
Genetic Variants of Flavin-containing Monooxygenases: 
Consequences for Drug Metabolism 

 

 

 

 

 

 

Asvi Francois 

 

Department of Structural and Molecular Biology 

University College London 

 

A thesis submitted for the degree of Doctor of Philosophy 

September 2009 

 

 

 
 

 1



Statement 
 

I, Asvi Francois confirm that the work presented in this thesis is my own.  Where information 

has been derived from other sources, I confirm that this has been indicated in the thesis. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 2



Abstract 

The metabolism of the anti-tubercular drug, thiacetazone (TAZ) by human FMOs in vitro and 

the disposition of TAZ in vivo in mice were studied.  Reverse phase chromatography 

confirmed TAZ to be a substrate for human FMO1, FMO2.1 and FMO3 with the formation 

of TAZ-sulphinic acid and TAZ-carbodiimide via a TAZ- sulphenic acid intermediate.  The 

products are the same as those formed by the Mycobacterium tuberculosis enzyme EtaA, the 

enzyme responsible for TAZ activation.  Kinetic studies found FMO2.1 to be significantly 

more efficient at TAZ oxygenation than EtaA, FMO1 and FMO3.  Asians and Europeans do 

not express functional FMO2 in their lungs as a result of a premature stop codon. However 

about 28% of African individuals lack this mutation.  The products of FMO2 are expected to 

be toxic to mammalian cells; therefore individuals expressing FMO2 in their lungs may be at 

higher risk of FMO-dependent TAZ bioactivation.   

Protein variants of FMO3 were analysed for their ability to catalyse TAZ 

oxygenation. Kinetic studies showed that the L360P variant displayed a significantly higher 

catalytic activity towards TAZ than the wild type protein.  The K158/G308 protein was 

inactive towards TAZ, whereas K158 or G308 variants oxygenated TAZ.  These findings 

may reflect the underlying mechanism of TAZ-dependent liver toxicity reported in patients 

taking TAZ as part of treatment for TB.   

Mouse liver and lung microsome experiments indicated that both FMOs and 

cytochromes P450 (CYPs) metabolise TAZ in vitro. FMO contribution was higher in the lung 

than the liver.  Kinetic studies using microsomes from Fmo1 knockout mice show FMO1 to 

be the predominant contributor to TAZ oxygenation in vitro.   

Metabolism of TAZ in liver and lungs of mice in vivo was not observed, however 

TAZ, TAZ-sulphenic acid, TAZ-sulphinic acid and TAZ-carbodiimide were identified in 

kidney. 
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1.1 Xenobiotic Metabolism 
 
 
Xenobiotic metabolism refers to the biochemical pathways involved in the processing of an 

exogenous substance.  The principle site of xenobiotic metabolism is the liver, but 

biochemical transformations, to a greater or lesser extent occur throughout the body and 

depend on the site of xenobiotic exposure.  Xenobiotic metabolism can be considered in two 

phases.  Phase I metabolism is the stage at which polar groups are either introduced or 

exposed in the xenobiotic.  This step is achieved by oxidation catalysed by Cytochrome P450 

Monooxygenases (CYPs), Flavin Containing Monooxygenases (FMOs), Alcohol and 

Aldehyde Dehydrogenases, Monamine Oxidase or Peroxidases or hydrolysis by Esterases, 

Amidases or Epoxide Hydrolase.    Phase II metabolism refers to the detoxification of 

modified products of Phase I metabolism by conjugation to water-soluble, non reactive 

chemical moieties to facilitate their excretion from the body.  This step is catalysed mainly by 

Transferases e.g. Glutathione S-Transferase, Sulfotransferases or UDP Glucuronyl 

Transferase.   

  After the CYPs, the FMOs are the largest group of enzymes involved in the Phase I 

metabolism of drugs and other xenobiotics and provide the focus for this investigation. 

 

1.2 FMOs  

FMOs (EC 1.14.12.8) are β-Nicotinamide adenine dinucleotide phosphate (reduced) 

(NADPH)-dependant enzymes that catalyse the N- and S-oxidation of a wide range of 

compounds.  They contain flavin dinucleotide (FAD) as a prosthetic group and are dependant 

on molecular oxygen for enzyme catalysis.     
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1.2.1 Discovery of FMOs 

In 1960, a study described how rat liver microsomes contained enzymes that catalysed the 

oxygen- and NADPH-dependent oxidation of a number of azo dyes (Miller et al. 1960).  The 

localisation (membrane bound), co-factor requirement (FAD), and activity of this enzyme 

(oxidation) towards xenobiotics was similar to that observed for CYPs which had recently 

been discovered at the time.  Studies with purified pig liver microsomes provided evidence 

that this enzyme was not a CYP.  It was immunologically distinct from the microsomal 

NADPH-dependent NADPH cytochrome P450 reductase and unlike this enzyme, which 

contains FAD and flavin mononucleotide (FMN), FAD was the only prosthetic group found 

in the pig liver oxidase (Masters et al. 1971).  Further studies with purified pig liver 

microsomes, confirmed the dependence of this oxidase enzyme on FAD but not FMN (Pettit 

et al. 1964).  At the time, most of the characterisation of the pig liver enzyme had been done 

using N, N- dimethylaniline as a model substrate and so ‘amine oxidase’ and ‘dimethylaniline 

monooxygenase’ were apt names for this enzyme.  The enzyme was initially classified as a 

mixed function-amine N-oxidase because it consumes two atoms of oxygen per substrate 

where one atom is transferred to the nitrogen of the amine moiety and the other is reduced to 

form one molecule of water.  Further studies with a panel of xenobiotics revealed that the 

enzyme was capable of reacting with a remarkably broad and rather promiscuous range of 

compounds with no common chemical feature (described in section 1.2.3). The name mixed 

function amine oxidase was now too restrictive in describing the reactions catalysed by this 

enzyme.  The enzyme was given the trivial name flavin containing monooxygenase which is 

usually abbreviated to ‘FMO’.   
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1.2.2 FMO Enzyme Mechanism  

The mechanism of FMO enzyme catalysis was determined by extensive kinetic and spectral 

studies by Poulsen and Zeigler in the 1970’s (Poulsen et al. 1979). 

A sequential cycle is observed in FMO enzyme catalysis with the first step being the 

reduction of the prosthetic FAD by NADPH (Fig 1.1).  The reduced form (FADH2) can 

rapidly react with molecular oxygen to generate a hydroperoxyflavin (FAD-OOH) radical.  In 

a mechanism that distinguishes FMOs from all other monooxygenases, the formation of this 

radical does not require binding of the oxygenatable substrate to the active site of the enzyme, 

in fact the hydroperoxyflavin formation occurs before the interaction of substrate and FMO 

(Poulsen et al. 1979).  The enzyme-bound C4a-hydroperoxyflavin is stable from minutes to 

hours at 4˚C and the radical is presumed to be in this state in a cell.   Thus, FMOs have been 

described to be in a ‘cocked gun’ state, ready to attack any substrate bearing a soft 

nucleophile moiety, which has gained access to the active site bearing the hydroperoxyflavin 

radical.  In the presence of a suitable substrate (see next section) FMO transfers one atom of 

molecular oxygen (from the FAD-OOH) to oxygenate the substrate, while the other is 

reduced to form water.   The oxygenated substrate is released immediately and the next and 

rate-limiting step is the release of water.  The last step in the cycle is the release of NADP+ 

and then the regeneration of FAD-OOH starts again.  It is important to note that substrate 

binding has no effect on the velocity of product formation; that is decided by the rate-limiting 

step (the release of water), despite this, the enzyme displays Michaelis-Menten kinetics 

(Poulsen et al. 1979).      
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Figure 1.1: Major Steps in the Catalytic Cycle of FMO.   

Substrate binding is not required for the cycle to begin.  In the first step, the xenobiotic 

substrate S is oxidised to SO by the enzyme-bound 4a-hydroperoxyflavin (FAD-OOH). SO is 

released immediately and the release of water in step 2 is rate-limiting.  The subsequent steps 

3-5 simply regenerate the FAD-OOH form of the enzyme.  Adapted from Ziegler 2002. 
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1.2.3 Substrate Specificity 

In general, any compound bearing a soft nucleophile that can gain access to the enzyme-

bound C4a-hydroperoxyflavin site is a potential substrate for an FMO.   The unique 

mechanism of FMOs is theorised to be the basis of the broad range of compounds that are 

substrates for this enzyme.  Substrates include hydrazines (Prough et al. 1981), phosphines 

(Smyser et al. 1985), iodine boron containing compounds (Jones et al. 1986), sulphides 

(Hamman et al. 2000), selenium bearing compounds (Ziegler et al. 1992) and an array of 

amines (Ziegler 2002).   There is evidence of a number of endogenous compounds being 

FMO substrates including methionine (Duescher et al. 1994), cysteamine, cysteine- and 

homocysteine-S-conjugates (Ziegler 1993).     

 Structure-activity studies with purified and microsomal pig liver FMO indicate that 

the overall size and shape of a nucleophilic substrate are major factors limiting access to the 

FMO-bound hydroperoxyflavin radical.               

 

1.2.4 Reactions Catalysed by FMOs: Detoxification vs Bioactivation  

Detoxification refers to the removal of toxic metabolites by the process of oxidation or 

conjugation, i.e. it is a form of xenobiotic metabolism.  Conversely bioactivation is the 

process of metabolism in which a generated metabolite is more toxic or reactive than the 

parent compound. FMOs generally catalyse the former reaction that results in the formation 

of metabolites with reduced pharmacological and toxicological properties.  For instance, the 

neurotoxicant, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is readily N-

oxygenated by FMO to the N-oxide, a non-toxic and easily excretable metabolite (Weisman 

et al. 1985; Cashman et al. 1986).     As with every rule however, there are exceptions.  In the 

case of certain sulphur-containing compounds such as thiocarbamides, FMOs efficiently 

catalyse their bioactivation. 
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 Thiourea and N,N-mono or disubstituted thioureas are amongst the best substrates for 

FMOs (Poulsen et al. 1979; Henderson et al. 2004a; Onderwater et al. 2004; Onderwater et 

al. 2006).  Initial work by Poulsen and Zeigler  using phenylthiourea (Poulsen et al. 1979), 

demonstrated that FMOs catalyse a two-step, sequential oxidation of thiocarbamides to 

generate the sulphinic acid via a sulphenic acid intermediate (Fig 1.2).    The sulphenic acids 

of thiocarbamide compounds are strong electrophiles that are highly susceptible to reduction 

by thiol-containing molecules, such as glutathione (GSH).  The net effect of the non-

enzymatic reduction of sulphenic acid by GSH results in the formation of oxidised GSH 

(GSH disulphide, GSSG) and regeneration of the parent thiocarbamide (Fig. 1.3A).   In the 

presence of glutathione reductase, a futile cycle is established whereby the formation of 

sulphenic acid by the action of FMO is concomitantly linked to the reaction of glutathione 

reductase to regenerate GSH in its reduced form (Fig. 1.3A and B).  Both enzymatic 

pathways are powered by the oxidation of NADPH to NADP+.   

The glutathione status within a cell (i.e. the disulfide:thiol ratio), if disturbed, can 

affect the activity of numerous enzymes and thus can alter normal cellular function (reviewed 

elsewhere by Kosower et al. 1978).   An increased ratio of GSSG:GSH is an indication of 

oxidative stress and triggers cellular pathways to correct it (reviewed by Kosower et al. 

1978). Studies with rat hepatocytes have determined two mechanisms by which the liver may 

attempt to correct this redox imbalance.  When the amount of GSSG exceeds that of GSH in a 

cell, reductases catalyse the reduction of the oxidised form at the expense of NADPH 

oxidation, but when the rate of GSH oxidation exceeds that of GSSG reduction, excess GSSG 

is excreted in bile.    Livers of rats perfused with thiourea or phenylthiourea led to the efflux 

of GSSG (but not GSH) in the bile of such animals confirming this hypothesis (Krieter et al. 

1984).   N-benzylimidazole a potent CYP inhibitor, had no effect on the  
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Figure 1.2: Oxidation of Thiourea by FMO.  A sequential two-step oxidation of thiourea 

catalysed by FMO generates (1) formamadine sulphenic acid and (2) formamadine sulphinic 

acid.   Adapted from Poulsen et al. 1979. 
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Figure 1.3: Interaction of Glutathione (GSH) with FMO-generated metabolites of 

Thiocarbamide S-oxygenation.   

(A)  Non-enzymatic reduction of formamidine sulphenic acid to the parent thiocarbamide by 

GSH and the formation of GSH disulfide. (B) Enzymatic regeneration of GSH by the 

oxidation of NADPH.  (C) Non-enzymatic reaction of formamadine sulphenic acid and GSH. 

 

 

 

 

 

 

 24



amount of GSSG excreted in bile and thus indicated that this monooxygenase was not 

involved in the bioactivation reaction.   The contribution of hydroperoxidase and glutathione 

peroxidase in the bioactivation process was not determined to be significant as selenium-

deficient mice excreted similar amounts of GSSG in bile when compared to mice 

supplemented with selenium (Krieter et al. 1984).   Lack of GSSG efflux in bile after 

administration of mice with the corresponding nitrogen analogue of thiourea and 

phenylthiourea (i.e. urea and phenylurea) was consistent with a model in which a reactive 

sulphur-containing derivative of the thiocarbamide was responsible for the toxicity.  Given 

the substrate specificity of FMO and the formation of sulphenic acid species by this enzyme 

led to a FMO-dependent pathway being implicated in the bioactivation of thiourea and 

phenylthiourea in the liver of rats (Krieter et al. 1984). 

In addition to the exhaustion of GSH in the redox cycling of sulphenic acids, 

depletion of NADPH as a result of the uncontrolled oxidation reactions may lead to the 

depletion of glycogen.   NADPH is largely maintained from the dehydrogenation of glucose-

6-phosphate, a process that occurs as part of the pentose phosphate pathway.  Since glucose-

6-phosphate is derived from glycogenolysis, the need to regenerate NADPH from NADP+ 

results in the depletion of glycogen (Krieter et al. 1984).  In the liver, thiocarbamide 

bioactivation and GSH:GSSG imbalance may directly contribute to glycogen depletion  as 

glycogenolysis is also stimulated by elevated GSSG levels (Sies et al. 1978).  This has been 

defined as the basis of glycogen depletion observed in liver of rats perfused with 

thiocarbamides (Krieter et al. 1984).   

The reactive SO- moiety of sulphenic acids can attack the thiol group of GSH directly, 

generating a glutathione-sulphenate adduct and thus further depleting the concentration of 

GSH in a cell (Giri et al. 1970; Krieter et al. 1984) (Fig. 1.3C).   
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Other than the thiol-group in glutathione, sulphenic acid metabolites can react with 

thiol-containing molecules such as cysteine residues in proteins thus perturbing protein 

function (Decker et al. 1992).     

 The sulphenic acid metabolite of thiourea is implicated in forming DNA adducts 

(Ziegler-Skylakakis et al. 1998).  Furthermore the sulphinic acid of thiourea has been 

demonstrated to initiate DNA repair synthesis, form DNA adducts and cause the formation of 

micronuclei in cultured rat hepatocytes (Ziegler-Skylakakis et al. 1998).   A micronuclei test 

is used to assess DNA damage induced by a compound.  Micronuclei form when a 

chromosome or fragment of a chromosome fails to incorporate into daughter nuclei at the 

time of cell division.       

 

1.3 Human FMOs  

In humans, five FMO genes are known to encode protein (FMO1-5) (Phillips et al. 1995).  

FMOs 1, 2 3 and 4 are found in a cluster with FMO6, a putative pseudogene, at 1q23-4 

(Shephard et al. 1993; Hernandez et al. 2004).  FMO5 is located further away from this 

cluster at 1q21 (McCombie et al. 1996).  A second cluster on chromosome 1 contains five 

FMO pseudogenes, FMO7P-FMO11P, which are located within a cluster ~4Mb to the 

centromeric side of the functional FMO gene cluster (Hernandez et al. 2004). 

FMOs 1-5 exhibit 50-59% amino acid identity across mammalian species including 

humans (Lawton et al. 1994).   A primary sequence alignment of the five functionally active 

human FMOs is given in Figure 1.4 and illustrates the highly conserved motifs identified in 

all mammalian FMOs.   Two GXGXXG motifs, known to be important in the binding of the 
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Figure 1.4: A primary sequence alignment of the five functional FMOs in humans.  The 

primary sequence of FMOs 1-5 are aligned.  An asterix denotes conserved identical residues, 

a colon indicates conserved similar residues, and a dot indicates highly similar residues.  The 

‘GXGXXG’ FAD and NADPH binding moieties are boxed in red along with the FMO 

characteristic ‘FATGY’ motif boxed in blue. Primary sequences were aligned using the 

ClustalW2 tool available at http://www.ebi.ac.uk/Tools/clustalw2/index.html. 
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Adenine dinuceotide phosphate (ADP) moiety in FAD and NADPH are present at positions 

(residues 9-14 and 191-196, respectively) within human FMOs (Fig. 1.4) and other examined 

mammalian FMOs.  The FAD-binding site is contained within a highly conserved motif that 

predicts a βαβ secondary structure, a Rossman fold, known to be important in binding 

dinucleotides (Wierenga et al. 1986).  In addition to this motif, an FMO characteristic motif 

‘FATGY’ has been identified and is present at identical positions within the human FMOs 

(Fig.1.4) and is thought to play a role in N-oxidation. 

 

1.3.1 FMO1 

FMO1, purified from porcine liver microsomes, was the first FMO to be isolated from 

porcine liver microsomes and was named as a mixed function amine oxidase (Ziegler et al. 

1971) (see section 1.2.1).     A cDNA corresponding to the human FMO1 protein was 

identified in 1991 (Dolphin et al. 1991) and was formally named as FMO1 in 1994 (Lawton 

et al. 1994).  The human gene encodes a polypeptide of 532 amino acid residues that has a 

molecular weight of 60,603 Daltons.   

FMO1 is highly expressed in the liver of most adult mammals such as pig, rabbit, rat, 

dog and mouse (Gasser et al. 1990; Lawton et al. 1990; Cherrington et al. 1998; Lattard et al. 

2002; Stevens et al. 2003) but the gene is not expressed in the liver of adult human. Neither 

the mRNA (Phillips et al. 1995; Dolphin et al. 1996) nor protein (Yeung et al. 2000; 

Koukouritaki et al. 2002) of FMO1 is detected in the adult liver. The lack of FMO1 

expression in the adult human liver is thought to be due to the insertion of several long 

interspersed nuclear elements (LINEs), just upstream of the proximal promoter P0 (Shephard 

et al. 2007), which influence the expression in the adult, but not in the foetal liver. FMO1 is 

expressed in foetal liver of humans (Dolphin et al. 1991; Phillips et al. 1995; Dolphin et al. 
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1996; Yeung et al. 2000; Koukouritaki et al. 2002), but its expression is switched off in a 

mechanism linked tightly to birth but not gestational age (Koukouritaki et al. 2002). The  

repression is likely to be due to increased methylation, around the time of birth, of the 

proximal promoter P0 due to the close presence of LINE elements (Shephard et al. 2007) 

FMO1 expression is abundant in the adult human kidney, and the gene is also, to a 

lesser extent, expressed in the small intestine (Yeung et al. 2000), stomach and endocrine 

organs such as the thymus, testis, pancreas, adrenal cortex and thyroid (Hernandez et al. 

2004). FMO1 is also detected in the foetal kidney, but unlike in the liver, expression in this 

tissue increases after birth (Dolphin et al. 1991; Phillips et al. 1995; Dolphin et al. 1996; 

Yeung et al. 2000; Krause et al. 2003). The continued expression of the gene in adult tissues 

such as the kidney is due to the use of tissue-specific, alternative, downstream promoters 

(Shephard et al. 2007). 

 Levels of expression of FMO1 in the kidney (47 ± 9 pmol/mg microsomal protein) 

(Yeung et al. 2000) are not much lower than that observed in the liver for the major hepatic 

CYP isoform, CYP3A4 (96 ± 51 pmol/mg microsomal protein) (Shimada et al. 1994).  In 

kidney, the amount of FMO1 is greater than that of total CYP expression and thus is likely to 

be an important contributor to renal xenobiotic metabolism.   

 FMO1, among all the FMO isoforms has the broadest substrate specificity.  This is an 

attribute of the size and dimension of the access channel through which a substrate gains 

entry to the active site.  The access channel in human FMO1 is estimated to be 5 Å in 

diameter and the active site containing FAD-OOH is at least 5 Å below the surface of the 

channel (Kim et al. 2000).  This is the theorised basis by which FMO1 can oxygenate 

substrates as small as thiourea with the same efficiency as it metabolises large and bulky 

compounds such as tricyclic tertiary amines (Fig. 1.5).     A wide range of xenobiotics and 

foreign compounds are among its substrates including therapeutic drugs, pesticides and 
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endogenous compounds.  A list of all known substrates of human FMO1 that are of 

therapeutic importance has been listed in Tables 1.1 and 1.2.   

 

1.3.1.1 Inter-Individual Differences in Expression of Human FMO1: Consequences for 

Drug Metabolism 

Human FMO1 is the most conserved gene amongst the FMOs within the gene cluster located 

on 1q23-4.  In a recent study, four non-synonymous single nucleotide polymorphisms (SNPs) 

were identified in the protein coding region of FMO1 in African-American subjects (Furnes 

et al. 2003).  The genetic substitutions (and subsequent amino acid substitution) were 

observed to be g.9614C>G (H97Q), g.23970A>G (I303V), g.23971T>C (I303T) and 

g.27362C>T (R502X) and were estimated to occur at a relatively low frequency of 1-2% in 

this population (Furnes et al. 2003).  Functional studies with heterologously expressed 

protein variants indicated a moderate but distinct substrate-specific difference towards typical 

FMO1 substrates including the hyperthyroidism drug, methimazole, the anti-depressant drug 

imipramine and the pesticide agent fenthion.   An interesting finding was that the truncated 

variant, R502X was capable of oxidising imipramine and fenthion but was inactive towards 

methimazole.     

Recently, studies have reported inter-individual differences in levels of protein 

expression of human FMO1 in the kidney (Yeung et al. 2000; Koukouritaki et al. 2002; 

Krause et al. 2003).  As FMOs are generally not inducible by environmental factors, it is 

plausible to assign such inter-individual differences to genetic variability within promoter and 

regulatory sequences within the gene that ultimately lead to different amount of protein being 

produced.  A single nucleotide substitution, g.-9,536C>A (FMO1*6) was identified in the 

upstream region of exon 0 that happens to be within a Yin Yang 1 (YY1) binding site 

sequence (Hines et al. 2003).  The YY1 site also overlaps binding sequences of other  
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Thiourea Phenylthiourea  

 

 

Alpha-naphthylthiourea 

Chlorpromazine Imipramine Orphenadrine  

 

Figure 1.5: Selected substrates of human FMO1. Chemical structures of xenobiotics are 

given to illustrate the diversity in size and dimension of substrates oxygenated by human 

FMO1.   Phenylthiourea and alpha-naphthylthiourea are thiocarbamides where as Imipramine 

and Chlorpromazine are tricyclic tertiary amines.  Orphenadrine is a methylated derivative of 

diphenylhydramine.  (Figure adapted from (Kim et al. 2000).  
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Table 1.1 Nitrogen-containing drugs oxygenated by Human FMO1 
 

Substrate 

Type of Drug or health 

condition 

 

Product Reference 

Benzydamine 

non-steroidal anti-

inflammatory agent 

(rheumatism) 

N-oxide 
(Lang et al. 2000; 

Rettie et al. 2000) 

Chlorpromazine 
Dopamine D2 antagonist 

(antipsychotic) 
- (Kim et al. 2000) 

Deprenyl 

Monoamine oxidase type B 

inhibitor 

(Parkinsons Disease) 

hydroxylamine (Szoko et al. 2004) 

Imipramine 
5HT/noradrenaline uptake 

inhibitor (anti-depressant) 
N-oxide (Kim et al. 2000) 

Itopride 
dopamine D2 antagonist 

(gastroprokinetic agent) 
N-oxide 

(Mushiroda et al. 

2000) 

Methamphetamine Psychostimulant Hydroxylamine (Szoko et al. 2004) 

N- deacetyl 

ketoconazole* 
anti-fungal agent N-hydroxy 

(Rodriguez et al. 

2000) 

Olopatadine anti-histamine agent N-oxide (Kajita et al.  2002) 

Orphenadrine 
Anti-cholinergic 

(Parkinson’s Disease) 
- (Kim et al. 2000) 

SNI-2011 
muscarinic receptor agonist 

(Sjogren's Syndrome) 
N-oxide (Washio et al. 2001) 

Tamoxifen 
estrogen-receptor modulator 

(Breast Cancer Therapy) 
N-oxide (Parte et al. 2005) 

Xanomeline 
muscarinic receptor agonist 

(Alzheimer’s disease) 
N-oxide (Ring et al. 1999) 

*Major metabolite of anti-fungal agent ketoconazole.   

-  product not identified 

In many cases, FMO1 is not the only enzyme involved in the metabolism of the drug in vivo.      

This table appears in the review by Phillips, Francois and Shephard (Phillips 2007) 
which is bound into the back of this thesis. 
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Table 1.2: Suphur-containing drugs oxygenated by Human FMO1 
 
 

Substrate Type of Drug or 
health condition 

 

Product Reference 

Ethionamide 
 

Antibiotic 
(tuberculosis) 

S-oxide/sulphinic 
acid 

(Henderson et al. 
2008) 

Methimazole Thyroperoxidase 
inhibitor 

(hyperthyroidism) 

S-oxide (Furnes et al. 2004) 

S – methyl 
esonarimod* 

 

cytokine production 
inhibitor 

(rheumatism) 

S-oxide (Ohmi et al. 2003) 

Tazorotenic acid** 
 

Retinoic acid 
receptor modulator 

(acne/psoriasis) 

S-oxide (Attar et al. 2003) 

Thiacetazone 
 

Antibiotic 
(tuberculosis) 

Sulphinic 
acid/carbodiimide 

(Qian et al. 2006) 

 
 
*active metabolite of parent compound esonarimod. 

** active metabolite of parent compound tazarotene. 

In some cases FMO1 is not the only enzyme involved in the metabolism of the drug in vivo. 

 

This table appears in the review by Phillips, Francois and Shephard (Phillips 2007) 

which is bound into the back of this thesis. 
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transcription factors, mainly Oct1 and HNF1 (Hines et al. 2003). YY1 is a transcription 

factor which is known to negatively regulate FMO1 expression in rabbit (Luo et al. 2001). 

Transcriptional reporter assays with human FMO1 gene constructs however suggest YY1 to 

be a positive regulator of FMO1 expression, but only in the presence of other yet to be 

identified upstream regulators.  In humans therefore, it is suggested that the disruption of the 

consensus YY1 binding site as a result of the g.-9,536C>A mutation results in the 

downregulation of transcription of FMO1.    This finding has been postulated as the basis of 

inter-individual difference in FMO1 expression levels observed in adult kidney (Hines et al. 

2003).  Analysis of the frequency of the variant allele, FMO1*6 was not found to be 

statistically different among African Americans or Northern European-Americans but was 

found to be prevalent in Hispanic Americans at a significantly higher frequency of 26.9% 

(Hines et al. 2003).  A significantly higher amount of FMO1 in kidney obtained from African 

individuals than Caucasians has been reported.   However, it is noteworthy that the 

comparison made in this study may not be appropriate as kidney biopsies were used for 

African sample analysis while samples from cadavers were analysed for all Caucasians 

(Krause et al. 2003). 

 The genetic variations observed in FMO1 may have consequences for the ability of 

individuals to metabolise therapeutic drugs and other xenobiotics that are substrates for this 

enzyme.  For example, Fmo1 (-/-) mice administered with the anti-depressant drug 

imipramine, display exaggerated pharmacological behavioural responses including tremors 

and body spasms and increased amounts of parent drug in the plasma and kidney (Hernandez 

et al. 2009).  Conversely, higher levels of FMO1 in the kidney may be associated with 

increased renal toxicity as a result of bioactivation of xenobiotics containing sulphur 

moieties.    
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1.3.2 FMO2      

In 1984, direct evidence of the existence of multiple forms of FMO was obtained when an 

enzyme from rabbit lung was purified.  The ‘lung’ FMO was distinctly different from the 

‘liver’ FMO (now known as FMO1) in that it had restricted substrate specificity related to 

steric properties, greater thermal stability and displayed a higher pH optimum for enzyme 

activity (Williams et al. 1984; Williams et al. 1985; Nagata et al. 1990; Williams et al. 1990; 

Venkatesh et al. 1992).  This enzyme is now know as FMO2.   

 FMO2 is highly expressed in the lung of mammals including rabbits (Williams et al. 

1984; Tynes et al. 1985; Williams et al. 1985; Lawton et al. 1990; Williams et al. 1990), 

guinea pig (Nikbakht et al. 1992), mouse (Karoly et al. 2001), and rhesus macaque (Yueh et 

al. 1997). FMO2 expression in rabbit has been estimated to represent 10% of total lung 

protein (Williams et al. 1984; Tynes et al. 1985).    The mRNA of FMO2 is the most 

abundant amongst the isoforms in human lung (Zhang et al. 2006) but efforts to isolate and 

purify the protein from this tissue proved unsuccessful (Whetstine et al. 2000).     

 Genotypic analysis revealed that the FMO2 gene, in humans has ethnic-specific 

variation in its base sequence (Dolphin et al. 1998; Whetstine et al. 2000).  All Europeans 

and Asians genotyped to date possess the FMO2*2 allele in which a C>T substitution at 

position 1414 bp  (in the cDNA) replaces a glutamine amino acid residue at position 472 with 

a premature stop codon in the polypeptide (Q472X) (Fig. 1.6) (Dolphin et al. 1998). This 

position corresponds to g.23238C>T (Q472X) of the gene.  A proportion of individuals of 

African descent however, possess an FMO2 gene that encodes a full-length protein (Dolphin 

et al. 1998). This allele is called FMO2*1.  The truncated protein, FMO2.2, when compared 

with FMO2 from rabbit, guinea pig and rhesus macaque lacks 64 amino residues from its 

carboxy terminus.  Analysis of the product of heterologously expressed FMO2.2 cDNA 

revealed that the truncated protein is catalytically inactive (Dolphin et al. 1998).  In the 
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Figure 1.6: The Nonsense Mutation in Human FMO2 is absent in Other Mammalian 

Species: (A) The codon at position 1414 bp (relative to the A of the ATG translation 

initiation codon) in the ancestral gene of human FMO2*1 and mouse and rhesus macaque 

FMO2 is given in blue.  The corresponding codon in human FMO2*2 is boxed in red and the 

position of the nucleotide base substitution is marked with an arrow. (B) Horizontal bars 

represent the polypeptide chains encoded by genes given in part (A).  N and C denote the 

amino- and carboxy- termini respectively.  Alternative grey and white boxes indicate regions 

encoded by exons 1-9.    
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human lung, the truncated protein is thought to be rapidly degraded because of incorrect 

folding (Dolphin 1998) and this probably explains why attempts to purify FMO2 from human 

lung had been unsuccessful (Whetstine et al. 2000).  In contrast, when the full-length 

FMO2.1 protein is expressed in a heterologous system it is catalytically active (Dolphin et al. 

1998).   

A recent study in which 1800 people, of recent African descent from sub-Saharan 

Africa were genotyped, up to 50% of individuals were found to possess at least one copy of 

the ancestral allele FMO2*1 (Veeramah et al. 2008).  Individuals with one or two FMO2*1 

alleles are thus expected to express the full-length and catalytically functional protein 

(FMO2.1) in the lung (Dolphin et al. 1998; Krueger et al. 2002; Veeramah et al. 2008) (Fig. 

1.6).  The ancestral allele occurs at relatively low frequency in North Africa and its 

distribution in sub-Saharan Africa differs significantly within this region (Fig. 1.7).  The 

FMO2*1 allele has also been observed in 5-7 % of Hispanics of African decent (Whetstine et 

al. 2000). 

 The nonsense mutation g.23238C>T (Q472X) is not present in non-human 

primates such as the chimpanzee (Pan troglodytes) and the gorilla (Gorilla gorilla) and must 

have therefore arisen in the human lineage some time after the divergence of the Homo and 

Pan clades took place some 6 million years ago (Brunet et al. 2002).   

The full length human FMO2 protein contains 535 amino acid residues and has a 

molecular weight of 60, 920 Daltons.  Analysis of microsomes prepared from a lung sample 

obtained from a single individual heterozygous for the FMO2*1 allele detected the 

expression of FMO2.1 protein in this tissue.  The microsomal sample was capable of S-

oxygenating methimazole with a similar catalytic efficiency as that observed for 

heterologously expressed human FMO2.1 (Dolphin et al. 1998; Krueger et al. 2002).  
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Figure 1.7: The Frequency and Distribution of the Human FMO2*1 allele in Africa: Pie 

charts illustrating the prevalence of the human FMO2*1 allele in different parts of Africa.  

Yellow = frequency of individuals possessing at least one allele encoding human FMO2*1, 

blue = individuals homozygous for the human FMO2*2 allele. Figure taken from Veeramah 

et al. 2008. 
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1.3.2.1 Structure-Function Studies: The Restricted Substrate Specificity of FMO2 

Limited structure-function studies have been carried out with human FMO2.  A kinetic study 

using a panel of phenothiazine derivatives indicated that the oxygenatable moiety of a 

compound bearing large or bulky groups, needed to be a certain distance away from them to 

gain access to the active site (Fig. 1.8) (Krueger et al. 2005).   For instance, FMO2.1 was not 

active towards a phenothiazine derivative with a 3-carbon side chain but was active when the 

side chain increased in length from 3 to 5 or 8 alkyl groups (Fig. 1.8).  A similar study with 

rabbit FMO2 and porcine FMO1 demonstrated how the latter efficiently catalysed the 

oxidation of phenothiazine derivatives with a 3-carbon side chain whereas FMO2 could not 

(Nagata et al. 1990).   Using a panel of thioureas of various sizes, Nagata et al.  demonstrated 

that unlike porcine FMO1, rabbit FMO2 could not catalyse the oxygenation of 1,3-

diphenylthiourea, the largest thiourea tested in this investigation (Nagata et al. 1990).    These 

findings predicted that in addition to the access channel of FMO2 being narrower than that of 

FMO1, the catalytic centre of FMO2 was considerably deeper within the enzyme than FMO1 

(Nagata et al. 1990; Kim et al. 2000).     

 

1.3.2.2 Inter-individual Differences in human FMO2 expression: Consequences for 

Xenobiotic Metabolism  

The principle inter-individual difference in FMO2 expression in humans is the expression of 

functionally active (FMO2.1) or inactive (FMO2.2) protein in the lung.  As detailed in the 

preceding section, the majority of the world’s population does not produce FMO2 in their 

lungs, but a significant proportion of sub-Saharan Africans do.  The amount of FMO2.1 

expressed in the lung of individuals possessing the ancestral gene has been estimated to be 

around 8.8 pmol/mg microsomal protein which is comparable if not greater than most CYPs 

expressed in this tissue (Krueger et al. 2002; Henderson et al. 2004b). 
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Figure 1.8: Human FMO2.1 substrate specificity towards phenothiazines.  Activity of 

FMO2.1 towards phenothiazine with tertiary amine substituents of differing lengths.  3PTZ, 

5PTZ and 8PTZ represent phenothiazine derivaties with 3, 5 or 8 carbon alkyl side chains 

respectively. Adapted and revised from Krueger et al. 2005.   
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It is therefore plausible to assume that individuals expressing FMO2.1 will have altered 

metabolism of drugs and xenobiotics in the lungs.   This raises an important question of 

whether such individuals are more or less predisposed to FMO-dependent toxicity of 

xenobiotics, whether the activity of this enzyme will affect the efficacy of a drug or whether 

these individuals may be at a genetic advantage with regard to protection from exogenous 

toxicants. 

 To date, limited studies have investigated the contribution of FMO2.1 in drug 

metabolism, probably because of the apparent lack of this isoform in human lung.  The recent 

discovery that a significant proportion of individuals carry the FMO2*1 allele has however 

generated interest in the toxicological consequences of xenobiotic metabolism by this 

enzyme.   

 Heterologously expressed human FMO2.1 is capable of catalysing the S-oxygenation 

of a wide range of thiourea-containing compounds including phenylthiourea, alpha-

naphthylthiourea and ethylenethiourea (Henderson et al. 2004a).  Thiourea containing 

compounds are used extensively in industry and to a certain extent are used in household 

products.  Thiourea is an industrial chemical with a number of uses, it is used extensively in 

the manufacture of flame retardant resins and is the main component of liquids used to clean 

items made of silver.  Recently, the interest in thiourea-containing drugs has risen since the 

development of Trovirdine, an N-substituted thiocarbamide as a potent HIV-1 non-

nucleoside, reverse transcriptase inhibitor (Cantrell et al. 1996; Onderwater et al. 2004).     

Alpha-naphthylthiourea (ANTU) is used extensively as a rodenticide.  The product of the 

FMO-mediated oxygenation of thioureas, the sulphinic acid metabolite, is generated via a 

sulphenic acid intermediate that is more toxic than the parent compound.  As detailed in 

section 1.2.4, the intermediate metabolite is capable of redox cycling in the presence of 

glutathione and glutathione reductase which is hypothesised to result in oxidative stress.  
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Other than reacting with glutathione, the sulphenic acid metabolite can react with sulphhydrl 

groups including cysteine residues of other proteins.  This is the mechanism by which the 

FMO-dependent S-oxygenation of phenylthiourea (PTU) was shown to inhibit the activity of 

CYP1A1 (Onderwater et al. 1999) in rat hepatocytes.    In rats, ANTU is toxic to the lungs 

causing severe pulmonary edema and vascular injury which has been demonstrated to be 

FMO-dependent (Boyd et al. 1976; Lee et al. 1980; Scott 1990).  Since ANTU is sold in a 

powdered form, inhalation of ANTU particles is likely to be toxic to individuals expressing 

FMO2.1 in the lungs.    

 Recent studies have demonstrated the activity of human FMO2.1 towards pesticides 

such as phorate and disulfoton (Henderson et al. 2004b).  Phorate and disulfoton are 

thioether-containing organophosphate insecticides used extensively in agriculture.  They are 

broad-spectrum insecticides used to protect crops such as corn, potatoes, cotton and grain, 

including wheat. Exposure to these compounds occurs both in occupational settings and to 

the public in general.  In the occupational setting, the primary route of exposure is inhalation 

and dermal, whereas in the general population it is inhalation, diet and dermal (Brokopp et al. 

1981).  As inhalation is a major route of exposure, extensive pulmonary metabolism of such 

compounds is expected.  The role of CYPs in organophosphate metabolism is well 

documented.  As with other organophosphates, CYPs can catalyse the desulphuration to yield 

the corresponding oxon, a toxic metabolite and potent inhibitor of acetylcholinesterase 

(Kulkarni 1984).  CYPs can also catalyse the formation of the S-oxide and further oxidise this 

metabolite to generate a sulphone (Kulkarni et al. 1984).  In addition to the toxic oxon, the 

sulphone metabolite of organophosphate pesticides is also a acetylcholinesterase inhibitor 

(Levi et al. 1988).  Human FMO2.1-dependent sulphoxidation of phorate and disulfuton 

generates the S-oxide, a typical detoxification product and does not catalyse the second 

oxidation reaction to the sulphone (Henderson et al. 2004b).  With the higher FMO:P450 
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ratio in the lungs and the high catalytic activity displayed by FMO2.1 towards these 

compounds, plus the lack of production of toxic oxons and sulphone metabolites (generated 

by CYP oxidation), suggests that individuals expressing FMO2.1 in the lung are protected 

from bioactivated species of such exogenous compounds. Conversely one may argue that the 

extensive formation of the S-oxide by FMO2.1 in the lungs may provide a source for the 

CYPs to catalyse the secondary oxidation reaction of this metabolite to give more of the toxic 

sulphone species.      

   With respect to altered drug metabolism in the lung, anti-tubercular drugs are of 

particular concern.  Thiacetazone and Ethionamide are prodrugs that require metabolic 

activation by Mycobacterium tuberculosis to exert an anti-microbial effect (Baulard et al. 

2000; DeBarber et al. 2000; Vannelli et al. 2002; Qian et al. 2006; Dover et al. 2007).  A 

detailed description of these drugs and their activation will be given in section 1.4.2.  

Thiacetazone and Ethionamide are thiocarbamide-containing compounds and thus are 

expected to be FMO substrates.  Human FMO1 and FMO3 are capable of catalysing the S-

oxygenation of thiacetazone to form the sulphinic acid and carbodiimide derivatives of this 

drug (Qian et al. 2006).  Although an intermediate was not identified, a sulphenic acid 

metabolite is postulated to be the precursor of the observed products. In vitro studies have 

demonstrated that the metabolites of this reaction lead to the depletion of glutathione and thus 

it represents a bioactivation.  Whether or not FMO2.1 can catalyse this reaction is still to be 

determined and provides the focus of experiments described in this thesis.  Given that 

tuberculosis is a major problem in a world region where the frequency of the FMO2*1 allele 

is considerably high, raises the question of whether individuals given this drug as part of 

chemotherapy will be at a greater risk of drug toxicity.  It also poses the question of whether 

the ‘use’ of thiacetazone by FMO2.1 in the lung may affect drug efficacy.  It is tempting to 

assume that thiacetazone will be a substrate for FMO2.1 as FMO1 and FMO3 are capable of 
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Figure 1.8A: Chemical Structures of Second-line Antibiotics: (A) Thiacetazone and (B) 

Ethionamide.  
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its S-oxygenation, but caution must be exercised when extrapolating substrate specificities 

among FMO isoforms.  As detailed in the preceding section, FMO2 has the most restricted 

substrate specificity when compared to both FMO1 and FMO3.  Marked differences in 

substrate oxygenation between isoforms is a result of the dimension of the channel that gives 

access to the active site of the enzyme and has been described in section 1.3.2.1.  

 

1.3.3 FMO3 

A cDNA for human FMO3 was identified in 1992 (Lomri et al. 1992) and it encoded a 

polypeptide of 532 amino acid residues with a molecular weight of 60, 047 Daltons. 

 FMO3 is the major FMO isoform present in the adult human liver (Phillips et al. 

1995; Dolphin et al. 1996).  FMO3 mRNA has also been detected in the lung, kidney, adrenal 

medulla and cortex, pancreas, thyroid, gut and brain (Hernandez et al. 2004).  Low levels of 

FMO3 are detected in embryonic liver cells but not in the foetus. Currently, the mechanisms 

and factors required for the expression of FMO3 in the embryo, silencing through foetal 

development and reactivation after birth are not known.  After birth the onset of FMO3 

expression in the liver occurs in three distinct phases between 3 weeks and 10 months of age, 

10 months and 11 years and between 11 and 18 years of age (Koukouritaki et al. 2002).   

Unlike the regulation of human FMO1 in the foetal liver which is tightly linked to birth but 

irrespective of gestational age, the onset of FMO3 gene expression after birth is less defined.  

Birth is necessary but not sufficient for expression of FMO3 in the adult liver and some 

individuals show no expression of this protein up until 10 months of age (Koukouritaki et al. 

2002).   

 In terms of substrate specificity, FMO3 is an intermediate between FMO1 and FMO2.  

It can metabolise substrates which are excluded from the active site of FMO2 (such as 

secondary amines, (Cashman et al. 1999)) but cannot catalyse the oxidation of bulkier 
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compounds such as imipramine which are good substrates for FMO1 (Kim et al. 2000).   

Given the relatively broad substrate specificity of this enzyme and its expression in the liver, 

FMO3 is considered the most important FMO isoform in hepatic drug metabolism in humans.  

Compounds of therapeutic importance metabolised by FMO3 are given in Tables 1.3 and 1.4.   

 Unlike other FMO isoforms, an endogenous role for FMO3 in humans is established.  

The bacterial break-down product of dietary choline in the gut is trimethylamine (TMA), a 

compound with an extremely strong, fish-like odour.  In the liver, FMO3 catalyses the N-

oxygenation of TMA to its N-oxide, a metabolite with no detectable offensive odour.  TMA 

N-oxide is excreted from the body via the urine and sweat.  Impairment of this detoxification 

reaction results in the rare but serious condition of Trimethylaminuria, which will be 

described below.     

 

1.3.3.1 Genetic Variants of human FMO3 

Human FMO3 is the most polymorphic among the FMO genes with more than 40 SNPs 

identified across the entire length of this gene (reviewed elsewhere by Phillips 2007 and 

Phillips et al. 2008).  These variations, many in the form of single nucleotide substitutions, 

may have consequences for the ability of individuals to metabolise therapeutic drugs and 

other xenobiotics that are substrates for this enzyme.   

 

1.3.3.2 FMO3 Variants and Trimethylaminurea  

Some of the documented SNPs identified in FMO3 are rare (occurring at a frequency of <1% 

in a population) and result in the total loss of FMO3 catalytic activity.  A list of these 

mutations has been given elsewhere (for a review see Phillips 2007).  Such polymorphisms 
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Table 1.3: Nitrogen-containing drugs oxygenated by Human FMO3 
 

Substrate 
Type of Drug Or Health 

Condition 
Products Reference 

Amphetamine 
dopamine transporter 

ligand (antipsychotic) 
hydroxylamine 

(Cashman et al. 1999; 

Szoko et al. 2004) 

Benzydamine 

non-steroidal anti-

inflammatory 

(rheumatism) 

N-oxide 
(Lang et al. 2000; Stormer 

2000) 

Clozapine antipsychotic agent N-oxide (Tugnait et al. 1999) 

5,6-Dimethylxanthenone 

4-acetic acid (DMXAA) 
antitumour agent Hydroxylamine (Zhou et al. 2002) 

Deprenyl 

monoamine oxidase type 

B inhibitor 

(Parkinson’s Disease) 

Hydroxylamine (Szoko et al. 2004) 

Itopride 
Dopamine D2 antagonist 

(gastroprokinetic agent) 
N-oxide (Mushiroda et al. 2000) 

K11777 

Cysteine protease 

inhibitor 

(Agent against 

Trypanosoma Cruzi) 

N-oxide (Jacobsen et al. 2000) 

Methamphetamine psychostimulant Hydroxylamine 
(Cashman et al. 1999; 

Szoko et al. 2004) 

N-deacetyl ketokanozole* anti-fungal agent N-hydroxy/nitrone (Rodriguez et al. 2000) 
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Table 1.3: Nitrogen-containing drugs oxygenated by Human FMO3 (continued) 
 

Substrate 
Type of Drug Or Health 

Condition 
Products Reference 

Nicotine Stimulant Trans N-oxide (Park et al. 1993) 

Olapatadine anti-histamine agent N-oxide (Kajita et al.  2002) 

Pyrazolacridine Anti-tumour agent N- oxide (Reid et al. 2004) 

Ranitidine 

Anti-histamine 

(stomach ulcers/Zollinger 

Ellison syndrome) 

N-oxide (Chung et al. 2000) 

S16020 

(Olavicine Derivative) 
anti-tumour agent N- oxide 

(Pichard-Garcia et al. 

2004) 

Tamoxifen 
estrogen-receptor modulator 

(Breast Cancer Therapy) 
N- oxide (Mani et al. 1993) 

Xanomeline 
muscarinic receptor agonist 

(Alzheimer’s disease) 
N- oxide (Ring et al. 1999) 

 
*Major metabolite of anti-fungal agent ketoconazole.   

In some cases FMO3 is not the only enzyme involved in the metabolism of the drug in vivo. 

This table appears in the review by Phillips, Francois and Shephard (Phillips 2007) 

which is bound into the back of this thesis. 
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Table 1.4: Suphur-containing drugs oxygenated by Human FMO3 
 

Substrate 
Type of Drug Or Health 

Condition 
Products Reference 

Ethionamide antibiotic (tuberculosis) S-oxide/sulphinic acid 
(Henderson et al. 

2008) 

MK-0767 methyl sulfide 

peroxisome proliferator 

receptor activator 

(diabetic) 

S-oxide (Karanam et al. 2004) 

Ranitidine 

Anti-histamine 

(stomach ulcers/Zollinger 

Ellison syndrome) 

S-oxide (Chung et al. 2000) 

S - methyl esonarimod * 

cytokine production 

inhibitor 

(rheumatism) 

S-oxide (Ohmi et al. 2003) 

Sulindac Sulphide** 

Non-steroidal anti-

inflammatory agent  

(Colorectal Cancer) 

S-oxide (Hamman et al. 2000) 

Tazarotenic Acid*** 

Retinoic acid receptor 

modulator 

(acne/psoriasis) 

S-oxide (Attar et al. 2003) 

Thiacetazone antibiotic (tuberculosis) sulphinic acid /carbodiimide (Qian et al. 2006) 

*active metabolite of parent compound esonarimod. 

** active metabolite of parent compound sulindac. 

*** active metabolite of parent compound tazarotene. 

In some cases FMO3 is not the only enzyme involved in the metabolism of the drug in vivo.  

This table appears in the review by Phillips, Francois and Shephard (Phillips 2007) 

which is bound into the back of this thesis. 
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are causative of Trimethylaminuria (TMAU) or ‘Fish-odour syndrome’, a condition in which 

individuals have a body odour similar to that of rotten fish.   In the absence of functional 

FMO3 in the liver, trimethylamine derived from the diet or from the reduction of dietary 

precursors such as choline, accumulates within the body and is then excreted in its raw, 

odorous form in the bodily fluids.   The smell of rotten fish thus emanates from a patient’s 

urine, sweat and breath.  Affected individuals have >40% unmetabolised TMA in their urine 

compared to 0-9% in unaffected individuals (Cashman et al. 2003).    More than the 

physiological effects, the psychological and social consequences of this condition are 

important.   Patients affected by this condition generally have trouble integrating into society 

because they are often perceived by others as being unhygienic.  In some cases individuals 

are known to have taken their own lives as a means of escape from their condition (Todd 

1979).    

The first described clinical report of TMAU was in 1970 (Humbert et al. 1970) but it 

is not the first TMAU-like reference on record.  Shakespeare’s The Tempest describes a 

character, Caliban of which was written:‘‘What have we here? A man or a fish? Dead or 

alive? A fish: he smells like a fish; a very ancient and fish-like smell’’ (Man Burrows 1975).  

The earliest reference is thought to be in a Hindu folklore, contained in the Indian epic, 

Mahabharata dating back to nearly 1400 BC, Satyavata, a young women condemned to 

solitary life as a ferry women was cast from society because she smelt of ‘‘rotten fish’’ (New 

York Times 2005).        

TMAU patients display altered metabolism of therapeutic drugs that are substrates for 

FMO3. For instance, the non-steroidal anti-inflammatory drug Benzydamine (BZD) is 

metabolised to its N-oxide by FMO3 in the liver and a measure of the BZD N-oxide: BZD 

ratio in the serum and urine is considered as an index for FMO3 activity in vivo (Stormer 

2000).  In a recent study, TMAU patients were administered BZD and monitored for the 
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amount of metabolised and unmetabolised drug in their urine and serum (Mayatepek et al. 

2004).  The ratio of BZD N-oxide: BZD displayed by TMAU patients was considerably 

lower from that observed for control subjects.  This study was the first to demonstrate the 

effect of FMO3-defiency on drug metabolism.  The study did not however, determine the 

clinical implications of the altered metabolism of BDZ.    

 

1.3.3.3 Inter-individual Differences and the Impact on Drug Metabolism     

During the course of study on the genetic causes of TMAU, numerous SNPs were identified 

in FMO3 which affected the catalytic activity of the enzyme but were not causative of 

TMAU (Table 1.5).  The polymorphisms are relatively common (ranging from 2-50% 

depending on the population sampled) and thus are of particular interest as they may alter the 

metabolism of therapeutic drugs in the general population.  For instance, an individual with a 

polymorphism in FMO3 that causes a reduction in oxidation activity (e.g. D132H or E158K) 

may be considered a poor or ‘‘slow’’ metaboliser of FMO3 substrates and therefore may have 

heightened risk of overdose.  Conversely an individual possessing a variant FMO3 with 

increased catalytic activity (e.g. L360P) may be considered as a ‘‘rapid’’ metaboliser of a 

drug.  This may lead to lower efficacy of a drug metabolised by FMO3 and ineffective dose 

prescription due to more rapid drug clearance.    

 The E158K amino acid variant of FMO3 is the product of a G>A substitution at 

position g.15167 in exon 4.  g.15167 (E158K) is by far the most common polymorphism 

occurring at a frequency of 45-50% in African Americans, 42% in Caucasian Americans and 

in 19% of Asians (Dolphin et al. 1997; Park et al. 2002; Koukouritaki et al. 2005; Hao et al. 

2006; Hao et al. 2007; Koukouritaki et al. 2007).  Individuals homozygous for this 

polymorphism display similar TMA: TMA N-oxide ratio to individuals with the reference  
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Table 1.5: Polymorphic Variants of FMO3 not causative for TMAU 

Variant exon 
Amino Acid 

Change 
Functional Consequence Reference 

g.72G>T 2 E24D Limited 
(Koukouritaki et al. 

2005) 

g.11177C>A 3 V58I Reduced (Kubota et al. 2002) 

g.15089G>C 4 N61K* reduced or abolished 
(Koukouritaki et al. 

2005) 

g.15167G>A 4 N61S S-oxygenation only (Dolphin et al. 2000) 

g.15475G>T 5 D132H substrate-dependant decrease 
(Furnes et al. 2003; 

Lattard et al. 2003) 

g.15550C>T 5 E158K 
moderate, substrate-dependent 

decrease 
(Brunelle et al. 1997) 

g.18281G>A 6 G180V no effect (Dolphin et al. 1997) 

g.18290A>G 6 R205C   moderate decrease (Fujieda et al. 2003) 

g.21350T>C 7 V257M 
no effect or limited substrate-

dependent decrease 
(Treacy et al. 1998) 

g.21443A>G 7 M260 n.d. (Shimizu et al. 2007) 

g.21599T>C 7 V277A n.d. (Cashman 2002) 

g.21604G>C 7 E308G 
moderate substrate-dependent 

decrease 

(Treacy et al. 1998; 

Lattard et al. 2003) 

g.23613G>T 8 L360P increased activity 
(Furnes et al. 2003; 

Lattard et al. 2003) 

g.24642G>A 9 E362Q n.d. (Cashman 2002) 

g.24691G>C 9 K416N Limited 
(Koukouritaki et al. 

2005) 

g.24642G>A 9 I486M n.d. (Cashman 2002) 

g.24691G>C 9 G503R n.d. (Furnes et al. 2003) 

*Likely to be causative for TMAU. 
n.d. – Not determined.  Coordinates are based on assigning the ‘A’ of the ATG translation 
initiation codon as +1 
This table appears in the review by Phillips, Francois and Shephard (Phillips 2007) 
which is bound into the back of this thesis. 
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genotype (Zschocke et al. 1999).  The finding is indicative of this amino acid variant having a 

similar catalytic efficiency to the wild type protein.       

g.21443A>G (E308G) is a relatively common polymorphism occurring at a frequency 

of 18% in Asians, 20% in Caucasian-Americans and in 5% of African-Americans (Treacy et 

al. 1998; Park et al. 2002; Koukouritaki et al. 2005; Hao et al. 2006; Hao et al. 2007; 

Koukouritaki et al. 2007).  Linkage analysis confirmed g.15167 (E158K) and g.21443A>G 

(E308G) polymorphisms to be linked in 4% of individuals from a German population 

(Zschocke et al. 2000).  In this study, individuals homozygous for both variants in cis (on the 

same allele) were reported to display a mild TMAU phenotype, as confirmed from TMA: 

TMA N-oxide ratios.   Interestingly, individuals who had one E158K or E308G variant allele 

and one E158K variant allele showed little difference between urinary metabolic ratio of 

TMA: TMA N -oxide (0.0084) and individuals with the reference genotype (0.0056).  This 

data suggested, for the first time, that the occurrence of E158K and E308G in cis has more 

effect on catalytic function than a genotype of E158K or E308G and E158K alone (Zschocke 

et al. 2000).   Studies with African-American subjects suggested that a haplotype containing 

E158K and E308G in cis occurred at a frequency of around 5% (Koukouritaki et al. 2007). 

 The in vivo consequence of the polymorphism g.21599T>C (L360P) is still to be 

determined, but it is the only polymorphic variant to result in an enzyme with higher catalytic 

activity (Furnes et al. 2003; Lattard et al. 2003).  The polymorphism has been estimated to 

occur at a frequency of around 2% in African-Americans and genotypic analysis to date 

infers the variant to be specific to this ethnic population.    

Inter-individual differences of 10- to 20-fold in the amount of hepatic FMO3 protein 

have been reported (Overby et al. 1997; Koukouritaki et al. 2002).   FMOs are generally 

considered not to be inducible by environmental factors and therefore such variation must be 

due to genetic factors.  SNPs discovered in the 5’-flanking region of the FMO3 gene are 
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implicated in the observed inter-individual differences in levels of FMO3 protein expression 

in the liver.  In vitro analysis of such SNPs illustrates their effect on FMO3 transcription, in 

some cases effectively silencing it, and in others increasing it as much as 8-fold 

(Koukouritaki et al. 2002).     

  

1.3.4 FMO4 

FMO4 is 558 amino acid residues long.  Other members of the FMO family, with the 

exception of FMO2.2, contain between 532 and 535 residues (Phillips et al. 1995).   

Sequence comparisons reveal that the additional residues in FMO4 are contained in a single 

block located at the C-terminus of the polypeptide (Dolphin et al. 1992).  It has been 

suggested that the additional amino acid residues may have arisen as a result of a single point 

mutation in the termination codon of the ancestral FMO4 gene.   

 The mRNA of FMO4 is expressed constitutively at low levels in the liver, kidney and 

lung of the adult human (Dolphin et al. 1992; Dolphin et al. 2000; Hernandez et al. 2004; 

Zhang et al. 2006).  The protein encoded by this gene is still to be detected in human tissue. 

 Evidence of FMO4 contribution to xenobiotic metabolism is limited. In fact, very 

little is known of this FMO in general.  The probable reason is the difficulty encountered in 

expressing this FMO isoform in a heterologous system (Itagaki et al. 1996).           

 

1.3.5 FMO5 

A cDNA encoding human FMO5 was isolated in 1995 (Overby et al. 1995; Phillips et al. 

1995) and consists of a polypeptide of 533 amino acid residues and of molecular weight 60, 

255 Dalton.  FMO5 is expressed in many foetal and adult tissues, but in humans its main site 

of expression is adult liver although it is not expressed in the same amounts as FMO3 

(Janmohamed et al. 2001; Hernandez et al. 2004; Zhang et al. 2006).  
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FMO5 is regarded as the ‘‘black sheep’’ of the FMO family with respect to gene 

expression, gene regulation and substrate specificity.  Despite this, it is classified as an FMO 

because of its sequence similarity to other members of this family.   

The FMO5 gene is not part of the FMO gene cluster on human chromosome 1q24.3 

but is located ~26Mb closer to the centromere at 1q21.1 (Hernandez et al. 2004).  FMO5 is 

thought to be the ancestral FMO gene (Hernandez et al. 2004).     Currently, FMO5 is the 

only human FMO demonstrated to be under hormonal regulation (Miller et al. 1997). 

FMO5 shows little or no activity towards classic FMO substrates such as methimazole 

(FMO1, FMO2 and FMO3), imipramine (FMO1) and thioureas (FMO1, FMO2 and FMO3) 

(Overby et al. 1995; Henderson et al. 2004a; Onderwater et al. 2004; Hernandez et al. 2009) 

but efficiently catalyses the N-oxygenation of short chain aliphatic primary amines like n-

octylamine, that are not utilized by other human FMOs.   FMO5 is capable of oxidising 

thioethers with proximal carboxy groups, like the drug Esonarimod, a reaction not catalysed 

by FMO1 or FMO3 (Ohmi et al. 2003). 

 Sequencing studies performed on human FMO5 from individuals of African-

American descent suggest it is the most conserved isoform of the FMO family (Furnes et al. 

2003).   

Despite its expression in the adult human liver, FMO5 is not thought to play a 

significant role in drug metabolism as a result of its limited substrate specificity.   FMO5 

may, however be important in an endogenous metabolic pathway, yet to be identified. 
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Table 1.6: Summary of Tissue-specific FMO expression in Man 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Human FMO Major site of expression Reference 

FMO1 Kidney Koukouritaki et al. 2002 

FMO2 Lung* Krueger et al. 2002 

FMO3 Liver Phillips et al.  1995, 
Koukouritaki et al. 2002 

FMO4 Not determined - 

FMO5 Liver Janmohammed et al. 2001 

 
*Absent in the majority of the human population, see section 1.3.2 for details. 
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1.4 Tuberculosis  

Tuberculosis (TB) is an infectious disease caused by the opportunistic bacterium, 

Mycobacterium tuberculosis.  TB is a severe infection of the lung that can disseminate to 

other parts of the body such as the lymph nodes, the spine and the central nervous system.  

The symptoms of pulmonary TB include persistent coughing with blood appearing in sputum, 

chest pains, weight loss, intermittent fever and night sweats.    

 

1.4.1 Transmission and Pathogenesis   

Transmission of the disease occurs when an infected individual expels Mycobacteria in the 

form of aerosols in the air when they cough, sneeze, spit or laugh.   The bacteria once inhaled 

in the lungs of an uninfected person lodge in the distal airways of the alveoli and are engulfed 

by alveolar macrophages.   At this stage the pathogen has one of several fates.  In the 

majority (>90%) of cases, Mycobacterium ‘hides’ within macrophages and evades the 

primary innate immune response by interfering with intracellular signalling pathways in the 

macrophage by mechanisms that are currently poorly understood.   The pathogen in this state, 

is non-replicating and initiates a latent infection.  This sub-clinical, asymptomatic infection 

can last for years and in the majority of cases never re-activates.  Re-activation or ‘post-

primary’ infection occurs in 5-10 % of individuals and its onset is accelerated in an 

immunocompromised host.      In the remainder of l0% of cases, Mycobacterium starts to 

replicate and the onset of a primary infection develops. 

 

1.4.2 TB Incidence, Prevalence and Mortality 

One third of the world’s population is infected with TB.  The World Health Organisation 

(WHO) Report 2009 estimated 9.2 million new cases of TB worldwide in 2007, of which 

31% were in Africa (WHO 2009).   Among the 9.2 million cases, 0.5 million were caused by 
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multi-drug resistant strains of Mycobacterium tuberculosis (MDR-TB) and 5 % of the 

incident cases were estimated to be HIV-positive.  There was an estimated 13.7 million 

prevalent cases worldwide in 2007 and this estimate is slightly higher than that reported for 

the previous year (13.4 million in 2006).  The number of deaths caused by TB in HIV-

negative patients was estimated to be 1.32 million in 2007 and there was an additional 0.48 

million TB deaths in HIV-positive cases. In absolute terms, the total number of TB cases is 

on the rise and the WHO statistics highlight that TB is still a major global health problem.   If 

controls are not imposed, an estimated 1 billion people will be infected by 2020, over 125 

million will get sick and more than 30 million will die from this disease (Ghiladi et al. 2005).          

          

1.4.3 Genus Mycobacterium and Disease 

Mycobacterium is a genus of Actinobacteria given its own family name, Mycobacteriacea.  

Several species belonging to this genus are pathogenic and known to cause serious disease in 

mammals. Mycobacterium tuberculosis is the primary causative agent of TB in humans.  

Other pathogenic species of Mycobacteria have been isolated in man; albeit rare they include 

Mycobacterium Microti, Mycobacterium africanum and Mycobacterium canettii (Miltgen et 

al. 2002; Cadmus et al. 2009; Frank et al. 2009). 

  

1.4.3.1 Mycobacterium tuberculosis (M.tuberculosis)  

M. tuberculosis is an aerobic, non-motile, polytrophic organism that grows in straight or 

curved rod-like structures (bacillus).  The bacterium has a remarkably slow rate of growth 

with a doubling time of around 20-30 hours (cf. E.coli which can divide every 20 mins under 

optimum conditions).  M. tuberculosis is classified as Gram-positive bacteria as it has one 

phospholipid outer membrane.  Despite this feature, the bacteria stains weakly upon Gram-

staining and in some cases will not stain at all.   The inability to retain Gram stain is because 
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of the presence of a thick, lipid-rich waxy layer that surrounds the cell wall thus preventing 

the stain to encounter this barrier.  Instead, an acid-fast or Ziehl-Neelsen stain can be 

employed to identify M. tuberculosis in bacterial cultures.  

 The cell wall of M. tuberculosis and species belonging to the Mycobacterium genus in 

general have a unique and complex cell wall structure that is considered one of the attributes 

of making this organism one of the most successful pathogens of mankind.  The cell wall 

consists of an inner and outer layer that surrounds the plasma membrane of the organism.  

The outer layer compartment consists of lipids and proteins.  Linked to the lipid moiety are 

polysaccharides including lipoarabinomannan (LAMs), lipomannan and sulpholipids.  This 

layer is the soluble component of the cell wall and contains receptors that interact with the 

host immune system.  The inner layer consists of peptidoglycans (PG), arabinogalactan (AG) 

and mycolic acids (MA) covalently linked to form a complex known as the MA-AG-PG 

complex that extends from the plasma membrane towards the outer layer, starting with PG 

and ending with MA.  This complex is insoluble and impermeable and is referred to as the 

essential core of the cell wall.  This component is the target of several antibiotics and will be 

described later.                 

              

1.4.4 Anti-tuberculosis chemotherapy 

There are five main aims of chemotherapy 

a. Cure of the patient  

b. Prevention of death from active disease or its late effects 

c. Avoidance of relapse or re-current disease 

d. Prevention of spread of drug-resistant organisms 

e. Protection of the community from infection 
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A group of antibiotics have been dubbed the essential drugs for TB chemotherapy.  The drugs 

are generally prescribed in combination as monotherapy can lead to drug resistance.    A two-

tier system is established in TB chemotherapy and consists of first-line and second-line 

antibiotics.  First-line antibiotics; isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), 

and streptomycin (SM) are predominantly bactericidal in action.  Thiacetazone (TAZ), 

ethionamide (ETA) and ethambutol (EMB) are second-line antibiotics and are predominantly 

bacteriostatic.  First-line antibiotics are generally more expensive and display higher drug 

efficacy, second-line drugs on the other hand are cheaper but have higher levels of toxicity 

and are less effective at treating TB.  Among all the current TB drugs, TAZ is the cheapest 

antibiotic available.  The WHO recommends Directly Observed Therapy (DOTs) that 

consists of the following drug regimen for treatment of active TB infection: 6 months therapy 

consisting of initial 2 month phase of treatment with four drugs; INH, RIF, PZA and EMB 

followed by a continuation phase with INH and RIF for another 4 months (WHO 2009 ).  All 

of these drugs are expensive and are ineffective in treating TB in areas of high incidence of 

multi-drug resistant TB (MDR-TB).  In developing countries, the cost of these drugs is too 

much to afford and more second-line drugs are substituted for first-line antibiotics.  For 

instance drug regimens in Sudan, Nigeria, Ghana, Senegal and some parts of South America 

administer the following course of treatment: 4 months intensive chemotherapy with INH, 

RIF, PZA, EMB followed by 3 months of TAZ and INH (Lawn et al. 1999; Mame Thierno et 

al. 2001; Dosumu 2002; Keus et al. 2003).   Poverty-stricken areas of Africa and certain parts 

of India however can ill afford this relatively cheap combination and thus resort to a 

preparation of INH and TAZ (Thiazina) course of treatment which lasts for 18 months, 

despite it being less effective and causing potentially life-threatening side effects (Nunn et al. 

1992).   The side effects of this drug have been presumed to be from the TAZ component of 

this preparation (Anonymous 1963; Aquinas 1968; Volek et al. 1970; Hussain et al. 1973; 
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Coetzee 1980; Naraqi et al. 1980; Short 1980; Jaliluddin et al. 1981; Eriki et al. 1991; Fegan 

et al. 1991; Kole 1991; Nunn et al. 1991; Ipuge et al. 1995).   

 INH is the most potent bactericidal antibiotic amongst the essential drugs and is most 

effective towards metabolically active and continuously growing bacteria. RIF is a good 

bactericidal agent towards growing bacteria but is also effective at targeting semi-dormant 

bacteria.  Thus RIF is a good sterilising agent that will kill Mycobacteria capable of surviving 

the action of INH.    PZA, like RIF is a good sterilising agent of Mycobacteria, especially 

those that grow in an acidic environment.  SM has less bactericidal action but nevertheless is 

effective. 

 It is envisaged that tubercle bacilli in lesions within an infected host consist of sub-

populations that display differences in metabolic status.  These are ‘‘(a) those that are 

metabolically active, continuously growing bacteria that are killed by the action of INH (but 

in the case of INH resistance are killed by RIF and SM), (b) semi-dormant bacteria that 

undergo spurts of metabolism which are killed by RIF, (c) those that are of low metabolic 

activity and reside in acid pH environment which are killed by PZA and (d) those that are 

‘dormant’ which are not killed by any current TB drug’’ (Zhang 2005).    

  

1.4.5 Mechanisms of Drug Action  

The action of drugs can be categorised in the following groups, inhibitors of cell wall 

synthesis (INH, TAZ, ETA, EMB), inhibitors of nucleic acid synthesis (RIF), inhibitors of 

protein synthesis (SM) and drugs that inhibit or deplete membrane energy (PZA).  It is 

beyond the scope of this report to detail the mechanism of each drug, for a detailed insight 

into the mode of drug action/activation see review by (Zhang 2005).  A brief description will 

be provided here. 
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Inhibitors of Cell Wall Synthesis 

Inhibitors of cell wall synthesis target components within the lipid rich inner and outer layer 

that surrounds the cell wall, thereby weakening the cell scaffold that is crucial to bacterium 

survival.    INH is a pro-drug that is activated by M. tuberculosis catalase-peroxidase enzyme, 

KatG ((Zhang et al. 1992), Johnson and Schultz 1994) to generate a range of toxic oxygen 

species.  The active species of this activation, the isonicotinic acyl radical, reacts with NAD 

to form an INH-NAD adduct that inhibits the enzyme InhA (Rozwarski et al. 1999).  The 

enoyl-acyl carrier protein reductase, InhA is part of the Fatty Acid Synthase type II (FAS II) 

complex that is responsible for the synthesis and elongation of mycolic acids.   The primary 

target of INH is thus mycolic acid biosynthesis (Winder et al. 1970).  Mutations in KatG and 

in InhA confer resistance to INH treatment (Banerjee et al. 1994). 

 EMB interferes with the production of arabinogalactan, an important polysaccharide 

component of the essential core of the cell wall.  EMB inhibits the polymerisation of the 

arabinin moiety of arabinogalactan and LAMs thus weakening the scaffold of the 

mycobacterial cell wall (Zhang 2005).  The exact details of EMB action or activation are still 

poorly understood but aribinosyl transferase, an enzyme involved in arabinogalactan 

synthesis has been postulated as the target of this drug. 

 ETA and TAZ also target cell wall biosynthesis and this will be described in detail in 

section 1.4.6 and 1.4.7 respectively. 

 

Inhibitors of nucleic acid synthesis  

RIF is a broad spectrum, rifamycin B derivative that inhibits RNA synthesis in bacteria.  RIF 

inhibits the synthesis of RNA by binding to the β-subunit of bacterial DNA-dependent RNA 

polymerase (DDRP) thus inhibiting the transcription of RNA and subsequent translation to 

protein (Zhang 2005).  The beta subunit of DDRP is the translational product of the rpoB 
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gene and mutations in a defined 81-bp region of this gene confer RIF resistance (Zhang 

2005). 

   

Inhibitors of Protein Synthesis 

SM is an aminoglycoside that inhibits translation of bacterial mRNA. It does so by binding to 

specific components associated with the bacterial ribosome that is composed of a large (50S) 

and a small (30S) subunit.  Studies have identified that SM binds to the 16S rRNA 

component of 30S and also to the S12 protein that is associated with this complex (Spotts et 

al. 1961).   16S rRNA and S12 are encoded by the rrs and rpsl genes respectively and 

mutations in these genes are known to cause resistance to SM action (Garvin et al. 1974). 

 

Inhibition and Depletion of Membrane Energy 

PZA, a structural analogue of nicotinamide, is a prodrug that requires conversion to its active 

form pyrazinoic acid (POA) by the pZase/nicotinamidase enzyme (Scorpio et al. 1996).  The 

drug has no activity against Mycobacteria growing at normal culture conditions near neutral 

pH, but is effective in killing bacilli at lower pH (Tarshis et al. 1953).  Acid pH facilitates the 

formation of uncharged protonated POA that permeates through the membrane easily, this 

results in the accumulation of POA and the decrease in membrane potential in M. 

tuberculosis (Zhang et al. 1999; Zhang et al. 2003).  Protons flow into the cell and this 

subsequently causes the collapse of the proton-motive force and affects membrane transport 

(Zhang et al. 2003).   

   The pZase/nicotinamidase enzyme is encoded by the pncA gene in M. tuberculosis.  

Mutations in pncA are considered the major mechanism of resistance to this drug (Scorpio et 

al. 1996; Scorpio et al. 1997).  
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1.4.6 Ethionamide 

Ethionamide (2-ethylpyradine-4-carbothioamide, ETA) is a second-line antibiotic developed 

by the Lederle Research Laboratories in 1956 (Liebermann D 1956).  The drug has been used 

in the developing world and in the United States to either treat the mycobacterium or reduce 

the risk of resistance to first-line antibiotics.   

 ETA is a structural analogue of INH (Fig. 1.9).  It was observed that mutations in the 

promoter and coding region of InhA, which encodes the enzyme that is the cellular target for 

INH (InhA) conferred resistance to ETA treatment (Banerjee et al. 1994).  This gave the 

impression that ETA and INH have common modes of activation, but it was hard to explain 

why clinical isolates of M. tuberculosis that were resistant to INH treatment were still 

susceptible to ETA and vice versa.  The lack of cross-resistance suggested that KatG, the 

catalase peroxidase responsible for INH activation was probably not involved in the 

conversion of ETA. In 2000, two independent laboratories identified an FAD-containing 

monooxygenase as the activator of ETA, this enzyme was named Ethionamide-Activating 

enzyme usually abbreviated to EtaA (also known as EthA) (Baulard et al. 2000; DeBarber et 

al. 2000). Clinical isolates containing mutations in the gene encoding EtaA are resistant to 

ETA action and an activation step for ETA activity is thus necessary for it to exert an anti-

tubercular effect.   Heterologous expression of the enzyme in E.coli confirmed this enzyme to 

catalyse the oxidation of this drug (Vannelli et al. 2002).  EtaA will be described in section 

1.4.8.   

   In vitro studies claim that EtaA catalyses the sequential oxidation of ETA to form 

the S-oxide (ETA-SO) and 2-ethyl-4-amidopyridine (ETA-amide) (Vannelli et al. 2002).   

Since the anti-tubercular activity of ETA-amide and ETA-SO is comparable to that exhibited 

by the parent compound, it is unlikely that these metabolites represent the activated species of 

this drug.    Although not identified, an intermediate precursor of ETA-amide has been  
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Figure 1.9: Chemical Structures of Isoniazid (INH) and Ethionamide (ETA) 
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postulated to be the reactive species of ETA oxidation and is predicted to be a sulphinic acid 

metabolite (Vannelli et al. 2002).   In an independent study, the in vivo metabolism of ETA in 

M.tuberculosis was investigated and in addition to ETA-SO and ETA-amide, the 

corresponding nitrile, acid and alcohol derivatives of ETA were observed (DeBarber et al. 

2000).  Both studies employed extraction methods prior to MS analyses and some argue that 

these products may result from spontaneous chemical modification/oxidation rather than an 

enzymatic reaction as none of these compounds display anti-microbial activity (Hanoulle et 

al. 2006).  To establish the product(s) of EtaA catalysed oxidation, one study employed high 

resolution magic angle spinning-NMR to determine the metabolism and identify the active 

species of this drug in living M.smegmatis (Hanoulle et al. 2006).  The study investigated the 

metabolism of ETA in the growth medium and within the cells in real time.  The study 

demonstrated that the concentration of ETA in the growth medium decreased over time and 

was coupled to the formation of two metabolites.  NMR analysis confirmed these as ETA-SO 

and ETA-alcohol.  Analysis of the intracellular distribution of this drug however did not 

identify ETA, ETA-alcohol or ETA-amide.  This suggests that upon activation of ETA, the 

products are rapidly expelled from the cell.  Furthermore, the accumulation of an aromatic 

ETA derivative was observed within the cell and its formation correlated to the loss of ETA 

in the growth medium. This metabolite, ETA* is considered to be the active product of EtaA 

catalysed oxidation, the nature of this species however, is still to be determined but is 

postulated as the sulphinic acid of ETA (Hanoulle et al. 2006).   Given that ETA, ETA-SO, 

and ETA-alcohol were only observed in the growth medium and that ETA* accumulated over 

time within the cell indicates that ETA activation is coupled to a complex molecular sorting 

of metabolites and to a selective accumulation of a specific species.  (Vannelli et al. 2002; 

Hanoulle et al. 2006). 
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 Although the active species of ETA is not identified the mode of action of this drug is 

established.  The cellular target of ETA is the enoyl acyl carrier protein reductase, InhA 

(Larsen et al. 2002).  This enzyme is involved in the final step of the Fatty Acid Synthase 

complex reactions.  The actual mechanism by which ETA or its active metabolite inhibit this 

enzyme is still to be established.  

 Given that InhA is the cellular target of ETA, it is reasonable to assume that the drug 

will affect lipid metabolism in Mycobacteria.  ETA causes the cessation of alpha-, keto and 

methoxy-mycolate methyl ester synthesis; these lipids are sub-types of mycolic acids that are 

essential components of the Mycobacterium cell wall.   Thus impairment in their biogenesis 

is likely to weaken the cell scaffold and make Mycobacteria more susceptible to host immune 

attacks (Dover et al. 2007). More details regarding the role of mycolic acids will be provided 

in the next section.   

 

1.4.7 Thiacetazone  

Thiacetazone (p-acetylaminobenzaldehyde thiosemicarbazone, TAZ) is a member of the 

thiosemicarbazone family of drugs that were developed in the late 1940s by Farbenfabriken 

Bayer in Germany (Behnisch et al. 1950).  The therapeutic importance of TAZ was 

investigated by Domagk (Domagk 1950) when the drug was used to treat some 10, 000 

patients in Germany as a single agent in treatment for TB (Mertens et al. 1950).  As was the 

norm of the time, these trials were uncontrolled and details referring to drug efficacy, 

tolerance and safety were not documented but two American observers concluded that TAZ 

appeared to have ‘‘anti-tuberculous activity of the same order of magnitude as p-

aminosalicyclic acid; and a potential toxicity somewhat like the arsenics used to treat 

syphilis’’ (Hinshaw et al. 1950; Nunn et al. 1993).  The drug has not been used in the United 

States or in Europe (outside Germany) because of the discovery of INH and SM, drugs that 
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are far more efficient at treating TB (Nunn et al. 1993).  However the combination of high 

costs of obtaining first-line antibiotics and the long duration of drug regimens means that 

poorer countries can ill afford them.  This has led to the use of TAZ as either monotherapy or 

in conjunction with other drugs in areas of Africa, India and South America (Narang ; 

Anonymous 1963; Fox et al. 1974; Neill et al. 1990; Nunn et al. 1992; Nunn et al. 1993; 

Lawn et al. 1999; Mame Thierno et al. 2001).   

 The main role of TAZ in current drug regimens is to prevent the emergence of 

Mycobacteria that are resistant to first line drugs such as INH and RIF.  Despite TAZ being a 

bacteriostatic drug with poor sterilising activity (Heifets et al. 1990), recent interest in this 

drug has arisen since it has not been used in the developed world.  This means that M. 

tuberculosis strains resistant to drugs prescribed in industrialised countries are likely to be 

susceptible to TAZ treatment. For example, a recent report described the treatment of an 

individual suffering from chronic TB infection in Japan whose sputum smeared positive for 

TB during and after extensive chemotherapy with INH, RIF and PZA (Wada et al. 2007). 

Drug susceptibility tests confirmed the individual to suffer from a multi-drug resistant strain 

of M. tuberculosis. TAZ was included in the regimen as a ‘last resort’ and after four months 

of therapy, the individual’s sputum smeared negative for the first time since the onset of 

infection. 3 years after the termination of TAZ therapy in a follow-up, the patient displayed 

negative sputum smears and no signs of relapse were observed (Wada et al. 2007).  This 

finding is valuable as the level of multi-drug resistant M. tuberculosis, i.e. strains resistant to 

INH and RIF are on the rise and pose a major obstacle in the successful treatment of this 

disease.  Furthermore, statistics regarding X-MDR TB, (that is individuals infected with 

bacterial strains resistant to INH and RIF and at least three of the six second line drugs) 

confirm its rise in industrialised parts of the world (WHO 2009 ).  A major problem regarding 

 68



the progression of TAZ as a mainstay in the developed world however is the level of toxicity 

observed in regimens containing this drug. 

 The first controlled clinical trial of TAZ chemotherapy was conducted in East Africa 

in which 51 patients with active TB infections were administered 150 mg of TAZ daily 

(Anonymous 1960).  During this study, severe skin rashes were observed in about 20% of 

patients and a single case of Steven’s Johnson syndrome was reported.  Stevens-Johnson 

syndrome is a life threatening disease in which cell death causes the epidermis to separate 

from the dermis and is usually described as ‘skin falling off’. Since this study, numerous 

reports of dermatological reactions including Stevens-Johnson syndrome and Lyell disease, 

inflicted by TAZ usage have been documented (Harland 1962; Ferguson et al. 1971; Hussain 

et al. 1973; Bedi et al. 1974; Sahi et al. 1974; Purohit et al. 1976; Strobel et al. 1979; Naraqi 

et al. 1980; Strobel et al. 1980; Anonymous 1981; Gupta et al. 1983; Mullick et al. 1986; 

Fegan et al. 1991; Fegan et al. 1991; Nunn et al. 1991; Chintu et al. 1993; Kelly et al. 1994; 

Ipuge et al. 1995; GOTHI 1998 ; Lawn et al. 1999; Dieng et al. 2001; Mame Thierno et al. 

2001).     Stevens-Johnson syndrome is more common in HIV-positive patients than HIV-

negative patients that take TAZ as part of TB treatment (Colebunders 1989; Colebunders et 

al. 1989; Elliott et al. 1990; Elliott et al. 1996) and work in Uganda specifically implicated 

TAZ as the responsible drug (Eriki et al. 1991).  Therefore TAZ is strongly contraindicated in 

patients that are HIV-positive.   Reports of adverse skin reactions have been made in smaller 

district programmes in India, Kenya, Tanzania and Senegal whereby cutaneous rashes are 

reported as common (Shane et al. 1951; Ipuge et al. 1995; GOTHI 1998 ; Mame Thierno et 

al. 2001). A common complaint of patients given this drug is of gastrointestinal disturbances 

such as nausea and vomiting (Shane et al. 1951; Teklu 1976; GOTHI 1998 ; Mame Thierno 

et al. 2001) this is a potential problem with regard to drug compliance as chemotherapy may 

last for up to 24 months with this drug.   Liver function tests performed, such as thymol 
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turbidity and bromsulphthalein staining on patients prescribed with TAZ, indicate higher 

incidence of liver toxicity (Hinshaw et al. 1950; Shane et al. 1951; Anonymous 1963).  

Jaundice has also been reported in around 4% of individuals in India given TAZ as 

chemotherapy (Narang ; Sharda et al. 1976; Gupta et al. 1977).  Jaundice was frequently 

reported in patients on TAZ containing regimens in controlled studies conducted in Africa, 

Singapore and Hong Kong (Anonymous 1963; Aquinas 1968; Anonymous 1971). These 

findings are hard to interpret for two reasons; TAZ is usually administered as a preparation 

with INH (Thiazina) or as multi-drug therapy with other first- and second-line antibiotics and 

thus it cannot be assumed that TAZ is responsible for inducing hepatotoxicity, secondly 

disseminated TB infections of the liver may also lead to hepatic dysfunction. To complicate 

the interpretation further, contradictory findings have been reported about the role of INH in 

potentiating TAZ-induced toxicity in individuals being given Thiazina or regimens in which 

the drugs are prescribed together.  One case study of 13 British TB patients reported liver 

toxicity and liver damage in individuals prescribed INH and TAZ but not in those prescribed 

TAZ as monotherapy (Pines 1964). This would indicate a role of INH in liver toxicity rather 

than TAZ.  Though uncommon, INH-induced hepatotoxicity has been reported and in part 

has been associated to one’s acetylator status (Rubin 1952, Reynolds 1962, Bahrs 1963, 

Pande 1996, Huang 2002, Possuelo 2008, Bozok Centintas 2008).    A study in Zimbabwe 

however, observed hepatotoxicity in patients given TAZ, INH, PZA and SM but not in drug 

regimens in which TAZ was omitted, the study also noted that adverse-drug reactions showed 

no correlation to INH acetylator status (Neill et al. 1990).   Although a role of INH cannot be 

ruled out entirely, it is generally accepted that TAZ is the main contributor of liver toxicity 

and liver damage (Anonymous 1963; Aquinas 1968; Axton 1971; Sharda et al. 1976; Gupta 

et al. 1977; Coetzee 1980). 
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 Details regarding the metabolism and potential mechanism of toxicity of TAZ are 

poorly documented, probably because the development of this drug before the advent of 

clinical trials and drug licensing and also owing to the lack of TAZ used in the United States.  

The drug is administered orally in a tablet form and is likely to be well absorbed; hepatic 

metabolism is thus expected to be important, though bioavailability data is not available. UV-

spectral and HPLC analysis of human urine and faecal samples suggest that 15-20% of the 

drug is excreted unchanged (Ellard et al. 1974; Jenner 1983; Jenner et al. 1984).  Spectral 

analysis observed p-aminobenzaldehyde thiosemicarbazone and p-acetylaminobenzoic acid 

in urine (Ellard et al. 1974) but these metabolites were not identified in later work using 

HPLC (Jenner 1983; Jenner et al. 1984).  The latter method detected two unidentified 

metabolites, although in small quantities in urine (Jenner 1983; Jenner et al. 1984).     

The mode of action of TAZ in killing M. tuberculosis has recently been investigated.  

TAZ, like other TB drugs is a pro-drug that requires metabolic activation by an enzyme 

specific to Mycobacteria.  The enzyme necessary (but not sufficient) to activate TAZ is the 

bacterial FMO, EtaA (Baulard et al. 2000; DeBarber et al. 2000; Qian et al. 2006; Dover et 

al. 2007; Alahari et al. 2009).  In the presence of NADPH and molecular oxygen, EtaA 

catalyses the oxidation of TAZ to generate two major metabolites; TAZ-sulphinic acid and 

TAZ-carbodiimide (Qian et al. 2006).  Experiments with chemical oxidants such as H2O2 

and the desulphuration agent cuprous chloride (CuCl), demonstrate that TAZ-sulphinic acid 

and TAZ-carbodiimide are not products of sequential oxidation, i.e. the carbodiimide is not 

formed by desulphuration of the sulphinic acid, but instead both products are formed by 

independent enzymatic reactions of TAZ probably through an unidentified intermediate.  

Given that sulphinic acids can be generated by the oxidation of sulphenic acids and the fact 

that EtaA is a monooxygenase, the authors of this study postulated a TAZ-sulphenic acid 

metabolite as the intermediate precursor for both products (Fig. 1.10) (Qian et al. 2006). 
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Figure 1.10: EtaA Catalyses the Two-Step Oxidation of TAZ.  Chemical structures of 

oxidative products generated by the oxygen- and NADPH-dependant oxidation of TAZ by 

EtaA.  The structure of the postulated sulphenic acid intermediate is given in brackets (Qian 

et al. 2006).   
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Recent work has identified stains of M. bovis that are resistant to TAZ but carry a functional 

EtaA (Alahari et al. 2009).   This implies that in addition to EtaA, other activators of TAZ are 

present. The Mycobacterial methyltransferase Mma4 is necessary in the activation of TAZ, 

though currently it is unclear how this enzyme interacts with EtaA and whether the enzymes 

share a common target (Alahari et al. 2009).   Although the mode of TAZ action has recently 

been established, the drug metabolite responsible for inhibiting the growth of M. tuberculosis 

is still unknown.  

TAZ is an inhibitor of cell wall mycolic acid biogenesis (Alahari et al. 2007; Dover et 

al. 2007; Alahari et al. 2009).  Mycolic acids are mixtures of alpha, methoxy- and keto-

mycolic acid methyl esters that are branched, long chain fatty acids representing the key 

components of the hydrophobic cell wall.  These lipids provide several protective features 

including resistance to oxidative injury, low permeability to antibiotics and the ability to 

persist within the host (Daffe et al. 1998; Dubnau et al. 2000; Glickman et al. 2000).  

Synthesis of alpha- and keto-mycolic acid methyl esters occurs through a coordinated 

pathway involving oxidation, methylation and cis or trans-cyclopropanation that is catalysed 

by cyclopropane mycolic acid synthases (CMASs). In a recent study, the effect of TAZ on 

wild type and TAZ-hypersensitive strains of M. bovis were studied to elucidate the 

mechanism by which this drug impairs cell wall biogenesis (Dover et al. 2007).  TAZ inhibits 

the formation of all sub-types of mycolates and results in the accumulation of alpha- and 

keto-mycolate precursors.  These lipids, when analysed by NMR and MS, lack the 

cyclopropane ring moiety and imply that the cellular target of TAZ may be enzymes that 

catalyse this step (Alahari et al. 2007).  The cellular target of TAZ has thus been identified as 

the S-adenosyl methionine (SAM)-dependant methyltransferases, Mma2, Mma4 and PcaA 

(Alahari et al. 2007).  The actual mechanism by which TAZ or its reactive metabolite inhibits 

the function of such enzymes is still unclear. It is noteworthy that although the action of ETA 
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on M. bovis does affect mycolic acid synthesis, it does not lead to the accumulation of 

unsaturated mycolates, this implies ETA and TAZ inhibit mycolic acid biogenesis by 

different mechanisms.  Furthermore, TAZ does not inhibit the function of enzymes involved 

in the FAS II synthase pathway i.e. InhA, KasA, KasB, MabA or mtFabH and further 

suggests that TAZ and ETA although activated by the same enzyme have different cellular 

targets (Dover et al. 2007).     

   

1.4.8 Ethionamide-Activating Enzyme (EtaA): A bacterial FMO 

In 2000, two independent studies identified a gene Rv3854c (EtaA) in the M. tuberculosis 

genome that encoded a protein responsible for ETA activation (Baulard et al. 2000; DeBarber 

et al. 2000).  The protein was accordingly named Ethionamide-Activating enzyme and is 

usually abbreviated to EtaA or EthA.   

Characterisation of EtaA revealed that it was 488 amino acid residues in length and 

was membrane associated (Vannelli et al. 2002).  UV-spectral analysis of EtaA yielded a 

spectrum displaying absorbance maxima at 365 nm and 440 nm suggesting the presence of a 

flavin containing prosthetic group (Vannelli et al. 2002).  Extraction of the flavin species 

identified FAD and not FMN as the prosthetic group in this enzyme.  The enzyme 

demonstrated dependence on molecular oxygen and NADPH.  EtaA is inactive under 

anaerobic conditions and NADH can not be substituted for NADPH.  The size, prosthetic 

group, dependence on oxygen and NADPH and enzyme localisation of EtaA are consistent 

with it being a flavin-containing monooxygenase (Vannelli et al. 2002).  A primary sequence 

alignment of EtaA and human FMO1, 2.1 and 3 is given in Figure 1.11 and demonstrates that 

the bacterial enzyme contains the characteristic ‘GXGXXG/A’ consensus sequence that is 

important in binding dinucleotides in eukaryotic FMOs.  As described in the preceding 

section, EtaA catalyses the S-oxidation of TAZ  
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Figure 1.11: A primary sequence alignment of EtaA and human FMOs involved in drug 

metabolism.  The primary sequence of EtaA and FMO1, 2.1 and 3 are aligned.  An asterix 

denotes conserved identical residues, a colon indicates conserved similar residues, and a dot 

indicates highly similar residues.  The ‘GXGXXG/A’ FAD and NADPH binding moieties are 

boxed in red. Primary sequences were aligned using the ClustalW2 tool available at 

http://www.ebi.ac.uk/Tools/clustalw2/index.html.   
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(Qian et al. 2006).  Human FMO1 and FMO3 are also capable of catalysing the two step 

oxidation of TAZ to TAZ-sulphinic acid and carbodiimide the same products identified for 

EtaA (Qian et al. 2006). This finding suggests that upon administration of TAZ to humans, 

oxidation of TAZ by eukaryotic monooxygenases may result in the production of potentially 

toxic metabolites and/or the inactivation of the drug leading to reduced drug efficacy.  It is 

therefore crucial to determine the role of mammalian monooxygenases in the activation of 

TAZ and other thiocarbamide drugs and this provides the focus of this investigation.   

EtaA is under the transcriptional control of a regulatory protein that is encoded by the 

gene, Rv3855.  In vitro studies demonstrate that over-expression of Rv3855 generates ETA 

resistance. The protein encoded by this gene displays homology to members of the TetR 

family of transcriptional repressors and thus is thought to be a negative repressor of EtaA 

expression and has been designated as EtaR.  Supporting this finding is the observation that 

chromosomal inactivation of Rv3855 in M. bovis results in the hyper-sensitivity of 

Mycobacteria to ETA and TAZ (Baulard et al. 2000; Dover et al. 2007).  Not only do these 

findings confirm the regulation of EtaA by EtaR but also confirm EtaA as the enzyme 

responsible for activating ETA and TAZ.   Clinical isolates resistant to TAZ and ETA are 

also resistant to thiocarlide (a second-line antibiotic) treatment.   It thus appears that EtaA 

may be a common activator for thiocarbamide containing drugs (Dover et al. 2007).   
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1.5 Pharmacogenetics 

Pharmacogenetics is the discipline that studies the influence of genetic variation on drug 

response.  The field has generated recent interest owing to the fact that around 100,000 deaths 

occur in the United States every year because of adverse-drug reactions exhibited by patients 

on medication (Lazarou 1998; Abbott 2003).   

The first observation of genetic variation on drug response was in the 1950s for 

suxamethonium chloride, a muscle relaxant administered during general anaesthesia (Kalow 

1952; Evans et al. 1953; Kalow 1961 reviewed by Gardiner et al. 2006).   Doctors observed 

that upon drug administration, some patients remained paralysed for longer than others and 

some suffered from life-threatening respiratory arrest (Abbott 2003; Kalow 2004).  It was 

later established that homozygousity for mutations on the butyrlcholinesterase gene led to 

this phenomena (Kalow 1957; Jensen et al. 1995).  Cholinesterase is the enzyme that 

hydrolyses the drug to an inactive metabolite and in the event when this process is impaired, 

the resultant accumulation of succinylcholine results in the prolonged paralysis of muscles 

including those that are involved in breathing (Jensen et al. 1995; Yen et al. 2003 and 

reviewed by Lee 2009).   

    Of particular interest to pharmacogenetic studies are families of drug metabolising 

enzymes, in particular the cytochrome P450s (CYPs).  It is estimated that more than 80% of 

serious adverse drug reactions are the consequence of polymorphic variants of CYPs (Abbott 

2003).  Though it is beyond the scope of this section to describe in detail the polymorphic 

nature of CYPs, a few examples of altered drug metabolism by CYP variation will briefly be 

described here.  For an extensive review see Gardiner et al. 2006.   

 Codeine, a pain killer commonly given to post-operative patients to manage pain is 

ineffective in about 10% of individuals.  The drug is oxidised to morphine by CYP2D6, but 

in people possessing polymorphic variants of this enzyme, the drug is ineffective and patients 
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do not get any pain relief (reviewed by Lotsch et al. 2009 and Thorn et al. 2009).  CYP2D6 is 

in fact the most polymorphic of CYP genes and genetic variations result in individuals being 

rapid, normal or slow metabolisers of drugs that are substrates for this enzyme (reviewed in 

(Gardiner et al. 2006)).   Therapeutics metabolised by CYP2D6 for which a pharmacogenetic 

link has been established include the anti-hypertensive agent debrisoquine (Tucker et al. 

1977; Wolf et al. 1992), the anti-depressant nortriptyline (Dalen et al. 1998; Dalen et al. 

2003) and the anti-angina drug perhexilline (reviewed by Ashrafian et al. 2007). 

   The anti-coagulant Warfarin is metabolised by CYP2C9.  Variant alleles that reduce 

the enzymes capacity to clear this drug, such as CYP2C9*2 and CYP2C9*2 cause Warfarin 

hypersensitivity that can lead to life-threatening bleeding and a higher risk of stroke (Rettie et 

al. 1994; Haining et al. 1996).  Allelic variants of CYP2C8 have been implicated in altered 

oxidation of the mitotic inhibitor paclitaxel (Dai et al. 2001; Bahadur et al. 2002).   

The ultimate goal of pharmacogenetic research is a healthcare service that would 

consider the genetic profile of a patient so that therapeutics can be tailored to maximise drug 

efficacy and minimise adverse drug reactions.  No matter how beneficial the concept of 

‘personalised medicine’ may sound it is unlikely to happen in the foreseeable future given the 

complex nature of drug metabolism that usually involves the inter-play of several enzymes 

and not to mention the cost and time involved in mass biochemical and genetic testing.  Even 

if it is viable in affluent parts of the industrialised world, it may be unethical to broaden the 

gap between the rich and poor in terms of healthcare. At this moment, it is feasible to 

consider using genomic data to avoid prescribing certain drugs to people that may be 

predisposed to an adverse drug reaction. Whether pharmacogenetic information will be used 

in such a way is still to be seen.  Experiments described in this thesis attempt to elucidate the 

basic biochemistry behind the metabolism of anti-tubercular drugs by polymorphic variants 
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of human FMOs, by doing so we try to explain the underlying cause of toxicity that is 

exhibited by these drugs in so many TB patients. 
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1.6 AIMS 

The aims of this investigation were as follows. 

• To establish whether TAZ and ETA were substrates for human FMO2.1 and  to 

identify the products of this reaction.  To compare the products of TAZ oxidation by 

human FMO2.1 to those generated by EtaA-, FMO1- and FMO3- catalysed reactions.  

To determine the kinetic parameters of the reaction of human FMO2.1 and TAZ 

through the development of a spectroscopic assay. To compare the kinetic constants 

obtained for  FMO2.1 to those of human FMO1, FMO3 and EtaA. 

• To determine the catalytic consequences of human FMO3 variation, particularly 

focussing on polymorphisms that increase or abolish catalytic activity and those that 

are prevalent in Africa.   Kinetic performance of FMO3 variants was assessed using 

an established enzyme assay for a typical FMO substrate and the novel spectroscopic 

assay for TAZ. 

• To attempt to understand the relative contribution of FMOs and CYPs to TAZ 

metabolism in vitro by using microsomal samples isolated from mouse lung and liver.   

Microsomes isolated from wild type and FMO knockout mouse lines were employed 

to determine the role of individual FMO isoforms to TAZ metabolism.   

• To attempt to gain an understanding of the in vivo metabolism and disposition of TAZ 

by FMOs using a mouse model.     
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Chapter 2: Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                      
2.1 Chemicals 
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All chemicals, except tissue culture material, where purchased from Sigma-Aldrich (St. 

and, CA, USA) and were of cell culture grade.  Plastic ware for cell culture 

PLC 

C 

.2.1 Spodoptera frugiperda, (Sf9) Cells 

• SF-900 Serum-Free Media (Media/SFM) (Invitrogen): Stored at 4˚C in the dark. 

tored at 4˚C.  

l Bovine Serum (FBS), (Invitrogen): Stored at -20˚C and thawed on ice before 

ese stocks contained 10% Fetal Bovine Serum (FBS) (Invitrogen). Maintaining 

ells in serum has been reported to make cell cultures prone to contamination and also results 

Louis, MO, USA) unless stated otherwise.  Tissue culture materials were purchased from 

vitrogen (CarlsbIn

was purchased from VWR International (West Chester, PA, USA).  Materials used for H

and LC-MS were purchased from Fisher Scientific (Hampton, NH, USA) and were of HPL

grade. 

 

2.2 Cell Culture Conditions 

 

2

Solutions: 

• Gentamicin, tissue culture grade: S

• Feta

use. 

 

Frozen stocks of Sf9 cells were previously prepared in the laboratory and stored in liquid 

nitrogen.  Th

c

in higher costs.   The cells were therefore adapted to grow in serum-free conditions.  Cells 

were also adapted to grow in suspension cultures as higher levels of protein expression can be 

achieved in this way.  A frozen Sf9 cell aliquot was removed from liquid nitrogen and rapidly 

thawed by rubbing the tube repeatedly between two hands.  As soon as the cells started to 

thaw the contents of the tube were poured into a T25 attachment flask (Nunc™ VWR, UK) 

containing 5mL of pre-warmed SF-900 serum-free media and 10 µg/mL gentamicin.  The 
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cells were allowed to attach to the surface of the flask in a nonhumified incubator (Innova™ 

4230, New Brunswick Scientific, USA) at 27˚C and were inspected after 1 hour.  After 1 

hour the cells had attached to the surface, this was observed by viewing the flask under a light 

microscope and gently moving the flask from side to side.   Cells which have attached remain 

stationary whereas unattached cells ‘float’ in the medium.  The cells were incubated at 27˚C 

until they reached confluence.  This took approximately 48 hours.  At this point the cells were 

seeded.  To seed the cells, medium from the flask was removed and replaced with 5mL of 

fresh media containing gentamicin.  The flask was then firmly hit against the palm of the 

hand three times to dislodge cells from the surface. 2.5 mL of culture was transferred into a 

new T25 flask containing 2.5 mL of media, gentamicin and 10% FBS.  This culture was 

maintained in serum and was used as a ‘stock’ while cells where adapted to suspension 

cultures. The remainder 2.5 mL of the original culture was transferred into a 125 mL shaking 

flask (sterile, disposable Erlenmeyer flask (VWR Intl.), containing 23 mL of SF-900 serum-

free media and 10 µg/mL gentamicin.  To start off, cells were shaken at 110 rpm.  Cells were 

counted every 24 hours to assess cell viability at the rotational speed.  If cell death was 

apparent then the speed of shaking was reduced by 5 rpm until cells reached a mid-log phase 

(2x106 cells/mL).  It was found that at this initial stage, slower rates of shaking (<110 rpm) 

led to cell death, as did a rate over 115 rpm.  If these cell batches reached cell densities of 

2x106 cell/mL, they were re-seeded to a density of 8x105cell/mL and shaken at 115 rpm.  Cell 

batches were monitored in this way until they had adapted to grow at 125 rpm.  This speed is 

the optimum speed given in the supplier’s instructions (Invitrogen).  The cells took a total of 

5 weeks to adapt to the new conditions. 

       

Sf9 cells adapted to serum-free and suspension cultures were maintained in SF-900 serum-

free media containing 10 µg/mL gentamicin in suspension cultures.    Cells were seeded at a 
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density of 2x106  to 5x105 cell/mL every 2-3 days in 25 mL or 50 mL suspension cultures in 

• Dulbecco’s Phosphate - Buffered Saline (D-PBS) 

ain 

L of D-PBS, 100 µL of Trypan blue 

 a 1.5mL microfuge tube.  100µL of this sample was 

en mounted onto a hemocytometer (VWR, Intl.) and viewed under a light microscope.  

) = (Final cell density / No. of viable cells x106) X Final Volume 

 a batch has <98% viability it is not used for transfection or infection with baculovirus.   

were counted every 2-3 days.   

sterile 125 mL or 250 mL Erlenmeyer flasks respectively. Cultures were grown in a 

nonhumified incubator at 27ºC and at 125 rpm shaking.    

 

2.2.2 Cell Counting and Seeding 

Solutions:  

• 0.4%  (w/v) Trypan Blue St

 

To count the cells, a 1 in 10 dilution was prepared.  900 µ

stain and 100 µL of cells were mixed in

th

Cells within the grid of the cytometer were counted.  In the presence of the stain, viable cells 

appear round and have a bright silver–white outline.  Dead cells appear blue and usually have 

lost their characteristic round shape.  Only viable cells (i.e. white and round) are counted.  In 

this way, the stain allows one to assess the viability of cell cultures.  Using equation 1, the 

volume of cells required for seeding is calculated and cultures made up to the final volume 

(25 mL or 50 mL) with SFM containing gentamicin.  Media was incubated at 27˚C for 30 

minutes before use. 

 

Equation 1: 

Volume of cells (mL

If

Cell batches 
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2.2.3 Culture of Bacteria 

Solutions 

• Luria-Bertani Agar medium (LB – Agar) (Q-Biogene Inc., USA). Formulation/L: 10g 

t Extract B, 10g NaCl, 15g Agar-B.  Tablets were dissolved in 

ed water and autoclaved.   

lution was prepared by weighing out the appropriate 

 

ghing out the appropriate 

te 

.   The solution was allowed to cool until it could be held by the hand comfortably 

ut not long enough for the agar to set.  At this point the appropriate antibiotics were added 

Tryptone – B, 5g Yeas

deionis

• Luria-Bertani Medium (formulation/L: 10g bactotryptone, 5g yeast extract, 5 g NaCl).  

Forty tablets were dissolved in 1 L of deionised water and autoclaved. 

• Ampicillin: A 50 mg/mL stock so

amount of solid ampicillin and dissolving it in deionised water. 

• Tetracycline: A 50 mg/mL stock solution was prepared by weighing out the appropriate

amount of solid tetracycline and dissolving it in ethanol. Aliquots were stored at -20˚C. 

• Gentamicin: A 10 mg/mL stock solution was prepared by wei

amount of solid gentamicin and dissolving it in water. Aliquots were stored at -20˚C. 

• Kanamycin: A 50 mg/mL stock solution was prepared by weighing out the appropria

amount of solid kanamycin and dissolving it in water.  Solution aliquots were stored at -

20˚C. 

 

Forty tablets of LB-Agar were dissolved in 1 litre of deionised water and autoclaved on the 

day of use

b

and the solution gently swirled by the wrist.  Approximately 30 mL of medium was poured 

into 82 mm Petri dishes or till they were half full.   

The agar was allowed to set at room temperature.  The plates were briefly kept at 37˚C and 

then stored at 4˚C.   
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Bacteria was streaked on to plates and incubated at 37˚C overnight.  The following 

day, a singly colony was picked and inoculated into 5mL of LB-medium containing the 

approp

irus Expression system (Invitrogen) 

 expression of a 

ene in insect cells by producing recombinant baculovirus.  The system provides a faster 

riate antibiotics.  Cultures were grown for 6-8 hours or overnight with shaking at a 

rotational speed of 250 rpm.   

 

2.3 Bac-to-Bac®  Baculov

 

The Bac-to-Bac® Baculovirus Expression system (Invitrogen) allows high

g

route to recombinant protein expression compared to traditional baculovirus methods as a 

homologous recombination event takes place in E.coli rather than in insect cell.  The system 

uses a pFastBac™ plasmid which encodes an insect cell- specific promoter (i.e. a polyhedrin 

promoter) for high expression in insect cells.  The main features of the plasmid include 

multiple cloning sites to facilitate cloning and an SV40 poly-A sequence to promote 

transcription termination and polyadenalation of the mRNA transcript in insect cells.  The 

plasmid also contains sites to which the bacterial Tn7 transposon (provided by a helper 

plasmid) can attach and allow transposition in bacmid DNA (a baculovirus vector).   The 

presence of a gentamicin resistance gene in pFastBac™ allows for the selection of 

recombinant E.coli DH10Bac™ cells (these cells provide the bacmid DNA).  Upon 

transformation of competent E.coli DH10Bac™ cells with pFastBac™, a homologous 

recombination event takes place between the mini-T7 element from the pFastBac™ plasmid 

and the mini–attTn7 site in the bacmid.   Successful transposition results in the disruption of 

the lacZα  gene in the bacmid, so E.coli  colonies containing recombinant bacmid appear 

white and non-recombinants appear blue when grown in the presence of a gratuitous inducer 

(Isopropyl-β-D-thiogalactopyranoside) and a chromogenic substrate (i.e. X-Gal).  
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Recombinant bacmid is used to transfect insect cells which will produce budding virus 

(baculovirus) harbouring the gene of interest.  This virus is used to infect insect cells which 

will express the recombinant protein.  A schematic diagram outlining the main steps is shown 

in Figure 2.1. 

 

2.3.1 Generation of Recombinant Bacmid DNA 

uman FMO1 cDNA was previously cloned into pFastBac™ 1 and maintained in E.coli 

 containing human FMO1 cDNA was 

mid DNA 

olutions: 

iniprep Kit (Qiagen, Hilden, 

seA 

tralisation Buffer 

H

DH5α™ glycerol stocks.  Recombinant bacmid

prepared from this stage as follows. 

 

2.3.1.1 Small Scale Isolation of plas

S

The following solutions were obtained from the QIAprep m

Germany): 

• P1 – Re-suspension Buffer : 50mM Tris-Cl (pH 8), 10mM EDTA, 100 µg/mL 

RNa

• P2 – Lysis Buffer: 200 mM NaOH, 1% (w/v) SDS 

• N3 – Neu

• PE -  Wash Buffer 
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Figure 2.1: Generation of recombinant baculovirus using the Bac-to-Bac 

expression system.  Taken from Bac-to-Bac®  Baculovirus Expression System 

User’s Manual
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LB-agar plates were prepared containing ampicillin at a final concentration of 50 

µg/mL as described in section 2.2.3. Glycerol stocks previously prepared in the 

laboratory had been stored at -80˚C and it is important that during their use the 

glycerol sample does not thaw as the bacteria will die as a result of the rapid 

temperature change.    An agar plate was streaked with bacteria from the glycerol 

stock and incubated at 37˚C overnight.  The glycerol stock sample was returned to -

80˚C before it had thawed.  The following day, a single colony was picked and used 

to inoculate 5 mL of LB-medium containing ampicillin at a final concentration of 50 

µg/mL.  The culture was grown for 6-8 hours as described in section 2.2.3. 

Plasmid DNA was isolated from the bacterial culture using the QIAprep 

Miniprep Kit (QIAGEN) and was performed as described in the QIAprep Miniprep 

Kit handbook.  Briefly, 1.5 mL of bacterial culture in mid-log phase was transferred 

into a 1.5 mL microfuge tube and centrifuged for 5 minutes at 13, 000g at 4˚C using a 

bench top microcentrifuge (Eppendorf).  The following steps were carried out at room 

temperature.  The bacterial pellet was re-suspended in 250 µL Buffer P1 by pipetting 

up and down until no clumps were visible.  250 µL of Buffer P2 was added to the 

tube.  The solution was mixed by inverting the tube several times and until the 

solution had turned a homogenous blue.  350 µL Buffer N3 was added drop wise and 

mixed thoroughly by inverting the tube several times to avoid localised precipitation.  

This was done until the solution had turned white.  The sample was centrifuged at 

13,000g for 10 min.  The supernatant from this stage was applied to the QIAprep spin 

column using a pipette (and avoiding the pellet) and centrifuged (30 s).  The flow 

through was discarded.   The column was washed again using 0.75 mL of Buffer PE 

by centrifuging for 30 s and discarding the flow through.   The column was 

centrifuged again for 1 min at high speed to remove any residue of Buffer PE.  The 
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QIAprep column was placed in a fresh 1.5 mL microfuge tube and 50µL of sterile 

deionised water added to the centre of the column.  The column was allowed to stand 

for 1 min and plasmid eluted by centrifugation for 1 min at high speed.  Isolated 

plasmid DNA was stored at 4˚C until further use. 

 

2.3.1.2 Quantification of Isolated plasmid DNA 

Plasmid DNA was quantified using a Nanodrop Spectrophotometer 1000 (Nanodrop).  

1µL of deionised water was applied to the platform to calibrate the machine and to 

make a ‘blank’ measurement.  The platform was wiped clean and 1µL of isolated 

plasmid DNA sample was applied to the platform.  The absorbance of the samples 

was measured at 260 nm.        

Presence of the plasmid was confirmed by running the DNA sample on a 1% 

(w/v) agarose gel. 

 

2.3.1.3 Agarose Gel Electrophoresis of DNA 

Solutions 

• 10X Tris-Borate-EDTA Buffer (TBE): 0.89 M Tris-base, 0.09 M Boric acid, 

20 mM EDTA (pH 8) 

• 6X loading buffer: 0.25% bromophenol blue, 0.25% xylene cyanol, 30% (v/v) 

glycerol. 

• Ethidium Bromide (EtBr): 10 mg/mL stock solution (Fisher Scientific, UK) 

 

For a 1% (w/v) agarose gel, 1g of agarose was dissolved in 100 mL of 1X TBE by 

heating the solution in a microwave oven for 2 min or until the solution was clear.  

2µL of Ethidium bromide was added to the solution once it had cooled but before the 
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agarose had started to set.  The agarose was poured into a gel mould and an 

appropriate comb was positioned into place.  The gel was allowed to set for at least 1 

hour. Once the gel had set, the gel mould was positioned into an electrophoresis tank 

and submerged in 1xTBE. The comb was removed and 10µL of HyperLadder 1 

(Bioline Ltd, UK) was loaded into a well as a molecular weight marker.  Sample DNA 

was mixed with 1X loading dye and loaded into the wells.  The gel was run at 100 

volts to separate the DNA.  After electrophoresis the gel was viewed and 

photographed using a UV transilluminator (Syngene, GeneSnap). 

 

2.3.1.4 Transformation of Competent E.coli DH10Bac™ and the Blue-White 

Assay 

 Solutions 

• 1M Isopropyl-β-D-thiogalactopyranoside (IPTG) (Invitrogen): prepared fresh on 

the day in water and filter-sterilised. 

• 2% (w/v) 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) prepared 

fresh on the day in dimethyl sulfoxide (DMSO) and stored in the dark.  

• SOC Medium provided with MAX Efficiency® DH10Bac™ competent cells 

(Invitrogen) 

 

A 50 µL aliquot of competent MAX Efficiency® DH10Bac™ cells (Invitrogen) was 

removed from -80ºC and thawed on ice.  The cells were transformed with 100 ng of 

plasmid by heat shock treatment for 45 s using a water bath set at 42˚C. 900µL of 

SOC medium was added to the transformed cells and incubated at 37˚C for four hours 

in a shaking water bath. During this time, agar plates containing gentamicin, 

tetracycline and kanamicin at a final concentration of 7 µg/mL, 10 µg/mL and 50 
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µg/mL respectively were prepared as described in section 2.2.3. 50 µL X-Gal 

(0.02µg) and 10µL IPTG (10µmol) were spread on to these plates and allowed to dry.  

Serial dilutions of the transformed cell culture were prepared (10-1, 10-2, 10-3 10-4) and 

spread onto the agar plates and incubated for 24 hours at 37˚C.  The following day the 

plates where transferred to 4˚C for a further 24 hours to enhance the colour of the blue 

colonies.  Three white colonies and one blue colony were picked and inoculated into 5 

mL of LB medium containing 7 µg/mL gentamicin, 10 µg/mL tetracycline and 50 

µg/mL kanamycin as described in section 2.2.3.  Bacmid DNA was isolated from 

these cultures.    

 

2.3.1.5 Isolation of recombinant Bacmid DNA 

Solutions: 

• Propan-2-ol 

• Ethanol (70%, (v/v)) 

The following solutions were provided with the QIAprep miniprep Kit (Qiagen): 

• P1 – Re-suspension Buffer : 50 mM Tris–Cl (pH 8) , 10 mM EDTA, 100 

µg/mL RNase A. 

• P2 – Lysis Buffer: 200 mM NaOH, (1%) SDS. 

• P3 – Neutralisation Buffer: 3M potassium acetate (pH 8). 

 

Human FMO2.1 and FMO3 

E.coli DH10Bac™ cells containing recombinant bacmid were previously prepared in 

the laboratory and maintained in glycerol stocks.   E.coli DH10Bac™ cells containing 

either human FMO2.1 or FMO3 cDNA were streaked on to agar plates containing 7 

µg/mL gentamicin, 10 µg/mL tetracycline and 50 µg/mL kanamicin and incubated at 
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37ºC overnight as described in section 2.2.3.  A single colony was used to inoculate 5 

mL of LB medium containing 7 µg/mL gentamicin, 10 µg/mL tetracycline and 50 

µg/mL kanamycin overnight at 37ºC with shaking.     The following day, recombinant 

bacmid was isolated.   

 

Human FMO1, FMO2.1 and FMO3 

Bacmid DNA was isolated using the method of alkaline lysis as described by 

(Janmohamed et al. 2006).  Briefly,  1.5 mL of bacterial culture growing in mid-log 

phase in the presence of antibiotics was transferred into a 1.5 mL microfuge tube and 

centrifuged at 14,000g for 10 min at 4ºC in a bench top microcentrifuge (Eppendorf, 

Germany).  The pellet was re-suspended in 300µL Buffer P1 by pipetting up and 

down.  300µL of Buffer P2 was added to the tube and mixed by inverting the tube.  

The mixture was allowed to stand at room temperature for 5 minutes.  Buffer P3 was 

slowly added to the tube, mixed gently and centrifuged at 14, 000g for 10 min at room 

temperature.  The supernatant was transferred into a 2mL microfuge tube and 800µL 

of propan-2-ol was added.  The tube was inverted several times and placed on ice for 

10 min, then centrifuged at 14, 000g at room temperature.  The supernatant was 

removed and 500µL of 70% (v/v) ethanol was added to the pellet.  The tube was 

inverted several times to wash the pellet and centrifuged at 14, 000g for 15 min at 

room temperature.  The supernatant was removed, initially by decanting the liquid and 

then using a glass Pasteur pipette to remove all the ethanol, which can reduce 

transfection efficiency.  The pellet was air dried for 10 min.  The DNA was dissolved 

in 50µL of sterile deionised water.   The tube was gently tapped to dissolve the DNA - 

vortexing at this stage would cause the DNA to shear.  Bacmid DNA was stored at -

20ºC. 
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2.3.1.6 Polymerase Chain Reaction (PCR) (Standard)  

All standard PCR reactions were carried out using a Genius PCR machine (Techne 

Ltd., UK).   

Solutions 

• BIO-X-ACT™ Short DNA Polymerase (4U/ μL) (Bioline Ltd, UK) 

• OptiBuffer™ (10x Reaction buffer): 10 mM Tris-Cl (pH8.3), 15 mM MgCl2 , 

500 mM KCl (Bioline Ltd, UK) 

• dNTP mix (10 mM) (Bioline Ltd, UK) 

• 50 mM Magnesium Chloride (Bioline Ltd, UK) 

• Forward and Reverse Primers 

 

PCR consisted of; 10 ng template DNA, 0.2 mM dNTP mix, 1.5 mM MgCl2 and 0.5 

μM reverse and forward primers.  The reaction volume was made up to 50 µL with 

sterile water.  Four units of BIO-X-ACT™ Short DNA Polymerase were added to the 

reaction.  Amplification parameters are shown in Figure 2A for BIO-X-ACT™ 

polymerase catalysed PCR.  The annealing temperature depends on the melting 

temperature (Tm) of the primers which are to be used.  The Tm and annealing 

temperature were calculated using formulae given in Figure 2B.  Primer sequences 

have been given in Table 1 of Appendix 1.  PCR products were electrophoresed on a 

1% (w/v) agarose gel and viewed as described in section 2.3.1.3.   
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 (A) 

PCR Conditions 

Initial Denaturation  95 ˚C  2 min             1 Cycle 

Denaturation    95 ˚C  30 sec 

Annealing    55 ˚C                30 sec            40 Cycles 

Extension    72 ˚C  30 sec 

Final Extension  72 ˚C         5 min            1 Cycle    

 

 
(B) 
 
 
Tm = 69.3 + (0.41 x (%G+C)) – 650/length (nt) 
 

Tm1 + Tm2 
            2 

-6 Annealing temperature = 
 

 

Figure 2.2: (A) General PCR programme for BIO-X-ACT™.   (B) Formulae for 

determining the Tm and annealing temperatures.   
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Human FMO1 

A PCR was carried out to confirm the presence of human FMO1 cDNA insert in the 

recombinant bacmid DNA using M13 forward and reverse primers as described 

above.  M13 sequences are present in the regions flanking the site of pFastBac™ 1  

transposition (i.e. the cDNA insert site) in the bacmid. 

 

2.3.1.7 Preparation of Glycerol Stocks 

Solution: 

• Glycerol. 

 

For long term storage of E.coli transformed with recombinant bacmid DNA, glycerol 

stocks were prepared.  1mL of bacterial culture (grown overnight at 37˚C with 

shaking) was mixed with 100 µL of glycerol in a 1.5 mL microfuge tube.  The 

contents were inverted several times to mix the solutions thoroughly and immediately 

stored at -80˚C.  

     

2.4 Generation of Recombinant Baculovirus 

Solutions: 

• SF-900 Serum-Free Media (SFM / media) 

• Tissue culture grade gentamicin 

• CELLFECTIN® Reagent   

 

Transfection was carried out essentially as described by (Janmohamed et al. 2006).  

Briefly, Sf9 cells in mid-log phase (2x106 cell/mL) were seeded at a density of 9x105 

cell/mL in 2 mL of media containing gentamicin into a 35-mm dish.  It is important 
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that cell cultures with a viability of >98% are used for this stage; otherwise 

transfection efficiency is reduced.  The cells were allowed to attach to the dish by 

incubating the dish at 27ºC for 1 hour.  During this time the transfection mixture was 

prepared which consists of solution A and B.  Solution A: 5µL of miniprep bacmid 

DNA and 100 µL SFM without gentamicin.  Solution B: 6µL CELLFECTIN® 

Reagent (Invitrogen) and 100 µL SFM without gentamicin.  The CELLFECTIN® 

reagent tube was inverted several times before use as lipids can settle to the bottom of 

the tube.  Solutions A and B were combined and incubated for 30 min at room 

temperature.  Media was removed from the attached cells by gently tilting the dish to 

one side and pipetting the media away from the dish without touching the surface.  

The cells were washed once in the same way with media without gentamicin.  Media 

(788 µL) without gentamicin was added to the mix of solution A and B to give a final 

volume of 1mL.  This transfection mixture was gently pipetted over the attached cells.  

The dish was placed on a bed of tissues dampened with sterile water in an airtight 

container.  This humidified container was incubated at 27ºC for 5 h.  The transfection 

mixture was then removed and replaced with 2 mL of media containing gentamicin.  

The cells were incubated for a further 72 h at 27ºC in a fresh humidified box.    The 

virus (in the supernatant) was harvested by transferring the medium in the dish into a 

tube (Falcon) and centrifuged at 100g for 10 min at 4ºC.  The virus is present in the 

supernatant and was filter-sterilised using a 0.22 micron filter into a fresh tube.  The 

virus was stored at 4ºC in the dark.   

           

2.4.1 Amplification of Baculovirus 

Virus harvested from the transfection stage is of low titre and needs to be amplified. 

Virus was amplified as described by (Janmohamed et al. 2006).    50µL of the 
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transfection stage virus was used to infect a 25mL batch of cells which were at a cell 

density of 2x106 cell/mL.  Cells were infected for 72 hours at 27ºC in shaking.  The 

cell culture was then transferred into a sterile tube (Falcon) and centrifuged for 10 min 

at 4000 rpm at 4ºC.  The supernatant represents the amplified high titre virus.  The 

supernatant was filter-sterilised into a fresh tube and stored at 4˚C in the dark.   Insect 

cell microsomes were prepared from the cell pellet and analysed for FMO expression.   

 

2.5 Expression & Analysis of Recombinant Protein in Sf9 Cells    

 

2.5.1 Baculovirus Infection of Sf9 cells 

The amount of virus required for optimum FMO expression was investigated using a 

range of volumes of amplified virus.  To begin with, 100, 250 and 500µL of virus 

were used to infect 50 mL of insect cell cultures which were at a cell density of 2x106 

cell/mL for 72 or 96 hours.  Expression and catalytic activity was then analysed from 

microsomes prepared from these cells using western blotting and the methimazole 

assay. 

 

2.5.2 Insect cell Microsome Preparation 

Solution: 

• HEPES Buffer: 10 mM HEPES (Sodium salt) (pH 7.4), 0.154 M KCl, 0.1 mM 

EDTA (pH 8), 20% (v/v) glycerol.  

   

Microsomes were prepared as described by (Janmohamed et al. 2006) with slight 

modification. Sf9 cells were transferred into a tube (50 mL Falcon) and centrifuged at 

4000 rpm for 10 min at 4ºC (Eppendorf, Rotor 5810 R).  The cell pellet was re-
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suspended in chilled HEPES buffer (which was three times the volume of the pellet) 

by pipetting up and down.  The cells were lysed by sonification; three 12 s bursts with 

5 s pauses in between each burst were found to cause sufficient cell lysis and 

minimum protein degradation.  Cells were placed on ice during the sonification 

process.  The homogenate was centrifuged at 1000g for 10 min at 4ºC.  The 

supernatant obtained from the previous step was transferred into pre-chilled 

ultracentrifuge tubes and centrifuged at 50,000 rpm for 1 h at 4ºC in a Beckman 

Coulter Optima Max Ultracentrifuge (Fullerton, CA, USA) (rotor TLA-110K). The 

pellet was re-suspended in chilled HEPES buffer using a glass hand held homogeniser 

on ice to give a total protein concentration of around 5 µg/µL and the total protein 

concentration was determined by the assay of Lowry (see next section). The 

microsomes were aliquoted into 500µL samples in 1.5mL microfuge tubes to avoid 

freeze-thawing large volumes as this leads to loss of activity.  Samples were 

immediately stored at -80ºC. 

 

2.5.3 Determination of Total Protein Concentration 

Protein concentration was determined by the assay of Lowry (Lowry et al. 1951) 

using the Bio-Rad  DC
 Protein Assay Kit (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA). 

Solutions: 

• Bovine Serum Albumin (BSA) (Bio-Rad) :  Pre-weighed BSA was dissolved 

in  20 mL of sterile deionised water and gave a total concentration of 1.47 

mg/mL  

The following solutions were obtained from Bio-Rad DC Protein Assay Kit 

• Reagent A 
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• Reagent B 

The assay was carried out as described in the Bio-Rad Protein Assay Kit hand book 

with slight modification.  Briefly, 6 BSA standard concentrations ranging from 0 – 

147 mg/mL were prepared in HEPES buffer.  2µL and 5µL of experimental protein 

sample were dissolved in HEPES buffer to give a final volume of 100µL.  Each assay 

was carried out in duplicate. 0.5 mL of Solution A was added to each standard and 

sample tube.  These were mixed by vortexing and 4 mL of solution B was then added 

to each tube and the samples mixed immediately (by vortexing).  The tubes were 

allowed to stand for 20 min.  1 mL of each standard and sample were transferred into 

plastic cuvettes and their absorbance was measured at 595 nm using a GeneQuant 

spectrophotometer.  The spectrophotometer deduced the protein concentration of 

standards and sample and this was recorded.   

     

2.5.4 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) Analysis 

Solutions: 

• Protogel Solution: 30% (w/v) acrylamide, 0.8% (w/v) bisacrylamide (National 

Diagnostics). 

• 10% (w/v) Ammonium persulfate (APS): The appropriate amount of solid 

APS was weighed out and dissolved in deionised water on the day of use. 

• Resolving buffer: 1.5 M Tris-HCl (pH 8.4), 0.4% (w/v) SDS.  pH adjusted 

with HCl. 

• Stacking buffer: 0.5 M Tris-HCl (pH 6.8), 0.4% (w/v) SDS. pH adjusted with 

HCl. 

• TEMED (Bio-Rad). 
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• NuPAGE LDS Loading Dye (Invitrogen). 

• SDS Running Buffer: 0.025 M Tris-base, 0.192 M Glycine, 01% (w/v) SDS 

prepared on the day of use. 

• β-Mercaptoethanol. 

• Coomassie Blue Stain: 0.1% (w/v) Coomassie Brilliant Blue Dye, 40% (v/v) 

methanol, 10% Acetic acid.  The solution was filtered through 3MM 

Whatmann paper before use and stored at room temperature. 

• Destain: 30% (v/v) methanol, 10% (v/v) acetic acid, 60% (v/v) deionised 

water. 

 

25 mL of a 10% resolving gel was prepared with the following materials; 8.33 mL 

Protogel, 6.25 mL resolving buffer, 0.25 mL APS and 10.14 mL deionised water.  

This solution was mixed thoroughly and the gel running mould was set up and 

tested for leaks using water.  Only then was 25 µL of TEMED added to the 

solution, which was mixed and immediately pipetted into the gel mould.  The 

solution was overlaid with propan-2-ol to ensure a flat surface.  The resolving gel 

was allowed to set for at least 2 hours.  10 mL of a 3% stacking gel was prepared 

with the following materials; 1 mL Protogel, 2.5 mL stacking buffer, 100 µL APS 

and 6.40 mL of deionised water.  Once the resolving gel had set, the propan-2-ol 

was washed away by tilting the gel mould slightly to one side.  Water was used to 

wash out any residual propan-2-ol.  10 µL of TEMED was then added to the 

stacking gel mixture and immediately pipetted into the gel mould over the 

resolving gel.  A comb of an appropriate size was positioned to place immediately 

and the gel was allowed to set for at least one hour.  Protein samples were mixed 

with up to 4µL of NuPAGE loading dye and were boiled for 5 min at 95˚C.   
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β-Mercaptoethanol was added to the sample to give a final concentration of 20% 

(v/v) and samples were centrifuged for 1 min . The gel mould was placed into the 

electrophoresis tank and SDS-running buffer was poured over this so that the 

electrodes were submersed in buffer.  The comb was then removed.  20µL of 

molecular weight marker (See-Blue 2, Invitrogen) was loaded into the well and so 

were the samples.  The gel was electrophoresed with SDS-Running buffer at 25 

mA until proteins had stacked upon the resolving gel and then run at 35 mA till 

the samples had resolved – i.e. till the bands had travelled to the bottom of the 

resolving gel.  The gel was immersed in Coomassie staining solution for at least 

24 hours.  The stain was removed by replacing the staining solution with destain.  

Fresh destain solution was applied until protein bands were clearly visible.  Using 

the geneSNAP tool, the gel was photographed (Syngene).   

 

2.5.5 Western Blot Analysis 

Solutions: 

• Transfer/Blotting Buffer: 192 mM Glycine, 25 mM Tris, 20% (v/v) methanol.  

The transfer/blotting buffer was prepared fresh. 

• 5X TBS: 100 mM Tris-Cl (pH 7.5), 2.5 M NaCl.  The pH was adjusted with 

HCl. 

• 1X TTBS: 1X TBS, 0.1% (v/v) Tween 20.  A 100 µL of Tween 20 was used 

for every 100mL of 1x TBS. 

• I-Block Solution: 0.2% (w/v) I-Block (TROPIX Inc., USA) in 100mL 1X 

TBS.  The solution was heated in a microwave oven to melt the solid.  The 

solution was cooled to room temperature before 100µL of Tween 20 was 

added.   
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• Primary Antibody Solution: Primary antibodies were used as a 1 in 3000 

dilution made up in I-Block solution and were stored at -20˚C.  Primary 

antibody solution used to detect human FMO1, FMO2.1 and FMO3 were goat 

anti-(rabbit FMO1), goat anti-(rabbit FMO2) or goat anti-(rabbit FMO3) 

serum respectively.  Primary antibodies were a kind gift from Dr. R. Philpot.    

• Secondary Antibody Solution: anti-goat IgG (whole molecule) antibody- 

Alkaline Phosphatase conjugate (Sigma-Aldrich) was used as a 1 in 30, 000 

dilution and dissolved in I-Block solution.  This was prepared on the day of 

use. 

 

The following solutions were obtained with the AP Conjugate Kit (Bio-Rad) 

• 25X Alkaline Phosphatase (AP) Colour Development Solution.  This 

solution is stored at 4˚C. 

• Reagent A: stored at -20˚C. 

• Reagent B: stored at -20˚C. 

 

2.5.6.1 Protein Transfer 

Proteins from SDS-PAGE gels were transferred onto a supported nitrocellulose 

0.45µM membrane (BDH) using a TRANS-BLOT Cell (Bio-Rad).    Once protein 

samples had been electrophoresed, the gel mould was dissembled and the approximate 

size (length and width) of the gel was estimated. 4 sheets of 3MM Whatman filter 

paper and 1 sheet of blotting membrane were cut to size. Filter papers and blotting 

pads were soaked in transfer buffer before use. The gel was ‘sandwiched’ between 

filter paper and blotting membrane as shown in Figure 3.  It is important not to move 

the gel once it has come in contact with the membrane, as transfer of protein may 
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have occurred.  Any bubbles between the gel and the membrane were removed by 

running a pipette gently over the gel.  The ‘sandwich’ was placed within a blotting 

cassette and loaded into the transfer cell. The cell was filled with transfer buffer and 

run overnight at 100 mA.  The next day the voltage was turned up to 200 mA for 2 

hours.  

   

Blotting Membrane 

Blotting Pad 

Gel 

Filter Paper 

Filter Paper 
Blotting Pad 

Figure 2.3: ‘Sandwich’ arrangement of the gel during transfer 

 

2.5.6.2 Antigen Detection 

Antigen detection was carried out by a series of incubations and washes as described 

below.  All incubations were carried out at room temperature and on shaking. Blotting 

membrane was washed in I-Block Solution for 1 h and the solution was discarded 

after use.  Primary antibody solution was poured over the membrane and incubated 

for 1 h, this solution can be re-used.  The membrane was washed for 5 min with 1X 

TTBS, three times. The solution was discarded.  A 1 h incubation with secondary 

antibody solution was carried out and the solution was discarded. The membrane was 

washed three times in 1X TTBS for 5 min and once in 1x TBS.  The solution was 

discarded. 

 

2.5.6.3 Development of Western Blot 

An Alkaline Phosphatase Conjugate Kit (Bio-Rad) detection method was used to 

detect the presence of antigen.  1X AP Colour Development solution was prepared 
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just before use, to which Reagents A and B were added.  1mL of Reagents A and B 

were used for every 100 mL of 1X AP solution.  This mixture was poured over the 

membrane and observed for the appearance bands.  As soon as bands started to 

develop the reaction was quenched by replacing the colour detection mixture with 

deionised water – this will prohibit the blotting membrane to overdevelop.   The blot 

was scanned (Epson Scanner, Epson, Naguna, Japan).               

 

2.6 Quantification of Recombinant FMO in Insect Cell Microsomes 

 

2.6.1 Quantitative Western Blotting 

Various amounts of authentic rabbit FMO1, FMO2 or human FMO3 of known 

amounts were loaded along side Sf 9 insect cell membranes containing heterologously 

expressed FMO of unknown concentrations as described in section 2.5.6.  SDS-PAGE 

was performed as described in section 2.5.4 and a Western blot was performed on 

these gels as described in section 2.5.5.  The developed Western blot was scanned at a 

resolution of 1200 dpi and the image was saved in TIFF format.  The amount of FMO 

in the recombinant insect membranes was quantified by scanning densitometry using 

Image Gauge software, version 4.2.1 (Science Lab, FujiFilm, Tokyo, Japan) and by 

comparison with a standard curve of standard FMO vs band intensity.     Values 

determined for FMO quantity were obtained from samples tested in quadruplicate 

from two independent Western blots.  As authentic standards of FMO1 and FMO2 

were from rabbit and authentic FMO3 was from human, relative abundance of FMOs 

was analysed by SDS-PAGE analysis to ensure that there was no difference in 

antigenicity.  The amount of FMO in insect cell microsomes was measured by 

comparison of intensity of Coomassie blue stained protein bands of authentic FMO.   
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2.7 HPLC and LC-MS Analysis of FMO Catalysed Reactions  

 

2.7.1.1 Incubations with Thiacetazone (TAZ) 

Solutions: 

• 100 mM TAZ: TAZ was dissolved in dimethyl sulphoxide (DMSO)  

• Assay buffer: 100 mM potassium phosphate buffer, pH 7.5 contained:  

• 100 U/ mL Catalase: prepared by weighing the appropriate amount of solid 

Catalase powder in the appropriate amount of sterile filtered water to give a 

working stock concentration of 40 U/mL.  The solution was stored at -20˚C 

and re-used. 

• 100 U/mL Superoxide dismutase (SOD): prepared by weighing the appropriate 

amount of solid SOD in the appropriate amount of sterile filtered water to give 

a working stock concentration of 40 U/mL. The solution was stored at -20˚C 

and re-used. 

• 0.1 mg/mL Bovine serum albumin (BSA): prepared by weighing the 

appropriate amount of solid SOD in the appropriate amount of sterile filtered 

water. The solution was stored at -20˚C and re-used. 

• NADPH regenerating system consisting of: 2 U/mL of glucose-6-phosphate 

dehydrogenase, 1 mM NADP+ and 2.5 mM glucose-6-phosphate.  Working 

solutions were prepared for each component in sterile filtered water and stored 

at -20˚C.  

  

Incubations of TAZ and FMO were performed as described by (Qian et al. 2006) but 

with modifications.  The assay buffer was prepared to give a reaction volume of 1 mL.  

Assay buffer was incubated at 37 ˚C for 10 min to allow the formation of NADPH 
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from the regenerating system to occur. TAZ was added at a final concentration of 100 

µM to the assay buffer and mixed.  Reactions were initiated by adding Sf9 insect cell 

microsomes containing heterologously expressed human FMO1, FMO2.1 or FMO3 

(at a final concentration of 500 nM) or purified EtaA (1 µM final concentration).  

Reactions were incubated at 37 ˚C for 90 min and quenched by addition of an equal 

volume of ice-cold acetonitrile (CH3CN).  Mixtures were centrifuged at 10,000g for 5 

min at 4 ˚C and analysed by reverse phase HPLC as described below. 

 

2.7.1.2 Incubations with Ethionamide (ETA) 

Sf9 insect cell microsomes containing heterologously expressed human FMO2.1 were 

incubated with ETA (final concentration 100 µM) for 60 min in assay buffer as 

described for TAZ.  Reactions were analysed by Liquid Chromatography- Mass 

Spectroscopy (LC MS) as described below. 

 

2.7.2 Reverse Phase HPLC analysis  

HPLC analysis was done as described previously (Qian et al. 2006).  The supernatants 

were diluted to a final concentration of 5% CH3CN and then analysed by HPLC on a 

Hewlett Packard II instrument (Hewlett-Packard Company, CA, USA) equipped with 

a photodiode array detector and a reverse-phase C18 column (Waters, 3.5 µm particle 

size, 4.6 mm i.d x 150mm, Symmetry) employing two buffers: A, H2O and 0.1% 

formic acid (FA); and B, CH3CN  and 0.1% FA.  The solvent flow rate was 0.2 

mL/min and the eluent was spectrophotometrically monitored using two bandwidths 

[330 +/- 60 nm and 260 +/- 4 nm]. The column was eluted from 0 to 25 min with a 

linear gradient from 5 to 20% buffer B. For spectral analysis of metabolites eluent 

peaks were ‘monitored’ between 200 and 500 nm. 20 µL of sample was injected.     
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2.7.3 Liquid Chromatography-Mass Spectroscopy (LC-MS) Analyses 

Samples for LC-MS analysis were prepared as described for HPLC.  LC-MS was 

carried out as described previously (Qian et al. 2006).  Briefly, LC-MS analysis of 

TAZ metabolites was performed on a Waters Micromass ZQ coupled to a Waters 

Alliance HPLC system (Waters Corporation, MA, USA).  The system was equipped 

with a 2695 separations module, a Waters 2487 Dual λ Absorbance detector and a 

reverse phase C18 column (Waters, 3.5 µm particle size, 4.6 mm i.d x 150mm, 

Symmetry).  The reverse-phase column was eluted with a flow rate of 0.2 mL/min 

(buffer A, H2O and 0.1% FA; and buffer B, CH3CN and 0.1% FA) with the following 

protocol: 0 - 16 min, 5-30% buffer B (linear gradient).  The eluent was monitored at 

310 nm.  The eluent was monitored at 280 and 320 nm.  The mass spectrometer 

settings were as described previously (Qian et al. 2006). The mass spectrometer 

settings were as follows: mode, ES+, capillary voltage, 3.5 kv, cone voltage, 25 v, 

desolvation temperature, 250 ˚C.  

 LC-MS analysis of ETA metabolites produced by FMO2.1 was 

performed as described above, with the following modifications.  The column was 

eluted at a flow rate of 0.2 mL/min (buffer A, H2O and 0.1% FA ; and B, CH3CN and 

0.1% FA with the following protocol: 0-15 min with 1% buffer B (isocratic).   The 

eluent was monitored at 350 nm.  

 

2.8 FMO Assays 

 

2.8.1 Methimazole Assay of FMO activity (Dixit et al. 1984) 

Methimazole oxidation by human FMOs was monitored spectrophotometrically using 

a dual beam spectrophotometer (Varian Cary 100, Varian Inc., CA, USA).  The assay 
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consists of a coupled reaction in which Dithiothreitol (DTT) and 5-Dithio-bis (2-

nitrobenzoic acid) (DTNB) initially react to form nitro-5-thiobenzoate (TNB), a 

yellow compound which absorbs light in the visible range.  In the presence of 

NADPH and molecular oxygen, FMOs catalyse the oxidation of methimazole to 

methimazole S-oxide, this will oxidise TNB to a colourless compound (Dixit et al. 

1984). The rate of colour change from yellow to colourless is monitored 

spectrophotometrically at 412 nm and is proportional to the rate of methimazole 

oxidation by FMO.    

 

Solutions: 

Assay Buffers 

• Human FMO1 and 3: 0.1 M Tris-Cl (pH 8.4), 1 mM EDTA 

Buffer was prepared on the day of use.  The pH was adjusted to 8.4 using 

concentrated HCl.  Prior to use, the buffer was aerated for 30 min by placing 

the bottle in a shaking water bath set to 37 ˚C . 

 

• Human FMO2.1: 0.1 M Tricine (pH 9.5), 1 mM EDTA. 

Buffer was prepared on the day of use.  The pH was adjusted to 9.5 using 5 M 

NaOH. Prior to use, the buffer was aerated for 30 min by placing the bottle in 

a shaking water bath set to 37 ˚C . 

 

Methimazole 

• 200 mM Methimazole:  Stock solution was prepared fresh by adding the 

appropriate amount of solid methimazole to the assay buffer.   
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• 10 mM Methimazole: Stock solution was prepared fresh by adding the 

appropriate amount of solid methimazole to the assay buffer   

 

NADPH  

• 20 mM NADPH reduced (sodium salt):  Stock solution was prepared fresh by 

adding the appropriate amount of solid NADPH to chilled assay buffer and 

stored on ice. 

• NADPH regenerating system: 

• 2 U/mL Glucose-6-Phosphate Dehydrogenase  

• 3.0 mM Glucose-6-Phosphate   

• 0.375 mM NADP+   

All components where prepared on the day in the appropriate assay buffer which 

was chilled before use. 

 

• 4 mM Dithiothreitol (DTT):  DTT solution was prepared fresh by adding the 

appropriate amount of solid DTT to assay buffer. 

 

• 12 mM 5, 5-Dithio-bis (2-nitrobenzoic acid) (DTNB): Prepared fresh by 

adding the appropriate amount of solid DTNB to 100% ethanol. 

 

Assay 

Reactions were carried out in a final volume of 1 mL and at 37ºC.  The final 

concentrations of DTNB and DTT were 0.06 µM and 0.02 mM respectively.    Two 

identical ‘blank’ cuvettes were prepared with the following components, 5 µL 

NADPH or 25µL of glucose-6-phosphate, 25µL of NADP+, 7.5µL of glucose-6-
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phosphate dehydrogenase when a regenerating system was used, 5µL of DTT, 5µL of 

DTNB and 15-70 µL of human FMO expressing microsomes (no more than 1 mg/mL 

total protein) in assay buffer to give a total volume of 1 mL.  The contents were mixed 

by inverting the cuvettes.  Cuvettes were placed in cell 1 or cell 7 of a Varian Cary 

100 dual beam spectrophotometer and a blank measurement was taken.  Using the 

Kinetics application, the spectrophotometer was set to blank correction mode.  

Methimazole was added at the appropriate concentration to the sample cuvette and the 

equivalent volume of assay buffer was added to the reference cuvette.  The rate of 

decrease in optical density at 412 nm was monitored after one minute for 4 minutes.   

 Kinetic studies were performed on triplicate preparations of enzymes at 

concentrations of methimazole ranging from 10-2000 µM for human FMO1 and 

FMO3 and 200-6000 µM for human FMO2.1.  Steady-state parameters, Vmax, KM 

and kcat were determined as described in section 2.8.3.1. 

 

2.8.2 TAZ Oxygenation by Human FMOs and EtaA 

 

2.8.2.1 Development of a UV-Spectroscopic Assay to monitor the rate of TAZ 

oxygenation 

Solutions:  

• Assay Buffer: 0.1 M Tris-Cl (pH 8.4). Buffer was prepared on the day of use.  

The pH was adjusted to 8.4 using concentrated HCl.  Prior to use, the buffer 

was aerated for 30 min by placing the bottle in a water bath set to 37 ˚C with 

shaking. 
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• 20 mM TAZ: A stock solution was prepared fresh in dimethyl sulphoxide 

(DMSO). Serial dilutions of TAZ were prepared from the 20 mM stock and in 

DMSO. 

 

Two quartz cuvettes containing 999 µL of assay buffer were placed in cell 1 and cell 7 

of a Varian Cary 100 dual-beam spectrophotometer (Varian Inc., USA). Using the 

Varian Scan application, the spectrophotometer was set to blank correction mode.  1 

µL of TAZ (in DMSO) was added to the cuvette in cell 7 (sample cuvette) and 1 µL 

of DMSO to the cuvette in cell 1 (reference).  The final organic solvent concentration 

in each cuvette was held at 0.1% (v/v). Using the Varian Scan application, samples 

were scanned from 200 to 500 nm over a range of TAZ concentrations between 1 and 

20 µM. These measurements were done in triplicate using three independently 

prepared stock solutions of TAZ (20 mM) that were diluted accordingly in DMSO. 

The absorbance of TAZ, measured at its λmax (328 nm) was plotted against 

concentration. The molar extinction coefficient of TAZ in 0.1% DMSO was 

determined from the gradient of this graph and the Beer-Lambert equation (equation 

2).  

  

Molar Extinction Co-efficient (ε)     =        A 

                                                     ℓ.C      
         Equation 2 

Where, 

 A = Absorbance of a given solution at a particular wavelength 

 C = concentration of the solution  

 ℓ = the distance light has to travel through a solution 
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2.8.2.2 UV-Spectrophotometric Assay to Monitor FMO-dependent TAZ 

oxidation 

Solutions:  

Assay Buffers: 

• Human FMO1 and 3:  0.1 M Tris-Cl (pH 8.4), 1 mM EDTA. Buffer was 

prepared on the day of use.  The pH was adjusted to 8.4 using concentrated 

HCl.  The buffer was placed in a water bath set to 37 ˚C. Prior to use, the 

buffer was aerated for 30 min by placing the bottle in a shaking water bath set 

to 37 ˚C.  

• Human FMO2 and EtaA: 0.1 M tricine (pH 9.5), 1 mM EDTA.  Buffer was 

prepared on the day of use.  The pH was adjusted to 9.5 using 5M NaOH.  The 

buffer was placed in a water bath set to 37 ˚C.  Prior to use, the buffer was 

aerated for 30 min by placing the bottle in a shaking water bath set to 37 ˚C. 

• 20 mM NADPH: prepared fresh by adding the appropriate amount of solid 

NADPH to assay buffer.  The solution was stored on ice. 

• 20 mM TAZ: solution was prepared fresh by adding the appropriate amount of 

solid TAZ to in dimethyl sulphoxide (DMSO). Serial dilutions ogf TAZ were 

prepared from the 20 mM stock solution in DMSO.  TAZ solutions were kept 

at room temperature. 

 

Assay 

TAZ oxidation by human FMO or EtaA was measured by monitoring the rate of 

decrease in TAZ absorbance at 328 nm using a dual beam spectrophotometer (Varian 

Cary 100).  The spectrophotometer was set to blank correction mode and the Peltier 
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module to 37˚C.  Two identical ‘blank’ quartz cuvettes were prepared with the 

following components; 100 µM NADPH, insect cell microsomes containing 

heterologously expressed human FMO1 (320 nM), FMO2.1 (5 nM), FMO3 (230 nM), 

purified ETA (1 µM) or the equivalent amount of uninfected Sf9 cell microsomes in 

the appropriate assay buffer (see next section) to give a final reaction volume of 1 mL.  

The contents of the cuvettes were mixed thoroughly and placed in cell 1 (reference) or 

cell 7 (sample) of the spectrophotometer and a ‘blank’ measurement was made.  The 

samples were allowed to equilibriate at 37˚C for 1 min. 1 µL of TAZ from an 

appropriate stock solution was added to the sample cuvette and 1 µL of DMSO was 

added to the blank cuvette.   The contents were mixed by inverting the cuvette and the 

cuvettes were immediately replaced to their respective cells.  The rate of decrease in 

optical density at 328 nm was monitored after one minute for 4 minutes.   

 

2.8.2.2.1 Determining pH dependence of FMO and EtaA activity 

The pH optimum for human FMOs and ETA was determined using the following 

reaction buffers:  

• 0.1 mM potassium phosphate (pH 7.5), 1 mM EDTA 

• 0.1 M Tris-HCl (pH 8.5), 1mM EDTA  

• 0.1 M Tricine-OH (pH 9.5), 1 mM EDTA. 

 

Buffers were prepared fresh on the day and were aerated for 30 min at 37 ˚C in a 

shaking water bath before use. Optimum pH for enzymes was determined using 

the UV-spectroscopic assay detailed in the preceding section using TAZ at a final 

concentration of 10 µM. 
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2.8.3 Kinetic Studies of TAZ oxygenation using a UV-spectroscopic Assay 

 
Kinetic studies were performed on triplicate preparations of enzymes at 

concentrations of TAZ ranging from 1 to 20 µM.  The final organic solvent 

concentration was held at 0.1% (v/v).  Assays were carried out in triplicate on each 

enzyme preparation as described in section 2.7.2 in the optimum pH buffer for each 

enzyme: pH 8.5 for FMO1 and FMO3 and 9.5 for FMO2.1 and EtaA.   

 

2.8.3.1 Determination of Steady-State Kinetic Parameters 

Enzyme velocity was converted from absorbance min-1 to µmol L-1 min-1 using the 

Molar extinction co-efficient of TAZ (determined to be 38,300 ± 2,320 M-1 cm-1) or 

TNB (13,600 M-1 cm-1).  Steady-state kinetic parameters, Vmax and KM were 

estimated by non-linear regression using the Enzyme Kinetics module (v.1.3) of the 

SigmaPlot (v 10.0) program (Systat Software Inc., CA, USA).  Non-linear regression 

has been chosen to determine kinetic parameters as it is superior to methods which 

transform Michaelis-Menten equation in a linear fashion.    Linearity of data was 

confirmed by Hanes-Woolf (Hanes 1932) linear transformations of the Michaelis-

Menten equation using the Enzyme Kinetics module. Turnover number (kcat) was 

determined using the following equation.   

 

kcat = Vmax / [E] 

         Equation 3 

Where Vmax is the maximal enzyme velocity of enzyme catalysis and [E] is the final 

enzyme concentration in the reaction. 

 

 115



 

2.8.4 Kinetic Studies of TAZ oxygenation using HPLC analysis  

Sf9 cell microsomes containing heterologously expressed human FMO2.1 were 

incubated in 0.1 M Tricine-OH (pH 9.5), 1 mM EDTA, 0.1 mM NADPH and TAZ 

(concentrations ranged from 1 - 50µM in DMSO). A duplicate set of samples was 

prepared but without the addition of enzyme. The final organic solvent concentration 

was held at 0.1% (v/v). Mixtures were incubated at 37 ˚C for 5 min and reactions 

were quenched with an equal volume of ice-cold CH3CN. ETA was added as an 

internal standard at a final concentration of 100 µM (in DMSO) and mixtures were 

prepared for HPLC analysis as described above.  A standard curve was generated by 

plotting the ratio of the integrated HPLC peak areas of TAZ and ETA (from the 

sample set without added enzyme), against the range of TAZ concentrations used. The 

ratio of the integrated HPLC peak areas of TAZ and ETA, in the sample set with 

added enzyme, was calculated and the amount of unmetabolised TAZ determined 

from the standard curve. This value was subtracted from the input concentration of 

TAZ to calculate the amount of TAZ metabolized by the enzyme. Vmax, KM and kcat 

were determined as described in section 2.8.3.1. 

 

2.9 Generation of human FMO3 Amino Acid Variant cDNAs 

Human FMO3 cDNAs containing the desired mutations were previously prepared in 

the laboratory as described elsewhere (Allerston et al. 2009). Each human FMO3 

cDNA variant was cloned in pET21b and transformed into E.coli DH5α™ and 

maintained as glycerol stocks.  This section describes the sub-cloning of FMO3 

cDNA from pET21b into pFastBac1™ for subsequent expression in Sf9 cells.  For 
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simplicity human FMO3 cDNA for wild type and FMO3 polymorphic variants will be 

referred to as ‘human FMO3’.  

 E.coli DH5α™ cells containing FMO3-pET21b plasmid DNA were streaked 

on to agar plates containing 50 µg/mL ampicillin and incubated at 37ºC overnight as 

described in section 2.2.3.  A single colony was used to inoculate 5 mL of LB-

medium containing 50 µg/mL ampicillin. The culture was incubated overnight at 37ºC 

with shaking.  The following day, plasmid was isolated from 3 mL of bacterial culture 

using the QIAprep Miniprep Kit (QIAGEN) as described in section 2.3.1.1.  Plasmid 

DNA was quantified as described in section 2.3.1.2.   

pFastBac1™ was purchased from Invitrogen and was at a concentration of 1.3 

µg/µL. 

 

2.9.1 BamHI and HindIII Restriction Digest of human FMO3-pET21b and 

pFastBac1™ 

Solutions: 

• 10X NEBUFFER 2 (New England Biolabs, MA, USA)  

• 100X Bovine Serum Albumin (BSA) (New England Biolabs, MA,USA) 

• Sterile water 

 

BamHI and HindIII were used to excise FMO3 cDNA from pET21b.  1 µg of plasmid 

DNA was digested at 37ºC overnight with 5 U of BamHI and 5 U of HindIII, in a 

solution containing 1X NEBuffer 2, 1X BSA and sterile water according to NEB 

instructions.  pFastBac1™ was also digested with BamHI and HindIII to produce 

complementary DNA sequences or ‘sticky ends’ to the DNA sequence of digested 

FMO3 cDNA.      
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2.9.2 Gel Extraction of DNA 

Solutions:  

• SYBR® Green 100,000X Concentrate (Invitrogen)  

• Propan-2- ol  

• Sterile Water 

 

The following solutions were obtained from the QIAquick Gel Extraction Kit 

(Qiagen) 

• Buffer QG 

• Buffer PE 

 
After digestion of pET21b, human FMO3 cDNA was isolated using the QIAquick gel 

Extraction kit (QIAGEN).  Samples prepared as described in section 2.9.1 were 

separated on a 1% agarose gel as described in section 2.3.1.3 with the exception that 1 

µL of SYBR® Green was added to molten agarose instead of ethidium bromide.  This 

allowed DNA to be visualised using a light box with an orange filter rather than 

exposing it to UV.  Using the molecular weight marker as a guide, FMO3 cDNA was 

excised from the gel using a scalpel.  The piece of agarose was weighed and placed in 

a 1.5 mL microfuge tube.  Three volumes of Buffer QG was added to one volume of 

agarose (1 volume =100 µL of agarose or 100 mg) and incubated at 50˚C for 10 min 

or until the agarose had completely dissolved.  The following steps were carried out at 

room temperature.  One ‘gel’ volume of propan -2-ol was added and the tube was 

inverted.  A QIAquick spin column was placed in a 2 mL collection tube and 800 µL 

of sample was applied to the column.  Samples were centrifuged at 13,000g for 1 min 
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in a microcentrifuge, the flow through was discarded and the column was placed in 

the same collection tube.  0.5 mL of Buffer QG was added to the column to remove 

traces of agarose.  The column was centrifuged for 1 min at 13,000g and the flow 

through was discarded.  The column was washed by adding 0.75 mL of Buffer PE, the 

sample was centrifuged for 1 min and the flow through was discarded.  The column 

was centrifuged for an additional 1 min to ensure all residual ethanol from Buffer PE 

was removed.  For the elution step, the column was placed into a fresh 1.5 mL 

microfuge tube and 30 µL of sterile water was applied to the column.  The column 

was allowed to stand for 1 min and then centrifuged for 1 min at 13,000g.  For short 

term storage, human FMO3 cDNA was kept at 4˚C.           

  

2.9.3 DNA Ligation 

Solutions: 

The following solutions were provided with the Quick Stick Ligase Kit (Bioline Ltd, 

UK). 

• 4X QS Buffer 

• Sterile water 

 

DNA Ligation was carried out using the Quick Stick Ligase Kit (Bioline Ltd, UK) 

Human FMO3 cDNA isolated in the previous section was ligated to pFastBac1™.  

Prior to this step, pFastBac1™was digested with BamHI and HindIII as described in 

section 2.9.1 and a 1 in 100 dilution was prepared.  For each ligation reaction, two 

tubes were set up: Vector Only (digested pFastBac1™) and Vector plus Insert 

(digested pFastBac1™and digested FMO3 cDNA).  Vector only tubes contained: 1 

µL of digested pFastBac1™, 1 µL of Quick Stick Ligase enzyme, 5 µL of 4X QS 
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buffer (which was vortexed before use) and 13 µL of sterile water.  Vector plus Insert 

tubes contained: 1 µL of digested pFastbac1, 1 µL of Quick Stick Ligase enzyme, 5 

µL of 4X QS buffer (which was vortexed before use) and 13 µL of digested human 

FMO3 cDNA.  The tubes were incubated overnight at 16˚C.   

 

2.9.4 Tranformation of E.coli OneShot™ TOP10 competent cells with Ligation 

Products    

In order to confirm that the ligation reaction between human FMO3 cDNA and 

pFastBac1™ was successful, E.coli OneShot™ TOP10 chemically competent cells 

Invitrogen) were transformed with the ligation reaction mixtures.  A 50 µL vial of 

OneShot™ cells was used per ligation.  OneShot™ cells were thawed by gently 

rubbing the vial in the hands and as soon as thawing was observed, the samples were 

placed on ice and 1 µL of ligation reaction mixture was added.  The contents were 

mixed by gently tapping and inverting the vial as pipetting can reduce transformation 

efficiency.  The vials were incubated on ice for 30 min.  Vials were incubated for 

exactly 30 sec at 42˚C using a heat block.  The vials were then placed on ice. 250 µL 

of pre-warmed SOC solution was added to each vial.  Samples were incubated with 

shaking in a heat block for exactly 1 hr at 37˚C.  During this time, agar plates 

containing ampicilin (prepared as described in section 2.2.3) were placed in a 37˚C 

incubator to warm up.  50 µL of transformed cells from each vial were spread on an 

agar plate, the plates were inverted and incubated at 37˚C overnight.   Colonies were 

counted the following day and the ratio of colonies formed from ‘Vector only’ and 

‘Vector plus Insert’ vials was noted.  5 colonies were picked from each Vector plus 

Insert plate and 1 colony from Vector only plates.      Each colony was inoculated into 

5mL of LB-medium containing 50 µg/ mL of ampicillin.  Cultures were grown for 6-8 
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hours or overnight with shaking at a rotational speed of 250 rpm at 37˚C.  Plasmid 

DNA was isolated using the QIAprep Miniprep kit (QIAGEN) as described in section 

2.3.1.1.   

  

2.9.5 Analysis to Confirm Successful ligation of human FMO3 cDNA and 

pFastBac1™ 

10 µL of plasmid DNA was digested with BamHI and HindIII as described in section 

2.9.1.  Digested products were run on a 1% agarose gel as described in section 2.3.1.3.  

If ligation was successful, two DNA bands were expected to be observed, 

representing pFastBac1™ (4.8kb) and human FMO3 cDNA (~2kb).  In order to 

confirm that the vector was indeed pFastBac1™ (and not the original vector, 

pET21b), a restriction enzyme was chosen which could differentiate between the two 

plasmids.  Bgl II was used as it has two restriction sites in pFastBac1™ but only one 

in pET21b.    Reactions contained 5 µL of plasmid DNA, 1 µL of Bgl II (NEB, 

England), NEBuffer 3 (NEB, England) and 3 µL of water.  Samples were incubated 

for 2 hours at 37˚C.  Digested products were visualised by agarose gel electrophoresis 

as described in section 2.3.1.3.         

 

2.9.6 DNA Sequencing 

DNA sequencing was performed by Eurofins-MWG Biotech (Germany) using the 

‘value read’ service.  The service required 1 µg of plasmid DNA per sequencing 

reaction.  Sequences were analysed by comparison to the wild type human FMO3.  

DNA was sequenced in both forward and reverse orientations using primers annealing 

to sequences in the pFastBac1™ vector, these primers were available at MWG-
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Biotech. Primer sequences used for sequencing wild type and variant human FMO3 

DNA are given in appendix 1. 

 

The remainder of the method is the same as that described for human FMO1, FMO2.1 

and FMO3.  E.coli DH10Bac™ cells were transformed with human FMO3 cDNA as 

described in section 2.3.1.4 and the resulting bacmid DNA was isolated as described 

in section 2.3.1.5.  Generation of baculovirus containing human FMO3 DNA was 

done as described in section 2.4.  Expression of recombinant human wild-type FMO3 

protein and FMO3 amino acid variants was carried out as described in section 2.5.    

Quantitation of FMO3 in insect cell microsomal membranes was done as described in 

section 2.6 using human FMO3 containing insect cell microsomes of known FMO3 

amounts as a standard.     

 

2.9.7 Assays of Variant human FMO3 Activity 

Activity of FMO3 amino acid variants was determined towards methimazole and 

TAZ. 

 

2.9.7.1 Methimazole Assay of FMO3 Amino Acid Variant activity  

Kinetic studies on human FMO3 amino acid variants and methimazole were 

performed at pH 8.4 and essentially as described in section 2.8.1. NADPH was 

supplied to the reaction using a 20 mM NADPH solution prepared in assay buffer.  

200-500 pmol of FMO3 protein was used in the assay depending on the variant. 

Methimazole was tested at concentrations ranging from 10-1000 µM on batches of 

microsomes isolated from three independent infections of Sf9 cells.  Steady-state 

kinetic parameters were determined from assays performed in triplicate for each 
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FMO3 protein (as described in section in 2.8.3.1) and were compared to those 

obtained for wild type FMO3.  Statistical significance was assessed using an unpaired, 

two-tailed t-test performed using the Microsoft Excel application of Microsoft Office 

2003.  

 

2.9.7.2 TAZ Assay of FMO3 amino Acid Variant activity  

Kinetic studies on human FMO3 amino acid variants and TAZ were performed at pH 

8.4 and essentially as described in section 2.8.2.2. 200-500 pmol of FMO3 protein 

was used in the assay depending on the variant. NADPH was supplied to the reaction 

using a 20 mM NADPH solution prepared in assay buffer.   TAZ was tested at 

concentrations ranging from 1-20 µM on batches of microsomes isolated from three 

independent infections of Sf9 cells.  Steady-state kinetic parameters were determined 

from assays performed in triplicate for each FMO3 protein (as described in section in 

2.8.3.1) and were compared to those obtained for wild type FMO3.  Statistical 

significance was assessed using an unpaired, two-tailed t-test performed using the 

Microsoft Excel application of Microsoft Office 2003.  

 

2.10 Isolation and Preparation of Mouse Tissue Microsomes 

Age-matched male and female wild-type C57BL/6 and knockout mice back-crossed 

for eight generations onto the C57BL/6 line were used in this investigation. The 

construction of the Fmo1 (-/-), Fmo2 (-/-) Fmo4 (-/-) knockout mouse has been 

described (Hernandez et al 2009). The production of the Fmo5 (-/-) knockout line has 

not yet been published but preliminary data on its construction can be found in the Ph 

D thesis of A. Melloni and in (Hernandez et al. 2006). 
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2.10.1 Dissection 

Liver and lungs were obtained from 8-10-week old C57BL/6 mice, Fmo1 (-/-), Fmo2 

(-/-) Fmo4 (-/-) mice and Fmo5 (-/-) mice as described in this section. Mice had access 

to food and water ad libitum and were housed with appropriate animal husbandry 

facilities. 

 

Solutions: 

• 70% Ethanol 

• Buffer A: 0.1 M Tris-Acetate (pH 7.4), 0.1 M KCl, 1 mM EDTA.  Buffer was 

prepared the day before dissection was to take place and stored at 4˚C. 

 

On the morning of the procedure, dissection equipment was ensured to be clean and 

was wiped with 70% ethanol.  Mice were sacrificed in the morning between 9 and 11 

am by carbon dioxide asphyxiation.  For this, the asphyxiation chamber was first 

placed on its side to allow any residual CO2 to be removed and then returned to its 

upright position.   Mice (no more than 4 at a time) were placed in the box and the CO2 

concentration was slowly increased to avoid stress to the animals.  After 10 min, mice 

were taken out of the box and their feet were pinched to observe pedal reflex.  If no 

response was observed, the abdomen was swabbed with 70% ethanol and opened 

through a U-shaped incision.  The intestines were moved to one side of the torso and 

the liver was excised.  The liver was weighed and submerged in three times the 

volume of chilled Buffer A that was placed on ice. The abdomen was inspected to 

ensure that all three lobes of the liver were excised.  To excise the lungs, the 

 124



diaphragm was cut and so was the rib cage.  Again inspections were made to ensure 

that the entire lung was obtained.  Lungs were weighed and submerged in three times 

the volume of chilled Buffer A.  The tissues were minced in this buffer using scissors. 

The steps described in the next section were performed immediately.          

 

2.10.2 Isolation of Mouse Tissue Microsomes 

Solution: 

• Storage Buffer: 10 mM potassium phosphate (pH7.5), 1 mM EDTA, 20% 

Glycerol.  Buffer was prepared a day before dissection and stored at 4˚C. 

 

Minced tissues from the preceding section were homogenised using a motor powered 

hand held homogeniser (Citenco, Park Products Ltd, England).  The mortar was 

chilled before transferring minced tissue samples to it and it was kept on ice during 

the procedure at all times. Tissues were homogenised at speed 7 until the tissue was 

completely resuspended. The homogenate was then transferred to a chilled centrifuge 

tube and centrifuged at 10,000g for 10 min at 4˚C.   The supernatant from this step 

was centrifuged at 105,000g for 90 min at 4˚C to give a pale yellow pellet.  The pellet 

obtained from this step is a crude preparation of smooth and rough endoplasmic 

reticulum membranes.  The pellet was immediately placed on ice and resuspended in 

Storage buffer using a glass-glass hand held homogeniser. The desired final 

concentration of the suspended microsomes was about 10-25 µg/µL. Microsomes 

were frozen at -80˚C in 500 µL aliquots  to avoid freeze-thawing of large volumes as 

this leads to reduced activity.    Microsomal protein concentration was determined by 

the method of Lowry as described in section 2.5.3.   
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2.10.3 Kinetic Studies of TAZ Metabolism by Mouse Tissue Microsomes 

2.10.3.1 TAZ metabolism by Mouse Lung and Liver Microsomes 

Solution 

• Assay Buffer: 100 mM potassium phosphate (pH 7.5), 1 mM EDTA.  Buffer 

was made on the day from a pre-made 1M potassium phosphate solution 

(pH7.5) that was stored at 4˚C.  The buffer was aerated for 30 min in a 37˚C 

water bath with shaking. 

• NADPH regenerating system: 

• 2 U/mL Glucose-6-Phosphate Dehydrogenase (7.5 µL was used in 

a 1 mL reaction)  

• 3.0 mM Glucose-6-Phosphate (25 µL was used in a 1 mL reaction)    

• 0.375 mM NADP+ (25 µL was used in a 1 mL reaction) 

All components where prepared on the day in the appropriate assay buffer which 

was chilled before use. 

 

The rate of TAZ metabolism by mouse liver and lung microsomes was determined 

essentially as described in section 2.8.2.2 but using TAZ at a final concentration of 10 

µM and using an NADPH regenerating system.  The relative contribution of FMOs 

and CYPs was to be determined by this method and so reactions were performed at 

pH 7.5 because a) this resembles physiological pH and b) because CYP function is 

inhibited in alkaline conditions.  NADPH was supplied through an NADPH 

regenerating system for which the components are described above. 500 µg of 

microsomal protein was used in the reaction and enzyme velocity was converted from 
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absorbance min-1 to µmol L-1 min-1 using the Molar extinction co-efficient of TAZ 

(determined to be 38,300 ± 2,320 M-1 cm-1).  Michaelis-Menten plots (initial enzyme 

velocity vs concentration of substrate) were plotted for microsomal samples isolated 

from liver and lung from female mice.   

The rate of TAZ metabolism obtained for liver and lung microsomal samples 

was compared between mouse lines and to results obtained for enzyme inhibition 

studies (see following section). Statistical significance was assessed using an unpaired 

two-tailed t-test when results were compared between samples (same test condition, 

different samples), when results were compared within a sample (i.e. different test 

conditions, one sample) a paired two-tailed t-test was employed.      

 

2.10.4 Control Experiments used to Assess Activity of Mouse Tissue Microsomes 

It was necessary to check that the microsomes displayed activity towards control 

substrates of the FMOs and CYPs to ensure that they had not become inactivated 

during the isolation procedure.  FMO activity was assessed using the assay of 

methimazole and CYP activity was assessed by monitoring the rate of cytochrome c 

reduction by NADPH-dependent cytochrome P450 reductase.   

 

2.10.4.1 Methimazole Oxidation by Mouse Tissue microsomes 

To ensure that FMOs were not inactivated during the isolation procedure their 

capacity to oxidise methimazole was assessed.   

The rate of methimazole oxidation by mouse liver and lung microsomes was 

determined essentially as described in section 2.8.1.  Reactions were performed in pH 

8.4 and NADPH was supplied through a NADPH regenerating system. 50-200µg of 

microsomal protein was used in the reaction depending on the tissue from which the 
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microsomes were isolated from.  Enzyme velocity was converted from absorbance 

min-1 to µmol L-1 min-1 using the Molar extinction co-efficient of TNB (13,600 M-1 

cm-1).  Though kinetic parameters were not calculated for microsomes because of the 

shortage of sample, the relative rate of TNB oxidation was used as a measure of FMO 

activity.   

 

2.10.4.2 Activity of NADPH Cytochrome P450 Reductase in Mouse Liver 

Microsomes 

Although CYPs are relatively robust enzymes that are stable at room temperature and 

can withstand incubations of up to several minutes at 45-50˚C, it was necessary to 

ensure that they were active during the experiment.  NADPH cytochrome P450 

reductase is an enzyme that is necessary for the activity of CYPs and the activity of 

this enzyme was used as an assessment of CYP activity.  Details regarding its function 

will be given in section 3.3.  It is appreciated that factors other than CRP activity may 

affect CYP activity; however these are uncommon under the conditions used in this 

experiment.   

  

Solutions: 

• Assay Buffer: 100 mM potassium phosphate buffer (pH 7.5) prepared on the 

day from a pre-made 1M potassium solution that was stored on ice. 

• 0.2 mM Cytochrome c: Stock solution was prepared by weighing the 

appropriate amount of solid Cytochrome c from Saccharomyces cerevisiae and 

adding it to assay buffer. 
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• 20 mM NADPH reduced (sodium salt):  Stock solution was prepared fresh by 

adding the appropriate amount of solid NADPH to chilled assay buffer and 

was stored on ice. 

The rate of cytcochrome c reduction by CRP was measured spectrophotometrically at 

25˚C as described by Omura and Takesue (Omura et al. 1970).   Two identical ‘blank’ 

cuvettes were prepared with the following components; 200 µg of microsomes 

isolated from mouse lung or liver and cytochrome c at a final concentration of 0.2 

µM.  The cuvettes were capped and inverted to mix the contents before placing them 

in cell 1 (reference) or cell 7 (sample) of a Varian Cary 100 dual beam 

spectrophotometer.  The Peltier module was set to 25˚C.  Using the Kinetics 

application, the spectrophotometer was set to blank correction mode and a blank 

measurement was taken.  Reactions were initiated by the addition of 100 µM 

NADPH.  The increase in optical density at 550 nm was measured for 10 min.    

  

2.10.5 Inhibition Studies on Mouse Tissue Microsomes. 

In this section the rate of TAZ metabolism was determined for microsomes that have 

been treated to inhibit FMO activity or CYP activity.  Sections 2.10.5.1 through 

2.10.5.3 describe how FMOs and CYPs were inactivated.   Samples were then 

assessed for their ability to metabolise 10 µM TAZ as described in section 2.10.3.1  

 

2.10.5.1 Competitive Inhibition of FMO activity 

Solutions: 

• Assay Buffer: 100 mM potassium phosphate (pH 7.5), 1 mM EDTA.  Buffer 

was made on the day from a pre-made 1M potassium phosphate solution (pH 
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7.5) that was stored at 4C.  The buffer was aerated for 30 min in a 37˚C water 

bath with shaking 

• 200 mM Methimazole:  Stock solution was prepared fresh by adding the 

appropriate amount of solid methimazole to assay buffer.   

FMO activity was inhibited by pre-incubating mouse tissue microsomes with 

methimazole, a probe substrate of the FMOs that acts as a competitive inhibitor.  The 

concentration of methimazole chosen in this experiment was determined by reviewing 

literature of the saturating concentration of methimazole. 

Tubes (prepared in duplicate) containing 500 µg microsomal protein, 1 mM 

methimazole and NADPH regenerating components were incubated at 37˚C for 2 

min.   The contents of the tubes were transferred to two quartz cuvettes where one 

would be treated with TAZ and the other would serve as a blank in the assay.  The 

rate of TAZ metabolism after FMO inhibition was measured as described in section 

2.8.2.2.  Assays were carried out in triplicate on two batches of mouse tissue 

microsomal samples and statistical significance was assessed as described in section 

2.10.4. 

 

2.10.5.2 Heat Inactivation of FMO Activity 

FMOs are heat labile and can be inactivated by short durations of heat treatment at 45-

50˚C in the absence of NADPH (Rawden et al. 2000; Stormer 2000; Virkel et al. 

2006; Siddens et al. 2008).   

Tubes (prepared in duplicate) containing 500 µg microsomal protein in assay 

buffer (to give a final volume of 942 µL) were incubated at 45˚C for 5 min.   After 

heat treatment, tubes were returned to ice for one min and components of the NADPH 

regenerating system were added. Tubes were inverted to ensure adequate mixing.  The 
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contents of the tubes were transferred to two quartz cuvettes where one would be 

treated with TAZ and the other would serve as a blank in the assay.  The rate of TAZ 

metabolism after FMO inhibition was measured as described in section 2.8.2.2. 

Assays were carried out in triplicate on two batches of mouse tissue microsomal 

samples and statistical significance was assessed as described in section 2.10.4. 

 

2.10.5.3 Inhibition of CYP Inactivity 

NADPH-dependent Cytochrome P450 Reductase (CRP) anti-serum was employed to 

abolish the activity of CYPs in the microsomal samples.   

The amount of CRP-anti-serum was optimised as follows: tubes (prepared in 

duplicate) containing 500 µg microsomal protein in assay buffer and increasing 

volumes of CRP-anti-serum or control non-immune serum (0-50 µL) were incubated 

on ice for 15 min. The components of the NADPH regenerating system were applied 

to these tubes and these were inverted to mix the contents.  The contents of the tubes 

were transferred to two quartz cuvettes where one would be treated with TAZ and the 

other would serve as a blank in the assay.  The rate of TAZ metabolism after CYP 

inhibition was measured as described in section 2.8.2.2. Assays were carried out in 

triplicate on two batches of mouse tissue microsomal samples and statistical 

significance was assessed as described in section 2.10.4.
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chapter 3: Results and Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.1 Analysis of the Reaction between Human FMO2.1 and the Anti-

Tubercular Drugs Thiacetazone and Ethionamide.  

 

The work described in this section has been published.  

Francois, A.A., Nishida, C.R., Ortiz de Montellano, P.R., Phillips, I.R., Shephard, 

E.A. (2009) Human Flavin-Containing Monooxygenase 2.1 Catalyzes Oxygenation of 

the Antitubercular Drugs Thiacetazone and Ethionamide.  Drug Metabolism and 

Disposition.  37(1):178-186.  

 

Introduction 

This section describes the reaction between human FMO2.1 and the anti-tubercular 

drugs Thiacetazone (TAZ) and Ethionamide (ETA).  Metabolites generated for TAZ 

by FMO2.1 were compared to those formed by the action of human FMO1, FMO3 

and the Mycobacterial FMO, EtaA.  Kinetic parameters describing the reaction 

between FMO2.1 and TAZ were determined using a novel UV-spectroscopy assay.  

Kinetic parameters for human FMO1, FMO3 and EtaA were also determined for 

comparison.     

    

Results 

Protein Expression 

Human FMO1, FMO2.1 and FMO3 were heterologously expressed in Sf9 insect cell 

membranes as described in sections 2.3-2.5. Insect cell microsomes, which represent 

membranes of the endoplasmic reticulum in suspension, were prepared as described in 

section 2.5.2.  

Figure 3.1.1 shows photographs of polyacrylamide gels obtained from SDS-

PAGE analysis of Sf9 insect cell microsomes containing heterologously expressed 
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Figure 3.1.1: SDS-PAGE gel illustrating the expression of human FMO1, 

FMO2.1 and FMO3 expressed in Sf9 insect cell microsomes. Lane 1: Molecular 

weight marker, lane 2 microsomes prepared from non-infected Sf9 insect cells 

(negative control) and Sf9 insect cell microsomes containing heterologously expressed 

human FMO1 (A), FMO2.1 (B) and FMO3 (C). 
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human FMO1, FMO2.1 or FMO3.  The amount of FMO expressed in microsomes 

was determined by generating a standard curve from authentic FMO standards as 

described in section 2.6.1. Figure 3.1.2 illustrates an example of a quantitative 

Western blot and a calibration curve generated to quantify human FMO1 in insect cell 

microsomes.          

 

Catalytic Oxidation of TAZ by human FMO2.1      

Reactions analysed by reverse phase HPLC and liquid chromatography-mass 

spectroscopy (LC-MS) were prepared as described in section 2.7.  

Incubation of TAZ  with Sf9 insect cell microsomes containing heterologously 

expressed human FMO2.1, in the presence of NADPH, resulted in the formation of 

three major metabolites with reverse-phase retention times of 7.5 min (M1), 11.4 min 

(M2) and 14.6 min (M3) (Fig. 3.1.3).  No products were observed when TAZ was 

incubated with microsomes isolated from non-infected Sf9 cells or when NADPH was 

omitted (results not shown).  UV spectral analysis of the metabolites (Fig. 3.1.4) 

showed that M1 had a maximal absorption peak at 325 nm and a smaller peak at 

approximately 230 nm. M2 had a similar spectrum, with peaks at 320 and 220 nm. 

The absorption spectrum of M3 exhibited a main peak at 295 nm and a secondary 

peak at 220 nm.   

To identify the three metabolites, M1, M2, and M3, formed from TAZ by the 

action of human FMO2.1, were analysed by LC-MS.  The mass spectrum of M1 had a 

molecular ion [M + H]+ at m/z 269.07, with fragment ions at m/z 205.14 and 163.12 

(Fig. 3.1.5A). The mass of the molecular ion of M1 is 32 atomic mass units more than 

that of the molecular ion of TAZ (237), suggesting a structure in which TAZ has 

incorporated two oxygen atoms (Fig. 3.1.5A) and hence supports identification of the  
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Figure 3.1.2: Quantification of FMO1 amounts in insect cell microsomes.   The 

amount of total FMO1 expressed in microsomal samples was determined as described 

in section 2.6. (A) Quantitative Western blot illustrating bands of known amounts of 

FMO1 standard microsomes and FMO1 expressing insect cell microsome sample and 

(B) a calibration curve generated from the intensities of the standard bands (r2
 = 

0.9981).                   
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Figure 3.1.3. Metabolites of TAZ generated by human FMO2.1 catalysed 

oxidation.  UV-HPLC chromatogram of M1 (7.6 min), M2 (11.4 min) and M3 (14.5 

min) generated from incubations of TAZ with Sf9 insect cell microsomes containing 

heterologously expressed human FMO2.1 and NADPH.  Reactions were carried out at 

pH9.5 for 90 min at 37 °C 
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Figure 3.1.4: UV-Absorption spectra of TAZ metabolites generated by human 

FMO2.1 catalysed oxidation.  UV-absorption spectra of the products produced by 

FMO2.1 metabolism of TAZ. Dotted line, M1; solid line M2; and dashed line, M3. 
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Figure 3.1.5. Mass spectra of TAZ metabolites generated from human FMO2.1 

catalysed oxidation. Mass spectra and structures of the products from incubations of 

TAZ with Sf9 insect cell microsomes containing heterologously expressed human 

FMO2.1 and NADPH at pH 9.5 for 90 min at 37 °C. (A) M1, identified as the 

sulphinic acid, has a molecular ion [M + H]+  m/z 269.07, with fragment ions at m/z 

205.14 and 163.12. (B) M2, identified as the sulphenic acid, has a molecular ion [M + 

H] + at m/z 253, with fragment ion peaks at m/z 235 and 193 and (C) M3, identified as 

the carbodiimide, has a molecular ion [M + H]+ ) m/z 203.13 with a fragment ion at 

m/z 161.11. 
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metabolite as the sulphinic acid derivative.  The mass spectrum of M2 had a 

molecular ion [M + H] + at m/z 253, with fragment ions at m/z 235 and 193 (Fig. 

3.1.5A).  The mass of the molecular ion of M2 is in accord with a structure in which 

TAZ has incorporated a single oxygen atom, and thus supports identification of M2 as 

the monooxygenated, sulphenic acid derivative. The metabolite M3 has a molecular 

ion [M + H]+ at m/z 203.13, which suggests that it is the carbodiimide generated by 

elimination from M2 of the oxidized sulfur atom (Fig. 3.1.5C). Previously synthesized 

authentic standards of TAZ-sulphinic acid and TAZ-carbodiimide (Qian et al. 2006) 

were used to confirm the identity of M1 and M3.  UV-HPLC chromatograms and UV 

spectra generated from authentic standards of TAZ-sulphinic acid and TAZ-

carbodiimide are given in Figure 3.1.6.  Comparison of their HPLC elution times (Fig. 

3.1.6), UV spectra (Fig. 3.1.7) and MS spectra (Qian et al. 2006) with those of the 

synthetic standards unambiguously identified the metabolites M1 and M3 as the 

sulphinic acid and carbodiimide derivatives of TAZ, respectively. 

 The same three metabolites (the sulphinic acid,  sulphenic acid and 

carbodiimide derivatives) were also produced when TAZ was incubated with purified 

EtaA or with Sf9 cell microsomes containing heterologously expressed human FMO1 

or FMO3 (Fig 3.1.8). Previous work identified M1 and M3 as products formed by the 

action of these enzymes on TAZ(Qian et al. 2006). Although the sulphenic acid 

derivative (M2) was not detected, it was postulated as an intermediate in the enzyme-

catalyzed metabolism of TAZ (Qian et al. 2006). To confirm this, incubations of TAZ 

with heterologously expressed human FMO2.1 were quenched at different time points 

(Fig. 3.1.9).  It is clear from the results that formation and accumulation of M2 

precedes that of M1 and M3, indicating that M2 is an intermediate in the formation of 

the latter two metabolites.   

 140



 

 

A 
TAZ-SULPHINIC ACID 

 

 

B 

TAZ-CARBODIIMIDE 

 

 

Figure 3.1.6. UV-HPLC Chromatograms of TAZ metabolite standards. Reverse 

phase chromatograms obtained for (A) TAZ-sulphinic acid (7.6 min) and (B) TAZ-

carbodiimide standard (14.5 min).     
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Figure 3.1.7: UV-spectra of TAZ metabolite standards.  TAZ-sulphinic acid 

standard (top) gives a major peak at 325 nm and a smaller peak at approximately 220 

nm. (Bottom) TAZ-carbodiimide standard gives a major peak at 295 and 220 nm.       
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Figure 3.1.8: Metabolites of TAZ generated by human FMO1, FMO3 and EtaA 

catalysed oxidation.  UV-HPLC chromatogram of TAZ-sulphinic acid (7.6 min), 

TAZ-sulphenic acid (11.4 min) and TAZ-carbodiimide (14.5 min) generated from 

incubations of TAZ with Sf9 insect cell microsomes containing heterologously 

expressed (A) human FMO1 (B) human FMO3 and (C) EtaA and NADPH in pH 8.4 

(for FMO1 and FMO3) or 7.5 (EtaA) for 90 min at 37 °C.   

 

 143



 

 

 
 

Figure 3.1.9: Time Course Experiment of TAZ oxidation by human FMO2.1.  

UV-HPLC chromatograms of the products from incubations of TAZ with Sf9 insect 

cell microsomes containing heterologously expressed human FMO2.1 and NADPH at 

pH 9.5 and 37 °C for 0 min (A) 10 min (B) or 20 min (C).  
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Catalytic oxidation of ETA by human FMO2.1. 

ETA and FMO2.1 reactions were analysed by liquid chromatography-mass 

spectroscopy (LC-MS) as described in section 2.7.  

Incubation of ETA with Sf9 microsomes containing heterologously expressed 

human FMO2.1, in the presence of NADPH, resulted in the formation of a major 

product, P1, with LC retention time of 6.2 min (Fig. 3.1.10A). The mass spectrum of 

P1 had a molecular ion [M + H]+  at m/z 183, with fragment ions at m/z 151 and 133 

(Fig. 3.1.10B). The mass of the molecular ion of P1 is 16 atomic mass units more than 

that of the molecular ion of ETA (166), suggesting a structure in which ETA has 

incorporated one oxygen atom (Fig. 3.1.10B).  This supports identification of P1 as 

the S-oxide of ETA. The mass spectrum of P1 is identical to that of authentic ETA S-

oxide (Vannelli et al. 2002), therefore unambiguously identifying this metabolite as 

the S-oxide of ETA.  A mass spectrum of the broad peak with a LC retention time of 

approx. 3 min (Fig. 3.1.10A) could not be obtained. 

 

Development of a spectrophotometric assay of TAZ oxidation. 

Although, reverse phase HPLC was used to identify metabolites generated by FMOs, 

access to this method was not always available.  For this reason a UV-spectroscopy 

based enzyme assay was developed to determine the kinetic parameters of TAZ and 

FMOs.   

An assay was developed to monitor the rate of decrease in TAZ 

spectrophotometrically as a measure of its oxygenation by FMOs (described in section 

2.8.2.1).  First, the UV properties of TAZ were investigated.  A UV absorption  
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Figure 3.1.10. LC-MS analysis of ETA metabolites generated by human FMO2.1 

catalysed oxidation. (A) LC chromatogram (350 nm) of the products from incubation 

of ETA, Sf9 insect cell microsomes containing heterologously expressed human 

FMO2.1 and NADPH in pH 7.5 for 60 min at 37 °C.  (B) The mass spectrum and 

structure of the product P1. P1 has a molecular ion [M + H]+  at m/z 183, with 

fragment ion peaks at m/z 151 and 133.   
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spectrum of TAZ revealed an absorption maximum at 328 nm and a smaller peak at 

approximately 220 nm (Fig. 3.1.11). The absorbance of TAZ at 328 nm was linear 

between 1 and 20 μM (Fig. 3.1.12) and at this wavelength the molar extinction 

coefficient of TAZ in 0.1% DMSO was determined as 38,300 ± 2,320 M-1cm-1.  

Incubation of TAZ, in the presence of NADPH, with Sf9 cell microsomes 

containing heterologously expressed human FMO1, FMO2.1 or FMO3, or with 

purified EtaA, resulted in a decrease in TAZ absorbance at 328 nm that was linear 

over time (Fig. 3.1.13A and B) and with respect to enzyme concentration (data not 

shown). No decrease in TAZ absorbance was observed in the absence of EtaA or 

human FMOs, or when microsomes prepared from non-infected Sf9 cells were used 

(Fig. 3.1.14).  Omission of NADPH from reaction mixes containing heterologously 

expressed human FMOs resulted in a very small (<1% of that observed in the 

presence of NADPH) and short-lived (<2 min.) decrease in TAZ absorbance (Fig. 

3.1.15). This is due to the presence of endogenous NADPH in the insect cell 

microsomes. This spectrophotometric assay was used to determine the pH optima and 

kinetic parameters of enzyme-catalyzed oxidation of TAZ. 

 

 Effect of pH on TAZ oxidation catalyzed by human FMOs and EtaA.  

FMO1, FMO2.1 and FMO3 display different pH optima for enzymatic activity 

(Krueger et al. 2002; Qian et al. 2006; Siddens et al. 2008). The dependence of FMO 

activity on pH with respect to TAZ oxidation was measured spectrophotometrically as 

described in section 2.7.2.1.1.   

The activity of EtaA and heterologously expressed human FMO1, FMO2.1 

and FMO3 towards TAZ was assessed in buffers of pH 7.5, 8.5 or 9.5.  All enzymes 

displayed activity towards TAZ throughout the tested range.  Each FMO however, 
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Figure 3.1.11: UV-spectra of TAZ.  TAZ in DMSO gives a major peak at 328 nm 

and a smaller peak at approximately 220 nm as measured using a UV-

spectrophotometer.  
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Figure 3.1.12: Linear absorbance of TAZ .  The absorbance of TAZ at 328 nm was 

determined over a range of concentrations. The molar extinction coefficient for TAZ 

was calculated using the gradient of the straight line (r2 = 0.996). 
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Figure 3.1.13A: Human FMO2.1- and NADPH-dependent decrease in TAZ 

absorbance at 328 nm is linear.  TAZ (20 µM) was incubated with insect cell 

microsomes containing heterologously expressed human FMO2.1, NADPH at pH 9.5 

and 37 °C.  Rate of TAZ oxidation was determined from 1-5 minutes.  

 

 

 

 

 

 

 

 

 

 

 150



 

 

 

 

 

 
328 nm  

 
 

Figure 3.1.13B:  Human FMO2.1- and NADPH-dependent decrease in TAZ 

absorbance at 328 nm over time. 
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Figure 3.1.14: UV-spectra at 328 nm in the presence of non-infected insect cell 

microsomes and NADPH.   No decrease in TAZ absorbance was observed in the 

presence of non-infected insect cell microsomes and NADPH at pH 9.5 at 37 °C.  The 

change in absorbance during the first minute represents scattering.    
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Figure 3.1.15: Human FMO2.1-dependent decrease in TAZ absorbance in the 

absence of NADPH at 328 nm.  TAZ (20 µM) was incubated with insect cell 

microsomes containing heterologously expressed human FMO2.1 in the absence of 

NADPH at pH 9.5 and 37 °C.   
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had a particular pattern of pH-dependent activity.  The pH optimum for the oxidation 

of TAZ was 8.5 for human FMO1 and FMO3, and 9.5 for human FMO2.1 and EtaA 

(Fig. 3.1.16).  

 

Assessing FMO catalytic capacity using methimazole as a control substrate. 

Human FMOs were first tested for catalytic activity towards methimazole to ensure 

that the Sf9 insect cell microsomes were of good quality.  Kinetic parameters were 

determined for FMO1-, FMO2.1- and FMO3-catalyzed oxygenation of methimazole, 

a probe substrate of the FMOs.   The rate of methimazole S-oxygenation was 

monitored spectrophotometrically by monitoring the rate of decrease of 5-thio-2-

nitrobenzoic acid (TNB) at 412 nm.  Steady state kinetic parameters were determined 

for human FMOs using the non-linear regression application of the Kinetics module 

(v.3.1) of SigmaPlot (v.10) 

KM  values obtained for FMO1, FMO2.1 and FMO3 were in good agreement 

with previously published data (Dolphin et al. 1998; Krueger et al. 2002; Furnes et al. 

2004) (Table 3.1.1).  This confirms microsomes containing heterologously expressed 

FMO1, FMO2.1 or FMO3 were suitable for determining the kinetic parameters for 

TAZ.  

 

Kinetics of TAZ oxidation by human FMOs and EtaA. 

The kinetics of TAZ oxidation catalyzed by EtaA or by heterologously expressed 

human FMO1, FMO2.1 or FMO3 were evaluated by determining the initial rates of 

TAZ oxidation, measured spectrophotometrically, over a range of TAZ concentrations 

(Fig. 3.1.17 and data not shown) as described in section 2.8.2.2.  Assays were 

performed at the optimum pH for each enzyme (see above).   Steady state kinetic 
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parameters were determined for human FMOs and EtaA using the non linear 

regression application of the Kinetics module (v.3.1) of Sigmaplot (v.10).  

Human FMOs and EtaA displayed hyperbolic Michaelis-Menten relationship 

between enzyme activity and TAZ concentration.  Michaelis-Menten and Hanes-

Woolf plots obtained for human FMO catalysed TAZ oxygenation is given in Figure 

3.1.17.   

TAZ was an excellent substrate for the human FMOs and EtaA (Table 3.1.2).  

The KM values for TAZ oxidation catalyzed by human FMO1, FMO2.1, FMO3 and 

EtaA are in the low micromolar range and very similar to each other (Table 3.1.2). 

The kcat of the FMO2.1-catalyzed reaction is much higher than that of reactions 

catalyzed by human FMO1, FMO3 or EtaA (Table 3.1.2). Consequently, kcat/KM (the 

specificity constant) for TAZ is much higher for human FMO2.1 than for the other 

three enzymes (Table 3.1.2).  

Kinetic analysis of the reaction between human FMO2.1 and TAZ was 

evaluated by reverse phase HPLC in order to validate the UV-spectroscopy assay.    

ETA was used as an internal standard. The kinetic analysis methodology using HPLC 

is detailed in section 2.8.4.   A standard curve corresponding to the ratio of the 

integrated HPLC peak of TAZ and ETA plotted against TAZ concentration was used 

to determine the amount of unmetabolised TAZ in the reaction (Fig. 3.1.18). Table 

3.1.3 summarises the kinetic parameters for human FMO2.1 and TAZ determined by 

the HPLC and UV methods. There was no statistical difference observed in KM or 

kcat values determined from the use of an HPLC- or the UV-based assay, thus 

validating the UV spectrophotometric method (p>0.05). 
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Figure 3.1.16. Effect of pH on the rate of TAZ oxygenation by purified EtaA or 

Sf9 insect cell microsomes containing heterologously expressed human FMO1, 

FMO2.1 or FMO3.  The decrease in TAZ over time was measured at 328 nm in the 

presence of NADPH in buffers at pH 7.5, 8.5 or 9.5.  
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Table 3.1.1: Kinetic Parameters of enzyme catalysed oxidation of Methimazole.   

 
 
Enzyme KM 

(µM) 

kcat 

(min-1) 

kcat/ KM 

(min-1M-1) (x104) 

FMO1 8.08 ± 2.35 2.27 ± 0.30 28.1 ± 7.95 

FMO2.1 575 ± 60.02 31.5 ± 2.11 5.48  ± 0.68 

FMO3 29 ± 4.06 2.60 ± 0.38 8.97 ± 1.81 

 
 
The S-oxygenation of methimazole by human FMOs was determined as described in 

section 2.8.1.  KM (µM), kcat (min-1), kcat / KM (min-1 / M-1) are reported as mean ± 

standard error obtained from enzyme assays performed in triplicate on microsomes 

isolated from a single infection of Sf9 cells. 
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Figure 3.1.17A: Non-linear regression and linear transformation of the 

Michaelis-Menten equation for  human FMO1 catalysed TAZ oxidation (A) 

Michaelis-Menten curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes 

containing heterologously expressed human FMO1 in the presence of NADPH and a 

buffer at pH 8.5. (B) Linear transformation of Michaelis-Menten data using Hanes-

Woolf regression.       
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Figure 3.1.17B: Non-linear regression and linear transformation of the 

Michaelis-Menten equation for  human FMO2.1 catalysed TAZ oxidation (A) 

Michaelis-Menten curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes 

containing heterologously expressed human FMO2.1 in the presence of NADPH and 

a buffer at pH 9.5. (B) Linear transformation of Michaelis-Menten data using Hanes-

Woolf regression.       
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Figure 3.1.17C: Non-linear regression and linear transformation of the 

Michaelis-Menten equation for  human FMO3 catalysed TAZ oxidation (A) 

Michaelis-Menten curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes 

containing heterologously expressed human FMO3 in the presence of NADPH and a 

buffer at pH 8.5. (B) Linear transformation of Michaelis-Menten data using Hanes-

Woolf regression.     
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Table 3.1.2: Kinetic Parameters of enzyme catalysed oxidation of Thiacetazone. 

 

Enzyme 
 

KM 

(µM) 

kcat 

(min-1) 

kcat/ KM 

(min-1M-1) (x105) 

FMO1 6.30 ± 0.80 5.08 ± 0.46 7.9  ± 1.99 

FMO2 5.80 ± 0.55 80.10 ± 4.42 142  ± 18.30 

FMO3 7.01 ± 0.53 1.37 ± 0.20 1.96 ± 0.39 

EtaA 9.05 ± 0.57 3.02  ± 0.30 3.2  ± 0.81 

 
The S-oxygenation of TAZ by human FMOs and EtaA is described in section 2.7.2.2.  

KM (µM), kcat (min-1), kcat / KM (min-1 / M-1)  are reported as mean ± standard error 

obtained from enzyme assays performed in triplicate on microsomes isolated from 

three independent infections of Sf9 cells or from a single batch of purified EtaA.     
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Figure 3.1.18: Standard curve representing the ratio of integrated peak area of 

TAZ and ETA plotted against TAZ concentration.  The standard curve was used to 

determine the amount of unmetabolised TAZ after incubation with human FMO2.1 

and NADPH.   
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Table 3.1.3: Comparison of kinetic parameters of human FMO2.1 catalysed TAZ 

oxidation determined by HPLC and UV-spectroscopy. 

 

 

Method KM 

(µM) 

kcat 

(min-1) 

UV-Spectroscopic Assay 5.80 ± 0.55 80.10 ± 4.42 

HPLC Assay 5.90 ± 0.52 71.47 ± 6.80 

 

The S-oxygenation of TAZ by human FMO2.1 is described in section 2.8.3 and 2.8.4.  

Kinetic parameters determined by a UV-spectroscopy based assay and by reverse 

phase HPLC (KM (µM) and kcat (min-1) are reported as mean ± standard error 

obtained from enzyme assays performed in triplicate on microsomes isolated from a 

single infection of Sf9 cells.     
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In summary, this section has established TAZ to be an excellent substrate for human 

FMO2.1 and identifies the products of this reaction to be TAZ-sulphinic acid, TAZ-

carbodiimide formed from a common intermediate precursor, a sulphenic acid of 

TAZ.  Kinetic studies confirm this enzyme to be catalytically more efficient at this 

reaction than is the bacterial FMO, EtaA or human FMO1 or 3. 
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Discussion-Analysis of the reaction between human FMO2.1 and the Anti-

tubercular drugs Thiacetazone and Ethionamide.  

 
Thiacetazone (TAZ) and Ethionamide (ETA) are second-line antibiotics prescribed in 

the treatment of pulmonary tuberculosis. TAZ and ETA are pro-drugs which require 

metabolic activation by the mycobacterial enzyme EtaA, to exert a cytotoxic effect.     

The aim of this section was to establish whether anti-tubercular drugs, 

thiacetazone (TAZ) and ethionamide (ETA) are substrates for human FMO2.1 and 

whether this enzyme catalysed the same reaction as the Mycobacterial FMO, EtaA. 

Experiments carried out in this investigation have shown human FMO2.1 to be 

capable of catalysing the S-oxygenation of TAZ.  The metabolites generated, the 

sulphinic acid, sulphenic acid and carbodiimide of TAZ are the same as those 

identified for EtaA, FMO1 and FMO3 in this investigation.  Although, a previous 

study had identified the sulphinic acid and carbodiimide as the products of EtaA, 

FMO1 and FMO3 catalysed oxidation, a sulphenic acid intermediate was postulated 

to be the precursor of these metabolites (Qian et al. 2006).  Experiments carried out as 

part of this investigation have for the first time, identified the intermediate as the 

sulphenic acid of TAZ. 

Human FMO2.1 catalysed the oxidation of ETA to generate the corresponding 

S-oxide.  Though the S-oxide has been identified as the product of EtaA oxidation 

(DeBarber et al. 2000; Vannelli et al. 2002; Hanoulle et al. 2006), these studies also 

identify the corresponding amide and nitrile of ETA.  According to our results, human 

FMO2.1 does not generate these products and this finding is supported by others 

(Henderson et al. 2008).  Given that S-oxides are generally pharmacologically less 

toxic than the parent compound, it can be presumed that individuals prescribed ETA 

and who express FMO2.1 in the lung will not be at a higher risk of drug toxicity.  
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Conversely, given that FMO2.1 can oxidise ETA, the inactivation of the drug before it 

reaches Mycobacteria may result in reduced drug efficacy.  This suggests that 

individuals expressing this enzyme are at a genetic disadvantage with regard to ETA 

metabolism.      

 Analyses of kinetic parameters indicate FMO2.1 to be more efficient at TAZ 

oxygenation than EtaA, human FMO1 and FMO3 as a measure of the specificity 

constant (kcat/KM).   KM determined for the enzymes was similar indicative of them 

having similar affinities for this substrate.  The high value of the specificity constant 

of FMO2.1 was therefore a result of a higher kcat rather than a lower KM.  Although 

kinetic parameters were determined at optimum pH for each enzyme, human FMO2.1 

was still the most effective at TAZ oxygenation at a more physiological pH, pH 7.5 

(Fig 3.1.16)  .    

 The catalytic cycle of FMOs described in section 1.2.2 illustrates how the rate-

limiting step in an FMO-catalysed reaction is not the binding of a substrate.  In a 

mechanism unique to FMOs, the enzyme is ‘ready’ to oxygenate a substrate before it 

(the substrate) has bound.  Tight binding between enzyme and substrate is therefore 

not required but a single point of contact with the active site (the 4a-peroxyflavin 

intermediate) is sufficient for the substrate to be oxidised.  The rate-limiting step is 

therefore the release of one molecule of water and the subsequent recycling of FAD to 

peroxyflavin after the oxygenation of the substrate.   This implies that a given FMO 

would have similar kcat values for all of its oxidisable substrates.  Comparison of kcat 

values obtained for TAZ and methimazole for FMO1, FMO2.1 or FMO3 respectively 

are in the same order of magnitude and conform to this expectation (Table 3.1.1 and 

3.1.2).  Comparison of kcat values determined for human FMO2.1 towards thiourea 

and ethylene-thiourea (Henderson et al. 2004) are similar to that obtained for TAZ in 
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this investigation.  Similarly the relatively low kcat values determined for human 

FMO1 and FMO3 are comparable to those obtained for the oxygenation of a panel of 

thioureas by these enzymes (Onderwater et al. 2006).  The high kcat value obtained 

for human FMO2.1 in this section implies that the enzyme is more efficient at 

catalysing the rate-limiting step than is FMO1 or FMO3.   The high KM and high kcat 

determined for the reaction between methimazole and human FMO2.1 (Table 3.1.1) is 

comparable to that observed for purified and heterologously expressed rabbit FMO2 

and this substrate (Lawton et al. 1991).   

FMOs generally catalyse the detoxification of xenobiotics.  The prototypic 

product of FMO reactions is the non-toxic and non-reactive N- and S-oxide.   But 

thiourea compounds undergo FMO-dependent bioactivation in which the metabolites 

generated are more toxic than the parent compound (Smith et al. 2002; Henderson et 

al. 2004; Onderwater et al. 2004; Onderwater et al. 2006) .  Sulphenic acids of 

thioureas (generated by FMO oxygenation) are electrophiles that can react reversibly 

with glutathione (GSH) an important anti-oxidant in a mammalian cell (Ziegler-

Skylakakis et al. 1998; Henderson et al. 2004).   The sulphenic acid of TAZ can react 

with GSH to give rise to TAZ and to oxidised GSH (GSSG) (Qian et al. 2006).   In 

the presence of GSH reductase, a concurrent cycle may establish with the net effect 

being the depletion of GSH in a cell, and regeneration of the parent compound 

subsequently leading to oxidative stress and cell toxicity (Fig. 3.1.19) (Krieter et al. 

1984; Henderson et al. 2004; Onderwater et al. 2004).  Sulphenic acid metabolites can 

react covalently with other thiol-containing molecules like cysteine residues in 

proteins (Decker et al. 1992).  This can perturb the function of proteins and enzymes 

directly and is likely to be detrimental for cellular functions.  TAZ-carbodiimide can  
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Figure 3.1.19: Diagram depicting TAZ metabolites generated by the oxidation of FMO and the interaction with glutathione (GSH).  

Adapted and revised from Qian et al. 2006. 
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form covalent bonds with GSH thus reducing the amount of an anti-oxidant in a cell 

(Qian et al. 2006).  Human FMO1, FMO2.1 and FMO3 are therefore able to catalyse 

the oxygenation of TAZ to give rise to metabolites which are known to be toxic to a 

mammalian cell. 

Given that human FMO1, FMO2.1 and FMO3 catalyse the bioactivation of 

TAZ may explain the basis of the adverse drug reactions observed in patients 

prescribed with this drug (Harland 1962; Aquinas 1968; Axton 1971; Hussain et al. 

1973; Bedi et al. 1974; Anonymous 1981; Gupta et al. 1983; Fegan et al. 1991; 

Brown 1992; Ipuge et al. 1995; Lawn et al. 1999; Dieng et al. 2001).  The role of 

FMOs in the in vivo bioactivation of TAZ is supported by the fact that TAZ-related 

adverse reactions are observed in tissues in which FMOs are expressed: 

hepatotoxicity, FMO3 in the liver (Dolphin et al. 1996; Hernandez et al. 2004); 

gastrointestinal problems, FMO1 in the small intestine (Yeung et al. 2000); and skin 

rashes, FMO1 and FMO3 in skin (Janmohamed et al. 2001).  TAZ is not prescribed to 

patients who suffer from human immunodeficiency virus (HIV) as adverse clinical 

effects are exasperated.    The underlying mechanism of this cytotoxicity is not known 

but the severity of TAZ-induced toxicity correlates to the level of immunosupression 

(Nunn et al. 1992).  It is noteworthy that immunocompromised individuals display 

impairment in glutathione homeostasis and deficiency of glutathione is established in 

patients with HIV (Eck et al. 1989; Staal et al. 1992a; Staal et al. 1992b; Staal et al. 

1992c).  Given that glutathione mediates a detoxification process by reducing 

sulphenic acids of thiourea-containing compounds, it is speculated that the 

pronounced adverse affects in HIV patients may be due to the accelerated cellular 

toxicity induced by the accumulation of TAZ-sulphenic acid in the absence of 

glutathione.   



    In humans, FMO1 and FMO3 are expressed in the kidney and liver 

respectively and may contribute to TAZ activation in extra-pulmonary tissues.  Inter-

individual and inter-racial differences are reported for expression in FMOs.  The 

expression of FMO1 is significantly higher in the kidney of African-Americans than 

in Caucasians (Krause et al. 2003).  Significant variations in the amount of FMO1 

expressed in the kidney is reported within individuals and is suggested to be a result 

of upstream promoter variants identified in the FMO1 gene (Hines et al. 2003).  

Genetic polymorphisms in the human FMO3 gene result in protein variants with 

altered catalytic activity (reviewed by Phillips et al.  2007 and Phillips et al. 2008) 

one of which, L360P has increased activity (Lattard et al. 2003). Amino acid variants 

of human FMO3 are implicated in the altered metabolism and therapeutic outcome of 

certain drugs (Stormer 2000; Hisamuddin et al. 2004; Mayatepek et al. 2004; 

Hisamuddin et al. 2005).  Genetic polymorphisms in upstream promoter regions that 

affect transcription of FMO3 have been identified (Koukouritaki et al. 2005; 

Koukouritaki et al. 2007).  This suggests that some people may metabolise TAZ more 

in the liver and kidney than in others.    The result of this inter-individual difference 

may affect the amount of unmetabolised TAZ reaching the lung and thus 

Mycobacteria.   

In humans, the expression of FMO2 is ethnic-dependent (Dolphin et al. 1998; 

Whetstine et al. 2000).  All Europeans and Asians genotyped to date possess the 

FMO2*2 allele in which a C>T substitution at position 1414bp replaces a glutamine 

amino acid residue with a premature stop codon (Dolphin et al. 1998).  The resulting 

protein, FMO2.2, is catalytically inactive and is not detected in human lung (Dolphin 

et al. 1998).  In sub-Saharan Africa, up to 50% of individuals possess at least one 

copy of the ancestral allele (FMO2*1) and are expected to express catalytically 
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functional protein (FMO2.1) in the lung (Dolphin et al. 1998; Krueger et al. 2002; 

Veeramah et al. 2008).  The in vitro bioactivation of TAZ catalysed by FMO2.1 

observed in this investigation suggests that individuals expressing this enzyme in the 

lung are likely to be predisposed to TAZ-related toxicity in this tissue.  The reaction 

between TAZ and FMO2.1 in the lung represents a non-specific activation of this 

drug and will consequently lead to less TAZ being activated by EtaA in 

Mycobacteria.  The net effect of the reaction is the production of reactive metabolites 

in lung and the decrease in TAZ efficacy.    

Given the high frequency of the ancestral form of FMO2 (FMO2.1) in a region 

where TB is a major problem, may have implications on the toxicity and efficacy of 

TAZ and ETA.      
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3.2 Kinetic Parameters of FMO3 Amino Acid Variants  

Introduction 

This section describes kinetic studies undertaken on amino acid variants of human 

FMO3.  Variant FMO3 proteins were assayed for TAZ oxygenation activity to assess 

whether individuals possessing these variants may have altered metabolism of TAZ in 

the liver and the skin.   

Work in this chapter has focused on SNPs which are highly prevalent or 

unique to the African population.  This is because TAZ is only administered in certain 

parts of Africa due to lack of resources. SNPs which are likely to have a significant 

impact on the proteins ability to oxygenate TAZ are also investigated, even though 

they may not be highly prevalent in the African population.     The African population 

has also been chosen as an average of  28% of Sub-Saharan Africans are found to 

express a functionally active form of FMO2 (FMO2.1) (Dolphin et al. 1998; Krueger 

et al. 2002; Veeramah et al. 2008).   The remainder of the world’s population have 

acquired a polymorphism, which introduces a premature stop codon and thus do not 

produce functional FMO2 (Dolphin et al. 1998; Whetstine et al. 2000; Veeramah et 

al. 2008), this aspect will be discussed later.    

The four FMO3 SNPs to be investigated in this chapter are shown in Table 

3.2.1. 

 

Results – Kinetic Parameters of FMO3 Amino Acid Variants  

FMO3 cDNA constructs containing the desired genetic substitutions were previously 

prepared in the laborotary for bacterial expression (Allerston et al. 2009).  Sub 

cloning of these constructs to produce baculovirus for expression in insect cells is 

described in chapter 2.9.  Both strands of each cDNA were sequenced in order to  
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Table 3.2.1: Genetic polymorphisms of Human FMO3 investigated in this report. 
 
 

 

GENETIC 

SUBSTITUTION 

AMINO ACID 

SUBSTITUTION 

AND POSITION 

SOURCE SNP ID 

g.15167G>A E158K 

(Brunelle et al. 1997; 

Dolphin et al. 1997; 

Treacy et al. 1998; 

Zschocke et al. 1999; 

Furnes et al. 2003) 

rs2266782 

 

g.21443A>G 

 

E308G 

(Treacy et al. 1998; 

Zschocke et al. 1999) 

 

rs2266780 

g.15167G>A, 

g.21443A>G 
E158K/E308G 

(Furnes et al. 2003; 

Allerston et al. 2007) 

 

rs2266782 

rs2266780 

g.21599T>C L360P 
(Furnes et al. 2003; 

Lattard et al. 2003) 
rs28363581 

 

Genetic and amino acid substitutions are given for FMO3 polymorphic variants 

studied in this section.   Publications which identified the polymorphism or 

characterised the functional effect have been given.  SNP id references are provided.    
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http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000007933;r=1:169326660-169353583;t=ENST00000367755;v=rs28363581;vdb=variation;vf=10000506


confirm the presence of the SNP and to ensure that other mutations were not 

introduced during the cloning procedure.  The original cDNA for FMO3 which has 

been used in this section and in section 3.1 encodes methionine at position 486 

(Dolphin et al. 1997).  Subsequent studies have found isoleucine to be more common 

at this position and thus the methionine residue has been reported as a polymorphism 

(Cashman 2002). Prior to this knowledge, constructs had been prepared on the 

methionine and isoleucine background.   No population frequency data is available on 

these SNPs and there are no reports of catalytic differences between the I486 and 

M486 proteins.  In this chapter the catalytic activities of heterologously expressed 

FMO3 I486 and M486 have also been compared.  Henceforth, FMO3 M486 will be 

referred to as wild type (M486) and FMO3 I486 as wild type (I486).  Figure 3.2.1 

illustrates whether a SNP has been constructed on the I486 background or on the 

M486 background.  Amino acid variants G308 and P360 will be compared to wild 

type (M486) whereas K158 and K158 / G308 will be compared to wild type (I486).        

 The FMO3 variants, K158, G308, K158/G308, P360 and wild type (I486) and 

(M486) have been investigated by expressing each variant FMO3 protein using the 

baculovirus/insect cell system.   Insect cell microsomal membranes were isolated and 

characterised for their ability to oxygenate TAZ.  This was done using the UV 

spectroscopic assay described in section 3.1.   Previous reports have characterised the 

effects of these SNPs towards methimazole, a probe substrate of the FMOs and 

therefore, the activity of the variant FMO3 proteins towards methimazole was also 

tested.          
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Positions of genetic and amino acid substitutions are shown above.  Exons are numbered.  G308 (B) and P360 (C) polymorphic variants were 

constructed on the M486 background (A), whereas K158 (E) and K158/G308 (F) were on the I486 background (D).

Figure 3.2.1: Polymorphic Variants of Human FMO3 investigated in this Chapter 
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Methimazole S-Oxygenation by human FMO3 Amino Acid Variants  

All protein variants were first tested for catalytic activity towards methimazole to 

ensure that the insect cell microsomes were of good quality.  The rate of methimazole 

S-oxygenation was monitored spectrophotometrically by monitoring the rate of 

decrease of 5-thio-2-nitrobenzoic acid (TNB) at 412 nm. Methimazole assays were 

performed in triplicate on batches of microsomes isolated from three independent 

infections of Sf9 cells.  Steady state kinetic parameters, KM and Vmax were 

determined for wild type and variant FMO3 proteins using the non-linear regression 

application of the Kinetics module (v.3.1) of SigmaPlot (v.10).   Turnover number 

was calculated using Vmax  values and enzyme concentration as described in chapter 

2.9.8.2.  The findings are summarised in Table 3.2.2 and 3.2.3. 

 All variant proteins catalysed methimazole S-oxygenation and a hyperbolic 

Michaelis-Menten relationship was observed between methimazole concentration and 

the initial rate of TNB disappearance.   

Wild type (M486) (Fig. 3.2.1A) S-oxygenated methimazole with a turnover 

number (kcat) and Michaelis constant (KM) of 2.95 ± 0.25 min-1 and 31.45 ± 2.05 µM 

respectively.  These finding are in agreement with previously published data (Dolphin 

et al. 1997) (Table 3.2.2).  Table 3.2.2 summarises kinetic data for FMO3 G308 (Fig. 

3.2.1B) and FMO3 P360 (Fig. 3.2.1C) in comparison to wild type (M486) (Fig 

3.2.1A).  FMO3 G308 catalysed methimazole oxygenation with a kcat of 2.03 ± 0.83 

min-1 and a KM  of 49.50 ± 5.45 µM.  This represents a 30% decrease in the turnover 

number of FMO3 G308 when compared to that of wild type (M486) (p<0.05). The 

KM  of FMO3 G308 is observed to be higher than that of wild type (M486) but this 

difference was not statistically significant (p>0.05).  Although direct comparison to 

published data is not possible (as published work refers to this SNP expressed on the 



I486 background), the general effect of this SNP is in agreement with published data.  

Lattard and co-workers report a ~25% decrease in catalytic activity and a 2.4-fold 

increase in KM, similar to findings in this study (Lattard et al. 2003).  Kinetic analysis 

of FMO3 P360 showed this protein to be significantly more efficient at methimazole 

oxygenation than wild type (M486) (p<0.05) with a kcat of 35.45 ± 3.50 min-1.  The 

turnover number for this variant is 4 -fold greater than that found for wild type 

(M486). There was no significant difference however, in the KM  values determined 

for the two proteins (p>0.05).  This trend is in good agreement with work in previous 

publications in which a 4-fold increase in Vmax was observed (Lattard et al. 2003).     

Table 3 summarises kinetic data for FMO3 K158 (Fig 3.2.1E) and FMO3 

K158/G308 (Fig 3.2.1F) in comparison to wild-type (I486) (Fig 3.2.1C).   Wild type 

(I486) catalysed methimazole oxygenation and displayed a kcat of 6.26 ± 1.55 min-1 

and a KM of 24.50 ± 1.70 µM.  These kinetic parameters are within a similar range to 

those already published (Lattard et al. 2003; Koukouritaki et al. 2007).  kcat and KM  

values for FMO3 K158 catalysed methimazole oxygenation was found to be 7.25 ± 

2.91 min-1 and 39.40 ± 2.41 µM respectively.  No significant difference was observed 

in the turnover number between FMO3 K158 and wild type (I486) (p>0.05). This 

data supports previous findings (Lattard et al. 2003).  The double mutant, K158 / 

G308 had significantly reduced activity compared to that of wild type (I486).  The 

double mutant catalysed methimazole S-oxygenation with a kcat  of 0.60 ± 0.09 min -1 

and a KM  of  570 ± 26 µM.  These kinetic parameters are significantly different from 

those determined for wild type I486.  The trend is in agreement with previously 

published data, whereby the double mutant has diminished activity compared to that 

of wild type FMO3, and the single variants K158 and G308.  The KM of methimazole  
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Table 3.2.2: Methimazole S-oxygenation by human FMO3 (M486) and FMO3 
amino acid variants 
 
 
 
 

 

FMO3 Variant KM  

(µM) 
kcat  

(min-1) 
kcat / KM 

(min-1 M-1) (x104) 
Relative Activity 

(%) 

 
Wild type (M486) 

 
31.45 ± 2.05 

 
2.95 ± 0.25 

 
9.2 ± 2.10 

 
100% 

 
FMO3 G308 

 
49.50 ± 5.45 

 
2.03 ± 0.83 

 
4.10 ± 0.67 

 
45%* 

 
FMO3 P360 

 
35.45 ± 3.50 

 
12.20 ± 3.45 

 
34.5 ± 0.21 

 
375%* 

 

The S-oxygenation of methimazole by human FMO3 variants was determined as 

described in section 2.9.8.1.  KM (µM), kcat (min-1), kcat / KM (min-1 / M-1) are 

reported as mean ± standard error obtained from enzyme assays performed in 

triplicate on microsomes isolated from three independent infections of Sf9 cells.  

Relative catalytic activity compared to that of wild type FMO3 is displayed (%). 

 

*p<0.05 compared to the result of obtained for wild type (M486) 
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Table 3.2.3: Methimazole S-oxygenation by human FMO3 (I486) and FMO3 
amino acid variants 
 
 
 

 

FMO3 Variant KM  

(µM) 
kcat  

(min-1) 
kcat / KM 

(min-1 M-1) (x105) 
Relative Activity 

(100%) 

 
Wild type (I486) 

 
24.50 ± 1.70 

 
6.26 ± 1.55 

 
2.56 ± 0.66 

 
100% 

 
FMO3 K158 

 
39.4 ± 2.6 

 
7.25 ± 2.91 

 
1.85 ± 0.78 

 
70% 

 
FMO3 K158 / G308 

 
570 ± 26 

 
0.66 ± 0.04 

 
0.12 ± 0.08 

 
5%** 

 

The S-oxygenation of methimazole by human FMO3 variants is described in section 

2.9.8.1.  KM (µM), kcat (min-1), kcat / KM (min-1 / M-1)  are reported as mean ± 

standard error obtained from enzyme assays performed in triplicate on microsomes 

isolated from three independent infections of Sf9 cells.  Relative catalytic activity 

compared to that of wild type FMO3 is displayed (%). 

**p<0.005 compared to the result of obtained for wild type (I486) 
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was found to be several orders of magnitude higher than that reported by Lattard and 

co-workers (Lattard et al. 2003).  This group also report a higher Vmax for the 

reaction than was observed in this investigation.   However, overall catalytic 

efficiency of K158/G308 determined in this chapter (as kcat  /KM) and by Lattard et 

al. (as Vmax / KM) are very similar (5% and 9% of wild type FMO3 activity 

respectively).   

 

TAZ S-Oxygenation by human FMO3 Amino Acid Variants  

Rate of TAZ oxygenation catalysed by FMO3 protein variants was assessed by 

monitoring the rate of decrease in TAZ at 328 nm (described in chapter 2.9.8.2).  TAZ 

assays were performed in triplicate on batches of microsomes isolated from three 

independent infections of Sf 9 cells.  Steady state kinetic parameters, KM and Vmax 

were determined for wild type and variant FMO3 proteins using the non linear 

regression application of the Kinetics module (v.3.1) of SigmaPlot (v.10).   Turnover 

number was calculated using Vmax values and enzyme concentration as described in 

chapter 2.9.8.2.  These findings are summarised in Table 3.2.4 and 3.2.5. 

FMO3 wild type (M486) (Fig.3.2.1A), FMO3 G308 (Fig 3.2.1B) and FMO3 

P360 (Fig 3.2.1C) were capable of TAZ oxygenation.  Analysis of Michaelis-Menten 

plots confirmed a hyperbolic relationship between enzyme activity and initial rates of 

TAZ disappearance (Fig. 3.2.2 A-C).   

 The reaction between TAZ and FMO3 wild type (M486) was found to have a 

kcat and KM   of 1.47 ± 0.37 min-1 and 8.2 ± 0.70 µM respectively.  This data is in 

good agreement with kinetic parameters determined in section 3.1.  FMO3 G308 

catalysed TAZ oxygenation with an observed kcat of 0.35 ± 0.09 min-1 and a KM of 

14.40 ± 3.52.  
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Table 3.2.4: S-oxygenation of TAZ by Human FMO3 (M486) and FMO3 amino 
acid variants 
 
 

 

FMO3 Variant KM  

(µM) 
kcat  

(min-1) 
kcat / KM 

(min-1 M-1) (x105) 
Relative Activity 

(%) 

 
Wild type (M486) 

 
8.2 ± 0.70 

 
1.47 ± 0.37 

 
1.80 ± 0.34 

 
100% 

 

 
FMO3 G308 

 
14.40 ± 3.52 

 
0.35 ± 0.09 

 
0.24 ± 0.13 

 
14%** 

 
FMO3 P360 

 
8.53 ± 0.83 

 
4.05 ± 0.57 

 
4.75 ± 0.81 

 
263%* 

 
The S-oxygenation of TAZ by human FMO3 variants is described in section 2.9.8.2.  

KM (µM), kcat (min-1), kcat / KM (min-1 / M-1)  are reported as mean ± standard error 

obtained from enzyme assays performed in triplicate on microsomes isolated from 

three independent infections of Sf9 cells.  Relative catalytic activity compared to that 

of wild type FMO3 is displayed (%). 

 
 
*p<0.05 compared to the result of obtained for wild type (M486) 

**p<0.005 compared to the result of obtained for wild type (M486) 
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Table 3.2.5: S- oxygenation of TAZ by Human FMO3 (I486) and FMO3 amino 
acid variants 
 

 

FMO3 Variant KM 

(µM) 
kcat 

(min-1) 
kcat / KM 

(min-1 M-1)(x105) 
Relative Activity 

(%) 

 
Wild type (I486) 

 
10.80 ± 1.33 

 
1.70 ± 0.25 

 
1.57 ± 0.30 

 
100% 

 
FMO3 K158  

 
8.80 ± 0.57 

 
1.87 ± 0.19 

 
 

 
2.12 ± 0.26 

 
135% 

 
FMO3 KI58 / G308 

 
N.D 

 
N.D 

 

 
N.D 

 
N.D 

 
 
The S-oxygenation of TAZ by human FMO3 variants is described in section 2.9.8.2.    

KM (µM), kcat (min-1), kcat / KM (min-1 / M-1)  are reported as mean ± standard error 

obtained from enzyme assays performed in triplicate on microsomes isolated from 

three independent infections of Sf9 cells.  Relative catalytic activity compared to that 

of wild type FMO3 is displayed (%). 

 

N.D: Enzyme activity was not detected. 
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Figure 3.2.2A: Non-linear regression and linear transformation of the Michaelis-

Menten equation for FMO3 wild type (M486) catalysed TAZ oxidation (A) 

Michaelis-Menten curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes 

containing heterologously expressed FMO3 wild type (M486) in the presence of 

NADPH and a buffer at pH 8.4. (B) Linear transformation of Michaelis-Menten data 

using Hanes-Woolf regression.       
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Figure 3.2.2B: Non-linear regression and linear transformation of the Michaelis-

Menten equation for FMO3 G308 catalysed TAZ oxidation (A) Michaelis-Menten 

curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes containing 

heterologously expressed FMO3 G308 in the presence of NADPH and a buffer at pH 

8.4. (B) Linear transformation of Michaelis-Menten data using Hanes-Woolf 

regression.       
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Figure 3.2.2C: Non-linear regression and linear transformation of the Michaelis-

Menten equation for FMO3 P360 catalysed TAZ oxidation (A) Michaelis-Menten 

curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes containing 

heterologously expressed FMO3 P360 in the presence of NADPH and a buffer at pH 

8.4. (B) Linear transformation of Michaelis-Menten data using Hanes-Woolf 

regression.       
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Compared to wild type (M486), this variant shows a significant decrease in TAZ 

oxygenation activity.  The kcat / KM of this reaction is approximately 85% lower than 

that of wild type (M486) (p<0.005).  A small increase in the KM  of the reaction 

between FMO3 G308 and TAZ was observed when compared to that of wild type 

(M486) and TAZ, however this is not of statistical significance (p>0.05).  These 

findings suggest that individuals expressing FMO3 G308 in the liver may metabolise 

TAZ at a much lower rate than those who possess the wild type form.  Analysis of 

FMO3 P360 found this enzyme to be significantly more efficient at TAZ oxygenation 

than wild type (M486) (p< 0.05).  The kcat of the FMO3 P360 catalysed reaction was 

found to be 4.05 ± 0.57 min-1, 2.7-fold greater than that observed for wild type 

(M486).  No significant difference was observed in the KM  of TAZ and FMO3 P360 

(8.53 ± 0.83 µM) compared to that of wild type (M486) and TAZ (p>0.05).   These 

findings suggest that individuals possessing this variant in the liver are likely to 

metabolise TAZ much faster than those who possess the wild type form. 

FMO3 wild type (I486) (Fig.3.2.1D) and FMO3 K158 (Fig 3.2.1E) were 

capable of TAZ oxygenation. Analysis of Michaelis-Menten plots confirmed a 

hyperbolic relationship between enzyme activity and initial rates of TAZ 

disappearance (Fig. 3.2.3A and B).  No TAZ oxygenation activity was observed for 

the K158/G308 variant of FMO3.    

kcat values for wild type (I486) and FMO3 K158 catalysed TAZ oxygenation 

were determined as 1.70 ± 0.25 and 1.87 ± 0.19 min-1 respectively (see Fig. 3.2.1 D 

and E).  KM values for wild type (I486) and FMO3 K158 towards TAZ were found to 

be 10.80 ± 1.33 and 8.80 ± 0.57 µM respectively (Table 3.2.5).  kcat and KM values 

for FMO3 K158 were not statistically different to those determined for wild type 

(I486) (Table 3.2.5).  This suggests that individuals expressing this variant in the liver  
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Figure 3.2.3A: Non-linear regression and linear transformation of the Michaelis-

Menten equation for FMO3 wild type (I486) catalysed TAZ oxidation (A) 

Michaelis-Menten curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes 

containing heterologously expressed FMO3 wild type (I486) in the presence of pH 

NADPH and a buffer at pH 8.4. (B) Linear transformation of Michaelis-Menten data 

using Hanes-Woolf regression.       
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Figure 3.2.3B: Non-linear regression and linear transformation of the Michaelis-

Menten equation for FMO3 K158 catalysed TAZ oxidation (A) Michaelis-Menten 

curve of TAZ oxygenation catalysed by Sf9 insect cell microsomes containing 

heterologously expressed FMO3 K158 in the presence of NADPH and a buffer at 8.4. 

(B) Linear transformation of Michaelis-Menten data using Hanes-Woolf regression. 
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are likely to metabolise TAZ at similar rates to those possessing the wild type form.  

No activity was detected for FMO3 K158 /G308 towards TAZ at the tested TAZ 

concentrations (Table 3.2.5). This suggests that the double mutant is either, not 

capable of TAZ oxygenation, or that the reaction has a significantly higher Michaelis 

constant for TAZ. 

 

Finally, kinetic parameters obtained for TAZ and methimazole S-oxygenation 

catalysed by wild type M486 and I486 were compared.  Table 3.2.6 summarises 

kinetic data determined for FMO3 wild type (M486) and wild type (I486) with 

methimazole.    

Data shows a significant difference in kcat values between wild type (M486) 

and wild type (I486) (p<0.005).  Wild type (I486) is approximately twice as efficient 

at methimazole oxidation as wild type (M486).  No significant difference in KM  

values was observed between the two proteins (p>0.05).  In terms of TAZ 

oxygenation, wild type (486M) catalysed this reaction with a kcat of 1.47 ± 0.37 min-

1, whereas a kcat  of 1.70 ± 0.25 min-1  was observed for wild type (I486) (Table 

3.2.7). Therefore no significant difference was found in the rate of TAZ oxygenation 

by wild type (M486) and wild type (I486) (p>0.05).  These findings suggest that the 

M486 mutation is reducing its catalytic efficiency in a substrate-specific manner.    It 

is therefore important for this mutation to be addressed in future work in this field.       

  

HapMap Frequency Analysis of human FMO2 and FMO3 Variations 

Tables 3.2.4 - 6 illustrate how single nucleotide polymorphisms in the FMO3 gene 

can result in the alteration of enzyme activity towards a given substrate.  This may a 
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affect the metabolism of a therapeutic drug and furthermore have an impact on the 

outcome of such a compound in vivo.   In the second part of this section, analysis of 

HapMap was undertaken to establish whether individuals possessing the ‘rapid’ 

variant of FMO3 might also possess the ancestral allele encoding the functional 

FMO2.1 protein.  The reason why this is deemed important is because functional 

FMO2.1 is expressed only in a proportion of sub-Saharan African and Hispanic 

individuals and the enzyme, as demonstrated in section 3.1, is capable of oxidising 

TAZ to metabolites that are expected to be detrimental to a cell.   Therefore 

individuals expressing this protein in the lung and FMO3 P360 in the liver may be at 

higher risk of adverse drug reactions.   

HapMap is an international collaboration that catalogues genetic differences 

and similarities in humans of different ethnic populations.  This allows one to 

investigate variations in several genes in a given individual.    Table 3.2.8 depicts 

information derived from HapMap on individuals from three African populations who 

possess at least one copy of g.21599T>C (L360P) SNP in FMO3.  Table 3.2.8 also 

identifies which variant of FMO2 these individuals possess. 
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Table 3.2.6: S-oxygenation of methimazole by Human FMO3 (M486) and FMO3 
(I486) 
 

 

FMO3 Variant KM  

(µM) 
kcat  

(min-1) 
kcat / KM 

(min-1 M-1) (x105) 
 

Wild type (M486) 

 

 
 

31.45 ± 2.05 

 
 

2.95 ± 0.25 

 
 

9.2 ± 2.10 

 

Wild type (I486) 

 

 
 

24.50 ± 1.70 

 
 

6.26 ± 1.55** 

 
 

2.56 ± 0.66 

The S-oxygenation of methimazole by human FMO3 (M486) and (I486) is described 

in section 2.9.8.1.  KM (µM), kcat (min-1), kcat / KM (min-1 / M-1)  are reported as 

mean ± standard error obtained from enzyme assays performed in triplicate on 

microsomes isolated from three independent infections of Sf9 cells. 

 

**p<0.005 compared to the result obtained for wild type (M486) 
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Table 3.2.7: S- oxygenation of TAZ by Human FMO3 (M486) and FMO3 (I486) 
 
 
 
 

The S-oxygenation of TAZ by human FMO3 variants is described in section 2.9.8.2.  

KM (µM), kcat (min-1), kcat / KM (min-1 / M-1) are reported as mean ± standard error 

obtained from enzyme assays performed in triplicate on microsomes isolated from 

three independent infections of Sf9 cells. 

FMO3 Variant KM  

(µM) 
kcat  

(min-1) 
kcat / KM 

(min-1 M-1) (x105) 
 

Wild type (M486) 

 

 
8.2 ± 0.70 

 
1.47 ± 0.37 

 
1.80 ± 0.34 

 

Wild type (I486) 

 

 
10.80 ± 1.33 

 
1.70 ± 0.25 

 
1.57 ± 0.30 
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Table 3.2.8: Data extracted from HapMap for FMO3 g.21599T>C (FMO3 
360Pro/Leu) and FMO2 g.23238C/T (FMO2-472Gln/STOP). 
 

 

 
HapMap Chromosome 

Identifier No. 

 
FMO3 g.21599T>C 

(FMO3 360Pro/Leu) 
 

 
FMO2  g.23238C>T 

FMO2 – 472Gln/STOP 

 
Population 

NA20340_c1 
NA20340_c2 
 
 

C  (360Leu) 
T   (360Pro) 

T   472 STOP 
          C   472 Gln 

ASW 

 
NA19438_c1 
NA19438_c2 
 

T   (360Pro) 
C  (360Leu) 

T     472 STOP 
T     472 STOP 

LKW 

 
NA19182_c1 
NA19182_c2 

T   (360Pro) 
C   (360Leu) 

T     472 STOP 
T     472 STOP 

YRI 

 
NA18855_c1 
NA18855_c2 

T   (360Pro) 
C   (360Leu) 

T     472 STOP 
T     472 STOP 

YRI 

NA19093_NA19092_c1 
NA19093_NA19092_c2 

C   (360Leu) 
T   (360Pro) 

 
 

T     472 STOP 
NO DATA 

AVAILABLE 

YRI 

 
 
 (HapMap Genome Browser (Phase 3 - genotypes, frequencies & LD, 

www.hapmap.org).  ASW = African ancestry in Southwest USA (population sampled: 

82 individuals). YRI = Yoruba in Ibadan, Nigeria (population sampled: 256 

individuals). LKW = Luhya in Webuye, Kenya (population sampled: 268 

individuals). 
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Given that the g.21599T>C (L360P) polymorphisms encodes a protein with 

higher catalytic activity, it is of particular interest to assess the frequency at which it 

occurs in cis with FMO2 g.23238C (Q472, FMO2.1).  Such individuals will express 

functional FMO2 in their lungs and a rapid metaboliser of TAZ in the liver.  Analysis 

of the African data set on HapMap identifies one individual (out of a sample of 82), of 

African-American descent to be heterozygous for g.21599T>C (L360P) and FMO2 

g.23238C (Q472).  Given the small sample size (82 individuals) and the fact that 

L360P is a rare polymorphism it is of no surprise that only one individual was 

identified.  Nevertheless, this finding is of importance as it confirms that the two 

polymorphisms can and do occur together.  Allelic frequencies cannot be calculated 

from data obtained from one individual and so we have considered frequency data of 

g.21599T>C (L360P) and FMO2 g.23238C (Q472) that have been published by 

studies employing larger samples. The number of individuals estimated to possess at 

least one copy of the ancestral allele of FMO2.1 is 28% in African-Americans 

(Dolphin 1998, Whetstine 2000).  The frequency of individuals heterozygous for the 

g.21599T>C (L360P) polymorphism has been determined as 2% in an African-

American population (Furnes and Schlenk 2003).   Thus assuming that the variations 

assort independently, the frequency at which they occur in cis can be estimated by 

multiplying the individual frequencies.  By doing so, it is estimated that 0.56% of 

African-American individuals will encode FMO3 P360 and FMO2.1 in their liver and 

lungs respectively.  Given that the population of African-Americans is approximately 

36 million, the number of individuals possessing at least one copy of these 

polymosphisms in cis is estimated to be around 20,000.  Though not a considerably 

high number, it must be noted that this figure may be in the order of several million in 
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sub-Saharan Africa (where these individuals have originally come from) since the 

population of this area is in excess of 800 million.      
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Discussion – Kinetic Parameters of FMO3 Amino Acid Variants 
 
 
The impact of pharmacogenetics on anti-tubercular drug metabolism has been 

established.   Isoniazid (INH), an anti-tubercular prescribed since the 1950’s is a pro-

drug that requires metabolic activation by the Mycobacterial catalase-peroxidase 

KatG to generate an irreversible inhibitor of the FAS II enzyme, InhA(Zhang et al. 

1992; Banerjee et al. 1994).  Variant alleles of human arylamine N-acetyltransferase 

2 are implicated in the altered metabolism of Isoniazid.   The drug undergoes 

acetylation in the liver by arylamine N-acetyltransferase 2 (NAT2) and this process 

represents the inactivation of the drug (reviewed in (Preziosi 2007)).    The human 

population can be divided into ‘rapid’, ‘moderate’ and ‘slow’ acetylators depending 

on which variant allele of NAT2 they possess(Parkin et al. 1997; Singh et al. 2009).  

‘Slow’ acetylators have slower rates of INH acetylation in the liver and are more 

likely to develop neuropathy and hepatotoxicity as a result of the accumulation of 

toxic intermediates of INH than those who are ‘rapid’ acetylators (Ellard et al. 1976; 

Timbrell et al. 1977; Ellard et al. 1981; Possuelo et al. 2008). 

 Thiacetazone (TAZ) was once a widely prescribed drug against tuberculosis in 

Africa, Asia, South America and Germany (Anonymous 1963; Anonymous 1968; 

Heffernan 1968; Anonymous 1971; Mame Thierno, On et al. 2001).  But numerous 

reports of TAZ-induced dermatological reactions and hepatotoxicity led to this drug 

being discontinued in the industrialised world (Narang ; Harland 1962; Aquinas 1968; 

Axton 1971; Hussain et al. 1973; Bedi et al. 1974; Gupta et al. 1977; Fegan et al. 

1991; Fegan et al. 1991; Chintu et al. 1993; Ipuge et al. 1995; GOTHI 1998 ; Dieng et 

al. 2001; Mame Thierno et al. 2001). Severe cutaneous rashes including Stevens-

Johnson syndrome have frequently been reported for patients taking TAZ and early 

studies on this drug have shown ethnic-dependent side effects (Miller et al. 1966).  
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Despite the availability of more effective and ‘safer’ antibiotics, certain parts of 

Africa still receive TAZ as part of treatment for TB because of the lack of resources 

(Lawn et al. 1999; (Keus et al. 2003).  To date the underlying cause of the observed 

adverse reactions has not been explained.  It has been suggested that the toxicity may 

be driven by the parent compound, by a reactive metabolite, impairment in 

detoxification processes or by any combination of these factors (Park et al. 1990). 

 In humans the major FMO involved in hepatic drug metabolism is FMO3. 

Expression of FMO3 while largely restricted to the liver in humans is expressed in the 

skin in amounts comparable to other Phase I metabolising enzymes such as CYPs 

2A6, 2B6 and 3A4 (Janmohamed et al. 2001).  FMO3 is encoded from a highly 

polymorphic gene and several polymorphisms give rise to amino acid variants with 

altered catalytic capacity (reviewed in (Phillips et al. 2008)).  This section of the 

thesis describes five amino acid variants of human FMO3 and their capacity to 

catalyse TAZ oxygenation.  It is important to assess the catalytic activity of 

commonly occurring amino acid variants of FMO3 towards TAZ oxygenation given 

that the in vitro reaction between FMO3 and TAZ represents one of bioactivation as it 

generates metabolites that represent chemically reactive species (discussed in section 

3.1).  It is expected that the catalytic efficiency of an FMO3 variant will dictate the 

amount of reactive products produced (discussed in section 3.1). 

  The most common polymorphism  g.15167G>A (E158K) has an allelic 

frequency ranging from 19-50% depending on the population sampled (Dolphin, 

Riley et al. 1997; Park, Chung et al. 1999; Zschocke, Kohlmueller et al. 1999; 

Cashman and Zhang 2002; Park, Kang et al. 2002; Lattard, Zhang et al. 2003; 

Koukouritaki, Poch et al. 2005; Hao, Sun et al. 2007).  In African-Americans, the 

frequency ranges from 45-50% and is the most common FMO3 polymorphism found 
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in this ethnic group (Dolphin et al. 1997; Lattard et al. 2003; Hao et al. 2007).  

Heterozygotes for this polymorphism showed no significant decrease in TMA N-

oxidation as judged by the excretion of free TMA in urine (Zschocke et al. 1999).  In 

vitro studies by other groups have also shown the lack of significant effect of E158K 

amino acid substitution on FMO3 catalysis towards several substrates (Lattard et al. 

2003; Zhang et al. 2003; Koukouritaki et al. 2005; Shimizu et al. 2007).   This finding 

is confirmed in this investigation where no significant difference was observed in the 

E158K protein ability to catalyse S-oxygenation of TAZ and methimazole.  This 

suggests that individuals possessing only this polymorphism of FMO3 are not likely 

to metabolise TAZ less efficiently than those possessing the wild type enzyme. 

  A relatively common polymorphism g.21443A>G (E308G) has an allelic 

frequency of 5-26% depending on the population sampled (Akerman et al. 1999; Park 

et al. 1999; Cashman et al. 2001; Dolan et al. 2005; Koukouritaki et al. 2005; Hao et 

al. 2007). The E308G mutation, unlike E158K, is less prevalent in African- 

Americans, occurring in approximately 5% of individuals (Koukouritaki et al. 2007).   

In vivo studies have shown the variant to have little consequence catalytically to 

FMO3 efficiency (Sachse et al. 1999; Lambert et al. 2001).  Kinetic data determined 

for heterologously expressed G308 have shown moderate but substrate specific effects 

of this mutation on enzyme catalysis (Stormer 2000; Lattard et al. 2003).   In this 

investigation we observe a significant decrease in enzyme efficiency.  In the case of 

methimazole S-oxygenation, a decrease of 55% was observed (Table 3.2.2) (P<0.05). 

In the case of TAZ oxygenation, the E308G variant retained just 20% of the wild type 

FMO3 capacity (p<0.005) as a measure of kcat /KM.    This finding supports previous 

reports that G308 displays substrate-specific catalytic efficiency.   In terms of TAZ 

metabolism, individuals expressing the G308 variant are likely to metabolise TAZ at a 
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slower rate in the tissues that normally express FMO3, the liver and skin, compared to 

those who possess wild type FMO3. This may be beneficial for individuals receiving 

TAZ as chemotherapy.   The advantages of possessing a ‘slower’ enzyme are 

discussed below. 

 The two polymorphisms g.15167G>A (E158K) and g.21443A>G (E308G) 

occur in cis at an allelic frequency ranging from 1-16% depending on the population 

sampled (Cashman et al. 2001; Hao et al. 2007; Koukouritaki et al. 2007).  In 

African- Americans, a small proportion (~1 %) of individuals possess a haplotype in 

which g.15167G>A (E158K) and g.21443A>G (E308G) exist in cis (Allerston et al. 

2007; Koukouritaki et al. 2007).  The K158/G308 double variant when found in cis 

has previously been shown to reduce FMO3 activity by around 50% in vivo (as 

measured by the amount of free TMA excreted in urine samples compared to control 

subjects) (Akerman et al. 1999; Akerman et al. 1999; Zschocke et al. 1999; Zschocke 

et al. 2000).  Another in vivo study investigating the metabolism of the H2-receptor 

antagonist ranitidine, showed less ranitidine N-oxide, compared to control subjects, in 

the urine of individuals possessing the K158/G308 variant (Park et al. 2002). The 

activity of in vitro expressed K158/G308 shows a dramatic reduction in catalytic 

activity when compared to either the K158 or G308 single variants (Park et al. 2002; 

Lattard et al. 2003).  The kinetic data presented in this investigation supports these 

findings.  The double variant displayed a significant reduction in enzyme efficiency, 

retaining just 5% of FMO3 activity towards the S-oxygenation of methimazole (as a 

measure of kcat/KM) (p<0.005).  TAZ oxygenation catalysed by this variant was not 

observed at the tested TAZ concentrations.  This may indicate that the enzyme has 

lost the ability to oxygenate TAZ as an effect of the amino acid substitutions, or that 

the variant has a considerably higher Michaelis constant for this substrate.  The 

 199



finding that the double variant has reduced activity towards TAZ and methimazole is 

of concern to FMO3-substrate metabolism with particular reference to substrates of 

therapeutic importance.  FMO3-substrate metabolism shown to be affected by the 

reduction of in catalytic efficiency of the K158/G308 variant occurring in cis includes 

the H2-receptor antagonist ranitidine (Park et al. 2002) and the non-narcotic, non-

steroidal anti-inflammatory drug, sulindac (Hamman et al. 2000; Hisamuddin et al. 

2004; Hisamuddin et al. 2005).  In the latter case, a less active FMO3 enzyme has 

been shown to be beneficial.  The K158/G308 double variant is implicated in having a 

protective effect on the development of polyps in familial adenomatous polyposis 

patients who received sulindac as part of primary chemoprevention.  The prodrug 

sulindac, is converted by gut bacteria to the active metabolite sulindac sulphide.  

FMO3 inactivates the drug by converting it to sulindac sulphoxide.  The beneficial 

outcome for a patient with an FMO3 protein with reduced enzyme activity is 

presumed to be the result of the reduced ability of this enzyme to inactivate the drug 

and thus leading to prolonged exposure to the active form of sulindac, sulindac 

sulphide (Hisamuddin et al. 2004; Hisamuddin et al. 2005).  The K158/G308 variant 

protein therefore has the potential to affect the efficacy of a given therapeutic agent.  

In the case of TAZ, the double variant K158/G308 and the single variant FMO3 G308 

(described above) may both be advantageous to those receiving TAZ as part of TB 

treatment. Mycobacterial infections are treated when TAZ is activated by the bacterial 

FMO, EtaA (Qian et al. 2006; Alahari et al. 2007).  This results in cell death.  The 

reaction of FMO3 and TAZ in vivo would therefore represent a ‘non-specific’ TAZ-

activation event that would not just give rise to chemically reactive species in a 

mammalian cell (which we wish not to harm) but would also reduce the amount of 

pro-drug reaching the Mycobacteria at the site of infection.  This scenario is likely to 
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not only reduce the efficacy of the drug but also to produce harmful side effects in the 

patient. So an individual who possesses an FMO3 variant which is catalytically 

inefficient may be at a lower risk of TAZ bioactivation in the liver and skin and is 

likely also to have increased drug delivery to the site of infection and thus increase 

and prolong the exposure of the Mycobacteria to TAZ. 

 A rare polymorphism, g.21599T>C (L360P), is observed at an allelic 

frequency of about 2% in African-American populations (Furnes et al. 2003; Lattard 

et al. 2003).  The polymorphism is thought to be unique to this ethnic group as it has 

not been identified in Caucasians and Asians (Furnes et al. 2003; Lattard et al. 2003).  

In vitro studies of heterologously expressed protein have shown that FMO3 P360 is 

the only known variant of FMO3 to display an increased catalytic efficiency to 

substrates.  The substrates investigated were methimazole, TMA and 10-(N, N-

dimethylaminopentyl)-2-(trifluoromethyl) phenothiazine (5-DPT) (Lattard et al. 

2003).  This variant has therefore both increased N- and S-oxygenation activity. In the 

studies we undertook, the P360 variant showed significantly higher catalytic 

efficiencies towards both TAZ and methimazole when compared to wild type FMO3 

(p<0.05).   No data has been published on the in vivo consequence of this 

polymorphism for drug metabolism.  With respect to TAZ metabolism, we speculate 

that individuals expressing the P360 variant may be at higher risk of mediating TAZ 

activation in the liver and skin for reasons described above.  The formation of 

chemically reactive and oxidising metabolites (described in section 3.1) and depletion 

of TAZ may be detrimental to individuals possessing this variant. 

 The functional effects of the g.24642G>A (M486) polymorphism have been 

investigated.  The allelic frequency of this polymorphism is yet to be determined.  

Kinetic data obtained as part of this investigation has shown this variant to have 
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significantly reduced catalytic efficiency towards methimazole (but not to TAZ) when 

compared to wild type FMO3 (I486), as a measure of the turnover number (p<0.05).  

This finding supports previously described data regarding the substrate-specific 

effects of certain amino acid substitutions on FMO3 activity.                     

 In this section, the effect of five polymorphic variants on FMO3 enzyme 

catalysis has been discussed, with particular reference to methimazole and TAZ.  

Work in this section has focussed on functional effects of genetic polymorphisms 

identified in the coding region of the human FMO3 gene and discussed how they 

might influence the metabolism of an anti-tubercular in vivo.  However, it must be 

noted that genetic variations in upstream sequences (promoter and enhancer) of the 

gene have not been analysed.  It is possible than an individual expressing a ‘slow’ 

variant of FMO3 like G308 or K158/G308 may have additional polymorphisms in the 

promoter region of this gene, whereby the expression of the protein is upregulated. 

The production of more ‘slow enzyme’ would therefore be expected to have a 

compensatory effect.  Promoter variations have been identified by Koukouritaki and 

co-workers and are shown to vary within ethnic groups(Koukouritaki et al. 2005; 

Koukouritaki et al. 2007).  Interestingly the group reported an inferred frequency of 

5.6% of African-American individuals to possess a haplotype which encodes a high 

activity promoter and at least one of the g.15167G>A (E158K) and/or g.21443A>G 

(E308G) polymorphisms.  Haplotype analysis has not been reported for the 

g.21599T>C (L360P) polymorphism, it is yet to be seen whether an upstream 

polymorphism will mask or exacerbate the functional effects of this variant.   

 In the second part of this section, an attempt was made to estimate the 

frequency of individuals that possess the g.21599T>C (L360P) and the g.23238C 

(Q472) alleles in cis.  Though just a rough estimate, it was determined that more than 
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20,000 Africans in America and in excess of 4 million people in sub-Saharan Africa 

may express FMO2.1 and FMO3 P360 in their lungs (FMO2.1), liver and skin 

(FMO3).  This may have implications regarding the metabolism of TAZ and other 

xenobiotic compounds that are substrates for these enzymes.      

 Although, to elucidate the cause(s) or mechanism of TAZ-induced toxicity are 

beyond the scope of this investigation, this section has described significant catalytic 

differences in commonly found variants of human FMO3 which may be involved in 

the inter-individual difference observed for the response towards TAZ treatment.     
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3.3 Metabolism of Thiacetazone by Mouse Tissue Microsomes 
 
 

Introduction 

Sections 3.1 and 3.2 described the in vitro metabolism of TAZ by heterologously 

expressed human FMOs in microsomes prepared from insect cells.   In this section, 

microsomes prepared from mouse tissue have been used to investigate the relative 

contribution of the flavin containing monooxygenases (FMOs) and cytochrome P450s 

(CYPs) to TAZ metabolism.  

Microsomes prepared from tissue are fragments of membranes of the 

endoplasmic reticulum in suspension, they reflect (among other things) the tissue-

specific expression of Phase I drug metabolising enzymes.  This makes them an 

invaluable tool to investigate the contribution of such enzymes in the metabolism of a 

given substrate in vitro.   A UV spectroscopy assay (described in section 3.1 and 

2.8.2.2) was used to analyse the rate of TAZ metabolism catalysed by microsomes 

isolated from mouse liver and lung.  Mouse liver was investigated for its capacity to 

metabolise TAZ as the first site of metabolism of an orally administered drug is 

thought to be the liver.   The lung was analysed as this is thought to be the site of 

activation of TAZ (by Mycobacterium tuberculosis) in the case of pulmonary 

tuberculosis.     

The expression of FMOs is known to be sex- and tissue-specific, the key sex-

difference in mice is the absence of FMO3 expression in the liver of adult males (Falls 

et al. 1995; Falls et al. 1997).  FMO3 continues to be expressed in adult, male lung 

(Janmohamed et al. 2004).  Lung and liver microsomes from male and female mice 

were therefore analysed.   Microsomes from liver and lung were prepared from three 

mouse lines; wild type (C57BL/6 mice), Fmo1 (-/-), 2 (-/-), 4(-/-) line and an Fmo 5(-
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/-) line.  Each of the Fmo knockout lines was produced by back-cross breeding onto 

the C57BL/6 line for 8 generations.  Preparation of microsomes from the three mouse 

lines allowed the investigation of the relative contribution of different members of the 

FMO family of enzymes to TAZ metabolism to be analysed.  

 

Results  

Metabolism of TAZ by Liver Microsomes 

Liver microsomes were prepared from wild type C57BL/6 mice, Fmo1 (-/-), 2 (-/-), 4 

(-/-) and Fmo 5 (-/-) mouse line as described in section 2.10.1.  The rate of TAZ 

metabolism catalysed by mouse liver microsomes was monitored 

spectrophotometrically and is described in section 2.10.2.  Data represent mean ± 

standard deviation obtained from two independent isolations of microsomes.  All 

assays were carried out in triplicate on each batch of microsomes. 

Figures 3.3.1-3 represent Michaelis-Menten plots (Vo versus [TAZ]) obtained 

for female liver microsomes prepared from the three mouse lines.  Liver microsomes 

from all three mouse lines catalysed TAZ metabolism and showed a hyperbolic 

Michaelis-Menten relationship between initial rate of enzyme activity and substrate 

concentration.   

There are five FMO proteins to consider in the mouse. Studies on FMO 

expression in mouse tissues have reported FMO1, FMO3 and FMO5 to be highly 

expressed in female liver whereas FMO2 and FMO4 are not expressed (Falls et al. 

1995; Janmohamed et al. 2004).  Therefore in the case of wild type liver microsomes, 

TAZ metabolism could be due to FMO1, FMO3 or FMO5 (Fig. 3.3.1). Experiments 

shown in Fig. 3.3.2 implicate FMO1 in TAZ metabolism as there is a marked decrease  
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Figure 3.3.1: νo versus [TAZ] plot for TAZ metabolism catalysed by wild type 

female mouse liver microsomes.  The rate of TAZ metabolism by wild type female 

mouse liver microsomes was determined as described in section 2.10.2.  Data are 

mean ± standard deviation obtained from assays carried out in triplicate.   
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Figure 3.3.2: νo versus [TAZ] plot catalysed by wild type and Fmo1 (-/-), 2 (-/-), 4 

(-/-) female mouse liver microsomes.   The rate of TAZ metabolism by wild type and 

Fmo1 (-/-), 2 (-/-), 4(-/-) female mouse liver microsomes was determined as described 

in section 2.10.2.  Data are mean ± standard deviation obtained from assays carried 

out in triplicate.   
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Figure 3.3.3: νo versus [TAZ] plot catalysed by wild type, Fmo1 (-/-), 2 (-/-), 4(-/-) 

and Fmo5 (-/-) female mouse liver microsomes.   The rate of TAZ metabolism by 

wild type, Fmo1 (-/-), 2 (-/-), 4(-/-) and Fmo5 (-/-)   female mouse liver microsomes 

was determined as described in section 2.10.2.  Data are mean ± standard deviation 

from assays carried out in triplicate.   

 

 

 

 

 

 

 208



in TAZ metabolism by microsomes isolated from the mouse line that has the Fmo1 

gene deleted.   In contrast, microsomes isolated from the Fmo 5 (-/-) line showed 

similar metabolism to that of wild type microsomes (Fig 3.3.3).  FMO5 therefore does 

not contribute to hepatic TAZ metabolism.  To establish whether these differences 

were significant, rates of TAZ metabolism were analysed at saturating TAZ 

concentrations.  Figure 3.3.4 illustrates a significant decrease in TAZ metabolism by 

microsomes isolated from liver of the Fmo1 (-/-), Fmo2 (-/-), Fmo 4 (-/-) line 

compared to wild type liver microsomes(P<0.005).   There is no significant 

difference, however between wild type and Fmo 5 (-/-) liver microsomes (P>0.05).  

FMO3 is expressed in liver microsomes from all three mouse line and its contribution 

needs to be addressed.  In the liver of a mouse, FMO3 is expressed in a sex-specific 

manner whereby its expression is ‘turned off’ in males as a result of high testosterone 

levels (Falls et al. 1995; Falls et al. 1997).   In order to distinguish between the 

contribution of FMO1 and FMO3 to the rate of TAZ metabolism, microsomes from 

male liver were prepared.  As shown in Figure 3.3.5 there is no significant difference 

between male and female liver microsomes isolated from wild-type mice, indicative 

that FMO3 is unlikely to contribute to the activity shown by female liver microsomes 

(Fig. 3.3.1-4).  Comparison between male, wild-type and Fmo5 (-/-) liver microsomes, 

shows no significant difference in TAZ metabolism (Fig. 3.3.5) indicating that FMO5 

is unlikely to contribute to this reaction.  A small decrease in TAZ metabolism is 

observed in male Fmo 1 (-/-), 2 (-/-), 4 (-/-) liver microsomes when compared to male 

wild-type liver, however this difference is not statistically significant (p>0.05) (Fig. 

3.3.5).  Compared to female Fmo 1 (-/-), 2 (-/-), 4 (-/-) liver microsomes, male 

microsomes from the same mouse line showed a significant increase in TAZ  
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Figure 3.3.4: Rate of TAZ metabolism observed for female mouse liver 

microsomes.  The rate of TAZ metabolism catalysed by liver microsomes prepared 

from female wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-) and Fmo5 (-/-) mice was determined 

as described in section 2.10.2.  Data are mean ± standard deviation obtained from two 

independent experiments.  Enzyme assays were carried out in triplicate.   

 

**p<0.005 compared to the result obtained from wild type female liver microsomes. 
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Figure 3.3.5: Rate of TAZ metabolism observed for female and male mouse liver 

microsomes.  The rate of TAZ metabolism catalysed by liver microsomes prepared 

from female and male wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-) and Fmo5 (-/-) mice was 

determined as described in section 2.10.2.  Data are mean ± standard deviation 

obtained from two independent experiments.  Enzyme assays were carried out in 

triplicate.   

 

*p<0.05 compared to the result obtained from female Fmo1 (-/-), 2 (-/-), 4 (-/-) liver 

microsomes. 
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metabolism (p<0.005).  These findings suggest the contribution of FMOs to TAZ 

metabolism in male mice may be less than in female mice.    

Although FMO contribution to TAZ metabolism has been confirmed, it was 

important to assess whether FMOs are responsible for all of the TAZ metabolism 

observed in the liver. The relative amount of FMO contribution to TAZ metabolism 

was tested by using methods to distinguish between FMO and CYP activity. 

 

Assessing FMO Contribution to TAZ Metabolism in Mouse Liver 

Methimazole is used as a probe substrate and as a competitive inhibitor for FMO 

activity (Dixit et al. 1984; Chung et al. 1997; Rawden et al. 2000; Stormer 2000; 

Virkel et al. 2006).  By acting as a competitive inhibitor, methimazole can be used to 

inhibit FMO-dependent TAZ metabolism. Figure 3.3.6 shows the effect of pre-

incubation of female mouse liver microsomes with methimazole before the addition of 

TAZ.  In the presence of methimazole, a significant decrease in TAZ metabolism is 

observed in the wild type (p<0.005) and Fmo5 (-/-) (p<0.05) female liver 

microsomes, with a reduction of 48% and 35% in enzyme activity respectively. This 

confirms that FMOs contribute to TAZ metabolism.  In the Fmo 1 (-/-), 2 (-/-), 4 (-/-) 

female liver microsomes, however, there is no significant difference between 

methimazole treated and untreated samples (p>0.05). Given that there was no 

significant decrease in TAZ metabolism in microsomes in which the Fmo1 gene had 

been deleted further supports the role of FMO1 in the metabolism of this drug.  In 

male, microsomal liver samples, a decrease in TAZ metabolism activity was observed 

for wild type, Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-), and Fmo5 (-/-) knockout lines in the 

presence of methimazole (Fig. 3.3.7), however this was only significant for wild-type  
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Figure 3.3.6: The effect of pre-treatment of female mouse liver microsomes with 

methimazole on the rate of TAZ metabolism. Pre-treatment of liver microsomes 

with methimazole is described in section 2.10.3.1. The rate of TAZ metabolism 

catalysed by liver microsomes prepared from female and male wild type, Fmo1 (-/-), 2 

(-/-), 4 (-/-) and Fmo5 (-/-) mice was determined as described in section 2.10.2.   Data 

are mean ± standard deviation obtained from two independent experiments.  Enzyme 

assays were carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated Fmo5 (-/-) female liver 

microsomes. 

*p<0.005 compared to the result obtained from untreated female wild type liver 
microsomes.  
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Figure 3.3.7: The effect of pre-treatment of male mouse liver microsomes with 

methimazole on the rate of TAZ metabolism. Pre-treatment of liver microsomes 

with methimazole is described in section 2.10.3.1. The rate of TAZ metabolism 

catalysed by liver microsomes prepared from male wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-

) and Fmo5 (-/-) mice was determined as described in section 2.10.2.   Data are mean 

± standard deviation obtained from two independent experiments.  Enzyme assays 

were carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated wild type male liver 

microsomes. 
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microsomes (p<0.05) and not for the Fmo knockout lines.  This may indicate a lesser 

contribution of FMOs to TAZ metabolism in male mice.  

Although the use of methimazole as a measure of FMO contribution is 

accepted, methimazole is not a substrate for FMO5 and therefore will not affect its 

activity towards TAZ (Cherrington et al. 1998).  Some reports also claim that 

methimazole may inhibit the activity of certain CYP isoenzymes (Guo et al. 1991).  

To gain more of an understanding of FMO contribution to TAZ metabolism, liver 

microsomes were pre-heated to inactivate FMOs.  Unlike CYPs, FMOs are relatively 

heat labile and this property has been exploited to distinguish between FMO and CYP 

activity in vitro    (Rawden et al. 2000; Stormer 2000; Virkel et al. 2006).  Figure 

3.3.8 illustrates the effects of heat inactivation on TAZ metabolism activity for female 

liver microsomes.  There is a significant reduction in activity for wild type (p<0.005) 

and Fmo5 (-/-) (p<0.05) female liver microsomes, but not for microsomes isolated 

from livers of Fmo1 (-/-), 2 (-/-), 4(-/-) mice (p>0.05).  A 42% and 36% decrease in 

activity is seen for wild type and Fmo5 (-/-) female liver microsomal samples 

respectively.  For male liver microsomes, there was no significant difference in TAZ 

metabolism by liver microsomes isolated from wild type, Fmo1 (-/-), 2 (-/-), 4(-/-) or 

Fmo5 (-/-) mouse lines after heat treatment (p>0.05) (Fig. 3.3.9).  The reduction in 

activity in wild type male liver microsomes observed after methimazole treatment 

(Fig. 3.3.7) may therefore indicate the inhibition of a CYP rather than an FMO.   

These findings suggest a sex-specific difference in TAZ metabolism in liver of a 

mouse.  To ensure that FMO activity had fully diminished after heat inactivation, 

samples were tested for activity towards methimazole (see section 2.10.3.1) before 

and after heating. No TNB oxidation was observed after heat treatment (data not 

shown) indicating that FMOs were no longer active.  
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Figure 3.3.8: The effect of pre-heat treatment of female liver microsomes on TAZ 

metabolism.  Heat inactivation of FMOs in liver microsomes is described in section 

2.10.3.2.  The rate of TAZ metabolism catalysed by liver microsomes prepared from 

female wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-) and Fmo5 (-/-) mice was determined as 

described in section 2.10.2.   Data are mean ± standard deviation obtained from two 

independent experiments.  Enzyme assays were carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated Fmo5 (-/-) female liver 

microsomes. 

**p<0.005 compared to the result obtained from untreated wild type female liver 

microsomes. 
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Figure 3.3.9: The effect of pre-heat treatment of male liver microsomes on TAZ 

metabolism.  Heat inactivation of FMOs in liver microsomes is described in section 

2.10.3.2. The rate of TAZ metabolism catalysed by liver microsomes prepared from 

male wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-) and Fmo5 (-/-) mice was determined as 

described in section 2.10.2.   Data are mean ± standard deviation obtained from two 

independent experiments.  Enzyme assays were carried out in triplicate.   
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As TAZ metabolism was not completely abolished by methimazole treatment 

or heat inactivation, it indicates that another enzyme or group of enzymes are 

involved in the metabolism of TAZ.    

 

Assessing CYP Contribution in Liver Microsomes to TAZ Metabolism 

The relative contribution of CYPs was investigated using an antibody specific to 

NADPH-dependent Cytochrome P450 reductase.   This antibody will inactivate all 

liver microsomal CYP activity regardless of the CYP form.  NADPH-dependent 

Cytochrome P450 reductase (CRP) are FAD and FMN containing enzymes which 

transfer electrons to CYPs.  By inhibiting CRP, CYPs can no longer function as there 

is no electron donor from which they can accept an electron (as a result of the absence 

of reduced cytochrome P450 reductase).  Therefore the use of an antibody against 

CRP is a useful tool to investigate the relative contribution of CYP to a given 

substrate in vitro. The amount of NADPH-dependent Cytochrome P450 Reductase 

antiserum was optimised by testing increasing volumes of antiserum on rates of TAZ 

metabolism catalysed by microsomal samples until no further change in the rate of 

TAZ metabolism was observed (see section 2.10.3.4).    Non-immune sera was used 

to approximate the amount of non-specific inhibition.   Non-specific inhibition of 

TAZ metabolism was found to be ~20%.  The actual amount of inhibition by 

NADPH-dependent Cytochrome P450 Reductase antiserum was corrected for the 

non-specific inhibition (see section 2.10.3.4).   Figure 3.3.10 shows the effect of CYP 

inactivation on the rate of TAZ metabolism in isolated female liver microsomes.  CYP 

inactivation caused a significant decrease in TAZ metabolism by the wild type and 

two Fmo knockout mouse lines.   A 44%, 63% and 52% decrease in  
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Figure 3.3.10: The effect of Anti-NADPH-dependent Cytochrome P450 reductase 

serum on TAZ metabolism by female liver microsomes.  Inactivation of P450s in 

liver microsomes is described in section 2.10.3.4.  The rate of TAZ metabolism 

catalysed by liver microsomes prepared from female wild type, Fmo1 (-/-), 2 (-/-), 4 (-

/-) and Fmo5 (-/-) mice was determined as described in section 2.10.2.   Data are mean 

± standard deviation obtained from two independent experiments.  Enzyme assays 

were carried out in triplicate.   

  
 
* p<0.05 compared to the result obtained from untreated female Fmo1 (-/-),2 (-/-),4 (-

/-) liver microsomes. 

** p<0.005 compared to the result obtained from untreated female wild type or Fmo5 

(-/-) female liver microsomes respectively.    
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TAZ metabolism was observed for microsomes from wild type (p<0.005), Fmo1 (-/-), 

2(-/-), 4(-/-), (p<0.05) and Fmo5 (-/-) mice (p<0.005) respectively.   In males, 

inactivation of CYPs caused a significant decrease in TAZ metabolism by liver 

microsomes isolated from all three mouse lines.  Wild type, Fmo1 (-/-), 2 (-/-), 4(-/-) 

and Fmo5 (-/-) microsomes had a reduction of 61%, 64% and 75% respectively (Fig. 

3.3.11). This confirms that CYPs, as well as FMOs contribute towards the metabolism 

of TAZ by mouse liver microsomes.   

Figure 3.3.12 summarises the results obtained after heat inactivation (FMO 

inactivation) or after anti-CRP incubation (CYP inactivation) in male and female wild 

type liver microsomes.  The reduction in TAZ metabolism after FMO or CYP 

inactivation in female samples was 42% and 44% respectively whereas in male liver 

microsomes CYP inactivation led to a 61% decrease in enzyme activity but no 

significant difference was observed after FMO inactivation.  When FMO and CYPs 

were both inactivated (heat inactivation and anti-CRP incubation) the effect was 

additive.  In the case of female liver microsomes inactivation of FMO and CYPs 

resulted in an insignificant amount of enzyme activity being observed but in the male 

microsomal samples, approximately 23% of TAZ metabolism was still present (data 

not shown).           

 

Data reported here suggests that FMO and CYPs are involved to similar degrees in the 

metabolism of TAZ in liver microsomes of female wild type mice, but not in liver 

microsomes of male mice.   In male liver microsomal samples (of wild type mice), 

data suggests a CYP-mediated enzymatic reaction as the major pathway and the 

possibility of a third, unidentified enzyme or group of enzymes to contribute as well.  

Analysis of data from the two knockout lines implicates FMO1 as the major FMO  
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Figure 3.3.11: The effect of Anti-NADPH-dependent Cytochrome P450 reductase 

serum on TAZ metabolism by male liver microsomes. Inactivation of P450s in 

liver microsomes is described in section 2.10.3.4. The rate of TAZ metabolism 

catalysed by liver microsomes prepared from male wild type, Fmo1 (-/-), 2 (-/-), 4  

(-/-) and Fmo5 (-/-) mice was determined as described in section 2.10.2.   Data are 

mean ± standard deviation obtained from two independent experiments.  Enzyme 

assays were carried out in triplicate.   

  
 

* p<0.05 compared to the result obtained from untreated male wild type liver 

microsomes. 

** p<0.005 compared to the result obtained from untreated male Fmo1 (-/-), 2 (-/-), 4 

(-/-) or Fmo5 (-/-) female liver microsomes respectively.    
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Figure 3.3.12: Comparison of the effects of pre-heat treatment and Anti-

NADPH-dependent Cytochrome P450 reductase serum incubation on the rate of 

TAZ metabolism by male and female liver microsomes.  Pre-heat treatment and 

incubation with NADPH-dependent cytochrome P450-Reducatse antibody of liver 

microsomes is described in section 2.10.3. The rate of TAZ metabolism catalysed by 

liver microsomes prepared from male and female wild type, Fmo1 (-/-), 2 (-/-), 4 (-/-) 

and Fmo5 (-/-) mice was determined as described in section 2.10.2.   Data are mean ± 

standard deviation obtained from two independent experiments.  Enzyme assays were 

carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated male liver microsomes. 

**p<0.005 compared to the result obtained from untreated female liver microsomes. 
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isoform to be involved in TAZ metabolism by female liver microsomes but not by 

male liver microsomes. 

 

TAZ Metabolism by Lung Microsomes 

 

Lung microsomes were prepared from wild type (C57BL/6 mice), Fmo1 (-/-), 2 (-/-), 

4 (-/-) and an Fmo 5 (-/-) mouse line as described in section 2.10.1.  The rate of TAZ 

metabolism catalysed by mouse liver microsomes was monitored 

spectrophotometrically and is described in section 2.10.2.2.  Data represent mean ± 

standard deviation obtained from two independent microsomal isolations.  All assays 

were carried out in triplicate on each batch of microsomes. 

Figure 3.3.13 represents Michaelis-Menten plots (νo versus [TAZ]) obtained 

for female lung microsomes prepared from the three mouse lines.  Lung microsomes 

prepared from wild type and Fmo5 (-/-) mice catalysed TAZ metabolism and showed 

a hyperbolic Michaelis-Menten relationship between initial rate of enzyme activity 

and substrate concentration.  Microsomes prepared from Fmo1 (-/-), 2 (-/-), 4 (-/-) 

mouse lung however were not found to metabolise TAZ, suggesting that one or all of 

the three genes deleted (Fmo1, 2 or 4) are important in TAZ metabolism in the lung.  

To test whether the lack of activity towards TAZ is because of the absence of FMO 

protein or because the lung microsomal samples were inactivated during isolation, a 

control experiment was carried out.  In the control experiment the activity of 

NADPH-dependent Cytochrome P450 reductase was measured using the substrate 

cytochrome c.  The methimazole assay was not used because mouse lung have low 

amounts of FMO3, therefore in the absence of FMO1, FMO2 and FMO4, little or no 

activity towards this substrate would be expected.  The activity of NADPH-dependent  
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Figure 3.3.13: νo versus [TAZ] plot for TAZ metabolism catalysed by female 

mouse lung microsomes.   The rate of TAZ metabolism catalysed by wild type 

female mouse lung microsomes was determined as described in section 2.10.2.  Data 

are mean ± standard deviation from assays carried out in triplicate.   
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NADPH-dependent Cytochrome P450 reductase was assayed by measuring the initial 

rate of cytochrome c reduction [Omura et al. 1970].  Figure 3.3.14 shows the activity 

of lung microsomes isolated from female Fmo1 (-/-), 2(-/-), 4(-/-) and female wild 

type mice.  The rate of cytochrome c reduction by Fmo1 (-/-), 2(-/-), 4(-/-) lung 

microsomes is similar to that catalysed by wild type microsomes and therefore shows 

that the microsomes from the knockout line are active.   

Wild type and Fmo5 (-/-) lung microsomes showed Michaelis-Menten 

behaviour over the tested TAZ concentrations (Fig. 3.3.13).  At saturating TAZ 

concentrations, lung microsomes from female and male wild type and Fmo5 (-/-) mice 

showed a significant difference in TAZ metabolism (p<0.05) (Fig. 3.3.15).  Female 

lung microsomal samples from both mouse lines were more efficient at TAZ 

metabolism than were microsomes from male lung samples (Fig. 3.3.15).  There was 

no significant difference in TAZ metabolism between female wild type and female 

Fmo5 (-/-) lung microsomes (Fig. 3.3.15) indicating that FMO5 is unlikely to be 

contributing to TAZ metabolism in female lung microsomes.  In males however, lung 

microsomal samples from Fmo5 (-/-) mice showed a significant decrease in TAZ 

metabolism compared to the wild type microsomes (p<0.005) (Fig. 3.3.15).  The 

results indicate a sex-dependent difference in mouse lung towards TAZ and also 

indicate a role for FMO5 in male lung microsomes.   A possible explanation for the 

observed activity in the Fmo5 (-/-) microsomal samples may be that the lack of FMO5 

in lung leads to an up-regulation of another FMO or CYP to compensate for the role 

FMO5 would normally play in the lung.    
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Figure 3.3.14: The reduction of cytochrome c catalysed by wild type and Fmo1  

(-/-), 2 (-/-), 4 (-/-) lung microsomes.  The rate of cytochrome c reduction was 

monitored as described in section 2.10.4. The change in absorbance signal at 550 nm 

representing the reduction of cytochrome c by lung microsomes prepared from wild 

type female (A) and Fmo 1 (-/-), Fmo2 (-/-), Fmo4 (-/-) female mice (B) are shown. 
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Figure 3.3.15: Rate of TAZ metabolism observed for female and male mouse 

lung microsomes. The rate of TAZ metabolism catalysed by lung microsomes 

prepared from female and male wild type and Fmo5 (-/-) mice was determined as 

described in section 2.10.2.  Data are mean ± standard deviation obtained from two 

independent experiments.  Enzyme assays were carried out in triplicate.   

 

**p<0.05 compared to the result obtained from female wild type or Fmo5 (-/-) lung 

microsomes respectively. 
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Assessing FMO Contribution to TAZ Metabolism in Mouse Lung Microsomes 

Methimazole was used as a competitive inhibitor to determine the contribution of 

FMOs to TAZ metabolism as described above.  Female lung microsomes showed a 

significant difference in TAZ metabolism after treatment with methimazole; a 63 and 

65% decrease in activity was observed for wild type and Fmo5 (-/-) microsomes 

respectively (Fig. 3.3.16).   For male lung microsomes treated with methimazole; a 

32% and 47%  decrease in activity in TAZ metabolism was observed for wild type 

(p<0.005) and Fmo5 (-/-) (p<0.05) lung microsomes respectively (Fig. 3.3.17).  

These findings suggest that although FMOs are contributing to TAZ metabolism in 

the lung, FMO contribution is higher in the female microsomes than the male 

microsomes of this organ. This is supported by experiments shown in Figure 3.3.15 

where female lung microsomal samples are observed to be more efficient at TAZ 

metabolism than male lung microsomes.  The role of FMO5 is not confirmed by these 

findings (shown in Fig. 3.3.17).  FMO5, unlike other members of the FMO family, 

does not metabolise methimazole, therefore, if one assumes the difference in TAZ 

metabolism between male wild type and male FMO5 (-/-) microsomes (shown in Fig. 

3.3.16) is because of the absence of FMO5, then methimazole treatment should have 

no effect on the rate of TAZ metabolism catalysed by Fmo5 (-/-) lung microsomes. 

Figure 3.3.17 shows, however a significant decrease in TAZ metabolism in male 

FMO5 (-/-) lung microsomes compared to TAZ ‘only’ treated Fmo5 (-/-) microsomes 

(p<0.05).  This suggests that FMO5 is unlikely to influence TAZ metabolism in the 

male lung microsomes.      Following heat inactivation of the FMOs, a significant 

difference in TAZ metabolism was observed for female lung microsomes (Fig. 

3.3.18).  Compared to unheated lung microsomes; heating caused a reduction in TAZ 

metabolism of 61% and 68% by wild type and Fmo5 (-/-) female lung microsomes  
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Figure 3.3.16: The effect of pre-treatment with methimazole on the rate of TAZ 

metabolism by female mouse lung microsomes.  Pre-treatment of lung microsomes 

with methimazole is described in section 2.10.3.1. The rate of TAZ metabolism 

catalysed by lung microsomes prepared from female wild type and Fmo5 (-/-) mice 

was determined as described in section 2.10.2.   Data are mean ± standard deviation 

obtained from two independent experiments.  Enzyme assays were carried out in 

triplicate.   

* *

 

*p<0.05 compared to the result obtained from untreated female wild type or Fmo5  

(-/-) lung microsomes respectively. 
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Figure 3.3.17: The effect of pre-treatment with methimazole on the rate of TAZ 

metabolism by male mouse lung microsomes.  Pre-treatment of lung microsomes 

with methimazole is described in section 2.10.3.1. The rate of TAZ metabolism 

catalysed by lung microsomes prepared from male wild type and Fmo5 (-/-) mice was 

determined as described in section 2.10.2.   Data are mean ± standard deviation 

obtained from two independent experiments.  Enzyme assays were carried out in 

triplicate.   

 

*p<0.05 compared to the result obtained from untreated male wild type or Fmo5 (-/-) 

lung microsomes respectively. 
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Figure 3.3.18: The effect of pre-heat treatment on TAZ metabolism observed by 

lung microsomes.  Heat inactivation of FMOs in lung microsomes is described in 

section 2.10.3.2. The rate of TAZ metabolism catalysed by lung microsomes prepared 

from female wild type and Fmo5 (-/-) mice was determined as described in section 

2.10.2.   Data are mean ± standard deviation obtained from two independent 

experiments.  Enzyme assays were carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated female wild type or Fmo5  

(-/-) lung microsomes respectively.  
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This data is in agreement with findings from methimazole treated microsomes.  Heat 

inactivation of FMOs in male lung microsomes caused a significant decrease in TAZ 

metabolism by wild type lung microsomes (p<0.05) but not however, for Fmo5 (-/-) 

lung microsomes (Fig. 3.3.19).  This indicates that FMO contribution is less in the 

lung microsomes of the male Fmo5 (-/-) mouse line.     

 

Assessing CYP Contribution to TAZ Metabolism in Mouse Lung Microsomes 

As described earlier, anti-sera to NADPH-dependent Cytochrome P450 Reductase is a 

tool which can be used to inactivate CYP activity.  Here it has been used to deduce 

the relative contribution of CYPs to TAZ metabolism in mouse lung microsomes. 

Non- specific inhibition of TAZ metabolism by serum addition was found to be 

~20%.   

The effects of pre-incubating microsomes with NADPH-dependent 

Cytochrome P450 Reductase  antibody shows that in both male and female lung 

samples a significant decrease in TAZ metabolism had occurred (p<0.05) (Fig. 3.3.20 

and 3.3.21).  For female lung microsomes there was a 31 and 57% reduction in 

activity for wild type and Fmo5 (-/-) mouse lines respectively and in males a 34 and 

31% decrease in activity of wild type and Fmo5 (-/-) lungs respectively.  These 

findings confirm that CYPs contribute to the metabolism of TAZ in mouse lung 

microsomes.      

 

Figure 3.3.22 summarises the results obtained after heat inactivation (FMO 

inactivation) or after anti-CRP incubation (CYP inactivation) in male and female wild 

type lung microsomes.  The reduction in TAZ metabolism after FMO or CYP 

inactivation in female samples was 63% and 31% respectively whereas in male liver  
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Figure 3.3.19: The effect of pre-heat treatment on TAZ metabolism by male lung 

microsomes.  Heat inactivation of FMOs in lung microsomes is described in section 

2.10.3.2. The rate of TAZ metabolism catalysed by lung microsomes prepared from 

male wild type and Fmo5 (-/-) mice was determined as described in section 2.10.2.   

Data are mean ± standard deviation obtained from two independent experiments.  

Enzyme assays were carried out in triplicate.   

 

*p<0.05 compared to the result obtained from untreated male wild type lung 

microsomes. 
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microsomes FMO and CYP inactivation led to a 32% and 34% decrease in enzyme 

activity respectively.  When FMO and CYPs were both inactivated (heat inactivation 

and anti-CRP incubation) the effect was additive.  In the case of female liver 

microsomes inactivation of FMO and CYPs resulted in an insignificant amount of 

enzyme activity being observed but in the male microsomal samples, approximately 

25% of TAZ metabolism was still present (data not shown). Data reported here 

suggests that FMO is the major enzymatic pathway involved in the metabolism of 

TAZ in the lung microsomes of female wild type mice, but not in lung microsomes of 

male mice.   In male lung microsomal samples (of wild type mice) the contribution of 

FMOs and CYPs is similar, the sum of FMO and CYP contribution however does not 

equal the total amount of TAZ metabolism observed in this tissue.  This may indicate 

a role of another enzyme in the metabolism of TAZ in male lung microsomes of mice.  

The relative contribution of FMO1 and FMO2 to TAZ metabolism could not be 

deduced, mainly because methimazole is a substrate for both isoforms.  A probe 

substrate for FMO1 could have been imipramine (Kim et al. 2000; Hernandez et al. 

2004), however this compound is also a substrate for some CYPs.  Further studies are 

required to elucidate the relative contribution of FMO1 and FMO2 to TAZ 

metabolism in vitro  

 

Comparison between Liver and Lung Microsomes With Respect to TAZ 

Metabolism 

Figure 3.3.23 shows the rate of TAZ metabolism for female liver and lung 

microsomes.  There is a significant difference between activities of lung and liver 

microsomes isolated from female wild type mice (p<0.005). Lung microsomes are 

more efficient at TAZ metabolism than liver microsomes from female wild type mice.    
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Figure 3.3.20: The effect of Anti-NADPH-dependent Cytcrome P450 reductase 

serum on TAZ metabolism observed for female lung microsomes. Inactivation of 

NADPH-dependent Cytochrome P450 reductase in lung microsomes is described in 

section 2.10.3.3. The rate of TAZ metabolism catalysed by lung microsomes prepared 

from female wild type and Fmo5 (-/-) mice was determined as described in section 

2.10.2.   Data are mean ± standard deviation obtained from two independent 

experiments.  Enzyme assays were carried out in triplicate.   

  
 
* p<0.05 compared to the result obtained from untreated female wild type or  

Fmo5 (-/-) lung microsomes respectively. 
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Figure 3.3.21: The effect of Anti-NADPH-dependent Cytochrome P450 reductase 

serum on TAZ metabolism by male lung microsomes.  Inactivation of P450s in 

lung microsomes is described in section 2.10.3.3. The rate of TAZ metabolism 

catalysed by lung microsomes prepared from male wild type and Fmo5 (-/-) mice was 

determined as described in section 2.10.2.   Data are mean ± standard deviation 

obtained from two independent experiments.  Enzyme assays were carried out in 

triplicate.   

  
 
* p<0.05 compared to the result obtained from untreated male wild type or Fmo5 (-/-) 

lung microsomes respectively. 
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Figure 3.3.22: Comparison of the effects of pre-heat treatment and Anti-NADPH 

Cytochrome P450 reductase antibody incubation on the rate of TAZ metabolism 

observed for male and female lung microsomes.  Pre-heat treatment and incubation 

with anti-NADPH-dependent Cytochrome P450-Reductse antibody of liver 

microsomes is described in section 2.10.3.2 and 2.10.3.3. The rate of TAZ metabolism 

catalysed by lung microsomes prepared from male and female wild type and Fmo5  

(-/-) mice was determined as described in section 2.10.2.   Data are mean ± standard 

deviation obtained from two independent experiments.  Enzyme assays were carried 

out in triplicate.   
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However, there is no significant difference in TAZ metabolism by male lung and liver 

microsomes isolated from wild type mice.    This indicates a sex-dependant difference 

within the capacity to metabolise TAZ in mouse lung and liver.  

In summary, experiments carried out in this section describe the relative 

contribution of FMOs and CYPs to the metabolism of TAZ in microsomes prepared 

from lung and liver of mouse.  The data confirms a role for both FMOs and CYPs in 

the in vitro metabolism of TAZ.  Sex- and tissue-specific differences in TAZ 

metabolism have been identified. 
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Figure 3.3.23: Comparison of the rate of TAZ metabolism by lung and liver 

microsomes prepared from male and female wild type mice.  The rate of TAZ 

metabolism catalysed by lung and liver microsomes prepared from male and female 

wild type mice was determined as described in section 2.10.2.   Data are mean ± 

standard deviation obtained from two independent experiments.  Enzyme assays were 

carried out in triplicate.   

 

**p<0.005  
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Discussion - Metabolism of Thiacetazone by Mouse Tissue Microsomes 

 

Studies of drug metabolism traditionally examine the role of Cytochrome P450s 

(CYPs) in this process.  CYPs are a large family of enzymes and considered to be the 

most important group in Phase I metabolism.   Members of this family exhibit broad 

and overlapping substrate specificities towards therapeutic compounds and other 

xenobiotics.   In recent times however, the role of flavin containing monooxygenases 

(FMOs) has become of increasing interest.    

 Numerous substrates of therapeutic importance are metabolised by both CYPs 

and FMOs, these include the estrogen receptor modulator, Tamoxifen prescribed in 

the treatment of breast cancer (Parte et al. 2005), the anti-depressant imipramine (Kim 

et al. 2000; Hernandez et al. 2004) and Triclabendazole a compound used to treat 

fascioliasis (Virkel et al. 2006).  

 In this section, microsomes prepared from mouse liver and lung were 

employed to represent the pool of CYPs and FMOs expressed in a tissue in vivo.  The 

relative contribution of CYPs and FMOs was investigated with reference to TAZ 

using a combination of approaches; inhibition of CYPs with an antiserum directed 

against NADPH-dependent Cytochrome P450 reductase, inactivation and chemical 

inhibition of FMOs, and distinguishing between different FMOs using our knowledge 

of their sex- and tissue-specific expression.  Microsomes prepared from two Fmo 

knockout lines were used to gain further understanding of the contribution of specific 

FMO isoforms to TAZ metabolism. 

 Inhibition experiments performed on microsomes prepared from wild type 

female liver suggests that FMOs and CYPs are responsible for TAZ metabolism in 

vitro and that the contribution of FMOs and CYPs is similar.  The metabolism of TAZ 
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by male liver microsomes prepared from wild type mice catalysed the reaction to a 

similar extent to female wild type microsomal samples. Inhibition studies however 

unmasked significant differences between the contribution of FMOs and CYPs to this 

reaction by the two sexes.    In males, CYP contribution was determined to be greater 

than that of FMOs with the latter enzymatic contribution being insignificant.  Analysis 

of data obtained from both sexes and the two knockout mouse lines and between both 

sexes implicated FMO1 to be important in the metabolism of TAZ in females but not 

in males.  A survey of literature describing the sexual dimorphic expression of FMOs 

and CYPs was undertaken to try to explain this finding.  Examples of sex-specific 

expression of CYPs and FMOs in the liver are documented. In the mouse, CYP2D9 is 

highly expressed in the liver of males but is repressed in the female (Sakuma et al. 

2004), whereas hepatic expression of CYP2A4 and CYP2B9 is predominant in the 

liver of females (reviewed by Waxman et al. 2009).  Studies of FMO mRNA 

expression have reported FMO1 transcript levels to be significantly higher in the liver 

of female mouse (Janmohamed et al. 2004) whereas FMO3 is not expressed in the 

liver of adult males (Cherrington et al. 1998).  Given that liver microsomes obtained 

from male Fmo1(-/-), 2 (-/-), 4 (-/-) mice showed significantly higher levels of TAZ 

metabolism than female liver microsomes and the insignificant effect of  heat 

inactivation on these samples, suggests that FMOs (and FMO1 in particular) are not 

responsible for the metabolism of TAZ observed in male microsomal samples. 

Therefore it is likely that the sex-specific expression of a CYP isoform was 

responsible for the difference in TAZ metabolism observed in between male and 

female liver microsomes.  It was beyond the scope of this investigation to determine 

the exact CYP isoform responsible for the sex-specific difference.   
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After CYP and FMO inactivation in male liver microsomal samples, enzyme 

activity representing approximately a third of the control was still observed, indicating 

the contribution of a third enzyme present in male liver but not female liver 

microsomal samples. 

 Lung microsomal samples prepared from female wild type and Fmo5 (-/-) 

mice were significantly more efficient at TAZ metabolism than male microsomal 

samples of this tissue. The contribution of FMOs to TAZ metabolism by male lung 

microsomes was identified but this was about half of that determined for female lung 

microsomes.  This finding, like that observed in the liver microsomes suggests a sex-

specific difference in TAZ metabolism in the lung microsomes of male mice.  A 

literature survey of sex-specific expression of FMO and CYP abundance in lung 

reports significantly higher levels of FMO1 in the female mouse than in males 

(Janmohamed et al. 2004).  Gene expression studies have identified 24 CYP forms 

expressed in mouse lung, among these Cyp 2g1 is specific to this tissue and Cyp 2f2 is 

the most highly expressed (Choudhary et al. 2005), however literature relating to sex-

specific expression of CYPs in the lung was not found. After both FMO and CYP 

inactivation in male lung microsomes significant activity towards TAZ is observed.  

This was not the case for female lung microsomes whose activity towards TAZ was 

abolished when both FMO and CYP activity were inhibited.  The findings illustrate a 

sex-specific difference in both lung and liver microsomes of male mice and implicate 

a third enzyme in TAZ metabolism.   

 Lung microsomes from male and female Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-) 

mice showed no activity towards TAZ.  The microsomes demonstrated the ability to 

reduce cytochrome c and therefore were ‘active’ with respect to CYP activity.  From 

this finding it was expected that one or all of the deleted Fmos (expressing FMO1, 
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FMO2 and FMO4) would be responsible for the total amount of TAZ metabolism 

observed in wild type lung microsomes.  But as described above, metabolism of TAZ 

was still observed after FMO inactivation by heat or methimazole treatment.   This 

result is perplexing, it cannot be explained why microsomes of the knockout line did 

not show CYP-mediated TAZ metabolism when this enzyme group is contributing to 

the reaction in wild type microsomes.     

 In the lung of mouse, FMO1 and FMO2 are considered the major pulmonary 

isoforms (Janmohamed et al. 2004; Siddens et al. 2008).  In this investigation it was 

not possible to distinguish the relative contribution of these isoforms in microsomes 

of this tissue, the reason being the lack of an appropriate probe substrate to distinguish 

between FMO1 and FMO2 activity.  Some reports have claimed that mouse FMO2 is 

considerably more resistant to heat inactivation than other members of this family and 

that this property can be used to distinguish FMO2 activity (Siddens et al. 2008). This 

was not observed in experiments carried out as part of this investigation as 

microsomes were tested for their ability to oxygenate methimazole before and after 

heat treatment.  TNB oxidation was completely abolished after heat treatment and 

suggests that all FMOs were inactivated. 

 Lung and liver microsomes prepared from wild type female mice displayed a 

hyperbolic relationship between enzyme activity and TAZ concentration, indicating 

Michaelis-Menten kinetics.  Given that FMOs and CYPs were contributing to TAZ 

metabolism in these samples, may suggest that the affinity of this substrate for the two 

enzymes is similar at the tested concentrations.           

 In summary, this section has described the in vitro metabolism of TAZ by 

liver and lung microsomes prepared from mouse.  The relative contribution of CYPs 

and FMOs has been determined and an insight into the possible FMO isoform 
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involved in this reaction has been gained.  Further studies are required to identify 

CYP isoforms involved in this reaction and also to identify other enzymes which are 

likely to be involved in TAZ metabolism.  Additional studies are required to identify 

the products generated by CYP-mediated metabolism of TAZ. 
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4.1 Summary 

TAZ and ETA are anti-tubercular drugs prescribed to treat TB in the poorest parts of 

the world and in industrialised countries respectively.  With TB announced as a 

pandemic by the WHO and the dramatic increase in MDR- and X-MDR- TB cases, 

development of new and effective drugs is a race against time.  Some researchers and 

medical professionals alike have resorted to the re-introduction of TAZ to 

chemotherapy regimens in an attempt to use whatever is at hand.   There are two main 

obstacles in the way of ‘reinstating’ this cheap and effective drug, first the toxicity 

that TAZ exerts in a significant proportion of individuals and secondly the scarce 

amount of information regarding its metabolism in man and bacteria.  The metabolism 

of TAZ in the latter has provided the focus of recent literature that has subsequently 

determined the nature of TAZ as a prodrug (Alahari et al. 2007), the enzyme 

responsible for its activation (Baulard et al. 2000; DeBarber et al. 2000; Qian et al. 

2006; Dover et al. 2007; Alahari et al. 2009), the bacterial target of TAZ action 

(Alahari et al. 2007) and the mechanism by which it debilitates Mycobacteria (Alahari 

et al. 2007; Dover et al. 2007).  Though essential pieces of information, they do not 

explain why or how TAZ induces derma- and hepatic toxicity.  This will become clear 

once the in vivo metabolism of TAZ in man is determined and understood.  

A pharmacogenetic investigation was undertaken to assess the effect of a 

recently identified genetic variation in FMOs in individuals of African-decent.  A 

SNP in the human FMO2 gene that occurs at a frequency of 100% of Asians and 

Europeans results in the production of a non-functional enzyme (Dolphin et al. 1998).  

Interestingly, a significant proportion of Africans and Hispanics of African-decent 

encode the ancestral form of the gene and consequently express functionally active 

FMO2 in the lungs (Dolphin et al. 1998; Krueger et al. 2002; Krueger et al. 2005; 
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Veeramah et al. 2008).   The pharmacological implications of human FMO2.1 are yet 

to be identified, but given that FMOs are important in drug metabolism it is plausible 

to assume that individuals expressing this enzyme in the lung will display an altered 

metabolic profile with regard to xenobiotics in this tissue.  Experiments in this 

investigation were used to assess the pharmacological consequences that this enzyme 

might have on the metabolism of TAZ and ETA. 

Human FMO2.1, at least in vitro can catalyse the oxidation of both TAZ and 

ETA.  In the case of ETA, FMO2.1 forms one of the products that has been identified 

for EtaA, that is the S-oxide.  Given the non-toxic nature of such a metabolite, it is 

likely that FMO2.1 may catalyse the detoxification of this drug and in effect mediate 

the ‘inactivation’ of ETA thus decreasing the effective concentration of ETA available 

to the bacteria.  This would result in reduced drug efficacy in such individuals and 

therefore may represent a genetic disadvantage.  Conversely, FMO2.1 can catalyse 

two independent oxidation steps of TAZ to generate the same products as EtaA.   Data 

presented in this thesis has for the first time identified the intermediate of this reaction 

as the sulphenic acid of TAZ.  The potential implications of our findings are that, 

those patients given TAZ as part of TB treatment and that also express the FMO2.1 

enzyme in their lung will have two activation events taking place; one by EtaA in the 

Mycobacteria and the other by FMO2.1 in healthy lung cells.   The net effect will be 

the production of toxic, highly reactive electrophilic species and the concurrent 

decrease in TAZ available to Mycobacteria.  Thus it is feasible to assume that 

individuals expressing FMO2.1 in the lung are likely to be at a therapeutic 

disadvantage if prescribed TAZ.  To provide a direct link between FMO2.1 

expression and drug toxicity, analysis of lung injury would be required.  Although this 

would be important to establish, the finding will be complicated because it would be 
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difficult to distinguish between lung injury caused by Mycobacterial infection and 

that caused by drug toxicity as a result of TAZ-activation by FMO2.1.   

Mycobacterial infections cause lesions in the lung and further injury is caused by the 

oxidative activation of macrophages. 

  This study also assayed variant forms of the major human hepatic FMO, 

FMO3 for their capacity to catalyse TAZ oxygenation.   The results demonstrate that 

some polymorphic variants of FMO3 displayed reduced catalytic activity whereas 

others displayed an increase in catalytic efficiency.   The importance of this finding to 

human health is two-fold.  First, in the case of the double variant K158/G308, 

individuals may be protected from TAZ toxicity as the enzyme has significantly 

reduced capacity at oxidising this compound and so more TAZ reaches the site of 

infection.  In the second scenario those expressing the ‘hyper-active’ variant P360 

might be predisposed to hepato- and dermatological toxicity and may require higher 

doses of TAZ to treat the infection.  The effect of polymorphic FMO3 variants on 

sulindac and benzydamine metabolism has been discussed in section 3.2 and 

demonstrates how the outcome of a therapeutic regime may be affected by the 

catalytic efficiency of an FMO3 variant.  Data provided in this thesis supports and 

strengthens this knowledge.   

Although products of the reaction were not analysed, both CYPs and FMOs 

were found to contribute to TAZ metabolism by microsomes isolated from mouse 

lung and liver.  There is no evidence to date that demonstrates a role for CYPs in the 

meabolism of TAZ in humans.   Inferences from microsomes prepared from male and 

female mice of FMO knockout lines suggested that in the mouse, FMO1 is the major 

FMO involved in TAZ metabolism.  However, it should be noted that species 

differences exist with respect to the tissue distribution of FMOs in humans and 
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mouse. The most notable difference being that the FMO1 gene is switched off in 

human liver at birth. Thus in humans, FMO3 is the enzyme expected to produce 

hepatic toxicity as a result of TAZ metabolism. 

Though not detailed in this thesis, preliminary in vivo studies of TAZ 

metabolism in mouse identified, for the first time, TAZ-sulphinic acid, TAZ-

carbodiimide and TAZ-sulphenic acid in the kidney. This indicated a role for FMOs 

in the extra-hepatic metabolism of this drug.  Though unexpected, this finding 

supports the role of FMO1 as the predominant TAZ metaboliser in mouse.    

Extrapolation of mouse data to humans should always be done with caution especially 

in the case of FMOs because of the difference in the tissue-specific expression of 

these enzymes stated above.  In mouse and all other mammals, FMO1 is the major 

hepatic FMO isoform whereas humans express FMO3 in the liver and FMO1 

expression is largely restricted to the kidney and skin.   

It is increasingly being acknowledged that FMOs, though a small family of 

enzymes are still important players in the metabolism of xenobiotics and endogenous 

compounds when compared to the vast family of CYPs.  The high expression in 

tissues that are vital for drug metabolism and the unique mechanism by which FMOs 

catalyse the oxidation of a plethora of foreign compounds provides a remarkably wide 

substrate palette for these enzymes. Experiments undertaken as part of this 

investigation have attempted to broaden the understanding of FMO catalysed 

reactions and to delineate the contribution of individual FMO enzymes. 

Clearly the data presented in this thesis can be considered as the tip of the 

iceberg; nevertheless it is envisaged that the basic biochemical details regarding the 

metabolism of TAZ and ETA given here will provide a foundation for future work in 

this field.  The knowledge gained of the contribution and inter-play of different FMO 
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genetic variants to the metabolism of a therapeutic drug may help to rationalise drug 

treatment regimes and we hope contribute to better health care especially in the poorer 

areas of the world. 
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Table 1: Primer sequences used in standard PCR. 
 
 

Name of primer Orientation  Sequence (5’ – 3’) Source of sequence 

M13F Forward TCCCAGTCACGACGTCGT 
 

pUC 

M13R Reverse GGAAACAGCTATGACCATG pUC 
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Gene Orientation Primer Sequence  
(5’-3’) 

Amplicon size 
(bp) 

Source 

Fmo1 Forward 
Reverse 

TGTCTCTGGACAGTGGGAAGT 
CATTCCAACTACAAGGACTCG 

166 (Janmohamed et al. 2001) 

Fmo2 Forward 
Reverse 

AGGCTCCATCTTCCCAACCGTA 
CCGGGTCTTTAAGGGTTTCAGG 

382 (Siddens et al. 2008) 

Fmo3 Forward 
Reverse 

ACAACTTACCCACCGCCATCTC 
GGCATAACCATAGCCTGTGGCAAA 

269 (Hernandez et al. 2009) 

GAPDH Forward 
Reverse 

TTCACCACCATGGAGAAGGC 
GGCATGGACTGTGGTCATGA 

237 Bioline Reference Gene Panel 

18S rRNA Forward 
Reverse 

TTGACGGAAGGGCACCACCAG 
GCACCACCACCCACGGAATCG 

130 Bioline Reference Gene Panel 

G-Actin Forward 
Reverse 

AGGAGATCACAGCCCTAGCA 
ACATCTGCTGGAAGGTGGAC 

189 Bioline Reference Gene Panel 
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 Table 2: Gene Specific Primers used in qRT-PCR
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ABSTRACT:

The second-line antitubercular drugs thiacetazone (TAZ) and ethi-
onamide (ETA) are bioactivated by the mycobacterial enzyme EtaA.
We report here that human flavin-containing monooxygenase 2.1
(FMO2.1), which is expressed predominantly in the lung, catalyzes
oxygenation of TAZ. The metabolites generated, the sulfenic acid,
sulfinic acid, and carbodiimide derivatives, are the same as those
produced by EtaA and human FMO1 and FMO3. Two of the me-
tabolites, the sulfenic acid and carbodiimide, are known to be
harmful to mammalian cells. FMO2.1 also catalyzes oxygenation of
ETA, producing the S-oxide. We have developed a novel spectro-
photometric assay for TAZ oxygenation. The assay was used to
determine kinetic parameters for TAZ oxygenation catalyzed by
human FMO1, FMO2.1, and FMO3 and by EtaA. Although the KM

values for the four enzyme-catalyzed reactions are similar, kcat

and, consequently, kcat/KM (the specificity constant) for FMO2.1-
catalyzed TAZ oxygenation are much higher than those of FMO1,
FMO3, or EtaA. This indicates that FMO2.1 is more effective in
catalyzing TAZ oxygenation than are the other three enzymes and
thus is likely to contribute substantially to the metabolism of TAZ,
decreasing the availability of the prodrug to mycobacteria and
producing toxic metabolites. Because of a genetic polymorphism,
Europeans and Asians lack FMO2.1. However, in sub-Saharan
Africa, a region in which tuberculosis is a major health problem, a
substantial proportion of individuals express FMO2.1. Thus, our
results may explain some of the observed interindividual differ-
ences in response to TAZ and ETA and have implications for the
treatment of tuberculosis in sub-Saharan Africa.

Pulmonary tuberculosis (TB) is a serious respiratory disease caused
by the opportunistic bacterium Mycobacterium tuberculosis. The
World Health Organization estimated 9.2 million new cases of TB
infection worldwide in 2006, of which 31% were in Africa. The
appearance of strains of M. tuberculosis that are resistant to more than
one first-line antitubercular drug has required the use of second-line
drugs (Peloquin, 1993), such as the thiourea thiacetazone (TAZ;
4�-formylacetanilide thiosemicarbazone) and the thioamide ethionamide
(ETA; 2-ethylpyridine-4-carbothioamide). TAZ has been widely used
in the developing world (Brown, 1992). Although an effective treat-
ment for multidrug-resistant TB, it can produce adverse effects such
as liver toxicity, gastrointestinal disturbances, and life-threatening
skin reactions, particularly in human immunodeficiency virus patients
(Teklu, 1976; Brown, 1992; Peloquin, 1993; Ipuge et al., 1995), and,

consequently, its use has been discontinued in several countries
(Brown, 1992). ETA continues to be prescribed in both developed and
developing countries.

Both TAZ and ETA are prodrugs that are converted to their active
forms by the mycobacterial enzyme EtaA (Baulard et al., 2000;
DeBarber et al., 2000; Qian and Ortiz de Montellano, 2006), a
flavin-containing monooxygenase (FMO) (Vannelli et al., 2002).
EtaA activates TAZ by two sequential oxidation steps to form a
sulfinic acid and a carbodiimide via a postulated sulfenic acid inter-
mediate (Qian and Ortiz de Montellano, 2006). TAZ treatment affects
mycolic acid biogenesis in mycobacteria (Alahari et al., 2007; Dover
et al., 2007), and this may be the mechanism by which the drug exerts
its antimicrobial effect.

The FMOs (EC 1.14.13.8) of mammals catalyze the oxidative
metabolism of numerous xenobiotics, including pesticides, fertilizers,
and therapeutic drugs (Krueger and Williams, 2005; Cashman and
Zhang, 2006; Phillips et al., 2007; Phillips and Shephard, 2008).
Humans express five functional FMOs, FMOs 1 through 5 (Phillips et
al., 1995; Hernandez et al., 2004). FMO1, FMO2, and FMO3 can
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bioactivate thiourea-based drugs (Smith and Crespi, 2002; Henderson
et al., 2004; Onderwater et al., 2006), and FMO1 and FMO3 have
been shown to catalyze oxygenation of TAZ in vitro, forming the
same products as EtaA (Qian and Ortiz de Montellano, 2006).

A genetic polymorphism of the FMO2 gene, g.23238C�T
(Q472X), gives rise to an allele, FMO2*2, which encodes a truncated,
nonfunctional protein (FMO2.2) (Dolphin et al., 1998). Essentially all
Europeans and Asians are homozygous for FMO2*2 and thus do not
express functional FMO2 (Dolphin et al., 1998; Whetstine et al.,
2000). However, in sub-Saharan Africa, and in populations recently
descended from this region, a substantial proportion of individuals
possess at least one copy of the ancestral FMO2*1 allele, which
encodes a full-length functional protein (FMO2.1) (Dolphin et al.,
1998; Whetstine et al., 2000; Veeramah et al., 2008). In contrast to
FMO1 and FMO3, which in the adult human are expressed primarily
in kidney and liver, respectively (Dolphin et al., 1996; Yeung et al.,
2000; Hernandez et al., 2004; Cashman and Zhang, 2006), the main
site of expression of FMO2 is the lung (Dolphin et al., 1998; Krueger
et al., 2002; Hernandez et al., 2004; Cashman and Zhang, 2006).
Expression of functional FMO2.1 has been confirmed in lung micro-
somes from an individual heterozygous for the FMO2*1 allele
(Krueger et al., 2002).

Because TAZ and ETA act against mycobacteria in the lung, we
investigated the ability of human FMO2.1 to catalyze the oxygenation
of these antitubercular drugs. In this article, we show that the protein
encoded by the FMO2*1 allele, FMO2.1, catalyzes oxygenation of
both TAZ and ETA, forming the same metabolites as those produced
by human FMO1 and FMO3 and by the mycobacterial enzyme EtaA.
Furthermore, we show that the specificity constant of FMO2.1 for
TAZ is higher than that of any of the other three enzymes. Our results
provide a potential explanation for some of the observed interindi-
vidual differences in the efficacy of and response to TAZ and ETA
and have implications for the treatment of TB in sub-Saharan Africa
and in individuals of recent African descent.

Materials and Methods

Materials. Chemical reagents, enzymes, and antibiotics were obtained from
Sigma-Aldrich (St. Louis, MO) unless stated otherwise. Plasticware for insect
cell culture was obtained from VWR (West Chester, PA). Reagents for
high-performance liquid chromatography (HPLC) were obtained from Fisher
Scientific (Waltham, MA) and were of HPLC grade.

Protein Expression. Recombinant bacmids encoding full-length human
FMO2 (FMO2Q472; FMO2.1) and FMO3 were as described previously (Dol-
phin et al., 1997, 1998). A recombinant bacmid encoding human FMO1 was
prepared from an FMO1 cDNA (Dolphin et al., 1991) (accession number
Q01740) via site-specific transposition in Escherichia coli, through the use of
the Bac-to-Bac system (Invitrogen, Carlsbad, CA) as described previously
(Janmohamed et al., 2006). Bacmid DNAs were isolated using a modified
alkaline lysis method. Production of baculovirus and expression of FMOs in
Spodoptera frugiperda (Sf ) 9 cells were as described previously (Janmohamed
et al., 2006), except that after infection with recombinant baculovirus, cells
were cultured for 96 h before harvesting. EtaA was expressed and purified as
described previously (Vannelli et al., 2002).

Isolation of Microsomal Membranes. Sf9 cells were harvested and resus-
pended in HEPES buffer [0.154 M KCl, 10 mM HEPES, pH 7.4, 1 mM EDTA,
20% (v/v) glycerol]. Cells were lysed by three 12-s bursts of sonication on ice.
Cell lysates were centrifuged at 1000g for 10 min at 4°C. The resulting
supernatant was centrifuged at 100,000g for 1 h at 4°C. The pellet was
resuspended in HEPES buffer by hand, using a glass-glass homogenizer placed
on ice, and stored in aliquots at �80°C. Protein concentration was determined
using the method of Lowry (DC Protein Assay kit; Bio-Rad, Hercules, CA) and
bovine serum albumin (Bio-Rad) as a standard.

Quantification of FMOs. Antibodies to FMO1, FMO2, and FMO3 were a
gift from Dr. R. Philpot. Heterologously expressed FMOs were quantified by

Western blotting essentially as described previously (Dolphin et al., 1997,
1998). Blots were incubated with goat anti-(rabbit FMO1), goat anti-(rabbit
FMO2), or goat anti-(rabbit FMO3) serum (1 in 3000 dilution), then with a
rabbit anti-(goat IgG)-alkaline phosphatase conjugate (1 in 30,000 dilution).
Antigen was visualized through the use of a color development kit (AP
Conjugate Substrate Kit; Bio-Rad). The concentration of each expressed FMO
was determined by scanning densitometry and Image Gauge software, version
4.2.1 (Science Lab, FujiFilm, Tokyo, Japan) using a standard curve of authen-
tic rabbit FMO1 and FMO2 or human FMO3 (which were gifts from Dr.
R. Philpot). As a comparison, the relative abundance of heterologously ex-
pressed FMOs was estimated from scans of Coomassie Blue-stained SDS-
polyacrylamide gels of a range of amounts of microsomal protein isolated from
Sf9 cells infected with recombinant baculoviruses (data not shown). The results
corresponded well with those obtained by Western blotting, indicating that
there was no appreciable difference in cross-reactivity among the antibodies.

Enzyme Incubations with TAZ or ETA. Sf9 insect cell microsomes
containing heterologously expressed human FMO1, FMO2.1, or FMO3 (at a
final concentration of 500 nM) or purified EtaA (1 �M final concentration)
were incubated with TAZ (100 �M final concentration) at 37°C for 90 min in
the buffer described previously (Qian and Ortiz de Montellano, 2006). Reac-
tions were initiated by the addition of enzyme. Reactions were stopped by
addition of an equal volume of ice-cold CH3CN. Mixtures were centrifuged at
10,000g for 5 min at 4°C and analyzed by HPLC as described below.

Sf9 insect cell microsomes containing heterologously expressed human
FMO2.1 were incubated with ETA (final concentration 100 �M) for 60 min as
described previously (Qian and Ortiz de Montellano, 2006). Reactions were
analyzed by liquid chromatography/mass spectroscopy (LC/MS) as described
below.

HPLC. The supernatants were diluted to a final concentration of 5%
CH3CN and then analyzed by HPLC on a reverse-phase C18 column (3.5-�m
particle size, 4.6 mm i.d. � 150 mm, Symmetry; Waters, Milford, MA) using
two buffers: A, H2O and 0.1% formic acid (FA) and B, CH3CN and 0.1% FA.
The solvent flow rate was 0.2 ml/min, and the eluent was spectrophotometri-
cally monitored using two bandwidths (330 � 60 and 260 � 4 nm). The
column was eluted from 0 to 25 min with a linear gradient from 5 to 20%
buffer B. For spectral analysis of metabolites, eluent peaks were monitored
between 200 and 500 nm.

LC/MS Analyses. For analysis of TAZ metabolites, LC/MS was performed
as described previously (Qian and Ortiz de Montellano, 2006), with the
exception of the following modifications. The reverse-phase column was
eluted with a flow rate of 0.2 ml/min (buffer A, H2O and 0.1% FA; buffer B,
CH3CN and 0.1% FA) with the following protocol: 0 to 16 min, 5 to 30%
buffer B (linear gradient). The eluent was monitored at 310 nm. The mass
spectrometer settings were as described previously (Qian and Ortiz de Mon-
tellano, 2006).

LC/MS analysis of ETA metabolites produced by FMO2.1 was performed
as described above, with the following modifications. The column was eluted
at a flow rate of 0.2 ml/min (buffer A, H2O and 0.1% FA; buffer B, CH3CN
and 0.1% FA) with the following protocol: 0 to 15 min with 1% buffer B
(isocratic). The eluent was monitored at 350 nm.

Determination of Kinetic Parameters by Spectrophotometric Analysis.
The molar extinction coefficient of TAZ was determined as follows. Two
cuvettes containing 1 ml of Tris-HCl, pH 8.5, 1 mM EDTA were placed in a
Varian Cary 100 dual-beam spectrophotometer (Varian, Inc., Palo Alto, CA).
The spectrophotometer was set to blank correction mode. TAZ [in dimethyl
sulfoxide (DMSO)] was added to the sample cuvette, and DMSO was added to
the reference cuvette. The final organic solvent concentration in each cuvette
was held at 0.1% (v/v). Using the Varian Scan application, samples were
scanned from 200 to 500 nm over a range of TAZ concentrations between 1
and 20 �M. These measurements were carried out in triplicate using three
independently prepared stock solutions of TAZ (20 �M) that were diluted
accordingly in DMSO. The absorbance of TAZ, measured at its �max (328 nm),
was plotted against concentration. The molar extinction coefficient of TAZ in
DMSO was determined from the gradient of this graph and the Beer-Lambert
equation.

Enzyme-catalyzed oxidation of TAZ was monitored by measuring the rate
of decrease in the absorbance of TAZ at 328 nm using a dual-beam spectro-
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photometer (Varian Cary 100, kinetics module). The pH optima for human
FMOs and EtaA were determined using the following reaction buffers: 0.1 mM
potassium phosphate, pH 7.5, 1 mM EDTA; 0.1 M Tris-HCl, pH 8.5, 1 mM
EDTA; and 0.1 M Tricine-OH, pH 9.5, 1 mM EDTA. Immediately before use
buffers were aerated at 37°C for 30 min in a shaking water bath. Assays were
performed in a volume of 1 ml in reaction buffer containing 0.1 mM NADPH
and either Sf9 cell microsomes containing human FMO1 (320 nM), FMO2.1
(5 nM), or FMO3 (230 nM) or purified EtaA (1 �M). Reaction mixtures were
allowed to equilibrate for 1 min at 37°C. Reactions were initiated by the
addition of TAZ in DMSO (to a final TAZ concentration of 10 �M) to the
sample cuvette and DMSO to the reference cuvette. Initial rates were recorded
between 1 and 5 min.

For determination of kinetic parameters, assays were performed on triplicate
preparations of enzymes at concentrations of TAZ ranging from 1 to 20 �M.
The final organic solvent concentration was held at 0.1% (v/v). Assays were
carried out in triplicate as described above in the optimum pH buffer for each
enzyme: pH 8.5 for FMO1 and FMO3 and pH 9.5 for FMO2.1 and EtaA.

KM and Vmax values were determined from vi versus [S]o data using
nonlinear regression and the kinetics module 3.1 of Sigma Plot version 10
(SPSS Inc., Chicago, IL). For calculation of kcat values, enzyme concentration
was determined as described above.

Determination of Kinetic Parameters by HPLC Analysis. Sf9 cell mi-
crosomes containing heterologously expressed human FMO2.1 were incubated
in 0.1 M Tricine-OH, pH 9.5, 1 mM EDTA, 0.1 mM NADPH, and TAZ
(concentrations ranged from 1–50 �M in DMSO). A duplicate set of samples
was prepared but without the addition of enzyme. The final organic solvent
concentration was held at 0.1% (v/v). Mixtures were incubated at 37°C for 5
min, and reactions were quenched with an equal volume of ice-cold CH3CN.
ETA was added as an internal standard at a final concentration of 100 �M (in
DMSO), and mixtures were prepared for HPLC analysis as described above. A
standard curve was generated by plotting the ratio of the integrated HPLC peak
areas of TAZ and ETA (from the sample set without added enzyme) against the
range of TAZ concentrations used. The ratio of the integrated HPLC peak areas
of TAZ and ETA, in the sample set with added enzyme, was calculated, and

the amount of unmetabolized TAZ was determined from the standard curve.
This value was subtracted from the input concentration of TAZ to calculate the
amount of TAZ metabolized by the enzyme. Vmax, KM, and kcat were deter-
mined as above.

Enzyme Incubations with Methimazole. Sf9 insect cell microsomes con-
taining heterologously expressed human FMO1, FMO2.1, or FMO3 were
assayed for activity toward methimazole by the method of Dixit and Roche
(1984) as described previously (Dolphin et al., 1998). Assays for FMO1 and
FMO3 activity were carried out at pH 8.5, and those for FMO2.1 were done at
pH 9.5.

Results

Catalytic Oxidation of TAZ by Human FMO2.1. Incubation of
TAZ with Sf9 insect cell microsomes containing heterologously ex-
pressed human FMO2.1, in the presence of NADPH, resulted in the
formation of three major metabolites with reverse-phase retention
times of 7.5 min (M1), 11.4 min (M2), and 14.6 min (M3) (Fig. 1).
No products were observed when TAZ was incubated with micro-
somes isolated from noninfected Sf9 cells or when NADPH was
omitted (results not shown). UV spectral analysis of the metabolites
(Fig. 2) showed that M1 had a maximal absorption peak at 325 nm
and a smaller peak at approximately 230 nm. M2 had a similar
spectrum, with peaks at 320 and 220 nm. The absorption spectrum of
M3 exhibited a main peak at 295 nm and a secondary peak at 220 nm.

To identify the three metabolites, M1, M2, and M3, formed from TAZ
by the action of human FMO2.1, they were analyzed by LC/MS. The
mass spectrum of M1 had a molecular ion [M � H]� at m/z 269.07, with
fragment ions at m/z 205.14 and 163.12 (Fig. 3A). The mass of the
molecular ion of M1 is 32 atomic mass units more than that of the
molecular ion of TAZ (237), suggesting a structure in which TAZ has
incorporated two oxygen atoms (Fig. 3A) and hence supports identifica-
tion of the metabolite as the sulfinic acid derivative. The mass spectrum

FIG. 1. UV-HPLC chromatogram of the products from incubations of TAZ with
Sf 9 insect cell microsomes containing heterologously expressed human FMO2.1
in the presence of NADPH. Reactions were carried out at pH 9.5 for 90 min at 37°C.

FIG. 2. UV-absorption spectra of the three metabolites produced from the incuba-
tion of TAZ with heterologously expressed human FMO2.1 and NADPH. Dotted
line, M1; solid line, M2; and dashed line, M3.
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FIG. 3. Mass spectra and structures of the products from incubations of TAZ with Sf 9 insect cell microsomes containing heterologously expressed human FMO2.1 in the
presence of NADPH in 100 mM tricine buffer, pH 9.5, for 90 min at 37°C. A, M1, identified as the sulfinic acid, has a molecular ion [M � H]� � m/z 269.07, with fragment
ions at m/z 205.14 and 163.12. B, M2, identified as the sulfenic acid, has a molecular ion [M � H]� � m/z 253, with fragment ions at m/z 235 and 193. C, M3, identified
as the carbodiimide, has a molecular ion [M � H]� � m/z 203.13, with a fragment ion at m/z 161.11.
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of M2 had a molecular ion [M � H]� at m/z 253, with fragment ions at
m/z 235 and 193 (Fig. 3B). The mass of the molecular ion of M2 is in
accord with a structure in which TAZ has incorporated a single oxygen
atom, and thus supports identification of M2 as the monooxygenated,
sulfenic acid derivative. The metabolite M3 has a molecular ion [M �
H]� at m/z 203.13, which suggests that it is the carbodiimide generated
by elimination from M2 of the oxidized sulfur atom (Fig. 3C). Previously
synthesized authentic standards of TAZ-sulfinic acid and TAZ-
carbodiimide (Qian and Ortiz de Montellano, 2006) were used to confirm
the identity of M1 and M3. Comparison of their HPLC elution times, UV
spectra, and MS spectra with those of the synthetic standards unambig-
uously identified the metabolites M1 and M3 as the sulfinic acid and
carbodiimide derivatives of TAZ, respectively.

The same three metabolites (the sulfinic acid, sulfenic acid, and
carbodiimide derivatives) were also produced when TAZ was incu-
bated with purified EtaA or Sf9 cell microsomes containing heterolo-
gously expressed human FMO1 or FMO3 (data not shown). Previous
work identified M1 and M3 as products formed by the action of these
enzymes on TAZ (Qian and Ortiz de Montellano, 2006). Although the
sulfenic acid derivative (M2) was not detected, it was postulated as an
intermediate in the enzyme-catalyzed metabolism of TAZ (Qian and
Ortiz de Montellano, 2006). To confirm this, incubations of TAZ with
heterologously expressed human FMO2.1 were quenched at different
time points (Fig. 4). It is clear from the results that formation and
accumulation of M2 precede that of M1 and M3, indicating that M2
is an intermediate in the formation of the latter two metabolites.

Catalytic Oxidation of ETA by Human FMO2.1. Incubation of
ETA with Sf9 microsomes containing heterologously expressed hu-
man FMO2.1, in the presence of NADPH, resulted in the formation of
a major product, P1, with LC retention time of 6.2 min (Fig. 5A). The
mass spectrum of P1 had a molecular ion [M � H]� at m/z 183, with
fragment ions at m/z 151 and 133 (Fig. 5B). The mass of the molecular
ion of P1 is 16 atomic mass units more than that of the molecular ion
of ETA (166), suggesting a structure in which ETA has incorporated
one oxygen atom (Fig. 5B). This supports identification of P1 as the
S-oxide of ETA. The retention time and mass spectrum of P1 are
identical to those of authentic ETA S-oxide (Vannelli et al., 2002),
therefore unambiguously identifying this metabolite as the S-oxide of
ETA. A mass spectrum of the broad peak with an LC retention time
of approximately 4 min (Fig. 5A) could not be obtained.

Development of a Spectrophotometric Assay of TAZ Oxidation.
A UV absorption spectrum of TAZ revealed an absorption maximum
at 328 nm and a smaller peak at approximately 220 nm (data not
shown). The absorbance of TAZ at 328 nm was linear between 1 and
20 �M (data not shown), and at this wavelength the molar extinction
coefficient of TAZ in DMSO was determined as 38,300 � 2320
M�1cm�1. Incubation of TAZ, in the presence of NADPH, with Sf9
cell microsomes containing heterologously expressed human FMO1,
FMO2.1, or FMO3, or with purified EtaA resulted in a decrease in
TAZ absorbance at 328 nm that was linear over time (Fig. 6 and data
not shown) and with respect to enzyme concentration. No decrease in
TAZ absorbance was observed in the absence of EtaA or human
FMOs or when microsomes prepared from noninfected Sf9 cells
were used. Omission of NADPH from reaction mixtures containing
heterologously expressed human FMOs resulted in a very small (�1%
of that observed in the presence of NADPH) and short-lived (�2 min)
decrease in TAZ absorbance. This is because of the presence of
endogenous NADPH in the insect cell microsomes. This spectropho-
tometric assay was used to determine the pH optima and kinetic
parameters of enzyme-catalyzed oxidation of TAZ.

Effect of pH on TAZ Oxidation Catalyzed by Human FMOs and
EtaA. TAZ was incubated with purified EtaA or with heterologously
expressed human FMO1, FMO2.1, or FMO3 in buffers of pH 7.5, 8.5, or
9.5. Oxidation of TAZ was measured spectrophotometrically. The pH op-
timum for the oxidation of TAZ at a concentration of 10 �M was 8.5 for
human FMO1 and FMO3 and 9.5 for human FMO2.1 and EtaA (Fig. 7).

Kinetics of TAZ Oxidation by Human FMOs and EtaA. The
kinetics of TAZ oxidation catalyzed by EtaA or heterologously ex-
pressed human FMO1, FMO2.1, or FMO3 was evaluated by deter-
mining the initial rates of TAZ oxidation, measured spectrophoto-
metrically, over a range of TAZ concentrations (Fig. 8 and data not
shown). Assays were performed at the optimum pH determined for
each enzyme as described above. Steady-state kinetic parameters were
determined from vi versus [S] data by nonlinear regression.

The KM values for TAZ oxidation catalyzed by human FMO1,
FMO2.1, and FMO3 are very similar to each other and slightly lower
than that of the EtaA-catalyzed reaction (Table 1). The kcat of the
FMO2.1-catalyzed reaction is much higher than that of reactions
catalyzed by human FMO1, FMO3, or EtaA (Table 1). Consequently,
kcat/KM (the specificity constant) for TAZ is much higher for human
FMO2.1 than for the other three enzymes (Table 1). Very similar
kinetic parameters for FMO2.1-catalyzed TAZ oxygenation were
obtained through the use of an HPLC-based assay, thus validating the
spectrophotometric assay (data not shown).

As a comparison, we determined kinetic parameters for FMO1-,
FMO2.1-, and FMO3-catalyzed oxygenation of methimazole, a pro-
totypic substrate for FMOs (Table 1). The kcat of each enzyme was
similar for TAZ and methimazole. However, for FMO2.1 the KM for

FIG. 4. UV-HPLC chromatograms of the products from incubations of TAZ with
Sf 9 insect cell microsomes containing heterologously expressed human FMO2.1
in the presence of NADPH. Reactions were carried out at pH 9.5 and 37°C for 0 min
(A), 10 min (B), or 20 min (C).
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methimazole was 100-fold greater than that for TAZ. Consequently,
for methimazole oxygenation, the kcat/KM of FMO2.1 is considerably
less than that of FMO1 and slightly less than that of FMO3.

Discussion

Our results show that full-length, functional FMO2 of human
(FMO2.1) catalyzes oxygenation of the second-line thiourea antitu-
bercular drug TAZ in vitro. The metabolites generated, the sulfenic
acid, sulfinic acid, and carbodiimide derivatives, are the same as those

produced by the action of human FMO1, human FMO3, or the
mycobacterial enzyme EtaA. The sulfinic acid and carbodiimide de-
rivatives have been identified previously as products of TAZ oxygen-
ation catalyzed by FMO1, FMO3, or EtaA (Qian and Ortiz de Mon-
tellano, 2006). Although these authors did not detect the sulfenic acid
derivative, it was postulated to be an intermediate. Our results confirm
that in reactions catalyzed by all three human FMOs and by EtaA,
TAZ sulfenic acid is indeed an intermediate in the formation of the
sulfinic acid and carbodiimide metabolites.

FIG. 5. Analysis of the products from incubation of ETA with Sf 9 insect cell microsomes containing heterologously expressed human FMO2.1 and NADPH in 100 mM
potassium phosphate buffer, pH 7.5, for 60 min at 37°C. A, LC chromatogram (350 nm). B, the mass spectrum and structure of the product P1. P1 has a molecular ion
[M � H]� at m/z 183, with fragment ions at m/z 151 and 133.
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Human FMO2.1 also catalyzes the oxygenation of ETA, a thioamide
second-line antitubercular. The single metabolite identified, the S-
oxide, has been shown to be the product of EtaA-catalyzed metabo-
lism of the drug (Vannelli et al., 2002). However, the second product
identified by these authors, the amide of ETA, was not detected in our
study.

Our kinetic analyses reveal that kcat/KM (the specificity constant)

for FMO2.1-catalyzed TAZ oxygenation is much higher than that of
FMO1, FMO3, or the mycobacterial enzyme EtaA, indicating that
FMO2.1 is more effective in catalyzing TAZ oxygenation than are the
other three enzymes. In contrast, FMO2.1 is less effective than FMO1
or FMO3 in catalyzing the oxygenation of methimazole. Although
kinetic analyses were done at the pH optimum for each enzyme, even
at a more physiological pH, 7.5, as shown in Fig. 7, FMO2.1 is the
most effective of the enzymes studied in catalyzing TAZ oxygenation.
The higher value of the specificity constant of FMO2.1 for TAZ is a
consequence of the higher kcat value rather than a lower KM value,
which is similar to those of the other enzymes with lower kcat values
(Table 1). Similar high kcat values have been reported for human
FMO2.1-catalyzed oxygenation of other thioureas, including thiourea
and ethylene-thiourea (Henderson et al., 2004). The relatively low kcat

values determined for TAZ oxygenation catalyzed by FMO1 and
FMO3 are comparable to those reported for oxygenation of a panel of
thioureas by these enzymes (Onderwater et al., 2006). The high values
of KM and kcat determined for FMO2.1-catalyzed oxygenation of
methimazole are similar to the values reported for purified or heter-
ologously expressed FMO2 of rabbit (Lawton et al., 1991).

Spectrophotometric and kinetic studies indicate that the rate-limit-
ing step for FMO-catalyzed reactions occurs after substrate oxygen-
ation (reviewed in Ziegler, 2002) and thus is independent of oxidiz-
able substrate. Consequently, for a particular FMO, the value of kcat

would be expected to be similar for all its substrates. Although our
results conform to this expectation, they indicate that the kcat of
human FMO2.1 is higher than that of FMO1 or FMO3, suggesting
that FMO2.1 is more effective in catalyzing the rate-limiting step of
the reaction, the elimination of H2O, than is either of the other two
FMOs investigated.

Substrate oxygenation by FMOs is usually a detoxification process.
However, in the case of thioureas, the products of FMO-catalyzed
oxygenation are typically more toxic than the parent compound
(Smith and Crespi, 2002; Henderson et al., 2004; Onderwater et al.,
2004, 2006). TAZ sulfenic acid is an electrophile that can react with
glutathione (GSH) (Qian and Ortiz de Montellano, 2006) to regenerate
the parent compound and convert GSH to its oxidized form (GSSG).
In the presence of GSH reductase, a redox cycle may be established
that depletes GSH, thus causing oxidative stress and cellular injury
(Krieter et al., 1984; Henderson et al., 2004; Onderwater et al., 2004).
Sulfenic acid metabolites of thioureas can react covalently with other
thiol-containing molecules, such as cysteine residues in proteins, and
thus directly perturb protein function (Decker and Doerge, 1992). The
TAZ carbodiimide also has the potential to form covalent products
with cysteine residues in proteins. Thus, each of the human FMOs that
we have investigated—FMO1, FMO2.1, and FMO3—is able to cat-
alyze oxygenation of TAZ, producing metabolites that are known to
be harmful to mammalian cells.

The FMO-catalyzed production of TAZ metabolites that are known
to be harmful to mammalian cells may be the basis for the adverse
clinical reactions associated with this drug (Teklu, 1976; Brown,
1992; Peloquin, 1993; Ipuge et al., 1995). This is supported by the fact
that all the adverse effects associated with TAZ occur in tissues in
which FMOs are expressed: hepatotoxicity, FMO3 in the liver (Dol-
phin et al., 1996; Hernandez et al., 2004); gastrointestinal problems,
FMO1 in the small intestine (Yeung et al., 2000); and skin rashes,
FMO1 and FMO3 in skin (Janmohamed et al., 2001).

Human FMO1 and FMO3 are expressed primarily in the kidney and
liver, respectively, and thus may contribute to the extrapulmonary
metabolism of TAZ. FMO1 displays interindividual variation in its
expression (Yeung et al., 2000; Koukouritaki et al., 2002), and several
nonsynonymous polymorphic variants of FMO3 have been identified

FIG. 6. Linearity of FMO2.1- and NADPH-dependent decrease in TAZ absorbance
over time. TAZ (20 �M) was incubated with Sf 9 insect cell microsomes containing
heterologously expressed human FMO2.1 and NADPH in tricine buffer, pH 9.5, at
37°C, and absorbance at 328 nm was monitored over time.

FIG. 7. Effect of pH on the rate of TAZ oxygenation catalyzed by purified EtaA or
by heterologously expressed human FMO1, FMO2.1, or FMO3. The initial con-
centration of TAZ was 10 �M. The decrease in TAZ concentration over time was
measured at 328 nm in the presence of NADPH in buffers at pH 7.5, 8.5, or 9.5.
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(reviewed in Phillips et al., 2007; Phillips and Shephard, 2008), one of
which, L360P, increases enzyme activity (Lattard et al., 2003),
whereas others, such as E158K and E308G, when present together in
cis, decrease enzyme activity (reviewed in Phillips et al., 2007;

Phillips and Shephard, 2008). Promoter variants that affect transcrip-
tion have also been identified (Koukouritaki et al., 2005). Therefore,
individuals who have lower expression or activity of FMO1 or FMO3
would be less able to metabolize TAZ in extrapulmonary tissues,

FIG. 8. A, Michaelis-Menten plot of TAZ
oxygenation catalyzed by heterologously
expressed human FMO2.1 in the presence
of NADPH at pH 9.5. B, linear transform of
Michaelis-Menten data using Hanes-Woolf
regression (r2 � 0.961).

TABLE 1

Kinetic parameters of enzyme-catalyzed oxygenation of TAZ and methimazole

TAZ assays were performed in triplicate on batches of microsomes isolated from three independent infections of Sf 9 cells (i.e., nine measurements per FMO). Methimazole assays were
performed in triplicate on a single batch of microsomes for each heterologously expressed human FMO. EtaA assays were performed in triplicate on purified protein. Kinetic parameters are
reported as mean � S.E.

Enzyme
Thiacetazone Methimazole

KM kcat kcat/KM KM kcat kcat/KM

�M min�1 min�1M�1 (�105) �M min�1 min�1M�1 (�104)

FMO1 6.30 � 0.80 5.08 � 0.46 7.94 � 1.99 8.08 � 2.35 2.27 � 0.30 28.11 � 7.95
FMO2.1 5.80 � 0.55 80.10 � 4.42 142.56 � 18.30 575.75 � 60.02 31.50 � 2.11 5.48 � 0.68
FMO3 7.01 � 0.53 1.37 � 0.20 1.96 � 0.39 29.30 � 4.06 2.60 � 0.38 8.97 � 1.81
EtaA 9.05 � 0.57 3.02 � 0.30 3.29 � 0.81 N.D. N.D. N.D.

N.D., not determined.
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whereas those with higher expression or activity would metabolize
TAZ more effectively, thus reducing the amount of prodrug reaching
the lung and increasing the amounts of metabolites toxic to the host.
Polymorphic variants in FMO3 have been shown to influence the
metabolism and therapeutic outcomes of drugs such as benzydamine
and sulindac (Störmer et al., 2000; Hisamuddin et al., 2005).

TAZ and ETA are prodrugs that are converted to their active forms
in mycobacteria. Therefore, for treatment to be effective, a sufficient
amount of unmetabolized drug must reach mycobacteria in the lung.
Although Europeans and Asians lack functional FMO2, a substantial
proportion of sub-Saharan Africans and individuals of recent African
descent possess an ancestral FMO2*1 allele (Whetstine et al., 2000;
Veeramah et al., 2008) and thus would be expected to express func-
tional FMO2 in the lung (Krueger et al., 2002). The relatively high
specificity constant for FMO2.1-catalyzed TAZ oxygenation suggests
that, when present in lung, FMO2.1 is likely to contribute substan-
tially to the metabolism of TAZ in this tissue, thus decreasing the
availability of the prodrug to mycobacteria and producing metabolites
toxic to the host. Therefore, patients with multidrug-resistant TB who
express FMO2.1 may respond less well to treatment with second-line
antitubercular drugs such as TAZ and ETA and may be more prone to
adverse clinical reactions to these drugs. The relatively high frequency
of the FMO2*1 allele in sub-Saharan Africa, a region in which TB is
a major health problem, has implications for the efficacy of and
response to antitubercular drugs, such as TAZ and ETA, that are
substrates for FMO2.1.
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Abstract: Flavin-containing monoooxygenases (FMOs) are a family of enzymes involved in the metabolism of foreign 

chemicals, including many therapeutic drugs. In this review we focus on the functional FMOs of humans (FMOs 1, 2, 3, 4 

and 5). For each FMO we describe its gene organization, developmental- and tissue-specific pattern of expression, sub-

strate specificity and the identity, frequency and functional effect of polymorphic variants. We also review the conse-

quences of genetic variation in the FMOs for the metabolism of therapeutic drugs and the implications of this for drug ef-

ficacy and response. Some key points are: the majority of humans are homozygous for an allele (FMO2*2) that encodes a 

truncated, non-functional polypeptide, but a substantial proportion of individuals of African descent possess a copy of the 

functional ancestral (FMO2*1) allele and thus are predicted to respond differently to drugs and other foreign chemicals 

that are substrates for FMO2; FMO3 polymorphisms that decrease catalytic activity have been linked to increased drug ef-

ficacy; rare mutations in FMO3 are causative of the disorder trimethylaminuria; and the role of FMO1 and FMO3 in the 

oxidation of the antiestrogen tamoxifen and the antitubercular drug thiacetazone are discussed.  

INTRODUCTION 

 Flavin-containing monooxygenases (FMOs; EC 1.14.13. 
8) of eukaryotes are located in the membranes of the endo-
plasmic reticulum. The enzymes contain flavin adenine dinu-
cleotide (FAD), as a prosthetic group, and require NADPH 
and molecular oxygen to catalyze the oxidative metabolism 
of numerous foreign chemicals, including therapeutic drugs, 
dietary-derived compounds and pesticides [Ziegler 1993; 
Krueger and Williams, 2005; Cashman and Zhang, 2006]. 
Preferred substrates contain, as the site of oxidative attack by 
the enzyme, a soft nucleophile, typically a nitrogen, sulfur, 
phosphorus or selenium atom, and include chemicals as di-
verse as hydrazines [Prough et al. 1981], phosphines [Smy-
ser and Hodgson, 1985], iodide boron-containing compounds 
[Jones and Ballou,1986], sulfides [Hamman et al. 2000], 
selenides [Ziegler et al. 1992] and many secondary and terti-
ary amines [Ziegler 1980]. The products of FMO-catalyzed 
reactions are relatively polar, readily excretable and gener-
ally less toxic or pharmacologically active than the parent 
compounds. However, compounds such as N-alkylarylamines 
are converted into more reactive, carcinogenic products 
[Ziegler 1991]. FMOs thus have an important pharmacologi-
cal and toxicological relevance. A limited number of en-
dogenous compounds, including methionine [Duescher et al. 
1994], cysteamine and cysteine- and homocysteine-S-conju-
gates, may function as substrates for FMOs [Ziegler 1993]. 

 FMOs differ from other monooxygenases because activa-
tion of oxygen, in the form of the C(4a) hydroperoxide de-
rivative of FAD, does not require binding of the substrate 
capable of being oxygenated [Ziegler 1993]. Consequently, 
the enzyme is present within the cell in its activated form and  
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has been likened to a “loaded, cocked gun,” capable of oxi-
dizing any soft nucleophile able to gain access to the active 
site. The unique mechanism of FMOs thus accounts for their 
extremely broad range of substrates.  

 In humans, five functional FMO genes, designated FMO1-
FMO5, have been identified [Lawton et al. 1994; Phillips et 
al. 1995; Hernandez et al. 2004]. FMO1 to FMO4 are lo-
cated within a cluster spanning ~245 kb on chromosome 1, 
in the region q24.3 [Hernandez et al. 2004]. The cluster con-
tains an additional FMO gene, FMO6P, which is classified 
as a pseudogene because it is unable to produce a correctly 
spliced mRNA [Hines et al. 2002]. The order of the genes 
within the cluster is cen-FMO3-FMO6P-FMO2-FMO1-
FMO4-tel, with no other genes being present. The gene en-
coding FMO5 is located ~26 Mb closer to the centromere, in 
the region 1q21.1 [Hernandez et al. 2004]. A second cluster 
of five FMO genes has been identified in the region 1q24.2, 
approximately 4 Mb to the centromeric side of the q24.3 
cluster. This cluster, however, consists entirely of pseu-
dogenes, designated FMO7P-FMO11P [Hernandez et al. 
2004]. The human genome therefore contains 11 FMO 
genes, five of which are functional. This review will focus 
on the five functional FMO genes, FMO1 to FMO5, and the 
proteins which they encode. Functional FMO genes contain 
eight coding exons and either one or two 5’ non-coding ex-
ons. In each case, the mature mRNA is produced by splicing 
the coding exons to a single non-coding exon. 

 FMOs 1, 2, 3, 4 and 5 have 51 to 57% amino acid se-
quence identity, whereas FMO6 is 72% identical to FMO3. 
FMOs of other mammalian species have >80% sequence 
identity to their human orthologues. Two GXGXXG motifs, 
characteristic of FAD- and NADPH-pyrophosphate-binding 
sites are present at identical positions (residues 9-14 and 
191-196, respectively) in each human FMO. The FAD-
binding site is contained within a “fingerprint” sequence that 
predicts a  secondary structure, the “Rossman fold,” 

tariq
Final
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known to be involved in binding dinucleotides [Wierenga et 
al. 1985]. A hydrophobic motif, F(A/T)TGY, characteristic 
of FMOs, is present at about residue 330. For more informa-
tion on the structural features of FMOs, see the review by 
Krueger and Williams [2005]. Recently, a three-dimensional 
structure of a FMO from Schizosaccharomyces pombe has 
been determined [Eswaramoorthy et al. 2006]. In contrast to 
mammalian FMOs, the yeast enzyme is cytosolic and about 
85 residues shorter.  

 Phylogenetic analysis suggests that the five functional 
FMO genes arose from a common ancestral gene via a series 
of gene duplications, estimated to have occurred between 
210 and 275 million years ago [Hernandez et al. 2004]. This 
is much earlier than the divergence of mammals, some 85 
million years ago, and therefore it is predicted that all mam-
mals possess the functional FMO genes FMO1 to FMO5.  

 Each member of the FMO gene family exhibits a differ-
ent developmental stage- and tissue-specific pattern of ex-
pression, which accounts for the marked qualitative and 
quantitative differences in FMO activities in tissues such as 
liver, lung and kidney. In addition, there are species differ-
ences in FMO gene expression (see below), which have im-
plications for the extrapolation of drug metabolism data from 
experimental animals to humans.  

 In this review we focus on the functional FMOs of hu-
mans. For each FMO we describe gene organization, devel-
opmental- and tissue-specific pattern of expression (and how 
this may differ from that in other mammals) and substrate 
specificity. We also describe genetic variants that have been 
identified, focusing on validated coding-region variants, but 
including promoter variants that have been shown to have an 
effect on gene expression, the frequency with which the 
variants occur in the world’s major population groups and 
their effect on enzyme function. We then discuss conse-
quences of genetic variation in the FMOs for the metabolism 
of therapeutic drugs and the implications of this for drug 
efficacy and response. 

FMO1  

 In 1971 Ziegler identified a mixed-function amine oxi-
dase in porcine liver microsomes whose substrates included 
nitrogen- and sulphur-containing compounds [Ziegler et al. 
1971]. A cDNA for the corresponding protein of humans 
was isolated in 1991 [Dolphin et al. 1991], and the enzyme is 
now known as FMO1 [Lawton et al. 1994]. The FMO1 gene, 
which was mapped to the long arm of chromosome 1 
[Shephard et al. 1993], encodes a polypeptide of 532 amino-
acid residues of molecular mass 60,306. 

Tissue Distribution 

 There is a distinct species difference in the hepatic ex-
pression of FMO1. In humans, neither FMO1 mRNA [Dol-
phin et al. 1991; Phillips et al. 1995; Dolphin et al. 1996] 
nor protein [Yeung et al. 2000; Koukouritaki et al. 2002] is 
present in adult liver. This is in marked contrast to all other 
mammals investigated, in which FMO1 constitutes a major 
form of the enzyme in adult liver [Lawton et al. 1990; Gas-
ser et al. 1990; Cherrington et al. 1998a; Lattard et al. 
2002a; Stevens et al. 2003]. However, the FMO1 gene is 

expressed in fetal human liver [Dolphin et al. 1991, 1996; 
Phillips et al. 1995; Yeung et al. 2000; Koukouritaki et al. 
2002]. Expression is highest in the first trimester (7.8 ± 5.3 
pmol/mg microsomal protein), then declines during fetal 
development and by 3 days after birth is completely extin-
guished [Koukouritaki et al. 2002]. FMO1 is also expressed 
in fetal human kidney, but in this tissue expression is in-
creased after birth, not switched off as in the liver [Dolphin 
et al. 1991, 1996; Phillips et al. 1995; Yeung et al. 2000; 
Krause et al. 2003].  

 In adult human the main site of expression of FMO1 is 
the kidney [Dolphin et al. 1991, 1996; Phillips et al. 1995; 
Yeung et al. 2000]. The gene is also expressed in the small 
intestine [Yeung et al. 2000] and stomach, and in a number 
of endocrine tissues, including pancreas, adrenal cortex and 
medulla, thyroid, thymus and testis [Hernandez et al. 2004]. 
The amount of FMO1 in adult human kidney (47 ± 9 pmol/ 
mg microsomal protein) [Yeung et al. 2000] is not much 
lower than that observed in liver for the major hepatic cyto-
chrome P450 (CYP), CYP3A4 (96 ± 51 pmol/mg microso-
mal protein) [Shimada et al. 1994], and is greater than that of 
the total content of CYPs in adult human kidney [Jakobsson 
and Cintig, 1973]. Thus, in adult human, FMO1 is likely to 
be a major contributor to the renal metabolism and clearance 
of therapeutic drugs. Another study reported lower amounts 
of FMO1 in adult kidney (3.2 – 11.5 pmol/mg microsomal 
protein) [Krause et al. 2003]. It has been suggested that dif-
ferences in the amounts of FMO1 detected in these two stud-
ies may have been due to the use of different antibodies 
[Krause et al. 2003]. Krause et al. [2003] report also that 
FMO1 amounts are greater in individuals of African descent 
(African Americans) than in Caucasians. However, it should 
be noted that the Caucasian kidney samples were obtained 
from cadavers, whereas the African-American samples were 
from biopsies.  

 Interindividual differences in the expression of FMO1 
have been reported. Variations in expression in fetal liver of 
10- to 20-fold (n=92), depending on gestational age, were 
observed [Koukouritaki et al. 2002]. Studies of adult human 
kidney samples found little variation (n=4) [Yeung et al. 
2000], less than 4-fold variation (n=26) [Krause et al. 2003], 
or less than 5-fold variation (n=13) [Hamman et al. 2000], 
whereas amounts in small intestine varied by up to 5-fold 
(n=7) [Yeung et al. 2000].  

Organization of The Human FMO1 Gene  

 The human FMO1 gene has 10 exons. The translation 
initiation codon is located in exon 2 and the protein-coding 
sequence is contained within exons 2 to 9. Exons 0 and 1 are 
upstream non-coding exons. In fetal liver, transcription is 
initiated from the most 5’ exon (exon 0), via the P0 pro-
moter. To produce the mature FMO1 mRNA sequences de-
rived from exon 0 are spliced to those derived from exon 2 
[Hernandez et al. 2004]. Analysis of a cDNA isolated from 
the small intestine (accession no. AK097039) indicates that 
in this tissue transcription starts from exon 1, via the P1 
promoter, and sequences derived from exon 1 are spliced to 
those derived from exon 2. In the kidney transcription can 
begin from a site within intron 1, via the P2 promoter 
[Shephard et al. 2007]. Therefore the human FMO1 gene has 
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three alternative promoters, P0, P1 and P2. In fetal liver only 
the most upstream, P0, is used [Shephard et al. 2007]. Irre-
spective of the promoter used the FMO1 protein, encoded by 
alternatively spliced mRNAs, is identical as both exon 0 and 
1 are untranslated.  

 The reasons for the silencing of the FMO1 gene in adult 
human liver are not understood. However, a recent study 
[Shephard et al. 2007] using reporter gene assays has shown 
that sequences upstream of the core liver promoter (upstream 
of exon 0) act as a powerful transcriptional repressor in 
transfected HepG2 cells. The repressor sequences contain 
repetitive elements that are absent from species in which the 
gene is expressed in adult liver

 
[Shephard et al. 2007]. Con-

tinued expression of the gene in adult human extra-hepatic 
tissues can be explained in part by the use of alternative 
promoters to direct expression in the intestine and kidney 
[Hernandez et al. 2004]. 

Genetic Variants  

Protein-Coding Variants 

 Fig. (1) shows the polymorphic variants identified in the 
coding region of FMO1. Analysis of the FMO1 gene from 50 
unrelated African Americans identified four single-nucleotide 
polymorphisms (SNPs) that change the amino-acid sequence 
of the protein [Furnes et al. 2003]: g.9614C>G(H97Q), 
g.23970A>G (I303V), g.23971T>C (I303T) and g.27362C> 
T(R502X), (Fig. (1)) and (Table 1). Each of the variants was 
found in only one or two of the 100 chromosomes surveyed. 
I303V, which is also reported in dbSNP126, has been found 
in African Americans and Yorubans at frequencies of 10-
15%, but is absent from Europeans and Asians. The catalytic 
activity of each of these variants for N- and S-oxygenation 

was assessed in a heterologous expression system using four 
known substrates for FMO1: methimazole, imipramine, fen-
thion and methyl p-tolyl sulphide [Furnes and Schlenk, 
2004]. Three of the variants, H97Q, I303V and I303T, had 
little if any effect on enzyme activity with any of the sub-
strates. Although R502X was missing 31 residues from the 
C-terminus, this had only a modest if any effect on activity 
towards imipramine, fenthion and methyl p-tolyl sulphide. 
However, the variant was completely inactive towards me-
thimazole. The results of this study show that, depending on 
the substrate, the same SNP can have a markedly different 
effect on FMO1 activity. R502X was identified in only one 
of the 100 chromosomes surveyed and thus may represent a 
rare variant that would have little consequence for the gen-
eral population.  

 A further nonsynonymous SNP, g.22739G>A(R223Q), is 
reported in dbSNP126 (rs16864310), (Fig. (1) and Table 1). 
The effect of this polymorphism on enzyme activity is not 
known. However, it is apparently specific to Chinese, in 
which it occurs at very low frequency (2%). Thus, only five 
nonsynonymous SNPs have been identified in FMO1, each 
of which is apparently confined to a single population group, 
in which it occurs at low, or very low frequency.  

 Three coding variants that do not alter the amino- 
acid sequence, g.22818C>T(T249T), g.25061A>G(V396V) 
[Furnes et al. 2003] and g.27258A>G(P467P) (dbSNP126, 
rs28360432) have also been identified in FMO1, (Fig. (1) 
and Table 1). These synonymous SNPs will not affect pro-
tein activity; however, it is not known whether such exonic 
changes will affect the amount of protein produced by influ-
encing the rate of splicing or efficiency of translation of the 
FMO1 mRNA.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Genetic variants of FMO1, FMO2, FMO4 and FMO5. 

Horizontal bars represent the polypeptide chains. Alternating grey and white boxes represent regions encoded by exons 2 to 9. Black boxes 

indicate, from left to right, the FAD and NADPH binding sites and the conserved F(A/T)TGY sequence. Nonsynonymous variants are shown 

in black and synonymous variants in grey. 
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Table 1. Protein-coding SNPs for FMOs 1, 2, 4 and 5 

Gene Variant Exon Amino Acid 

Change 

Functional Consequence Reference 

FMO1 g.9614C>G 3 H97Q no effect Furnes et al. 2003;  

Furnes and Schlenk, 2004 

FMO1 g.22739G>A 6 R223Q n.d. dbSNP126 

FMO1 g.22818C>T 6 T249T - Furnes et al. 2003; dbSNP126 

FMO1 g.23970A>G 7 I303V no effect Furnes et al. 2003;  

Furnes and Schlenk, 2004; dbSNP126 

FMO1 g.23971T>C 7 I303T no effect Furnes et al. 2003;  

Furnes and Schlenk, 2004; dbSNP126 

FMO1 g.25061A>G 8 V396V - Furnes et al. 2003; dbSNP126 

FMO1 g.27258A>G 9 P467P - dbSNP126 

FMO1 g.27362C>T 9 R502X substrate-dependent decrease Furnes et al. 2003;  

Furnes and Schlenk, 2004 

FMO2 g.107A>G 2 D36G n.d. Furnes et al. 2003 

FMO2 g.7661G>A 3 V59I n.d. Furnes et al. 2003 

FMO2 g.7695T>A 3 F69Y n.d. dbSNP126 

FMO2 g.7700_7702dupGAC 3 D71dup loss of function Furnes et al. 2003;  

Krueger et al. 2005 

FMO2 g.7731T>C 3 F81S n.d. dbSNP126 

FMO2 g.10951delG 4 V113fsX loss of function Furnes et al. 2003;  

Krueger et al. 2005 

FMO2 g.13693T>C 5 F182S n.d. Furnes et al. 2003 

FMO2 g.13732C>T 5 S195L loss of function Furnes et al. 2003;  

Krueger et al. 2005 

FMO2 g.13733A>G 5 S195S - Furnes et al. 2003 

FMO2 g.18237G>A 6 R238Q n.d. Furnes et al. 2003 

FMO2 g.18269C>T 6 R249X n.d. (but likely loss of function) dbSNP126 

FMO2 g.19679A>G 7 E314G n.d. dbSNP126 

FMO2 g.19839G>A 7 A367A - Furnes et al. 2003 

FMO2 g.19898_19899ins 

TCAAGCTC 

7 R387RfsX5 n.d. (but likely loss of function) Furnes et al. 2003 

FMO2 g.19910G>C 7 R391T n.d. Furnes et al. 2003 

FMO2 g.22027G>A 8 E402E - Furnes et al. 2003 

FMO2 g.22060T>G 8 N413K no effect Furnes et al. 2003;  

Krueger et al. 2005 

FMO2 g.23238C>T 9 Q472X loss of function Dolphin et al. 1998;  

Whetstine et al. 2000 

FMO2 g.23300A>G 9 K492K - Furnes et al. 2003 

FMO2 g.23405_23406insT 9 F528FfsX32 n.d. dbSNP126 

FMO2 g.23412_23413insT 9 C530LfsX30 n.d. Whetstine et al. 2000 
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(Table 1. Contd….) 

Gene Variant Exon Amino Acid Change Functional Consequence Reference 

FMO4 g.110T>C 2 I37T n.d. Furnes et al. 2003 

FMO4 g.14601C>T 7 F281F n.d. dbSNP126 

FMO4 g.14680A>T 7 T308S n.d. dbSNP126 

FMO4 g.14724T>C 7 D322D n.d. Furnes et al. 2003 

FMO4 g.14726T>C 7 V323A n.d. Furnes et al. 2003 

FMO4 g.14770G>C 7 E339Q n.d. Furnes et al. 2003 

FMO5 g.23716G>A 7 P337P n.d. dbSNP126 

FMO5 g. 23806A>G 7 A367A n.d. Furnes et al. 2003 

FMO5 g.37917C>T 9 P457L n.d. Furnes et al. 2003 

FMO5 g.38059G>T 9 R506S n.d. dbSNP126 

Mutation nomenclature follows that recommended by the Human Genome Organization (http://www.hgvs.org/mutnomen/). n.d., not determined. 

 
Untranslated Coding Variants 

 Four verified SNPs have been identified in the 3’ un-
translated region (UTR) of the FMO1 mRNA: g.27568C>T 
(rs12954) [Hines et al. 2003], g.27578 G>A (dbSNP126, 
rs28360434), g.27590 G>A(dbSNP126, rs28360435;) and 
g.27664C>T(rs7877) [Hines et al. 2003] (Table 1). Two of 
these, g.27568C>T and g.27664C>T, are discussed below in 
the section on FMO1 and disease.  

Promoter Variants 

 A limited number of reports indicate that in rat expres-
sion of FMO1 can be modulated in response to 3-methyl-
cholanthrene [Chung et al. 1997], indoles [Katchamart et al. 
2000] and corticosterone [Chen et al. 2005]. However, two 
of these studies are of liver [Chung et al. 1997; Katchamart 
et al. 2000], a tissue in which FMO1 is not expressed in 
adult human. Consequently, the relevance of these findings 
for humans is not clear. The evidence available to date sug-
gests that in humans FMO1 expression, in contrast to that of 
CYP genes, is not greatly influenced by foreign chemicals. 
Thus the observed interindividual variations in amounts of 
FMO1 (see above) are more likely due to genetic rather than 
environmental factors.  

 To identify nucleotide changes that might affect the ex-
pression of FMO1, Hines and co-workers analysed the FMO1 
gene from 177 unrelated individuals representing the world’s 
ethnic diversity: northern Europeans, Africans, Mexican- and 
native-Americans, and east- and south-Asians [Hines et al. 
2003]. A region extending about 1 kb upstream of exon 0 
[Hernandez et al. 2004], exons 0, 2-9 and the immediate 
flanking intronic sequences were examined for SNPs. This 
study assessed the novel SNPs identified, together with pre-
viously reported SNPs, for any that were likely to influence 
the expression of FMO1. None of the four SNPs in the 5’ 
sequence of FMO1, g.-10361T>A, g.-10330C>T, g.-10046A 
>G and g.-9782C>A, were located in regulatory elements 
previously identified and implicated in the regulation of tran-
scription of the gene [Luo et al. 2001]. However, the SNP g.-
9536C>A (in exon 0) was located in a YY1 element previ-

ously shown to be involved in regulation of rabbit FMO1 
[Luo et al. 2001]. Electrophoretic mobility shift assays using 
extracts from HepG2 cells revealed a complex set of DNA-
protein interactions when 24-bp sequences containing either 
of the g.-9536C>A SNP variants were used as probes [Hines 
et al. 2003]. The C A transversion prevented YY1 binding 
to DNA, but increased the affinity for the transcription fac-
tors Oct1, HNF1  and HNF1 . Transfection of HepG2 cells 
with reporter gene constructs under the control of either the 
g.-9536C (FMO1*1) or g.-9536A (FMO1*6 ) alleles showed 
no difference when the plasmid contained the FMO1 mini-
mal promoter. However, constructs containing longer sec-
tions of either of the two alleles showed a 2- to 3-fold de-
crease in reporter gene activity when the g.-9536A was pre-

sent.  

 The FMO1*6 allele is present in African Americans at a 
frequency of 13%, in northern-European Americans at 11% 
and in Hispanic Americans at 30%. The effect of this rela-
tively common variant (g.-9536C>A) on FMO1 gene expres-
sion in vivo is not clear. Two fetal liver samples, homozy-
gous for the FMO1*6 allele, showed FMO1 expression lev-
els in the upper quartile range for their age bracket rather 
than the lower range [Koukouritaki et al. 2002] that would 
be predicted from the results of the transfection experiments 
described above. It is possible that other transcription factors 
compensate for the loss of YY1 binding in FMO1*6 indi-
viduals. Therefore at present little is known about SNPs that 
might influence the amount of FMO1 protein produced.  

 Two SNPs, g.-11T>C and g.17248T>C, are located 
within polypyrimidine splice donor sites. However, such 
pyrimidine for pyrimidine changes are unlikely to affect 
splicing of the FMO1 transcript and hence would not be ex-

pected to influence the amount or type of protein produced.  

Therapeutic Drug Substrates For FMO1: Detoxification 

Versus Bioactivation 

 Among all FMO isoforms, FMO1 has the broadest range 
of substrates. A wide range of xenobiotics and foreign com- 
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pounds are among its substrates, which include therapeutic 
drugs, pesticides and endogenous compounds. A list of sub-
strates for human FMO1 that are of therapeutic importance is 
given in Tables 2 and 3.  

 A detailed discussion of the activity of FMO1 towards 
each of these drugs is beyond the scope of this review. For 
more information on this topic the reader is referred to the 
review by Krueger and Williams [2005]. However, we have 
selected two drugs, tamoxifen and thiacetazone, for special 
mention because of their widespread use in the treatment, 
respectively, of breast cancer and tuberculosis, and the po-
tential conflict between bioactivation and detoxification with 
respect to drug metabolism and therapeutic outcome.  

 Recent work has highlighted interesting results concern-
ing the relationship between FMOs and CYPs with regard to 
tamoxifen metabolism [Parte and Kupfer, 2005]. Tamoxifen 
is converted to its N-oxide by FMO1 and, less effectively, by 
FMO3 (see below). N-oxygenation of a drug by a FMO is 
generally considered as a detoxification pathway, with the N-
oxide being a non-toxic product. In contrast to FMO1-

mediated detoxification of tamoxifen, the drug can be bioac-
tivated by CYP-mediated hydroxylation, a reaction catalyzed 
mainly by CYP3A4, the major hepatic CYP (reviewed in 
[Krueger et al. 2006]). The products of this reaction can bind 
covalently to DNA and proteins, causing macromolecular 
damage and potential health risks. Because FMO1 is not 
present in adult human liver, the ratio of the CYP-bio-
activated tamoxifen products to the N-oxide detoxification 
product is expected to be high. However, in tissues in which 
FMO1 is expressed, for example, the kidney, in which the 
amounts of FMO1 more closely resemble that of CYP3A4, 
tamoxifen-related DNA adducts would be expected to be 
low. This has been shown to be the case in a study of tissues 
of monkey treated with tamoxifen [Shibutani et al. 2003]. 
Tamoxifen and its metabolites are widely distributed through-
out the body in patients treated with the drug for short or 
long periods [Lien et al. 1991]. The study of Parte and 
Kupfer [2005] has raised some interesting possibilities with 
regard to the interplay between CYP and FMO1 metabolism 
in different tissues. The N-oxide of tamoxifen, formed by 
FMO-mediated action, can be reduced to tamoxifen by CYPs 

Table 2. Nitrogen-containing Drugs Oxygenated by Human FMO1 

Substrate Type of Drug and Health Condition Product Reference 

Benzydamine nonsteroidal antiinflammatory  N-oxide Lang and Rettie, 2000;  

Stormer et al. 2000 

Chlorpromazine dopamine D2 antagonist  

(antipsychotic) 

- Kim et al. 2000 

Deprenyl  monoamine oxidase type B inhibitor (Parkinson’s disease) hydroxylamine Cashman et al. 1999;  

Szoko et al. 2004 

Imipramine 5HT/noradrenalin re-uptake inhibitor (antidepressant) N-oxide Kim and Ziegler, 2000 

Itopride dopamine D2 antagonist  

(gastroprokinetic)  

N-oxide Mushiroda et al. 2000 

Methamphetamine psychostimulant hydroxylamine Cashman et al. 1999;  

Szoko et al. 2004 

N-deacetyl ketoconazole* antifungal agent N-hydroxyl Rodriguez and Miranda, 2000 

Olopatadine antihistamine  N-oxide Kajita et al. 2002 

Orphenadrine anticholinergic  

(Parkinson’s disease) 

- Kim and Ziegler, 2000 

SNI-2011 muscarinic receptor agonist  

(Sjogren's Syndrome) 

N-oxide Washio et al. 2003 

Tamoxifen estrogen receptor modulator  

(Breast Cancer Therapy) 

N-oxide Parte and Kupfer, 2005 

Xanomeline muscarinic receptor agonist  

(Alzheimer’s Disease) 

N-oxide Ring et al. 1999 

*Major metabolite of the antifungal agent ketoconazole; - Products not identified/unpublished. 

In many cases FMO1 is not the only enzyme involved in the metabolism of the drug in vivo. 
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and other heme proteins. Thus, depending on the ratio of 
FMO1 to CYPs in a particular tissue, reduction of tamoxifen 
N-oxide back to tamoxifen could provide an additional 
source of the drug for bioactivation by CYPs, or, by acting as 
a potential store of tamoxifen, the N-oxide might increase the 
amount of available drug and thus lead to greater drug effi-
cacy.  

 The anti-tubercular drug thiacetazone is a thiocarbamide 
prodrug, which is activated in Mycobacterium tuberculosis 
by the FMO enzyme EtaA to form a sulfenic acid intermedi-
ate [Qian and Ortiz de Montellano, 2006]. This is further 
oxidized to two metabolites, a sulfinic acid and a carbodi-
imide. The mechanism of cytotoxicity within the bacterial 
cell is not known, but it is suggested that metabolites of 
thiacetazone may lower the concentration of mycothiol (a 
bacterial antioxidant that has a role similar to that of glu-
tathione in eukaryotic cells), eventually resulting in cell 
death. Thiacetazone is a substrate in vitro for both human 
FMO1 and FMO3 (see below), the products being the same 
as those of the reaction catalyzed by the bacterial FMO 
[Qian and Ortiz de Montellano, 2006]. There is evidence to 
suggest bioactivation of thiocarbamide drugs by mammalian 
monooxygenases in both humans and rats [Ruse and Waring, 
1991 a, b]. The in vivo detoxification routes for thiacetazone 
are unclear, but FMOs may well play a role in both detoxifi-
cation and bioactivation pathways. This poses a question 
concerning the response of individuals to the drug. Will po-
lymorphic variants in FMO1 that affect the amount or activ-
ity of the protein influence the distribution of the drug in 
extra-hepatic tissues and thus the amount of drug ultimately 
delivered to the bacterium? 

 The examples of bioactivation versus detoxification dis-
cussed above pose important questions regarding an individ-
ual’s response to drug therapy. In the case of tamoxifen, tis-
sue distribution of the drug and its metabolites, and hence the 
balance between drug efficacy and harmful side effects, is 
likely to be influenced by the combined effects of FMO1 and 
CYP genetic variants. In the case of thiacetazone, the inter-
play between the bacterial EtaA protein and FMO1- (or 
FMO3-) mediated metabolism is predicted to play a role in 

drug efficacy. However, adverse drug reactions are expected 
to be due to host FMO-mediated effects.  

FMO1 And Disease 

 Gene expression profiling of human myocardial tissue 
from patients diagnosed with atrial fibrillation (AF) showed 
a significant increase in the expression of FMO1 mRNA and 
of several other mRNAs encoding proteins thought to be 
involved in oxidative stress [Kim et al. 2003]. The role, if 
any, of specific FMO1 SNPs in AF is not known. Other 
DNA profiling experiments have indicated that FMO1 mRNA 
is under-represented in the spinal cord of patients with 
amyotrophic lateral sclerosis (ALS) [Malaspina et al. 2001]. 
A recent study [Cereda et al. 2006] examined the allelic fre-
quency of two FMO1 SNPs, g.27568C>T (rs12954) and 
g.27664C>T (rs7877), located within the 3’ UTR of the 
mRNA, in a group of sporadic ALS patients and a control 
group. Both SNPs were found to be over-represented in fe-
male, but not male, ALS patients. The short distance (97 bp) 
between the SNPs explains the strong linkage disequilibrium 
between these two polymorphisms. It is not known whether 
the two SNPs affect the stability of the mRNA, but this is 
thought to be unlikely [Hines et al. 2003]. The authors sug-
gest that the expression of FMO1 may be down-regulated in 
males compared with females and thus the role of FMO1 in 
neurometabolism may be less important in males than in 
females. In contrast to the situation in mouse [Cherrington et 
al. 1998b], no significant gender differences in the expres-
sion of FMO1 have been reported for human.  

FMO2 

 The main site of FMO2 expression is the lung, where in 
most mammals it constitutes the major form of the enzyme 
present [Lawton et al. 1990; Nikbakht et al. 1992; Yueh et 
al. 1997]. In humans the gene is also expressed in skeletal 
muscle, kidney, prostate gland and blood vessels [Hernandez 
et al. 2004]. In contrast to other FMOs, FMO2 can mediate 
the N-oxygenation of some primary alkylamines to their 
oximes, via an N-hydroxylamine intermediate [Tynes et al. 
1986; Poulsen et al. 1986], but is unable to catalyze the oxy-
genation of certain tertiary amines, such as imipramine and 

Table 3. Sulphur-containing Drugs Oxygenated by Human FMO1 

Substrate Type of Drug or Health Condition Product Reference 

Ethionamide antibiotic (tuberculosis) - Krueger and Williams, 2005 

Methimazole thyroperoxidase inhibitor 

(hyperthyroidism) 

S-oxide Furnes et al. 2004 

S-methyl esonarimod*  cytokine production inhibitor 

(rheumatism) 

S-oxide Ohmi et al. 2003 

Tazarotenic acid** retinoic acid receptor modulator 

(acne/psoriasis) 

S-oxide Attar et al. 2003 

Thiacetazone antibiotic (tuberculosis) sulfinic acid/carbodiimide Qian and Ortiz de Montellano 2006 

Products not identified/unpublished; * active metabolite of parent compound esonarimod; ** active metabolite of parent compound tazarotene  

In some cases FMO1 is not the only enzyme involved in the metabolism of the drug in vivo. 
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chlorpromazine [Ohmiya and Mehendale, 1982; Williams et 
al. 1984], that are good substrates for FMO1. In comparison 
with other FMOs, FMO2 exhibits a greater restriction in the 
size of its substrates, displaying a marked preference for sub-
strates with a long side chain. This suggests that the active 
site of FMO2 is located further from the surface of the en-
zyme than that of other FMOs and is accessed by a relatively 
narrow channel. In addition, FMO2 is less sensitive to inac-
tivation by elevated temperature and anionic detergents. The 
gene for FMO2, which was mapped to the long arm of hu-
man chromosome 1 [M

c
Combie et al. 1996] comprises 9 

exons, the first of which is non-coding.  

Genetic Variants 

 Analysis of cDNAs for human FMO2 revealed that they 
encoded a polypeptide that, in comparison with FMO2 of 
rabbit [Lawton et al. 1990], guinea pig [Nikbakht et al. 
1992] and rhesus macaque [Yueh et al. 1997], lacks 64 resi-
dues from its carboxy terminus [Dolphin et al. 1998]. This 
was the result of C T mutation that changed a glutamine 
codon at position 472 to a stop codon. The presence of the 
premature stop codon in the human FMO2 gene was con-
firmed by sequencing genomic DNA from several individu-
als [Dolphin et al. 1998]. The nonsense mutation, g.23238C 
>T (Q472X), that gave rise to the truncated polypeptide is 
not present in non-human primates such as chimpanzee (Pan-
troglodytes) and gorilla (Gorilla gorilla) [Dolphin et al. 
1998] and must therefore have arisen in the human lineage 
some time after the divergence of the Homo and Pan clades 
took place some 6 million years ago.  

 Analysis of individuals of different racial and ethnic 
backgrounds, namely European Caucasians, Orientals (Japa-
nese and Chinese), Africans (including African Americans 
and UK Afro-Caribbeans), New-Guinea Aboriginals, Indians 
and Maoris, revealed that the allele encoding the truncated 
FMO2, g.23238T (FMO2*2A), occurred at a frequency of 
100% in all groups investigated, with the exception of indi-
viduals of African descent, in which the ancestral g.23238C 
allele (FMO2*1), which encodes a full-length polypeptide 
(FMO2.1), was present at a frequency of 4% [Dolphin et al. 
1998]. These results were confirmed and extended by a 
larger population study [Whetstine et al. 2000]. All Europe-
ans (n=79) and Asians (n=120) investigated to date are ho-
mozygous for the FMO2*2A allele, whereas in African 
Americans (n=180) the FMO2*1 allele is present at a fre-
quency of 13%. FMO2*1 has also been identified in Hispan-
ics [Krueger et al. 2002a], and a subsequent study [Krueger 
et al. 2004] found that it is present in Hispanics of Puerto 
Rican (n=327) and Mexican (n=280) descent at frequencies 
of 3.5 and 1%, respectively.  

 Analysis of products of heterologously expressed cDNAs 
revealed that the truncated protein (X472) encoded by the 
major allele (FMO2*2A) is inactive, whereas the full-length 
protein (Q472) encoded by the minor allele (FMO2*1) is 
catalytically active [Dolphin et al. 1998]. The presence of 
full-length, active FMO2 in lung microsomes isolated from 
an individual heterozygous for FMO2*1/FMO2*2A was sub-
sequently confirmed [Krueger et al. 2002b].  

 A frame-shift mutation, g.23412_23413insT, has been 
observed at frequencies of 7 and 13% in African Americans 

and Caucasians, respectively [Whetstine et al. 2000]. This 
mutation would change the last six amino-acid residues and 
add 23 residues to the C-terminus of the protein. However, 
the frame-shift mutation was found to segregate with the 
g.23238T allele encoding the premature stop codon and thus 
would have no functional consequence.  

 A survey of 50 African Americans [Furnes et al. 2003] 
identified an additional 14 coding-region variants in FMO2. 
Four were synonymous; the other ten (seven nonsynony-
mous, two frame-shifts and one in-frame 3-bp duplication) 
would result in a change in amino acid sequence. Four of  
the latter, g.7700_7702dupGAC(D71dup), g.10951delG 
(V113fsX), g.13732C>T(S195L) and g.22060T>G(N413K), 
occurred at high frequency (>25%) in this population. The 
effect on FMO2 activity of these four mutations has been 
investigated [Krueger et al. 2005]. The frame-shift mutation 
(g.10951delG) results in the replacement of valine at position 
113 with a stop codon and thus produces a severely truncated 
protein. When expressed in a baculovirus-insect cell system 
the truncated protein was not detected and thus may have 
been targeted for degradation. The D71dup protein failed to 
bind FAD and was thus catalytically inactive. Although 
S195L bound FAD it retained only 2% of the activity of 
FMO2.1. In contrast, the activity of N413K was similar to 
that of FMO2.1.  

 With the exception of g13732C>T(S195L), which is pre-
sent at high frequency in Africans (35-60%), Asians (45-
55%) and Europeans (15-30%), the other mutations are ei-
ther absent or present in much lower frequency in non-
African populations. Of particular importance is whether 
variants that affect the function of FMO2 occur on the 
FMO2*1 allele, which encodes a full-length protein, or on 
the FMO2*2A allele, which encodes a truncated non-func-
tional protein. Haplotype analysis of g.10951delG(V113fsX), 
g.13732C>T(S195L) and g.22060T>G(N413K) indicated 
that all three variants segregated with the g.23238T(Q472X) 
variant and would thus be associated with a protein that is 
already inactive [Krueger et al. 2005]. This implies that indi-
viduals who possess a FMO2*1 allele are likely to express a 
protein that is catalytically active.  

 The other coding-region variants identified by Furnes et 
al. [Furnes et al. 2003] plus additional ones reported in 
dbSNP126 are shown in Fig. (1) and Table 1. The functional 
effect of the nonsynonymous SNPs has not been established. 
Of the nonsynonymous SNPs, three, g.7695T>A(F69Y), 
g.18237G>C(R238Q) and g.19910G>C(R391T) are appar-
ently restricted to African populations, where they occur at 
low frequency (4 to 7%). G.19679A>G(E314G) is particu-
larly common (25-35%) in Asians, whereas g.7731T>C 
(F81S) is absent from Asians, but relatively common (12-
30%) in Africans. Of the synonymous SNPs, g.13733A>G 
(S195S) occurs at high frequency (25-60%) in all popula-
tions, whereas g.19839G>A(A367A) and g.22027G>A(E402E) 
are restricted to Africans (15-23%).  

 A large study
1
 (more than 1800 individuals from 25 dif-

ferent populations) demonstrated that the FMO2*1 allele is 
widely distributed throughout Africa. The allele occurs at 

                                                
1 Veeramah et al. (submitted). 
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relatively low frequency (2-6%) in north Africa, but is more 
common in sub-Saharan Africa, in some regions reaching 
frequencies as high as 26%, with almost 50% of individuals 
having at least one FMO2*1 allele.  

FMO2 Substrates 

 Substrates of FMO2 include the thioether-containing 
organophosphate insecticides phorate and disulfoton [Hen-
derson et al. 2004a]. Organophosphates are bioactivated by 
CYP-mediated desulfuration to produce the oxon, which is a 
far more potent inhibitor of acetylcholinesterase than is the 
parent compound [Kulkarni and Hodgson, 1984]. In contrast, 
FMO2 catalyzes the S-oxygenation of organophosphates 
[Henderson et al. 2004a], which represents a detoxification 
pathway. Thus, individuals who express functional FMO2 
may have a reduced risk of toxicity if exposed to organo-
phosphates. 

 Of particular concern is the role of FMO2 in bioactiva-
tion. FMO2 has been shown to catalyze the S-oxygenation of 
thioureas, including thiourea, 1-phenylthiourea and ethylene 
thiourea, which are known or suspected lung toxicants, to 
produce the more toxic sulfenic and/or sulfinic acid metabo-
lites [Henderson et al. 2004b]. The sulfenic acid derivatives 
can combine with glutathione and undergo redox cycling, 
leading to oxidative stress and toxicity. Thus, individuals 
who express functional FMO2 would be predicted to be at 
increased risk of pulmonary toxicity following exposure to 
thiourea or its derivatives.  

 Little is known about the role of FMO2 in the metabo-
lism of drugs. However, prochloperazine and trifluoperazine 
have been shown to be substrates for FMO2 of rabbit [Lomri 
et al. 1993]. Of particular interest is the recent finding that 
the anti-tubercular drug thiacetazone is a good substrate for 
human FMO2

2
, which has implications for the efficacy and 

toxicity of this drug in African populations.  

Potential Animal Model  

 A gene encoding a truncated, non-functional FMO2 is 
present in strains of laboratory rats (Sprague-Dawley and 
Wistar) and in the species, Rattus norvegicus, from which 
they were derived, but not in the closely related species Rat-
tus rattus [Lattard et al. 2002b]. However, the mutation that 
gives rise to the truncated protein, a 2-bp deletion in codon 
421, which results in a premature stop codon at position 433, 
is different from that present in humans, and must have oc-
curred independently after the divergence of Rattus nor-
vegicus and Rattus rattus. Interestingly, the mutation is po-
lymorphic in wild Rattus norvegicus and thus this species 
may represent a good model for investigating the metabolic 
and toxicological consequences of the human FMO2 poly-
morphism [Hugonnard et al. 2004]. 

Conclusions 

 Evidence to date indicates that in most of the world’s 
population groups essentially all individuals are homozygous 
for the FMO2*2 allele (g.23238C>T[Q472X]) and thus pro-
duce no functional FMO2. However, in sub-Saharan Africa 
and in populations recently descended from this region, a 

                                                
2 Francois, A., Phillips, I.R. and Shephard, E. A. (unpublished). 

substantial proportion of individuals (almost 50% in some 
regions) possess at least one copy of the ancestral FMO2*1 
allele and thus express functional FMO2. This has implica-
tions for inter-ethnic and, in African populations, interindi-
vidual variations in response to drugs, and in susceptibility to 
toxic chemicals, that are substrates of FMO2, particularly 

those for which the lung is the target organ or route of entry.  

FMO3 

 A cDNA for human FMO3 was identified in 1992 by 
Lomri et al. [Lomri et al. 1992]. The FMO3 gene was 
mapped to the long arm of chromosome 1 [Shephard et al. 
1993]. It comprises 9 exons, of which exon 1 is non-coding 
[Dolphin et al. 1997a], and encodes a polypeptide of 532 
amino-acid residues and molecular mass 60,047 [Phillips et 

al. 1995].  

Tissue Distribution 

 FMO3 is the predominant FMO isoform expressed in the 
liver of the human adult [Lomri et al. 1992; Phillips et al. 
1995; Dolphin et al. 1996]. FMO3 mRNA has been detected 
also in lung, kidney, adrenal medulla and cortex, pancreas, 
thyroid, gut and brain [Hernandez et al. 2004]. FMO3 ex-
pression is switched on after birth in humans [Koukouritaki 
et al. 2002] and in other species such as mouse [Janmo-
hamed et al. 2004]. However, small amounts of FMO3 pro-
tein have been detected in the human embryonic, but not 
fetal, liver [Koukouritaki et al. 2002]. The mRNA for FMO3 
is also not detectable in fetal liver [Dolphin et al. 1996]. The 
mechanisms and factors required to express the FMO3 gene 
in the embryo, to silence its expression during fetal devel-
opment and then to re-activate expression of the gene after 
birth are unknown. A comprehensive, immunochemical study 
[Koukouritaki et al. 2002] of human liver samples from 240 
individuals, ranging in age from 8 weeks gestation to 18 
years old, detected small amounts of FMO3 as early as 8 
weeks (the embryonic stage), but not in the fetus, 15-40 
weeks gestation. Analysis of postnatal samples showed that, 
during the first 3 weeks postpartum, in most individuals 
FMO3 was undetectable or present in only small amounts. 
Three subsequent developmental phases of FMO3 expres-
sion were apparent. In the first phase, between 3 weeks and 
10 months of age, amounts of FMO3 increased 5-fold, to 4.7 
± 5.9 pmol/mg microsomal protein. Between 10 months and 
11 years of age another 3-fold increase in expression was 
observed (to 12.7 ± 8.0 pmol/mg microsomal protein). In the 
third phase, between 11 and 18 years of age, there was a fur-
ther 2-fold increase (to 26.9 ± 8.6 pmol/mg microsomal pro-
tein). The amount of FMO3 produced was not influenced by 

gender.  

 The data indicate that birth is necessary, but not suffi-
cient, for the onset of FMO3 expression in human liver. The 
age at which FMO3 expression is switched on varies from 
birth to up to 2 years old. However, by ten months of age, 
the majority of individuals are expressing FMO3. This con-
trasts with the extinction of FMO1 expression in human 
liver, which is tightly linked to the process of birth, being 
switched off within a few days of birth, irrespective of gesta-
tional age [Koukouritaki et al. 2002] (see above). Conse-
quently, during the first year of life many individuals will 
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have no, or very small amounts of drug-metabolizing FMOs 
in their liver, which has important implications for their abil-
ity to metabolize therapeutic drugs that are substrates for 
these enzymes.  

 Interindividual variations of 10- to 20-fold in the expres-
sion of FMO3 have been reported [Overby et al. 1997; 
Koukouritaki et al. 2002; Cashman and Zhang, 2002]. The 
amounts of hepatic FMO3 reported by Overby et al., 
[Overby et al. 1997] (60 ± 43 pmol/mg microsomal protein) 
were higher than those reported by Koukouritaki et al. 
[2002] (see above). However, the samples analysed in the 
former study were from adult liver, whereas those in the lat-
ter study were from livers of 11 to 18 year olds. Therefore, it 
is possible that the differences reflect a further increase in 
FMO3 expression from the teenage years to adulthood. The 
amounts of FMO3 present in adult liver are therefore similar 
to those of the most abundant hepatic CYPs, CYP3A4, 
CYP2C and CYP1A2, with reported specific contents of 96 
± 51, 60 ± 27 and 42 ± 23 pmol/mg microsomal protein, re-
spectively [Shimada et al. 1994]. FMO3 expression has been 
found to be inducible by dioxin in male mouse liver [Tijet et 
al. 2006] and, in humans, may be influenced by physiologi-
cal factors, e.g., FMO3 declines during menstruation [Zhang 
et al. 1996; Shimizu et al. 2007a]. However, the majority of 
the observed interindividual variation in FMO3 expression is 
likely to be due to genetic factors.  

Genetic Variants 

Trimethylaminuria 

 Loss-of-function mutations in the FMO3 gene (MIM 
136132) cause the inherited disorder trimethylaminuria 
(TMAuria) (MIM 60279), also known as fish-odor syn-
drome. Affected individuals are unable to metabolize die-
tary-derived trimethylamine (TMA) to its non-odorous N-
oxide, a reaction catalyzed by FMO3 [Lang et al. 1998]. 
Consequently, they secrete the smelly free amine in their 
breath, sweat and urine, which imparts a bodily odor remi-
niscent of rotting fish [Mitchell and Smith, 2001]. Sufferers 
often display a variety of psychological and antisocial reac-
tions to their condition, including anxiety, chronic depres-
sion, and attempted suicide [Mitchell and Smith, 2001]. The 
disorder is inherited in a recessive manner [Al-Waiz et al. 
1988]. 

 The incidence of heterozygotes in British Caucasians is 
estimated to be about 1%, but may be higher in other popula-
tion groups [Hadidi et al. 1995; Mitchell et al. 1997; 
Mitchell and Smith, 2001]. The first report identifying a 
causative mutation for this disorder, g.15153C>T(P153L), 
was in 1997 [Dolphin et al. 1997b]. The mutant protein, ex-
pressed in a baculovirus-insect cell system, was unable to 
catalyze the N-oxygenation of TMA. Subsequently, more 
than 30 mutations have been identified that cause TMAuria 
[Mitchell and Smith, 2001; Hernandez et al. 2003; Cashman 
and Zhang, 2006; Phillips and Shephard, 2007], (Fig. (2) and 
Table 4). The resultant mutant enzymes are unable to cata-
lyze TMA N-oxygenation and, with one exception, N61S, 
are also inactive towards other substrates tested, such as 10-
(N,N-dimethylaminopentyl)-2-(trifluoromethyl) phenothiaz-
ine (5’-DPT), tyramine and methimazole. Although N61S is 

incapable of catalyzing N-oxygenation of TMA, its ability to 
catalyze S-oxygenation of methimazole is unaffected [Dol-

phin et al. 2000].  

 Individuals displaying symptoms of TMAuria are re-
ferred to in the ancient Indian epic the Mahabharata and in 
Shakespeare’s the Tempest [Mitchell and Smith, 2001]. Al-
though we now understand the genetic basis of TMAuria, 
there has been little improvement in the lives of those af-
fected by this distressing disorder. Antibiotics are sometimes 
prescribed in an attempt to kill gut flora that produce TMA 
from dietary precursors such as choline and lecithin. The 
dietary supplements copper chlorophyllin and charcoal are 
reported to decrease the amount of TMA in the urine [Yama-
zaki et al. 2004]. However, patients report variable effec-
tiveness of these treatments. Strict diets that limit the intake 
of foodstuffs rich in precursors of TMA, such as meat, eggs, 
soya and marine fish, have been reported to help control the 

condition.  

Polymorphic Variants  

 In the course of studies on the genetic causes of TMAu-
ria, several polymorphic variants of FMO3 have been dis-
covered, (Fig. (2) and Table 5). Common variants that affect 
enzyme function are of particular interest because of their 
potential effect on the metabolism of therapeutic drugs and 
other foreign chemicals by the general population. The first 
such variant identified was g.15167G>A(E158K) [Brunelle 
et al. 1997; Dolphin et al. 1997b]. Although initially identi-
fied in TMAuria kindreds, the variant did not segregate with 
the disorder and was found to be common in the general 
population. Subsequently, it was found to be present at high 
frequency in all populations (dbSNP126): 40-45% in Afri-
cans, 35-45% in Europeans and 20-25% in Asians. Many 
studies have investigated the effect of this common variant 
on catalytic activity, both in vitro and in vivo (reviewed in 
[Cashman 2004; Krueger and Williams 2005; Koukouritaki 
and Hines, 2005 and Cashman and Zhang, 2006); Shimizu et 
al. 2007b]. The results are conflicting. Some reports indicate 
that the 158K variant has a lower catalytic activity towards 
some substrates, whereas others indicate no effect, or sub-
strate-dependent effects.  

 Another variant, g.21443A>G(E308G) [Treacy et al. 
1998], is relatively common in Asians and Europeans (at 
allele frequencies of 15-25%), but is rare in Africans (fre-
quency of 1 to 2%) (dbSNP126). As is the case for E158K 
(see above), studies on the effect of E308G on enzyme activ-
ity report conflicting results [Cashman 2004; Krueger and 
Williams 2005; Koukouritaki and Hines, 2005; Cashman and 
Zhang, 2006]. In Asians and Europeans, the E158K and 
E308G variants are often linked, occurring on the same 
haplotype [Sachse et al. 1999; Kang et al. 2000; Cashman et 
al. 2001; Park et al. 2002]. Evidence from several studies 
indicates that the effect on enzyme activity is greater when 
both mutations are present than when either is present alone 
[Lattard et al. 2003; Cashman 2004; Krueger et al. 2005; 
Koukouritaki and Hines, 2005; Cashman and Zhang, 2006; 
Shimizu et al. 2007b]. Individuals homozygous for the 
linked E158K/E308G variants may exhibit symptoms of 
‘mild’ or transient TMAuria [Mayatepek and Kohlmüller, 
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1998; Zschocke et al. 1999]. However, many of the cases 
reported are of young children, in whom low expression of 
FMO3 [Koukouritaki et al. 2002] (see above) may contribute 

to symptoms. 

 A third variant, g.18281G>A(V257M) [Treacy et al. 
1998], is relatively common in Asian (allele frequency of 16 
to 28%), but less so in African (0 to 4%) or European (4 to 
7%) populations (dbSNP126). V257M has little effect on 
enzyme activity [Dolphin et al. 2000; Cashman 2004; 

Table 4. Rare FMO3 Mutations Causative of TMAuria or Implicated in the Disorder  

Mutation Exon Amino Acid Change Reference 

g.-2092 to 10145del   Forrest et al. 2001 

g.94G>A 2 E32K Zhang et al. 2003 

g.110T>C 2 I37T Teresa et al. 2006  

g.11145A>G 3 R51G Mazon Ramos et al. 2003  

g.11148G>T 3 A52T Akerman et al. 1999a 

g.11166G>A 3 V58I Kubota et al. 2002 

g.11177A>G 3 N61S Dolphin et al. 2000 

g. 11185delA 3 K64KfsX2 Zhang et al. 2003  

g.11192G>T 3 M66I 

Cashman et al. 1997;  

Akerman et al. 1999b; 

Forrest et al. 2001 

g.11239T>C 3 M82T Murphy et al. 2000 

g.15036A>G 4         N114S Shimizu et al. 2007c 

g.15123T>A 4 V143E Basarab et al. 1999 

g.15137G>T 4 G148X Park et al. 1999 

g.15153C>T 
4 

P153L 
Dolphin et al. 1997b;  

Cashman et al. 1997 

g.15526_15527delTG 5 C197fsX Yamazaki et al. 2007 

g.15531T>A 5 D198E Fujieda et al. 2003 

g.15533T>C 5 I199T Zschocke et al. 1999 

g.15539C>A 5 T201K Shimizu et al. 2006 

g.18177G>A 6 R223Q Preti et al. 2002 

g.18225G>C 6 R238P Teresa et al. 2006 

g.21429G>T 7 E305X Treacy et al. 1998; Akerman et al. 1999a 

g.21460G>T 7 E314X Akerman et al. 1999a 

g.21680G>T 7 R387L Akerman et al. 1999a 

g.21684G>A 7 W388X Shimizu et al. 2007c 

g.21702delG 7 K394KfsX11 Teresa et al. 2006 

g.23580delG 8 M405IfsX Teresa et al. 2006 

g.24486G>A 9 M434I Dolphin et al. 2000 

g.24592C>T 9 Q470X Shimizu et al. 2007c 

g.24608G>A 9 G475D Zschocke et al. 1999 

g.24658C>T 9 R492W Akerman et al. 1999b; Dolphin, 2000 

g.24682C>T 9 R500X Shimizu et al. 2006 

K64KfsX2 has also been referred to as M66X  

Mutation nomenclature follows that recommended by the Human Genome Organization (http://www.hgvs.org/mutnomen/) 
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Krueger and Williams 2005; Koukouritaki and Hines, 2005; 
Cashman and Zhang, 2006; Shimizu et al. 2007b].  

 A further 20 coding-region SNPs, 8 synonymous and 12 
nonsynonymous, have been identified in FMO3 [Dolphin et 
al. 2000; Cashman 2002; Furnes et al. 2003; Fujieda et al. 

2003; Koukouritaki et al. 2005b; and dbSNP126], (Fig. (2) 
and Table 5). Of the nonsynonymous SNPs only g.21350T> 
C(V277A) is relatively common, occurring at a frequency of 
13% in Africans and ~20% in Asians, but it is absent from 
Europeans. Another, g.11177C>A(N61K), is present in Afri-
cans and Europeans at frequencies of 3.5 and 5%, respec-

Table 5. Polymorphic Variants of FMO3 

Variant Exon 
Amino Acid 

Change 
Functional Consequence 

Reference 

g.72G>T 2 E24D limited Koukouritaki et al. 2007 

g.11177C>A 3 N61K* reduced or abolished Koukouritaki et al. 2007 

g.15089G>C 4 D132H substrate-dependent decrease 
Kobayashi et al. 2001; Furnes et al. 2003;  

Lattard et al. 2003 

g.15167G>A 4 E158K moderate, substrate- dependent 
decrease 

Dolphin et al. 1997b; Brunelle et al. 1997;  
Treacy et al. 1998; Zschocke et al. 1999; Furnes et al. 2003 

g.15475G>T 5 G180V no effect Dolphin et al. 2000 

g.15550C>T 5 R205C moderate decrease Fujieda et al. 2003 

g.18281G>A 6 V257M no effect or limited substrate de-
pendent decrease 

Treacy et al. 1998; Dolphin et al. 2000; Furnes et al. 2003 

g.18290A>G 6 M260V n.d. Shimizu et al. 2006 

g.21350T>C 7 V277A n.d.  Cashman 2002 

g.21443A>G 7 E308G moderate 

substrate dependent decrease 

Treacy et al. 1998; Zschocke et al. 1999 

g.21599T>C 7 L360P increased activity Furnes et al. 2003; Lattard et al. 2003 

g.21604G>C 7 E362Q n.d. Cashman 2002; Furnes et al. 2003 

g.23613G>T 8 K416N limited Koukouritaki et al. 2007 

g.24642G>A 9 I486M n.d. Cashman 2002 

g.24691G>C 9 G503R n.d. Furnes et al. 2003 

*likely to be causative for TMAuria 

 

 

 

 

 

 

 

Fig. (2). Genetic variants of FMO3. 

Horizontal bars represent the polypeptide chains. Alternating grey and white boxes represent regions encoded by exons 2 to 9. Black boxes 

indicate, from left to right, the FAD and NADPH binding sites and the conserved FATGY sequence. The upper bar shows the identity and 

position of rare mutations that are causative of TMAuria, or implicated in the disorder. The lower bar shows the identity and position of non-

synonymous polymorphic variants. *SNP likely to be causative for TMAuria. 
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tively. The remaining SNPs occur at low frequency (<4%, in 
some cases <1%) and are confined to a single population 

group.  

 G180V [Dolphin et al. 2000], K416N and E24D [Kouk-
ouritaki et al. 2007] have little or no effect on catalytic activ-
ity. The effect of D132H appears to be substrate-dependent, 
decreasing N-oxygenation of TMA and S-oxygenation of 
methimazole, but not N-oxygenation of 5’DPT [Koukouri-
taki et al. 2007]. R205C has a moderate effect on enzyme 
activity and, interestingly, exhibits substrate-inhibition of 
sulindac sulfide S-oxygenation [Shimizu et al. 2007b]. N61K 
either abolished or dramatically reduced enzyme activity 
towards four different substrates [Koukouritaki et al. 2007]. 
In contrast, L360P causes a 2- to 5-fold increase in catalytic 
activity [Lattard et al. 2003], and is the only genetic variant 
of FMO3 known to substantially increase enzyme activity. 
As such, it could increase the rate of drug metabolism, with a 
consequent decrease in efficacy. However, it has been de-
tected only in African populations and then at low frequency 
(2 to 4%). Consequently, it is of limited significance for the 
general population. The functional consequence of V277A, 
which is relatively common in Asian and African popula-
tions, but absent from Europeans, has not been investigated. 
However, valine is not conserved in FMOs at this position 
and thus the substitution, which represents a conservative 
change, is not expected to affect activity.  

Polymorphisms in Upstream Regulatory Region 

 Resequencing of 24 DNA samples from the Coriell Poly-
morphism Discovery Resource [Koukouritaki et al. 2005b] 
identified seven variants in the FMO3 5’-flanking sequence: 
g.-2650C>A, g.-2589C>T, g.-2543T>A, g.-2177G>C,  
g.-2106G>A, g.-2099A>G and g.-1961T>C. Based on the 
frequencies of individual alleles in northern-European 
Whites, African Americans or Hispanic Americans of Mexi-
can descent, 15 haplotypes were inferred. Seven haplotypes 
were considered common (frequency >1%) and were found 
in one or more of the ethnic groups at significantly different 
frequencies. The effect of individual haplotypes on gene ex-
pression was measured in HepG2 cells transfected with dif-
ferent FMO3-reporter constructs [Koukouritaki et al. 2005b]. 
Haplotype 2, (g.-2650C>A, g.-2543T>A, g.-2177G>C) 
caused an 8-fold increase in reporter gene activity compared 
with haplotype 1 (the reference sequence). Haplotype 2 was 
present at frequencies of 29, 11 and 6%, respectively, in the 
Hispanic, African-American and White groups. Two haplo-
types, 8 (g.-2589C>T, g.-2106G>A) and 15 (g.-2106G>A, 
g.-1961T>C), resulted in very low reporter gene activity. 
Haplotype 8 (-2589C>T, -2106G>A) is present only in the 
White group, at a frequency of 4%, whereas haplotype 15  
(-2106G>A, -1961T>C) was found only in the African-
American group (frequency 1.5%). The effects on reporter 
gene activity of haplotypes 3 (-2650C>G), 4 (-2650C>G,  
-2543T>A) and 11 (-2543T>A) were similar to those of the 

reference haplotype 1. 

  Individuals with haplotype 2, particularly homozygotes, 
would be expected to metabolize FMO3 substrates more 
rapidly if the increased promoter activity observed in vitro 
[Koukouritaki et al. 2005b] translates into increased produc-

tion of FMO3 protein in the liver. Similarly, those individu-
als homozygous for haplotypes 8 or 15 are predicted to pro-
duce lower amounts of the protein. If the relative promoter 
activities seen in the HepG2 cell transfection experiments are 
similar to those in vivo then individuals homozygous for 
haplotypes 8 or 15 would be expected to suffer some of the 
symptoms of TMAuria, due to the low amount of FMO3 
protein produced in their liver. Individuals who are com-
pound heterozygotes for haplotypes 2 and 15 (African 
American) or haplotypes 2 and 8 (White) would be expected 
to have amounts of the protein closer to that produced under 
the influence of haplotype 1.  

 This study was extended over a longer region of the 
FMO3 gene to examine linkage between the promoter SNP 
clusters (see above) and downstream coding variants, in 404 
Hispanic (Mexican), 400 Latino White and 402 African 
Americans [Koukouritaki et al. 2007]. Haplotype 2 [Kouk-
ouritaki et al. 2005b], which caused an 8-fold increase in 
reporter gene activity (see above) was found to be associated 
with E158K, E308G or the linked variant E158K/E308G. 
The combination of a high activity promoter with a coding 
variant that causes substrate-dependent reduction in enzyme 
activity may balance out and result in the production of suf-
ficient protein to compensate for an enzyme with lower ac-
tivity. The haplotype analysis undertaken by Koukouritaki et 
al. [Koukouritaki et al. 2007] underlines the importance, and 
the difficulties we face, in understanding the complete rela-

tionship between genotype and phenotype in vivo. 

Human FMO3 Variation And Clinical Implications 

 TMAuria sufferers lack functional FMO3 and, conse-
quently, are expected to have impaired ability to metabolize 
therapeutic drugs that are substrates for FMO3. Owing to the 
relatively small number of patients identified to date, little 
systematic investigation of this has been undertaken. How-
ever, one study (Mayatepek et al. 2004) found that TMAuria 
sufferers have a markedly reduced capacity for N-oxyge-
nation of benzydamine, a non-steroidal anti-inflammatory, 
and there are numerous anecdotal accounts of patients expe-
riencing poor responses to other drugs. Tables 6 and 7 sum-
marize the known drug substrates for FMO3.  

 In this section we highlight some recent studies of the 
effect of polymorphic FMO3 variants on drug metabolism. 
The first study to show that FMO3 variants influence clinical 
outcomes was in a group of patients treated with sulindac 
[Hisamuddin et al. 2004], a nonsteroidal anti-inflammatory 
drug prescribed to patients with familial adenomatous poly-
posis (FAP) or to individuals who are perceived to be pre-
disposed to this condition, judged by mutations in the APC 
gene. Sulindac is a prodrug and is converted by gut flora to 
its active metabolite, sulindac sulfide, which is then absorbed 
[Duggan et al. 1977; Etienne et al. 2003]. Human FMO3 
catalyzes the oxygenation of sulindac sulfide to its sulfoxide 
[Hamman et al. 2000], which is virtually inactive [Duggan et 
al. 1977]. Forty one individuals who were known to have 
mutations in the APC gene, but had not developed polyps at 
the start of the study, were divided into two groups. One 
group was given sulindac for 4 years, while the other re-
ceived a placebo. At the end of the trial 57% of the sulindac-
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treated group were polyp-free compared with 45% of the 
placebo-treated group. When the individuals were genotyped 
for common FMO3 polymorphic variants, those homozygous 
for E158K (33%) or E308G (17%), and who had received 
sulindac, had not developed polyps. Individuals who had 
developed polyps were not homozygous for either of the 
FMO3 variant alleles [Hisamuddin et al. 2004]. A follow-on 
study with 19 individuals already suffering from FAP as-
sessed whether FMO3 genotype correlated with polyp re-
gression following sulindac treatment [Hisamuddin et al. 
2005]. All individuals homozygous or heterozygous for the 
E158K allele or heterozygous for both E158K and E308G 
alleles showed a reduction in polyp number. No individuals 
homozygous for E308G were included in this study.  

 The reasons for the increased sulindac efficacy in patients 
with E158K and E308G variants might be due to the reduc-
tion in the conversion by FMO3 of sulindac sulfide to inac-
tive metabolites. Thus the amount of sulindac sulfide avail-
able to the patient’s circulation would be expected to in-
crease and the longer duration of the active drug may con-

tribute to the regression of polyps and/or more effectively 
prevent their formation. 

 This study raises an important question with respect to 
sulindac efficacy and other FMO3 polymorphisms. Recently, 
the N61K variant was shown to have a 30-fold decrease in 
catalytic activity towards sulindac [Koukouritaki et al. 
2007]. It remains to be seen whether sulindac will be a less 
effective treatment against FAP in individuals with FMO3 
variants that increase promoter activity [Koukouritaki et al. 
2005b] or enzyme activity (L360P) [Lattard et al. 2003] (see 
above). 

 Clozapine, an antipsychotic, is metabolized to its N-oxide 
by both FMO3 [Tugnait et al. 1997] and CYP3A4 [Fang et 
al. 1998]. A study of 396 individuals of German ethnicity 
found no correspondence between serum N-oxide concentra-
tions and FMO3 haplotypes [Sachse et al. 1999]. 

 Most studies on the effect of FMO3 polymorphisms have 
been carried out in vitro. An interesting example of the effect 
of the E158K polymorphism in vitro is with respect to  
 

Table 6. Nitrogen-containing Drugs Oxygenated by Human FMO3 

Substrate Type of Drug or Health Condition Product(s) Reference 

Amphetamine dopamine transporter ligand (antipsychotic) hydroxylamine Cashman et al. 1999;  
Szoko et al. 2004 

Benzydamine  nonsteroidal antiinflammatory (rheumatism) N-oxide Lang and Rettie, 2000;  
Stormer et al. 2000 

Clozapine  antipsychotic agent N-oxide Tugnait et al. 1997 

Deprenyl monoamine oxidase type B inhibitor (Parkin-
son’s disease) 

hydroxylamine Szoko et al. 2004 

Itopride  dopamine D2 antagonist 
(gastroprokinetic agent) 

N-oxide Mushiroda et al. 2000 

K11777 cysteine protease inhibitor 
agent against Trypanosoma cruzi 

N-oxide Jacobsen et al. 2000 

Methamphetamine psychostimulant hydroxylamine Cashman et al. 1999;  
Szoko et al. 2004 

N-deacetyl ketoconazole*  antifungal  N-hydroxy/nitrone Rodriguez and Miranda, 2000 

Nicotine stimulant Trans N-oxide Park et al. 1993 

Olopatadine  antihistamine N-oxide Kajita et al. 2002 

Pyrazolacridine  antitumour  N-oxide Reid et al. 2004 

Ranitidine  Antihistamine 
(stomach ulcers/ Zollinger Ellison syndrome) 

N-oxide Overby et al. 1997;  
Chung et al. 2000 

S16020  topoisomerase II inhibitor (antitumour) N-oxide Pichard-Garcia et al. 2004 

Tamoxifen estrogen receptor modulator (breast cancer 
therapy) 

N-oxide Parte and Kupfer, 2005 

Xanomeline  muscarinic receptor agonist 
(Alzheimer’s Disease) 

N-oxide Ring et al. 1999 

*Major metabolite of antifungal agent ketoconazole. 

In many cases FMO3 is not the only enzyme involved in the metabolism of the drug in vivo. 
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tamoxifen N-oxidation: when catalyzed by baculovirus-
expressed FMO3 variants this was 5-fold greater with 
FMO3(K158) than with FMO3(E158) [Krueger et al. 2006]. 
Therefore the K158 variant would be expected to increase 
the amount of tamoxifen N-oxide in the liver, which may be 
important in the therapeutic response (see FMO1 section 
above). 

 Benzydamine, an anti-rheumatic drug is metabolized by 
FMO3 to its N-oxide [Lang and Rettie, 2000]. A study in-
volving human liver microsomes from individuals genotyped 
for FMO3 variants, found that microsomes from individuals 
homozygous for the K158 variant showed significantly re-
duced activity compared with those from individuals with at 
least one copy of the E158 variant [Stormer et al. 2000]. 
However, a study using recombinantly expressed E158 and 
K158 variants found no difference in oxygenation of benzy-
damine [Shimizu et al. 2007b]. The different results obtained 
by different groups when studying the effect of FMO3 vari-
ants on enzyme activity indicates the need for the validation 
of methods used to express the recombinant proteins and to 
assay their activity. 

 FMO3, like FMO1 (see above), metabolizes thiaceta-
zone, an anti-tubercular drug prescribed in certain parts of 
Africa because it is cheap. Thiacetazone is a thiocarbamide 
prodrug and is a substrate for human FMO3. The main prod-
ucts of the reaction are the sulfinic and sulfenic acids of  
the drug [Qian and Ortiz de Montellano, 2006], which have 
been shown to be genotoxic in mammalian cells [Ziegler-
Skylakakis et al. 1998] and are thought to affect the redox 
state [Qian and Ortiz de Montellano, 2006]. The use of this 
drug in areas of the world other than Africa is limited, due to 
severe hepatotoxic effects. It would be of interest to know 
whether polymorphic variants of FMO3 contribute to this 

toxicity. Although the large-scale genotyping of individuals 
in developing countries may not be realistic on economic 
grounds, it may be worth considering in cases where a com-
mon polymorphism has been identified that has a significant 
effect on response to a commonly prescribed drug. 

FMO4 

 When cDNA clones for human FMO4 were first isolated 
[Dolphin et al. 1992] the isoform was designated FMO2. 
The nomenclature was subsequently changed to FMO4 
[Lawton et al. 1994]. FMO4 is 558 amino-acid residues long 
and has a molecular mass of 63,338. Other members of the 
FMO family, with the exception of the truncated form of 
FMO2, encoded by the FMO2*2A allele (see above), contain 
between 532 and 535 residues [Phillips et al. 1995]. From 
sequence comparisons, it is apparent that the additional resi-
dues in FMO4 are contained in a single block located at the 
C-terminus of the polypeptide [Dolphin et al. 1992]. Inspec-
tion of the nucleotide sequence of the FMO4 cDNA lead 
these authors to suggest that the extension may have been the 
result of a single point mutation in the termination codon of 
the ancestral FMO4 gene. A similar extension is present in 
FMO4s of other mammals and thus the predicted mutation 
would have occurred before the radiation of mammals. 

 The FMO4 gene was mapped to the long arm of human 
chromosome 1 [Shephard et al. 1993]. It contains ten exons, 
of which eight are coding [Hernandez et al. 2004]. In con-
trast to other FMO mRNAs the mRNA for FMO4 contains 
sequences derived from 10, not 9 exons, the first two of 
which are entirely non-coding. FMO4 is expressed in rela-
tively low amounts in several tissues, the main sites of ex-
pression being liver and kidney [Dolphin et al. 1996; Her-
nandez et al. 2004; Zhang and Cashman, 2006; Cashman and 

Table 7. Sulfur-containing 

Drugs Oxygenated by Human 

FMO3ubstrate Type of Drug Or Health Condition Product(s) Reference 

Ethionamide antibiotic (tuberculosis) - Krueger and Williams, 2005 

MK-0767 methyl sulfide peroxisome proliferator receptor activator 

(diabetes) 

S-oxide Karanam et al. 2004 

Methimazole thyroperoxidase inhibitor 

(hyperthyroidism) 

S-oxide Overby et al. 1997 

Ranitidine  Antihistamine 

(stomach ulcers/ Zollinger Ellison syndrome) 

S-oxide Chung et al. 2000 

S-methyl esonarimod * cytokine production inhibitor 

(rheumatism) 

S-oxide Ohmi et al. 2003 

Sulindac sulfide** nonsteroidal anti-inflammatory  

(colorectal cancer) 

S-oxide Hamman et al. 2000 

Tazarotenic Acid*** retinoic acid receptor  modulator 

(acne/psoriasis) 

S-oxide Attar et al. 2003 

Thiacetazone antibiotic  (tuberculosis) sulfinic acid/ 

carbodiimide 

Qian and Ortiz de Montellano,  2006 

- Products not identified/unpublished; * active metabolite of parent drug esonarimod; **active metabolite of parent drug sulindac; *** active metabolite of parent drug tazarotene. 

In many cases FMO3 is not the only enzyme involved in the metabolism of the drug in vivo. 
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Zhang, 2006]. Alternative splice variants of FMO4 have 
been reported [Lattard et al. 2004]. However, the relevance 
of this for the metabolism of foreign chemicals is not known. 

Polymorphic Variants  

 A survey of 50 African Americans identified four cod-
ing-region SNPs, Fig. (1) and Table 1 [Furnes et al. 2004]. 
One was synonymous. The other three, g.110T>C(I37T), 
g.14726T>C(V323A) and g.14770G>C(E339Q), were non-
synonymous. Of these, I37T and E339Q each occurred only 
once in the 100 chromosomes surveyed and thus may repre-
sent rare mutations. However, V323A, which is also reported 
in dbSNP126, is common in Africans (20-33%), but is ab-
sent from Europeans and Asians. Although the functional 
consequence of this SNP has not been investigated, valine at 
position 323 is not conserved among FMOs and the change 
of amino acid (val ala) is conservative. This SNP is there-
fore unlikely to have a significant effect on protein function. 
A further two SNPs are reported in dbSNP126. One of these 
is a synonymous SNP, g.14601C>T(F281F), which is pre-
sent at low frequency (4 to 7%) in Asians, but is absent from 
Africans and Europeans. The other, which is nonsynony-
mous, g.14680A>T(T308S), is present in Japanese, at fre-
quency ~1%, but has not been detected in Africans or Euro-
peans. 

 Although FMO4 is expressed in many tissues, in each 
case expression is low [Dolphin et al. 1996]. Furthermore, 
expression of the protein in a stable form in heterologous 
systems has proved difficult [Itagaki et al. 1996] and, conse-
quently, little is known about the substrate specificity of 
FMO4. Nevertheless, it has been shown that FMO4 is capa-
ble of oxidizing methimazole [Itagaki et al. 1996], L-
methionine and S-allyl-L-cysteine [Ripp et al. 1999].  

FMO5 

 A cDNA for FMO5 of human was isolated in 1995 
[Overby et al. 1995; Phillips et al. 1995]. The FMO5 gene is 
not part of the FMO gene cluster on human chromosome 
1q24.3, but is located ~26Mb closer to the centromere, at 
1q21.1 [Hernandez et al. 2004]. However, the internal orga-
nization of the gene is similar to that of other FMO genes: it 
comprises nine exons, the first of which is non-coding, and 
encodes a polypeptide of 533 amino-acid residues and has a 
molecular mass of 60,225. FMO5 is expressed in many fetal 
and adult tissues, but in human its main site of expression is 
adult liver [Janmohamed et al. 2001; Hernandez et al. 2004; 
Cashman and Zhang, 2006; Zhang and Cashman, 2006], 
where, along with FMO3, it is a major form of the enzyme 
present [Overby et al. 1997; Cashman and Zhang, 2006; 
Zhang and Cashman, 2006]. It is also the most abundantly 
expressed FMO in the small intestine [Cashman and Zhang, 
2006; Zhang and Cashman, 2006] and skin [Janmohamed et 
al. 2001].  

 FMO5 exhibits little catalytic activity towards compounds, 
such as methimazole, that are good substrates for other 
FMOs [Rettie et al. 1994; Overby et al. 1995; Cherrington et 
al. 1998a; Krueger and Williams, 2005], but does catalyze 
the N-oxygenation of short-chain aliphatic primary amines 
such as N-octylamine [Overby et al. 1995]. Aliphatic pri-
mary amines are substrates of FMO2, but this enzyme has a 

marked preference for molecules with longer chains (see 
above). More recently, FMO5 has been reported to catalyze 
the oxygenation of other compounds, for instance, thioethers 
with proximal carboxylic acids that are not utilized as sub-
strates for other FMOs. For example, esonarimod, an anti-
rheumatic drug is converted to the active metabolite S-
methyl esonarimod by FMO5 [Ohmi et al. 2003]. 

 Thus, with respect to substrate specificity, FMO5 is re-
garded as an atypical FMO and, despite its high level of ex-
pression in adult human liver, the enzyme is not thought to 
play a significant role in the metabolism of drugs, with the 
possible exception of esonarimod. 

Polymorphic Variations  

 In a survey of 50 African Americans [Furnes et al. 2003] 
only two coding-region mutations were identified, of which 
only one, g.37917C>T(P457L), results in a change in amino-
acid sequence, Fig. (1) and Table 1. Although the effect of 
this change on protein function has not been investigated, a 
proline at this position is conserved in all mammalian FMOs 
sequenced to date. However, the variant was identified in 
only one of the 100 chromosomes surveyed and thus may 
represent a rare mutation that would have little consequence 
for the general population. The other mutation detected in 
this study, g.23806A>G(A367A), was synonymous. Two 
additional coding-region SNPs are reported in dbSNP126. 
One is a synonymous SNP, g.23716G>A(P337P). The other, 
g.38059G>T(R506S), is nonsynonymous, but is found only 
in Yorubans, at a frequency of 9%. 

Physiological And Xenobiotic Factors Influence FMO5 

Expression 

 Interindividual variations of 10-fold in the amount of 
FMO5 in adult human liver (3.5 to 34 pmol/mg microsomal 
protein) have been reported [Overby et al. 1997]. Although 
no polymorphisms have been identified that affect FMO5 
catalytic activity, it is possible that promoter variants exist 
that influence the amount of FMO5 produced. Unlike other 
human FMOs, FMO5 is inducible and interindividual varia-
tions in amounts of the protein may be due in part to physio-
logical effects or to exposure to xenobiotics. The synthetic 
progestin R5020 increased FMO5 expression in a breast can-
cer cell line stably expressing the progesterone B-receptor 
[Miller et al. 1997]. The authors suggested that increased 
expression of FMO5 might lead to increased carcinogenicity 
of tamoxifen in target tissues that overexpress progesterone 
B-receptors. However, FMO5, unlike FMO1 and FMO3, 
does not metabolize tamoxifen [Hodgson et al. 2000]. A 
recent profiling study of primary breast tumours showed that 
FMO5 expression may be up-regulated by estrogen receptor 

 (ER ) [Bieche et al. 2004]. FMO5 mRNA was increased 
in ER -positive tumours, but was not detected in ER -
negative tumours. There was a strong correlation in this 
study between FMO5 over-expression and N-acetyl trans-
ferase 1 (NAT-1) over-expression, with regard to relapse-free 
survival. However, statistical analysis found that only NAT-1 
expression was of prognostic value [Bieche et al. 2004]. 
FMO5 is increased by the xenobiotic hyperforin [Krusekopf 
and Roots, 2005], a component of St. John’s Wort, and the 
antibiotic rifampicin [Rae et al. 2001]. Both compounds are 
known to increase CYP3A4 through the action of the preg-
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nane X receptor (PXR) [Kliewer et al. 1999; Moore et al. 
2000]. No study on the mechanism of action of FMO5 gene 
activation, by any of the compounds mentioned, has been 
published.  

 Extensive expression profiling of human liver samples 
found that FMO5 mRNA was markedly down-regulated in 
individuals with type-2 diabetes compared with unaffected 
individuals [Takamura et al. 2004]. As knowledge of the role 
of FMO5 in both endogenous and xenobiotic metabolism is 
limited, the significance, if any, for drug treatment of those 
with type-2 diabetes is unknown.  

CONCLUDING REMARKS 

 Five functional FMOs, FMO1, 2, 3, 4 and 5, are present 
in humans. Based on substrate-specificity and site and 
amount of expression, FMO1 and FMO3 are the most impor-
tant for the metabolism of therapeutic drugs. For both of 
these FMOs the pattern of expression in humans is markedly 
different from that in other mammals, particularly rodents 
used as animal models for the investigation of drug metabo-
lism. In humans, the expression of the FMO1 gene is 
switched off after birth and FMO1 is undetectable in adult 
liver. This is in contrast to other mammals, in which FMO1 
represents the major form of the enzyme present in adult 
liver. FMO3 is the major drug-metabolizing FMO in adult 
human liver. These species differences in the tissue-specific 
pattern of expression of FMO1 and FMO3 have important 
consequences for the extrapolation of drug metabolism data 
from experimental animals to humans. 

 Essentially all individuals of European or Asian origin 
express no functional FMO2, which in most other mammals 
is the major form of the enzyme present in the lung. How-
ever, in sub-Saharan Africa, and in populations recently de-
scended from this region, a substantial proportion of indi-
viduals do express functional FMO2 in the lung. This has 
implications for inter-ethnic and, in African populations, 
interindividual variations in response to drugs and toxic 
chemicals that are substrates for FMO2. 

 There are very few examples of induction or inhibition of 
FMOs by endogenous or foreign chemicals, suggesting that 
drug-drug interactions would not be an important feature of 
therapeutic agents that are metabolized predominantly by 
FMOs. Variations in the expression and activity of FMOs are 
thus mainly due to genetic factors. An understanding of the 
pharmacogenetics of FMOs would help identify individuals 
who would respond favourably to a particular drug and those 
who would be at risk of experiencing harmful side effects, 
and thereby contribute significantly to drug development by 
decreasing the failure rate of new candidate drugs and reduc-
ing the time taken for approval of a drug by regulatory 
authorities. 

 The number of validated nonsynonymous SNPs identi-
fied in FMO2 and FMO3 is considerably more than in 
FMO1, FMO4 or FMO5 (see Tables 1 and 5). In the case of 
FMO2 and FMO3, several variants are present in high fre-
quency in some, or all, major population groups and are 
known to affect enzyme activity. In FMO1, FMO4 and 
FMO5, however, all variants are confined to only one popu-
lation group and, with the exception of V323A in FMO4, 
which is unlikely to affect enzyme function, are present at 

low or very low frequency. The differences in the number of 
nonsynonomous variants identified in various members of 
the FMO family may reflect greater interest in FMO3, as a 
consequence of its role in the inherited disorder TMAuria, 
and in FMO2, as a result of the discovery of the common 
Q472X polymorphism. This seems unlikely, however, be-
cause the total number of genetic variants, i.e., coding and 
noncoding, reported in dbSNP126 for FMO1 and FMO5 is 
greater than for FMO3 and is comparable with that for 
FMO2.  

 The relatively high number and frequency of nonsynono-
mous SNPs in FMO2 may be the result of an accumulation 
of potentially deleterious mutations in an allele, FMO2*2, 
which is already defective. In FMO3, the ratio of non-
synonomous to synonomous polymorphisms is significantly 
more than expected under a neutral model of evolution, pro-
viding evidence that the gene has been the subject of balanc-
ing natural selection (Allerston et al. 2007). In the case of 
FMO1 and FMO5, the relative paucity and low frequency of 
nonsynonymous SNPs may be indicative of an important 
physiological role for the proteins encoded by these genes.  
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ABBREVIATIONS 

ALS = Amyotrophic lateral sclerosis 

AF = Atrial fibrillation 

CYP = Cytochrome P450 

5’-DPT = 10-(N,N-dimethylaminopentyl)-2-
(trifluoromethyl) phenothiazine 

ER  = Estrogen receptor  

FAD = Flavin adenine dinucleotide 

FAP = Familial adenomatous polyposis 

FMO = Flavin-containing monooxygenase 

NAT-1 = N-acetyl transferase 1 

SNP = Single-nucleotide polymorphism 

TMA = Trimethylamine 

TMAuria = Trimethylaminuria 

UTR = untranslated region 
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