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 Abstract— We report the first demonstration of a monolithic 

optical-frequency comb generator. The device is based on multi -
section quaternary/quaternary eight-quantum-well InP/InGaAsP 
material in a Frequency Modulated (FM) laser design. The 
modulation is generated using quantum confined Stark effect 
phase-induced refractive index modulation to achieve fast 
modulation up to 24.4 GHz.  The laser was fabricated using a 
single epitaxial growth step and quantum well intermixing to 
realize low-loss phase adjustment and modulation sections. The 
output was quasi continuous wave with intensity modulation at 
less than 20% for a total output power of 2 mW. The linewidth of 
each line was limited by the linewidth of the free running laser at 
an optimum of 25 MHz full width half maximum. The comb 
generator produces a number of lines with a spacing exactly equal 
to the modulation frequency (or a multiple of it), differential 
phase noise between adjacent lines of -82 dBc/Hz at 1 kHz offset 
(modulation source limited) and a potential comb spectrum width 
of up to 2 THz (15 nm), though the comb spectrum was not 
continuous across the full span.  
  

Index Terms— Optical frequency comb generation, Laser 
diode, FM laser.  
 

I. INTRODUCTION 

any different applications, ranging from dense 
wavelength division multiplexed (WDM) optical 
communications [1] to photonic THz synthesis [2-4] 

require a reliable and cost-effective frequency reference 
source. The most reliable source as frequency  reference are 
atomic or molecular resonances [5,6]. They also offer a large 
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number of frequency lines in relatively dense grid [7,8], 
However, they are not suitable for integrated systems. Several 
other solutions have been proposed to provide a regularly 
spaced frequency comb, such as a Fabry-Perot interferometer 
[9] or a fibre ring resonator [10], both of which can offer a 
large frequency comb span. The frequency accuracy and 
stability of these devices compared to the atomic or molecular 
resonances are limited by the optical length of the resonators, 
and their mechanical stability (sensitivity to vibration and 
thermal changes), though they could be stabilised by locking 
them on an atomic or molecular transition. Another solution is 
the use of deep angle modulation of an optical source to 
generate precisely spaced frequency lines [11,12]. Such 
systems can be reasonably compact and provide lines over a 4 
THz (-50 dB bandwidth) span [12]. However the power of 
each line is small (from 10 µW/line at the seed laser peak 
down to 1 nW/line 3 THz from the peak ) and the number of 
frequency lines and their spacing are limited by the difficulty 
of realizing such modulation at high frequency. Ultra wide 
frequency comb generators (30 THz) have also been 
demonstrated by further increasing the comb width using self-
phase modulation in an optical fibre [13]. Other solutions such 
as an amplified fibre loop comb generator [14,15] or mode 
locked semiconductor lasers [16-18] can offer hundreds of 
lines with a spacing from 10 to 25 GHz over a band of at least 
1THz with a stability limited by the thermal stability of the 
semiconductor laser (master laser in the case of the fibre loop).   

The principle of the FM laser [19] is an extension of the FM 
mode-locked laser solution and should offer a large number of 
equally spaced frequency lines, spaced by the modulation 
source frequency, over the gain spectrum of the semiconductor 
laser, but without the strong intensity modulated envelope and 
the critical frequency tuning of a mode-locked laser which is 
detrimental to some filtering schemes. In this paper we 
describe such a monolithic InP/InGaAsP FM laser optical 
comb generator using the Quantum Confined Stark Effect 
(QCSE) [20] as the refractive index modulation mechanism. 
The laser described in this paper provides a few comb lines 
spaced by 24.4 GHz over a non-continuous 15 nm wavelength 
(2 THz) span.  It shows stable performance and an almost 
constant output power of up to 2 mW (an average of 20 
µW/line, as the number of lines is limited). Furthermore, the 
phase noise generated when heterodyning two successive lines 
was limited by the phase noise of the modulation source used, 
and the linewidth of each line created was equal to the free-
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running laser linewidth. The different issues related to the 
fabrication of this laser, and some of the operation limitations 
will also be discussed. 

II. PRINCIPLE OF THE FM SOURCE 

FM laser operation occurs when the laser cavity phase is 
modulated at a frequency close to the axial frequency [19]. In 
ideal FM laser operation, there is frequency modulation and no 
intensity modulation, and the spectrum will comprise a number 
of lines spaced by the modulation frequency depending on the 
frequency detuning from the axial mode and the amplitude of 
the modulation. When the modulation frequency is equal to the 
axial frequency the laser will transfer to a mode-locked pulse 
regime [21]. The FM laser regime is generated by the phase 
modulation which induces coupling between the different 
modes of the cavity. The resulting spectrum can be described 
by the following equations: 
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In these equations E0 is the amplitude of the optical field, ω0 

is the laser operating frequency, ωm is the modulation 
frequency, ωax is the axial mode spacing of the Fabry-Perot 
cavity, ∆Φ is the amplitude of the phase modulation and Jn is 
an ordinary Bessel function. Note that these equations 
represent an ideal laser with a flat gain spectrum and pure 
single mode operation (the fundamental mode is described as a 
Dirac function). This perfect theoretical laser will generate a 
spectrum as shown in Figure 1. To represent a more realistic 
laser one can introduce a Lorentzian function to describe the 
laser operating mode linewidth and simulate what will happen 
if this laser has several modes operating at the same time (free 
running) by summing the FM spectra of each mode. 
Considering the approximations mentioned above, equation 
(1) can be rewritten as:  
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Where Lw(ω) is a Lorentzian function where the mode 
linewidth is w, and we have a total number of K modes 
operating in the laser cavity. Note that equation (2) remains the 
same. Figure 2 shows a selection of lines created by the FM 
modulation when 3 modes are operating in the cavity. As 
expected the lines are broader, as they are a superimposition of 
the different FM created lines from each of the free running 
modes. Furthermore, as the spacing of the FM comb and the 
spacing of the free-running laser modes are slightly different, 
the linewidth of each resulting comb line will depend on its 
distance from the free running laser modes. Therefore for 
optimum operation the FM laser should exhibit single mode 
operation in the free-running mode (i.e. when not modulated). 

III.  DESCRIPTION OF THE LASER 

Figure 3 (left) shows a schematic of the three section laser. 
The laser was 1.85 mm long (~25 GHz axial mode spacing) 
with 170 µm long modulation and phase sections. The phase 
section was used to change the axial mode spacing and thus 

Fig. 1: Theoretical spectrum of an FM laser. 
Fig. 3: Theoretical comb spectrum generated by a multimode laser. 

adjust

Fig. 2: Schematic and optical micrograph of the three section laser (left) 
and epitaxial structure (right). 
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the frequency detuning while the modulation frequency could 
remain constant. Figure 3 (right) shows the epitaxial structure 
of the material used for the laser. The structure was grown by 
metal-organic vapour phase epitaxy (MOVPE) on a semi-
insulating InP substrate. The active region consists of eight 
7nm-wide compressively strained (1%) InGaAsP Q1.65 wells, 
alternating with seven 14 nm-wide tensile strained (0.5%) 
InGaAsP Q1.3 barriers, sandwiched between two 10 nm-thick 
InGaAsP Q1.3 waveguide layers. On top of the InGaAs 
contact layer, a 0.5 µm InP buffer layer and a final 0.1 µm 
InGaAs buffer layer were grown. They were used to protect 
the contact cap from damage as shallow ion implantation was 
used to generate quantum well intermixing (QWI) as in [22]. 
For this work we implanted 8x1014 P ions at 100 keV energy 
and 200 oC. With this implantation energy damage was 
restricted to the buffer layer, thus when it was subsequently 
removed the surface quality of the contact cap was intact. The 
wafer was masked with 600 nm of PECVD SiO2 during 
implantation in order to protect the gain sections. After 
implantation the wafer was rapidly thermally processed at  
650 oC for 90 seconds which created a 35 nm blue-shift of the 

bandgap in the phase and modulator sections. Part of the wafer 
was then processed into PIN devices, and photocurrent spectra 
were measured to extract the spectral dependence of the 
material absorption as a function of reverse bias, as shown in 
Figure 4. This measurement was used to calculate the effect of 
QCSE on refractive index by using the Kramers-Kronig 
relation (Figure 5). This showed that the refractive index for 
the wells changes by 0.17 with 2 V reverse Bias at a 
wavelength of 1560 nm (Figure 5). Such an index change in 
the 170 µm long modulation section corresponds to a phase 
change sufficient to create the desired FM laser effect at :  

rad10
Ln2 mMQW =

λ
⋅∆⋅Γ⋅π⋅

=∆Φ  (4), 

where ∆n is the refractive index change of the MQW, ΓMQW is 
the confinement factor of the guided optical mode within the 
wells, Lm is the length of the modulation section and λ is the 
operating wavelength. 

The fabricated laser was a ridge waveguide design with 
oxide-bridged contacts in order to reduce the capacitance of 
the modulation section (picture in Figure 3.). The different 
sections were separated by an isolation trench through the 
highly doped top layers. The oxide-bridged contact for the 
modulation section allowed a 380 fF measured capacitance 
and a 20 Ω series resistance resulting in a maximum -3dB 
modulation bandwidth of 21 GHz. As both phase section and 
modulation section were intermixed, the laser threshold 
remained relatively low at 80 mA for a 1.88mm long device. 
The laser was operated at 200 mA bias current giving a total 
output of 2 mW (1 mW coupled into a single mode fibre).   

The isolation trenches induce a small reflection (~4%) of 
the propagating mode creating sub-cavity effects. If one 
considers a trench through the top 1.6 µm of the structure and 
a two section device, a simulation of the coupled Fabry-Perot 
cavities created will lead to the calculated transmission 
function shown in figure 6. As one can see the transmissions 
spectrum shows regular dips (spaced by 2.1 nm corresponding 
to a 170 µm sub-cavity) which will strongly affect the output 
spectrum of the laser. It will offer the advantage of limiting the 
number of modes operating in the cavity, thus the laser could 
potentially have single mode free running operation. However 

Fig. 4: Absorbtion changes as a function of reverse bias for the 
propagating mode. 

Fig. 5: Refractive index change due to electric field derived from data 
of Fig. 4. The changes quoted are with reference to the zero-field case. 

Fig.6: Transmission of the multiple Fabry-Perot cavity 
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it will also limit the number of comb lines generated as they 
will be confined to the spectral zones of higher transmission. 

IV. EXPERIMENTS AND RESULTS 

Note that for all experimental measurements, the laser output 
was collected using a lensed fibre with anti-reflection coating 
which was spliced to an optical isolator in order to eliminate 
the unwanted effects on laser operation due to external optical 
feedback.  

A. Free running laser 

In order to optimize the comb generator operation prior to 
applying modulation the laser gain current was adjusted to 
give optimum free-running operation, where the linewidth is at 
its minimum and the laser operates in a single mode regime. In 
order to measure the linewidth of the laser mode a self-
heterodyne system was used [23]. The delay was 5 km offering 
a measurement resolution of 40 kHz, which should be 
sufficient as a typical semiconductor laser will have a 
linewidth of the order of a few MHz. The linewidth was 
measured as a function of the gain section current as shown in 
Figure 7. At low bias current, the laser shows the expected 
linewidth decrease with increased current. However at a 
certain bias current (174mA) the linewidth increases sharply to 
200 MHz. This was found to be the bias current where the 
laser starts to operate in a multimode regime. The operation 
point was therefore chosen to be just below this current. At 
this bias the laser had an output power of 1.2 mW (0.6 mW 
coupled into a single mode fibre, operating temperature of 20 
oC) with a linewidth of 25 MHz. Note that the measured width 
on the RF spectrum analyser is twice the actual linewidth of 
the laser [23]. 

B. Modulated laser 

Figure 8 shows the different systems used to characterize 
the FM laser.  The output spectrum of the laser was assessed 
with an optical spectrum analyzer. Finer spectral studies were 
also done with the same self heterodyne system used 
previously on the free-running laser in order to assess whether 

each comb line was retaining the spectral purity of the free-
running laser. The laser output power stability was also studied 
using a fast photodetector (50 GHz bandwidth) and a sampling 
oscilloscope which was triggered using a reference output 
from the frequency generator. This allowed residual intensity 
modulation on the laser output to be studied. As can be seen 
from Figure 4, the absorption of the modulation section will 
also change with the voltage thus inducing intensity 
modulation. Monitoring intensity modulation also enables the 
transition to mode-locked operation to be observed [21] when 
the modulation frequency is exactly equal to the axial mode 
spacing. The stability of the line spacing and its relation to the 
modulation source frequency were assessed by heterodyning 
two adjacent lines and sending the resulting signal to the fast 
photodetector which was connected to a spectrum analyser. 
Note that the filters were placed at the output of the erbium 
doped fibre amplifiers (EDFA) to reduce the amplified 
spontaneous emission (ASE) level in the resulting spectrum. 
The phase noise as a function of the frequency offset was then 
extracted and compared to the modulation source phase noise.  

Figure 9 shows the output spectrum of the laser with and 
without 24.4 GHz modulation. The modulation amplitude was  
chosen to be 2V peak to peak signal with 2V negative bias, 
where the output spectrum was showing the highest number of 
comb lines created. With no modulation, lasing was on a single 
longitudinal mode. With modulation at frequencies much 
lower than the axial frequency (>1GHz detuning using the 
frequency source) the laser spectrum only showed the peak 
and a pair of side lines. With modulation closer to the axial 
frequency, the spectrum shows a number of lines appearing 
across the spectrum. When the phase was changed in order to 
detune the laser axial frequency further from the modulation 
frequency the number of lines diminished and were closer to 
the original peak frequency as expected for a FM laser. Note 
that the spectrum is not symmetric as for the ideal example 
given previously. This is mainly due to the strong absorption 
on the short wavelength side of the spectrum, as for this laser 

Fig. 7: Free running laser linewidth for current settings from 90 mA 
(just above threshold) to 173 mA (just below multimode operation) 

3dB bandwidth=0.1 nm

Fig. 8: Experimental system 
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the free running peak wavelength was in the short wavelength 
side of the gain spectrum. Other lasers operating with a single 
free running peak in the centre of the gain spectrum operated 
with a more symmetric comb spectrum, though the number of 
lines was smaller. This absorption is unavoidable as the 
intermixing was chosen to be the best balance between low 
absorption and strong index modulation. This therefore limits 
the total span of the comb as it reduces the gain bandwidth.  

Furthermore, we believe that the trenches used to isolate the 
different sections,  which create a system of coupled Fabry-
Perot sub-cavities, are responsible for the lack of lines created 
at certain points of the spectrum (Figure 9). The simulation 
result, shown in Figure 6 (for a simpler two sections cavity), 
indicates that such a cavity design induces higher losses in the 
cavity at frequency spacing determined by the length of the 
modulation section. Though the real cavity was not simulated, 
it is reasonable to assume that a similar effect of zones of 
higher losses should occur while the periodicity should not be 
as obvious.  

To assess the quality of the created comb lines their 
linewidth was measured with the self heterodyne system 
described previously, each line being extracted using a 0.1 nm  
-3 dB bandwidth filter (13 GHz). Figure 10 shows the 
linewidth of different comb lines at a given offset from the 
original free-running laser frequency. As expected, the comb 
line linewidth remains the same as the linewidth of the free 
running laser for all comb lines. The linewidth was at its 
optimum for this laser; i.e. 25 MHz. 

As a laser operating in FM regime should show no intensity 
modulation, to confirm that the device was operating as an FM 
laser the stability of its output power was measured with a fast 
photodetector both on a spectrum analyzer and on a sampling 
oscilloscope. Figure 11 shows the result obtained with the 
sampling oscilloscope at different points of operation. As one 
can see at most operation points the output had almost no 
intensity modulation. However up to 20% intensity modulation 
appears when the modulation frequency is close to the axial 
frequency. This was expected as the QCSE only slightly 
changes the absorption of the modulation section. The 
spectrum analyzer did also show a weak peak at 24.4 GHz 
when the modulation frequency was close to the cavity axial 
frequency, in agreement with the previous measurement. In 
theory the laser should transition to FM-mode-locked 
operation when the modulation frequency is exactly equal to 
the cavity axial frequency.  When measured at this frequency 
the laser showed the same behaviour as with a small detuning 

Modulation with ~10 MHz detuning

Modulation with ~40 MHz detuning

Figure 9: Spectrums with and without modulation 

Figure 10: comb lines linewidth measurement 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

(around 10 kHz), but no mode-locked regime was observed. It 
is likely that in this device the intra-cavity reflections 
combined with strong cavity dispersion prevented operation in 
the mode-locked regime. 

This experiment was repeated with individual filtered comb 
lines in order to assess their intensity stability, and no 
differences were seen in the measurements compared to the 
measured intensity modulation of the full output of the laser.  

In order to confirm FM operation, the comb line spacing 
should be measured and its relation to the modulation 
frequency demonstrated. For this we used the heterodyne 
system described previously with 0.1 nm (13 GHz) bandwidth 
filters on each branch of the system. This also offers the 
advantage of assessing the relative frequency stability of the 
line spacing. 

Figure 12 shows the heterodyne result for one given pair of 
lines. For this measurement the spectrum analyzer span was 
100 kHz and the resolution bandwidth was 1 kHz. The line 
was at the exact frequency of the modulation source and had 
the same spectral purity, as expected. Thus, as the comb lines 
were spaced by the modulation frequency, we could definitely 
conclude the device was operating as an FM laser. Phase noise 
measurements were also made on the heterodyne signal to 
compare it with the modulation source (Figure 13). The phase 
noise spectral density was obtained [estimated] from the RF 
power spectrum adjacent to the heterodyne signal (or the 

modulation source signal) by normalising to the peak power in 
the signal, on the assumption that the phase noise dominates 
over amplitude noise [24].  The noise floor of the spectrum 
analyser was around -125 dBm/Hz [check powers] or less for 
all frequency offsets, while the peak signal powers were 
around 10 dBm for the modulation source and -10dBm for the 
heterodyne signal, giving noise floors for the phase noise 
measurements of around -135 dBc/Hz and -115 dBc/Hz, 
respectively. As can be seen, up to a frequency offset of about 
2 MHz the phase noise is the same for the source and the 
heterodyne signal, above this frequency offset the noise floor 
of the spectrum analyzer is reached and no comparison can be 
made. However this shows that phase noise of -82 dBc/Hz at 1 
kHz offset and -108 dBc/Hz at 1 MHz offset can be achieved. 

An important issue for the use of this laser as a frequency 
reference is its absolute frequency stability. Typically a 
semiconductor laser will show an absolute frequency drift due 
to the current source instability and thermal drift. The FM 
laser free running peak wavelength drift was measured over 

Figure 11: Amplitude modulation measurement at different modulation 
points 

 

Figure 12: Electrical spectrum of the heterodyne signal created from two 
adjacent lines of the comb generator. 

 

Figure 13: Phase noise measurement of the heterodyne signal from two 
adjacent comb lines 
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several hours by heterodyning the laser output with the output 
of a stabilised DFB laser (on a molecular resonance  
-acetylene- absolute frequency stability <100 kHz) and 
observing it on an RF spectrum analyser. It was found to be 
about 200 MHz with an approximately linear drift for the 
duration of the measurement. This indicates that the drift is 
mainly due to the control electronics. Note that this 
corresponds to a change of the axial frequency of about 
100kHz. This is small enough to not affect the FM operation 
of the laser and confirm the fact that we did not see any change 
in the comb spectrum over a similarly long operation of the 
FM laser. In order to obtain a higher absolute frequency 
stability the laser will need to be locked on an atomic or 
molecular resonance [25]. 

V. CONCLUSION 

We have shown the use of a combination of different 
fabrication techniques in the quaternary/quaternary 
InGaAsP/InP material to realise a monolithic FM laser comb 
generator. First the bandgap of part of the wafer was blue 
shifted using QWI by shallow ion implant and rapid thermal 
processing (RTP). The 35 nm bandgap shift obtained allowed 
low signal absorption in the phase and modulation sections of 
the device. Secondly the fabrication of the device was made 
using oxide-bridge techniques to reduce the capacitance of the 
modulation section to 380 fF. This allowed for an efficient 
reverse bias modulation using QCSE at 24.4 GHz, which was 
close to the 3 dB bandwidth of the modulation section  
(21 GHz). The optical frequency comb-generator could 
potentially offer 24.4 GHz spaced lines over a spectral width 
of 15 nm (~2THz). However the complexity of the cavity, 
dispersion and the losses induced by the material were limiting 
the number of lines created of the potential span. The created 
laser lines were exactly spaced by the modulation frequency 
and the residual intensity modulation was less than 20 %. Each 
line had the same linewidth of 25 MHz as the non modulated 
laser. When heterodyned, two adjacent lines gave a high purity 
(-82 dBc/Hz st 1 kHz offset) frequency with phase noise 
limited by the frequency source. Another limitation for the 
source is that its absolute frequency stability is limited. A 200 
MHz drift measured over a period of several hours was mainly 
due to the control electronics. We believe that this could be 
solved by locking the laser on an atomic or molecular 
resonance. We have isolated two main issues to tackle first in 
order to improve the performances of the monolithic comb 
generator. They are the multiple cavity structure and the span 
of the comb. For the first one we plan to use ion implantation 
as the section electrical isolation mechanism [26] in order to 
reduce the level of residual reflection. For the second issue the 
use of distributed bandgap material will be investigated in 
order to increase the gain bandwidth [27] of the laser as well 
as, potentially, the modulation depth [28]. In that case we 
believe that such monolithic comb generators could provide a 
compact alternative to fibre loop techniques with larger comb 
line output powers than passive phase modulator techniques.  
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