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A Monolithic MQW

InP/INnGaAsP-Based

Optical Comb Generator

Cyril. C. Renaud, Marianna Pantouvaki, Sylvie Gieg lan Lealman, Paul Cannard, Simon Cole,
Ron Moore, Russell Gwilliam and Alwyn J. Seeds, e

Abstract— We report the first demonstration of a monolithic
optical-frequency comb generator. The device is bad on multi -
section quaternary/quaternary eight-quantum-well InP/InGaAsP
material in a Frequency Modulated (FM) laser design The
modulation is generated using quantum confined St&r effect
phase-induced refractive index modulation to achiey fast
modulation up to 24.4 GHz. The laser was fabricatk using a
single epitaxial growth step and quantum well intemixing to
realize low-loss phase adjustment and modulation sgons. The
output was quasi continuous wave with intensity madation at
less than 20% for a total output power of 2 mW. Thdinewidth of
each line was limited by the linewidth of the fregunning laser at
an optimum of 25 MHz full width half maximum. The comb
generator produces a number of lines with a spacingxactly equal
to the modulation frequency (or a multiple of it), differential
phase noise between adjacent lines of -82 dBc/Hz hitkHz offset
(modulation source limited) and a potential comb spctrum width
of up to 2 THz (15 nm), though the comb spectrum wsa not
continuous across the full span.

Index Terms— Optical frequency comb generation, Laser
diode, FM laser.

. INTRODUCTION

any different applications, ranging

M

number of frequency lines in relatively dense gfiti8],
However, they are not suitable for integrated systeSeveral
other solutions have been proposed to provide alady
spaced frequency comb, such as a Fabry-Perotementter
[9] or a fibre ring resonator [10], both of whiclarc offer a
large frequency comb span. The frequency accuraxy a
stability of these devices compared to the atomimolecular
resonances are limited by the optical length ofrés®nators,
and their mechanical stability (sensitivity to \abon and
thermal changes), though they could be stabilise¢bbking
them on an atomic or molecular transition. Anotbalution is
the use of deep angle modulation of an optical G®UD
generate precisely spaced frequency lines [11,Rch
systems can be reasonably compact and providediversa 4
THz (-50 dB bandwidth) span [12]. However the powér
each line is small (from 1@W/line at the seed laser peak
down to 1 nW/line 3 THz from the peak ) and the hamof
frequency lines and their spacing are limited kg difficulty

of realizing such modulation at high frequency.réltvide
frequency comb generators (30 THz) have also been
demonstrated by further increasing the comb widihgiself-
phase modulation in an optical fibre [13]. Othelutions such
as an amplified fibre loop comb generator [14,16]nmde
locked semiconductor lasers [16-18] can offer haddrof

from densdines with a spacing from 10 to 25 GHz over a bahélt least
wavelength division multiplexed (WDM) optical 1THZ with a stability limited by the thermal statyil of the

communications [1] to photonic THz synthesis [2-4f@Miconductor laser (master laser in the caseedflire loop).

require a reliable and cost-effective frequencyenefice
source. The most reliable source as frequencyremde are
atomic or molecular resonances [5,6]. They alserddf large
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The principle of the FM laser [19] is an extensidrihe FM
mode-locked laser solution and should offer a lang@ber of
equally spaced frequency lines, spaced by the ratidal
source frequency, over the gain spectrum of thecserductor
laser, but without the strong intensity modulatedetope and
the critical frequency tuning of a mode-locked fasich is
detrimental to some filtering schemes. In this pape
describe such a monolithic InP/InGaAsP FM lasericapt
comb generator using the Quantum Confined StarlecEff
(QCSE) [20] as the refractive index modulation nsetbm.
The laser described in this paper provides a fembctines
spaced by 24.4 GHz over a non-continuous 15 nm leagth
(2 THz) span. It shows stable performance and lamost
constant output power of up to 2 mW (an average2®f
uWi/line, as the number of lines is limited). Furtinere, the
phase noise generated when heterodyning two suvedises
was limited by the phase noise of the modulatiawre® used,
and the linewidth of each line created was equahéofree-
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Fig. 1: Theoretical spectrum of an FM laser.

running laser linewidth. The different issues rethtto the
fabrication of this laser, and some of the operalimitations
will also be discussed.

Il.  PRINCIPLE OF THEFM SOURCE

FM laser operation occurs when the laser cavityspha
modulated at a frequency close to the axial frequ¢h9]. In
ideal FM laser operation, there is frequency madihisand no
intensity modulation, and the spectrum will comgréssnumber
of lines spaced by the modulation frequency dependn the
frequency detuning from the axial mode and the @og# of
the modulation. When the modulation frequency isaétp the
axial frequency the laser will transfer to a modeked pulse
regime [21]. The FM laser regime is generated l&y pghase
modulation which induces coupling between the diifé
modes of the cavity. The resulting spectrum camdseribed
by the following equations:

E(t) =, ) J,(M)e/@m”
= (@,

_AD @,
211 |y, — |

r

).
In these equationsylis the amplitude of the optical fieldy
is the laser operating frequency, is the modulation

frequency,wy, is the axial mode spacing of the Fabry-Perc

cavity, A® is the amplitude of the phase modulation gnis J
an ordinary Bessel function. Note that these equoati
represent an ideal laser with a flat gain spectamd pure
single mode operation (the fundamental mode isribext as a
Dirac function). This perfect theoretical laserlvgenerate a
spectrum as shown in Figure 1. To represent a meakstic

laser one can introduce a Lorentzian function tscdbe the
laser operating mode linewidth and simulate whidittveippen

if this laser has several modes operating at theegane (free

running) by summing the FM spectra of each modt

Considering the approximations mentioned above atiou
(1) can be rewritten as:

Amplitude (dB)

-45
1935 193.58 193.66 193.74 193.82
Frequency (THz)

Fig. 3: Theoretical comb spectrum generated by limmde laser.
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Where Lly(w) is a Lorentzian function where the mode
linewidth is w, and we have a total number of K med
operating in the laser cavity. Note that equat@rémains the
same. Figure 2 shows a selection of lines creayethé FM
modulation when 3 modes are operating in the cavy
expected the lines are broader, as they are aisyjesition of
the different FM created lines from each of theefrenning
modes. Furthermore, as the spacing of the FM comabtlae
spacing of the free-running laser modes are sligtitferent,
the linewidth of each resulting comb line will depeon its
distance from the free running laser modes. Thesefor
optimum operation the FM laser should exhibit ngiode
operation in the free-running mode (i.e. when notuotated).

I1l. DESCRIPTION OF THE LASER

Figure 3 (left) shows a schematic of the threeisedaser.
The laser was 1.85 mm long (~25 GHz axial mode isgac
with 170 um long modulation and phase sections. The phase
section was used to change the axial mode spacidghas

p-InP 170 nm

] Fm
Gain current Phase . dulation
l adjust @
-+
| ! | } p-InGaAs 200 nm
= H |
Gain iPhasel Mod | p-InP 1400 nm
H H i p-InGaAsP Q1.3 30 nm
H |
|
|

InGaAsP Q1.3 10 nm

. ———5———71 8 xInGaAsP Q1.65 wells
7nm

(+1% strain)
&7 x InGaAsP Q1.3

barriers 14 nm
(-0.5% strain)

InGaAsP Q1.3 10 nm

n-InP 1500nm

Semi-insulating InP substrate

Fig. 2: Schematic and optical micrograph of the¢hsection laser (left)
and epitaxial structure (right).
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bandgap in the phase and modulator sections. Ptmt evafer
Fig. 4: Absorbtion changes as a function of revesas for the was then processed into PIN devices, and phot(muspectra
ropagating mod
propagating were measured to extract the spectral dependenctheof
655 material absorption as a function of reverse kaasshown in

- Figure 4. This measurement was used to calculateftect of
g’ms QCSE on refractive index by using the Kramers-Kgoni
8" relation (Figure 5). This showed that the refratimdex for
g ol the wells changes by 0.17 with 2 V reverse Biasaat
§°-°5 wavelength of 1560 nm (Figure 5). Such an indexhghain
'é 0 i the 170um long modulation section corresponds to a phase
::5:-9.05 A D — | change sulfficient to create the desired FM ladectét :

&£ 01 4=V ~ 2(nir [An[L
¥o15 :§;2¥ e ‘“‘(_:,,‘ AD = MQV)\\I ™ =10 rad @,
-('392.2 ] ‘ whereAn is the refractive index change of the MOQWq is

o T S AP T the conflr?ement factor of the gwded_optlcal modthwvthe
Wavelength (nm) wells, L, is the length of the modulation section ané the

Fig. 5: Refractive index change due to electritdfigerived from data operating Wavelength. . . .

of Fig. 4. The changes quoted are with referent¢haaero-field case. The fabricated laser was a ridge waveguide desigh w

oxide-bridged contacts in order to reduce the dégrace of

the frequency detuning while the modulation freaqyeoould
a Y g e the modulation section (picture in Figure 3.). Tdi&erent

remain constant. Figure 3 (right) shows the epaflagiructure X db isolafi h h
of the material used for the laser. The structuas grown by sections were separated by an isolation wenclugiahe

metal-organic vapour phase epitaxy (MOVPE) on ai-senbigzlyI d_oped top Iay:alrs. Ehe oxidef—bridged co(;nimtthe_
insulating InP substrate. The active region cossidt eight modulation section allowed a 380 fF measured cimpame

7nm-wide compressively strained (1%) InGaAsP QveSs, and a Z.OQ series. resistance resulting in a maximum -3dB
alternating with seven 14 nm-wide tensile strair@cs%) Medulation bandwidth of 21 GHz. As both phase secéind
InGaAsP Q1.3 barriers, sandwiched between two 1@hick modulation section were intermixed, the laser thoéb
InGaAsP Q1.3 waveguide layers. On top of the InGapgmained relatively low at 80 mA for a 1.88mm lamheyice.
contact layer, a 0.5m InP buffer layer and a final 0yIm The laser was operated at 200 mA bias current gigirtotal
InGaAs buffer layer were grown. They were used fiotget ©UtPUt of 2 MW (1 mW coupled into a single modee)b

the contact cap from damage as shallow ion implamtavas The isolation trenches induce a small reflectiod%y of
used to generate quantum well intermixing (QWI)rag22]. the propagating mode creating sub-cavity effecfs.ore
For this work we implanted 8x1bP ions at 100 keV energy considers a trench through the top {6 of the structure and
and 200°C. With this implantation energy damage wad two section device, a simulation of the coupladri-Perot
restricted to the buffer layer, thus when it wabsgguently cavities created will lead to the calculated traissmn

removed the surface quality of the contact cap maet. The function shown in figure 6 As one can see theslmaiasiqns
wafer was masked with 600 nm of PECVD Si@uring spectrum shows regular dips (spaced by 2.1 nm sjuoraling

implantation in order to protect the gain sectioddter to a 170um sub-cavity) W,hiCh will strongly affef:t .the output
implantation the wafer was rapidly thermally proses at spectrum of the laser. It will offer the advantagéimiting the

650°C for 90 seconds which created a 35 nm blue-shifi® numbgr of modes' operating in the cavjty, thus #ed could
potentially have single mode free running operatldowever



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

0.8

0.6

0.4

Normalised power (linear)

0.2

0.0 T

T T T T T T T M) LAl
0 50 100 150 200 250 300 350 400 450 500

Frequency (MHZz)
Fig. 7: Free running laser linewidth for currenttisgls from 90 mA
(just above threshold) to 173 mA (just below mutitte operatior
it will also limit the number of comb lines genezdtas they
will be confined to the spectral zones of highansmission.

IV. EXPERIMENTS ANDRESULTS

Note that for all experimental measurements, teerlautput
was collected using a lensed fibre with anti-reftetcoating
which was spliced to an optical isolator in ordeetiminate
the unwanted effects on laser operation due tamadteptical
feedback.

A. Free running laser

In order to optimize the comb generator operatidgorpo
applying modulation the laser gain current was stéj to
give optimum free-running operation, where thewiith is at
its minimum and the laser operates in a single nmedine. In
order to measure the linewidth of the laser modeel-
heterodyne system was used [23]. The delay was &ffaring

L~ Av

o [ -

Electrical Spectrum analyser
+fast detector

Fm
modulation

i

@ Optical spectrum analyser/
samplingscope+fastietector

Fig. 8: Experimental syste

each comb line was retaining the spectral purityhef free-
running laser. The laser output power stability ais® studied
using a fast photodetector (50 GHz bandwidth) asdmapling
oscilloscope which was triggered using a referenogut
from the frequency generator. This allowed residotdnsity
modulation on the laser output to be studied. As loa seen
from Figure 4, the absorption of the modulationtisecwill

also change with the voltage thus inducing intgnsit
modulation. Monitoring intensity modulation alsoaéfes the
transition to mode-locked operation to be obsef2dd when
the modulation frequency is exactly equal to thalamode
spacing. The stability of the line spacing anddation to the
modulation source frequency were assessed by lgteng
two adjacent lines and sending the resulting si¢gmahe fast
photodetector which was connected to a spectrunysara
Note that the filters were placed at the outputhef erbium

a measurement resolution of 40 kHz, which should td#oped fibre amplifiers (EDFA) to reduce the amptifi

sufficient as a typical semiconductor laser willvbaa
linewidth of the order of a few MHz. The linewidthas
measured as a function of the gain section cuasrghown in
Figure 7. At low bias current, the laser shows ¢pected
linewidth decrease with increased current. Howewsera
certain bias current (174mA) the linewidth incresaskarply to
200 MHz. This was found to be the bias current whike
laser starts to operate in a multimode regime. djperation
point was therefore chosen to be just below thisect. At
this bias the laser had an output power of 1.2 V@ MW
coupled into a single mode fibre, operating temipeeaof 20
°C) with a linewidth of 25 MHz. Note that the measiiwidth
on the RF spectrum analyser is twice the actuawlidth of
the laser [23].

B. Modulated laser
Figure 8 shows the different systems used to cteriae

the FM laser. The output spectrum of the laser aszessed

with an optical spectrum analyzer. Finer specthadies were

spontaneous emission (ASE) level in the resultipgcsum.
The phase noise as a function of the frequencgbifas then
extracted and compared to the modulation sourceephaise.
Figure 9 shows the output spectrum of the laseh waitd
without 24.4 GHz modulation. The modulation amplguvas
chosen to be 2V peak to peak signal with 2V negaliias,
where the output spectrum was showing the highasiber of
comb lines created. With no modulation, lasing was single
longitudinal mode. With modulation at frequenciesicim
lower than the axial frequency (>1GHz detuning gsthe
frequency source) the laser spectrum only showedptak
and a pair of side lines. With modulation closerthie axial
frequency, the spectrum shows a number of lineeam
across the spectrum. When the phase was changedento
detune the laser axial frequency further from thedutation
frequency the number of lines diminished and wdoser to
the original peak frequency as expected for a Fé¢rlaNote
that the spectrum is not symmetric as for the ide@mple
given previously. This is mainly due to the straaigsorption

also done with the same self heterodyne system usgd e short wavelength side of the spectrum, aghfe laser

previously on the free-running laser in order teess whether
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the free running peak wavelength was in the shasealength
side of the gain spectrum. Other lasers operatitiy avsingle
free running peak in the centre of the gain spectoperated
with a more symmetric comb spectrum, though the bemof
lines was smaller. This absorption is unavoidabde tlae
intermixing was chosen to be the best balance lestview
absorption and strong index modulation. This theneefimits
the total span of the comb as it reduces the gairdWidth.
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Figure 10: comb lines linewidth measurement

Furthermore, we believe that the trenches useddiate the
different sections, which create a system of cedigfabry-
Perot sub-cavities, are responsible for the lacknek created
at certain points of the spectrum (Figure 9). Theukation

result, shown in Figure 6 (for a simpler two semsicavity),

indicates that such a cavity design induces hitgeses in the
cavity at frequency spacing determined by the leraft the

modulation section. Though the real cavity wassioiulated,
it is reasonable to assume that a similar effeczarfes of
higher losses should occur while the periodicitgudti not be
as obvious.

To assess the quality of the created comb lines the
linewidth was measured with the self heterodynetesys
described previously, each line being extractedguai0.1 nm
-3 dB bandwidth filter (13 GHz). Figure 10 showse th
linewidth of different comb lines at a given offdedm the
original free-running laser frequency. As expectidx, comb
line linewidth remains the same as the linewidthttef free
running laser for all comb lines. The linewidth was its
optimum for this laser; i.e. 25 MHz.

As a laser operating in FM regime should show rerisity
modulation, to confirm that the device was operpatis an FM
laser the stability of its output power was meagdwéh a fast
photodetector both on a spectrum analyzer and sanmgling
oscilloscope. Figure 11 shows the result obtainétth whe
sampling oscilloscope at different points of opieratAs one
can see at most operation points the output hadsalmo
intensity modulation. However up to 20% intensitydulation
appears when the modulation frequency is closén¢oaiial
frequency. This was expected as the QCSE only thligh
changes the absorption of the modulation sectiohe T
spectrum analyzer did also show a weak peak at &4
when the modulation frequency was close to thetgaial
frequency, in agreement with the previous measunenia
theory the laser should transiton to FM-mode-latke
operation when the modulation frequency is exaetjyal to
the cavity axial frequency. When measured at fiigiguency
the laser showed the same behaviour as with a staalhing
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points
(around 10 kHz), but no mode-locked regime was sk It
is likely that in this device the intra-cavity redtions
combined with strong cavity dispersion preventedrafion in
the mode-locked regime.

This experiment was repeated with individual fié@rcomb
lines in order to assess their intensity stabilignd no
differences were seen in the measurements comparéue
measured intensity modulation of the full outputled laser.

In order to confirm FM operation, the comb line cpg
should be measured and its relation to the modulati
frequency demonstrated. For this we used the lodteeo
system described previously with 0.1 nm (13 GHz)dvedth
fiters on each branch of the system. This alscersffthe
advantage of assessing the relative frequencylisfabi the
line spacing.

Figure 12 shows the heterodyne result for one gpaen of
lines. For this measurement the spectrum analyzan svas
100 kHz and the resolution bandwidth was 1 kHz. Tihe
was at the exact frequency of the modulation soarwk had
the same spectral purity, as expected. Thus, asaimb lines
were spaced by the modulation frequency, we coefahitely
conclude the device was operating as an FM lagersdnoise

measurements were also made on the heterodynel smna

compare it with the modulation source (Figure I3)e phase
noise spectral density was obtained [estimatedh ftbe RF
power spectrum adjacent to the heterodyne signalthe

6
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Figure 12: Electrical spectrum of the heterodyigeali created from two
adjacent lines of the comb generator.

modulation source signal) by normalising to thekpgawer in
the signal, on the assumption that the phase mims@nates
over amplitude noise [24]. The noise floor of gmectrum
analyser was around -125 dBm/Hz [check powersEss For
all frequency offsets, while the peak signal powersre
around 10 dBm for the modulation source and -10d&nthe
heterodyne signal, giving noise floors for the ghawise
measurements of around -135 dBc/Hz and -115 dBc/Hz,
respectively. As can be seen, up to a frequensebtf about
2 MHz the phase noise is the same for the sourdetlam
heterodyne signal, above this frequency offsetnibise floor
of the spectrum analyzer is reached and no congradan be
made. However this shows that phase noise of -&2HiBat 1
kHz offset and -108 dBc/Hz at 1 MHz offset can bhiaved.
An important issue for the use of this laser asegufency
reference is its absolute frequency stability. Tgply a
semiconductor laser will show an absolute frequedridy due
to the current source instability and thermal drithe FM
laser free running peak wavelength drift was messwver

n
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Figure 13: Phase noise measurement of the hetezignal from two
adjacent comb lines
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several hours by heterodyning the laser output thighoutput
of a stabilised DFB laser (on a molecular resonance
-acetylene- absolute frequency stability <100 kHmd [1]
observing it on an RF spectrum analyser. It wasidoto be
about 200 MHz with an approximately linear driftr fthe 5
duration of the measurement. This indicates thatdhft is
mainly due to the control electronics. Note thats th
corresponds to a change of the axial frequency bafut 3]
100kHz. This is small enough to not affect the Fpki@tion
of the laser and confirm the fact that we did rest any change
in the comb spectrum over a similarly long operatas the
FM laser. In order to obtain a higher absolute desty
stability the laser will need to be locked on apnat or
molecular resonance [25].

(4

(5]

V. CONCLUSION
We have shown the use of a combination of diﬁererg?]

fabrication techniques in the quaternary/quaternary
InGaAsP/InP material to realise a monolithic FMelasomb  [7]
generator. First the bandgap of part of the wafas Wlue [8]
shifted using QWI by shallow ion implant and rapietrmal
processing (RTP). The 35 nm bandgap shift obtaaiedved

low signal absorption in the phase and modulategtiens of (9]
the device. Secondly the fabrication of the dewiges made
using oxide-bridge techniques to reduce the caguacit of the [10]

modulation section to 380 fF. This allowed for dificeent
reverse bias modulation using QCSE at 24.4 GHzclwinias
close to the 3 dB bandwidth of the modulation secti [11]
(21 GHz). The optical frequency comb-generator @oul
potentially offer 24.4 GHz spaced lines over a spéavidth
of 15 nm (~2THz). However the complexity of the itav
dispersion and the losses induced by the mate&eg Vimiting
the number of lines created of the potential sjdm® created
laser lines were exactly spaced by the modulatiequiency
and the residual intensity modulation was less #@fo. Each
line had the same linewidth of 25 MHz as the nordutated
laser. When heterodyned, two adjacent lines gavghapurity
(-82 dBc/Hz st 1 kHz offset) frequency with phaseise
limited by the frequency source. Another limitatiéor the
source is that its absolute frequency stabilitinsted. A 200
MHz drift measured over a period of several houas mainly
due to the control electronics. We believe thas tould be
solved by locking the laser on an atomic or molacul
resonance. We have isolated two main issues tdetdickt in
order to improve the performances of the monolittdenb
generator. They are the multiple cavity structund the span
of the comb. For the first one we plan to use ioplantation
as the section electrical isolation mechanism [B6prder to
reduce the level of residual reflection. For theosel issue the
use of distributed bandgap material will be invgetied in
order to increase the gain bandwidth [27] of theetaas well
as, potentially, the modulation depth [28]. In tltase we
believe that such monolithic comb generators cautilide a
compact alternative to fibre loop techniques witgér comb
line output powers than passive phase modulatbntques.

[12]

(13]

(14]

[15]

[16]

(17]

(18]
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[20]
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