condition of pressure, temperature and composition of flue gases, as

well as it should provide a high purity CO2 streams, and show a good durability.



Chapter 1. Why Pressure Swing Adsorption (PSA) 17

The review of the methods presented below follows the scheme proposed by Aaron and

Tsouris [2].

Absorption

The first method presented in [2] is absorption by a liquid solvent or a solid matrix. An

appropriate solvent must dissolve CO2, but not O2, N2 and other eventual impurities.

The solvent needs to be stable to the contact with fly ashes, SOx and NOx present in

the flue gas. The more the solvent is attracted to CO2, the higher the loading, but the

higher the cost of regeneration of the solvent as well.

One of the most common solvents for this operation is monoethanolamine (MEA), effec-

tive at low partial pressure of CO2, while at high partial pressure of CO2 solid solvents

such as lithium hydroxide and lithium zirconate are preferable.

One of the advantages of absorption is that it is a well known process, both in term

of mechanisms involved and of the thermodynamics of the operation. Main drawbacks

of the absorption are the high costs of the regeneration of the solvent, corrosion of the

steel facilities of the equipment [2, 92] due to high O2 content in the flue gas, the need

of a frequent addition of new solvent and other operating and maintenance costs [2].

Main improvements needed in this area are the development of new solvents and the

optimisation of the regeneration step to increase energy efficiency.

Adsorption

While absorption involves the dissolution of the CO2 in the solvent, adsorption is a

heterogeneous process. The adsorption of CO2 to the adsorbent particles can be manip-

ulated by varying the conditions of pressure and temperature, because higher pressure

and lower temperature promote adsorption of the most attracted species to the sorbent

particle. This observation lead to the spread of two main methods for adsorption: Tem-

perature Swing Adsorption (TSA) and Pressure Swing Adsorption (PSA). The latter

has been proved to be less energy demanding and is capable to show higher regeneration

rate (inertia to pressure swing is lower than inertia to temperature swing). One of the

advantages of PSA over other separation options is that the PSA process can be oper-

ated at high temperatures, so that the flue gas does not need to be cooled before the

removal of CO2 [133]. PSA is attractive since it does not require a separate desorption

step that needs heat input (compared to TSA), and because it runs continuously with

automatic regeneration of the adsorbent [5].
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Another option currently investigated is the electrical swing adsorption [2]: in this

method the regeneration of the adsorbent is carried out by passing an electric cur-

rent through it, which efficiently releases CO2. However, this technology is still at a

preliminary investigation step, and its feasibility has yet to be defined.

Cryogenic separation

The first step of cryogenic separation is the removal of all the components of the flue

gas, except for the N2 and the CO2. Then, the binary mixture of N2 and CO2 is

sent to a cryogenic chamber where the CO2 is liquefied by appropriate manipulation of

temperature and pressure. When the triple point of the CO2 is reached (-56.6 0C and

∼7.4 atm), CO2 condenses while N2 remains in gas phase.

The main advantages of the cryogenic method are that it provides liquid CO2, ready for

the transport in pipelines, and the high purity which can be reached (even over 99.95%

[2]). On the other hand, the process is highly energy demanding both because of the

effort needed to keep the system refrigerated, and because of the auxiliary step for the

separation of the other components prior the refrigeration stage.

Membranes separation

In membrane separations the CO2 selectively passes through the membrane and an

enriched gas phase is obtained.

The main advantage of membranes is the simplicity of the equipment needed. How-

ever, the efficiency of the separation is often not satisfactory due to poor selectivity or

permeability of the membrane towards CO2. Another drawback is that membranes do

not usually perform well at high temperatures, which are common for flue gases coming

from a stack. As in the case of the absorption, also membranes can be degraded by the

impurities. Mechanical and chemical stability are both an issue. The results achieved

by the current research in the direction of more stable solid and liquid membranes (new

metallic, ceramic and alumina membranes) will determine whether this technology can

stand alone or can be used within a hybrid separation system.

Alternative options

There are three other technologies currently taken into account for the capture of carbon

dioxide, here mentioned briefly since they are still at the stage of laboratory testing.

These options are mentioned in the review by Aaron and Tsouris [2].
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Hydrate formation and dissociation: this technology is based on the use of hy-

drates, ice-like structures, in which water forms a cage with cavities where small

gases (such as CO2) can be trapped. Under appropriate conditions, CO2 might be

the better “hydrate former”, which means the most likely trapped species.

Redox technology: this option is based on the use of a redox active carrier which binds

CO2 at high pressure (reduction of the carrier), and releases it at low pressure

(oxidation).

Ammonium carbonation: ammonium carbonation consists of the reaction between

CO2 and ammonia gas and water vapor in gas phase. The reaction proceeds

according to the following scheme:

CO2 + NH3 + H2O → NH4HCO3

The product of the reaction is a stable solid, which can subsequently be used in

agriculture as a soil fertilizer.

1.2.1 Comparison of separation options

Aaron and Tsouris [2] ranked the different option for CO2 separation as follows, in order

of increasing energy penalty: membrane diffusion, absorption, adsorption and cryogenic

distillation. A more detailed investigation is carried out by Ruthven et al. [108], which

takes into account both capital and operating costs. According to this study, at very

large scale (30000-40000 SCFH) and very high product purity, cryogenic distillation is

more efficient than all the other options. At medium scale (20000-30000 SCFH) PSA is

always the more convenient, while at relatively small scales (2500-200000 SCFH) PSA

is in direct competition with membranes. At smaller scales membrane separation is al-

ways preferable. This consideration is confirmed by Kostrosky and Wankat [67]. In fact,

while for both membranes and adsorption costs scale linearly with the throughput of the

operation, for cryogenic distillation costs increase less rapidly. In particular, membrane

processes are preferred at very small scales, while PSA is the most economically at-

tractive for relatively large scale operation. Furthermore, PSA requires simple reactors

able to undergo relatively small pressure changes, while cryogenic separation units must

withstand significant temperature changes, and the equipment of an absorber is exposed

to the corrosive solutions formed by the solvent with the flue gas. This evaluation is

confirmed in other studies: Biegler et al. [13] underlined that using PSA process brings

many economical advantages, which justifies the actual efforts of research to optimise

the process. For example, PSA processes operate at ambient temperature and require

far less capital investment than cryogenic technologies, so that they are better suited
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to economies of scale and become especially attractive when lower production rates or

lower gas purities are required.

Furthermore, recent advances on many aspects of the PSA operation such as configu-

ration of the process, choice of the adsorbent material and operating conditions, lead

to an improvement of the performance of PSA. The advantages offered by PSA moti-

vate the research project presented in this thesis, which focuses on the development of

automated tools for the design of PSA cycles. An introduction to PSA processes and

an analysis of its performance is carried out in the remainder of the chapter to allow a

better understanding of the research which has been carried out.

1.3 Basic features of Pressure Swing Adsorption

Pressure swing adsorption (PSA) is a cyclic separation process for gaseous mixtures.

It consists of two main operations: during adsorption, a mixtures of gases (the feed)

is passed at high pressure through a fixed bed filled with an adsorbent material. One

or more species of the feed are preferentially adsorbed, while the others pass through

the bed and are collected as a raffinate or light product (LP ). During desorption,

or regeneration, the pressure is decreased and the adsorbed species are removed from

the bed as an extract or heavy product (HP ). During the desorption step the bed is

regenerated and prepared for the next cycle.

Usually, a purge stream is used during the desorption to enhance the regeneration of the

bed. Hence, the heavy product collected is a mixture of the heavy components of the

feed and the purge. On the other hand, the adsorption step is usually terminated before

the more strongly adsorbed species break through the bed, to maximise the purity of

the raffinate product.

The most known PSA configuration is a 4-step/ 2-bed process, called “Skarstrom cycle”,

first proposed by Skarstrom [115]. A schematic of the process is shown in Fig. 1.2.

Considering the bottom bed in the figure, the first step is pressurisation with high

pressure feed. Then, the light product is withdrawn during the adsorption step. After

adsorption, the bed undergoes the blowdown step, during which the bed is depressurised

to atmospheric pressure. A fraction of the purified effluent from the second bed is

passed through the first bed, countercurrent to the feed direction, to purge the bed at

atmospheric pressure. At this point, the bed is ready to start the cycle again.

After a number of cycles, a cyclic steady state (CSS) is achieved at which the condition

of the beds at the beginning of the adsorption step and at the end of the desorption
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step are identical. At CSS the profile of the concentration in the bed oscillate around a

mean position.

The choice of the adsorbent is crucial for the separation to be viable. The role of the

adsorbent is to provide the appropriate surface area to selectively adsorb the prefer-

entially adsorbed species. However, the heavy component should not be adsorbed too

strongly by the adsorbent, otherwise too much energy (high flow rate of the purge/lower

pressure levels) would be required to regenerate the adsorbent. Other requirements for

the adsorbent is a high capacity, as the higher the capacity the lower the volume of

adsorbent needed and, hence, the costs.
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Figure 1.2: Full representation of a 2-bed/4-step Skarstrom Cycle.

The Skarstrom cycle has poor performance in many cases: improvements can be made

to increase energy efficiency as well as the performance of the separation when a high

purity of the heavy product is required (as in the case of CO2 separation) or when the

components to be separated have very similar properties (as in the case of air separation).

There are two main approaches to improve the efficiency of the separation: an adsorbent

with a higher selectivity can be developed and/or a more effective cycle configuration. In

the next section some of the possible modifications to the Skarstrom cycle are discussed.

1.4 Possible improvements to the configuration of a PSA

cycle

The PSA systems usually described in literature operate in a cyclic manner undergoing

simple cycles (e.g. Skarstrom cycle). This is especially true for studies focusing on

the optimisation of the PSA operations, since the effort required by more complicated
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process configurations implies a greater effort for the optimiser [13, 59]. This results

in a gap between real PSA operations and theoretical studies of the simulation and

optimisation of PSA.

Improvements to the performance of the Skarstrom cycle can be introduced by adding

different steps: one of these is the pressure equalisation step [12, 79, 129] which is

performed by connecting the beds so that the gas flows from high-pressure bed to low

pressure bed. This allows significant saving in overall process energy consumption, since

less mechanical energy is required to re-pressurise the bed [78]. Usually the recovery is

also increased because less feed gas is necessary to re-pressurise the column. Another

option, proposed by Ruthven et al. [108], is to augment the cycle with a rinse step,

during which the bed is purged with feed rich in the adsorbed species in order to improve

the purity of extracted product. Two modifications of the Skarstrom cycle have been

proposed by Subramanian and Ritter [118] to improve the heavy product purity: the

addition of a cocurrent depressurisation step or the addition of a high pressure rinse

(i.e., heavy reflux) step. Kostrosky and Wankat [67] proposed a new configuration for

PSA cycle whose advantage is providing high recovery maintaining the productivity,

when lower purity of the product is acceptable. The productivity of a PSA cycle is

defined as the amount of product produced per unit mass of the adsorbent per unit

time. The configuration proposed is based on the combination of the conventional PSA

with a “cyclic-zone pressure swing adsorption” (CZPSA) cycles. The simple Skarstrom

cycle produces high purity product because the purge is done with product. However,

recovery is usually low. In [67], the conventional PSA cycle is combined with a cycle

operating in a limiting case, the CZPSA, which uses a continuous flow feed material,

with adsorption and desorption occurring as a result of pressure change in the feed: it

works like a Skarstrom cycle which uses low-pressure feed as purge gas. Such a process

reaches lower purity but higher recovery.

Rapid Pressure Swing Adsorption

One particular technology, Rapid Pressure Swing Adsorption (RPSA), has shown recent

advancements in process design and operation. It is of interest because the process plant

size decreases as cycling becomes more rapid [127]. Cycle time refers to the time taken

for the completion of one adsorption-desorption cycle, which in turn decides productivity

of the process [10]. Hence, shorter cycle times translates into higher productivity: this

lead to the development of RPSA processes [58].

The simple RPSA cycle consists of two steps: pressurisation with feed gas and coun-

tercurrent depressurisation with internal purging. The two steps have usually the same
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duration, normally in the range 1-5 seconds [90]. Fast cycles and a very small size of

the adsorbent particles (200− 700µm in diameter [90]) characterise RPSA: they cause

a steep and periodic variation of the pressure gradients in the bed which leads to an

effective self-purging of the bed [90].

Kopaygorodsky et al. [66] proposed a new dynamic model for the study of the viability

of ultra-rapid pressure swing adsorption (URPSA). The characteristics of URPSA are

a small bed-size factor and large product recoveries, which imply improved efficiency

of the separation per unit mass of adsorbent material. The bed-size factor is the ratio

of the mass of adsorbent required per unit mass of oxygen produced per day. The

product recovery achieved with URPSA is much higher than in conventional PSA, and

it can achieve comparable oxygen purity with a bed-size factor more than two orders

of magnitude smaller. Drawbacks of RPSA are low recovery and increased compressor

duty [126].

Dual-Reflux Pressure Swing Adsorption

As mentioned earlier, one of the main drawback of conventional PSA is the low capacity

of providing an extracted stream with a high concentration of the heavy (preferentially

adsorbed) component. The Dual-Reflux Pressure Swing Adsorption (DR-PSA) is an

alternative configuration which allows one to overcome this limit. Dual-reflux cycles [28]

are characterised by reflux streams among the beds and sometimes by the introduction of

the feed in intermediate points, thus reproducing the stripping and rectifying sections of

distillation columns. This process shows to push the enrichment of the heavy component

beyond the pressure ratio, which represents the thermodynamic limits of conventional

PSA, where only a stripping section is used [28, 51]. A schematic of the dual-reflux

configuration proposed by Diagne et al. [28] is shown in Fig. 1.3.

Reynolds et al. [103, 104] explained the difference between “stripping” PSA and “en-

riching” PSA: the word “stripping” is used to denote that the feed step is conducted

at high pressure and that the adsorbent bed strips the heavy component from the gas

phase, because of selective adsorption. We talk about “enriching” PSA when the feed

step is performed at low pressure and the adsorbent bed enriches the gas phase of the

heavy component due to desorption. Stripping PSA cycles have been used in order to

produce a relatively highly pure light component, as in the case of the two-bed/four-

step Skarstrom cycle in Fig. 1.2. Stripping cycles have a limitation in concentrating

the heavy component in a feed stream, because the light-reflux step uses a part of the
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Figure 1.3: Conceptual diagram of a DR-PSA cycle with intermediate feed position
[28]. In the figure, Q indicates the gas flow rate, R the recycle flow rate, X the molar
fraction of a component. The subscript E refers to the enriched gas (HP ), L to the
lean gas (LP ), and F to the feed. Pa is the high pressure during adsorption, while Pd

is the low pressure during desorption. This cycle configuration is able to provide an
almost pure heavy product (XE → 1) and a almost purified light product (XL → 1)
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light-product gas for purge, which necessarily dilutes the heavy component in the heavy-

product stream: the enrichment of the heavy component is limited by the pressure ratio

for a stripping PSA with light reflux [118].

Intyre et al. [51] carried out an experimental study on a DR-PSA system, on the effects

of intermediate feed position in the column and of the stripping and enriching ratios.

Ebner et al. [37, 38] used a theoretical approach to DR-PSA. In [37, 38] an idealised

analysis of such operation is carried out on the basis of the isothermal equilibrium theory.

This ideal system was able to produce both components of a binary mixture at 100%

of recovery, over a wide range of conditions (even with a low pressure ratio). Even if

the analysis is carried out in a simplified and idealised case, it shows how the DR-PSA

process can be a useful tool for the separation of a binary mixture into two relatively

pure products, using a low pressure ratio, and thus with a low expenditure of energy.

1.5 CO2 Capture by Pressure Swing Adsorption

An efficient separation strategy should concentrate the CO2 up to 99% to reduce the

costs of compression and transportation needed for the sequestration which follows the

capture of the CO2. Since CO2 is usually the more strongly attracted species among the

component of the flue gas stream, the simple Skarstrom configuration is not a proper

option because it does not provide a high purity of the extracted phase.

This problem has been addressed by researching the most appropriate adsorbent for the

operation, and by exploring alternative configurations, such as dual reflux, piston driven

rapid pressure swing and combined PSA and TSA systems [52]. A common configuration

for CO2 capture consists of two stages [92]: the first one concentrates CO2 from 10-15%

(usual concentration of CO2 in flue gases) to 40-60%, while the second stage concentrates

it up to 99% purity. This purity would be easily achieved by a one stage PSA if the

concentration of CO2 in the feed were above 25%; unfortunately this is not the case

when the feed is a flue gas coming from a coal power plant. Typical composition of flue

gases is N2 and O2 (75%), CO2 (15%), H2O ( 10%) and minor impurities such as SOx

and NOx [101]. The latter ones, together with the water, are usually removed before

the separation process, so that the fuel gas fed into the PSA unit can be considered as

a mixture of N2, CO2 and O2.

Adsorbent

One of the main aspects of an adsorption operation is the choice of the adsorbent. In

the case of CO2 capture, the adsorbent must be selective through CO2 and show a good
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stability during the operation over a long period.

Historically, the first adsorbent used for CO2 capture has been activated carbon [62].

However, successive studies showed that zeolite 13X is more suitable [19]. In fact, even

if zeolite 13X shows a higher heat of adsorption than activated carbon, it has higher

working capacity, lower purge requirement and higher equilibrium selectivity. These

advantages are not affected by the higher temperature developed and, furthermore, the

high temperature eases the purge steps by requiring a lower amount of purge [19]. A

limit of the zeolites, however, is their affinity towards water: a hydrophilic zeolite adsorbs

the water vapor contained in the stack gas, thus reducing the capacity of the zeolite to

adsorb the CO2 [122].

More recently another class of adsorbent has attracted attention as a valuable option for

the capture of carbon dioxide: hydrotalcite-like compounds (HTlcs), which are expected

to have a high selectivity towards CO2, high capacity, favorable kinetics, stability to

cyclic mechanical stress and showed to work better at high temperatures compared to

other adsorbents [32, 102, 132, 133]. HTlcs belong to the group of anionic and basic

clays, also known as mixed-metal layered hydroxides and layered double hydroxides,

consisting of positively charged layers of metal oxide, or hydroxide, with inner layers

of anions, such as carbonate [32]. Equilibria and kinetics of the adsorption of carbon

dioxide on such adsorbents are investigated by Diagne and Alpay [32]. As an extension

of this work, a cyclic and multibed process for the continuous and efficient recovery of

CO2 using potassium promoted hydrotalcite adsorbent was proposed [33].

Configuration

A multitude of PSA cycles has been developed to produce a highly pure heavy product

from feedstocks with low CO2 concentration.

Kikkinides et al. [62] suggested a 4-bed 4-step process with activated carbon which could

recover 68% of CO2 at 99.997% purity. A Pressure and Temperature Swing Adsorption

cycle, PTSA, has been proposed by Pugsley et al. [96]. The process achieved 90% CO2

purity together with a 70% recovery. Chue et al. [19] demonstrated that zeolite 13X is

better than activated carbon for CO2 recovery on a 3-bed 7-step process. However, they

could only achieve low CO2 recovery due to the lack of a countercurrent step in the cycle.

Diagne et al. [28–30] proposed an improvement to the process of carbon enrichment and

removal by using an intermediate feed inlet in a dual-reflux piston driven system. A

model for the operation was proposed [31]. The process is able to enrich simultaneously

the weak and the strongly adsorbed species. However, a high power consumption was

required.
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The benefits of fast cycles were investigated by Suzuki et al. [122], where a Piston-Driven

Rapid Pressure Swing Adsorption using hydrophobic zeolite was proposed. The process

was able to reach a productivity 10 times higher than conventional PSA processes, but

the purity of CO2 in the product stream was low (25 %).

An interesting analysis of the power consumption linked to CO2 separation from flue

gases using PSA was carried out by Park et al. [92]. The authors focused on the first

stage of a pressure swing adsorption process, where CO2 is concentrated from 10-15%

to 40-60%. This diminished the complexity of the whole problem, which arises since

the two stages are coupled: the effluent of the second stage is recycled to the first

stage. Furthermore, the first stage is more interesting since it is the more consuming

stage. It was found that in this process most of the power is consumed in the vacuum

pump and blower. Three different configurations were considered: simple Skarstrom

cycle, Skarstrom cycle with pressure equalisation step and Skarstrom cycle with rinse

step. The equalisation step allows to gain a higher CO2 purity without any significant

increase of the specific power consumption. The rinse step allows a high purity of the

CO2, but it requires a higher amount of gas to be pumped to produce a given amount

of CO2, thus increasing the specific power consumption for a given recovery.

Choi et al. [17] presented the development of an optimal operation system for the PSA

process for CO2 separation and recovery. The problem was addressed both experimen-

tally and theoretically. The study aims at overcoming difficulties in CO2 recovery when

the concentration of CO2 in the feed is low, as in the case of flue gases. To separate and

recover the more strongly adsorbed species (CO2), a pressure equalisation step and rinse

step are added to the Skarstrom cycle. At the rinse step, part of the product flow is

recycled to the beds to increase product purity. A MATLAB function based on sequen-

tial quadratic programming was used to solve the nonlinear optimisation problem. The

authors reported more than 70% CO2 recovery at more than 90% purity for a modified

3-bed 7-step cycle. However, they solved a small two variable optimisation problem,

thus being a specialised case.

Chou et al. [18] investigated the performance of Vacuum Swing Adsorption (VSA) for

the recovery of CO2 on zeolite 13X through simulation. A VSA cycle is a PSA cycle

where the low pressure achieved during the blowdown step is subatmospheric. The

high pressure is just above atmospheric, so that the added cost of the evacuation step

is balanced by savings in the pressurisation phase. Evacuation to a very low absolute

pressure allows a deeper regeneration of the adsorbent when the isotherm of the adsorbed

species is highly favorable. VSA promotes the desorption of the CO2 in the desorption

step, allowing for higher recovery.



Chapter 1. Why Pressure Swing Adsorption (PSA) 28

Zhang et al. [136] have given justifications for using a specific cyclic component step in

the adsorption cycle in the context of CO2 capture by using a simplistic mathematical

model for the PSA process. The study investigated the effect of process and operating

parameters (feed gas temperature, evacuation pressure and feed concentration) of a

CO2-VSA cycle, especially looking at power consumption. They recalculated the cost of

PSA to be around US$ 67/tonne of CO2 produced compared to that in the IEA report

of US$ 97/tonne. This new cost for PSA, as verified through the IEA, compared much

more favorably with amine scrubbing technology at US$ 60/tonne. The error in the

estimate of the costs was due to the fact that the PSA cycles analysed by the IEA were

not designed for heavy component recovery.

Since 2002, Ritter and co-workers have investigated the effect of PSA cycle configurations

for the recovery on the heavy component [35–38, 51, 81, 101, 102, 105]. In particular,

they investigated the performance of dual-reflux PSA cycles for the capture of CO2 from

flue gases using HTlcs as adsorbents. In their latest publication [105], nine stripping

PSA cycle configurations have been investigated, all with a heavy reflux step, some with

a light reflux step, and some with a recovery or feed plus recycle step. The best cycle

based on overall performance was a 5-bed 5-step stripping PSA cycle with LR and HR

from countercurrent depressurisation: 98.7% CO2 purity, 98.7% CO2 recovery. It was

shown that any PSA with a heavy reflux step outperformed any PSA process with only

light reflux step. The performance of the cycles proposed in this study represents the

best trade-offs achieved in literature between purity and recovery of CO2 so far.

1.6 Aim of the project and structure of the thesis

The development of CO2 capture technology is necessary to decrease emissions needed

to face global warming. Improvement in the efficiency of separation processes needs

to be achieved. Pressure Swing Adsorption (PSA) has recently attracted attention as

an efficient separation technology for CO2 capture, since it is the most economic and

effective alternative for middle scale operations. PSA has originally been designed to

provide a high purity stream of the less strongly adsorbed component. However, CO2

is the most preferably adsorbed species on the majority of adsorbents used for the

operation. For this reason, PSA was initially considered an anti-economical operation

as the estimation was made on the basis of PSA cycles designed for the recovery of

light components. Advances in adsorbent materials and development of new and more

complex cycle configurations have proven PSA to be efficient and economically viable

for CO2 capture [101, 135]. However, complex multi-bed/multi-steps PSA cycles are

necessary to obtain high purity CO2 efficiently. The development of automated tools for
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the design of complex cycles has been hindered by the complexity of the simulation and

the need to evaluate the performance at cyclic steady state. Furthermore, PSA cycles

are characterised by conflicting measures of their performance: the lower the costs, the

lower the efficacy of the separation; the higher the purity of the desired species in the

product, the lower its recovery. Only few previous studies [63, 109] implemented design

frameworks taking into account the multi-criteria nature of PSA cycles.

The aim of the project is to establish the feasibility of developing a multi-criteria design

framework capable of proposing novel cycle configurations which could outperform the

cycles developed so far. As this is an investigatory work, it does not seek to develop

definitive design models or high performance search and optimisation algorithms. The

methodology at this initial stage is to develop satisfactory approaches that will prove

the concept: this in itself moves the field significantly forward as no such framework

currently exists. The experimental nature of this project necessitates the investigation

of approaches, methods and technologies that have not previously been combined in this

field.

A design framework for PSA consists of many necessary elements:

Optimizer

Flowsheeting

Model

Design
Framework

Scheduling

Simulator

First, the PSA process must be modeled. Different models are available, depending on

the characteristics of the adsorption process exploited for the separation (e.g. kinetic or

equilibrium driven separation). In general, PSA process are described by a set of coupled

PDAEs whose solution is not trivial. An appropriate numerical method and solution
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scheme must be detected. The model developed must be embedded in a simulation tool

to allow the evaluation of the performance of the cycle. One of the most requiring aspect

of the simulation is the evaluation of CSS. Again, a viable method to detect CSS should

be adopted efficiently and reliably. The simulation tool should be flexible enough to take

into account any cycle configuration. A cycle configuration is described by a flowsheet

which specifies the number of beds used in the cycle, and the sequence of interconnections

which are implemented among the beds during the cycle. Since the performance of the

separation depends on the flowsheet of the cycle used, the framework should be able

to design the appropriate flowsheet for the separation of interest. Similarly, the time

allocated to each step of the cycle, or “schedule” of the cycle, affects the performance of

the separation, and should be optimally designed by the framework. The optimisation of

the cycle configuration is a highly combinatorial problem conceptually difficult to tackle.

For the framework to propose the optimal cycle configuration (flowsheet and schedule

of the cycle) and operating conditions, an appropriate mathematical tool should be

included: the optimiser. The choice of the optimiser should be driven by the charac-

teristics of the problem. The optimiser should be able to cope with the cumbersome

simulation needed to evaluate the process performance. Furthermore, it should consider

the multi-criteria nature of the performance of PSA operations.

The development of each element of the framework poses a challenge. All the elements

of the framework interact with each other, and should be developed consistently with

each other. In the remainder of the thesis a flowsheet design framework for PSA cycles

is proposed. All the elements of the framework have been taken into account.

In Chapter 2, the phenomena governing a PSA operation and their mathematical models

are discussed. Chapter 3 deals with the choice and solution of the models for two

gas separation processes: separation of air for N2 production, and CO2 capture from

flue gases. A simplified, yet reliable, simulation tool is developed. The simplifications

introduced have been necessary to allow a time effective evaluation of the performance

of a PSA cycle.

Each of the case studies poses a specific challenge to the development of the design

framework: in the case of N2 production, a detailed diffusion model needs to be adopted

to capture the dynamics of this kinetically controlled separation. On the other hand,

CO2 capture is an equilibrium driven separation which requires the development of PSA

cycles capable of providing a high purity of the strongly adsorbed species.

In Chapter 4, the single objective optimisation of a simple 2-bed/4-step Skarstrom cycle

is carried out. A preliminary investigation is carried out to characterise the objective

function and determine the most appropriate class of optimisers to be used.
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The multicriteria nature of the design problem is confronted in Chapter 5. A multi-

objective genetic algorithm (MOGA) has been implemented to generate approximations

of the Pareto front for both the design problems.

In Chapter 6 a flowsheet multi-objective design framework is introduced, able to syn-

thesise optimal cycle configurations for CO2 capture via PSA. The performance of three

evolutionary algorithms has been investigated. The challenging, and most novel, ele-

ment of this The framework proposed constitutes a valuable tool to support the design

and implementation of new cycles, addressing the needs of the many industries which

are currently building new PSA plants.



Chapter 2

Modeling and Simulation of PSA

processes

The development of models to simulate PSA processes requires the knowledge of the

phenomena that take place in an adsorption bed and their mathematical modelling.

Different combinations of adsorbent-sorbate are controlled by different mechanisms (ki-

netic or equilibrium based separations) and described by different mathematical models.

Operating conditions also affect the phenomena involved with adsorption (e.g. contact

time between the two phases). An understanding of the relationship between an adsorp-

tion system and its mathematical description is crucial to correctly model and simulate

its behaviour.

A theoretical background about adsorption processes and their modelling is provided

in this chapter. An overview of how PSA models have been solved in literature can be

found in section 2.3.

2.1 Principles of adsorption

The knowledge of the basic principles of adsorption is a necessary requirement to a

good understanding of PSA operations. The introduction to adsorption provided here

is mainly based on the books Principles of Adsorption and Adsorption Processes [107]

and Pressure Swing Adsorption [108] by Ruthven et al.

Gas molecules experience a reduction of their potential energy as a result of the interac-

tions with the atoms, or molecules, of a solid. As a result, the gas molecules concentrate

near the solid surface, where the density of the gas phase will be higher than in the free-

gas phase. The forces linking the gas to the solid depend on the nature of both. We talk

32



Chapter 2. Modeling and Simulation 33

about “physical adsorption” or “physisorption” when the forces linking the two phases

are weak, involving van der Waals interaction or electrostatic forces. Physisorption oc-

curs when polar or quadrupolar species are involved. If a real chemical bond takes place,

involving transfer of electrons between the adsorbent and the sorbate, the phenomenon

is called “chemisorption”. It is conventionally accepted that if the binding energy per

atom or molecule is below 0.5 eV physisorption is taking place; if the binding energy

is higher chemisorption is occurring [107]. In chemisorption, the sorbate forms only a

monolayer on the solid surface, while in physisorption multiple sorbate layers can form.

This implies a higher capacity of physisorption processes, which are hence preferred in

practical industrial applications.

Since the strength of the interaction between adsorbent and sorbate depends on both,

different substances are adsorbed on the same surface with different affinities. Separation

processes based on adsorption exploit this selectivity to separate the components of gas

mixtures. A high selectivity of the adsorbent towards the components of the mixture is

a primary requirement for the separation process to be economically viable. The selec-

tivity in an adsorption process comes from differences in either adsorption equilibrium

(equilibrium-controlled separation) or adsorption rate (kinetic-controlled separation) be-

tween the components to be separated. In some cases, one of the species is completely

excluded from the adsorbent, which acts as a size-selective sieve, and a very efficient

separation is achieved. When the adsorption process depends on equilibrium selectivity,

the separation factor of a binary gas mixture of components A and B is defined as [107]:

αAB =
qA/qB
yA/yB

where qi and yi are the mole fractions of component i ∈ A,B in adsorbed and fluid

phase at equilibrium, respectively. The separation factor can be thought as the analogue

of the relative volatility, which expresses the ease with which the components might be

separated by distillation. However, while for a given binary mixture the relative volatility

is fixed, the separation factor strongly depends on the adsorbent used for the separation.

As a consequence, the choice of the appropriate adsorbent is of primary importance for

the design of an adsorption process. The kinetic selectivity is measured by the ratio of

the micropore or intracrystalline diffusivities of the two components [107], which will be

defined in section 2.1.2.2.

Adsorption processes are invariantly exothermic, as shown by a simple argument pro-

posed by Ruthven [107]: a molecule loses rotational freedom when passing from the

free gas phase to the adsorbed phase. This corresponds to a negative entropy change:

∆S = (Sads − Sgas) < 0. For adsorption to take place spontaneously, the free energy

change ∆G of the process must be negative, ∆G = (∆H − T∆S) < 0, where ∆H is the
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enthalpy change. Since ∆S < 0, it is necessary that ∆H is negative, or equivalently

that the adsorption is exothermic, to satisfy the condition on ∆G. As all the exothermic

processes, adsorption is favoured by low temperatures.

The amount of sorbate in equilibrium with the gas phase increases with the concentration

of the solid phase or, equivalently, with the pressure. The relationship between amount

adsorbed and pressure is exploited by PSA.

2.1.1 Equilibrium isotherms

The amount of adsorbate of a species at equilibrium with the concentration/pressure of

the same species in the gas phase is described by equilibrium isotherms. In absence of

mass transfer resistances, the amount of adsorbate would be the quantity at equilibrium

with the gas phase. Knowing the equilibrium concentration of the sorbate is necessary

to determine the actual adsorbed amount.

At low concentrations, the equilibrium relationship can be expressed by Henry’s law (eq.

2.1), which describes a linear relation between the amount adsorbed (q, in molm−3) and

the concentration of the sorbate in the fluid phase (c, in molm−3), or equivalently the

pressure (p).

q = K ′p or q = Kc (2.1)

where the proportionality constant K or K ′ is called Henry constant [107].

At higher concentrations, the equilibrium isotherms deviate from linearity. Devia-

tions from linearity are due to the fact that the interactions between free and sorbate

molecules, as well as between sorbate-sorbate molecules, become important as the con-

centration increases. Isotherms have been divided into five categories, according to the

classification by S. Brauner, L. S. Deming, W. E. Deming and E. Teller in 1940 [14]. A

description of the five types of isotherms is provided by Ruthven [107]: type I isotherms

characterise microporous adsorbents. Type II and III describe adsorption on macrop-

orous adsorbents with strong and weak adsorbate-adsorbent interactions, respectively.

Types IV and V represent adsorption isotherms with hysteresis. A sixth isotherm has

been later introduced by Sing, characteristic of adsorbent with two pore size distribu-

tions. The six isotherms, which together constitute the official IUPAC classification of

adsorption isotherms, are illustrated in Fig. 2.1.



Chapter 2. Modeling and Simulation 35

Figure 2.1: The IUPAC classification of adsorption isotherms [40].

The simplest model for monolayer adsorption is due to Langmuir :

q

qs
=

bc

1 + bc
(2.2)

where qs is the saturation limit and b is an equilibrium constant. According to eq.

2.2, at low concentrations (bc ≪ 1), the concentration q approaches the value qsbc:

q → qsbc. This asymptotic behaviour agrees with the linear relationship expressed by

Henry’s law, and allows to state the following relationship between b and the Henry

constant: K = bqs. At high concentrations (bc ≫ 1), the value of q reaches a plateau,

whose value is given by the saturation limit, qs. This model generally provides a good

representation of most type I isotherms, which are typical of systems where the adsorbent

is microporous.

For multicomponent systems, the species in the gaseous phase compete for the adsorption

sites. The most used model to describe multicomponent equilibria is the extended
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Langmuir model [108]. For a mixture of N components, the extended Langmuir model

is expressed by equation 2.3

qi
qs

=
bipi

1 +
N∑
i=1

bipi

(2.3)

where pi is the partial pressure of species i in the mixture. Equation 2.3 correctly

predicts the behaviour of adsorption systems where the loading is relatively low [108].

Alternative models are described by Ruthven et al. [108].

It is often difficult to get reliable equilibrium data for a given system over the pressure

range of interest, especially for multicomponent equilibria. In the latter case data are

extrapolated from single component equilibrium data.

Reliable models for the description of the equilibrium isotherms are necessary to accu-

rately take into account the deviation of the system from a simple linear equilibrium

curve and estimate the correct loading of the adsorbate during a PSA cycle.

Since a PSA cycle usually involves adsorption and desorption steps at the same tem-

perature, we would like the isotherm not to deviate greatly from linearity in order to

have a good reversibility: any hysteresis will lead to an unacceptable build-up of the

residual concentration in the adsorbed phase. This criterion can be used to choose the

appropriate adsorbent to perform the separation of a given mixture.

2.1.2 Mass transfer

A mass transfer between the gaseous and the solid phase is necessary for the equilibrium

to be reached. A correct description of the mass transfer occurring between the fluid and

the porous adsorbent particles is needed to accurately model an adsorption operation.

The comprehension of the mass transfer phenomena that take place in the adsorbent

material require an understanding of the structure of the adsorbents themselves.

Two classes of adsorbents can be considered [108]: homogeneous and composites. Homo-

geneous adsorbents are those whose pore structure persists throughout the entire solid.

Since the size of the pores is determined by the chemical structure of the adsorbent, in

homogeneous adsorbents the pore size distribution is unimodal. Examples of homoge-

neous adsorbents are silica gel, activated alumina, activated carbon and homogeneous

ion exchange resins.

Composite adsorbents are obtained by the aggregation of small microporous micropar-

ticles, held together with the help of a clay binder. Such adsorbents are obtained as
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composite pellets [107], whose structure is illustrated in Fig. 2.2, together with the

three main mass transfer resistance mechanisms offered by the pellet: external film re-

sistance, microporous or intracrystalline resistance (within the microporous crystals) and

macroporous or intercrystalline resistance (within the paths described by the binder).

Examples of composite adsorbents are carbon molecular sieves, pelleted zeolites and

macroreticular ion exchange resins. Microporous adsorbents are usually employed in

practical applications, as the higher surface area per unit of volume implies a higher

capacity.

Figure 2.2: Schematic diagram of a composite adsorbent pellet showing the three
principal resistances to mass transfer. Figure from [107].

According to the IUPAC classification, three categories of pores exist: micropores ( <

20 Å), mesopores (20-500 Å) and macropores (> 500 Å). However, the real distinction

between micro- and macro- pores depends on the ratio of the pore diameter to the

particle size. When the pore diameter and the dimension of the guest molecule are

comparable, the molecule never escapes the force field of the surface of the pore, and it

can be considered as adsorbed even if it is at the centre of the pore. In this case, the

diffusing molecules jump between adsorption sites, without escaping the force field of

the adsorbent surface. This kind of diffusion is called intracrystalline or microporous.

On the other hand, a molecule in the centre of a meso- or macro- pore can escape the

force field of its walls. In this case, two phases can be distinguished within the pore,

an adsorbed phase and a free-gas phase. Due to the small surface area with respect to

the pore volume, macropores do not contribute to the overall capacity of the adsorbent,

but facilitate the diffusion of the gas molecule to the interior of the adsorbent particle.

When diffusion occurs in macrpores the diffusion is called “macroporous”.



Chapter 2. Modeling and Simulation 38

When the selectivity relies on kinetic control, micropore diffusion is the dominant resis-

tance to mass transfer [108]. In an equilibrium controlled adsorption process the major

resistance is usually due to macropore diffusion.

A low resistance to mass transfer is usually desirable. In a composite adsorbent, this

can be achieved by reducing the size of the microporous crystals and, hence, minimising

the intracrystalline resistance. However, reducing the size of the crystals would imply

a decrease of the size of the macroporous path which separate them. The consequence

would be a reduction of the macroporous diffusivity which could hinder the diffusion of

the gas molecules towards the adsorbent micropores. This drawback could be overcome

by reducing the overall size of the pellet particle, but this would bring higher pressure

drop. It is then necessary to properly choose both crystal size and pellet size.

2.1.2.1 Micropore Diffusion

As mentioned earlier, micropore diffusion takes place when the dimensions of the diffus-

ing particle and of the pore are comparable, so that the diffusing molecule never escapes

the force field of the solid surface [108]. It is an activated process where the activation

energy is usually strongly dependent on the relative size of the molecule with respect to

the radius of the pore.

The chemical potential of a thermodynamic system is the amount by which the energy

of the system would change if an additional particle were introduced, with the entropy

and volume held fixed. The true driving force to any diffusive process is the gradient of

chemical potential µ:

J = −Bcdµ
dr

(2.4)

where J , expressed in molm−2s−1, is the material flux, B is the mobility coefficient

and r is the coordinate along the adsorbent particle radius. The chemical potential is

usually expressed as a function of the activity a, as:

µ = µ0 +RgT lna (2.5)

.

where Rg the universal gas constant and T the temperature. If we consider the system as

ideal, the activity corresponds to the partial pressure p. If we substitute this expression

of µ in eq. 2.4, and we differentiate taking into account that the partial pressure p and

the sorbate concentration q are related by an equilibrium relationship, the expression of

the diffusing flux can be expressed as:
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J = −Ddq
dr

(2.6)

where

D = D0
d ln p

d ln q
; D0 = BRT (2.7)

For systems described by Henry’s law, a linear relationship holds between the pressure

and the concentration, so that
d ln p

d ln q
→ 1 and D ' D0. In this case, the flux is

independent of the concentration. For microporous system, isotherms are often described

by type I isotherms. This can be mathematically described by the Langmuir isotherm

(eq. 2.2). According to this equations

d ln p

d ln q
=

1

1− q/qs
; D =

D0

1− q/qs
(2.8)

Eq. 2.8 shows that as q approaches the saturation limit qs, the dependence of the

diffusivity on the concentration increases.

It has been experimentally observed that D0 is independent of the concentration [108],

but no theoretical explanation can support this evidence. However, since microporous

diffusion is an activated process, D0 is strongly dependent on the temperature, according

to a Arrhenius law:

D0 = D∞e
−E/RT (2.9)

where E is the activation energy and D∞ is the pre-exponential factor, representing the

value of D0 for T → ∞. In most microporous adsorbent, such as zeolites and carbon

molecular sieves, the energy barrier E is mainly dependent on the repulsive interactions

due the molecule experiences to pass though constrictions in the pores [108].

2.1.2.2 Mass transport mechanisms in macropores

The underlying assumption in the analysis of macropores diffusion is that the transport

occurs through the pores rather than through the solid [107]. Macroporous transport

can be described as a diffusive process, and the Fick’s law can be used to model it:
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J = −Dp
∂q

∂r
(2.10)

where J , expressed in molm−2s−1, is the material flux, Dp, expressed in m2s−1, is

the diffusivity in the macropores and r is the coordinate along the adsorbent particle

radius. In eq. 2.10, the diffusivity Dp is expressed as a function of the concentration q,

but not of its gradient ∂q/∂r. However, the diffusivity Dp is independent of q only in

thermodynamically ideal systems, i.e. highly diluted system, for which the adsorption

equilibrium is described by the Henry’s law. When the behaviour deviates from linearity,

the dependence of Dp on the concentration must be taken into account.

The geometry of the pores affects the value of the diffusivity: Dp is smaller in real pores

than it would be in ideal straight cylindrical pores because of the random orientation of

the pores and of the variation in pore diameter. The random orientation of the pores

implies a longer diffusion path and a reduced concentration gradient in the direction

of the flow [107]. The geometrical effect linked to the porosity of the adsorbent are

accounted for by the “tortuosity factor”, τ :

Dp =
D

τ
(2.11)

where D is the diffusivity under the same conditions in a straight cylindrical pore.

The tortuosity τ is a function of the geometry, depending on the adsorbent and not

of the temperature or of the diffusing species. The value of τ is usually determined

experimentally [107].

Four transport mechanisms can occur in the macropores of an adsorbent particle [107]:

molecular diffusion, Knudsen diffusion, Poiseuille flow and surface diffusion. These mech-

anisms are discussed below.

Molecular diffusion

Such regime is characterised by the predominance of the collisions molecule-molecule,

which results in an exchange of momentum between the particles. For a binary mixture

of species A and B, the molecular diffusivity is given by [107]:

Dp =
Dm

τ
where Dm =

0.00158T 3/2(1/Mw,A + 1/Mw,B)1/2

Pσ2
ABΩ(ε/kbT )

(2.12)
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where Mw,A and Mw,B are the molecular weights, σAB =
1

2
(σA + σB) is the collision

parameter from the Lennard-Jones potential, and Ω is a function of ε/kbT where ε =
√
εAεB is the Lennard-Jones force constant and kb is the Boltzmann constant [107].

Molecular diffusion regime occurs at high concentration and in large pores.

Knudsen diffusion

The transport mechanism described by Knudsen diffusion is characterised by the pre-

ponderance of molecular collisions against the pore walls. This regime is likely to occur

at low concentration and in small diameter pores: in such condition the mean free path

of diffusing molecules is smaller than the pore diameter, so that collisions molecule-pore

wall occur more frequently than collision molecule-molecule [107]. Knudsen diffusivity

can be expressed by

Dk = 9700 r

(
T

Mw

)1/2

(2.13)

According to eq. 2.13, Dk is proportional to the mean radius of the pores, r, and

to the square of the ratio between temperature T and molecular weight Mw of the

diffusing species. Knudsen diffusivity is independent of the concentration, and each

species diffuses independently of the other.

Intermediate regime between molecular and Knudsen diffusion

At a given pressure, it is likely that both molecular diffusion (in macropores) and Knud-

sen diffusion (in mesopores) take place. Since the mean free path of the molecule strongly

depends on pressure, for any couple adsorbent/adsorbate there will be a transition from

the predominance of molecular diffusion (at high pressure) to predominance of Knudsen

diffusion (at low pressure). The combination of this two regimes can be described by two

different models, one based on the Fick’s law, and the other based on the Stefan-Maxwell

relation, from which the dusty-gas model is derived:

• Model based on Fick’s law: the driving force to mass transfer is supposed to be

the species concentration gradient and the characteristic parameter is the effective

pore diffusion coefficient, Dp;



Chapter 2. Modeling and Simulation 42

According to this model, for the i-th species in the mixture, the flux Ji can be

expressed as:

Ji = −Dp
∂qi
∂r

; (2.14)

1

Dp,i
=

1

Dk,i
+

1

Dm,i
(2.15)

• Dusty-gas model: it directly derives from the application of the Stefan-Maxwell

relations to the diffusive transport in the pores. The model considers the pore wall

as a pseudo-species in the mixture, whose concentration is uniformly distributed

in the space, and whose molecular weight is infinite. According to the model, the

diffusive fluxes of each species, Ji, in a mixture of N components, must obey the

following relation [23]:

∂qi
∂r

= −

 N∑
j=1,j 6=i

yjJi − yiJj
Di,j

+
Ji
Dk,i

 (2.16)

where yi) is the molar fraction of i− th species.

Poiseuille flow

The Poiseuille flow is due to the difference in total pressure across the adsorbent particle,

resulting in a laminar flow through macropores which contributed to the overall adsorp-

tion flux [107]. This effect is usually negligible in large packed beds, as the pressure

drop across the particle is small, but it might become significant in small laboratory rigs

[107]. The equivalent Poiseuille diffusivity is expressed as [108]:

DP = Pr2/8µ (2.17)

where P is the pressure, r is the radius of the pore and µ is the viscosity. The contribution

from the Poiseuille flow is directly addictive to the combined diffusivity given by the

molecular and Knudsen mechanisms (eq. 2.14).

Surface Diffusion

The surface diffusion is linked to the mobility of a species in the adsorbed phase present

at the pore wall. It occurs when the diffusing molecule escapes from the force field of the
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adsorbent surface. The main interactions are sorbate-adsorbate. Even if the mobility

of the diffusing species is much smaller than in the gas phase, its concentration can be

much higher so that the contribution of the surface flow can be important if the thickness

of the adsorbate layer is significant. This is more likely to happen at low temperature,

where adsorption is promoted. It is an “activated process, characterised by a succession

of jumps between adjacent equilibrium sites” [23, 107]. The surface diffusion flux is due

to a gradient of chemical potential of the adsorbed species, and it can be approached,

once again, either using the Fick’s law, or on the basis of the Stefan-Maxwell relation.

2.2 Modeling PSA operation

Modelling the operation of a bed undergoing adsorption requires the following balances

and equations to be carried out:

• a gas phase mass balance for each component;

• an energy balance for the gas, the solid and the adsorbed phase;

• an equation relating pressure gradient and velocity of the fluid phase;

• an equation to describe the rate of transfer for each component between the gas

and the adsorbed phase;

• a gas-solid equilibrium relationship for each component, along with an equation of

state for the gas phase.

These equations give birth to a coupled set of partial differential and algebraic equations

(PDAEs) with associated initial and boundary conditions.

The models used to describe PSA processes in literature differ under different aspects.

According with the specifics of the system taken into account, the following choices can

be made:

1. the fluid flow pattern (generally plug flow or axially dispersed plug flow);

2. constant or variable fluid velocity;

3. the form of the equilibrium relationships;

4. the form of the kinetic rate expressions;

5. the inclusion of heat effects (isothermal/nonisothermal process).

In the following sections some details of the above balances are provided.
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2.2.1 Mass balance of the gas phase

The mass balance for the i-th component over a differential volume element of an ad-

sorption column is [94, 107]:

−DL
∂

∂z

(
c
∂yi
∂z

)
+

∂

∂z
(cvi) +

∂ci
∂t

+
(1− ε)
ε

∂qi
∂t

= 0 (2.18)

where

• qi(t), mol/m3, average solid concentration;

• vi, m/s, interstitial gas velocity;

• ε, bed voidage;

• DL, m/s axial dispersion coefficient;

The first term of eq. 2.18 takes into account the axial dispersion, and DL is a lumped

coefficient which takes into account all the mechanisms of axial mixing. The second

term is the convective term. The third and forth terms describe the build up in the fluid

and solid phase, respectively.

Generally radial dispersion is not so important to be taken into account within the model.

The effect of axial dispersion may be neglected when it is small compared to the effect

of the mass transfer resistance, and the plug flow model can be used (it is obtained from

eq. 2.18 by dropping the term of axial dispersion −DL
∂

∂z

(
c
∂yi
∂z

)
). When we want to

solve numerically the equations, anyway, the dispersed flow model results advantageous

since the inclusion of the dispersive terms eliminates the discontinuities in the slope of

the concentration profile.

A further assumption can be added when modeling trace systems, where the adsorbable

species is at low concentration in an excess of inert carrier (for example in purification

processes such as air drying and hydrogen purification): the change in the gas velocity

through the bed due to adsorption/desorption can be neglected (e.g.
∂vi
∂z

= 0).

The opposite case occurs when the mole fraction of the adsorbable component in the

feed is large, and we can no longer consider the velocity to be constant along the bed.

We are then in the case of the bulk separation which requires a detailed analysis of the

pattern of the velocity through the adsorbent bed [108].
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2.2.2 Mass balance in the particle

For the evaluation of the build up in the solid phase, ∂qi/∂t, it is necessary to carry out

a balance around the solid particle. Cruz et al. [23] carried out this balance, assuming

local equilibrium between fluid and adsorbed phase: the rate of change in the gas and in

the adsorbate phase equals the sum of the fluxes in the pores and in the surface. Under

certain assumptions, the the intra-particle mass balance, in terms of solid concentration,

is [23]:

∂qi
∂t

=
1

rs
∂

∂r

(
rsDe

M,i

∂qi
∂r

)
=

1

rs
∂

∂r
(rsJi) (2.19)

where s is the particle geometry factor, which is 0 for a plane sheet, 1 for a cylinder and

2 for a sphere. De
M,i is the effective homogeneous diffusion coefficient, being equation

2.19 referred to as the homogeneous diffusion equation. Depending on the transport

mechanisms taking place, different models of the material flux Ji need to be used, as

discussed in section 2.1.2. Eq. 2.19 applies when the isotherm is linear and the viscous

(Poiseuille) flux is negligible. These assumptions imply some limitations of this model

when simulating cyclic adsorption processes, since it is valid for long time cycles and

low total pressure [23].

For a more detailed description of the solid mass balance, Fickian and dusty-gas model

could be adopted to express the flux in the pores. The two models are equivalent in two

situations:

1. in dilute systems, where all species but the solvent have low concentration ;

2. when Knudsen diffusion is predominant, i.e. when the pore diameter is lower than

the mean free path of the diffusing molecules.

An extended comparison between the Fickian and the Maxwell-Stefan approach is car-

ried out in [68]. Here, it is underlined the potential generality of the Maxwell-Stefan

approach, which is able to correctly take into account thermodynamic non-idealities and

the influence of external forces (such as electrostatic and centrifugal fields).

2.2.2.1 The linear driving force approximation

The most common simplification of the homogeneous diffusion equation (eq. 2.19) is

the linear driving force (LDF) approximation, which allows to significantly simplify the

bulky computations involved in the solution of the adsorption processes. According to
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the LDF approximation, the PDE describing the mass balance in the particle (eq. 2.19)

is replaced by a simpler ordinary differential equation, which states that the uptake rate

of a species is proportional to the difference between the surface concentration (q∗) and

the average concentration (q) within the particle.

In the LDF model the mass transfer rate is expressed as [108]:

dq

dt
= k(q∗ − q) LDF Approximation (2.20)

where k is the overall LDF mass transfer coefficient based on adsorbent phase concen-

tration. The average concentration in the particle is given by:

q =

∫
4πr2qdr
4
3πR

3
p

(2.21)

The general expression of k for micropore control is [107]

k = Ω
D

R2
P

(2.22)

where D is the diffusivity, Rp is is the radius of the particle and Ω is a parameter which

has been expressed in different ways, according to the operation taken into account.

It can be demonstrated that between the diffusion equation and the LDF approximation,

there is a substantial equivalence when the concentration profile within the particle can

be considered parabolic. The demonstration is carried out below.

According to the diffusion equation 2.19, the average uptake rate of the solid phase in

the assumption of spherical adsorbent particle and constant D is

dq

dt
=

3

Rp
D

(
∂q

∂r

)
Rp

Diffusion equation (2.23)

where the solid concentration q(t, r) is a function of time and space, and Rp is the

radius of the particle. If we assume a parabolic concentration profile within the particle,

q(r) = a + cr + br2, the coefficient c needs to have a 0 value to satisfy the “symmetry

condition”: (dq/dr)r=0 = 0. This condition implies the symmetry of the concentration

profile with respect to the center of the particle (r=0), or in other words a zero-flux at

the center of the particle. This holds because of the symmetry of the flux of matter from

all the directions towards (in the case of adsorption) and from (in the case of desorption)

the center of the particle. Accordingly, the term

(
∂q

∂r

)
Rp

of eq. 2.23 is expressed by:
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(
∂q

∂r

)
Rp

= 2bRp (2.24)

Substituting eq. 2.24 into eq. 2.23, we obtain:

dq

dt
= 6Db (2.25)

which represent the diffusion equation according to the assumptions made.

According to the definition of average concentration in the particle (eq. 2.21), assuming

the parabolic concentration profile, the expression of the average concentration is:

q = a+
3

5
bR2

p (2.26)

The concentration at the surface is given by q∗ = a + bR2
p. Therefore, if we substitute

eq. 2.25 and eq. 2.26 into eq. 2.20, we find the following equivalence criterion between

the LDF and the diffusion model, in the system of assumptions made:

k = 15
D

R2
p

(2.27)

Comparing eq. 2.27 and 2.22, we obtain that the value of Ω that satisfies the equivalence

between diffusion and LDF criteria is 15. The same value of Ω was indicated in the

earlier formulation of the LDF approximation by Glueckauf [41] both for micropore and

macropore diffusion. Successively Nakao and Suzuki [87] showed the dependency of Ω on

the frequency of adsorption and desorption steps by comparing the diffusion and LDF

model for a single particle subject to cyclic adsorption/desorption steps, and suggested

a correlation to calculate the LDF constant for any given cycle time.

Alpay and Scott [7] used the penetration theory to find the best equivalence criterion

between diffusion model and LDF approximation. According to the penetration theory

[7], the adsorbent particle is large enough that the concentration at the center of the

particle is constant since it is not affected by the boundary conditions at the surface,

even when these are changing periodically (as in a PSA process). The results they got

by comparison between the LDF and the diffusion expression yielded Ω = 5.14/θc, which

is close to the expression by Nakao and Suzuki [87] over the range 10−3 < θc < 10−1,

where θc is the dimensionless adsorption/desorption time, expressed as θc = Dt/R2.

Studying the case of a heatless dryer, Raghavan et al. [97] confirmed the dependence of

Ω on the cycle time; however they tested their equivalence criteria between pore diffusion
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and LDF not on a single particle, as in [87], but on a packed beds, finding a slightly

different correlation. The same result has been showed in [127]: the linear driving force

model and a rigorous pellet model (the viscous flow plus dusty gas model intrapellet

flux equation) were compared for the simulation of a rapid pressure swing adsorption

operation. The simplified LDF models appears to fail, while the detailed one maintains

a good agreement with experimental results. The minimum value of the dimensionless

cycle time below which LDF model fails is θc = 1.0, thus suggesting that conclusions

from studies from a single pellets [8] may not apply rigorously for to packed beds.

A limitation of the LDF model is in the ability to fully describe the system when the

dependency of the diffusivity on the sorbate concentration is pronounced [108]: the

LDF approximation does not usually have limitations in the description of equilibrium

controlled separations (macropores diffusion occurs), while problems arise in kinetically

controlled systems. Such dependency of the diffusivity on the concentration is observed

in the main microporous adsorbent such as zeolites and carbon molecular sieves. The

effect is more pronounced in binary systems, being the binary diffusion more sensitive

to the concentration profiles within the adsorbent particle.

2.2.3 Energy Balance

The energy balance is usually evaluated as the rate of change of the internal energy of

a differential unit of volume with respect to time.

The conservation of energy is retained within the model formulation to account for tem-

perature variations due to the adsorption of a bulk component from the gas stream.

Non-isothermal effects become important when temperature variations from adsorp-

tion/desorption affect the loading and, hence, the performance of the separation. The

temperature effects may be ignored in case of adsorption of a trace component that is

weakly adsorbed [127]. Entropy and enthalpy changes can be calculated, allowing the

evaluation of non-reversibility and energy losses, which can be used to characterize the

efficiency of PSA cycles [11].

2.2.4 Momentum Balance

The momentum balance relates the system pressure gradient to the gas velocity. Analysis

for differential momentum balance shows that the time constant for this equation is much

smaller than the time constants for either mass or heat transfer, so that Biegler et al.

[13] chose the steady state Ergun equation (eq. 2.28).
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− ∂P

∂z
= 150

µv(1− ε)2

d2
p ε

3
+ 1.75

ρMwv
2(1− ε)
dpε3

(2.28)

where dp is the particle diameter, ρ the gas density and µ its viscosity. Another option

widely used to model momentum balance is the simplified version of the above, Darcy’s

law [9, 90]. Darcy’s law is given by eq. 2.29

− ∂P

∂z
= 150

K1µ(1− ε)2

d2
P ε

3
(εv) (2.29)

where K1 is a correction factor determined experimentally [9]. Often the pressure drop

within the bed is considered negligible [16, 21, 62].

2.3 Simulation strategies in literature

The main difficulties in the simulation of adsorption processes are the high CPU time

requirements posed by the simulation and the lack of flowsheet flexibility to simulate

different process configurations [69]. The most common models for the simulation of PSA

cycles are able to describe the experimental trends of the operations, but fail to describe

actual industrial processes because they consider limited process configurations [69].

The usual drawback of sophisticated simulation is the computational effort required,

which might make the simulation until cyclic steady state slower than the real time of

the operation. These limits translate into the need of relying on experimental data for

the development of new processes, while the prospect of building large and expensive

experimental units for the development of new ideas is unattractive [69].

Even after many years, these points remain the bottleneck towards the development of

an efficient design tool for adsorption processes. Since the development of an automated

flowsheet design framework for PSA configurations is the goal of this project, it is neces-

sary to develop a simplified and reliable simulation tool, which could allow the reduction

of the computational time and the simulation multi-bed/multi-step cycle configurations.

A review of simulation strategies proposed in literature is presented in this section, while

the simulation tools developed in the present study are presented later.

Biegler et al. [13] detected two different approaches used in literature to solve the system

of PDAEs involved in the simulation of PSA operations: complete discretisation and the

method of lines.

A complete discretisation consists of a simultaneous discretisation in both space and

time domain of all the PDAEs. The resulting set of nonlinear algebraic equations can
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be solved by large-scale Newton-based equation solvers. This method has been used by

Nilchan and Pantelides [90]: the numerical discretisation of the set of PDAEs is directly

discretised by gPROMS and reduced to a set of DAEs. The method of orthogonal

collocation on finite elements has been used for the spatial discretisation, while the

second order finite difference method has been used for the temporal discretisation.

Complete discretisation is efficient for simple models, and allows a straightforward ad-

dition of the cyclic steady state (CSS) conditions to the discretised bed models, thus

leading to simultaneous convergence of the entire cycle. However, failure of the Newton

solver may occur in face of steep fronts that characterize PSA separation: the PDAEs

which constitutes the bed model exhibit steep fronts if mass transfer is rapid and the

equilibrium is favorable. Furthermore, for complicated models error accumulation caused

by complete discretisation can also lead to convergence failure [64].

The method of lines (MOL) is a two step approach: the PDEs are first discretised in

space to form a system of ODEs or DAEs, which are then integrated by standard time

integration routines [13].

Different methods have been used in literature to get a spatial discretisation of the PDEs:

• centered finite difference method [64]

• Galerkin finite difference method [124]

• orthogonal collocation [23, 98, 99]

• finite volume method [25, 54, 130]

Orthogonal collocation has firstly been proposed by Ravaghan and Ruthven [98], and

it is particularly effective for boundary value problems and requires less computer time

at a fixed accuracy of solution than standard finite difference method. The method has

been indicated as the most effective also in the comparative study by Cruz et al. [23].

A finite volume method for the solution of PSA/VSA was proposed in [130], with suitable

higher order interpolation schemes, able to accommodate boundary conditions for a

variety of steps occurring in a PSA/VSA process.

2.3.1 Simulation of fast cycles

When simulating fast cyclic adsorption processes, as the cycle time is reduced in compar-

ison to the characteristic diffusional time constant, it is necessary to increase the number

of spatial discretisation points in order to use the Fickian diffusion model. In fact, when
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the diffusional time constant R2/D is large with respect to the cycle time, the internal

concentration profile in the outer region of the adsorbing particle varies rapidly [6]. A

discretisation scheme which uses a equally spaced elements has to be tested iteratively to

establish the minimum number of intervals needed to avoid numerical dispersion of the

adsorbent profile [106]. When applying the LDF approximation to shorten simulation

time, a cycle time dependent correction is necessary [87]. The LDF equivalence correctly

predicts the increase in the mass transfer rates that is consistent with the increased con-

centration gradients and the amplitude ratios of the concentration; yet, the LDF fails

to describe the correct phase lag between the input signal and the output signal of an

adsorption process subject to a cyclic perturbation. Rouse and Brandani [106] proposed

a method to correctly predict cyclic steady state concentration profiles, which requires to

modify the volume of solid taken into account in order to consider only the active section

of the adsorbent particle. Introducing two corrections (the time dependence of the mass

transfer constant on time and the correction of the active volume) it is then possible

to predict correctly both the amplitude ratio and the phase lag. This method allows a

correct description of the cyclic steady state but fails to describe the transient behaviour

of the operation. The transient behaviour is not described since the model considers a

reduced capacity of the system to take into account that at CSS the internal part of

the solid adsorbent is unaffected by the varying external concentration. Therefore the

detailed diffusion model is necessary to fully describe the transient behaviour.

Ahn and Brandani [6] proposed a new model for fast cycles was based on the definition

of two different regions within the adsorbent particle: in the outer region concentration

vary significantly with large internal gradients, leading to enhanced mass fluxes, while

in the internal region the concentration profile is virtually flat. This description is in

agreement with the penetration theory mentioned in section 2.2.2.1. This turns into a

numerical grid which has a constant number of elements, independent of the process

cycle time. This method was based on the observation that the LDF approximation

is still valid when the particle is described as two separate regions, so it is possible to

apply a similar approach to the numerical solution of the diffusion equation for fast cyclic

processes. In [6] a predictive method to assign a numerical grid for the solution of the

diffusion equation for fast cyclic adsorption processes that is scaled so that the number

of collocation intervals is independent of the cycle time. The procedure is demonstrated

on a model for the simulation of a heatless dryer pressure swing adsorption process.
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2.4 Summary

The key aspects of the simulation of PSA processes have been addressed. A particular

attention has been paid to the mass transfer term (see sections 2.1.2 and 2.1.2.2). Usu-

ally mass transfer is described by the homogeneous diffusion equation, eq. 2.19, which

corresponds to a mass balance in the particle according to the Fickian model for the

diffusion. This equation is often simplified in the linear driving force (LDF) model. The

simplified LDF model fails to describe the adsorption process in case of fast PSA cycles

and of kinetically controlled separations.

The theoretical background about PSA processes provided in this chapter provides a

foundation to introduce the modelling and simulation of the case studies chosen, pre-

sented in the next chapter.



Chapter 3

Modeling and Simulation of Case

Studies

A necessary step into the development of an optimisation framework for the design of

PSA cycles is the development of simulation tools to evaluate the performance of the

cycles at different design points. In this chapter the modeling and simulation of two

PSA processes are presented. The two processes of interest are the separation of air for

N2 production and the capture of CO2 from flue gases.

The production of N2 from air is an interesting case study because the separation is

kinetically controlled and, hence, it requires the solution of a detailed diffusion model,

as opposed to the simplified linear driving force (LDF) model, to describe the mass

transfer phenomena involved. Given the increased computational burden required by

the diffusion model, kinetically controlled separations have seldom been investigated

in the literature [90, 109], especially within optimisation frameworks where multiple

evaluations of the model are required.

The modelling and simulation of the CO2 case are presented in section 3.2. CO2 sepa-

ration is a relevant design problem not only for the environmental relevance discussed

earlier: CO2 is the most strongly adsorbed species on the majority of adsorbents known,

hence the operation is characterised by steep adsorption waves which make the numer-

ical simulation of the process difficult to solve; furthermore, complex cycles are needed

to meet the high level of CO2 purity required.

53
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3.1 Production of N2 from air: modelling of a kinetically

controlled separation

The problem of interest is the separation of air on activated carbon sieve for N2 pro-

duction. This separation is kinetically controlled by microporous diffusion. Fast cycles

are necessary to exploit the different adsorption rates of the components and produce a

purified N2 stream: since O2 diffuses faster than N2 within the pores of the adsorbent,

during the adsorption step the O2 remains trapped in the bed, while the N2 is collected

as a refined stream at the product end. However, since the equilibrium isotherms of the

two components on activated carbon are very similar, if the adsorption step lasts long

enough for the equilibrium to be reached, as much N2 as much O2 would be adsorbed

and no separation would be achieved.

A simplified model of the operation has been developed to reduce the computational costs

involved with the simulation. The aim is to have a simulation which can be embedded

within a design framework with ease, which means that a manageable computational

time is required. The aim of the simulations is to correctly detect the relation between

the design variables and the performance, so that the optimiser can distinguish the

performance at different design points in a time effective way.

The main assumptions used in the model are perfect mixing, ideal gas phase, spherical

adsorbent particles and negligible pressure drop, isothermal operation. These assump-

tions are reasonable for air separation on a carbon molecular sieve [44, 45].

A series of CSTRs (continuous stirred tank reactors) has been used to simulate each bed.

A CSTR is an ideal continuous reactor whose content is continuously stirred and, hence,

homogeneous. As a consequence, the product of a CSTR has the same composition as

the fluid inside the reactor. A more realistic model for an adsorption column is the

dispersed plug flow reactor, where the composition of the fluid changes from one point

to another. This more complex behaviour can be modelled using a series of CSTRs [74].

The model for a single CSTR has been developed; then, the output of each CSTR has

been used as the input to the next, using linear interpolation.

This simplification reduces the computational requirements since the mass balance of

the fluid phase for a CSTR is not dominated by a convective term as in the case of a

plug flow reactor [22]. As seen earlier, the fluid mass balance in a fixed bed reactor with

dispersed plug flow is given by:

−DL
∂

∂z

(
c
∂yi
∂z

)
+

∂

∂z
(cvi) +

∂ci
∂t

+
(1− ε)
ε

∂qi
∂t

= 0 (3.1)
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where DL is the Fickian axial dispersion coefficient, v is the interstitial fluid velocity,

yi(t) is the molar fraction of species i, c and ci are the concentrations of the fluid phase

and of the species i respectively, ε is the bed voidage, and qi is the average concentration

of species i in the solid.

The first term of eq. 3.1 takes into account axial dispersion, the second term takes into

account advection. The third and fourth terms express the build up of species i in the

fluid and the solid phase, respectively.

The mass balance in a CSTR is given by:

εV

RgT

d(yi P )

dt
+ (1− ε)V dqi

dt
= Fin yi,in − Fout yi (3.2)

where V is the volume of the reactor, T the temperature, P the pressure, Rg is the

universal gas constant. Fin and Fout are the inlet and outlet flow rates respectively,

while yi,in is the molar fraction of species i in the inlet. In a CSTR there is no diffusion

in the z direction as perfect mixing is assumed, so the axial diffusive term −DL
∂2ci
∂z2

is

not present in eq. 3.2. The advection term
∂

∂z
(cvi) is substituted by the finite difference

(Fin yi,in − Fout yi). Eq. 3.1 is usually a parabolic or hyperbolic equation (when the

diffusive term is negligible) controlled by advection, and very hard to solve numerically

[22]. Using eq. 3.2, in lieu of eq. 3.1, allows a faster solution of the mass balance

equation.

The model of each CSTR is summarised in Table 3.1 where i, j ∈ {O2, N2}. The vari-

ables are the solid concentration qi(t, r), the molar fraction yi(t), the gas concentration

ci(t) =
Pyi
RgT

, the outlet flow rate Fout(t), and the pressure P (t). The constants are the

temperature, T , the radius of the adsorbent particle, Rp, the universal gas constant,

Rg, the saturation limit, qi,s, the Langmuir constant, bi, the constant intrinsic mobility,

Di0 , the bed voidage, ε, the liquid film mass transfer coefficient, kf , the volume of the

reactor, V , the inlet flow rates Fin, and yi,in, the molar fraction in the inlet flow. Kinetic

and equilibrium data used for the simulation are summarised in Table 3.2.

The mass balance of the solid particle is expressed by eq. 3.3. Although it might be

possible to use the LDF approximation by fitting the parameters of the model with

experimental data [108], the resulting simulation would not be representative of the

operation outside the range of parameters experimentally investigated to evaluate the

LDF mass transfer coefficient. It could have been possible to simplify equation 3.3 by

neglecting the dependence of the diffusivity on the concentration, but the simplification

would have still restricted the field of applicability of the relation [108]. Accordingly, a

Fickian equation has been used to describe the mass balance in the particle (eq. 3.3)
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Table 3.1: Model equations for N2 separation in a CSTR unit.

Mass balances:
εV

RgT

d(yi P )

dt
+ (1− ε)V dqi

dt
= Fin yi,in − Fout yi

Diffusion:
∂qi
∂t

=
1

r2

∂

∂r

(
r2Di

∂qi
∂r

)
(3.3)

Constraint:
∑
i

yi = 1

Boundary conditions:

(
∂qi
∂r

)
r=0

= 0 (3.4)(
∂qi
∂r

)
r=Rp

= kf (ci − ciRp
) (3.5)

Equilibrium: qi(Rp) =
qi,sbici,Rp

1 +
∑
biciRp

(3.6)

Initial conditions: yi = yi,0

qi = q∗i (yi,0)

which takes into account the dependence of the diffusivity on the gradient of the solid

concentration within the particle: The diffusivity Di has been described by

Di =
Di0

1− θi − θj

(
(1− θj) + θi

∂qj/∂r

∂qi/∂r

)
(3.7)

where θi =
qi(t, Rp)

qi,s
. This expression was proposed by Hagbood (cf. [108]) and applies

to binary Langmuir systems where the saturation limits of the two species are the same.

The boundary condition, eq. 3.4, is the “symmetry condition”. The boundary condition

at the surface of the particle, eq. 3.5, specifies that the gradient of the concentration

of the adsorbate phase at the surface be proportional to the difference between the

concentration of the fluid phase in the bulk and the value in equilibrium with the surface

concentration in the solid. The equilibrium is described by the extended Langmuir

isotherm, eq. 3.6.

3.2 Model for CO2 separation from flue gases: an equilib-

rium controlled separation

As mentioned earlier, CO2 separation is a relevant design problem not only for its envi-

ronmental implications: CO2 is the most strongly adsorbed species on the majority of

adsorbents known, hence the operation is characterised by steep adsorption waves which
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Table 3.2: Kinetic and Equilibrium data used in the simulations of air separation for
N2 production. Data are from [108], unless otherwise stated.

Air composition O2 0.21
N2 0.79

Particle size, Rp 0.3175 cm

Bed voidage, ε 0.5

Ambient Temperature 298.15 K

Saturation constant, qi,s O2 2.64 10−3 mol cm−3

N2 2.64 10−3

Equilibrium constant, Ki = bi qi,s O2 9.25
N2 8.9

Limiting diffusional time constant, Dio/R
2
p O2 2.7 10−3 s−1

N2 5.9 10−5

Mass transfer coefficient in external film [90], kf 0.02 ms−1

make the numerical simulation of the process difficult to solve; furthermore, complex cy-

cles are needed to meet the high level of CO2 purity required, as the CO2 is recovered in

the extract phase. Since the choice of the adsorbent is a key element of PSA cycles, the

models of the adsorption of flue gases on two viable adsorbents, HTlcs in section 3.2.1

and zeolite 13X in section 3.2.2, are presented so that a comparison of the performance

of the two adsorbents can be investigated.

3.2.1 Model on HTlcs

The case study of interest is the separation of CO2 from a flue gas. The feed is a typical

stack effluent at 575 K, containing 15% of CO2, 75% N2 and 10% of H2O [101]. The

adsorbent is a K-promoted hydrotalcite-like compounds (K-HTlcs). HTlcs have a high

selectivity towards CO2 and show a higher capacity at high temperatures compared to

other adsorbents. N2 and H2O are inert on the HTlcs [33], so that their capacity is not

decreased by the presence of water whereas on other adsorbents H2O is competitively

adsorbed with CO2.
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As in the case of air separation, a series of CSTRs (continuous stirred tank reactors)

has been used to describe each bed. This simplification reduces the computational

requirements since the mass balance of the fluid phase for a CSTR is not dominated by

a convective term as in the case of the PFR (plug flow reactor) [22].

The mass balance of the i-species in a CSTR is expressed by eq. 3.8.

dni
dt

+ Vsolid
dqi
dt

= Fin yi,in − Fout yi (3.8)

where ni is the number of moles of species i, qi is the average concentration in the solid

phase, Fin and Fout are the inlet and output stream respectively, while yi = ni/n and

yi,in and are the molar fraction of species i in the reactor and in the inlet. In this case,

the mass balance has been expressed in terms of number of moles rather than in terms of

molar fractions (see eq. 3.2) as computational experiments showed that such equations

could be more easily solved. This might be due to the fact that the amount of moles is

intrinsically conservative.

A temperature dependent Langmuir isotherm model has been used to describe the equi-

librium concentration of CO2 [33, 101]:

b =2.03 e(
1.118
T ) (3.9)

q∗CO2
=(−1.5277 10−3 T + 1.7155)

(
b PCO2

1 + b PCO2

)

where PCO2
= yCO2

P is the partial pressure of component i in the gas phase. Since N2

and H2O are inert, the adsorbed quantity at equilibrium is always zero for both species.

The energy balance has been included in the model as the process is non-isothermal (eq.

3.10):

1

Cs

dT

dt
=
∑
i

∆Hi
dqi
dt

(3.10)

where Cs is heat capacity of the bed.

The linear driving force (LDF) model has been used to describe the mass transfer in the

solid phase [108]:
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dqi
dt

= ki(q
∗
i − qi) (3.11)

The problem of the choice of the proper mass transfer mechanism for the case of CO2

separation was underlined Diagne et al. [32], who noticed that the usual LDF approach

fails to describe the kinetic of the desorption step of CO2 on HTlcs. In fact the results

showed the mass transfer coefficient to be significantly different between adsorption

and desorption steps and mass transfer control was found to dominate the adsorption,

depressurisation and purge step of the operation. A more detailed mass transfer model

should be used, describing the mechanisms of intraparticle diffusion, but hit is not

possible due to the lack of diffusivity data [32]. However, two different values of the

mass transfer coefficient k of eq. 3.11 have been used in the adsorption and desorption

steps (see Table 3.3), as suggested by Diagne et al. [32].

Other assumptions are ideal gas phase and negligible pressure drop. All data used are

from [101], and are summarised in Table 3.3. Since N2 and H2O are inert on the K-HTlcs,

kN2
= kH2O = 0, and, similarly, ∆HN2

= ∆HH2O = 0.

Table 3.3: Parameters for the adsorption model of CO2 on HTlcs [101]. The data
only refers to the CO2 because N2 and H2O are not adsorbed on HTlcs.

Parameters Values Units

Bed length 0.2724 m
Bed radius 0.0387 m
CO2 mass transfer coefficient ads 0.0058 s−1

des 0.0006 s−1

Heat of adsorption, ∆H 2.2200 kcal mol−1

Heat capacity of the solid, Cs 850.0000 J kg−1 K−1

Overall mass balances are carried out around each bed and around the whole cycle to

check the correctness of the model and of the simulation.

3.2.2 Model on Zeolite 13X

HTlcs are more efficient adsorbents than zeolites due to their hydrophobicity, the lack

of competitive adsorption of the N2 in the feed, and the high capacity showed even

at high temperatures [101]. The simulation of a PSA process on zeolite 13X for CO2

capture has been included in this study to verify and quantify the differences in the

performance of the two adsorbents. The model adopted is explained in this section,

while the comparison is carried out in section 5.5.2.
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Table 3.4: Value of parameters of the Dual-Site Langmuir used in eq. 3.13

CO2 (i=1) N2 (i=2) units

ξ1,i(1) 2.817269 1.889581045 mol kg−1

ξ2,i(1) -3.500000 10−4 -2.246200000 10−4 K−1

ξ3,i(1) 2.830000 10−9 1.163388000 10−9 Pa−1

ξ4,i(1) 2598.203000 1944.605788000 K

ξ1,i(2) 3.970888 1.889581045 mol kg−1

ξ2,i(2) -4.950000 10−3 -2.246200000 10−4 K−1

ξ3,i(2) 4.311000 10−9 1.163388000 10−9 Pa−1

ξ4,i(2) 3594.071000 1944.605788000 K

Zeolites are porous crystalline aluminosilicates, consisting of an assemblage of SiO4 and

AlO4 tetrahedra. The crystal lattice contains pores of molecular dimensions into which

guest molecules can penetrate [107]. The characteristic of zeolites is that the micropore

structure is perfectly uniform, with no pore size distribution since the lattice is deter-

mined by crystal lattice. In a zeolite X, the Si/Al ratio lies within the range 1-1.5, hence

the zeolite is hydrophilic: the transition from hydrophilic to hydrophobic behaviour oc-

curs for Si/Al ratios above 8. While the expression of the mass balance equation. eq.

3.8, does not change using a different adsorbent, the value of the LDF mass transfer

coefficient and the equation of the equilibrium isotherm are different. The model used

to describe mass transfer and equilibrium have been obtained by Ko et al. [65]. The

data refer to a binary mixture of CO2 and N2, as in the case of adsorption of flue gases

on zeolites the H2O is always eliminated before the separation process.

A dual-site Langmuir isotherm is used to describe the adsorption equilibrium:

qi =
qmi(1)bi(1)yiP

1 +
∑n

i=1 bi(1) ∗ yi ∗ P
+

qmi(2)bi(2)yiP

1 +
∑n

i=1 bi(2)yiP
(3.12)

The isotherm parameters qmi and bi where calculated using equations 3.13 and the

isotherm parameters ξij shown in Table 3.4.

qmi(1) = ξ1,i(1) + ξ2,i(1)T

bi(1) = ξ3,i(1)exp(ξ4,i(1)/T ) (3.13)

qmi(2) = ξ1,i(2) + ξ2,i(2)T

bi(2) = ξ3,i(2)exp(ξ4,i(2)/T )

The mass transfer has been described by the LDF equation 3.11. The value of the LDF

mass transfer coefficient has been calculated via eq. 3.14.
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Table 3.5: Equations to calculate the diffusion coefficients for a binary mixture of
CO2 and N2 on zeolite 13X [65]

Knudsen diffusion DK,i = 48.5Dpore

√
T

Mw,i

Molecular diffusion DM =

100T 1.75

√
MwN2

+MwCO2
MwN2

MwCO2

P
(
D

1/3
v,N2

+D
1/3
v,CO2

)2

Effective diffusion De,i =
εp
τp

DK,iDM

DK,i +DM

ki =
15De,i

R2
p

(3.14)

where De,i is the effective diffusion coefficient of species i, which takes into account

both Knudsen and molecular diffusion. The diffusion coefficients involved have been

calculated according to the equations in Table 3.5.

The physical data used were also taken from [65], and are summarised in Table 3.6.

Table 3.6: Parameters for th adsorption model of a binary mixture of CO2 and N2

on zeolite 13X

Parameters Values Units

Pore diameter, Dpore 1.00 10−9 m
Particle radius, Rp 1.00 10−3 m
Particle tortuosity, τp 4.50 m
Diffusion volume, Dv CO2 26.90

N2 18.50
Heat capacity of the solid, Cs 504.00 J kg−1 K−1

Heat of adsorption [18], ∆Hi CO2 3.50 104 J mol−1

N2 2.50 104 J mol−1

3.3 Simulation of a PSA cycle

In this chapter, two different cycle configurations are used for the two case studies:

the configuration used for the N2 case is the 2-bed/4-step Skartrom cycle of Fig. 1.2:

each bed undergoes pressurisation with feed, adsorption, blowdown and desorption with
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purge. For the CO2 the configuration (Fig. 3.1) is a modified Skarstrom cycle, operating

among 4 beds [101] illustrated in Table 3.7.

Table 3.7: 4-bed/4-step PSA process used for the CO2 case. The configuration has
been proposed by Reynolds et al. [101]

STEP
BED I II III IV

1 Ads Blow ↓ Des Press ↑
2 Blow ↓ Des Press ↑ Ads
3 Des Press ↑ Ads Blow ↓
4 Press ↑ Ads Blow ↓ Des

M

SS

F

LP

HP

Figure 3.1: Flowsheet of the 4-beds/4-steps VSA cycle. Representation of the sched-
ule using only one bed. The bed used for reference is bed 1 in Table 3.7

The four steps are high-pressure adsorption (PH) with feed (step I ), countercurrent

blowdown to a vacuum pressure (PL) (step II ), desorption with light product purge

(step III ) and repressurisation with light product gas. It is a modified Skarstrom cycle

where the repressurisation is done with a fraction of the light product obtained during

the adsorption step rather than with the feed. Hence, less CO2 is adsorbed in the bed

during pressurisation, and the bed has a bigger capacity to adsorb CO2 during the

following adsorption step. The CO2 adsorbed during the adsorption step is collected as

an enriched-CO2 stream during steps II and III.

Although different bed interconnections are implemented in the two cycle configurations,

the building steps are essentially the same. The models introduced in the previous

sections allow to describe the behaviour of the concentration, temperature, pressure and

outlet streams profiles during the steps of a PSA cycle given an inlet stream. In the

remainder of this section, it is explained how the models have been used to simulate the

four basic steps of the Skarstrom cycle.
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During the constant pressure steps (adsorption at high pressure, and desorption at low

pressure) the unknowns are the concentrations of the two species in the solid and gas

phases, qi and yi (or equivalently ni in the case of CO2) respectively, and the outlet

flow rate Fout. During blowdown, the same set of unknowns (qi, yi, Fout) holds, but the

value of the inlet flow rate is set to be zero. For brevity, a tuple B = 〈y(t), q(t), T (t)〉 is

defined, where all the variables which describe the condition of the beds are stored. The

solution of the model for a constant pressure step can be summarised by the following

mathematical expression:

[B(t), Fout(t), P (t), Bf ] = M(P0, Pf , B0, yin, Fin, t0, tf , f) (3.15)

where the concentration profile within the bed (B(t)), the pressure profile P (t) and the

final conditions of the bed (Bf ) are calculated as a function, M , of the initial and final

value of the pressure (P0 and Pf ) during the step, the initial conditions of the bed (B0),

the concentration and feed rate of the inlet ( yin and Fin), and the duration of the step

(t0, tf ). The function“M” corresponds to the model. The last argument of the function,

f , indicates the direction of the flow during the step: in the implementation, f = 1 if the

step is cocurrent, −1 otherwise. During adsorption and desorption the pressure profile

is constant (P0 = Pf ). The dependence of the pressure with time during blowdown is

described by an exponential function, eq. 3.16, where P and t are the average values of

pressure and time over the blowdown operation, and k is equal to 10 in order to have a

steep change in P . Eq. 3.16 reproduces well the fact that pressure changes are usually

fast, and it is more realistic than a linear trend with time [108]. The dependence is

P (t) = P + (P0 − Pf )
{

1− e[kP (t−t)]
}

(3.16)

The balances in the pressurisation steps are described by the same set of equations, but

Fout is known and is equal to zero, while the pressure profile has to be calculated. PH is

a function of the duration of the pressurisation step, tpress, and of the inlet feed rate, Fin,

and it will be determined by the mass balances which describe the operation. The lower

pressure, PL is a process specification. The solution of the model for a pressurisation

step can be summarised by the mathematical expression:

[B(t), PH , P (t), Bf ] = MP (P0, B0, yin, Fin, t0, tf , f) (3.17)

the main differences with the expression in eq. 3.15 is that the profile of the pressure is

calculated, while no output stream needs to be calculated.
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3.3.1 The unibed approach for the simulation of a PSA cycle

In the previous section, it has been explained how the model is solved to obtain the

desired quantities (P (t), B(t), Fout(t)) for the basic steps involved in PSA configurations.

The aim of the section is to explain how the bed interconnections are implemented within

the simulation tool. To this end, it is necessary to introduce the method used to achieve

the convergence to cyclic steady state (CSS).

In literature, two main strategies to address the CSS constraint have been proposed: the

Successive Substitution (SS) and the Simultaneous Discretisation (SD) method. In the

successive substitution method the CSS is determined by repeated dynamic simulations,

starting from a given initial state to some operating cycles. In the second approach,

the SD, the equations describing the system are simultaneously discretised both in the

spatial and temporal domains, and the periodicity conditions are posed as a constraint

[63]. The SD approach has shown some limitations when used for complex PSA cycle

configurations [90]. To avoid such limitations, a SS approach has been used in this thesis.

To achieve a reduction in computational time, a method to achieve a faster convergence

to CSS has been adopted, originally proposed by Kumar et al. [69]: since at CSS each bed

undergoes identical steps in a sequential manner, it is possible to simulate a multibed

cycle using only one bed. As in [69], flow and composition of the outlet feed from a

process step are stored in temporal effluent arrays, so that they can be used as an inlet

stream when the bed is undergoing the appropriate process step. The resulting model

is illustrated in Figs. 3.2 and 3.3. The method does not provide a correct description

of the transition to CSS, as its basic assumption, that all the beds behave identically,

is true only when CSS has been reached. However, it represents a powerful tool for the

design of the operation since it allows a faster and correct prediction of the performance

at CSS.

Now that the models of the two operations are known, as well as the unibed approach

used, it is possible to introduce the algorithm used for the simulation of a PSA cycle.

For simplicity, the Skarstrom cycle is used in the example (algorithm 3.1).

In the algorithm, the subscripts a, b, p and d refer to the adsorption, blowdown, pressuri-

sation and depressurisation step, respectively. The four steps are simulated cyclically

until the condition for convergence to CSS is met. The inputs are the cycle time, tc, the

low pressure, PL, the initial condition of the bed, B0, the split ratio, rs and the schedule,

S. The product stream flow rate, Fprod, is the fraction of the outlet flow rate withdrawn

during the adsorption step (the raffinate). This percentage is expressed by the “split

ratio”, rs, of the splitter which separates the raffinate into the product stream, and the
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Figure 3.2: Full representation of a 2-bed/4-step Skarstrom Cycle. At cyclic steady
state, the product provided by one bed during the adsorption step, has exactly the same
composition as the purge that it will receive form the other bed during the desorption
step. A shortcut can then be applied and an appropriate fraction of what the bed
produces during adsorption can be stored and used as a purge gas for the desorption

step, as illustrated in Fig. 3.3.

Feed

Press
P ⇑

Ads
P high

Feed

Blow
P ⇓

Purge

Des
P low

Purge

Temporary Data Storage

Product

Figure 3.3: Compact representation of a 2-bed/4-step Skarstrom Cycle using only
one bed. A fraction of the output of the adsorption step is stored in a temporal effluent

array and used as a purge gas during the desorption step.

purge to be sent to the other bed ( see line 15 of alg. 3.1):

Fprod = rs × Fout,a

.

The schedule, S ∈ [0, 50]%, expresses the fraction of the cycle time occupied by each

of the adsorption and desorption steps: Sa = Sd = Stc. The fact that adsorption and

desorption steps are interconnected requires for the two steps have the same duration.
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Algorithm 3.1 Dynamic simulation of a Skarstrom cycle

Output: B(t), P (t), Fprod: concentrations and pressure profiles and product stream
Input: tc, PL, B0, rs, Fin, S
1: t0 ← 0, y(t)← [ ], P (t)← [ ] {Initialise output vectors}
2: Sa = Sd ← S × tc {Steps duration}
3: Sp = Sb ← (S − 1)× tc
4:

5: while The condition for CSS is not met do
6: I. Pressurisation step:
7: t0,p ← t0, tf,p ← t0,p + Sp
8: [yin,p, Fin,p] ← fin(t0,p, tf,p, Fin, yin)
9: [Bp(t), PH , Pp(t), B0,a]=MP (PL, B0, yin, Fin,p, t0p, tf,p, 1);

10:

11: II. Adsorption step:
12: t0,a ← tf,p, tf,a ← t0,a + Sa
13: [yin,a,Fin,a] ← fin(t0,a, tf,a, Fin, yin)
14: [Ba(t), Fout,a, Pa(t), B0,b]=M(PH , PH , B0,a, yin,a, Fin,a, t0,p, tf,p, 1);
15: [Fprod, Fin,d]=splitter(Fout,a, rs) ;
16:

17: III. Blowdown step:
18: t0,b ← tf,a, tf,b ← t0,b + Sb
19: [yin,b, Fin,b] ← fin(t0,b, tf,b, 0, 0)
20: [Bb(t), Fout,b, Pb(t), B0,d]=M(PH , PL, B0,b, yin,b, Fin,b, t0,b, tf,b, -1);
21:

22: IV. Depressurisation step:
23: t0,d ← tf,b, tf,d ← t0,d + Sd
24: yin,d ← ya(t); Fin,d calculated on line 15
25: [Bd(t), Fout,d, Pd(t), Bf,d]=M(PL, PL, B0,d, yin,d, Fin,d, t0,d, tf,d, -1);
26:

27: B0 ← Bf,d {The initial conditions of the bed for the next cycle are the final
conditions after depressurisation}

28: t0 ← t0 + tc
29: B(t)← y(t)

⋃
[Bp(t), Ba(t), Bb(t), Bd(t)]

30: P (t)← y(t)
⋃

[Pp(t), Pa(t), Pb(t), Pd(t)]
31: end while

Consequently, the duration of the other two steps is given by Sp = Sb = (1− S)tc. The

duration of the steps is calculated in lines 2 and 3 .

For steps p, a and b, a function fin is used to generate the vectors yin and Fin, describing

the concentration and feed rate profiles of the inlet stream, given the duration of the

step and the constant values of the concentration and feed rate. The inlet of the depres-

surisation step, defined in line 24, is a fraction of the output stream of the adsorption

output stream (see line 15) and has the same concentration as the product.
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3.4 Numerical methods for the simulation of PSA pro-

cesses

The solution of the equations 3.15 and 3.17 requires the solution of the models introduced

in sections 3.1 and 3.2. The analysis for the appropriate numerical methods for the two

case studies is carried out in this section.

3.4.1 N2 case study

The system of equations summarised in Table 3.1 was turned into a system of DAEs by

spatial discretisation using the finite difference central operator (eq. 3.18). Ten points

have been used for the discretisation of the radius. The resulting DAEs were solved

using the Crank-Nicholson method and an explicit adaptive-step Runge-Kutta method

[95]. In the latter case, the codes ode23 and ode45, provided by Octave-Forge have been

used [91].

The solution strategy for the system of PDAEs has been:

1. Discretisation in space: Finite Difference Method

e.g.

(
d2u

dx2

)
x

' u(x− δx)− 2u(x) + u(x+ δx)

δx2
(3.18)

2. Two methods have been implemented for the integration in time:

• Crank-Nicholson Method(
dy

dt

)
t

= f(t)⇒ y(t+ δt)− y(t) ' δt

2

(
f(t+ δt) + f(t)

)
(3.19)

The resulting nonlinear system of equations has been solved by the Newton-

Raphson Method

• Adaptive 4th/5th and 2th/3th order Runge-Kutta method

The concentration profiles obtained by ode23 and ode45, with the default value of tol-

erance of 10−6, reproduced exactly the concentration profiles obtained using the Crank-

Nicholson method using a small δt. The comparison between these profiles, over a PSA

cycle, is shown in Fig. 3.4.

To trace the concentration profile of a PSA cycle with a cycle time of 120 s, ode23

required 290 points (i.e. points in time at which the full system of equations was solved),
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Figure 3.5: Pressure profile during the 4 steps of the Skarstrom cycle.
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ode45 required 900 points and the Crank-Nicholson method 2417 points. As a result,

both ode23 and ode 45 are faster than the Crank-Nicholson solution scheme. ode23 is

the fastest of the three methods.

In Fig. 3.5 it is shown how the pressure varies during the cycle. The pressure profile

during the adsorption step is calculated through eq. 3.17, while during the other steps

is calculated by eq. 3.16.

3.4.2 CO2 case study

The model of CO2 consists of a set of DAEs, so that no spatial discretisation is needed.

The first attempt to solve these equations with ode45 and ode23 as in the N2 case failed,

as the solver could never meet the accuracy required without excessively decreasing the

time step δt. A possible reason for the increased difficulty to solve this model is that the

concentration fronts are sharper because the separation is equilibrium controlled. This

difficulty motivated further investigations into the shape of the concentration front and

the choice of an appropriate numerical method.
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Figure 3.6: Pressure profiles during the blowdown steps for different values of kP .
kP is the coefficient of eq. 3.16 that determines how quickly the pressure change with
time: the lower kP , the sharper the pressure profile during the blowdown step and,

consequently, the sharper the concentration profiles

A preliminary investigation showed the influence of the pressure profile P (t) during the

blowdown step on the concentration profile: as shown in Figs. 3.6 and 3.7, the lower the

value of kP in equation 3.16, the sharper the pressure profile during the blowdown step
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Figure 3.7: CO2 concentration profiles during the blowdown steps for different values
of k. As the pressure decreases the CO2 desorbs and its concentration in the gas phase

increases.

and, consequently, the sharper the concentration profiles. Hence, a lower kP implies

a bigger challenge to the numerical solver. A value of 0.5 has been chosen for kP as

a reasonable trade-off between a reasonable computational time and a pressure profile

with the desired exponential shape.

For the CO2 case study, the interpolations between one CSTR and the other have been

avoided by solving all the CSTRs at the same time, by including the equation of all the

CSTRs involved in a single set of equations. This approach could not been applied in a

straightforward way since the solution of the fluid mass balance of each CSTR, eq. 3.8,

requires that the inlet flow rate Fin is known. When simulating the CSTRs in series, the

Fin,k to the k-th CSTR is obtained from the simulation of the (k − 1)-th CSTR. This

difficulty has been overcome by exploiting the fact that we are assuming that the gas

follows the ideal gas law and that no pressure drop occurs within the bed, so that the

term dP/dt must be the same in all CSTR. According to the ideal gas law, the number

of moles nk in the k-th CSTR is given by nk =
PVf
RgTk

, where Tk is the temperature of

the reactor. If we differentiate, we obtain

dnk
dt

=
Vf
Rg

[
1

Tk

dP

dt
− P

T 2
k

dTk
dt

]
(3.20)
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For the k-th CSTR, defining Jk = Vsoliddq/dt and using eq. 3.20, the fluid mass balance

equation 3.8 can be rewritten as

Vf
Rg

[
1

Tk

dP

dt
− P

T 2
k

dTk
dt

]
+ Jk = Fk−1yk−1 − Fkyk (3.21)

Eq. 3.21 holds for all the CSTRs in the series. By imposing that the reactors k and k+1

have the same dP/dt, i.e. imposing that the right hand side of equation 3.21 written for

reactor k equals the one written for reactor k + 1, we obtain the system of equations:

−Tkyk−1Fk−1+(Tk+Tk+1)ykFk−Tk+1yk+1Fk+1 = Tk+1Jk+1−TkJk+nk
dTk
dt
−nk+1

dTk+1

dt
(3.22)

which can be solved for all Fk, after eq. 3.10 and 3.11 have been calculated to obtain

the gradients of T and q.

A trade-off between the quality of the concentration profiles obtained (in terms of regu-

larity of the profiles) and the computational time required by the simulation needs to be

taken into account to choose the appropriate numerical method. All the DAEs solvers

provided by Matlab 7.1 [125] have been tested and the results are summarised in 3.8.

HTlcs has been used as adsorbent in the simulations.

The Runge-Kutta methods (ode23 and ode45) fails to describe the concentration profiles:

the step size always grows too small before the required accuracy of the solution is

met. The same occurs when using the Adams-Bashforth-Moulton algorithm (by calling

ode113).

To investigate the performance of the Numerical Differentiation Formulas (NDF), the

influence of the requested accuracy has been investigated. At each step, the solver

estimates the local error e in the i-th component of the solution. This error must be

less than or equal to the acceptable error, which is a function of the specified relative

tolerance, RelTol, and the specified absolute tolerance, AbsTol:

|ei| ≤ max(RelTol |yi|, AbsTol(i)) (3.23)

where y is the vector of the unknowns in the set of ordinary differential equations

y′ = f(y, t). The effect of RelTol and AbsTol is explained in the MATLAB manual

[125]. The relative error tolerance, RelTol, applies to all components of the solution

vector y. It is a measure of the error relative to the size of each solution component.

It controls the number of correct digits in all solution components, except those smaller

than thresholds AbsTol(i). The default, 1×10−3, corresponds to 0.1% accuracy.
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Figure 3.8: Effect of the choice of the numerical method on the smoothness of the
concentration profiles at two different times. The details of the numerical methods used

are explained in Table 3.8.
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Table 3.8: Summary of the performance of different numerical methods for the sim-
ulation of a PSA cycle to separate CO2 from a flue gas using HTlcs. “Time” refers to

the computational time needed to simulate a cycle until CSS.

Symbol Method Time (s) Observation

a ode15s: Numerical Differentiation 182.73 Irregular
Formulas (NDFs), Rel Tol=1e−3

Abs Tol=1e−6

b ode15s: NDFs 945.40 Good profiles,
Rel Tol=1e−8, Abs Tol=1e−10 high time

c ode15s: NDFs+Backward Differentiation 164.30 Best
Formula (BDF), or Gear’s Method
Rel Tol=1e−3, Abs Tol=1e−6

d ode15s: NDFs +BDF 296.00 Oscillations
Rel Tol=1e−6,
Abs Tol=1e−8

e ode23s: modified Rosenbrock formula 386.40 Good profiles,
of order 2 . high time

f ode23t: implementation of the trapezoidal 142.00 Irregular
rule (TR) using a “free” interpolant

g ode23tb: implementation of TR-BDF2, 144.20 Irregular
an implicit Runge-Kutta formula with a
1st stage that is a trapezoidal rule step
and a 2nd stage that is
a BDF of order 2.

– ode45: explicit Runge-Kutta (4,5) formula – Fails

– ode23: explicit Runge-Kutta (2,3) – Fails

– ode113: Adams-Bashforth-Moulton – Fails

The absolute error tolerance, AbsTol, applies to the individual components of the so-

lution vector. AbsTol(i) is a threshold below which the value of the i-th solution com-

ponent is unimportant. The absolute error tolerances determine the accuracy when the

solution approaches zero.

The ODE solvers deliver less accuracy for problems integrated over “long” intervals and

problems that are unstable. Difficult problems may require tighter tolerances than the

default values.
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The NDFs provided irregular profiles when using the default values of the tolerances

(case a in figures 3.8 and Table 3.8). In case b, tighter tolerances have been used and

smoother profiles have been obtained but at a much higher computational time. When

the Backward Differentiation Formula (BDF) is used, case c, regular profiles are obtained

when using the default tolerances. On the other hands, when tighter tolerances are used,

case d, irregular oscillations are observed, and a higher computational time is required.

Also the Rosenbrock formula, case e, successfully describes smooth profiles with the

default tolerances, but a higher computational time is required than in case c.

The trapezoidal rule, case f , obtains irregular concentration profiles. When combining

the trapezoidal rule with a backward differentiation step, case g, better profiles are

obtained but yet less regular than in case c.

According to the above analysis, the implicit differentiation method ode15s (NFD+BDF)

has been used for the simulation of CO2 adsorption.

3.5 Validation of the unibed approach and detection of

CSS

Figure 3.9 shows the profile of the recovery of CO2 values evaluated at different design

points. The recovery of CO2 is defined as the fraction of CO2 in the product stream,

Fprod, with respect to the amount fed to the system over the cycle:

recoveryCO2
=

2
tads∫
0

(
Fprod yCO2

)
dt

tc∫
0

(
Fin yCO2,in

)
dt

(3.24)

The evaluation of the recovery requires the dynamic simulation of the PSA cycle until

CSS is reached. In the results shown in Fig. 3.9 two different approaches for the

convergence to CSS have been used: the unibed approach described earlier and the

rigorous approach including all the 4 beds in the simulation. The aim is to validate the

simplification introduced using the unibed approach.

The 4-bed/4step cycle used for the CO2 case study has been used for this analysis

because of the higher complexity of the configuration in Fig. 3.1 in comparison to the

Skarstrom cycle. Each design point is indicated by a set of values for the cycle time tc,

the inlet flow rate Fin and the split ratio rs.
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Each point of the graph is the result of one simulation until CSS is reached, at a number

of design points belonging to the line, in the design space, which connects point one,

given by x1 = (tc,1, rs,1, F in1) , and in point two x2 = (tc,2, rs,2, F in2). The value of λ

is zero in x1, and 1 in x2, according to:

x = x1 + λ(x2 − x1) for λ ∈ 0, 1

In figure 4.1 the value of the recovery is shown as a function of λ. The two profiles

obtained show that for each given design point, the same value of the recovery has been

achieved both by using the unibed approach and the full simulation. The computational

time required to generate the recovery profile decreased from 5392 s to 1583 s by using

the unibed approach, thus justifying the use of such approach.
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Figure 3.9: The values of recovery at CSS evaluated with a unibed approach match
the results obtained with the full simulation. Computational time decreases by approx-

imately 60% using the unibed approach.

The unibed strategy has been employed in this thesis to allow a decrease in the com-

putational time. A decrease in computational time makes less problematic the use of

successive substitution for detecting the CSS.

To detect CSS both accurately and time efficiently, it is necessary to choose appropriately

how small the difference between the bed conditions at the beginning, B0, and at the

end, Bf , of the cycle has to be for the CSS to be reached. A common method to detect

CSS is to require the difference εCSS (see eq. 3.25) between the condition of the bed

(B) at the beginning and at end of the cycle to be a very small number:

εCSS = ||(Bf −B0)||∞ −→ 0 (3.25)
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In Figs. 3.10 and 3.11 the effect of the value of εCSS on the recovery profile and on

the computational time is shown, respectively. The data refer to the N2 case study. As

in Fig. 3.9, the recovery profiles are shown against the parameter λ. As the value of

εCSS decreases, the recovery profiles converge. Convergence is achieved for εCSS = 10−6.

Any further decrease in the value of εCSS does not improve the quality of the recovery

profile, while on the other hand implies a significant increase in the computational time

required.
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Figure 3.10: Influence of tightness of the constraint to cyclic steady state on the
recovery.
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Figure 3.11: Increase of computational time due to an increase in the tightness of the
constraint to cyclic steady state.

However, the criterion expressed by eq. 3.25 does not converge for the CO2 case. As

shown in Fig. 3.12, εCSS reaches very small values (' 10−5) before 30 cycles, and it

then takes higher values again. On the other hand, the value of the purity reaches a
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Figure 3.12: Convergence of εCSS (vertical impulses) and of the Purity (continuous
curve) with the number of cycles

plateau only after around 60 cycles. As a result, the condition for the convergence to

CSS in the CO2 case study is the standard deviation of the value of the objectives in

the last 10 cycles to be less than 10−3. This value has been chosen as the best trade off

between accuracy and computational time, with a procedure similar to the one adopted

to decide the value of εCSS for the N2 case.

3.6 Summary

In section 3.1, a detailed diffusion model has been used to describe the separation of air

for N2 production, a kinetically controlled separation. Computational time has been cut

by simulating each bed involved in a cycle as a series of CSTRs. A unibed approach has

been adopted to speed up the conversion to cyclic steady state.

The same approach has been used to describe the adsorption of a flue gas for CO2

capture. Two adsorbents (HTlcs and zeolite 13X) have been taken into account, each

requiring different relations to model mass transfer and equilibrium isotherms. In both

cases, the mass transfer can be described by the LDF approximation because the sep-

aration is equilibrium controlled, but the steep adsorption fronts generated required an

extra effort to detect an appropriate numerical method.

The aim of the project is to develop automated tools for the design of PSA cycles. The

first step of the project has been the development of appropriate simulation tools, and

has been discussed in this chapter. These provide the basis for the definition of a suitable
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objective function for the automated design of PSA operations, as presented in the next

chapter.



Chapter 4

Introduction to the design of PSA

cycles

The performance of PSA cycles depends on both the cycle configuration used, includ-

ing the adsorbent chosen, and the operative condition under which it operates. The

complex behaviour of the performance with respect to the process variables requires the

development of automated tools for the design of PSA operations. Optimisation can be

the right approach towards the systematic design of PSA cycles.

In this chapter, an overview of previous studies which focused on the design of PSA

studies is given. This helps not only to familiarise with the design problem, but also to

detect the gaps or areas of development which require further research effort.

The design of a simple Skarstrom cycle for the production of N2 from air is used to

start the investigation into the design problem. Accordingly, the focus of section 4.2

is on the characterisation of the objective function. The results of this analysis justify

the class of optimisation methods (i.e. direct search method) used to detect the design

conditions which maximise the recovery of N2 in the product. The performance of

different algorithms is compared.

4.1 Design of PSA cycles: an overview

A general formulation of the optimisation problem based on cyclic steady state of PSA

systems can be formulated as follows [13]:

79
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max
y, y0, q

f

s.t.

F (y, y0, q, t) = 0;

y(t0) = y0;

t ∈ [t0, t1];

W (y(t), y0, q) ≤ 0;

C(y0, q) = yn(tn)− y0 = 0;

LB ≤ (y, q) ≤ UB;

(4.1)

where y is the combined vector holding state variables, y0 are initial conditions for the

state variables, q are the decision variables and both are subject to the lower and the

upper bounds (LB and UB, respectively). The equality constraint F (y, y0, q, t)=0 repre-

sents the solution of the model itself, while the inequality constraints, W (y(t), y0, q) ≤ 0,

can express some specific requirements of the process (e.g. minimum purity). C are the

CCS conditions, which have to be met. The decision variables in q can be geometric

parameters (e.g. bed length, diameter, adsorbent packing) or process parameters (flow

rates, step times, operating pressures). The objective function, f , can be, for example,

the overall recovery or of the costs at desired purity or minimisation of work/power

consumption at a desired purity.

In the review on simulation and optimisation of PSA operations carried out by Biegler

et al. [13], four categories of optimisation strategies for PSA operations were identified:

• simplified optimisation methods

• black box optimisation

• equation-based optimisation based on complete discretisation

• simultaneous tailored optimisation

4.1.1 Simplified Optimisation Methods

These methods consist of the development of a simple PSA model, and of its fine-

tuning using pilot-plant data, actual plant data or more detailed models. The results

obtained for the simplified model are then implemented and compared with the more

detailed one. Lewandowski et al. [75], after considering the expense of incorporating

detailed adsorption model in an optimisation problem, developed a neural network model

to describe a PSA process. The neural network model was used to minimise the N2
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production costs. The main limit of the approach, as pointed out by the authors, is

that it only covers the design space covered by the experimental data used to build the

model.

Smith and Westerberg [116, 117] reduced the PDAE model to a simple algebraic loading

model, which was introduced into a mixed integer non-linear programming formulation

for the synthesis of optimal process schedules (minimum number of beds, time to allocate

to each step) to maximise profit or minimise annualised operating and capital costs.

A training neural network to describe PSA processes has also been developed by Sun-

daram [121]. Here, a methodology is proposed to determine the ranges of input-output

measurements within which the neural network can reliably predict the process be-

haviour. The dependence of the model on the availability of experimental data is still

an issue. The model developed was not used within an optimisation framework.

Guan et al. [42] developed an electrical network model for the simulation of PSA cycles.

The aim was to develop an object-oriented programming technique to develop a model

which could be used within a flowsheet design framework for PSA cycles. In [42], a

four-bed/12-step PSA cycle for air separation for O2 production has been proposed.

Results of the simulation have been successfully compared with literature data. The

authors tried to apply the sequential quadratic programming to the optimisation of the

operation, but no convergence of the optimiser was achieved although a small single-

objective problem, in a two-dimensional design space, was taken into account.

Agarwal et al. [4] recently considered “model reduction” as a valuable approach to reduce

the computational efforts needed to simulate PSA processes within an optimisation

framework. They developed reduced-order models (ROM) based on proper orthogonal

decomposition (POD) as a low-dimensional approximation to a detailed PSA model.

The ROM has been successfully used to optimise the recovery of H2 from CH4 in a

simple PSA Skarstrom cycle. However, the ROM was able to mimic the behaviour

of the PSA process only in the neighbourhood of the experimental conditions used to

generate it. Hence, it could not be used as a model to optimise the process in a wide

design space.

Rajasree and Moharir [99] developed an adaptive simulation/tuning/optimisation soft-

ware for PSA design, able to provide the number of beds and optimal operating condi-

tions for the desired performance. A simplified simulation was employed, tuned to match

the performance of a rigorous PSA model. Single objective functions were considered,

such as purity at a desired recovery level.
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Simplified methods reduce computational effort, but on the other hand they cannot

guarantee convergence to optimal performance and the conclusions obtained for a specific

case are difficult to transfer among different PSA systems.

4.1.2 Black Box Optimisation

In the black-box approach the optimisation problem can be formulated as:

max
q, y(q)

f

s.t.

W (q) ≤ 0;

LB ≤ q ≤ UB;

(4.2)

where the bed models and CSS conditions are solved implicitly. This means that the

objective function is evaluated at CSS at a trial point of the search space determined

by the optimiser. The values of the objective function and of the constraints are re-

turned to the optimiser and, if necessary, gradients are calculated numerically via finite

differencing.

Based on the information, the optimiser takes a new search direction. The black-box ap-

proach is carried out by developing a search grid that relates process performance (values

of the objective function, e.g. purity, costs) to operating variables (decision variables q

which constitute the search space, e.g. product flow, feed pressure, cycle time, valves

and temperatures). Good results have been achieved by Kvamsdal and Hertzberg [70]

using this method, together with the use of successive quadratic programming (SQP).

Black-box programming followed by a quadratic programming approach has also been

used by Cruz et al. [24]. They developed a simplified procedure, considering either

operating costs or capital costs as dominant factors in the economic performance of the

system.

The black-box approach is advantageous because it is easy to implement, but it is usually

expensive since each objective function evaluation requires the simulation till CSS is

reached. While this drawback can be relatively small for gradient free methods (such

as direct search and evolutionary methods), if gradient based methods are employed

(e.g. SQP), a higher number of function evaluation is required to calculate derivatives.

Furthermore, the use of derivatives implies a numerical approximation, which leads to

loss of accuracy and deterioration of the optimisation performance [13].
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4.1.3 Equation-based Optimisation Based on Complete Discretisation

The complete discretisation strategy is applied in time and space to the bed equations

and the objective function, inequality constraints, CSS condition and bed equations.

These are combined together and solved simultaneously. The problem was solved us-

ing nonlinear optimisation SQP (successive quadratic programming) in gPROMS for

RPSA and small air separation cycles in an efficient way by Nilchan et al. [63, 90].

The approach is efficient for simple cycles, but it often has convergence problems with

complicated cycle configurations and steep concentration waves. In these cases a fine

spatial and temporal grid is required, which leads to a “non manageable” optimisation

problem: within this thesis, the expression “non manageable” problems is used to for

optimisation problems which require an impracticable computational time to be solved.

For complicated models, the solver may fail because of the error accumulation due to

complete discretisation [64].

4.1.4 Simultaneous Tailored Optimisation

The tailored approach was developed by Ding et al. [34] and Jiang et al. [54]; the

formulation of the problem for this method is the following:

max
y, y0, q

f

s.t.

W (y(t, y0, q)) ≤ 0;

C(y0) = y0 − y(tn, y0, q) = 0;

LB ≤ (y0, q) ≤ UB

(4.3)

The bed models have been eliminated from eq. 4.3 by solving it implicitly; the con-

vergence of CSS is incorporated as a constraint in the optimisation problem. At each

iteration, a detailed DAE bed model is solved in an inner loop, in order to obtain sensi-

tivities as well as values of the constraints and objective function. Since satisfaction of

the CSS is required only at the optimum, the time-consuming CSS loop is eliminated.

The sharp concentration fronts are handled by the flux limiters and initialisation is

straightforward. A stationary point of the equality constraints and the reduced gradient

of the objective function is sought. The method has global properties, thus guaranteeing

convergence even from poor starting points. The method was presented in three different

publications: [54–56], as well as in the review on PSA design by the same authors [13].
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Jian et al. [54] used a direct determination approach to detect CSS. The method em-

ployed a Newton-based method with accurate sensitivities analysis to achieve fast and

robust convergence to CSS. Newton algorithms can achieve quadratic or superlinear

convergence rates and require fewer iterations than successive substitution methods for

the evaluation of CSS. However, extra computational time is needed for the calculation

of the Jacobian. A disadvantage of the direct sensitivity approach is that the computa-

tional cost of sensitivities increases with the number of state variables and the number

of decision variables. For the optimisation a state-of-the-art “reduced space Successive

Quadratic Programming” rSQP-based optimisation algorithm was used.

The above strategy solution was extended to a multi-bed system [56]. The multiple bed

configuration was approached by solving simultaneously all the beds; due to the size of

the system, only half of the beds involved in the cycle could be considered in the study,

so that a partial optimisation problem was presented.

The main drawback of this method is the sensitivities analysis required by the Newton-

based approach. Such method leads to a better accuracy in the solution but it increases

computational time. Biegler et al. [55] addressed the problem by using parallel com-

puting for the sensitivity evaluations. In fact, the sensitivity calculation with respect to

each parameter is independent, and parallelisation can be made by a distributed param-

eter approach: the sensitivity parameters are divided into different sets redirected to

different processors, each running a copy of the state equations and computing a subset

of sensitivity variables. As a result, the computational effort needed is independent of

the number of design variables taken into account, which represents a big advantage

with respect to the successive substitution methods for the detection of CCS.

Ko et al. [64, 65] developed a simultaneous tailored approximation approach based on

the method proposed by Jiang et al. [54]. A PSA, a high temperature PSA (simple

Skarstrom cycle) and a FV (fractionated volume) PSA are examined for CO2 seques-

tration applications. The objective function is expressed as a function, Φ, based on

purity, recovery or power consumption. The CSS condition is parametrised in function

of a tolerance ε (e.g. ε= y0 − y(tn, y0, q)) and the overall objective function to be min-

imised is Φ +Mε, where M is a penalty constant (order of magnitude 105). The reduced

space SQP (SRQPD) algorithm in gPROMS is used to solve the nonlinear programming

problem for optimisation.

The method leads to a small optimisation problem which could be solved in gPROMS

by the SQP solver. The main drawback is that CSS condition was only approximated

and if the tolerance ε is small, convergence would be difficult to reach or computational

time would be too long. A nonlinear regression step is needed to satisfy the modified
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expression of CSS, in order to describe the condition of CSS accurately. Furthermore,

the nonlinearity of the CSS condition increases the difficulty of the computation.

4.1.5 Alternative approaches to PSA design

In the classification by Biegler et al. [13], non mathematical approaches to PSA design

have been excluded. These methods improve the understanding of PSA operations, but

do not provide a systematic solution to the design of optimal cycles.

One of these approaches [59] consists of the derivation of a model of the adsorbed phase

using adsorption thermodynamics, which allowed the identification of entropy generation

within the adsorption cycle. The objective function in this study is the minimisation

of entropy generation. Results showed that major losses were due in the valve in the

blowdown step, and feed compressor after cooler. Bed exergy losses were observed mainly

during feed step and not during blowdown or purge step. The results would probably

be the opposite in hte case of a VSA cycle.

The design of PSA processes was also approached by heuristic analysis [53] in order to

develop easy-to-use rules to be used as a guide in PSA process design. The analysis

was based on analysis of the properties of adsorbate-adsorbent systems and simulation

results. Heuristics to help in the selection of adsorbent, particle size, bed size, bed

configuration, purge volume, pressure equalisation and vacuum swing adsorption were

provided, together with judgments on the impact of each variable on operating perfor-

mance.

Optimal operating conditions for producing maximum net product have been identified

via simulation by Kumar [59]. In particular, the author focused on the role of the adsor-

bent in the achievement of the better performance: the improved transfer characteristic

of an adsorbent is useful but only up to a limit, after which it does not help to further

reduce the mass-transfer resistance. The best adsorbent cannot be chosen by considering

only the selectivity or working capacity, but it is necessary to consider a combination of

the two.

4.2 Design of a Skarstrom Cycle for N2 production from

air

In most optimisation studies mentioned in the previous section, no proper justification

for the choice of the optimisation method used has been provided. In this section, the

single-objective optimisation of the performance of a Skarstrom cycle for the separation
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of air is carried out. The objective function is characterised to help choose the most

appropriate class of optimisers to solve the optimisation problem.

The problem of interest is the maximisation of the recovery of N2 in the product stream.

A black-box approach has been used to avoid the limitations that complete discretisation

approaches have with complex cycles.

The optimisation problem has been formulated as:

max
tc, rs, Fin

Recovery at CSS

s.t.

Evaluation of the model at CSS;

Pressure < 7atm;

(4.4)

As mentioned earlier, the recovery of N2 is defined as the fraction of N2 in the product

stream, Fprod, with respect to the amount fed to the system over the cycle:

recoveryN2
=

2
tads∫
0

(
Fprod yN2

)
dt

tc∫
0

(
Fin yN2,in

)
dt

(4.5)

where yN2,in
is the molar fraction of N2 in the inlet flow, Fin; tads is the duration of the

adsorption step.

The design variables are the cycle time, tc, which indicates the overall duration of the

four steps, the flow rate of the inlet flow, Fin, and the split ratio rs. For the simulation,

the schedule for the whole operation was specified: if tc is the duration of the entire cycle,

the duration of the adsorption and of the desorption step are 3/10 of tc, while blowdown

and pressurisation step last 2/10 of tc. As a consequence, as tc increases, the duration

of all the steps increases as well. The values of the schedule and of the maximum value

of pressure allowed are indicated by Ruthven [107] as the most commonly used for air

separation. If a design point violates the pressure constraint, the corresponding values

of the recovery are set to 0.

For this preliminary analysis, only one CSTR has been used to simulate each bed of the

cycle. Accordingly, we expect lower values of the recovery, since we will not take advan-

tage of the countercurrent disposition of the current during blowdown and desorption

steps. Figure 4.1 shows the shape of the objective function, the recovery, between two

design points x1 and x2. The value of the recovery is shown as a function of a parameter

λ ∈ 0, . . . , 1, as in section 3.3.1. The Crank-Nicholson (CN) method has been used to
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integrate the system of ODEs obtained after spacial discretisation. Different values of

δt have been used for the numerical solution of the model.

As δt decreases the profiles converge to a common value, thus suggesting that the solution

method is convergent. The profiles show some ripples, more visible the higher the value

of δt investigated (see Fig. 4.2), which indicate that the objective function is not smooth.

By decreasing the δt the ripples become less appreciable, but we cannot assure that they

disappear for a given value of δt, however small.

As δt decreases, the computational effort needed increases more than linearly. However,

all the profiles obtained showed the same qualitative behaviour: as δt decreases the

profile of the recovery shifts towards lower values, but maintains the same shape. This

shift does not affect the position of the optima in the design space. As a consequence,

the higher value of the δt (δt = 0.05 s), and consequently the lower computational effort,

can be used to detect the optima.
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Figure 4.1: Influence of time step δt on the profile of the objective function when
solving the system of ODEs with the Crank-Nicholson method (eq. 3.19.

The origin of the ripples has been further investigated by generating the recovery profiles

using different quadrature methods for the evaluation of equation 4.5 and by using

adaptive time-step integration methods to solve the system of ODEs.
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Figure 4.2: Recovery profile obtained with δt = 0.05s

Influence of quadrature method

The results shown in Fig. 4.1 and Fig. 4.2 have been generating by carrying out the

integral 4.5 using a low accuracy quadrature method, known as the “rectangle rule”:

I =

tn∫
t0

f(t)dt '
N∑
i=1

f(ti)δti (4.6)

where ti are the points of the time grid used by the CN method. The order of accuracy

is O(δt2i ). I compared the profiles of the objective function obtained by using eq. 4.6

with those obtained with a more accurate quadrature method, the trapezoidal rule [39]:

I =

tn∫
t0

f(t)dt '
N∑
i=1

[f(ti) + f(ti+1)]
δti
2

(4.7)

the order of accuracy of the trapezoidal rule is O(δt3i ) [39].

Using the same time spacing δt, the profiles of the recovery obtained with the two

different quadrature methods shows no appreciable difference, as shown in Fig. 4.3 for

δt = 0.01 s and δt = 0.05 s. This results did not motivate any further investigation into

more accurate quadrature methods, such as the Simpson’s rule.
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Figure 4.3: Profile of the recovery obtained with two different quadrature methods
(4.6 and 4.7) with δt = 0.05s and δt = 0.01s

The previous result allows us to conclude that the accuracy of the integration method is

not responsible of the ripples, but they might be due to the approximations introduced

by the numerical methods. This motivates the use of an adaptive-time stepping scheme

to solve the ODEs, which could provide accurate results and at the same time improve

the computational efficiency of the simulations.

Comparison with an adaptive time-step algorithm

As mentioned in section 3.4.1, the three numerical integrators used (i.e. CN, ode23

and ode45) can successfully detect the concentration profiles during a PSA cycle, as

shown in figure 3.4. Even if the profiles of the concentration match those found by the

Crank-Nicholson method with a small δt, the profiles of the recovery obtained from the

quadrature (using the trapezoidal rule) of these profiles are not identical, as shown in

Figure 4.4.

This might depend on the lower number of points that ode23 and ode45 use to describe

the concentration profiles, with respect to the Crank-Nicholson method. This hypothesis

is confirmed by the following observation: if the solvers use a tighter tolerance (e.g. 10−8)

the concentration profiles are described by a larger number of points and the recovery

profiles obtained are more similar to those obtained with the Crank-Nicholson method,

as shown in Fig. 4.5.
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Figure 4.4: Recovery plots obtained by the Crank-Nicholson method with δt = 0.05 s,
and with the two adaptive time-step algorithms implemented by ode23 and ode45, with

a tolerance of 10−6
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Figure 4.5: Comparison between recovery plot obtained with Crank-Nicholson and
with the ode23 and ode45 solvers with a tolerance of 10−8
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The ode23 gave a better result than the ode45, which provided a segmented profile. On

the other hand, the profile drawn by ode45 are more quantitatively similar to the profile

drawn by the CN method. However, ode23 took around 3 hours to simulate the profiles

in Fig. 4.5 and ode45 employed 1.5 hours. In both cases, simulations have been run on

a 2.8GHz Pentium processor. This means that tightening the tolerance of the integrator

improves the result, but increases the computational time so that no benefit is achieved

with comparison to the fixed-step procedure.

Recovery calculated by the ODE integrator

The solution to the problem of the irregularity of the profiles calculated by the ODEs

solvers has been found by letting the integrator (e.g. ode23 or ode45) calculate the

integrals defining recovery and purity, thus allowing to have the profiles of recovery and

purity which have the same accuracy of the concentration profiles.

The ode methods solve calculate of y(t) by knowing the right hand side (RHS), f(t), of

the equation
dy(t)

dt
= f(t) (4.8)

For the ode solvers to evaluate the integrals necessary to evaluate the recovery, eq.

4.5, the terms “Fprod yN2
and “Fin yN2,in

” have been added to the set of RHS equations

provided. Thus, the simulations provides the total amount of N2 obtained in the product

and the total amount fed during the cycle. The ratio of these two quantities is the

recovery.

The profile calculated by ode23 shows some irregular peaks, as shown in Fig. 4.6.

This might be due to some instability of the numerical method at certain design points.

Conversely, the profiles calculated by ode45 are smoother and coherent with those found

with the previous strategy (CN method followed by the quadrature of the concentration

profiles). Furthermore, the values of the recovery calculated by ode45 are similar to

those calculated with the CN method with a very small δt, as shown in Fig. 4.7. A

significant saving in computational time is achieved using ode45 rather than the CN

method.

4.3 Direct Search Method for Optimal Design

The previous analysis showed that the objective function of the design problem is non-

smooth. When dealing with an unconstrained optimisation problem of the form f :
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Rn → R, the purpose is to find a point of minimum or maximum for this function.

When the function f is either continuous but non-smooth, or not even continuous,

at least in some points of R, we must use an optimisation method which does not

require information about the derivative of f , as it might not exist in some particular

point. Direct Search Methods (DSMs) are based on optimisation algorithms which can

handle the lack of smoothness of the objective function [113]. DSMs are derivative-free

algorithms, which use exclusively function values in their attempt to find the optimum.

A distinctive characteristic of DSMs is that at each iteration DSMs explore the objective

function in a linearly independent set of n directions, as an alternative to information

coming from the gradient [76]. If this set of directions has the right structure, it is

possible to derive convergence results for these algorithms [128]. DSMs involve the

comparison of each trial solution with the best trial solution, thus, they require the

relative rank of the objective function values rather than the numerical function values,

and they do not require any specification about “how much better” the next trial has

to be.

Usually, three different types of DSMs are indicated [76]:

1. Simplex Methods;

2. Pattern search methods;

3. Methods with adaptive sets of search directions.

Torczon [128] proposed a different taxonomy, which uses as distinctive characteristics

of each method both the way the set of n search directions is chosen and maintained

and the way exploratory steps are taken in each of the n directions. The methods are

collected in the following two categories:

• Methods for which the the set of search directions is modified at the end of each

iteration;

• Methods for which the set of search directions remains fixed across all iterations.

DSMs are widely used even if for many of them there is no proof of their convergence

properties. In fact, they often are successful in practice since many of them rely on

techniques of classical analysis, even if in ways that are not always readily apparent

from their original heuristic formulations [76]. With the exception of the simplex-based

methods, DSMs are robust and satisfy the first-order necessary conditions for a minimiser

(i.e. convergence to a stationary point) [128]. A second reason behind the actual success
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of these methods is that they succeed in some nonlinear optimisation problems where

the more sophisticated quasi-Newton method fails [76]. Furthermore, they are easy to

implement, so that using such methods can represent a good trade-off between efforts

and results, especially in industrial contests where a fast answer is needed. A common

use of these method is to provide a good starting point for the implementation of a more

expensive analysis [48, 76].

DSMs are insensitive to the lack of smoothness in the objective function f . However,

when applied to smooth problems, DSMs have the main drawbacks of showing at best

a linear rate of convergence and they are unable to determine the nature of the point at

which they terminate, since no derivative information is available.

4.3.1 Simplex Methods

The concept behind simplex method is to use a non-degenerate simplex to drive the

search of the optimum. A simplex is defined as n + 1 points in a Rn space. A non-

degenerate simplex is one for which the set of edges adjacent to any vertex in the

simplex forms a basis for the space, which means that any point in the domain of the

search can be determined as a linear combination of the edges adjacent to any given

vertex. This allows to use n + 1 objective evaluations to get an improvement on the

iterate, rather than the 2n or 2n needed by other DSMs. The method uses the simplex to

sample the space, and exploits the fact that by reflecting a vertex through the centroid

of the opposite face, we obtain a new simplex.

The basic heuristic of the model is the following: we reflect the worse vertex (the one

with the less desirable objective function) in the direction of the other vertices, eventu-

ally finding a best vertex. When the reflected vertex gives a significant decrease/increase

in the value of the objective function, it can be concluded that a candidate for a min-

imiser/maximiser has been found.

The common structure for all the simplex based DSMs, as described by Singer and

Singer [113], is the algorithm 4.1.

The algorithm INIT constructs the initial simplex S0 = S(x0, ...xn) around or near the

initial point x0 and computes the function values at all vertices. The most frequent

choice is a S0 right-angled in x0, based on the coordinate axes, or xj = x0 + hjej ,

where j = 0, ...n, with step sizes hj in directions of unit vectors ej in Rn. Sinit can also

be a regular simplex, with all the edges having the same length [113]. The inner loop

algorithm TRANSF determines the type of the simplex based DSMs used.
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Algorithm 4.1 Generic Scheme of a Simplex DSM

Input: INIT: construct an initial working simplex S0

Output: xopt= Optimum
S ← S0

Repeat
Calculate termination test information;
if The termination test is not satisfied then

TRANSF: Transform the working simplex
S ← TRANS(S)

end if
Until Termination test is satisfied

Output: xopt:=the best vertex of the current simplex S;

One or both the following criteria need to be satisfied to prove the convergence of a

simplex-based DSMs [71]:

1. the edges of the simplex remains uniformly linearly independent at every iteration;

2. a descent condition stronger than simple decrease is satisfied at every iteration;

4.3.1.1 The Nelder-Mead Simplex Method

The Nelder-Mead (NM) Simplex method [88] is a simplex direct search method for mul-

tidimensional unconstrained minimisation of non-smooth functions. The NM method

has been implemented in many different ways, the main differences lying in the way

the iteration process is broken, i.e. the choice of the convergence (or termination) test

[114]. The contribution of Nelder and Mead to simplex optimisation methods was the

introduction of some additional moves to the simplex search, which made the search

faster and turned the heuristic rule into an optimisation algorithm. In particular, they

supplemented the basic reflection move with additional moves which allowed a better

and faster fit of the objective function: expansions and contractions.

A detailed explanation of how the NM algorithm works can be found in [60, 113].

In a n dimensional design space, the operation that the NM algorithm apply to the

simplex can be described as follows [113]:

1. determine indices h, s, l of the worst, the second worst and the best point, respec-

tively:

fh = max
j

j ; fs = max
j 6=h

fj ; fl = min
j 6=h

fj
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2. calculate the centroid x of the n− 1 hyperplane defined by all the vertices of the

simplex but the one corresponding to the worst point, given by

x =
1

N

n∑
i=1

xi

3. compute the new working simplex from the old one. First, try to replace the worst

point with a better point xnew, by using reflection, expansion or contraction (inner

or outside contraction), according to

xnew
i = (1 + µ)x̄− µxh (4.9)

the value of the parameter µ determine how the simplex changes. If this fails,

shrink the simplex towards the best point xl, according to:

xnew
i = xl − µ(xold

i − xl) ∀i = 2, . . . , n (4.10)

where “new” and “old” refers to the new and to the old simplices, respectively.

The transformations the initial simplex can go through are shown in Fig. 4.8.

A termination procedure is needed for the algorithm to converge in a finite number

of steps. One of the following conditions is used as different termination test: the

algorithms stops [113, 114]

1. when the working simplex is small in some sense (i.e. when all the vertices of the

simplex are close enough);

2. when some or all the function values fj are closed enough in some sense;

3. when the maximum number of transformations allowed is reached.

A general lack of convergence for the NM method has been observed [80, 131]. This

derives from the fact that the method does not fulfill any of the requirements discussed

earlier. In [114], it is stressed that numerical evidence suggests that the NM algorithm

becomes inefficient as the dimension of the search space increases. More often the ineffi-

ciency of the NM algorithm is experienced when the objective function is discontinuous.

Furthermore, compared with other DSMs, the NM algorithm requires a lower number

of function evaluation to detect a new simplex, thus it has been widely used despite it

often breaks or fails.
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Figure 4.8: Example of how a simplex (1-2-3) is transformed by the NM algorithm,
for a 2 dimensional optimisation problem. First, the vertices of initial simplex S are
ranked, and ordered. Vertex 3 is the worst vertex. The algorithm tries to replace
the worst vertex 3 with a better one, by reflection (simplex 1-2-r), expansion (simplex

1-2-s), inner contraction (simplex 1-2-ic), outer contraction (simplex 1-2-oc).

4.3.2 Pattern Search Methods

Pattern search methods consist of a series of “exploratory moves” (objective function

evaluations) at the points describing a regular lattice within the domain [76]. These

methods maintain uniform linear independence of the simplex edges and require only

simple decrease in the best function value at each iteration [71]. The exploratory moves

consist of a systematic strategy to visit the points in the lattice in the immediate vicinity

of the current iterate. Some characteristic features of this methods are:

• no mathematical formulation of a model for the objective function is required;

• the evaluations are made at the points of rational patterns, since the magnitude

of the steps is predetermined;
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• the step size of the simplex is decreased only when no increase or decrease in any

of the design variables further improve the objective function.

The global convergence of these methods has been proved under different conditions

[76].

4.3.2.1 The Multidirectional search method

The multidirectional search algorithm is a direct search method designed for uncon-

strained optimisation. A proof of convergence of this algorithm has been provided by

Torczon [128].

The multidirectional search is a pattern search method which proceeds by reflecting

a simplex. The method uses three trial steps: the reflection step, the expansion step

and the contraction step. The algorithm always computes a reflection, then if a new

best vertex has been found, an expansion step is computed; otherwise automatically a

contraction step is carried out. The procedure is illustrated in Fig. 4.9.
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Figure 4.9: The multidirectional search method uses three trial steps: the reflection
step, the expansion step and the contraction step. The algorithm always computes a
reflection, then if a new best vertex has been found, an expansion step is computed;

otherwise automatically a contraction step is carried out

The multidirectional search method requires at least 2n independent function evaluations

per iteration.

4.3.2.2 Alternating Directions Method

The description of the method is in [48]. Let us consider the following optimisation

problem:
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max
x∈Rn

f(x),

f : Rn → R

Given a starting value x, the method attempts to solve the previous problem by re-

peatedly maximising over each coordinate direction in turn, as illustrated in algorithm

4.2:

Algorithm 4.2 Alternating Direction Method

Input: Starting value x
Repeat {One iteration comprises a loop over all component of x}

for i = 1 to n do
find α such that f (x+ αei) is maximised; {line search}
set x← x+ αei;

end for
Until converged

The alternating search method is one of the simplest DSMs and its main weakness is

that it ignores any interactions between variables.

4.3.3 Methods with adaptive sets of search directions

This category is related to methods which collect information about the curvature of

the objective function during their search and use it to accelerate the search.

4.3.4 Implicit Filtering

Implicit Filtering is an optimisation technique specifically designed to optimise noisy

objective functions [61]: the algorithm “filters” high-frequency low-amplitude oscilla-

tions by using large difference increment. A noisy function could be modelled as the

perturbation of a smooth function fs by a small function φ according to

f(x) = fs(x) + φ(x) (4.11)

However, Implicit Filtering has no global convergence property, hence it works effi-

ciently with functions whose large-scale behaviour, represented by fs, can be easily

optimised. Kelley [61] introduces Implicit Filtering as an extension of the Coordinate

Search method.
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Let us suppose we want to find the minimum of a function f(x), where x ∈ RN . The

Coordinate Search method takes into account a possible approximation to the optimum,

x, to start its search. It evaluates f at the 2N points described by the stencil S, defined

as

S(x, h) = x± hei (4.12)

where h is the pattern size, or scale, and ei is the unit vector in the i-th coordinate

direction. Let z∗ ∈ S(, x, h) be a point which minimises f , i.e. f(z∗) = min
z∈S(,x,h)

f(z). If

f(z∗) < f(x), then x is replaced by z∗ and the previous steps are implemented again. If

f(z∗) ≥ f(x), then the previous steps are implemented again, but with a smaller value

of h. The second case, f(z∗) ≥ f(x), is referred to as a stencil failure, as the stencil

has failed to improve the objective function value.

The search could be stopped after a certain number of iterations or when h has reached

the minimum allowed value.

Similarly, the Implicit Filtering evaluates f at the along a stencil S(x, h) and reduces

the size of the stencil if [61]:

1. stencil failure occur;

2. ‖∇hf(x)‖ < τh, for some τ > 0, where ∇hf(x) is the central different gradient.

3. the line search fails to satisfy the sufficient decrease condition: no λ can be found

so that the following condition holds

f(x− λ∇hf(x)) < −αλ‖∇hf(x)‖2 for someα > 0 (4.13)

for some α > 0. The value of λ is looked for via backtracking the linesearch a max-

imum number of times amax, i.e. looking for an integer number m ∈ 0, . . . , amax

so that eq. 4.13 holds for λ = βm.

If none of the above termination criterion is satisfied, the search is continued using

x = x − λ∇hf(x) as a starting point. The values of α, τ and β are parameters of

the algorithm. Proof of the convergence of the Implicit Filtering algorithm has been

provided [60, 61].
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4.3.5 The Hooke-Jeeves Algorithm

As the Implicit Filtering method, the Hooke-Jeeves algorithm evaluate the objective

function on a stencil, and compute the direction of the search based on the values found

[60].

Input of the Hooke-Jeeves algorithm are a starting point, x, and a pattern size h. The

objective function f is evaluated at the vertices of the stencil built around x. Let z∗

be the point of the stencil which minimises f , i.e. f(z∗) = min
z∈S(,x,h)

f(z). If a stencil

failure occurs, f(z∗) ≥ x, the process is started over using x as a center and a smaller

h. Instead, If f(z∗) < f(x), then a new direction search is defined as dHJ = z∗− x, and

at the new iteration the search is initialised from a point xc defined as

xc = x+ 2dHJ = z∗ + dHJ

If the stencil built on xc does not improve upon f(z∗), then z∗ is used as the center of

the next stencil. Should this new stencil fail, then h is reduced and the process is started

over from z∗.

4.4 Performance of the optimisers

For the solution of the design problem stated in eq. 4.4 the following DSM methods

have been considered:

• Nelder-Mead Algorithm;

• Multidirectional Search;

• Alternating Directions;

• Implicit Filtering;

• Hooke-Jeeves Method.

Ten random starting points within the feasible region of the design problem have been

used to compare the performance of the different DSMs. Starting from these points, each

optimiser found ten different solutions. The performance of the different optimisers has

been evaluated and compared according to the following criteria:

1. higher value of the recovery found (Best);
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2. average value of the recovery found (Average);

3. dispersion of the optima found, expressed by the standard deviation (Std Dev);

4. average number of function evaluations needed to detect an optimum (Eval).

Table 4.1 shows the performance of Nelder-Mead (with right and a regular-angled sim-

plex), alternating directions and multidirectional search methods. For these evaluation

the Crank-Nicholson method has been used for the simulations.

Table 4.1: Performance of the optimisers

Algorithm Recovery (%) Eval

Best Average Std Dev

NM right-angled simplex 65.84 64.22 2.14 66

NM regular-angled simplex 65.22 61.78 3.57 61

Alternating directions 65.99 63.72 2.43 82

Multidirectional search 66.91 62.51 5.49 164

All the optimiser showed an average optimal recovery (expressed in percentage) bounded

between 61% and 64.5%.

Even if the best absolute value has been found by the multidirectional search method

(recovery= 66.91%), the more reliable and efficient optimiser is the NM search method,

using a right-angle method. This showed the best average result as well as the lowest

deviation standard among all the methods. In term of number of objective function

evaluations, the most expensive method is the multidirectional search method, followed

by the alternating direction search, which needed half the evaluations required by the

former method. The two variants of the NM methods have been the more efficient,

the one with the regular simplex being the best one. However, finding 10 solution took

approximately 12 hours.

Explanations to the better performance of the right-angled NM method, compared to

the regular simplex one, have been looked for, but the topic has not been investigated in

the literature. According to the description of the two algorithms provided by Octave-

Forge, it is suggested that the NM right-angled usually shows better results, but no

reason is provided. Singer and Singer [114] stated that usually the initial simplex is

chosen to be a right-angle one, but in some implementation it may be a regular simplex,

having all the edges of the same length. However, no comments is added which can help

us to say whether one is better than the other. Our hypotheses are:
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• the condition to have a right-angled simplex can avoid the possibility of getting a

degenerated simplex;

• the introduction of a fixed “shape” for the simplex might force a regularity in the

pattern constituted by the points the simplex explores, thus enhancing the conver-

gence of the algorithm (it becomes somehow more similar to the multidirectional

algorithm).

For the design of the operation, the important information is the area of the design

space where the optima are located. The optima having a recovery value of Recovery =

65.8± 0.5% have been plotted in Fig. 4.10. The value of the split ratio for such points

was found to be rs = 0.98± 0.01. The position of the optima, in a plane inlet feed rate

(Fin) vs cycle time (tc) are located as illustrated in Fig. 4.10. The graph shows that to

achieve the same value of the recovery the inlet feed rate needs to decrease as the cycle

time increases. This is due to the fact that we imposed an upper boundary to the value

of the maximum pressure, Pmax, that we want to achieve: since we are pressurising by

feeding the reactor while no output is allowed, as Fin increases the sooner the value of

Pmax will be reached.

Figure 4.10: Optima on a Finvs tc plane, with recovery=65.8% and rs=0.98.
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Results of the optimiser using ode45

The introduction of a time adaptive solver, using ode45, allowed us to have a more

smooth objective function, and to decrease the computational time required. The recov-

ery must be calculated by the integrator itself to improve the smoothness of the recovery

profiles. The aim of this section is to investigate which advantages could be brought to

the solution of the design problem of eq. 4.4 if ode45 is used within the simulation. To

this end, I repeated the exploration starting from the same 10 randoms points used to

generate the results in Table 4.2, when the simulation is carried out by the integrator

ode45. The optimiser used for this evaluation is the most successful and robust optimiser

detected: the Nelder-Mead optimiser using a right-angled simplex.

In the NM algorithm, the simplex shrinks when it is around an optimum, and the

iterations stop when the simplex size has reached the minimum size allowed. The effect

of the minimum simplex size allowed on the performance of the algorithm has been

investigated.

Table 4.2: Performance of the NM method using a right-angled simplex and ode45
as solver. The effect of the minimum size of the simplex allowed is investigated.

Simplex min size Recovery (%) Eval Time (min)

Best Average Std Dev

10−3 65.84 64.22 2.14 66 15

10−4 66.02 65.10 1.75 90 22

10−5 66.07 65.13 1.77 116 42

10−6 66.07 65.14 1.76 140 54

The optima obtained running the simulation with ode45 do not differ from those obtained

with the previous fixed-time step method (see Table 4.1 and 4.2 with minimum simple

size 10−3). There is some improvement in the value of the recovery when decreasing the

minimum simple size from 10−3 to 10−4, but such improvement is no longer appreciable

when diminishing the simplex size further; besides, the number of evaluation as well as

computational time increase.

Using ode45 for the simulation, the performance of the Hooke and Jeeves and the implicit

filter optimisers have been investigated. The same starting points have been used for

these optimisations. The result is showed in Table 4.3.

As shown in Table 4.3, the two optimisers performed worse than those seen before: the

average value of the recovery is lower then for the all the other methods. However,
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Table 4.3: Performance of Hooke-Jeeves and Implicit Filtering method using ode45

Algorithm Simplex min size Recovery (%) Eval Time (min)

Best Average Std Dev

Hooke-Jeeves 10−6 63.70 55.63 5.35 125 84

Hooke-Jeeves 10−8 64.81 60.70 3.44 243 180

Implicit Filtering 10−4 65.81 63.62 2.30 152 22

a strange feature of the optima found by Hooke and Jeeves algorithm is that all the

points have almost the same value of inlet feed rate and cycle time, respectively Fin =

50 ± 0.17mol s−1, tc = 78.39 ± 0.07s. The value of the split ratio found is much lower

than that detected by previous method, having an average value of 0.8.

DSMs tend to detect local optima. However, further progress can be made by restart-

ing the optimisation process from the same maximiser. I tried to improve the results

obtained previously by combining the more robust method, Nelder-Mead using a right-

angled simplex, and the multidirectional method which previously found the best ab-

solute value of the recovery (see Table 4.1). In particular, the multidirectional search

method was started from the optima found by the Nelder-Mead algorithm. The results

obtained are shown in Table 4.4.

Table 4.4: Results obtained by the multidirectional search method using as starting
points the optima found by the Nelder-Mead algorithm.

Algorithm tol Recovery (%) Eval
Best Average Std Dev

MDS after NM 10−6 67.56 66.23 1.62 281

In this case, a same optimum was detected in five out of ten optimisation runs. This

optimum is located at Fin = 50± 0.0006mol/s−1, rs = 0.9999, and tc = 78.39± 0.0002 s.

Some considerations are needed. This point has the same coordinates as those found by

Hooke-Jeeves in terms of tc and Fin, but with a much higher value of the rs. Evidently,

the Hooke-Jeeves method was able to tune till the optimal condition Fin and tc, but it

was not able to detect the optimal value of rs. Conversely, almost all the other methods

found the best value of the split ratio, pushing it to the value of one (the upper bound).

The value of the split ratio found is not realistic since it approaches the value 1, which

means the elimination of the purge step. The value of the inlet feed rate found is the

minimum allowed in the search space: the optima are at the maximum cycle time allowed

by the pressure upper boundary (the pressure at the optima is almost Pmax).
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I combined the Nelder-Mead method (able to push through the best value of the split

ratio), and the Hooke & Jeeves algorithm, able to find the best value of Fin and tc. The

combination of these two methods did not improve the results.

4.5 Conclusion

This chapter deals with the maximisation of the recovery of N2 obtained from a 2-bed/4-

steps Skarstrom cycle. The design variables chosen are the cycle time, the split ratio

and the inlet flowrate. The constraints are a maximum value of the pressure and the

evaluation of the model at cyclic steady state (CSS). In the simulation, the CSS has

been detected via successive substitution.

To choose an appropriate optimisation method, the profile of the objective function has

been characterised. Using as integration method Crank-Nicholson, with a fixed time

step, the profile of the objective function is non-smooth. Direct Search methods have

been detected as the best optimisation methods for non-smooth objective functions,

and the performance of some of these method has been investigated. Among the opti-

misation algorithms used, the Nelder- Mead method, with a right-angled simplex, gave

the more robust and efficient performance. However, the detection of 10 optima took

approximately 12 hours.

Time-adaptive integration schemes have been introduced to reduce the time of the sim-

ulation: ode23 and ode45, both base on the Runge-Kutta method. It has been found

that to get the same accuracy in the objective function profile, the values of the recov-

ery has to be calculated by the integrator itself, and it cannot be calculated from the

concentration profiles by a quadrature scheme. Using ode45 and the NM algorithm, the

same optima were found, but in much less time: finding 10 optima took approximately

15 minutes.

Each optimiser found optima quite distributed in the search space, having similar values

of the recovery, but with a significant standard deviation. Applying a hybrid optimisa-

tion technique (combining the Nelder-Mead and the multidirectional search method) the

same optimum was found half of the times, starting from 10 different points randomly

chosen in the search space. The combination of these two methods has been the most

successful and robust optimisation strategy detected.

DSMs proved to be reliable method for the single objective optimisation of the PSA

process. However, as the recovery is increased, the purity of N2 in the product stream

decreases. Hence, it is necessary to take into account the effect of the design variables
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on the conflicting criteria to properly design the operation. The multi-objective optimi-

sation of the process is carried out in the following chapter.



Chapter 5

Multi-objective Optimisation of

PSA cycles

The performance of PSA cycles is usually characterised by conflicting aspects of the

performance: the higher the recovery, the lower the purity of the product; the higher the

purity, the higher the costs of the operation [105, 109]. These trade-offs should be taken

into account during the design of the process. However, only two previous studies [63,

109]adopted a multi-criteria approach for PSA cycle optimisation and the methodologies

developed were not completely satisfactory. Hence, we decided to address the paucity of

options for PSA multi-objective optimisation by investigating an appropriate strategy

to this problem.

Multi-objective optimisation is the simultaneous optimisation of more that one objective

function. The result of a multi-objective optimisation in most cases is a set of equally

good solutions, known as the Pareto set. The Pareto set can then be used to make some

decision about the preferred possible solution. However, there are also multi-objective

methods which do not result in a Pareto set (e. g. weighted sum; lexicographic etc.).

For single objective optimisation, the results obtained using DSMs were promising (see

Chapter 4). However, for the multi-objective design problem, the use of single objective

DSMs is problematical due to the need for a weighted combination for the objective

function. As the number of objectives to be considered simultaneously increases, the

number of discrete optimisation problems that must be solved using a weighted objective

function increases exponentially.

An alternative to direct search or gradient based methods is the class of evolutionary

stochastic optimisation algorithms (EAs). These methods are similar to DSMs in that

they do not require gradient information. They are, however, able to generate a Pareto

108
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front directly. Another advantage is that EAs can be easily implemented in parallel

[20, 123]: this could be an important property if a reduction in computational time is

desirable, as in the case of PSA design.

Genetic algorithms have been extensively applied for the multi-objective optimisation

of simulated moving beds (SMBs), a continuous countercurrent chromatographic sepa-

ration processes [134, 137]. SMBs processes have similar complexity to a PSA process,

described by PDAEs with comparable nonlinear behaviour. Therefore, we consider a

genetic algorithm for tackling the multi-objective design problem.

A theoretical background on evolutionary algorithms, of which genetic algorithms are

a subclass, is given in section 5.1. A simple multi-objective genetic algorithm has been

implemented in this work and it is illustrated in section 5.2. Although many well estab-

lished genetic algorithms are readily available to use, it has been preferred to implement

a “in–house” algorithm so as to help the reader, as well as the author of this thesis

who is not an expert in computational intelligence, to gain a better understanding of

these techniques. Another advantage of implementing an “in–house” algorithm is that

it allows a complete control on the parameters which regulate the optimisation process,

as explained in section 5.2. The performance of the algorithm is analysed in section 5.4,

and assessed against DSMs in section 5.4.1 for the optimisation of a Skarstrom cycle for

the production of N2 from air.

The multi-objective optimisation of a 4-bed/4-step VSA cycle for the separation of CO2

from flue gases is presented in section 5.5. For this case study, the focus has been into

replicating and potentially improving literature results, hence the section on CO2 starts

by comparing the results achieved by our model and the results described for the same

system in literature.

The aim of the multi-objective optimisation is not only to find the optimal trade-offs

between the objectives, but also to investigate the effect of the design variables on the

objectives so as to gain a better understanding of the separation process.

5.1 Evolutionary Multi-objective Optimisation

Evolutionary algorithms possess characteristics suitable for the solution of optimisa-

tion problems coping with conflicting objectives, and therefore they have been used for

multi-objective optimisation problems in the last decade [139]. The term “evolution-

ary algorithm” (EA) indicates a class of stochastic optimisation methods that simulate

the process of natural evolution. Evolutionary theory has been applied to engineering

processes since the mid 1950s, pioneered by the work of George Box [93]. The concept



Chapter 5. Multi-objective Optimisation 110

has been further investigated in the ’70s when genetic algorithms, evolutionary pro-

gramming and evolution strategies have been developed [139]. Starting from a given set

of candidate solutions, another candidate set is generated by modifying it according to

two criteria: selection (competition among the points) and variation (recombination and

mutation of the points). EAs are mostly effective when dealing with multiple conflicting

objectives and/or with intractably large and highly complex search spaces.

Suppose we have an optimisation problem with k > 1 objective functions, all to be

maximised and all equally important. The function to be optimised is f : X → Y , where

X ∈ Rn is the “decision space”, and Y ∈ Rk is the “objective space”. The solution to

the problem can be described by a decision vector x = [x1, x2, ..., xn] ∈ X. According to

the concept of Pareto dominance, in a maximisation problem an objective vector y1 is

said to dominate another objective vector y2 if no component of y1 is smaller than the

corresponding component of y2, and at least one component is greater. There might be

several optimal (dominating) objective vectors representing different trade-offs between

the objectives. The decision vectors corresponding to these optima are called Pareto set

X∗ ⊆ X, and their image in objective space is called Pareto front Y ∗ = f(X∗) ⊆ Y .

The outcome of multi-objective evolutionary optimisation is a set of mutually non dom-

inated solutions, or Pareto set approximation.

5.1.1 Evolutionary computation

The detection of the Pareto set can be very time consuming, and might even not be

feasible. Many stochastic methods have been proposed to overcome this limit and detect

a good approximation possible to the Pareto front: evolutionary algorithms, tabu search,

simulated annealing and ant colony optimisation [139].

An “evolutionary algorithm” is characterised by the following steps [139]:

• a set of candidates is maintained;

• a selection process is performed on such set (fitness assignment and sampling);

• several solutions might be combined to generate new solutions (recombination and

mutation);

• an environmental selection process is carried out to determine which solutions,

among the old and the new ones, are kept in the set of candidate solutions.
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The solution candidates are called “individuals”, while the set of solution candidates is

called “population”. The individuals of the population are often indicated to as chromo-

somes, and are defined by a set of parameters (or genes) which define a proposed solution

to the problem that the genetic algorithm is trying to solve. In a design problem, a chro-

mosome is a specific design points, and the genes that define it are the corresponding

values of the design variables. A chromosome is often represented as a simple string,

although a wide variety of other data structures are also used.

As described by Zitzler et al. [139], in the first step of the selection process, the fitness

assignment, a scalar value is assigned to each individual of the current population, which

reflects its quality according to its position in the objective space. In the sampling step,

a “mating pool” is created by randomly sampling the population according to the fitness

values. One possible and very common method for sampling is the “binary tournament

selection”: two individuals within the population are randomly chosen, and the one with

the better fitness value is sent to the mating pool. The process is repeated until the

mating pool is filled. The size of the tournament can be higher than two.

The variation operators are applied to the mating pool. There are two methods for

the variation: recombination and mutation. The “recombination” or “mating” operator

takes a certain number of individuals (parents) from the mating pool and generates a pre-

defined number of children by combining parts of the parents. The crossover probability

is associated with this operator to mimic the stochastic nature of evolution. Conversely,

the “mutation” operator modifies individuals by changing small parts in the associated

vectors according to a given mutation rate (e.g. (x1, x2, x3, x4) → (x1, x
′
2, x3, x4) ).

Due to the randomness of the process, some individuals in the mate pool might not be

affected by any variation.

The final step is the environmental selection which determines which individuals of the

old population and of the mating pool form the new population. Such selection can be

made by simply using the mating pool as new population. Otherwise it is possible, for

example, to combine both sets and deterministically choose the best individuals (the

fitter) for survival.

The above loop is repeated a number of times. Each loop iteration is called a “genera-

tion”. A common criterion for termination is to assign a predefined maximum number

of generations to investigate. Alternative stopping criteria might be stagnation in the

population or the existence of an individual with sufficient quality.

The best individuals of the last population are the outcome of the method, i.e. the

approximation found to the Pareto set. The goals which have to be achieved while im-

plementing the multi-objective evolutionary algorithm (MOEA) are to guide the search
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towards the Pareto set and to keep a diverse set of non-dominated solutions. The ap-

proximation to the Pareto set is made by the choice of a proper selection method and of

fitness values assignment. The maintainance of the diversity in the population generated

concerns the selection in general: we want to avoid that the population contains almost

identical solutions with respect to the objective and decision spaces. A third issue linked

with the implementation of the algorithm is elitism, which concerns the question of how

to prevent the loss of non-dominated solutions.

5.1.2 Fitness assignment

In a single-objective optimisation problem, the “fitness” of each point can directly coin-

cide with the value of the objective function itself. This is not the case for multi-objective

optimisation problems, where both fitness assignment and selection must take into ac-

count the multi-criteria nature of the problem. There are three main categories of fitness

assignment methods: aggregation based, criterion-based and Pareto-based [139].

The aggregation method consists of aggregating the objective functions into a parametrised

single-objective function: the parameters are systematically varied to find a set of non-

dominated solutions instead of a single trade-off solution. An example of this method

is MOEAs using weighted-sum aggregation, where the weights represent the parameters

which are changed during the evolution process.

The Criterion-based method uses alternatively only one of the the objectives during the

selection phase to decide which member of the population will be a parent for the next

generation.

The Pareto-based method uses the Pareto dominance to assign a value of “fitness” to

the individuals of the population. Three Pareto-based approaches to assign the fitness

are suggested by Zitzler et al. [139]:

• dominance rank: according to the number of individuals by which an individual is

dominated;

• dominance depth: the population is divided into several fronts and the depth

reflects to which front the individual belongs to;

• dominance count: number of individuals that the individual dominates.

In the aggregation method the fitness value assigned to each individual is independent

of other individuals, while in the other two methods such value is related to the whole

population.
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5.1.3 Genetic Operators

Each genetic algorithm is characterized by the mechanisms it uses to evolve the pop-

ulation of solutions from generation to generation. The most common operators used

by genetic algorithms are selection, crossover and mutation. An brief overview of these

operators, and their most common implementations, is provided in this section.

Selection The selection operator is responsible of choosing the individuals which will

be used as parents of the individuals of the next population via the mating and

mutating procedures. The selection is implemented so that the fitter the individual,

the higher the probability of its participation in the breeding process. The selection

procedure allows to exploit the genetic material contained solutions found at the

previous generation; however, precious information are not only contained in the

fittest individuals and so, to avoid stagnation, also less fit individuals should be

given a chance to participate to the generation of new individuals.

One of the less sophisticated selection methods is the truncation selection: the

candidate solutions are ordered by fitness, and a certain proportion p, (e.g. p=1/2,

1/3, etc.), of the fittest individuals are selected and reproduced 1/p times [83].

This procedure does not capitalise on the genetic material contained in the less fit

individuals.

A more sophisticated technique is the tournament selection, where a number k of

individuals are randomly selected to compete in a tournament won by the fittest.

The higher the size of the tournament k, the smaller the chance of weakest indi-

viduals to be selected. This allows to change the selection pressure in different

domains or at different stages of the evolution [84]. Furthermore, it is easy to code

and it is efficient for both non-parallel and parallel implementations [84].

Another selection method is the so called roulette-wheel selection [93], or fitness

proportionate selection: the probability of an individual to be selected is propor-

tional to its fitness level. The selection process is similar to a roulette wheel, where

the amount of space allocated to each individual depends on their relative fitness.

The fitnesses values are normalised and a random selection of numbers from the

range found determine which individuals are selected. Some individuals could be

selected more than once as the process is repeated until the mating pool has been

filled. Although the procedure favours the selection of the fittest individuals in the

population, there is always a probability of the weakest individuals to be selected

as well.
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Despite being more sophisticated than the tournament selection, the latter is often

preferred because it can be implemented more easily, has less stochastic noise and

has a constant, and adjustable, selection pressure [84].

Crossover The crossover operator allows to share information between individuals of

the population: it usually combines the features of two individuals to generate two

offspring. The combination might allow to generate better individuals. Hence,

the crossover is the operator that exploit the genetic material contained in the

population. Different crossover mechanisms have been proposed in literature, and

a review of the different approaches is proposed by Herrera et al. [46].

Let us suppose that the crossover operator has two be applied to two individuals

C1 = (c1
1, . . . , c

1
m) and C2 = (c2

1, . . . , c
2
m), where m is the number of genes of

each chromosome. The Simple crossover operator randomly selects a position

i ∈ 1, . . . ,m− 1 and builds two new chromosomes as follows:
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Another form of crossover is the two-point crossover. In this case two positions

i, j ∈ 1, 2, . . . ,m− 1, with i < j, and the segments of the parents defined by i and

j are exchanged:
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1
2, . . . , c
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In the uniform crossover two offspring are created, Hk = (hk1, h
k
2, . . . , h

k
m), for

k = 1, 2. The value of each gene of the offspring is determined by a random uniform

choice of the values of the genes in the parents, with the following procedure:

offspring is determined by a random uniform choice of the values of the genes in

the parents, with the following procedure:

hki =

{
c1
i if u = 0

c2
i if u = 1

More complex crossover schemes are available in literature (e.g. arithmetical,

geometrical,linear, dynamic etc.) and details of their implementation can be found

elsewhere [46, 120].
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Mutation By means of the mutation operator, individuals (chromosomes) off the mat-

ing pools are modified by changing small parts in the associated vectors (genes):

e. g. (x1, x2, x3, x4)→ (x1, x
′
2, x3, x4).

Within an EA, the mutation operator is defined by the size of the change it applies

to a variable (mutation step) and by the probability at which mutation occurs

(mutation rate). The are two main approaches to define the mutation step and

rate in an algorithm [120]:

• The two parameters are kept constant during the whole evolutionary run.

This is usually the case for mutation of both real and binary variables.

• One or both parameters are adapted depending on previous mutations. This

approach is usually applied to mutation step–sizes in the area of evolutionary

strategies.

Some of the most common mutation strategies are cited by Sumathi et. al. [120]:

Boundary The mutation operator replaces the value of the chosen gene with

either the upper or lower bound for that gene (chosen randomly).

Non-Uniform This mutation operator increases the probability that the amount

of the mutation will be close to 0 as the generation number increases. It

avoids the stagnation of the population at an early stage of the evolutions,

and lets the genetic algorithm to fine tune the solution at a later stage.

Uniform This mutation operator replaces the value of the chosen gene with a

uniform random value selected between the user-specified upper and lower

bounds for that gene.

Gaussian In this case, the operator adds a unit Gaussian distributed random

value to the chosen gene. The new gene value is accepted only if it falls

within the user-specified lower or upper bounds for that gene.

5.1.3.1 Diversity Preservation

The most common method implemented to preserve the diversity of the population is

to decrease the possibility of survival of an individual as its neighborhood is more dense

with points. The estimation of the density can be carried out using statistical methods

for density evaluation, as the Kernel methods [139].

The Nearest neighbour techniques evaluate the density taking into account the distance

of the point from its nearest neighbour. Histograms estimate density by defining a grid

to identify the neighbourhood: the density around an individual is simply estimated by
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the number of individuals in the box. The grid can be defined a priori, or designed ad

hoc for the problem of interest. A comparison of the strengths and weaknesses of the

three methods has been carried out by Silverman [112].

5.1.3.2 Elitism

Elitism addresses the problem of losing good solutions during the optimisation process

due to random effects [139]. In a single objective EA, elitism is implemented by simply

retaining the best individual from the current generation to the following. In multi-

objective problems, implementing a procedure to avoid losing best individuals is more

complex, yet necessary to ensure convergence of the algorithm [20]. There are two main

ways to avoid this problem. The new population (obtained from the mate pool after

variation) might be added to the old population, and then a deterministic selection

procedure can be carried out. The second way is to create a population which works

as an archive for all the promising solutions in the population at each generation. The

archive can be either kept separated from the algorithm or archive members can be used

in the selection process. If an archive is kept, it comprises only the approximation to the

Pareto set, while the dominated points are deleted from the archive. Usually dominance

is not the only criterion to be taken into account, but also diversity is estimated to

further reduce the number of solutions to store.

A possible problem arising when combining dominance and diversity to select the mem-

bers of the archive is “deterioration”: solutions contained in the archive at generation t

might be dominated by solutions which were in the archive at time t′ < t, and have now

been eliminated.

5.1.4 Exploration versus exploitation

As it became apparent in the previous sections, a genetic algorithm explores the search

space and exploits the previously found genetic material throughout its search for better

solutions. The choice of the genetic operators, and the balance among them, is critical

for the success of the algorithm.

The correct balance among the different operators varies largely on the problem of

interest, in particular on its modality (number of local optima present within the fitness

landscape) and the relative position of the local optima [93]. If many optima exist

it is appropriate to choose high crossover and mutation probabilities to encourage the

exploration of the design space and to avoid premature convergence. Elitism, on the

other hand, might lead to convergence to local optima prematurely.
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In many cases the knowledge of the modality of the problem is not known or could be

computationally difficult to acquire. In this case it is suggested to favour an exploratory

approach at the beginning of the search, and subsequently encourage exploitation as the

search proceeds [93]. Fine-tuning the GA parameters is one of the major drawbacks of

evolutionary computing when dealing with problems characterised by multiple criteria,

high modality and high dimensionality. However, if the designer is not interested in

obtaining global optimal solution, as it is often the case, GAs are a powerful methods

to explore the design space and identify “better” solutions within the time constraints

[93].

5.1.5 Performance of Multi-objective Evolutionary Algorithms

The performance of a MOEA can be assessed either theoretically, by analysis, or empir-

ically, by simulation.

The limit behaviour of a MOEA needs to be discussed to assess its performance, in term

of the convergence properties of the algorithm. The limit behaviour of an algorithm

addresses the question of what the algorithm can achieve when unlimited time resources

are available.

A broad definition of convergence for MOEA, as given by Zitzler et. al. [139], is that

a MOEA is called “globally convergent” if the sequence of Pareto front approximation

A(t) it produces converges to the true Pareto front Y ∗ while the number of generations t

goes to infinity. Because of memory constraints, in real application a global convergent

algorithm will find a subset of the Pareto front: A(t) ∈ Y ′ ⊆ Y ∗.

There are two conditions to be satisfied for the convergence of single-objective optimi-

sation algorithm [139]:

1. an elitism selection rule, which ensures that an optimal solution is not lost and no

deterioration can occur;

2. A strictly covering mutation distribution, which ensures that any solution x
′ ∈ X

can be produced from every x ∈ X by mutation with a positive probability;

A proper choice of the mutation and recombination operations can easily guarantee

the fulfillment of the mutation condition. On the other hand, the selection rule can-

not be applied as easily to the multi-criteria case since comparing two solutions is a

multi-dimensional optimisation problem might not be straightforward. If too many

non-dominated solutions arise than can be stored in the population, some have to be
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discarded. This environmental selection strategy determines whether an algorithm is

convergent or not. In order to eliminate the danger of deterioration and to guarantee

convergence, it is necessary to discard a solution only to replace it with a dominating

alternative. This criterion can ensure a sufficient monotonicity in the sequence in which

the solutions are found.

5.1.5.1 Quality assessment of a Pareto set approximation

The quality of an algorithm is evaluated both in term of computational efficiency (which

can either be evaluated in terms of number of fitness evaluation or of running time

on a particular machine) and in terms of quality of the outcome. In the latter case,

there is a difference between single- and multiple- objective optimisation. While in the

former case, if we are minimising, the smaller of two solution will be the best one, the

comparison between two Pareto fronts is less straightforward. However, the concept of

Pareto dominance can be used for the task. The solution can still be complicated when

we want to compare two sets of solutions: some solutions in either set may be dominated

by solutions in the other set, while others may be incomparable. Other aspects are also

important to assess the quality of a Pareto set, such as wideness of the range of solution

covered. Graphical plots have been often used to compare the outcomes of different

MOEAs.

Quantitative ways to compare two Pareto sets are available, and are described in [139,

141].

It is possible to characterise a Pareto set approximation by using some numbers which

can describe its quality in a rough way. Some examples of such numbers are:

1. generational distance measure, which gives an average distance of the objective

vectors in the Pareto front under consideration to the closest optimal objective

vector ;

2. hypervolume measure, which considers the volume of the objective space domi-

nated by a Pareto front approximation;

However, a study by Zitzler et al. [141], proved the limitation of unary quality measures

to make a good comparison between two algorithms. On the other hand, they indicate

that binary quality measures, if properly designed, are capable of indicating whether a

Pareto set approximation, S, is better than another, T . For example, a binary ε- quality

measure can be defined on the basis of the concept of ε- Pareto dominance [139]:
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1. Binary ε- quality measure: Let S, T ⊆ X. Then the binary ε- quality measure

Iε(S, T ) is defined as the minimum ε ∈ R such that any solution b ∈ T is ε-

dominated by at least one solution a ∈ S:

Iε(S, T ) = min{ε ∈ R| ∀b ∈ T ∃a ∈ S : a �ε b}

A solution a is said to ε-dominate a solution b for some ε > 0, and it is indicated with

a �ε b, if

ε ai ≥ bi ∀i ∈ 1, . . . , n

where n is the number of objectives.

From the previous definitions we can deduct that:

• whenever Iε(S, T ) < 1 , all the solutions in T are dominated b a solution in S;

• if Iε(S, T ) = 1 and Iε(T, S) = 1, then S and T represent the same Pareto front

approximation;

• if Iε(S, T ) > 1 and Iε(T, S) > 1, then S and T are incomparable, e.g. both contain

solutions not dominated by the other set.

5.2 A multi-objective genetic algorithm (MOGA) proce-

dure for the design of PSA cycles

In the introduction to this chapter, the paucity of alternatives for the multi-objective

optimisation of PSA processes has been noticed. In this section a multi-objective ge-

netic algorithm (MOGA) is introduced to test the ability of genetic, and more widely

evolutionary, algorithms to efficiently address the multi-criteria design of a given PSA

cycle in the design space defined by its operating variables. The aim is to obtain a set of

optimal trade-offs between multiple objectives, the Pareto front. Valuable information

can be extracted from the optima found, not only regarding the degree of separation

achievable, but also about the individual and combined effect of the design variables on

the objectives. The interest of the designer is to obtain from the optimisation procedure

information about the extremes of the Pareto front: the points which maximise recovery

and purity, respectively. Such information supports decision-making early in the design

stage. Accordingly, the MOGA implemented in this work has been specifically designed

to extend the breadth of the Pareto front.
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The goal, for our specific design problem, is to generate as broad a Pareto set as possible,

stretching the end points to identify the extremes of the trade-offs between the criteria

to give the engineer sufficient information to make design decisions early in the design

process [139]. In section 5.2.1, a brief overview of how desire has been addressed in

literature is provided.

As mentioned earlier, a “in–house” algorithm, MOGA, has been implemented in this

work as a learning exercise, as well as to facilitate both the customisation of the fit-

ness function and the investigation of the relative importance of the different genetic

operators. The MOGA is introduced in section 5.2.2.

5.2.1 Overview of well established genetic algorithms

Schaffer [110] presented a Vector Evaluated Genetic Algorithm (VEGA), designed to

solve machine learning problems [20]. In this algorithm, a population is subdivided

into subgroups, governed by different objective functions. Since the search directions of

VEGA are exclusively parallel to the axes of the objective space, the algorithm is able

to find mainly the extreme solutions on the Pareto front. A Niched Pareto algorithm,

proposed by Horn et al. [50], incorporates the concept of Pareto domination in the

selection procedure and spreads the population along the Pareto front by applying a

niching pressure. Murata et al. [85] presented a MOGA with variable direction search,

which uses a weighted sum of multiple objective functions to formulate a scalar fitness

function. They compared the MOGA with the VEGA [110] and the Niched Pareto

algorithm [50], showing that the VEGA outperforms the other two algorithms in the

detection of points belonging to the extremes of the Pareto front, while failing to de-

tect points at intermediate positions. Deb [26] presented a steady-state multi-objective

evolutionary algorithm (MOEA) which attempts to maintain the spread while converg-

ing to the Pareto front. However, no proof of convergence for the method has been

provided. Subsequently, Laumanns and co-workers [72] proposed an algorithm which

caters for convergence to the Pareto optimal set while aiming to cover the whole range

of non-dominated solutions, based on the concept of ε-dominance. Laumanns et al. [73]

analysed the performance of different algorithms using a volume based approach (cf.

[140]), with some modification: a reference volume between the origin and an utopia

point – defined as the profit sums of all items in each objective – is taken into account.

The aim is to minimise the fraction of that space which is not dominated by any of the

final archive members. This is considered by the authors the most appropriate scalar

indicator since it combines both the distance of solutions (towards the utopian trade-off

surface) and the spread of solutions. Density based selection can further improve the

algorithm performance by a broader distribution of solutions along the trade-off surface.
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Herrero et al. [47] presented the ���ε-MOGA method, designed to achieve a reduced but

well-distributed representation of the Pareto front. The algorithm adjusts the limits of

the Pareto front dynamically, preventing the loss of solutions which belong to the ends

of the Pareto front.

In SPEAs (Strenght Pareto Evolutionary Algorihms) both an archive with the old pop-

ulation and the regular population are maintained. Fitness values are assigned to both

the population and the archive [139, 140]:

1. Each individual i in the archive is assigned a strength value S(i) ∈ [0.1), which at

the same time represents its fitness value F (i). S(i) is the number of population

members j that are dominated by or equal to i with respect to the objective values,

divided by the population size plus one.

2. The fitness F (j) of an individual j in the population is calculated by summing the

strength values S(i) of all archive members i that dominate or are equal to j, and

adding one at the end.

As a consequence, the algorithm has the drawback that individuals dominated by the

same number of archive members have the same fitness value. Hence, when the archive

contains only one individual, all population members have the same rank, indipen-

dently of their relative position. An improved version of SPEA has been implemented,

called SPEA2, where to allow two points dominated by the same archive members have

identical fitness values, SPEA2 takes into account both the dominating and dominated

solutions. A raw fitness is calculated according to the strength of its dominators in both

archive and population, while in SPEA only aarchive members are considered at this

point. Although the raw fitness assignment provides a mechanism based on the concept

of Pareto dominance, it may fail when most individuals do not dominate each other.

Density information are used to discriminate between individuals with the same raw

fitness value. The density at any point is a decreasing function of the distance to the

k-th nearest data point.

NSGA-II (nondominated sorting genetic algorithm II) is a nondominated sorting-based

multiobjective EA (MOEA), originally proposed by Deb et al. [27]. It was proposed

to address three common weaknesses of multi-objective evolutionary algorithms (EAs)

that use nondominated sorting and sharing

1. O(MN3) computational complexity (where M is the number of objectives and N

is the population size);

2. nonelitism approach;
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3. the need for specifying a sharing parameter.

NSGA-II uses a fast nondominated sorting approach with O(MN2) computational com-

plexity. A selection operator creates a mating pool by combining the parent and offspring

populations and selecting the best (with respect to fitness and spread) N solutions. The

definition of dominance is changed to solve constrained multiobjective problems effi-

ciently. Once the population is initialized, it is sorted based on non-domination into

each front. The first front consists of the nondominated points in the current popula-

tion, the second front consists of points dominated only by the individuals in the first

front, and so forth. The fitness of each individual is based on the front to whom it

belongs. Individuals in first front are given a fitness value of 1 and individuals in second

are assigned fitness value as 2 and so on. In addition to fitness value, a new parameter

called “crowding distance” is calculated for each individual. The crowding distance is a

measure of how close an individual is to its neighbors. Large average crowding distance

will result in better diversity in the population. Parents are selected from the popu-

lation by using binary tournament selection based on the rank and crowding distance.

An individual is selected in the rank is lesser than the other or if crowding distance is

greater than the other 1. The selected population generates offsprings from crossover

and mutation operators. The NSGA-II used in this thesis has been can be found in

[111]. It applies the “Simulated Binary Crossover” (SBX) operator for crossover and

polynomial mutation. Further details can be found in [111].

5.2.2 MOGA

The implementation of a genetic algorithm for any new problem requires the definition

of the following elements: a representation of (hopefully) feasible solutions, the crossover

and mutation operators, a selection procedure together with an appropriate fitness func-

tion, and the properties of the evolution of the population. For the MOGA used in this

work, the solution representation consists of real-valued design variables. A multi-point

crossover operator is defined and mutation consists of selecting a single design variable

and assigning it a randomly chosen value from the domain for that variable. A tourna-

ment selection with a tournament size of 2 has been used. The population policy is one

of replacement with elitism.

The key property of the MOGA used, specific to this problem, is the definition of the

fitness function. Two key requirements can be extracted from the previous works. First,

the need for an elitism operation which ensures that the extreme points are not lost in the

evolutionary procedure. Second, that there be a driving force to extend the Pareto set

outwards. Our approach is based on elitism applied to the whole Pareto set (subject to
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size constraints mentioned below) combined with a fitness function chosen to emphasise

points that may have genetic material that could extend the Pareto set at the extreme

ends.

In our MOGA, elitism is implemented by copying over the complete Pareto set from

the old population to the new, from generation to generation. The only qualification is

that if the Pareto set is the whole population, only half of the members of the Pareto

set, chosen with a binary tournament selection procedure, are copied over to the new

population intact.

The fitness of a design point in the population is based on a modified measure of the

distance of that point to the approximation to the Pareto front. Solutions with lower

values are fitter. For our design problem, with two criteria, the distance of a dominated

point to the Pareto front approximation is the minimum of the distance of that point

to each of the points in the Pareto set and the distance to infinite projections from the

end points parallel to the two axes. The aim of the latter is to give emphasis to those

solutions which may be far from any points in the current Pareto front approximation

but which may help in generating new solutions that would extend the breadth of the

Pareto front. The procedure to assign the fitness is illustrated in fig. 5.1.
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Figure 5.1: Illustration of the procedure to assign the fitness.

5.2.3 Implementation of the MOGA

In this section, a detailed description of how the MOGA has been implemented is pre-

sented. The goal is the simultaneous maximisation of the objectives (e.g. recovery and
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purity) contained in a vector z. Each design point is as well represented by a vec-

tor, whose elements correspond to the values of operating variables, such as cycle time,

pressure levels and so forth.

INPUT:

a = lower bounds for the value of the decision variables;

b = upper bounds for the value of the decision variables;

x0 = initial guess: we indicated 1 design point, corresponding to a feasible solution, as

initial guess for our search;

cr = crossover rate, 0 ≤ cr ≤ 1;

mr = mutation rate, 0 ≤ mr ≤ 1;

n = population size;

ne = n/2 elite size;

ng = number of generations;

ts = 2, tournament size.

OUTPUT:

Pareto solutions of the multi-objective design problem. This set is represented by two

arrays, one for the design points, or Pareto set, e.g. x = {x1, x2, . . . , xl} and one for

the objective function values for these points, or Pareto front, e.g. z = {z1, z2, . . . , zl},
where l ≤ n. The total number of function evaluations is also returned to help evaluate

performance.

STEP 1: Create initial population

The initial population consists of x0 and n-1 randomly created design points, bounded

between the extremes a and b. Before a point is added to the population, a diversity

check (DIVERSE) is done: a design point can be added to the population if it differs by

some minimum Euclidean distance from all the points already in the population. Such

check aims at ensuring a certain spread of the solutions along the Pareto front.

END OF STEP 1

STEP 2: Evolve the population

For ng times a new population will be created.
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STEP 2, I. Fitness: Evaluate Fitness of the actual population

The first step to evaluate the fitness is to detect the non-dominated points within the

population: a point x1 dominates x2 if z1 ≥ z2 for all the objective function values and

z1 > z2 for at least one objective function value. The set of non-dominated points is the

current approximation to the Pareto set.

For all points of the population the fitness value is inversely proportional to the distance

from the approximation to the Pareto front. However, if a point is nearer to the infinite

projections from the extreme of the Pareto front parallel to the axes, such distance is

used to estimate its fitness. The purpose of this definition of fitness is to give a better

chance of survival to those points which could help to broaden the extent of the Pareto

front.

STEP 2, II: Selection

To start with, the Pareto set from the previous iteration is copied over to the next

population, as a form of elitism. Should the old Pareto set have already n individuals,

we would not have any room to add new individuals. In this case,only ne = n/2 solutions

are copied to the next generation. To halve the population we use a tournament selection

procedure of size 2. For ne times, two random points are picked within the population,

and only the fitter one is copied over to the next generation.

STEP 2, III: Genetic operations

While the size of the new population is smaller than the desired one (n), new individuals

are generated according to the procedure illustrated in algorithm 5.1. To perform the

MATING operation on x1 and x2, the two points are combined to obtain two new points.

To mutate an individual x1, only one of the values of the decision variable of x1 is varied:

e.g. x1 = [x1, x2, . . . , xl] → [x1, x
′
2, . . . , xl]. A stochastic procedure is used to choose

which element of Which of the elements of x1 is to be changed.

END OF STEP 2

Some considerations on the effect of the variables of the MOGA are needed. The higher

cr and mr the more likely are genetic modifications to happen and the more “new genetic

material” is going to be added. As a consequence the search becomes more random, as

less information are kept from generation to generation. A certain amount of change is
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Algorithm 5.1 How to add new individuals to the population

while The size of the population is smaller than n do
SELECT two points of the population, x1 and x2;The selection procedure consists
of picking two random points of the population and choosing the fittest of the two
1. Generate a random number, 0 ≤ r ≤ 1.
if r < cr then

Create two new points by MATING x1 and x2

Call the new points x1 and x2

end if
2. Generate a random number, 0 ≤ r ≤ 1
if r < mr then

Create a new point by MUTATING x1

Call the new point x1

end if
if x1 is DIVERSE enough then

Add x1 to the population
end if
3. Generate a random number, 0 ≤ r ≤ 1.
if r < mr then

Create a new point by MUTATING x2

Call the new point x2.
end if
if x2 is DIVERSE enough then

Add it to the population
end if

end while

desirable to explore satisfactorily the design space, but an excessive randomness might

hinder the evolution towards better results. The optimal values of cr and mr are very

specific to the problem of interest.

The search for optimal solution stops when a certain number of generations (ng) has

been performed. As a consequence, the higher ng the higher the chances of getting a

better approximation to the Pareto front, but the higher the computational expenses.

In the proximity of the Pareto front, there will be a lower advantage in increasing ng at

a high computational cost: as a consequence a trade-off value for this parameter has to

be detected.

The bigger the size of the population n the more likely is to find a good spread of

solutions along the Pareto front, and the better the approximation to the Pareto front.

Also the reliability of data seems to improve. Such improvements are paid by higher

computational costs.

The analysis of the performance of the MOGA is carried out in the remainder of this

chapter.
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5.3 Multi-objective optimisation of PSA cycles in litera-

ture

Ko and Moon [63] proposed a modified summation of weighted objective functions

(mSWOF) method for the multi-objective optimisation of a small TSA cycle for the

purification of a ternary mixtures of benzene, toluene, and p-xylene and of a RPSA cycle

for air separation to produce oxygen. They used a black-box approach within gPROMS.

The advantages of the proposed mSWOF, over the conventional SWOF method, are the

ability to find a uniform spread of Pareto points, including the nonconvex parts of the

Pareto set, and to perform sensitivity analysis. The limitation of the mSWOF method

is that since the objectives are optimised independently, the extension of the method

to more than two objectives is likely to be non trivial. Furthermore, Ko and Moon

considered only the LDF (linear driving force) approximation to mass transfer, so no

evidence of the feasibility of the method with more complex models has been shown.

Sankararao et al. [109] considered a simple Skarstrom cycle operating among two beds.

The operation taken into account is air separation for O2 production on a zeolite 5A.

The optimisation technique used is the “modified MOSA-aJG”: MOSA-aJG is an ex-

pansion of the simple simulated annealing (SSA) for multi-objective optimisation, where

“MOSA” stands for multi-objective simulated annealing, and “aJG” is a jumping-gene

(JP) adaptation of the MOSA. The simulation uses a detailed diffusion model for mass

transfer. However, this simulation has the handicap that it needs to be tuned on exper-

imental data. This represents a big limit to the range of problems that this approach

can tackle. The strategy used in the article to detect the performance at cyclic steady

state (CSS) is the successive substitution, which, together with the detailed simulation,

requires a long simulation time (24h on a Pentium 4, 2.99 GHz [109]).

Three different multi-objective optimisation problems are taken into account in [109],

considering 2 or 4 objective functions, chosen among purity and recovery of the two

components (N2 and O2) in the raffinate and in the extract at CSS. Although the

optimisation method used is stochastic, the results in the article are not accompanied by

any statistical analysis on the performance of the optimiser and it is therefore impossible

to know what to expect from this method in general.

In the next sections, the optimisation of the two case studies introduced in chapter 3

is carried out using MOGA. The performance of the optimisation approach is tested

against random search and direct search methods. A statistical analysis is carried out

to investigate the effect of the tuning of the genetic operators.
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5.4 N2 Case Study: Analysis of MOGA Performance

The problem we would like to solve is the simultaneous optimisation of the recovery

and purity of the desired product. For the N2 case study, the design problem can be

formulated as follow:

max
tc, rs, Fin, S

Recovery & Purity at CSS

s.t.

Evaluation of the model at CSS;

Pressure < 7atm;

(5.1)

The recovery of N2, eq. 4.5, is defined as the fraction of N2 in the product stream, Fprod,

with respect to the amount fed to the system over the cycle.

The purity is given by the concentration of N2 in Fprod and is evaluated by the following

integral:

purityN2
=

∫
tads

(Fprod yN2) dt

tads∫
0

Fprod dt

(5.2)

There are 4 design parameters: tc ∈ [15, 250] s is the cycle time which defines the

duration of the four steps, rS ∈ [0.20, 0.85] the split ratio, described in section 3.3.1,

Fin ∈ [15, 100] mol/s the inlet flow rate and S the schedule, S. The constraints for the

optimisation problem are the evaluation of the PDAEs to CSS and a maximum value of

the high pressure, PH < 7 atm. If a design point violates the pressure constraint, the

corresponding values of purity and recovery are set to 0.

The investigation carried out in the previous chapter showed that the objective function

is non-smooth and non-convex. Interestingly, also the design space in non-convex, as

shown below. Let us consider two design points, x0 = [231.9, 0.84, 65.3, 44.5] and x1 =

[123.2, 0.33, 29.9, 21]. As we move from x0 to x1 in the design space, the values of all

the design variables (tc, rS , Fin and S) decrease, while tpress increases from 12.75 to

35.7 s. As Fin decreases, the value of PH decreases as well. Conversely, the increase of

tpress makes the pressure increase. As a result, the value of P has a maximum as we

move in the space from x0 to x1. The value of this maximum is 7.37, above the Pmax

imposed as a constraint. Hence, there will be a non-feasible region in the area around

this maximum which corresponds to a non-convexity in the design space, as shown in

fig. 5.2.
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Figure 5.2: As we move from point x0 to point x1 in the design space, the pressure
assumes values which violate the constraint on the maximum pressure allowed, hence

generating a non-convexity in the feasible design region.

Another important characteristic of the problem is the computational demand of the

simulation. The models proposed in Chapter 2 are detailed enough to describe the

behaviour of the PSA operation, yet less computationally demanding than a full col-

umn simulation. A number of 6 CSTRs has been used to simulate each bed. However,

the evaluation of the objectives still makes the optimisation problem complex, possibly

requiring several minutes of computation for a single evaluation, depending on the re-

sources available and the particular case study considered. To give an indication of the

computational demands for this design problem, an objective function evaluation, based

on convergence to cyclic steady state requiring, on average, 6 cycles, takes approximately

90 s on a 2.8 GHz Pentium processor.

The data presented in fig. 5.3 have been generated using the values summarised in Table

5.1. Fig. 5.3(a) illustrates the initial and final Pareto sets for a typical run. The initial

set is from the initial randomly generated population and, in this case, consists of 6

points. The final Pareto set has 36 points, evenly distributed across the front, out of a

population of 40. We see an improvement when compared with the initial set, across the

front, not just in objective function values but also in the breadth of this approximation

to the front.

The effectiveness of the multi-objective optimisation procedure in searching the objective

function space is shown in fig. 5.3(b). The figure shows a fairly even distribution

of points across the two criteria with an increasing density towards the Pareto front.
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(a) Representative initial and final Pareto sets.
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(b) A graphical representation of all the design points generated during the search with
the initial population highlighted and the final Pareto front approximation drawn. In
the initial population of 40 individuals, only 16 were feasible (P <7 atm). The unfeasible
points are not shown as the values of their objectives (purity and recovery) is set to 0.

Figure 5.3: Analysis of the performance of the multi-objective genetic algorithm. All
the parameters used are listed in Table 5.1.
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Figure 5.4: Average performance of 10 optimisation runs. All the parameters used
are listed in Table 5.1.

More importantly for our design goals, when the full set of design points generated is

compared with the initial random population generated by the MOGA procedure, the

fitness function defined above has been effective in generating a broad Pareto front which

helps the engineer gain a better understanding of the trade-offs involved.

Table 5.1: Parameters used in MOGA

Crossover rate cr 0.7
Mutation rate mr 0.1
Population size n 40
Number of generations ng 50
Tournament size 2

As genetic algorithms are stochastic, the assessment of the performance of the MOGA

requires a statistical analysis of the results. For every given set of parameters, the

average Pareto fronts and the standard deviations have been determined by performing

a Gaussian progress regression [100] of 10 Pareto fronts. We obtained a good fit to

our data (the Pareto fronts generated) by using as a covariant function the sum of a

Matern covariance function with a shape parameter of 3/2 and an independent noise.

The process is illustrated in fig. 5.4, generated using the set of parameters in Table 5.1.

This analysis allows us to gain an insight on the effect of the different parameters of

the MOGA on both the average Pareto front obtained, as well as on the dispersion of

the data. In the course of this analysis, only average Pareto fronts obtained through

regression will be shown, unless the standard deviation is significant for the analysis. The

parameter values used are those in Table 5.1, unless otherwise noted. This statistical

approach has been used to compare the performance of MOGA and DSMs (section
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5.4.1), and to study the effect of the parameters of the MOGA on the resulting Pareto

front (section 5.4.2).

5.4.1 Comparison between MOGA, random search and Direct Search

Methods
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Figure 5.5: Comparison between the Pareto front obtained with 600 random evalu-
ations and the Pareto front obtained with the same number of evaluation by MOGA

(with ng=30 and n=40 and other parameters as in Table 5.1).

The capability of the MOGA to efficiently detect the Pareto front has been assessed

by comparison with random search and DSMs. The aim of the comparison with a

random search algorithm is to verify that the evolutionary procedure implemented in

the MOGA proposed (i.e. definition of fitness evaluation, selection, mating and mutat-

ing procedures) is effective. A random search algorithm has been included also in the

comparison among evolutionary algorithms proposed by Zitzler et al. [138].

The average Pareto fronts obtained with MOGA (averaged over 10 runs, using ap-

proximately 600 evaluations each) have been compared to the average of 10 sets of

non-dominated points, obtained from 10 sets of 600 randomly generated points. The

results are presented in fig. 5.5. The Pareto front obtained with the MOGA shows a big

improvement with respect to the homologous random one, and a larger number of non-

dominated points is detected by the MOGA. The performance of the two methods in

the high purity region is comparable, with a slight dominance of the solutions found by

the random search: this shows that it is easier to detect solutions with high purity/low

recovery and the impact of the evolutionary procedure in this area is less crucial.
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Figure 5.6: Comparison of the average performances of MOGA and DSMs
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Figure 5.7: Comparison of the average performances of MOGA and Nelder & Mead,
regular simplex

We also compared the performance of the MOGA and of some standard DSMs for the

solution of our multi-criteria problem. We compared the performance of these two classes

of optimisers to verify that evolutionary algorithms are effectively the best option for

the case of interest. Although a better performance by the MOGA could be considered

predictable, there are cases reported in literature [82] where the performance of a genetic

algorithm and a DSM are comparable.

DSMs were originally designed to solve single objective problems. Hence, it is necessary

to combine the two objectives to be maximised, i.e. recovery and purity, into a single

objective function. The combined expression must allow a different weight to be given
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Figure 5.8: Comparison of the best performances of the DSMs and MOGA (with n
100, ng 30 and other parameters as in Table 5.1).

to each objective so that different trade-offs between the two variables can be optimised.

The composite criterion to be maximised has been expressed as:

f(x, λ) = f1(x)− λ (f1(x)− f2(x)) (5.3)

where 0 ≤ λ ≤ 1, and x represents the vector of design variables. In this case, f1

is the recovery of N2, and f2 the purity. The methods used were Nelder and Mead,

with both regular and right simplex, alternating directions and multidirectional search

[60]. As DSMs are deterministic methods, we used a statistical procedure to assess

the performance of each direct search algorithm different from the procedure used for

the MOGA. We randomly selected ten points within the feasible region of the design

problem, e.g. x0,i, where i = 1, ..., 10. Starting from these points, each of DSM has

generated a Pareto front by optimising the function f , eq. 5.3, with λ varying from

0 (maximisation of recovery) to 1 (maximisation of purity), with regular increment of

0.05. The performance of every method is then given by the average of the 10 Pareto

fronts it generated, and the relative standard deviation.

As shown in fig. 5.6 and fig. 5.7, the average performance of MOGA is better than all

the four DSMs used. The comparison has been made between the average performance

of each method using a comparable number of function evaluations. This information

is summarised in Table 5.2. In all cases, MOGA achieved better results using a lower

number of function evaluations, which demonstrates the efficiency of the algorithm. In

fact, higher values of purity (for a given recovery) have been detected, and a larger

breadth of the Pareto curve has been achieved by MOGA. The distribution of points
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Figure 5.9: Comparison of the best performances of the DSMs and MOGA (with n
100, ng 30 and other parameters as in Table 5.1).

Table 5.2: Total number of function evaluations used by the different methods to
produce the Pareto fronts of figures 5.6,5.7,5.8 and 5.9. The parameters used by MOGA

for the comparison are as in Table 5.1 unless otherwise stated.

Method N Eval per Pareto

Nelder & Mead regular 286
Nelder & Mead right 1,916
Alternating Directions 12,190
Multidirectional Search 4,000
MOGA n 100, ng 30 1,800
MOGA n 100, ng 3 250

along the Pareto fronts generated by alternating direction methods and multidirectional

search methods is quite uniform, while the Nelder & Mead methods have generated more

points in the high recovery region. The comparison among the best results achieved

by the different methods shows that all the algorithms find an approximation to the

effective Pareto front, but the approximation of MOGA is more complete (figs. 5.8,

5.9). The difference between the average and the best performance of DSMs revealed

the sensitivity of DSMs to the starting point. As described before, we started each

method from 10 points randomly chosen within the design space. We obtained better

results in the high recovery region from starting points already belonging to that area,

and the same occurred for the high purity area. This means that a pre-knowledge of the

design space would be required to obtain a good approximation of the Pareto set with

any of DSMs, which represents a significant drawback with respect to MOGA.
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5.4.2 Impact of algorithm parameters

The parameters for the MOGA, e.g. the population size, mutation and crossover rates

and the number of generations, will have an impact on the quality of the approximation

to the Pareto front that we obtain.
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Figure 5.10: Influence of the number of generations (ng) allowed. Convergence is
reached in 35 generations.

We changed the parameters of MOGA one at the time, while keeping the others to the

values summarised in Table 5.1. As explained in section 5.4, only average Pareto fronts

obtained through regression will be shown, unless the standard deviation is significant

for the analysis.

Fig. 5.10 shows that as the number of generations (ng) increases, the Pareto front

improves till convergence, which is reached in 35 generations.

The effect of the mutation rate (mr) is illustrated in fig. 5.11: as the mutation rate

increases we get better results in the central area of the Pareto front, while the effect is

not clear at the extremes of the curve. We do not observe a direct effect of the mutation

rate on the deviation of the data.

The tournament size (ts) has no effect on the final performance of the algorithm in the

range of values investigated (i.e. ts=2, 4, 6). However, a slight difference in the rate of

convergence is noticeable in fig. 5.12, as at the same number of generations the Pareto
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Figure 5.11: Influence of the mutation rate (mr), with mr=0.01, mr=0.1, mr=0.2.

front detected with tournament size 4 dominates the other, and is more extended in the

high recovery region.

0 20 40 60 80
80

85

90

95

Recovery (%)

P
ur

ity
 (

%
)

 

 

ts2 ng25
ts4 ng25

Figure 5.12: Average Pareto front produced with tournament size 2, 4 at 25 gener-
ations.

The most influential parameter appears to be the size of the population (n) used: in fig.

5.13 as the size of the population increases the Pareto front is pushed further, while the

standard deviation of the data decreases (fig. 5.14).
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Figure 5.13: Influence of the population size (n), with n=20, n=40, n=60, n=100

As shown in fig. 5.15, increasing the size of the population we are able to investigate

more accurately the search space: although the same trends are indicated in fig. 5.15 (a)

and (b), the clumping of solutions is more evident in fig. 5.15 (a), whereas the solutions

found with a larger population are more distributed within the search space.

However, such an improvement is counterbalanced by a higher computational require-

ment: the number of function evaluations needed grows from an average of 950 with

n = 40, to 1410 with n = 60, to 2480 with n = 100 and ng = 50.

5.4.3 Comparison between MOGA and NSGA-II

The experience with the MOGA has been a preliminary investigation into the suitability

of multi-objective evolutionary algorithms for the design of PSA processes. The success

of this preliminary investigation now motivates us to investigate the use of existing and

validated evolutionary algorithms, such as NSGA-II. A description of NSGA-II can be

found in section 5.2.1.

The overall population, consisting of current population and current offsprings, is sorted

again based on non-domination and only the best N individuals are selected, where N

is the population size. The selection is based on rank and the on crowding distance on

the last front.
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Figure 5.14: Influence of the population size on the standard deviation from the
Pareto front

Results shown by Deb et al. [27] proved that NSGA-II, in most problems, is able

to find much better spread of solutions and better convergence near the true Pareto

front compared to Pareto-archived evolution strategy and strength-Pareto EA, two other

elitist MOEAs.

The NSGA-II has been implemented with a population size n=50, and ng=50 gen-

erations. For the crossover and the mutation probability, we used the default values

proposed by [111]. The crossover probability cr = 0.9 and mutation probability is mr=

1/d, where d is the number of decision variables. The problem as been run 10 times.

The number of function evaluation needed to perform the 50 generations is around 3500.

The performance of the two algorithms appear comparable, as shown in fig. 5.16, In

particular, NSGA-II appears equivalent or slightly dominant at the extremes of the

Pareto, while MOGA is dominant in the middle area of the Pareto.

5.4.4 Design problem analysis

Analysis of the Pareto sets identified in all the runs show clear clumping of the solutions.

This manifests itself in a parallel co-ordinate visualisation of the Pareto set shown in

fig. 5.15. In 5.15(b), although there are 72 solutions comprising the Pareto set, there
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Figure 5.15: Pareto set visualised using a parallel co-ordinate representation. Vari-
able domains and objective function value ranges have been normalised for presentation.
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Figure 5.16: Comparison between the average performance, obtained via Gaussian
regression of 10 Pareto sets, of NSGA-II (using n=50, ng=50, cr = 0.9 and mr= 0.25)

and MOGA (using n=50, ng=50, cr=0.9 and mr=0.1).

are only 9 distinct values of the cycle time, tc, and 8 for the feed flow rate, Fin. To

a lesser degree, the same clumping is observed for the split ratio, rS , and schedule,

S, design variables. Also apparent from the clustered intersection points for the lines

connecting the two criteria is the inverse relationship between these two criteria, as

expected. Overall, the results illustrate the complex relationship between the design

variables and the objectives for the design problem. There appear to be hyper-slices in

the 4 dimensional design space, defined by values of tc and Fin, which correspond to

families of good solutions for particular trade-offs between the two criteria. An almost

linear relationship between the two criteria is highlighted not only in the parallel co-

ordinate visualisation but also in the Pareto graph.

The cycle time ranges in ∈ [137, 248], rS ∈ [0.33, 0.82], Fin ∈ [30.5, 87.9] and the schedule

∈ [20, 44.5] %. While an almost linear relation holds between purity and recovery, no

design variable shows monotonic behaviour as the Pareto front is traversed.

We can compare our results with those presented by Hassan et al. [45]. They also

considered air separation on a molecular sieve using a 4-step Skarstrom cycle. To sum-

marise, the following trends have been described in[45] and observed in the results of

our optimisation runs:
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• As the split ratio increases, the recovery increases and the purity decreases. This is

as expected. The regeneration of the adsorbent (i.e. lower Fpurge) is less effective

with increasing split ratio. Also, the amount of product withdrawn, Fprod, increases

with the split ratio. The effect of the split ratio is exploited in a modified Skarstrom

cycle commonly adopted for air separation, where the purge step is eliminated (i.e.

rS = 1) to maximise recovery, while a pressure equalization step is introduced

to gain an optimal regeneration of the bed as well as to save compression work

[44, 108].

• Hassan et al. [45] explored the effect of the purge to feed ratio. This is equivalent

to looking at (1− rS)/Fin for our model. Again, we find agreement in our results:

as the purge/feed ratio increases, we get a lower recovery and a higher purity. This

is shown clearly in fig. 5.17.

Hassan et al. [45] investigated the effect of the schedule in a restricted range [75, 90] %

and they found no appreciable effect on the performance of the operation. In our case,

however, the use of detailed modelling and advanced computational tools has allowed a

wider range of S to be explored. We have observed that the longer the tads for a given

tc, the higher the recovery and the lower the purity.

Although we do not observe a monotonic relation between the cycle time and the objec-

tives, we do note that lower tc values correspond to lower recoveries and higher purities.

To some extent, peaks in tc correspond to valleys in Fin as the two variables balance out

to allow the pressure to satisfy the operating constraint.
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Figure 5.17: Influence of the Purge/Feed ratio on the objectives
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5.5 CO2 Case study

The second case study has been the simultaneous optimisation of CO2 recovery (R) and

enrichment (E) in the product, using MOGA. The recovery is evaluated as the number

of moles of CO2 in the product, divided by the number of CO2 moles entering the bed

during the adsorption step. The enrichment is the ratio between the concentration of

CO2 in the product, or purity, and the concentration of CO2 in the feed (15%): a maxi-

mum enrichment of 6.67 can be achieved, value of the ratio 100/15. The enrichment has

been used instead of the purity to facilitate the comparison with the results presented

by Reynolds et al. [101]. The configuration investigated is the 4-bed/4-step PSA cycle

introduced in section 3.2, originally proposed by [101]. The only constraint is the eval-

uation of R and E at cyclic steady state (CSS), which implies the dynamic simulation

of the operation as described in chapter 2.

The analysis of the cycle has been made in the 4-dimensional design space defined by

the same parameters used in [101]. The parameters are the purge-to-feed ratio (γ), the

cycle time (tc), the pressure ratio (πT = PH/PL) and throughput of the operation (θ).

θ is defined as the amount of feed fed to one reactor during the adsorption step (step I)

divided by the cycle time and the mass of adsorbent in one bed. It is worth noting that

θ, defined by eq. 5.4, is indeed independent of the cycle time as the feed inlet, Fin, is

constant.

θ =

tads∫
0

Findt/tc Vbed (5.4)

The value of the high pressure has been kept constant, to the value of 1.36atm [101].

Hence, the value of πT varies only in dependence of PL.

According to our model, the independent variables that can be accessed are the value of

the inlet feed rate (Fin), the cycle time tc, the value of the low pressure PL and the value

of the split ratios. Hence, it has been necessary to express the independent variables of

the model as a function of the variables used in [101], i.e. γ, πT = PH/PL and θ. The

cycle time has been used as an independent variable.

The relations found are:

θ =

tads∫
0

Findt

tcVbed
(5.5)

since Fin is constant and all the four steps need to have the same duration, tc = 4 tc,

the equation 5.5 can be simplified as θ = Fin/4Vbed.
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According to the definition

γ =

tdes∫
0

Fin,step 3dt

tads∫
0

Findt

=

rs1
tdes∫
0

Fout,step 1dt

tads∫
0

Findt

(5.6)

where rs1 express the fraction of the output of step I that is sent as purge to step III,

according to Fin,step III = rs1 Fout,step I .

Equations 5.5 and 5.6 need to be rearranged so that Fin is expressed as a function of θ

and, similarly, rs1 as a function of γ.
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Figure 5.18: Relation between the value reached by the pressure and the design
variables.

Finally, it has been necessary to control the value of the high pressure PH reached

during the pressurisation step. No analytical expression of PH is available in the model.

However, PH is a function of the duration of the duration of the pressurisation step

and the inlet feed rate of the step, Fin,stepIV = rs1 rs2 Fout,stepI , where rs2 is the only

remaining degree of freedom. As shown in figure 5.18, a strong relation holds between

the value of PH and the product of tc rs1 rs2 Fout,stepI : to keep the value of PH around

1.36 atm, the value of rs2 needs to be tuned so that tc rs1 rs2 Fout,stepI ≤ 0.08.

Our simplified model provides a good match with the results of the rigorous model

used in [101], as shown in Fig. 5.3. A good qualitative match is achieved. However,

our results underestimate the recovery while overestimating the enrichment, so that a

reasonable but not perfect qualitative match is achieved. This is expected as our models

differ: not only we have modelled each bed as a series of CSTRs, but also we added

the assumption that the operation is adiabatic when writing the energy balance. The
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Table 5.3: Effect of γ (a and b) and πT (c and d) on recovery and enrichment. The
comparison with literature data from [101] is shown.

choice of considering the operation adiabatic is due to an observation made by Zhang et

al. [136] : since industrial operations are usually carried out in bed of more than 3m of

diameter, real industrial PSA process are close to an adiabatic performance. Since the

relationship between design variables and objectives is correctly described, the model

can be considered satisfactory for our purpose.

The effect of each process parameters has been previously analysed [101], and confirmed

by our simulations. As γ increases, more light product is recycled to the system to

purge the bed during step III. This translates into a deeper cleaning of the adsorbent,

meaning that more of the adsorbed CO2 will actually be desorbed. The bed will be

more available to adsorb CO2 in the following feed step, so that less CO2 will be allowed

to breakthrough. Both these aspects contribute to the increase of the recovery. On the

other hand, the more light product is used to purge the bed, the more diluted the heavy

product will be and the lower the enrichment obtained.

As the value of the high pressure is constant, the value of πT is increased by a decrease

in the low pressure value, PL. A greater difference between PH and PL means a greater
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difference between the loading of CO2 in the high and low pressure steps. This con-

tributes to higher recovery and enrichment. Furthermore, the lower the pressure of the

purge stream, the lower the molar flow necessary to provide a fixed purge to feed ratio

(γ). Less purge gas translates into higher recovery and enrichment in the product. As

γ, also the cycle time tc has opposite effects on the recovery and the purity. As the

cycle time increases, the adsorption time increases as well and so the amount of CO2

fed to the system. This increases the chances for CO2 to breakthrough the bed during

adsorption, which decreases the recovery. Conversely, as more CO2 is adsorbed to the

bed, the product obtained will be more concentrated, e.g. a higher enrichment can be

achieved. High values of γ and tc provide high recovery and low enrichment. A high

value of πT favours both recovery and enrichment. High enrichment is achieved for low

values of γ, high values of πT and low cycle time tc.

A strong interaction among the design variables, and the conflicting effect of some of

them on the two objectives, justify the implementation of the multi-objective optimisa-

tion of the process.

5.5.1 Results of the multi-objective optimisation

The optimisation algorithm used has been described in section 5.2. The Pareto fronts

have been obtained using a crossover rate of 0.7, a mutation rate 0.01, a tournament

size 2, a population size of 70, and 50 generations. The Pareto curves obtained show a

good spreads of solutions along the front size n has been chosen to increase reliability of

the Pareto front found, as well as to encourage the spread of solution along the front.
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Figure 5.19: Analysis of the performance of the MOGA in terms of convergence (a)
and statistic behaviour of the Pareto front (b).
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A statistical analysis is necessary to understand the average performance of the opti-

miser. Hence, in Fig. 5.19(b), the average front detected via Gaussian regression of

10 Pareto front generated from the same starting point is presented. Convergence is

achieved after 25 generations, and a good spread of solutions along the all front can be

appreciated.

The shape of the Pareto set suggests that we can obtain high values of recovery (over

99.9 %), for values of enrichment up to almost 2.9. After this point, an increase in

the enrichment is obtained with a decrease of the recovery. The values of enrichment

obtained are higher than those detected manually in [101], as a wider design region

has been explored. The bounds of the design space investigated are defined by tC ∈
[200 − 2000]s, γ ∈ [0.45 − 3], θ ∈ [1.15 − 50] L STD/hr Kg and πT ∈ [3.4 − 13.6].

The bounds of the optimal design region are tC ∈ [736.5 − 1869.3]s, γ ∈ [0.59 − 2.9],

θ ∈ [9.1− 26.9] L STD/hr Kg and πT ∈ [3.5− 13.4].

The results confirm the complex interaction between the 4 design variables. However, if

we isolate the solution at the extremes of the Pareto front (Fig. 5.20), we can recognise

some patterns. High enrichment is achieved only at high value of cycle time, low γ and

θ values, and high value of πT , as expected (Fig. 5.20(b)). A more complex relation

between design variables and recovery has been noticed (Fig. 5.20(a)). High values of

the recovery have been achieved for a wide range of tc. Only high value of γ can provide

a high recovery. High θ and low πT values can allow high recovery, as well as the opposite

situation, with low θ and high πT .

5.5.2 Effect of adsorbent on optimal performance

In section 3.2, the models of CO2 adsorption on two different adsorbents have been

presented: hydrotalcites (HTlcs) and zeolite 13X. In this section, the Pareto fronts

obtained by MOGA using the two adsorbents are shown. The cycle configuration used

is shown in Fig. 3.1. The comparison is shown in Fig. 5.21.

Different feeds have been used for the two processes: no H2O is contained in the feed

in the case of the zeolite, and it has been replace by N2, as mentioned in section 3.2.2.

Hence, the additional cost of the de-hydration of the feed should be taken into account

when comparing the performance of the two adsorbent also under an economical point

of view. Furthermore, additional costs would be needed to reduce the the temperature

of the feed in the case of the zeolite from 575 K to 375 K, as equilibrium and kinetic data

are available only at this lower temperature. Each of the two Pareto fronts is the average

found by Gaussian regression after 10 optimisation runs, as described previously. The

two Pareto sets show similar solutions in the high recovery region. When the profiles
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Figure 5.20: The two sets are visualised using a parallel co-ordinate representa-
tion. Variable domains and objective function value ranges have been normalised for

presentation

starts to bend, the solutions obtained by the zeolite appear to slightly dominate. For

values of enrichment above 3.8, corresponding to a purity of around 57%, the HTlcs out-

perform zeolite 13X. A better performance of HTlcs was expected, given the competitive

adsorption of N2 on the zeolite.

5.6 Conclusions

The multi-objective optimisation of two PSA processes has been addressed. The two

case studies presented are the separation of air for N2 production and the CO2 capture

from flue gases.
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Figure 5.21: Comparison of the Pareto sets obtained using HTlcs and zeolite 13X

The design problem proposed is the maximisation of both purity and recovery of the

desired product in a 4 dimensional design space. Two classes of optimisers can cope

with the non-smoothness of the objective function: evolutionary algorithms and direct

search methods (DSMs). The performance of the two approaches has been compared. To

this aim, a multi-objective genetic algorithm (MOGA) has been developed. A targeted

fitness function has been defined which emphasises not just points close to the current

Pareto set but also those which are close to an infinite extension to that set parallel to the

criteria axes. This fitness function encourages the evolutionary procedure to broaden the

extent of the front. The aim is to help a design engineer identify the trade-offs between

the different criteria and thereby choose the appropriate design point or even a region

in the design space for further investigation.

A statistical analysis has been carried out to evaluate the average performance of the

MOGA. It has been shown the MOGA is more efficient and reliable than DSMs in

approximating the Pareto front for the problem of interest. The results of the comparison

showed that on average DSMs are not able to detect a good approximation of the

Pareto front. Moreover, the success of DSMs is very sensitive to the starting point of

the optimisation, so that a pre-knowledge of the design problem would be required to

obtain a good approximation of the Pareto set.

The results of the two case studies show good agreement with experimental results in

both cases (see sections 5.4.4 and 5.5). Furthermore, the analysis of the performance

of the MOGA indicates that it has been successfully applied, generating a Pareto front

which has sufficient breadth and diversity to demonstrate this agreement. The compar-

ison with DSMs has shown the MOGA is more efficient and reliable. [27].



Chapter 5. Multi-objective Optimisation 150

The methodology introduced in this chapter allows the optimisation of the performance

of a given PSA cycle according to a multi-objective procedure. The highest purity of

CO2 in the product stream achieved by the 4-bed/4-step process proposed by Reynolds

et al. is not satisfactory. In the next chapter a flowsheet design framework is presented

to address the need of synthesising PSA cycle configurations with higher performance.



Chapter 6

A Flowsheet Design Framework

for PSA Cycles

The design framework proposed in chapter 5 is able to detect the optimal performance

of a given PSA configuration using a multi-objective approach. The focus of the present

chapter is to introduce a flowsheet design framework able to synthesise optimal PSA

cycle configurations, retaining the multi-criteria point of view. The cycle configuration

has a huge impact on the performance of the separation, in particular when the desired

product is the more strongly adsorbed [49, 81, 105, 116], as in the case of CO2 (see

section 1.5). The task is particularly difficult due to the high combinatorial nature of

the design space: number of steps and number of beds needed to perform them, beds

interconnections, inputs and outputs of each step need to be specified to define a single

configuration [81, 89].

In section 1.5 an overview of the performance of different cycle configurations for CO2

capture has been provided. All the configurations proposed in the above studies have

been designed according to heuristics. Although this approach allows to introduce some

improvement with respect to previously proposed configurations, it does not provide a

systematic methodology to synthesise optimal cycles.

Smith and Westerberg [116] developed an approach to determine the best sequence of

steps among a set of known operating steps. The optimal schedule was also determined.

The schedule consists of the time allocated to each of the steps, and the number of bed

needed to perform the required bed interconnections. The objective of the optimisation

problem was the minimisation of the number of steps needed, hence, the minimisation of

the capital costs. The optimisation problem was formulated as a mixed-integer nonlinear

programming (MINLP). No dynamic simulation of the PSA was included at this stage.

In a subsequent publication [117] the same authors employed the same optimisation

151
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approach but included a simple integral model of PSA processes and applied it to the

process of hydrogen purification from a hydrogen/methane waste stream. This approach

has been classified among the simplified optimisation methods in section 4.1.1, and the

weaknesses of the approach have already been discussed.

An effort to remove the assumption of knowing a feasible set of steps has been made

by Agarwal et al. [3]. They proposed a superstructure of two-bed PSA processes to

optimally synthesise an appropriate cycle for CO2 capture solving a single-objective

optimisation problem. As of now, the information about their work is limited to the ab-

stract published for the AIChE meeting 2008 [3], and it is difficult to assess their method.

However, it can be noticed that the super-structure they propose has been developed

to simulate only two-beds operations. Expanding the superstructure to configurations

with a higher number of beds is likely to be a difficult task.

A recent study by Nicolic et al. [89] addresses the optimisation of complex PSA processes

including multibed configurations and multilayered adsorbents. The design variables

used include the number of beds, PSA cycle configuration, and various operating and

design parameters. A detailed PSA simulator is included in the framework. The main

idea behind this framework is that the optimisation procedure needs to indicate the

appropriate “state transitions” from one step to another: all the cycles proposed need

to start from the same step, i.e. pressurisation; then, the optimiser decides the best

following step, hence the state transition. The authors present a map of all the possible

state transitions, called “State Transition Network” (STN) [89]: for example, from the

pressurisation step (either by feed or by light product) it is possible to switch to the

adsorption step only. From adsorption step, it is possible to go to many other states

such as cocurrent depressurisation, blowdown, pressure equalisation, or purge by strong

adsorptive. According to Nicolic et al., the STN concept developed in [89] covers all of

the most important states/PSA operating steps. However, no proof of completeness is

provided. Despite this framework is an improvement with respect to the work of Smith

and Westerberg [116, 117], to our understanding, the framework is still choosing the

optimal step sequence among a set of possible already known step sequences, which are

included in the STN. Furthermore, a single-objective optimisation approach has been

used, despite the authors recognised the existence of trade-offs between different aspects

of the performance.

In the present chapter a preliminary investigation is carried out to evaluate the viability

of a multi-criteria flowsheet framework for the design PSA cycles based on evolutionary

algorithms. The framework is introduced in section 6.1. A key element for the imple-

mentation of an automated design framework is a suitable representation of the design

space. The representation of PSA cycle configurations used in this study is explained in
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section 6.2. Three evolutionary algorithms have been developed to be used within the

framework, and are illustrated in section 6.3. The three algorithms adopt a neighbour

search. The procedure developed to detect neighbour configurations is explained in sec-

tion 6.4. In section 6.5, the ability of the framework to synthesise cycle configurations

for CO2 capture from flue gases is investigated.

6.1 Introduction to the flowsheet design framework: the

general idea

The aim of a flowsheet design framework is to identify the best cycle configuration

to perform the desired separation according to the criteria specified by the designer.

The objectives of the designer are likely to be conflicting, e.g. maximisation of purity

and recovery. The designer might express some indications regarding both the relevant

cycle configurations (e.g. maximum and minimum number of steps, number of products

etc.) and the operative conditions (e.g. maximum and minimum cycle time, feed rates

etc.) to be investigated. These indications are necessary to address the search towards

cycle configurations with characteristics appropriate for the separation of interest. These

requirements define the design space for the cycle configurations, Y , and for the operating

conditions, X. Process constraints might apply, such as the maximum pressure level,

the minimum purity/recovery requirements and so forth.

In Fig. 6.1, a flowchart of the framework is illustrated. After the designer has expressed

his/her preferences, an iterative procedure starts. The first step is the generation of a

cycle configuration, y. The configuration generated is “viable” if it satisfies the require-

ments specified by the designer, i.e. if y ∈ Y . The set of operating conditions, x, which

affect the performance of y is identified. The set of design variables depends on the con-

figuration generated. The performance of y is then optimised using multiple objectives,

z. The performance of the configuration, represented by its Pareto front, is fed back to

the generator of cycles and taken into account when generating new configurations. The

process is carried on for a certain number of iterations (imax in Fig. 6.4).

The resulting problem could be classified as a dynamic max-max multi-objective opti-

misation problem:
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max
y∈Y

z(x, y)

s.t.

x = arg max
x(y)∈X(y)

z(x, y) (6.1)

s.t.

Evaluation of the model at CSS;

Process constraints

where z is the vector of objectives, e.g. purity and recovery of the desired product.

The inner optimisation procedure to generate Pareto front of given cycle configurations

has been developed in chapter 5. The focus of this chapter is on the development of

the outer optimisation loop, whose aim is the synthesis of cycle configurations. A key

element for the implementation of the automated procedure is the representation of cycle

configurations within the framework. This issue is discussed in the following section.

6.2 Representation of cycle configurations

One of the most critical decisions when developing automated design tools for a particu-

lar class of problems is the choice of the search space, or, equivalently, of its representa-

tion [43]. The solution of the design problem stated in eq. 6.1 requires the development

of a representation of PSA cycle configurations. The representation needs to be flexible

enough to describe any possible PSA configuration. The representation also needs to

contain enough details to allow the simulation of the configuration it represents. The

third requirement is that it has to be managed with ease within the framework.

The key idea motivating the representation proposed here is that to synthesise new,

more efficient cycles, we need to think of cycles not as sequences of known steps (e.g.

adsorption with feed, desorption etc.), but to allow for all the possible bed interconnec-

tions to be explored. As noted by Guan et al. [42], PSA is so flexible that we may not

find even a suitable word to represent every possible operation step.

A PSA cycle is described by the sequence of steps that the beds undergo. Each step is

characterised by the connections that are open/closed among the beds, the feed tank,

containing the gas mixture that has to be separated, and the products tanks. Since all

the beds undergo the same step sequence, Σ, the whole configuration can be described

by using only one bed. The same principle has been previously exploited to reduce the
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Problem Specifications and Requirements

i=0

Generator
of Cycle Configuration, y

Is y
Viable?

Decoding y &
Identification of Process Variables

YES

Simulation &
Multi-objective Optimisation

Evaluation

i=i+1

i≥ imax? Stop
YES

NO

NO

Figure 6.1: Flowchart representing the elements of the ideal automated design frame-
work for PSA cycles. According to the specification introduced by the designer, a viable
cycle configuration, y, is generated. Then, the operating variables, x, which determine
the performance of y are identified. The optimal performance of y, in the design space
defined by x, is determined. The performance criteria are then fed back to the cycle

generator so as to take it into account when generating new cycles.

computational time of the simulation by adopting a “unibed” approach to reach CSS,

as described in section 3.3.1.

The performance of the cycle, in terms of purity and recovery of the product, is defined

by the cycle configuration (sequence Σ of steps used, bed interconnections) and operat-

ing variables, but not by the number of beds (nb) used to perform the cycle since, as

mentioned, at CSS they all behave in an identical way. On the other hand, the number of

beds is necessary to evaluate capital and operating costs of the cycle. Once the sequence

of steps Σ which provides the desired product has been chosen, the minimum number of

beds needed can be determined using the method proposed by Smith and Westerberg

in [116]. The methodology developed in this thesis allow to determine optimal cycle

configurations to provide the desired quality product. Once the cycle configuration is
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determined by the framework, it would be possible to use the algorithm proposed by

Smith and Westerberg to evaluate the minimum number of beds necessary to implement

the desired cycle configuration and to carry out a cost analysis.

The representation of the cycle configuration, y, is then a tuple containing informations

about the number and the sequence of steps each bed undergo during the cycle, the

direction of the flow at each step and at which steps the products are withdrawn.

The sequence of steps is represented by the series of bed interconnections activated

during the cycle. These connections can be represented by an adjacency matrix, A,

which specifies, at each step, the step or steps from which the bed is receiving its inlet;

A also has to indicate the steps from which products are withdrawn. Each row of A

corresponds to the “receiving step”, including product withdrawals, and each column

to its “sources”. Each elements aij takes the value 1 if destination i is receiving from

source j of the matrix, aij =0 otherwise. The number of receiving units (nu) is given by

the summation of the number of steps (ns) and the number of products (np). The bed

can act as a source at each step, as well as the feed tank. The number of sources (nin)

is given by the number of steps plus 1, the feed. If nc is the maximum number of units

feeding a single unit, the summation of the elements of each row of A must be lower or

equal to nc. The dimension of the matrix A is nu × nin.

Table 6.1: Example of adjacency matrix. It represents all the possible connections
among the destinations and the sources of a PSA cycle where the number of steps is
5 (ns=5), and the number of products 2 (np): the light product (LP ) and the heavy

product (HP ). In the representation, “-1” corresponds to the feed.

Sources
Destinations -1 1 2 3 4 5

I 1/0 · · · · · · 1/0
II

III
...

. . .
...

IV
...

. . .
...

V
LP
HP 1/0 · · · · · · 1/0

An example of adjacency matrix is given in Tab. 6.1. The adjacency matrix takes

into account all the possible steps that can take place in a PSA cycle, feasible and non

feasible ones. In a PSA with 5 steps and 2 product (nu=7, nin =6), the matrix A

has 42 elements. Hence, without any further refinement regarding feasible/infeasible

connections, the number of configurations that can be generated is 242 ' 4.4× 1012. It

is therefore necessary to impose some rules to the interconnections that the matrix A
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can describe to reduce the design space and make sure it includes the configuration of

interests to the designer. This process will be illustrated in section 6.2.1. It is important

to notice that the rules that the configurations generated must comply with depend on

the case study of interest; however, the generic nature of A allows the representation

proposed in this work to be used for any class of PSA processes.

6.2.1 Definition of a search space

The evolutionary procedure illustrated in Fig. 6.1 requires that every configuration con-

sidered satisfy the requirements expressed by the designer. Such requirements define the

search space Y . Before the evaluation of a configuration y, proposed either by the cycle

generator or by the neighbour generator, the algorithm checks whether y ∈ Y . If y ∈ Y
we will say that y is viable. The introduction of a viability check allows the optimisa-

tion procedure to capitalise on the designer’s knowledge of the problem, addressing the

search to a class of configurations that the designer knows as interesting. The size of

design space is therefore resized, and the optimisation problem more manageable. The

potential risk is to excessively shrink the search space, excluding potentially optimal

configurations to be generated within the search.

Some examples of the requirements that the designer can express are:

• a minimum and maximum number of steps: ns,min and ns,max;

• the desired number of products, np;

• the maximum number of bed interconnections, nc;

• which steps can receive the feed;

• maximum number of blowdown steps within the cycle;

• whether pressure equalisation steps are allowed within the cycle, i.e. if a blowdown

step can be the source of the pressurisation step;

• the output of a step cannot be recycled as input to the same step;

By applying the rules introduced in this section 6.2.1, the design space is reduced as the

number of possible interconnections is limited.

To make sure that the cycle represented corresponds to a PSA operation, some require-

ments are necessary: during the cycle, the feed needs to be the inlet of at least one step.

By convention, in the framework one of the inlet streams of the bed during the first step
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needs to be the feed. The cycle needs to end with the bed at high pressure, so that it

is ready to start again from an adsorption step. This means that either a pressurisation

step ends the cycle or that the last pressurisation step is not followed by any blowdown.

At least a blowdown step should be included in the cycle, between the adsorption and

the pressurisation step, so that the pressure actually swings between a high and a low

level.

6.2.2 Implementation

The cycle representation introduced section 6.2 is intended to fully describe any cycle

configuration. In this section it is shown how it is possible to implement the simulation

of a cycle using the information contained in y.

6.2.2.1 Compact representation of the cycle configuration

The tuple y needs to contain all the necessary information to implement the cycle rep-

resentation. In the practical implementation of the framework, the information needs

to be expressed by a manageable mathematical structure. The information that y needs

to contain are the number and sequence of steps (map of interconnections) and a vector

f describing the direction of the flow for each step.

The map of interconnections could be expressed by the adjacency matrix introduced in

section 6.1. However, to ease the implementation, the map of interconnections has been

expressed by a matrix C, where only the activated connections are specified: the element

cij is equal to t ∈ 1, . . . , ns, if the output stream of the bed at step t is feeding the bed

at step i. The dimension of the matrix C will be nu × nc, where nc is the maximum

number of units feeding a single unit. As A, C specifies, at each step, the step or steps

from which the bed is receiving its inlet; C also has to indicate the steps from which

products are withdrawn. Each row of C corresponds to the “receiving step”, including

product withdrawals, and each column to its “sources”. Any matrix of connections

C can be thought as an instantiation of the adjacency matrix A, representing all the

possible connections among the destinations and the sources of a PSA cycle.

By convention, the first ns rows of C corresponds to the steps, and the remaining rows to

the products. Since the number of rows of C is equal to nu = ns + np, it is necessary to

know the number of steps, ns, to be able to correctly decode the information contained

in C . It must also be specified the position of the desired product within the matrix C.
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Table 6.2: Adjacency matrix for a Skarstrom cycle and corresponding compact rep-
resentation C

Sources

Destinations -1 1 2 3 4

I 1 0 0 0 0
II 0 0 0 0 0
III 0 1 0 0 0
IV 1 0 0 0 0
LP 0 1 0 0 0
HP 0 0 1 1 0

Destinations Sources

I -1 -
II - -
III 1 -
IV -1 -
LP 1 -
HP 2 3

The direction of the flow at each step can be described by a vector f of ns elements,

where fi is 1 if the flow in step i is cocurrent with respect to the adsorption step, -1

otherwise.

To summarise, each configuration can be described by a tuple, y = 〈ns, C, f〉 whose

elements are the number of steps ns, the map of interconnections C and the vector of

flow directions f .

The Tables 6.2 are a representations of the simple Skarstrom cycle of Fig. 3.3. The

compact representation can be obtained from the other: in both tables each row corre-

sponds to a destination. In the extended table each column corresponds to a source: the

element aij is 1 if destination i is receiving from source j of the matrix. In the compact

representation, if destination i is receiving from j, then j will be one of element of row i.

“-1” corresponds to the feed. The “-” entries in C corresponds to a 0 value in the actual

computer representation. The vector f for the Skarstrom cycle is f = [1,−1,−1, 1].

In Table 6.3, five cycle configurations, originally proposed in [105], are illustrated both

by the classic graphical visualisation and by the matrix of connections C.

The generator of configurations needs to provide the three elements of y to define a

configuration. The procedure that the generator of configurations applies consists of

randomly selecting the number of steps ns, the maximum number of interconnections

nc, the number of products np, each within the respective bounds specified by the
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designer. Once the above parameters are chosen, the dimensions of C are determined

as C has ns+np rows and nc columns. The generator of configurations can then start

to assign random values to each element of C from the set −1, 1, . . . , ns. Similarly, the

ns elements of vector f are a random series of -1 and 1. Since the first step is always

adsorption with feed, as mentioned earlier, the first element of f will always be 1 for

consistency.

The possibility of initialising a simulation corresponding to a particular design by ex-

tracting the information from the encoded representation is crucial, and yet, a non trivial

task. The decoding of the cycle representation is discussed in some detail in the next

section.

6.2.2.2 Decoding of the cycle representation to implement the simulation

In section 6.2, the encoded representation of a cycle configuration used in our frame-

work has been introduced. A cycle configuration is fully defined once the number of

steps (ns), the bed interconnections (matrix C) and the direction of the flow (f) at

every step have been defined. The above information is collected in one data structure,

y. The mathematical encoding of the cycle configuration has been a key element for

the implementation of the automated flowsheet design framework. In this section, we

illustrate how it is possible to decode the information contained in the mathematical

representation of the cycle to implement its simulation and optimisation; for the latter

task, it is necessary to detect from y which design parameters need to be assigned by

the embedded optimisation procedure (MOGA). The procedure to obtain x from y will

be referred to as x = var(y).

After the cycle generator, or the neighbour generator, proposes a viable cycle configura-

tion, the variables x which define the behaviour of configuration y needs to be detected

before the performance of y can be optimised by the embedded optimiser. For every

cycle configuration, the design variables are the cycle time (tc), the lower value of the

pressure (PL), the value of the feed flowrate (Fin) and the split ratios (rs). The number

of splitters to be used, and consequently the number of split ratios (nrs) to define, de-

pends on the cycle configuration. This means that the set of operating variables x that

affect the performance of y, depend on y itself. In our implementation x is described as

a vector whose first elements are always tc, PL and Fin. The remaining elements of x

correspond to the nrs split ratios to be determined. The number of design variables to

be used by the embedded optimiser is equal to nrs+3. For each step i ∈ 1, ..., ns, the

number of split ratios to be applied to its outlet feed is given by the number of times i

appears in the matrix of connection C, diminished by 1: if stream i has to be divided
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into 5 parts, only 4 split ratios need to be indicated. Summing the number of split ratios

that need to be applied to each step we obtain nrs .

Once the size of the vector x has been determined, the embedded optimisation procedure

can be initialised. It will optimise the performance of the given configuration y in the

design space defined by x ∈ X. The embedded optimisation procedure requires the

evaluation of the objectives at specific design points. To this end, the dynamic simulation

of y needs to be implemented. This implies that further information regarding the single

steps need to be extracted from y = 〈ns, C, f〉.

The number of steps is explicitly provided by ns, while f describes the direction of

the flow at each step. The other information about the steps to be performed are

contained by the matrix C. The matrix C describes in a compact way not only the

map of interconnections in the cycle, but it also implicitly contains information about

pressure profiles and position of mixers and splitters. Once the output/input streams are

specified, also the pressure profiles are. This is illustrated in algorithm 6.1. If both input

and output streams are present, the pressure will remain constant (as in adsorption and

desorption); if no input is fed to the bed, then the pressure will go down as the bed

releases its content (as in the blowdown step); if no output stream leaves the bed, the

pressure will increase during the step (as during pressurisation). It is necessary to know

the pressure profile of each step to correctly implement its simulation: although the

model is the same for any step, the unknowns differ between constant and non-constant

pressure profiles, as described in section 3.1.

Algorithm 6.1 How to initialise the simulation after the vector x of design variables
has been determined.

Input: x, y = 〈ns, C, f〉
Output: Σ, S

for j=1 to ns do
if step j appears in matrix C, then the step is not a pressurisation, and it is
momentarily classified a constant-pressure step then

Σ(j)← a
else if the step is pressurization then

Σ(j)← p
end if
if The step is not receiving any feed, cj , k=0, for k = 1, . . . , nc, then it is a blowdown
then

Σ(j)← b
end if

end for
S ←(1/ns) {All the steps are assigned the same duration, S}

The simulator can also deduct from the information in C when to include mixers (if a

unit is receiving more than one stream, the incoming streams need to be mixed before
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been fed) and splitters (if a stream, or a mixture of streams, feeds more than one unit,

splitters are needed).

To detect the inlet flows at each step, a matrix called Split needs to accompany C. Split

is a matrix of the same dimension as C, whose elements sij ∈ 0, 1 indicate the fraction

of the output of step cij that needs to be fed to step i.

Let us suppose that an output stream of step t ∈ 1, . . . , ns, Ft, needs to be split among

r receiving units. The splitter used in this thesis splits an incoming stream into two

streams, hence, r′ = (r − 1) splitters will be used and r′ split ratios need to be defined,

each between 0 and 1. We can indicate the split ratios as SRm ∈ [0, 1] where m =

1, . . . , r′. Each splitter m is receiving the fraction of Ft remaining from the previous m−1

splitters. Such fraction can be indicated as Ft,m−1 =
m−1∏
l=1

(1− SRl)Ft. Here, the symbol∏
is used to indicate the product of a series. Hence, splitter m will be sending to the

unit it is connected to a stream given by SRm Ft,m−1 = SRm
m−1∏
l=1

(1−SRl)Ft = SR′mFt.

Below, an example how a stream F is split is given, for r=5.

SR1 SR2 SR3 SR4

SR1’F= SR1F

SR2’ F=SR2(1−SR1) F

SR3’ F= SR3(1−SR2)(1−SR1)F

SR4’ F= SR4(1−SR3)(1−SR2)(1−SR1) F

(1−SR4)(1−SR3)(1−SR2)(1−SR1) F

F

The elements sij ∈ 0, 1 of the matrix Split correspond to the split ratios SR′m calculated

with the procedure illustrated above from the original value SRm proposed by MOGA

for the splitter. If step t appears for the first time in matrix C in position c22, and for

the second time in position c41, then s22 = SR′1, and s41 = SR′2.

Once Σ, Split and S are determined, the cycle described by y can be simulated as de-

scribed in algorithm 6.2: at each step l, with l ∈ 1, . . . , ns, the inlet stream is determined

using the information in C and Split (see lines 3, 4 and 6). The correct set of equations

(M or Mp) is chosen using the information in Σ (e.g. lines 8 and 12). The output

stream of step l, Fout, is stored in a data structure if Fout is to be used as input stream

of another step (see line 16).

6.2.3 Validation of the representation

The results of the optimisation of 5 cycle configurations originally introduced in recent

literature [105] are presented. The analysis has two aims: firstly, we test the capability
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Algorithm 6.2 Dynamic simulation of one cycle of configuration y

Input: y = 〈ns, C, f〉, tc, Fin, Plow, Split, Σ, S, Initial condition of the bed, B0, in
terms of concentrations and temperature, initial pressure P0

1: ts ← S × tc {Step duration}
2: for l = 1 to ns do
3: Sources of step l: output streams of the steps clk ∈ C where k = 1, . . . , nc.
4: Fractions of the outlet streams of clk fed to step l: slk ∈ Split where k = 1, . . . , nc.

5: if step l is fed by more than one source then
6: mix the incoming streams to calculate the inlet stream (IS)
7: end if
8: if Σ(l) = a ∨ Σ(l) = b then
9: if Σ(l) = a then

10: Pf ← P0

11: else if Σ(l) = b then
12: Pf ← PL
13: end if
14: [B(t), Fout, P (t), Bf =M(P0, Pf , ts, IS, B0, f(l) )
15: if Step l is a source for other steps then
16: Store the outlet stream of step l in a vector for later use
17: end if
18: else if Σ(l) = p then
19: [B(t), Pf , P (t) =Mp(P0, ts, IS, B0, f(l))
20: end if
21: B0 ← Bf {Update bed conditions}
22: P0 ← Pf {Update initial pressure}
23: end for

of the cycle representation proposed in 6.2 to describe known cycle configurations. Sec-

ondly, the performance of these 5 cycles is evaluated so that it can be used as a reference

against which the cycle configurations proposed by the framework can be evaluated. The

five cycle configurations, together with the corresponding map of interconnections C, are

illustrated in Table 6.3.

In all cycles investigated here, the first step is adsorption with the feed and the last

step is a pressurisation with the light product. Cycle configuration a has been described

earlier. In configurations b to e, the second step is heavy reflux, where the bed, at high

pressure, receives a purge gas, rich in the heavy component, to the feed end. This heavy

purge gas can come from step III, which is always a blowdown, or from step IV. Step IV

is a light reflux step, during which the CO2 is desorbed at low pressure using the output

stream of step I as purge gas. The output of step II can either be recycled at the feed

end of step I, or might be taken as a part of the light product and used to pressurise

step V. The heavy product is withdrawn from the step, between III and IV, which is

not feeding step II. All the steps are counter-current with respect to the first two.
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Table 6.3: Illustration of all the cycles investigated in this section. All the config-
urations have been originally proposed in [105]. In the second column each cycle is
represented in a compact way, in the second column the schematics of the cycle. The
feed is indicated by “-1”. The “-” entries in C corresponds to a 0 value in the actual

computer representation.

Cycle Representation Scheme

a

M

SS

F

LP

HP

Destination Sources

I -1 -
II - -
III 1 -
IV 1 -
LP 1 -
HP 2 3

b

M

F

LP

HP

S

S

Destination Sources

I -1 -
II 3 -
III - -
IV 1 -
V 1 2
LP 1 2
HP 4 -

c

M

S S

F HP

LP
Destination Sources

I -1 2
II 3 -
III - -
IV 1 -
V 1 -
LP 1 -
HP 4 -

d

M

F

LP

S

S

HP

Destination Sources

I -1 -
II 4 -
III - -
IV 1 -
V 1 2
LP 1 2
HP 3 -

e

M

S S

F

LP

HP

Destination Sources

I -1 2
II 4 -
III - -
IV 1 -
V 1 -
LP 1 -
HP 3 -
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Figure 6.2: The Pareto fronts of all the cycle configurations investigated (see Table
6.3) are shown.
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Figure 6.3: Overall Pareto Π front obtained as the set of non-dominated points of the
population constituted by the Pareto points of each cycle configuration investigated:Π =
dom(πa, πb, πc, πd, πe). The aim is to show how the best performance of different cycles

compare under a multi-criteria point of view.
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Using the tuple y to represent the five cycles, it was possible to initialise the simulation

and optimisation of their performance. A Pareto set for each cycle configuration has

been generated. All five Pareto fronts, πj where j = a, . . . , e, are shown in Fig. 6.2. A

statistical analysis is necessary to understand the average performance of the optimiser.

However, our previous experience with MOGA in chapter 5 showed that with a high

population size, there is a very small standard deviation between the Pareto fronts gen-

erated with the given set of parameters. Furthermore, the Pareto fronts found with a

large population size dominates those obtained with a lower population size (see Chap-

ter 5). Accordingly, a high population size (n=60) has been chosen to avoid multiple

optimisation runs.

To ease the comparison among the 5 Pareto fronts, the overall set Π of non-dominated

points, from the set of points defined by the union of the five individual Pareto sets,

is shown in Fig. 6.3. In mathematical terms, the operation can be described as: Π =

dom(πa, πb, πc, πd, πe). The cycle configuration which corresponds to each point in this

set is shown in the legend. Our results are qualitatively coherent with the conclusions

by Reynolds et al. [105]. However, we did not replicate their results quantitatively as

our models differ. The effect of the approximation is stressed as the number of beds

included in the cycle increases.

All 5-step configurations outperformed the 4-step cycle. The latter could only achieve

a product purity of 60%. This result justifies the investigation of cycles where also the

heavy recovery step is included (step II in all the 5-step cycles).

Comparing the results from cycle b and cycle c, the effect of the management of the

output of the heavy recovery step (step II) can be deduced: when this is mixed with the

output of step I, as in cycle b, lower recoveries are achieved as some CO2 can be lost in the

light product. The higher values of purity have been achieved by cycle b. By comparing

cycle b and cycle c on one side, and cycle d and cycle e on the other, we can understand

the effect of the different arrangements for the input to step II and the heavy product.

When the purge for the heavy recovery step comes from the blowdown (as in cycle b

and cycle c), higher purity and higher recoveries can be achieved, as it becomes evident

looking at both extremes of the Pareto set. However, the Pareto set suggests that the

best trade-offs between purity and recovery are achieved by cycle d, which dominates the

region where the Pareto set bends. This analysis would encourage the cycle-generator

in the design framework to propose new cycles which keep the characteristics of cycle

d and cycle b, maintaining what they have in common (input to step I and II), and

proposing intermediate arrangements of the input to step II and the heavy product, in

which the two cycles differ.
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6.3 Evolutionary algorithms used within the framework

Three evolutionary algorithms have been implemented for the multi-objective optimisa-

tion of PSA configurations: a simple evolutionary algorithm (EA), a simulated annealing

procedure (SA) and a population based algorithm (POP). A theoretical background to

evolutionary algorithms has been provided in chapter 5. In this section details of the

three evolutionary procedures are provided. The evolutionary algorithms used in this

chapter adopt a (1+1) evolution strategy: a single parent that generates single offspring

[20]. The child is a neighbour of the parent. The procedure implemented to generate a

neighbour is illustrated in section 6.4.

At each iteration i, a Pareto front πi is generated by optimising the cycle configuration

yi. We will refer to this operation as πi = moga(y, x), where x is the set of operating

variables that affect the performance of y; x is detected by the procedure illustrated in

section 6.2.2.2, that is indicated as x = var(y). The overall Pareto front at iteration i,

Πi, is then obtained as the set of non-dominated points of the union of Πi−1 and πi.

To summarise the operation in mathematical terms, the following expression has been

defined: “Πi = dom(Πi−1, πi)”. At iteration 1, the overall Pareto front Π1 coincides with

the Pareto front of y1: Π1 ≡ π1. We will say that the configuration yi has contributed

to the overall Pareto front if Πi is different from Πi−1: some of the points of πi have

been included in the overall Pareto.

6.3.1 Simple Evolutionary Algorithm

A simple evolutionary procedure (EA) has been implemented to search for optimal cycle

configurations: at each iteration i a neighbour configuration yi is generated from the

previous investigated configuration yi−1 by the neighbouring procedure, and the overall

Pareto front Πi = dom(Πi−1, πi) is obtained. The process is repeated for a given number

of iterations (imax), as illustrated in algorithm 6.3.

The search carried out by this algorithm is random in the sense that every move is

accepted (i.e. the new configuration to be investigated is always the neighbour of the

previous configuration), as shown in line 7 of algorithm 6.3, regardless of whether yi−1

contributed to the overall Pareto front or not. The randomness of the search pre-

vents from capitalising on good solutions previously found, and might proceeds evolving

worse configuration than previously found. On the other hand, it prevents from getting

trapped in local optima by accepting also moves to inferior neighbouring solutions. An

improvement is represented by the simulated annealing search, as illustrated in the next

section.
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y = y0 Initial configuration
i = 0, Π0 = [ ]

i=i+1

Decode y for implementation

Simulation &
Multi-objective Optimisation

⇒ π

Find overall Pareto
Πi = dom(Πi−1, π)

i ≤ imaxStop
NO YES

y=neighbour(y)

Has y already
been evaluated?

NO

YES

Figure 6.4: Simple evolutionary algorithm for the optimisation of a cycle configuration
y.

Algorithm 6.3 Simple evolutionary algorithm (EA)

Output: Overall Pareto front Π
Input: y0 initial configuration, imax number of iterations
1: y ← y0, Π0 ← [ ], i← 0
2: while i < imax do
3: i← i+ 1
4: x←var(y)
5: π ←moga(x, y) {Pareto front of configuration y}
6: Πi ←dom(Πi−1, π) {Overall Pareto front}
7: y ←neighbour(y) {Neighbour generation}
8: end while
9: Π← Πi
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6.3.2 Simulated Annealing

y = y0 Initial configuration
i = 0, Π0 = [ ]

i=i+1

Decode y for implementation

Simulation &
Multi-objective Optimisation

⇒ π

Find overall Pareto
Πi = dom(Πi−1, π)

i ≤imax STOP
NO

Πi = Πi−1yold = y
NO

y=neighbour(y)

r ≤ p(i)

YES

YES

y = yold

NO

Has y already
been evaluated?

NO

YES

Figure 6.5: Simulated annealing procedure for the optimisation of a cycle configura-
tion y.

Simulated annealing (SA) is a neighbour search approach that can provide excellent

solutions to single and multiple objective optimisation problems [119]. SA usually is less

computationally requiring than population-based (e.g. genetic) algorithms since it finds
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optimal solutions using a point-by-point iteration rather than a search over a population

of individuals [119]. SA starts with an initial solution and iteratively moves towards other

existing solutions. It tries to avoid getting trapped in local optima by accepting moves

to inferior neighbouring solutions under the control of a randomized scheme [86]. At

iteration i, if the current solution yi brings an improvement of the objectives, the next

neighbour will be derived from yi. If yi does not improve the objective the next solution

will still be derived from yi if r < p(i), where r is a uniform random number between 0

and 1, and p(i) is a function which takes values between 0 and 1 which decreases as the

iterations increases. Hence, at each iteration there is a probability of making an uphill

move (e.g. accepting an bad solution to generate a neighbour), so as to prevent the

process to get stuck in local optima; the probability of doing an uphill move decreases

as the process goes on. The procedure is illustrated in algorithm 6.4 in lines 7 to 17.

Naderi et al. [86] define p(i) as e(−∆/T ), where ∆ is the change in the objective function

due to solution yi, and T is a control parameter, called temperature. Such definition

recalls the original idea behind simulated annealing, which was born by analogy to the

annealing process used in making spin glasses [77]. Annealing involves heating and

controlled cooling of a material to increase the size of its crystals and reduce their

defects. A slow cooling schedule is necessary to give the atoms more chances of finding

configurations with lower internal energy than the initial one without getting trapped

in a local minimum of the internal energy.

In this study the function p has been expressed as p(i) = pb × p
(i−1)
r , where pb=0.5,

pr=0.4 and i is the number of iterations, so that the first iteration will accept a bad

move in the 50% of cases. pr defines the rate of decay of the probability of accept a bad

solution: the higher pr, the slower the decay. The algorithm is illustrated in algorithm

6.4.

6.3.3 Population Approach

Alternatively, I have considered a population based approach (POP). In this algorithm,

at each iteration the parent configuration is selected among the population of all the

previously investigated configurations. Accordingly, the size of the population is equal to

the number of iterations implemented, and each configuration is considered an individual

of the population. As in a genetic algorithm, the selection process is done through a

tournament procedure. In our case, a tournament selection of size two has been used:

two random individuals are picked up from the population, and the fittest one is used

to generate the next member of the population. The definition of the fitness is the most

important element of the procedure.



Chapter 7. A Flowsheet Design Framework for PSA Cycles 171

Algorithm 6.4 Simulated Annealing algorithm (SA)

Output: Overall Pareto front Π
Input: y0 initial configuration, imax number of iterations
1: y ← y0, Π0 ← [ ], i← 0;
2: while i ≤ imax do
3: i← i+ 1
4: x←var(y)
5: π ←moga(y, x)
6: Πi ←dom(Πi−1, π)
7: if Configuration y contributed to the overall Pareto front then
8: yold ← y
9: y ←neighbour(y)

10: else {Configuration y has not contributed to the Pareto front}
11: Generate a random number r ∈ [0, 1]
12: if r ≤ p(i) then {p(i) is a decreasing function of the number of iterations}
13: y ←neighbour(y)
14: else
15: y ←neighbour(yold)
16: end if
17: end if
18: end while
19: Π← Πimax

Different definitions of fitness could be considered. For instance, each design point,

defined by both a configuration y and a set of optimal operating conditions x, could be

considered as a single individual, and be given a value of fitness with a similar procedure

as in the MOGA presented in Chapter 5. To select a parent, then, two random design

points would be picked and the cycle configuration of the fittest would be used to generate

the next configuration. This definition of fitness, however, would not carry information

about the overall performance of the configuration but only about one particular design

point, thus not reflecting our intention to evolve the overall Pareto front.

Alternatively, each configuration yi could be considered as an individual, and the value

of the fitness could be proportional to the number of points of πi belonging to the overall

Pareto front Πi. This definition would represent an improvement with respect to the

previous, but it would not be able to differentiate among cycle configurations whose

Pareto fronts have no point in common with the overall Pareto front. In some sense, it

would be a measure of how good a configuration performs in the objective space, but

not of “how bad”. Hence, there might be the risk of excessively penalising potentially

interesting configurations in the evolutionary process.

To address the above problems, a third definition of fitness has been adopted which

allows the fitness to be a function of the Pareto sets. Each configuration yi is considered

as an individual of the population. The fitness needs to be representative of how the
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configuration yi performs in the objective space. To this end, I defined the fitness of

each configuration of the population, yj with j = 1, . . . , i, as the average of the fitness

of the points of its Pareto front πj with respect to the current overall Pareto front Πi.

The fitness of the single points is evaluated as in the MOGA procedure. If Πi is different

from Πi−1, which means that configuration yi contributed to Πi, the fitness of all the

configurations in the population (i.e. {y1, y2, . . . , yi}) is recalculated with respect to Πi

(see line 8 of algorithm 6.5). Conversely, if Πi ≡ Πi−1, only the fitness of yi has to be

evaluated (see line 11 of algorithm 6.5).

The overall procedure to implement POP is illustrated in Fig. 6.6 and in algorithm 6.5.

In Table 6.4 it is shown the comparison between five individual Pareto fronts πj , for

j = 1, . . . , 5, and the overall Pareto front at the fifth iteration Π5. The fitness of each

configuration yj reflects the relative position of πi with respect to Π5.

Algorithm 6.5 Population based evolutionary algorithm (POP)

Output: Overall Pareto front Π
Input: y0 initial configuration, imax number of iterations
1: y ← y0, Π0 ← [ ],pop0 ← [ ], i← 0;
2: while i < imax do
3: i← i+ 1
4: x←var(y)
5: π ←moga(x, y)
6: Πi ←dom(Πi−1, π)
7: popi=

〈
popi−1 ∪ 〈y, π〉

〉
8: if Πi 6= Πi−1 then {The overall Pareto front changed}
9: Evaluate the fitness of all the configurations with respect to Πi

10: else
11: Evaluate the fitness of configuration y
12: end if
13: yp ←select(popi)
14: y ←neighbour(yp)
15: end while
16: Π← Πi

6.4 Generation of neighbour configurations

All the evolutionary algorithms developed here rely on the concept of a neighbour search.

The algorithms use different criteria to determine which previously evaluated configura-

tion has to be used to generate the next configuration to be examined. In particular, in

the simple evolutionary algorithm, the neighbour configuration is always generated from

the previous one, independently of whether this has contributed to the overall Pareto

front or not. In the simulated annealing procedure, the previous configuration is surely
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Table 6.4: Overall Pareto front obtained using the population based algorithm at
the fifth iterations, Π5. The individual Pareto fronts of the 5 configurations in the
population are also shown as πj for j = 1, . . . , 5. The better the performance of the
configuration, the lower the fitness. It is evident how the value of the fitness is repre-
sentative of how each individual of the configuration j performs in the 2-dimensional

objective space
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Figure 6.6: Population based evolutionary algorithm for the optimisation of a cycle
configuration y.
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used to generate the next if it has contributed to the overall Pareto. However, if the

configuration has not contributed, there is still a probability to use it as a parent. This

probability decreases as the iterations progress. In the population based approach, the

parent configuration is chosen among all the previously investigated configurations using

a fitness/selection procedure.

The definition of a neighbour needs to ensure that all the design space can be explored

moving from neighbour to neighbour, starting from any configuration. In fact, as men-

tioned in section 5.1.5, for an evolutionary algorithm to be convergent, it is necessary to

ensure that any solution x
′ ∈ X can be produced from every x ∈ X in a finite number

of iterations. The definition of a neighbour is then key to ensure the convergence of the

algorithms.

Let us suppose that we need to generate a neighbour from a cycle configuration y =

〈ns, C f〉. According to our definition, a neighbour yn of y is a configuration which differ

from it by only one step. yn can be obtained from y by changing one of its existing

step (move a), adding (move b) or subtracting (move c) one step. The three options

are summarised in Table 6.5.

Table 6.5: Summary of the possible ways of generating a neighbour

Move A neighbour yn can be obtained from y by:

a changing one of the existing step of y
b adding one step to y
c subtracting one step to y

Move b is possible only if (ns+1) < ns,max, while it is necessary that (ns−1) > ns,min for

move c to be implemented. A stochastic procedure is used to decide which of the three

moves is executed, according to the procedure illustrated in algorithm 6.6. A higher

probability has been given to move a to encourage the algorithm to take into account

the effect of small changes to an existing configuration. Equal probabilities have been

given to moves b and c. However, an analysis should be carried out to establish the

effect of these parameters.

Let us suppose we have to generate a neighbour yn = 〈ns,n, Cn, fn〉 from a configuration

y = 〈ns, C, f〉, where yn needs to have the same number of steps as y (move a): ns,n=ns.

The first step is the generation of an intermediate configuration, y∗ = 〈n∗s, C∗, f∗〉,
having the same dimensions as y. Cn and fn are equal to C and f , but for a random

row j ∈ 1, ..., nu, which is substituted by the j-th row of C∗ and f∗, respectively.
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Algorithm 6.6 Generation of a neighbour configuration yn from y

Input: y = 〈ns, C, f〉, ns,max, ns,min
Output: yn = 〈ns,n, Cn, fn〉

Repeat
r=random number;{Two random numbers between 0 and 1 are generated}
r2=random number;
if r<0.85 then

We create a neighbour yn having the same number of steps as y
else if r2>0.5 ∨ ns=ns,min then

Create neighbour yn by adding one step to y
else if r2≤0.5 ∨ ns=ns,max then

Create neighbour yn by subtracting one step from y
end if

Until A feasible configuration yn is found

The stochastic procedure assures at the same time a close relation between y and yn, and

that at each iteration any of the rows of C and f can be substituted with another possible

step, any configuration can be obtained by another in a finite number of iterations.

6.5 Framework Results: Synthesis of optimal cycle config-

urations for CO2 capture

The design problem addressed in this section is the synthesis of optimal VSA config-

urations for the capture of CO2 from flue gases. The objective is the simultaneous

optimisation of the recovery and purity of CO2 in the product stream. In mathematical

terms, the problem can be expressed as follow:

max
y∈Y

Recovery & Purity of CO2 at CSS

s.t.

x = arg max
x(y)∈X

Recovery & Purity of CO2 at CSS

s.t.

Evaluation of the model at CSS;

(6.2)

The design space Y is given by cycle configurations, y, which obey to the following rules:

1. the minimum and maximum number of steps: ns,min=4 and ns,max=6;

2. the number of products is 2 (np,max = np,min=2), e.g. the light and heavy product;

3. the maximum number of bed interconnections is 2 (nc=2);



Chapter 7. A Flowsheet Design Framework for PSA Cycles 177

4. step 1 is always receiving the feed (i.e. c11=-1);

5. all the steps but the last one can be sources: the last step is a pressurisation;

6. one, and only one, of the steps must be a blowdown; the first and the last step can-

not be blowdowns according to the previous points (i.e. cbk=0 where b ∈2,. . .,ns-1

and k=1, 2);

7. the blowdown step cannot be the source of the pressurisation step, as we are not

interested in saving pressurisation costs by introducing a pressure equalisation step

in a vacuum swing adsorption cycle;

8. the light product can be withdrawn from the steps before the blowdown;

9. the heavy product can be withdrawn from the steps after the blowdown minus the

pressurisation;

10. the output of a step cannot be recycled as input to the same step;

The rules that define Y have been imposed to include in our search space the cycle

configurations proposed by Reynolds et al. in [105]. In [105] nine high temperature

heavy reflux PSA cycles have been proposed for the capture of CO2 from flue gases.

Despite some of the cycles proved to be efficient, the authors acknowledge the lack

of a systematic design strategy on how to best configure complex PSA cycles [81]. I

used the class of configurations proposed by Reynolds et al. to test the ability of our

automated flowsheet design framework to better the results obtained by the heuristic

design approach used in [105]. Hence, the rules imposed to our configurations ensures

that all the cycles investigated starts with a feed step, contain only a blowdown step and

ends with a pressurisation step, as in [105], but a wider range of bed interconnections

are allowed than in [105], as any step can be used as source to another.

The rules imposed require some extra care when generating a neighbour with the pro-

cedure illustrated in section 6.4: it is necessary to make sure that the neighbouring

procedure can change any of the elements of the parent configuration without neces-

sarily generating non-viable configurations. For example, if a blowdown step is added

when generating yn from y using move a, a further row has to be substituted to remove

the blowdown step already contained in y. Similarly, if the change implies removing the

blowdown step from y, a further row has to be to yn to make sure that is contains a

blowdown step. Before the neighbour configuration is sent to the simulation/optimisa-

tion stage, the viability check is carried out to make sure the new neighbour follows the

desired rules.
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Each configuration y will be optimised by MOGA, introduced in chapter 5 in the design

space defined by x = var(y). For every cycle configuration, the design variables are

the cycle time (tc), the lower value of the pressure (PL), the value of the feed flowrate

(Fin) and the split ratios (rs). The design space of the operating conditions X is defined

by the lower and upper bounds imposed to each of these variables. In our case study,

the boundaries have been defined by tc ∈ [200, 2000] s, PL ∈ [0.1, 0.4] atm, Fin ∈
[10−7, 10−5] kmol/s and rs ∈ [0.002, 0.99]. The value of the high pressure has been

kept constant, PH = 1.36 atm, as in [105]. The only constraint is the evaluation of

recovery and purity at CSS, which is identified by dynamic simulation. In sections 6.5.1

and 6.5.2 the results obtained by the framework are presented. Although the model

has been modified to reduce computational costs, the simulation and optimisation of a

configuration is still time demanding. The computational burden is an even bigger issue

within the flowsheet framework, where more configurations have to be evaluated by the

embedded MOGA procedure at every run. Hence, in this chapter a preliminary analysis

of the results is proposed, rather than a full statistical investigation.

The design problem stated in eq. 6.2 has been firstly solved using the EA algorithm.

One run of the algorithm has been completed, allowing 10 iterations of the external loop

(imax=10). The computational time required by this run was of 25 days. The results of

this run are presented in section 6.5.1.

Due to the excessive computational time required by the previous experiment, the em-

bedded MOGA procedure has been resized so as to be less time requiring, by allowing

only 5 generations (ng = 5), and a population size of 40 (n=40). This allowed to do

multiple runs for each of the three algorithms proposed, with imax=20. The results are

presented in section 6.5.2.

In both cases, the overall Pareto front shown in Fig. 6.3 obtained from the five cycle

configurations of Table 6.3 is used as a reference to evaluate the results of the framework.

6.5.1 Results obtained using a non-resized embedded MOGA

The simple evolutionary algorithm EA has been allowed to make 1 run with imax=10,

i.e. 10 configurations explored. A low number of iterations has been allowed due to

the high computational burden imposed by the embedded optimisation process. Each

cycle configuration has been optimised using ng=25, n=60, cr = 0.7 and mr = 0.01 as

MOGA parameters.

Given the low number of iterations allowed, the design space has been further restricted

to help the algorithm to better explore the design space: it has been imposed that in all
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Figure 6.7: Pareto front obtained by the simple evolutionary algorithm (EA). The
comparison with the overall Pareto front, Ref, obtained by the configurations in Table

6.3, shows that EA suggests many solutions with a better performance.

the configurations generated by the framework the inlet streams of the first step, aside

the feed, is the outlet stream of the second step, as in configurations c and e in Table

6.3: c11=-1, c12 = 2 .

In Fig. 6.7 the comparison between the results of EA and the overall Pareto fronts

obtained by the configurations in Table 6.3 is shown. The results are directly comparable

as the MOGA has been used with similar parameters. The overall Pareto front obtained

by the EA matches the reference Pareto in the high recovery region, and dominates where

the two Pareto fronts bends, hence, in the area of the most desirable performance.
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Figure 6.8: The final Pareto front obtained by EA using the full MOGA procedures
consists of design points belonging to different configurations.
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For recovery values under 65%, the reference Pareto dominates, but the improvement of

the purity in this region would not justify the huge loss in the recovery. This is an im-

portant result, which shows the ability of the framework to propose cycle configurations

which outperform the configurations in Table 6.3.

Fig. 6.8 shows how different configurations contribute to the overall Pareto front. While

more than one configuration occupies the region of high recovery/low purity, only one

provides high purity solutions. A schematic of this configuration is shown in Fig. 6.9.

Interestingly, the product is not withdrawn from a blowdown step, and the inlet feed

of the step which produces the heavy product is a mixture of the CO2 enriched stream

coming from the blowdown, step II, and the stream coming from step IV , a light product

reflux step. The feed to the product step, step III, is a highly enriched CO2 stream

from the feed end of step II, which is operated countercurrently, and the outlet stream

of step IV . During step IV , the bed is purged with the light product, which allows

to push the remaining CO2 out of the bed. Since the pressurisation step is operated

countercurrently, the heavy product used to pressurise it does not decrease the capacity

of the bed: the CO2 contained in the feed is mainly adsorbed by the feed end of the bed.

M M
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S
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Figure 6.9: Configuration suggested by the simple evolutionary algorithm that dom-
inates in the high purity region of the Pareto front in Fig. 6.8.
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(a) Simple Evolutionary Algorithm
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(b) Simulated Annealing
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(c) Population Based Approach

Figure 6.10: Pareto fronts have been generated using 10 iteration of the external
evolutionary procedure and a resized MOGA procedure. The overall Pareto front, Ref,

obtained by the configurations in Table 6.3 is also shown for comparison.
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6.5.2 Results obtained using a resized embedded MOGA

The design problem stated in eq. 6.2 has been solved using the three algorithms described

previously. Each algorithm has been initialised 4 times, and a number of 20 iterations

per run has been allowed: 20 cycle configurations per run have been considered. To

reduce computational time, the embedded MOGA procedure has been resized so as to

be less time requiring, by allowing only 5 generations (i.e. ng = 5), and a population

size of 40 (i.e. n=40). No further restriction to the design space has been imposed in

this case. Despite the reduction of the embedded MOGA, each run took approximately

8 days to complete.

The analysis carried out in this section aims at proving whether the three algorithms are

able to evolve the overall Pareto front as the number of iterations progresses (comparison

between Fig. 6.10 and 6.11), and whether the algorithms are able to propose cycle

configurations whose performance dominate the overall Pareto front obtained by the 5

cycle configurations illustrated in Table 6.3. The comparison allows to understand how

good the results proposed by the framework are. In all the figures with the results,

this reference Pareto front is shown to help carrying out the comparison. However,

while comparing the results, it is worth noting that the Pareto fronts obtained by the

framework have been achieved using a resized MOGA procedure.

In Fig. 6.10, the Pareto fronts obtained by the three algorithms after the first 10

iteration are shown. The best results have been achieved by EA, whose first run obtained

solutions with up to 80% purity and 20% recovery. Solutions obtained by SA and

POP seems to reach a plateau in the value of the purity at around 60%. Some of the

solutions show a recovery of less than 20%, and even close to 0%, which would make the

configurations proposed by the framework unfeasible. As expected, the rules imposed

to the configurations (see section 6.2.1) does not exclude unfeasible solutions from our

search space.

In Fig. 6.11, it is shown what happen to the same runs showed in Fig. 6.10 after

10 more iterations. In all three cases, comparing the results at 10 and 20 iterations,

a higher number of points in the high recovery region can be found, thus showing an

overall improvement of the solutions found. In the case of EA, Fig. 6.11(a), runs 1 and

3 do not show a big improvement; on the other hand, the Pareto front of run 2 improves

greatly, and some of the points in the high recovery region dominates the reference

Pareto front. Improvement can be observed in runs 1 and 4 of the SA algorithm. For

the POP algorithm, the main improvement has been achieved by run 2.

The next set of experiments, shown in Fig. 6.12, aims at investigating the performance

of the algorithms in a reduced design space: as in section 6.5.1 it has been imposed to all
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(a) Simple Evolutionary Algorithm
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(b) Simulated Annealing
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(c) Population Based Approach

Figure 6.11: Evolution of the Pareto fronts of Fig. 6.10 after ten more iterations and
comparison with the reference Pareto front, Ref. In average, all the fronts have a higher

number of solutions in the high recovery region.
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the configurations that c11=-1 and c12 = 2. For this analysis, each algorithm has been

allowed 10 iterations (10 configurations investigated), and the resized MOGA procedure

has been implemented for the optimisation of the single configurations.

Within this reduced design space, the three algorithms obtained better solutions than

in the previous set of experiment. No solution with a recovery lower than 20% has been

found. An average improvement in the purity is observed in the solutions, especially

in the region with recovery higher than 70%, meaning that a higher number of viable

trade-off has been found. In particular, the Pareto of the second run of POP suggests

two outstanding solutions, that dominate the reference Pareto front in the region of the

elbow, the most appealing to the designer. As shown in Fig. 6.12(c), the best trade off

corresponds to a recovery of 94.47% and a purity of 93.85%. The two solutions have

been achieved by the same cycle configuration, shown in Fig. 6.14.

In Fig. 6.13, it is shown how different configurations contribute to the overall Pareto

front obtained by POP in run 2 shown in Fig. 6.12(c). The configuration shown in Fig.

6.14 dominates the high purity area of the Pareto; many configurations, on the other

hand, dominate the high recovery region. All the results presented in this section, suggest

that high recovery solutions are easy to achieve, and the design challenge concerns the

high purity region.

The complexity of the configuration in Fig. 6.14 demonstrates how the framework is able

to synthesise configurations where unusual connections are allowed, and this would not

have been possible within the framework proposed in previous studies [89, 116]. Despite

in principle all the interconnections could be implemented, it is difficult to say at this

stage whether the connections suggested in Fig. 6.14 can be implemented in practice. It

would be interesting to interact with a manufacturer of PSA equipment to gain a deeper

understanding of practical issues linked to the cycle configuration. The configuration

in Fig. 6.14 requires connections more complicated than the one in Fig. 6.9, and it is

therefore less likely to be practically viable.

An interesting aspect of the configuration in Fig. 6.14 is that the output of step II, a

blowdown, is sent both to the the inlet of step I and to the light product, thus “mixing”

the corresponding characteristics of the configurations in Table 6.3. When step II is

performed cocurrently, as in this case, the product withdrawn is not heavy, as the CO2

adsorbed is stored in the feed end of the bed. Since the outlet stream of step II is sent

to 5 units, only a low amount of the CO2 it contains is lost in the light product, so it

does not impact negatively on the recovery. The heavy product is withdrawn from a

small fraction of step II and step III. Since the upper end of the bed has been purged

in step II, a high purity product can be obtained.
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(a) Simple Evolutionary Algorithm
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(b) Simulated Annealing
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(c) Population Based Approach

Figure 6.12: In a restricted design space, all the algorithms improved the quality
of the solutions found. In its second run, POP obtained two outstanding solutions
dominating the reference Pareto front, Ref, obtained by the configurations in Table 6.3.
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Figure 6.13: Different cycle configurations contribute to overall Pareto front ob-
tained by POP in run 2 (Fig. 6.12(c)). For each point, the legend specifies by which
configuration the point has been produced, e.g. the points with high purity have been

provided by the second configuration, y2.

The results discussed so far show the ability of the three algorithms to evolve, and

potentially to find better solutions than the one proposed in literature. Given the low

number of runs and the reduction of the embedded MOGA procedure, the average

behaviour of the single algorithms should not be deduced from these results.

6.6 Conclusions

The performance of a PSA cycle, both in terms of quality of the products and cost of the

operation, is linked to the cycle configuration used for the separation. Complex multi-

bed/multi-step PSA cycles are often necessary, for instance when the desired product is

the most preferably adsorbed species of the gas mixtures, as in the case of CO2 capture

from flue gases. The design of such complex cycles is a difficult task and the computa-

tional burden imposed by the simulation of PSA processes has hindered the development

of appropriate automated tools for the synthesis of these cycles. Furthermore, the high

computational nature of the problem makes the development of design tools for PSA

cycle conceptually challenging.

A flowsheet design framework for the multi-criteria design of PSA cycle configurations

has been presented in this chapter. The framework is based on an evolutionary proce-

dure that, at each iteration, evaluates a cycle configuration, y. The performance of the

configuration, represented by the Pareto front it generates via multi-objective optimisa-

tion, is fed back to the generator of cycles and taken into account when generating new
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Figure 6.14: Configuration suggested by the population based evolutionary algorithm
whose performance dominates the points of the reference case study.

configurations. The key element of the framework is the representation of the cycle con-

figurations. In section 6.2 a representation of cycle configurations has been proposed,

which allows for all the possible bed interconnections to be explored. The flexibility

of the proposed representation allows to overcome the limitations of previous studies,

which were based on the idea of selecting the sequence of steps in the cycle among a set

of known steps (e.g. adsorption with feed, desorption etc.).

Three evolutionary algorithms have been proposed: a simple evolutionary algorithm

(EA), a simulated annealing procedure (SA) and a population based algorithm (POP).

The details of the three evolutionary procedures are provided in section 6.3. The evo-

lutionary algorithms used in this chapter adopt a (1+1) evolution strategy: a single

parent that generate single offspring [20]. The child is a neighbour of the parent. The

procedure implemented to generate a neighbour is illustrated in section 6.4. The main

difference among the three algorithms is in the way the parent configuration is selected

at each iteration among the previously investigated configurations.

The performance of the framework has been investigated for a particular case study:
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the synthesis of optimal cycle configurations for CO2 capture from flue gases. Firstly,

the ability of the cycle representation to represent known cycle configurations has been

explored in section 6.2.3. A preliminary analysis of the results is proposed, rather than

a full statistical investigation, due the high computational time required.

The results show the ability of the three algorithms to evolve the overall Pareto front

and to propose cycle configurations that outperform cycle configurations proposed in

literature by Reynolds et al. [105]. Furthermore, more than one configuration contribute

to each of the overall Pareto fronts obtained. This proves that there is not a unique

solution to the multi-objective problem investigated. In all the Pareto fronts, a high

number of configurations contribute to the high recovery region of the Pareto, while

only one or two appear to dominate the high purity region. This demonstrates that the

high purity solutions are more challenging to obtain.

The simplifications introduced in chapter 2 allowed to perform in a manageable time

the analysis carried out in this chapter. However, a full statistical analysis could not

be carried out, and a reduced-size MOGA has been used, together with a low number

of iterations per each run. Hence, the promising results obtained in this chapter can

still only be considered as a preliminary analysis of the performance of the three algo-

rithms. Overcoming the computational burden is a key element for the development

of automated tools for the synthesis of PSA cycles. Suggestions on how to shorten the

computational requirements of the framework are provided in the following chapter.



Chapter 7

Conclusions and directions for

future work

7.1 Conclusions

The research project presented in this thesis focuses on the development of a multi-

criteria design framework for complex Pressure Swing Adsorption (PSA) cycles. PSA is

a cyclic separation process, whose main steps are adsorption, at high pressure, and re-

generation of the adsorbent, at low pressure. Despite PSA is a well established industrial

process for gas separation, the design of complex PSA cycles is still mainly an experi-

mental effort. This is due to the challenges posed by the complexity of the simulation

and by the need to detect the performance at cyclic steady state. However, automated

tools for the design of PSA processes would be beneficial for the development of the

technology due to the complex behaviour of the performance with respect to the design

variables. The operation is characterised by trade-offs between different measures of the

performance, but only few previous studies focus on the multi-objective optimisation of

PSA cycles. The interest on PSA is due not only to its wide employment in industry,

but also to the role it can play as an option for CO2 capture from flue gases, as discussed

in chapter 1.

A multi-criteria design framework for complex PSA cycles has been developed, able

to provide useful information about trade-offs involved in the characterisation of PSA

cycles. Case studies of interest have been separation of air for N2 production and

separation of CO2 from flue gases.

The analysis of previous attempts to optimise PSA processes put in evidence some of

the gaps in the existing literature regarding design tools for PSA processes:

189
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• cumbersome simulations have been embedded within the optimisation framework,

hence limiting the dimension of the PSA processes which could be optimised; the

problem has often be avoided by the adoption of too simplified models, or the

restriction to small case studies;

• a detailed description of the diffusion process has often been avoided, as the inclu-

sion of diffusion equation would have implied an unmanageable simulation;

• no justification has been provided for the choice of the optimisation tool adopted;

• despite PSA performance is characterised by conflicting criteria, only two studies

have addressed the optimisation of PSA cycles as a multi-objective design problem;

• few design strategies for the synthesis of PSA cycles have been proposed.

The design framework that has been proposed in this thesis aims at overcoming the

above limitations. The key aspects of the design framework are:

• reduced computational costs imposed by the complexity of PSA models. Compu-

tational time has been reduced by introducing a simplified yet reliable model;

• both the detailed diffusion model and the linear driving force approximation have

been taken into account to describe the mass transfer within the solid phase. This

allows the optimisation of fast cycles, useful to reduce capital and operating costs;

• multi-criteria optimisation approach which allows to detect optimal trade-offs be-

tween conflicting parameters of the performance. A multi-objective genetic algo-

rithm has been implemented to generate approximations of the Pareto front for

the different design problems;

• capability of simulating and optimising complex multi-bed/multi-steps operations;

• Ability to syntesise novel PSA cycle configurations.

Some details on how the above points have been achieved are discussed in the remainder

of this section.

7.1.1 Simulation and modelling

The first step of the project has been the development of appropriate simulation tools for

PSA processes, presented in chapter 3. The computational requirements of the dynamic

simulation of PSA cycles represents the bottle-neck for the development of automated
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design tools. This is due to the fact that PSA processes are described by a set of coupled

PDAEs equations, and that the performance of the cycle needs to be evaluated at cyclic

steady state (CSS), as discussed in chapter 2.

The simulations proposed in this thesis address the need of decreasing computational

time without compromising accuracy. Each of the case studies poses a specific challenge

to the development of the design framework: in the case of N2 production, a detailed

diffusion model needs to be adopted to capture the dynamics of this kinetically controlled

separation. On the other hand, CO2 capture is an equilibrium driven separation which

requires the development of PSA cycles capable of providing a high purity of the strongly

adsorbed species.

In both cases, the computational time has been cut by simulating each bed involved

in a cycle as a series of CSTRs. A unibed approach has been adopted to speed up

the conversion to CSS. An investigation has been carried out to detect the appropriate

numerical strategies to solve the equations describing the two operations both accurately

and time efficiently.

7.1.2 Characterisation of the objective function and single objective

optimisation

In chapter 4 a preliminary investigation is carried out to characterise the objective

function and determine the most appropriate class of optimiser to be used to design a

PSA configurations. The example taken into account is the maximisation of the recovery

obtained from a simple 2-bed/4-step Skarstrom for N2 production from air.

The effect of the choice of the numerical method on the shape of the objective func-

tion has been investigated. Time-adaptive integration schemes have been introduced to

reduce the time of the simulation: ode23 and ode45, both based on the Runge-Kutta

method. It has been found that to a regular objective function profile, as for the concen-

tration profiles, the recovery has to be calculated by the integrator itself, and it cannot

be calculated from the concentration profiles by a quadrature scheme.

The investigation showed that the profile of the objective function is non-smooth. Di-

rect Search methods are able to cope with non-smooth objective functions, and the

performance of some of these method has been investigated. Among the optimisation

algorithms used, the Nelder-Mead method, with a right-angled simplex, gave the more

robust and efficient performance.

It was found that a hybrid optimisation technique, combining the Nelder-Mead and the

multidirectional search methods, is the most successful and robust optimisation strategy.
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DSMs proved to be reliable method for the single objective optimisation of the PSA

process. However, as the recovery is increased, the purity of N2 in the product stream

decreases. Hence, it would be desirable to take into account the effect of the design

variables on the conflicting criteria to properly design the operation.

7.1.3 Multi-objective optimisation

PSA operations are characterised by intrinsically conflicting criteria. In chapter 5 the

multi-objective optimisation of two PSA processes has been addressed: the two case

studies presented are the separation of air for N2 production, and the CO2 capture from

flue gases.

Due to the non-smoothness of the objective function and the non-convexity of the feasible

region, the ability of a multi-objective genetic algorithm (MOGA) to generate approxi-

mations to the Pareto front has been investigated. The key element of the algorithm is

the definition of a targeted fitness function, deigned to encourage the evolutionary pro-

cedure to broaden the extent of the Pareto front. The aim is to help a design engineer

identify the trade-offs between the different criteria and thereby choose the appropriate

design point or even a region in the design space for further investigation. A statistical

analysis showed that the MOGA proposed successfully compared with other optimis-

ers, such as DSMs and NSGA-II. The effect of the MOGA parameters has also been

investigated statistically.

7.1.4 A multi-criteria flowsheet design framework for PSA cycles

In chapter 6 a flowsheet multi-objective framework is introduced, able to synthesise

optimal cycle configurations for CO2 capture via PSA. The framework is based on an

evolutionary procedure that, at every iteration, evaluates a cycle configuration, y. The

performance of the configuration, represented by the Pareto front it generates via multi-

objective optimisation, is fed back to the generator of cycles and taken into account when

generating new configurations. The key element of the framework is the representation of

the cycle configuration. In section 6.2 a representation of cycle configurations has been

proposed, which allows for all the possible bed interconnections to be explored. The

flexibility of the representation allows to overcome the limitations of previous studies,

where cycle configuration could only be obtained by selecting the sequence of steps in

the cycle among a set of known steps. The framework proposed constitutes a valuable

tool to support the design and implementation of new cycles, addressing the needs of

the many industries which are currently building new PSA plants. Three evolutionary

algorithms have been developed for the task.
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The preliminary results prove the ability of the three algorithms to propose cycle con-

figurations that outperform cycle configurations proposed in literature by Reynolds et

al. [105]. Despite the simplifications introduced in the models, the high computational

requirements of the simulations prevented a full statistical analysis of the performance

of the three algorithms. Overcoming the computational burden is a key element for the

development of automated tools for the synthesis of PSA cycles. Suggestions on how to

shorten the computational requirements of the framework are provided below.

7.2 Directions for future work

The results obtained showed the ability of the framework to synthesise novel PSA config-

urations and propose Pareto fronts whose points belong to different cycle configurations,

thus showing the clear impact of the cycle configuration on the performance. However,

the results presented appear to be partial under some aspects: despite the model for

CO2 capture has been validated for a 4-bed/4-step PSA cycle in section 5.5, it cannot

accurately reproduce the data of the more complex configurations investigated in section

6.2.3. The high computational time required by the evaluation of the objectives limited

the number of experiments that could be run.

The above observation motivates the adoption of detailed PSA models within the frame-

work, together with more efficient techniques to reduce computational time. In partic-

ular, improvement to the framework should include:

• development of detailed models for PSA operations for a correct description of the

kinetics and thermodynamic aspects of the process, which are vital for a correct

evaluation of the process performance both in term of the quality of the product

and cost of the operation;

• including the choice of the adsorbent material among the design variables available

to the optimiser;

• exploring the implementation of surrogate models (i.e. response surface models,

metamodels or emulators) that mimic the behaviour of the simulation model as

closely as possible while being computationally cheaper to evaluate. This would

reduce the number of times the optimiser needs to call the detailed simulators,

thus reducing computational costs;

• parallel implementation of the framework, to further reduce computational costs;

• considering also other separation options (such as membrane, cryogenic, absorp-

tion) as an alternative or hybrid/complementary procedure to separate gases.
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In particular, surrogate modelling and parallel computing would be precious techniques

to enable the flowsheet design framework to properly explore the design space in a

reasonable time span. The high computational time required by the evaluation of the

objectives would become particularly stringent when a detailed column model is intro-

duced in the framework. Surrogate models, or response surface models (RSM), mimic

the behavior of a detailed simulation model, or the data obtained experimentally, as

closely as possible while being computationally cheaper to evaluate. The detailed model

is evaluated at a number of points, and the surrogate model is built by fitting the re-

sponse of the detailed model with a function: by running the simulations at a set of

points (experimental design) and fitting response surfaces to the resulting input-output

data, fast surrogates models can be obtained for the objective and constraint functions

used for optimisation [57].

Surrogate modelling has been recently used by Agarwal et al. [4], who considered “model

reduction” as a valuable approach to reduce the computational efforts needed to sim-

ulate PSA processes within an optimisation framework. They developed reduced-order

models (ROM) based on proper orthogonal decomposition (POD) as a low-dimensional

approximation to a detailed PSA model. The ROM was used to describe the concen-

tration profiles during a cycle. The ROM has been successfully used to optimise the

recovery of H2 from CH4 in a simple PSA Skarstrom cycle. However, the ROM was able

to mimic the behaviour of the PSA process only in the neighbourhood of the experi-

mental conditions used to generate it. Hence, the ROM could not be used as a model

to optimise the process in a wide design space. This first study shows that surrogate

modelling is a viable option to simulate PSA cycle, however effort is needed to produce

a surrogate model capable of representing the behaviour of a PSA in a sufficiently large

design space. The higher the number of calls to the exact model, the more accurate the

corresponding surrogate model. Hence, using parallel computing to evaluate the exact

model would help to build a reliable surrogate model in a time-efficient way.

The development of detailed models, especially in the case of novel nanoporous materials,

would require a close interaction between modelling and experiments. In developing

our model for CO2 capture on HTlcs in chapter 3, a limit to the reliability of the

model depended on the lack of diffusivity data. It would be then necessary to carry out

experiments to determine the equilibrium and kinetic data needed by the framework to

implement a robust simulation of PSA processes. It would be interesting to explore the

application of response-surface methodology (RSM) to experiment design. Statistical

design of experiments reduces the number of experiments to be performed, considers

interactions among the variables and can be used for optimization of the operating

parameters in multivariable systems. RSM can be used to identify which input variables

are the most important (highest contribution to variance of the output) so that the
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relationship between input-output can be detected and visualised. This might be an

efficient approach towards the optimisation of the structure of nanoporous materials for

the separation of CO2 from the other components.

In the long term, other separation processes could be investigated, where adsorption

and membrane separation are considered a valuable options. Interesting applications

are related to both biogas upgrading and biogas reforming. In the first case, the biogas

is purified via PSA up to natural gas grade, and then used as car fuel or gas substitute.

In biogas reforming, the biogas is converted into very pure hydrogen which can then be

used as a feed for fuel cells. PSA is involved in the final step of the purification process.

The novelty of both the operations requires an effort to reduce the costs involved and

improve the efficiency. Including these PSA applications within the framework developed

would be beneficial to the development of biogas employment in the quest for greener

fuels. In the same way, it would be possible to capitalise on the optimisation tools

developed for the design of CO2 capture processes to look at other industrial processes

which involve computationally expensive simulations.
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[25] Cruz, P., Santos, J. C., Magalhães, F. D., and Mendes, A. Simulation

of separation processes using finite volume method. Comp. & Chem. Eng. 30, 1

(2005), 83–98.

[26] Deb, K. Multi-objective optimization using evolutionary algorithms. J. Wiley &

Son Inc., Chester,UK, 2001.

[27] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE

Transactions 6, 2 (2002), 182–197.

[28] Diagne, D., Goto, M., and Hirose, T. New PSA process with intermediate

feed inlet position operated with dual reflux: Application to carbon dioxide re-

moval and enrichment. Journal of Chemical Engineering of Japan 27, 1 (1994),

85–89.

[29] Diagne, D., Goto, M., and Hirose, T. Experimental study of simultane-

ous removal and concentration of CO2 by an improved pressure swing adsorption

process. Energy Convers. Mgmt 36, 6-9 (1995), 431–434.

[30] Diagne, D., Goto, M., and Hirose, T. Parametric studies on CO2 separation

and recovery by a dual reflux process consisting of both rectifying and stripping

sections. Ind Eng. Chem. Res 34 (1995), 3083–3089.

[31] Diagne, D., Goto, M., and Hirose, T. Numerical analysis of a dual refluxed

PSA process during simultaneous removal and concentration of carbon dioxide

dilute gas from air. J. Chem. Tech. Biotechnol. 65 (1996), 19–38.

[32] Ding, Y., and Alpay, E. Equilibria and kinetics of CO2 adsorption on hydro-

talcite adsorbent. Chem. Eng. Science 55 (2000), 3461–3474.

[33] Ding, Y., and Alpay, E. High temprerature recovery of CO2 from flue gases

using hydrotalcite adsorbent. Trans IChemE 79, Part B (2001), 45–51.

[34] Ding, Y., Croft, D. T., and LeVan, M. D. Periodic states of adsorption

cycles IV. direct optimization. Chem. Eng. Science 57 (2002), 4521.



Bibliography 199

[35] Ebner, A. D., Reynolds, S. P., and Ritter, J. A. Understanding the ad-

sorption and desorption behaviour of CO2 on a K-promoted hydrotalcite-like com-

pound (HTlc) through nonequilibrium dynamimc isotherms. Ind. Eng. Chem. Res.

45 (2006), 6387–6392.

[36] Ebner, A. D., Reynolds, S. P., and Ritter, J. A. Nonequilibrium kinetic

model that describes behaviour of CO2 in a K-promoted hydrotalcite-like com-

pound. Ind. Eng. Chem. Res. 46 (2007), 1737–1744.

[37] Ebner, A. D., and Ritter, J. A. Equilibrium theory analysis of rectifying PSA

for heavy component production. AIChE Journal 48, 8 (2002).

[38] Ebner, A. D., and Ritter, J. A. Equilibrium theory analysis of dual reflux

PSA for separation of a binary mixture. AIChE Journal 50, 10 (2004).

[39] Finlayson, B. A. Nonlinear Analysis in Chemical Engineering. Ravenna Park

Publishing, Inc., Seattle, Washington USA, 2003.

[40] Fletcher, A. J. Porosity and sorption behaviour. http://www.staff.ncl.ac.

uk/a.j.fletcher/adsorption.htm, 2008.

[41] Glueckauf, E., and Coates, J. I. Theory of chromatography. Part IV. The

influence of incomplete equilibrium on the front boundary of chromatograms and

on the effectiveness of separation. Journal of Chemical Society (1947), 1315–1321.

[42] Guan, J., aand C. Long, R. Z., and Hu, X. Dynamic simulation of pressure

swing adsorption system with the electrical network. Chem. Eng. Science 60, 16

(2005), 4635–4645.

[43] Hamda, H., Roudenko, O., and Schoenauer, M. Multi-objective evolution-

ary topological optimum design. In Adaptive Computing in Design and Manufac-

ture V (2002), pp. 121–132.

[44] Hassan, M. M., Raghavan, N. S., and Ruthven, D. M. Pressure swing air

separation on a carbon molecular-sieve. 2. Investigation of a modified cycle with

pressure equalization and no purge. Chem. Eng. Science 42, 8 (1987), 2037–2043.

[45] Hassan, N. M., Ruthven, D. M., and Raghavan, N. S. Air separation by

pressure swing adsorption on a carbon molecular sieve. Chem. Eng. Science 41, 5

(1986), 1333–1343.

[46] Herrera, F., Lozano, M., and Sánchez, A. M. A taxonomy for the crossover

operator for real–coded genetic algorithms: an experimental study. International

Journal of Intelligent Systems 18, 3 (2003), 309–338.

http://www.staff.ncl.ac.uk/a.j.fletcher/adsorption.htm
http://www.staff.ncl.ac.uk/a.j.fletcher/adsorption.htm


Bibliography 200

[47] Herrero, J. M., Martinez, M., Sanchis, J., and Blasco, X. Computational

and Ambient Intelligence, vol. 4507 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2007, ch. Well distributed Pareto Front by Using the ���ε-MOGA

Evolutionary Algorithm, pp. 292–299.

[48] Higham, N. J. Optimization by direct search in matrix computation. SIAM J.

Matrix Anal. Appl. 14, 2 (1993), 317–333.

[49] Ho, M. T., Allinson, G. W., and Wiley, D. E. Reducing the cost of CO2

capture from flue gases using pressure swing adsorption. Ind. Eng. Chem. Res. 47

(2008), 4883–4890.

[50] Horn, J., Nafpliotis, N., and Goldberg, D. E. A niched pareto genetic

algorithm for multiobjective optimization. In Proceedings of the First IEEE Con-

ference on Evolutionary Computation, IEEE World Congress on Computational

Intelligence (1994), pp. 82–87.

[51] Intyre, J. A., Holland, C. E., and Ritter, J. A. High enrichment and

recovery of dilute hydrocarbons by dual-reflux pressure swing adsorption. Ind.

Eng. Chem. Res. 41 (2002), 3499–3504.

[52] Ishibashi, M., Ota, H., Umeda, S., Tajika, M., Izumi, J., Yasutake, A.,

Kabata, T., and Kageyama, Y. Technology for removing carbon dioxide from

power plant flue gas by the physical adsorption method. Energy convers. Mgmt

1996, 6-8 (1996), 929–933.

[53] Jain, S., Moharir, A., Li, P., and Wozni, G. Heuristic design of pressure

swing adsorption: A preliminary study. Separation and Purification Technoloogy

33, 1 (2003), 25–43.

[54] Jiang, L., Biegler, L. T., and Fox, V. G. Simulation and optimization of

pressure swing adsorption system for air separation. AIChE Journal 49, 5 (2003),

1140.

[55] Jiang, L., Biegler, L. T., and Fox, V. G. Design and optimization of pressure

swing adsorption systems with parallel implementation. Computers and Chemical

Engineering 29 (2005), 393–399. Short Communication.

[56] Jiang, L., Fox, V. G., and Biegler, L. T. Simulation and optimal design of

multiple bed pressure swing adsorption systems. AIChE Joutnal 50, 11 (2004),

2904–2917.

[57] Jones, D. R. A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization 21, 4 (2001), 345–383.



Bibliography 201

[58] Jones, R. L., Keller, G. E., and Wells, R. C. Us patent 4194892, 1980.

[59] Kearns, D. T., and Webley, P. A. Application of an adsorption non-flow

exergy function to an exergy analysis of a pressure swing adsorption cycle. Chem.

Eng. Science 59 (2004), 3537–3557.

[60] Kelley, C. T. Iterative Methods for Optimization. Frontiers in Applied Mathe-

matics. SIAM, 1999.

[61] Kelley, C. T. A brief introduction to implicit filtering. http://www.ncsu.edu/

crsc/reports/ftp/crsc-tr02-28.ps.gz., September 2002.

[62] Kikkinides, E. S., Yang, R. T., and Cho, S. H. Concentration and recovery

of CO2 from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32

(1993), 2714–2720.

[63] Ko, D., and Moon, I. Multiobjective optimization of cyclic adsorption processes.

Ind. Eng. Chem. Res. 42, 2 (2002), 93–104.

[64] Ko, D., Siriwardane, R., and Biegler, L. T. Optimization of a pressure-

swing adsorption process using zeolite 13X for CO2 sequestration. Ind. Eng. Chem.

Res. 42, 2 (2003), 339–348.

[65] Ko, D., Siriwardane, R., and Biegler, L. T. Optimization of pressure swing

adsorption and fractionated vacuum pressure swing adsorption processes for CO2

capture. Ind. Eng. Chem. Res. 44, 21 (2005), 8084–8094.

[66] Kopaygorodsky, E., Guliants, V. V., and Krantz, W. B. Predictive dy-

namic model of single-stage ultra-rapid pressure swing adsorption. AIChE Journal

50, 5 (2004), 953–962.

[67] Kostrosky, K. P., and Wankat, P. C. High recovery cycles for gas separations

by pressurre swing adsorption. Ind. Eng. Chem. Res. 45 (2006), 8117–8133.

[68] Krishna, R., and Wesselingh, J. A. The Maxwell-Stefan approach to mass

transfer. Chem. Eng. Science 52, 6 (1997), 861–911.

[69] Kumar, R., Fox, V. G., Hartzog, D. G., Larson, R. E., Chen, Y. C.,

Houghton, P. A., and Naheiri, T. A versatile process simulator for adsorptive

separations. Chem. Eng. Science 49, 18 (1994), 3115–3125.

[70] Kvamsdal, H. M., and Hertzberg, T. Optimization of PSA systems - Studies

on cyclic steady state convergence. Computers & Chemical Engineering 21, 8

(1997), 819–832.

http://www.ncsu.edu/crsc/reports/ftp/crsc-tr02-28.ps.gz.
http://www.ncsu.edu/crsc/reports/ftp/crsc-tr02-28.ps.gz.


Bibliography 202

[71] Lagarias, J. C., Reeda, J. A., Wright, M. H., and Wright, P. E. Con-

vergence properties of the nelder-mead simplex method in low dimensions. SIAM

Journal on Optimization 9, 1 (1998), 112–147.

[72] Laumanns, M., Thiele, L., Thiele, K., Deb, K., and Zitzler, E. Combining

convergence and diversity in evolutionary multiobjective optimization. Evolution-

ary Computation 10, 3 (2002), 263–282.

[73] Laumanns, M., Zitzler, E., and Thiele, L. Evolutionary Multi-Criterion

Optimization, vol. 1993 of Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2001, ch. On the Effects of Archiving, Elitism, and Density Based

Selection in Evolutionary Multi-objective Optimization, pp. 181–196.

[74] Levenspiel, O. Chemical Reaction Engineering. J. Wiley & Son Inc., 1962.

[75] Lewandowski, J., Lemcoff, N. O., and Palosaari, S. Use of neural net-

works in the simulation and optimization of pressure swing adsorption processes.

Chemical Engineering & Technology 21, 7 (1998), 593–597.

[76] Lewis, R. M., Torczon, V., and Trosset, M. W. Direct search meth-

ods: Then and now. Journal of Computational and Applied Mathematics 124,

1-2 (2000), 191–207.

[77] Lundy, M., and Mees, A. Convergence of an annealing algorithm. Mathematical

Programming 34 (1986), 111–124.

[78] Malek, A., and Farooq, S. Study of a six-bed pressure swing adsorption

process. AIChE Journal 43, 10 (1997), 2509–2523.

[79] Marsh, W. D. Us patent: 3142547, July 1964.

[80] McKinnon, K. I. M. Convergence of the nelder-mead simplex method to a

nonstationary point. SIAM Journal on Optimization 9, 1 (1998), 148–158.

[81] Mehrotra, A., Ebner, A. D., and Ritter, J. A. Pressure swing adsorp-

tion cycles for carbon dioxide capture. In Proceedins of 08AIChE Annual Meet-

ing (2008), no. 340f. http://aiche.confex.com/aiche/2008/techprogram/

P134719.HTM.

[82] Meza, J. C., Judson, R. S., Faulkner, T. R., and Treasurywala, A. M. A

comparison of a direct search method and a genetic algorithm for conformational

searching. Journal of Computational Chemistry 17, 9 (1996), 1142–1151.

[83] Mhlenbein, H., and Schlierkamp-Voosen, D. Predictive models for the

breeder genetic algorithm I. Continuous parameter optimization. Evolutionary

Computation 1, 1 (1993), 25–49.

http://aiche.confex.com/aiche/2008/techprogram/P134719.HTM
http://aiche.confex.com/aiche/2008/techprogram/P134719.HTM


Bibliography 203

[84] Miller, B. L., and Goldberg, D. E. Genetic algorithms, tournament selec-

tion, and the effects of noise. http://citeseer.ist.psu.edu/cache/papers/cs/

4086/http:zSzzSzgal4.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz95006.

pdf/miller95genetic.pdf, July 1995.

[85] Murata, T., and Ishibuchi, H. Moga: multi-objective genetic algorithms. In

International Conference on Evolutionary Computation, IEEE (1995), pp. 289–

924.

[86] Naderi, B., Zandieh, M., and Roshanaei, V. Scheduling hybrid flowshops

with sequence dependent setup times to minimize makespan and maximum tardi-

ness. Int J Adv Manuf Technol 41 (2009), 1186–1198.

[87] Nakao, S., and Suzuki, M. Mass transfer coefficient in cyclic adsorption and

desorption. Chem. Eng. Science 57 (2002), 4227–4242.

[88] Nelder, J. A., and Mead, R. A simplex-methos for function minimization.

Computer Journal 7, 4 (1965), 308–313.

[89] Nikolic, D., Kikkinides, E. S., and Georgiadis, M. C. Optimization of

multibed pressure swing adsorption processes. Ind. Eng. Chem. Res. 48, 11 (2009),

5388–5398.

[90] Nilchan, S., and Panthelides, C. C. On the optimization of periodic adsorp-

tion processes. Adsorption 4, 2 (1998), 113–147.

[91] Octave-Forge. Extra packages for GNU Octave. http://octave.

sourceforge.net/, August 2009.

[92] Park, J., Beum, H., Kim, J. N., and Cho, S. H. Numerical analysis on the

power consumption of the PSA process for recovering CO2 from flue gas. Ind.

Eng. Chem. Res. (2002).

[93] Parmee, I. C. Evolutionary and adaptive computing in engineering design.

Springer-Verlag, 2001.

[94] Perry, R. H., Green, D. W., and Maloney, J. O. Perry’s Chemical Engi-

neers’ Handbook. McGraw-Hill, 1997.

[95] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,

B. P. Numerical Recepies in FORTRAN. Press Sindacate of the University of

Cambridge, 1986.

[96] Pugsley, T. S., Berruti, F., and Chakma, A. Computer-simulation of a

novel circulating fluidized-bed pressure-temperature swing adsorber for recovering

carbon-dioxide from flue-gases. Chem. Eng. Science 49, 24A (1994), 4465–4481.

http://citeseer.ist.psu.edu/cache/papers/cs/4086/http:zSzzSzgal4.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz95006.pdf/miller95genetic.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/4086/http:zSzzSzgal4.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz95006.pdf/miller95genetic.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/4086/http:zSzzSzgal4.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz95006.pdf/miller95genetic.pdf
http://octave.sourceforge.net/
http://octave.sourceforge.net/


Bibliography 204

[97] Raghavan, N. S., Hassan, M. M., and Ruthven, D. M. Numerical simulation

of a PSA system using a pore diffusion model. Chem. Eng. Science 41, 11 (1986),

2787–2793.

[98] Raghavan, N. S., and Ruthven, D. M. Numerical simulation of a fixed bed

adsorption column by the method of orthogonal collocation. AIChE Journal 9, 6

(1983), 922–925.

[99] Rajasree, R., and Moharir, A. S. Simulation based synthesis, design and

optimization of pressure swing adsorption processes. Computers & Chemical En-

gineering 24, 11 (2000), 2493–2505.

[100] Rasmussen, C. E., and Williams, C. K. I. Gaussian Processes for Machine

Learning. The MIT Press, 2006. Online at http://www.gaussianprocess.org/

with links to code as well.

[101] Reynolds, S. P., Ebner, A. D., and Ritter, J. A. New pressure swing

adsorption cycles for carbon dioxide sequestration. Adsorption 11 (2005), 531–

536.

[102] Reynolds, S. P., Ebner, A. D., and Ritter, J. A. Carbon dioxide capture

from flue gas by pressure swing adsorption at high temperature using a K-promoted

HTlc: Effects of mass transfer on the process performance. Environmental Progress

25, 4 (2006), 334–342.

[103] Reynolds, S. P., Ebner, A. D., and Ritter, J. A. Enriching PSA cycle for

the production of nitrogen from air. Industrial & Engineering Chemistry Research

45, 9 (2006), 3256–3264.

[104] Reynolds, S. P., Ebner, A. D., and Ritter, J. A. Stripping PSA cycles for

CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent.

Ind. Eng. Chem. Res. 45 (2006), 4278–4294.

[105] Reynolds, S. P., Mehrotra, A., Ebner, A. D., and Ritter, J. A. Heavy

reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation.

Adsorption 14 (2008), 399–413.

[106] Rouse, A., and Brandani, S. A new LDF approximation for cyclic adsorption

processes. AIChE Journal, Separation Technology Topical Conference 2 (2001).

[107] Ruthven, D. M. Principles of adsorption and adsorption processes. John Wiley

& Sons, New York, 1984.

[108] Ruthven, D. M., Farooq, S., and Knaebel, K. S. Pressure Swing Adsorption.

VCH, 1993.

http://www.gaussianprocess.org/


Bibliography 205

[109] Sankararao, B., and Gupta, S. K. Multi-objective optimization of pressure

swing adsorbers for air separation. Ind. Eng. Chem. Res. 46, 11 (2007), 3751–3765.

[110] Schaffer, J. D. Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the 1st International Conference on Genetic Algo-

rithms (1985), Lawrence Erlbaum Associates, Inc., pp. 93–100.

[111] Seshadri, A. NSGA-II: A multi-objective optimization algorithm. http://www.

mathworks.com/matlabcentral/fileexchange/10429, August 2009.

[112] Silverman, B. W. Density estimation for statistics and data analysis. London:

Chapman and Hall, 1986.

[113] Singer, S., and Singer, S. Complexity analysis of nelder-mead search iterations.

Applied Mathematics and Computation (1999), 185–196.

[114] Singer, S., and Singer, S. Efficient implementation of the nelder-mead search

algorithm. Applied Numerical Analysis & Computational Mathematics 1, 3 (2004),

524–534.

[115] Skarstrom, C. W. Method and apparatus for fractionating gaseous mixtures

by adsorption, 1960. http://www.freepatentsonline.com/2944627.htm.

[116] Smith, O. J., and Westerberg, A. W. Mixed-integer programming for pres-

sure swing adsorption cycle scheduling. Chem. Eng. Science 45, 9 (1990), 2833–

2842.

[117] Smith, O. J., and Westerberg, A. W. The optimal design of pressure swing

adsorption systems. Chem. Eng. Science 46, 12 (1991), 2967–2976.

[118] Subramanian, D., and Ritter, J. A. Equilibrium theory for solvent vapour

recovery by pressure swing adsorption: analytical solution for process performance.

Chem. Eng. Science 52, 18 (1997), 3147–3160.

[119] Suman, B., and Kuman, P. A survey of simulated annealing as tool for single

and multiobjectiva optimization. Journal of the Operational Research Society 57

(2006), 1143–1160.

[120] Sumathi, S., Hamsapriya, T., and Surekha, P. Evolutionary intelligence: an

introduction to theory and applications with MATLAB. Springer-Verlag, 2008.

[121] Sundaram, N. Training neural networks for pressure swing adsorption processes.

Ind. Eng. Chem. Res. 38 (1999), 4449–4457.

http://www.mathworks.com/matlabcentral/fileexchange/10429
http://www.mathworks.com/matlabcentral/fileexchange/10429


Bibliography 206

[122] Suzuki, M., Suzuki, T., Sakoda, A., and Izumi, J. Recovery of carbon dioxide

from stack gas by piston-driven ultra-rapid PSA. Journal of Chemical Engineering

of Japan 30, 6 (1997), 1026–1033.

[123] Talbi, E. G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G.,

and Coello, A. C. C. Parallel approaches for multiobjective optimization. In

Lecture noted in Computer Science (2008), J. Branke, K. Deb, K. Miettinen, and

R. Slowinski, Eds., vol. 5252, pp. 349–372.

[124] Teague, K. G., and Edgar, T. F. Predictive dynamic model of a small pressure

swing adsorption air separation unit. Ind. Eng. Chem. Res. 38 (1999), 3761–3775.

[125] The MathWorks. MATLAB Getting Started Guide. www.mathworks.com/

access/helpdesk/help/techdoc/, August 2009.

[126] Todd, R., Buzzi-Ferraris, G., Manca, D., and Webley, P. A. Improved

ODE integrator and mass transfer approach for simulating a cyclic adsorption

process. Comp. & Chem. Eng. 27, 6 (2003), 883–899.

[127] Todd, R. S., and Webley, P. A. Mass-transfer models for rapid pressure swing

adsorption simulation. AIChE Journal 52, 9 (2006), 3126–3145.

[128] Torczon, V. On the convergence of the multidirectional search algorithm. SIAM

J. Optimization 1, 1 (1991), 123–145.

[129] Wagner, J. L. Us patent: 34304181, March 1969.

http://www.freepatentsonline.com/34304181.html.

[130] Webley, P. A., and He, J. Fast solution-adaptive finite volume method for

PSA/VSA cycle simulation; 1 single step simulation. Comp. & Chem. Eng. 23

(2000), 1701–1712.

[131] Woods, D. J. An Interactive Approach for Solving Multi-Objective Optimization

Problems. PhD thesis, Rice University, Houston,Texas, USA, 1985.

[132] Yong, Z., Mata, V., and Rodrigues, A. E. Adsorption of carbon dioxide

onto hydrotelcite-like compunds (htlcs) at high temperatures. Ind. Eng. Chem.

Res. 40 (2001), 204–209.

[133] Yong, Z., and Rodrigues, A. E. Hydrotalcite-like compounds as adsorbents

for carbon dioxide. Energy Conversion and Management 43 (2002), 1865–1876.

[134] Yu, W., Hidajat, K., and Ray, A. K. Application of multiobjective optimiza-

tion in the design and operation of reactive SMB and its experimental verification.

Ind. Eng. Chem. Res. 42, 26 (2003), 6823–6831.

www.mathworks.com/access/helpdesk/help/techdoc/
www.mathworks.com/access/helpdesk/help/techdoc/


Bibliography 207

[135] Zhang, J., and Webley, P. A. Cycle development and design for CO2 capture

from flue gas by vacuum swing adsorption. Environ. Sci. Technol. 42 (2008),

563–569.

[136] Zhang, J., Webley, P. A., and Xiao, P. Effect of process parameters on

power requirements of vacuum swing adsorption technology for CO2 capture from

flue gases. Energy Conversion and Management 49 (2008), 345–356.

[137] Zhang, Z., Mazzotti, M., and Morbidelli, M. Multiobjective optimization

of simulated moving bed and varicol processes using genetic algorithm. Journal of

Chromatography A 989, 1 (2003), 95–108.

[138] Zitzler, E., Deb, K., and Thiele, L. Comparison of multiobjective evolu-

tionary algorithms: Empirical results. Evolutionary Computation 8, 2 (2000),

173–195.

[139] Zitzler, E., Laumanns, M., and Bleuler, S. A tutorial on evolutionary

multiobjective optimization. In Metaheuristics for Multiobjective Optimisation

(2004), Springer-Verlag, pp. 3–38.

[140] Zitzler, E., and Thiele, L. Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach. Evolutionary Computation,

IEEE Transactions 3, 4 (1999), 257–271.

[141] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca,

V. G. Performance assessment of multiobjective optimizers: An analysis and

review. IEEE Transaction on Evolutionary Computation 7, 2 (2003), 117–131.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Why Pressure Swing Adsorption
	1.1 CO2 Capture and Storage 
	1.1.1 Capture Technologies

	1.2 CO2 separation: different options
	1.2.1 Comparison of separation options

	1.3 Basic features of Pressure Swing Adsorption
	1.4 Possible improvements to the configuration of a PSA cycle
	1.5 CO2 Capture by Pressure Swing Adsorption
	1.6 Aim of the project and structure of the thesis

	2 Modeling and Simulation of PSA processes
	2.1 Principles of adsorption
	2.1.1 Equilibrium isotherms
	2.1.2 Mass transfer 
	2.1.2.1 Micropore Diffusion
	2.1.2.2 Mass transport mechanisms in macropores 


	2.2 Modeling PSA operation 
	2.2.1 Mass balance of the gas phase
	2.2.2 Mass balance in the particle
	2.2.2.1 The linear driving force approximation

	2.2.3 Energy Balance 
	2.2.4 Momentum Balance

	2.3 Simulation strategies in literature
	2.3.1 Simulation of fast cycles 

	2.4 Summary

	3 Modeling and Simulation of Case Studies
	3.1 Production of N2 from air: modelling of a kinetically controlled separation 
	3.2 Model for CO2 separation from flue gases: an equilibrium controlled separation 
	3.2.1 Model on HTlcs 
	3.2.2 Model on Zeolite 13X 

	3.3 Simulation of a PSA cycle
	3.3.1 The unibed approach for the simulation of a PSA cycle 

	3.4 Numerical methods for the simulation of PSA processes
	3.4.1 N2 case study 
	3.4.2 CO2 case study

	3.5 Validation of the unibed approach and detection of CSS 
	3.6 Summary

	4 Introduction to the design of PSA cycles
	4.1 Design of PSA cycles: an overview
	4.1.1 Simplified Optimisation Methods 
	4.1.2 Black Box Optimisation
	4.1.3 Equation-based Optimisation Based on Complete Discretisation
	4.1.4 Simultaneous Tailored Optimisation
	4.1.5 Alternative approaches to PSA design

	4.2 Design of a Skarstrom Cycle for N2 production from air 
	4.3 Direct Search Method for Optimal Design
	4.3.1 Simplex Methods
	4.3.1.1 The Nelder-Mead Simplex Method 

	4.3.2 Pattern Search Methods
	4.3.2.1 The Multidirectional search method
	4.3.2.2 Alternating Directions Method

	4.3.3 Methods with adaptive sets of search directions
	4.3.4 Implicit Filtering
	4.3.5 The Hooke-Jeeves Algorithm

	4.4 Performance of the optimisers 
	4.5 Conclusion

	5 Multi-objective Optimisation of PSA cycles
	5.1 Evolutionary Multi-objective Optimisation 
	5.1.1 Evolutionary computation
	5.1.2 Fitness assignment
	5.1.3 Genetic Operators
	5.1.3.1 Diversity Preservation
	5.1.3.2 Elitism

	5.1.4 Exploration versus exploitation
	5.1.5 Performance of Multi-objective Evolutionary Algorithms
	5.1.5.1 Quality assessment of a Pareto set approximation


	5.2 A multi-objective genetic algorithm (MOGA) procedure for the design of PSA cycles 
	5.2.1 Overview of well established genetic algorithms 
	5.2.2 MOGA
	5.2.3 Implementation of the MOGA

	5.3 Multi-objective optimisation of PSA cycles in literature 
	5.4 N2 Case Study: Analysis of MOGA Performance 
	5.4.1 Comparison between MOGA, random search and Direct Search Methods 
	5.4.2 Impact of algorithm parameters 
	5.4.3 Comparison between MOGA and NSGA-II
	5.4.4 Design problem analysis

	5.5 CO2 Case study 
	5.5.1 Results of the multi-objective optimisation
	5.5.2 Effect of adsorbent on optimal performance 

	5.6 Conclusions

	6 A Flowsheet Design Framework for PSA Cycles
	6.1 Introduction to the flowsheet design framework: the general idea 
	6.2 Representation of cycle configurations 
	6.2.1 Definition of a search space 
	6.2.2 Implementation 
	6.2.2.1 Compact representation of the cycle configuration
	6.2.2.2 Decoding of the cycle representation to implement the simulation 

	6.2.3 Validation of the representation 

	6.3 Evolutionary algorithms used within the framework 
	6.3.1 Simple Evolutionary Algorithm
	6.3.2 Simulated Annealing 
	6.3.3 Population Approach 

	6.4 Generation of neighbour configurations 
	6.5 Framework Results: Synthesis of optimal cycle configurations for CO2 capture 
	6.5.1 Results obtained using a non-resized embedded MOGA 
	6.5.2 Results obtained using a resized embedded MOGA

	6.6 Conclusions

	7 Conclusions and directions for future work
	7.1 Conclusions
	7.1.1 Simulation and modelling
	7.1.2 Characterisation of the objective function and single objective optimisation
	7.1.3 Multi-objective optimisation
	7.1.4 A multi-criteria flowsheet design framework for PSA cycles

	7.2 Directions for future work

	Bibliography

