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Broad-Band Diode-Pumped Ytterbium-Doped
Fiber Amplifier with 34-dBm Output Power
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Abstract—We investigate a high-power diode-pumped double-
clad ytterbium-doped fiber amplifier with 34-dBm average output
power and 1050–1095-nm bandwidth. A multidiode concentrator
pumps the amplifier at 980 nm, with �6 W of power launched
into the inner cladding. Besides CW-signals, we amplify pulses
from a mode-locked laser to 1 kW of peak power with only minor
nonlinear distortions as well as pulses from aQ-switched laser to
50 �J of energy. Reflections and backscatter limit the gain of the
amplifier to 40 dB for a pump power of 2.5 W. For higher pump-
powers than this, the amplifier started to self-Q-switch. The
results are important for the development of cladding-pumped
high-power fiber amplifiers.

Index Terms—Optical fiber amplifiers, optical fiber lasers,
optical propagation in nonlinear media, optical pulse amplifiers,
Q-switched lasers, ytterbium.

H IGH brightness, high power, if necessary tunable, near-
infrared sources find applications in many areas such as

spectroscopy, laser and amplifier pumping, frequency conver-
sion and medicine. For such sources, diode-pumped double-
clad fiber technology offers a unique combination of high
efficiency, compactness, simple service-free operation, and
high reliability. In the wavelength region 1–1.1m, ytterbium-
doped fiber lasers and amplifiers are emerging as the best
choice and have consequently, seen a rapid commercial de-
velopment.1 However, experimental data on cladding-pumped
Yb-doped fiber amplifiers are sparse in the literature and at
relatively low powers, e.g., 1 W [1].

In this letter, we present experimental data and discuss
important features of a broad band high-power diode-pumped
double-clad Yb-doped fiber amplifier (YDFA) with 34 dBm
(2.8 W) of saturated output power. We investigate its band-
width and output power as a booster for a mode-locked
Yb-doped fiber laser as well as for a tunable-switched
Nd-doped fiber laser. We found that amplified spontaneous
emission (ASE), self-induced -switching, and incomplete
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Fig. 1. Experimental setup. DCYbF: Double-clad Yb-doped fiber. C: 70/30
single-mode coupler. PC: Fiber polarization controller.�: Splice points.
Points 1 and 2 define the locations between which we measure the gain.

pump absorption are factors that limit performance of the
amplifier in different modes of operation.

Fig. 1 illustrates our amplifier configuration. A laser diode
concentrator from Diomed, Ltd., developed within the High
Radiance Fiber Source (HIRAFS) project, with a bandwidth
of 5 nm and a center wavelength of 979 nm was used as pump
source. Approximately 6 W of the pump power was launched
into the inner cladding of a double-clad fiber via a dichroic
mirror. The in-house fiber had a silica inner cladding of 220

m diameter and a silicone rubber external cladding for an
NA of 0.4 for the pump. The aluminosilicate core was placed
30% off-center and had a diameter of 7.6m, an NA of 0.11,
and a cutoff wavelength of 1.0m. The Yb -concentration
was 0.9% by weight. The fiber length was 14 m for 90% (10
dB) of unbleached pump absorption at 976 nm. However, our
5-nm-wide pump was centered at 979 nm where the absorption
is lower. Thus, the fiber absorbed only about 70% of the pump
(representative absorption and emission spectra can be found
in [2]). A longer fiber could prove more efficient, but with a
simultaneous, for us undesirable, shift of the gain spectrum to
longer wavelengths [2].

The signal was launched into the Yb-doped fiber via a
single-mode 70/30 fiber coupler, with the 30% port used for
monitoring the input signal power. The coupler was spliced to
the double-clad fiber with an estimated splice loss of less than
1 dB. Points 1 and 2 in Fig. 1 constituted the amplifier’s input
and output ports for evaluating gain, input, and output powers.
All fiber ends were angle cleaved to suppress reflections.

We first consider the bandwidth and output power of the
amplifier. The signal source was a mode locked diode-pumped
Yb-doped fiber laser [3] which generated pulses of 10–20-ps
duration [full-width at half-maximum (FWHM)] at an 80-MHz
repetition rate. The laser was tunable from 1020 to 1065 nm.
A bulk isolator with 5-dB insertion loss separated the signal
source and the amplifier. Because the pulse rate is much faster
than characteristic time-scales of the pumped Yb-system, the
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Fig. 2. Output power (squares) and gain (circles) versus input power at 1064
nm.

Fig. 3. Output power versus wavelength with a mode-locked (dots) and CW
(asterisks) source.

pulse train is, in terms of average power, equivalent to a CW
signal with the same power. The output power characteristics
of the amplifier are shown in Figs. 2 and 3. The figures show
a low-power gain of almost 40 dB and an output power of 2.4
W, obtainable for input powers of 2 mW at 1064 nm. This
output power is achievable also at other wavelengths within the
amplifier bandwidth; however, this would require launching a
higher power than was available from the mode-locked laser.

Nonlinear pulse distortion due to self-phase modulation
(SPM) is a main concern for short-pulse amplification. Fig. 4
shows input and output spectra of mode locked pulses. The
output peak power is about 1 kW. While the input spectrum
corresponds to essentially transform-limited pulses, the output
spectrum is somewhat broadened because of SPM. From the
spectra, we estimate a nonlinear phase-shift of 0.7[4], which
corresponds to propagation of pulses with this peak output
power over an effective nonlinear length of 1 m in our
fiber. Assuming that the gain is homogeneously distributed
along the fiber, we can also evaluate as the inverse of the
gain per unit length (in nepers per meter) for optical Kerr effect
nonlinearities like SPM [4]. Thus,

m/40 = 1.5 m, so the two ways of evaluating
are in fair agreement.

The tuning range of the mode-locked laser did not cover
the whole amplifier bandwidth. To explore the upper end of
the amplifier’s wavelength range, we instead used a diode-
pumped double-clad Nd-doped fiber laser, tunable by means
of an external grating. The maximum output power was 2.8
W (asterisks in Fig. 3), higher than before because of a better

Fig. 4. Spectra of mode-locked pulses before and after amplification.

pump alignment. The launched signal power was large enough
to saturate the amplifier even near the edge of the amplifier’s
bandwidth. Again, this higher output power is available for all
wavelengths within the amplifier bandwidth for high enough
signal input powers.

We next discuss amplification of -switched pulses. The
signal source was a cladding pumped-switched Nd-doped
fiber laser [5], generating 130-ns pulses (FWHM) with a 30-
kHz repetition rate at 1064 nm. We launched 10 mW of
average power, some 20% of which was in the form of ASE
between pulses. The repetition rate was low enough to allow
for almost complete gain recovery between pulses, but the gain
was still compressed to 28 dB by the ASE. The output power
was 2.8 W, divided nearly equally between the 130-ns pulses
and ASE. Thus, the output pulse energy was approximately
50 J, which is close to the highest output energy extracted
from YDFA’s [6], and now at a much higher repetition rate.
We note that the intrinsic saturation energy becomes 33

J for our fiber at 1064 nm. Given that the gain is related to
the extractable energy by [6], the
unsaturated gain of 40 dB corresponds to an extractable energy
of 300 J from the fiber. Under more favorable conditions,
e.g., a source with higher-energy pulses and no ASE, this fiber
has, therefore, a potential to amplify pulses to significantly
higher energies than we obtained. In practice, however, we
have found this to be difficult.

One of the most interesting features of the high-power
YDFA was its behavior in the absence of any input signal.
For pump powers below 2.5 W, the amplifier produced, as
expected, ASE with single-ended power of 250 mW and a 3-
dB bandwidth of 20 nm. Fig. 5 illustrates an ASE spectrum,
as measured at the signal input end. The ASE spectrum gives
a good indication of the small-signal gain spectrum (typically,
the spectral dependence of the spontaneous emission factor

is small over moderate wavelength ranges).
For launched pump powers above 2.5 W, however, the

amplifier self- -switched, producing 2 ns pulses with peak
power of 4–5 kW. At maximum pump power, the two-ended
average output power was 2 W. The 2-ns-long (FWHM) pulses
had a 8-kHz pulse repetition rate, although the pulse-to-pulse
time interval fluctuated by up to 5%. This behavior indicates
that the pulsing arises from distributed back-scattering [5],
[7]. In an amplifier context, the pulsation limits the small-
signal gain (to 40 dB) that can be reached in the amplifier.
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Fig. 5. Single-pass ASE spectra from the signal input end of the YDFA at
2.5-W launched pump power.

For high-energy applications, it also limits the energy that can
be stored in the device, since a higher gain implies a higher
stored energy. Furthermore, for high average powers, a higher
small-signal gain would mean that correspondingly lower input
powers would suffice to reach saturation. The amplification
bandwidth would also increase.

Besides the distributed back-scattering, also fiber facet re-
flections and reflections off lenses can give rise to feedback.
While the angle-cleaves at the fiber ends were sufficient to
suppress any reflections there, we still suffered from residual
reflections from lenses. Such reflections can limit the gain
by enhancing the ASE and reducing the laser threshold.
Isolators can eliminate back-reflections, but high-performing
pig-tailed isolators are not readily available at the power-
levels and wavelengths of our amplifier, and they are anyhow
incompatible with end-pumping of double-clad fibers. We note
that 47 dB of small-signal gain was recently reported from a
diode-pumped double-clad ytterbium-doped fiber without any
isolators [8]. It is unclear to us why our amplifier failed to
reach such high gain.

In summary, we have investigated a diode-pumped high-
power broad-band double-clad Yb-doped fiber amplifier with
34-dBm saturation output power and 45-nm bandwidth, from

1050–1095 nm. We also demonstrated amplification of-
switched input signal pulses to 50J of energy. Without any
input signal, the amplifier started to self-pulsate, with feedback
probably arising from distributed back-scattering. Although
this shows the ability of the amplifier to extract high-peak
power, high-energy pulses, it also ultimately limits the small-
signal gain and bandwidth of the amplifier. Since even small
amounts of back-scattering and reflections at fiber ends or
optics can enhance this pulse regime care must be paid to
prevent them.
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