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ABSTRACT 

Peer-to-Peer (P2P) applications have been associated with inefficient operation, 

interference with other network services and large operational costs for network 

providers. This thesis presents a framework which can help ISPs address these issues by 

means of intelligent management of peer behaviour. The proposed approach involves 

limited control of P2P overlays without interfering with the fundamental characteristics 

of peer autonomy and decentralised operation. 

At the core of the management framework lays the Active Virtual Peer (AVP). 

Essentially intelligent peers operated by the network providers, the AVPs interact with 

the overlay from within, minimising redundant or inefficient traffic, enhancing overlay 

stability and facilitating the efficient and balanced use of available peer and network 

resources. They offer an “insider‟s” view of the overlay and permit the management of 

P2P functions in a compatible and non-intrusive manner. AVPs can support multiple 

P2P protocols and coordinate to perform functions collectively. 

To account for the multi-faceted nature of P2P applications and allow the 

incorporation of modern techniques and protocols as they appear, the framework is 

based on a modular architecture. Core modules for overlay control and transit traffic 

minimisation are presented. Towards the latter, a number of suitable P2P content 

caching strategies are proposed. 

Using a purpose-built P2P network simulator and small-scale experiments, it is 

demonstrated that the introduction of AVPs inside the network can significantly reduce 

inter-AS traffic, minimise costly multi-hop flows, increase overlay stability and load-

balancing and offer improved peer transfer performance. 
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1. INTRODUCTION 

1.1 Motivation and contributions 

In recent years, Peer-to-Peer (P2P) applications have achieved widespread 

popularity and extensive deployment. The ability to access a vast pool of resources at no 

direct extra cost and with surprising ease of use, has made them so attractive that P2P-

generated traffic has become a major component of overall Internet traffic. What 

distinguishes P2P from “traditional” client/server-based Internet services like the World 

Wide Web (WWW) are the symmetric roles of all participants: P2P services gain their 

value from the networked cooperation of equals. This is in contrast with the 

client/server architecture where asymmetric roles are typical. 

Current P2P services can be identified by three main characteristics: sharing of 

pooled and exchangeable resources found at the edges of the Internet, all nodes having 

similar roles and all nodes being highly autonomous. The lack of separate roles between 

peers and non-reliance to supporting infrastructure has allowed P2P applications to 

boast admirable ease of deployment and fault-tolerance. As a consequence, however, 

the majority of P2P systems operate by creating overlays on top of the application layer, 

where peers form their application-level virtual topologies. These overlay topologies 

rarely match the underlying network infrastructure leading to inefficient operation and 

large operational costs for the network and Internet Service Providers (ISPs). 

While considerable work by the research and developer communities is devoted 

to developing the next generation of P2P systems, most of it concentrates on improving 

the scalability, performance and functionality of specific systems or problem areas in a 

protocol-centric manner. Part of that can be attributed to the diversity of user 

requirements and application domains, meaning that what might work well for one 

service may be unsuitable for another. Moreover, the diversity of goals and scope of the 

various stakeholders (end-users, P2P application developers, ISPs) and the lack of 

established communication channels between the latter two in particular, result in 

leaving the issue of efficient use of network resources lower in the agenda. As a result, 
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ISPs pressed to minimise costs quickly, take less elegant approaches by implementing 

bandwidth caps, rate-limiting or blocking of P2P traffic. Such approaches are drastic 

and in general do not differentiate between the various P2P services regardless of how 

each one operates or affects the network. This creates an environment where the wider 

adoption and evolution of P2P services is stifled, widens the gap between users, 

application and network providers and unnecessarily harms innovation and 

advancement of the Internet ecosystem in general. 

Therefore, the evolution and promotion of P2P networking does not only rely on 

developing better protocols and techniques but also on ensuring that the resulting 

services can co-exist and seamlessly integrate within existing service structures. Part of 

that approach requires thinking beyond the application layer and adopting a holistic 

view of the network which includes the ISPs‟ perspective. This is the main driving force 

behind the work presented in this thesis. 

Specifically, what is proposed in this thesis is that ISPs should be able to 

influence specific aspects of P2P service behaviour in order to accomplish a more 

considerate and balanced use of network resources, while allowing such services to 

operate in an unimpeded and efficient manner. In that direction, this thesis contributes a 

framework of tools and mechanisms designed to reduce the impact P2P services have 

on the network infrastructure in a way that is both transparent and compatible to them. 

The framework leverages the unique position and detailed knowledge of their networks 

ISPs have to provide guidance to peers and help them refrain from making suboptimal 

decisions which have a substantial cost in network and peer resources. Crucially, peer 

operation is not fundamentally restricted. Instead, correct peer behaviour and 

cooperation is promoted and encouraged by offering performance gains. 

In summary, the work presented in this thesis makes the following contributions: 

 The areas where management of peer behaviour can be effective while being 

transparent to peers and compatible to the way P2P services operate are 

identified. 

 Realistic scenarios of how these high-level management goals can be translated 

into implementable controls for existing protocols are formulated. 

 A novel framework architecture that implements the proposed management 

functions is designed. 

 A policy model for the automated configuration and management of the 

framework elements is defined. 
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 Caching strategies which are suitable and effective for P2P workloads and take 

advantage of the capabilities provided by the framework are developed and 

evaluated. 

 A prototype of the framework is developed for proving the concept and 

evaluating framework capabilities through experiment1. 

 A novel simulation software for P2P networks is developed, to examine large-

scale P2P service behaviour and evaluate the operation of the proposed 

framework in a variety of settings. 

1.2 Structure of the thesis 

The rest of the thesis is organised as follows: 

Chapter 2 (“Peer-to-Peer Networks”) provides a broad introduction to P2P 

networking and sets the scene for the work presented in this thesis. The historical 

context which led to the development of P2P networking in its current form is briefly 

presented first. P2P networking is then defined and the differences between P2P and 

client/server architectures are discussed. A review of application domains where P2P 

services have appeared follows. Next, general characteristics current P2P services have 

demonstrated are briefly discussed. Finally, the effect of P2P service deployment from 

an ISP‟s point of view is investigated. 

Chapter 3 (“Protocols, Topologies and Peer Behaviour”) builds upon the 

discussion of general P2P service characteristics presented in the previous chapter and 

looks closer into the behaviour of different classes of P2P networks and its effects on 

service operation, performance and impact on the Internet infrastructure. Large part of 

this analysis focuses on the role fundamental types of P2P overlay topologies play on 

that behaviour. For each class, the way representative protocols operate is reviewed, 

discussing their strengths and shortcomings. Complementing this macroscopic view is 

the investigation of the effects of individual peer behaviour. This examination gives the 

                                                 

 

 

1
 The foundations of the AVP concept along with an early prototype implementation of the AOC 

component were developed in collaboration with Hermann De Meer (University College London), Kurt 

Tutschku and Robert Henjes (University of Wurzburg, Germany). 
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necessary insight on the pervasive nature of P2P services, the way different functions 

are implemented and the technical challenges associated, providing the link to the 

following chapters where the proposed framework for managing P2P services is 

presented. 

Chapter 4 (“The Active Virtual Peer”) introduces the proposed management 

framework for P2P overlays. The chapter begins with a discussion of areas where P2P 

service control can be beneficially applied. Then, the AVP concept and framework 

design are presented. Core modules are described, along with scenarios of how the 

framework can be utilised to manage and improve P2P service operation. A detailed 

definition of the AVP policy model follows. The chapter is concluded with a brief 

discussion of the implementation details of the prototype component. 

Chapter 5 (“The Virtual Content Cache”) presents the framework component 

responsible with caching of P2P traffic. The value of P2P caching is investigated and 

the design principles behind the caching component, including a deployment scenario, 

are presented. A discussion of cache replacement in general, along with a deeper 

examination of proposed strategies, suitable for P2P workloads follows. Finally, a brief 

description of the prototype implementation is presented. 

Chapter 6 (“The AVP Simulator”) presents the simulation software developed 

for the evaluation of this work. A review of available third-party simulators along with 

the reasons that led to the development of a purpose-built simulator is presented. Then, 

the design of the simulator is examined, discussing various aspects and important 

technical decisions. Finally, important details of the simulation models employed are 

discussed. 

Chapter 7 (“Evaluation of the AVP”) is devoted to investigating the effects of 

AVP framework deployment on peer and network performance. First, the basic settings 

and assumptions of the simulation setup are defined. Then, the effect of peer traffic 

localisation is investigated. An examination of single-VCC deployment performance 

follows. This includes direct comparison of different caching strategy performance 

using two distinct workload scenarios. Having established the necessary background to 

caching strategy effects, multiple AVP deployments are evaluated next. The evaluation 

continues with an investigation of the effects of AVP placement on performance. This is 

followed by a brief examination of the economics of AVP deployment. Finally, the 

chapter is completed with the discussion of component testing of the AVP prototype. 

Chapter 8 (“Conclusions and Future Work”) concludes the thesis. A summary of 

key points and the contributions made is presented. This is followed by an examination 
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of work related to the AVP. Finally, possible directions towards which the research 

presented in this thesis may be extended in the future are explored. 

The bibliography section (“References”) and Appendices complete the thesis. 

1.3 A note on terminology 

Throughout this thesis, the terms network provider and Internet Service Provider 

(ISP) are used interchangeably to describe the single administrative entity which 

controls an Autonomous System (AS). Furthermore, the terms inter-AS, inter-ISP, inter-

domain and transit traffic are all used to describe network traffic which traverses the 

boundaries of a single AS to reach other parts of the global Internet through another 

ISP(s). Unless stated otherwise, the terms imply a billed service, provided by a higher-

tier ISP. 

While not strictly synonymous, in the context of this thesis the terms P2P 

service and P2P application are also used interchangeably as a means to avoid tedious 

repetition in the text. Where distinction between these terms is meaningful, it is clearly 

noted. 
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2. PEER-TO-PEER NETWORKS 

2.1 Introduction and historical context 

Over the past few years, we have witnessed the rapid emergence of a seemingly 

new paradigm in computer networking, called “peer-to-peer” (P2P) networking. P2P 

networking is rather a paradigm and not a technology because it promotes a different 

approach to the way a computer network can be utilised, without necessarily dictating 

specific changes to the existing network infrastructure [Oram, 2001]. P2P networking 

offers a model of developing network services designed to enable better use of available 

resources while addressing some of the limitations faced by existing approaches. 

The predominant network service architecture employed today is the 

“client/server” model [Clay, 1998]. In that, a designated computer, the server, provides 

a specific service to any number of other computers that connect to it, called the clients. 

The server is assumed to be always on, always connected to the Internet, and assigned a 

permanent IP (Internet Protocol) address. Furthermore, in order to ensure it provides a 

high-quality service, exhibiting high availability and fault-tolerance, the server usually 

requires high-end hardware and runs specialised software. On the other hand, the users 

of a service, the clients, are generally assumed to have limited capabilities in 

comparison. Depending on the nature of the transaction, the clients may send data 

necessary for the completion of the service to the server or carry out some tasks locally 

but, generally, it is assumed that all major service intelligence lies with the server 

[Edelstein, 1994]. As a consequence, the client/server model is thought of as a 

centralised service architecture (the server being the central service component) where 

the clients and the server have highly asymmetric roles. A result of the state-of-the-art 

during the early years of the Internet and of computing in general, when computational 

power was scarce and users had to rely on centralised infrastructures for their 

computing needs, the client/server model became the de facto way of building Internet 

applications. However, at the time the main users of the Internet were universities and 

research centres with the appropriate knowledge base, resources and actual utility for it, 
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so it was not uncommon for client terminals to also be always connected and have 

permanent IP addresses and DNS (Domain Name Service) entries assigned like the 

servers. 

The advent of the World Wide Web (WWW) [Berners-Lee, 2004] however, 

made the separation between client and server computers more evident. The graphical 

web provided an application of such value and ease of use, that people outside the 

“early adopter” communities started connecting to the Internet to use it. These people 

did not own the resources and connectivity of the large institutions and in order to run a 

web browser connected their PCs (Personal Computers) to the Internet through a 

modem by means of an ISP (Internet Service Provider). This created a second class of 

connectivity because, in contrast to the permanent presence model described previously, 

these computers would enter and exit the network frequently and unpredictably. People 

would connect to the Internet for long enough to access some web pages and then 

disconnect to free their telephone lines. Furthermore, because the 32-bit IPv4 address 

space was not sufficiently large to accommodate this new crowd with individual static 

IP addresses, ISP‟s started allocating IP addresses dynamically. This solution meant that 

different IP addresses were allocated to a computer every time a new session started, 

and that prevented them from obtaining permanent DNS entries. 

The lack of permanent connectivity and DNS registration prohibits the majority 

of network-enabled computers from providing services on their own. Furthermore, the 

fundamental assumption of asymmetric capabilities between servers and clients of the 

client/server model impedes clients from playing a larger role in the provision of a 

service. These days, when the processing power found at the desktop is very substantial 

and broadband Internet connectivity is the norm rather than the exception [Ferguson, 

2007], the existing service model is, for many, highly inefficient. A modern PC, if used 

for web browsing purposes for example, remains idle most of the time with its 

processing power “wasted” between keystrokes and the communication lines lying idle 

while the content is viewed on screen. At the same time, computing has experienced a 

paradigm shift. People do not use computers just for discrete, self-contained 

computational tasks anymore. Today‟s world is all about collaboration, information 

exchange, flexibility. This is where the P2P philosophy comes into place: P2P 

computing comprises a class of distributed network applications that take advantage of 

the computer resources available at the edge: storage, processor cycles, and information. 

Resources that the traditional client/server model cannot easily tap into. 
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2.2 What is Peer-to-Peer networking? 

The term peer-to-peer characterises a family of network applications where all 

the entities interacting together are considered to be equal partners2. That is, each entity 

has the same set of service capabilities and responsibilities as any other. There is no 

distinction between client and server machines; every participating computer can play 

the role of a client and a server3 at the same time. A P2P network service is, thus, 

provided cooperatively by the peer population. This gives P2P applications some 

interesting properties: Firstly, P2P systems are highly decentralised by nature. As no 

node has necessarily more authority or exclusively facilitates parts of a service, there is 

no need for central points of control. Therefore, although it is possible to have some 

form of centralisation or hierarchy to meet certain application design requirements, P2P 

services are generally decentralised. Furthermore, peers are highly autonomous. They 

do not explicitly rely on supporting infrastructure in order to function and may enter or 

leave the network at will. Thus, although the longer a peer stays online the longer it can 

assist in the provision of a service, the overall service is designed so that it does not take 

permanent availability for granted. As a consequence, peers have the ability to self-

organise into transient networks which adapt to failures while maintaining an acceptable 

level of service. Finally, by forcing a symmetric relationship between computers, P2P 

systems manage to pool the resources committed by every participant and not only these 

of designated central servers. Every computer that joins a P2P network makes some of 

its resources available to the rest. Figure 1 illustrates this fundamental architectural 

difference between the client/server and P2P models. 

In essence, the core elements of P2P applications can be described by four 

words: Presence, Identity and Edge resources (PIE) [Shirky, 2001]. These elements not 

only characterise the P2P model, but also show how it contrasts with the client/server 

model. Presence signifies the ability to tell when a resource is online. Determining the 

                                                 

 

 
2
 A number of different definitions of P2P computing exist in literature (e.g. [Shirky, 2000; Oram, 2001]), 

with some focusing on the architectural aspects of P2P while others concentrating on a more resource-

centric view. This section attempts a consolidation of both these views, providing a broader – and thus 

longer – definition. 

3
 As it will be shortly discussed (but not stated outright for clarity), a peer can play the role of a client, a 

server and a router at the same time. 
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presence of a resource is necessary for P2P networks since the permanent availability of 

resources is not guaranteed. Once the online presence of a user or a resource is 

established however, any number of highly personalised services can be offered. 

Presence is vital for the creation of user-centric systems, with instant messaging an 

immediate example. 

 

Figure 1: The Client/Server and P2P models. 

The second element of a P2P application is Identity. P2P networks must be able 

to uniquely identify the resources that are available each time. The DNS system in use 

today was designed and is only suitable for machines that are permanently connected to 

the Internet [Shirky, 2000]. Users who do not own static IP addresses cannot be 

identified by DNS servers, and even if workaround solutions such as Dynamic DNS 

[Vixie, 1997] are employed, under IPv4 [Postel, 1981b] there are not enough IP 

addresses to satisfy everyone. P2P systems address this issue by employing their own, 

DNS-independent naming schemes. P2P applications like ICQ [ICQ], Groove [Groove] 

and Skype [Skype] bypass the DNS system and use their own directories of protocol-

specific addresses that map to IP addresses in real time. By doing so, they devolve 

connection management to the individual nodes and abandon the machine-centric view 

dictated by the DNS. Therefore, no matter which IP address a user has been assigned 

during a session, he can still be identified appropriately by his peers and make full use 

of the advantages of a permanent identification scheme. 

The final core element of a P2P application is that of the Edge resources. P2P 

networks enable the use of the resources available at the “edges” of the Internet: 

processing power, storage, content, human presence. This is in contrast with today‟s 
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client/server services where the usable resources are these concentrated in the servers: 

the “central” areas of the Internet. P2P services organise a variable-sized pool of 

distributed resources owned by the participating peers and allows them to use it 

collectively. 

The triptych of decentralisation, autonomy and symmetric roles that is so 

characteristic of P2P services, and the inevitable departure from the original end-to-end 

model of the Internet due to the use of Network Address Translation (NAT), firewalls 

and various other “middleboxes” (e.g. proxies, etc) leads P2P services to create service-

specific logical topologies that operate on the application layer. These logical topologies 

are called overlays. The use of overlays gives P2P service developers significant 

flexibility in providing new types of services that overcome the loss of the end-to-end 

symmetric relation and are not heavily reliant on the structure of the physical network 

infrastructure. A result of this flexibility is that overlay topologies can differ 

significantly from the underlying infrastructure, as illustrated in Figure 2, below. For 

that reason, peers are expected to play the role of routers, enabling the routing of 

messages at the application layer. 

 

Figure 2: P2P application layer overlay. 

It is common practice to describe as “peer-to-peer” any relationship in which 

multiple, autonomous, hosts interact as equals. An autonomous host is useful in its own 

right, even in the absence of others. The peering relationship creates the possibility of 
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additional functions made available to the peers collectively as a consequence of their 

collaborations with others. Known as the “network effect”, the value and extent of these 

added powers increases dramatically as the number and variety of the peers grows4 

[Economides, 1996]. The more peers join the network; the more resources are 

committed to be collectively utilised. 

The importance of the network effect becomes even more apparent if it is 

realised that peers do not have to be similar. P2P networking can take advantage of 

physical disparity to offer novel services. Indeed, the availability of a broad spectrum of 

wired and wireless communication technologies and the abundance of bandwidth and 

processing power available not only to typical computer platforms but various other 

devices makes peering between disparate entities both possible and desirable. While 

peering between computers may remain central, other devices that contain processors, 

memory and have network connectivity can engage into P2P communication. The 

possibilities for novel and ubiquitous services arising from this realisation are, indeed, 

numerous. 

2.3 Why P2P? The user‟s perspective 

The almost universal adoption of the client/server model as the de facto 

architecture for Internet services can be largely attributed to its inherent suitability for 

centrally-managed services and simple and lightweight clients. These characteristics 

helped develop applications of great importance, such as the World Wide Web and FTP 

(File Transfer Protocol), in an era when client-side complexity was a large limitation. 

Nevertheless, as the Internet becomes increasingly important in communication, 

business, entertainment and social life, the client/server model is beginning to show its 

limitations. 

The most evident is scalability. Scalability is the capability of a system to keep 

functioning efficiently as it grows in orders of magnitude [Hill, 1990]. In other words, 

scalability is a sign of how a network will react as more and more people use it and for 
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 A number of empirical laws (Metcalfe‟s law [Shapiro, 1999], Reed‟s law [Reed, 1999], or more recently 

a refutation of the former by Briscoe et al [Briscoe, 2006; Simeonov, 2006]) describe the rate of 

growth. 
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increasing numbers of tasks. As server resources are limited, it is clear that the 

client/server model cannot scale infinitely. A server can only serve a limited number of 

clients as each service request consumes a portion of the server‟s resources. 

Consequently, on larger service request loads than the server can handle, the latter can 

become unresponsive causing service unavailability. Indeed, the lack of scalability of 

the client/server model can easily be witnessed when dealing with “flash crowds”. The 

term “flash crowd” is used to describe large numbers of clients trying to access a 

popular service within short timescales. A large enough flash crowd can overwhelm a 

server with simultaneous requests and render it unavailable to any further clients, 

severely disrupting the service5. The issues stemming from the limited scalability of the 

client/server model become further pronounced due to the architecture‟s poor load-

balancing (explicit techniques such as server clusters and load balancers need to be 

employed to alleviate server load) and redundancy (the server poses a single point of 

failure or attack). As Internet applications become more resource-hungry and the 

Internet grows in size due to ubiquitous networking, the move to IP-based telephony 

and the expected integration of Internet television platforms and mobile networks, the 

scalability of the client/server model becomes a major limitation. Current approaches 

that attempt to tackle the problem by constantly adding more resources to address the 

demand, present only short-term solutions. Resource over-provision is an inherently 

inefficient and uneconomical way to deal with the scalability problem. 

In contrast, the client side remains largely under-utilised. The client/server 

model does not provide a clear way for client resources to be tapped upon as part of 

offering novel network services. This is particularly inefficient today, when even low-

range desktop computers have clock frequencies measured in multiples of the Gigahertz 

as well as Gigabytes of memory. As Moore‟s law [Moore, 1965], is still surprisingly 

accurate, one thing becomes evident: The computational resources found in a typical 

home or desktop environment are too rich to be ignored. Unfortunately, the inability of 

the DNS system to support this class of networked computers, the extensive use of 

                                                 

 

 
5
 Sometimes called the “Slashdot effect” in the context of WWW, from the effect the popular technology 

news site has on directing “en masse” its large audience on other newsworthy web sites in short 

timescales. 
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Network Address Translation (NAT) to mitigate the problems arising from the scarcity 

of the IPv4 address space, the existence of firewalls, proxies and various other 

“middleboxes”, have caused a departure from the end-to-end principle that was a 

fundamental value of the Internet and preclude most of these computers from providing 

services and being used to their full extent. 

This has a direct effect on the availability of information. Being a centralised 

architecture, the client/server model has essentially put obstacles in the free flow of 

information by concentrating it in central points, owned by distinct entities. This 

centralisation makes the management of a service easier, but at the same time makes 

possible the control of information according to the server owner‟s criteria (commercial, 

cultural, political etc). Naturally, this creates an asymmetric relationship where few can 

publish information and the rest can only access it. For most, the web experience so far 

has been a passive, television-like consumption of the information available there rather 

than the full-blown, bidirectional interaction one would expect made possible by the 

“Inter-network”. The “explosion” of blogging6 in the recent years, which essentially 

removed just a few technical barriers from the process of creating a personal web page, 

is an indication that people are as much interested in publishing their own ideas and 

content if given the opportunity, as they are in accessing original material from others. 

The information available at the edges has value. In that light, the client/server model 

has been restrictive. If (contrary to [Odlyzko, 2001a]) “content is king”, services that 

wish to leverage public‟s creativity or knowledge need to enable a more symmetric 

relationship with it, something which under the client/server model is inherently 

challenging to achieve. 

P2P networking has been proposed as a way to overcome the aforementioned 

limitations of the client/server model. It is decentralised by nature, thus better dealing 

with scalability issues. As the network grows, there are no single points of stress: The 

burden of providing the service is distributed among the peers. Secondly, the P2P 

architecture is very flexible, in the sense that P2P services are designed to be as agnostic 

as possible of the underlying infrastructure. As such, current P2P services have shown 

                                                 

 

 
6
 The neologism “blogging” refers to the creation of web-based online diaries and journals, called 

weblogs or, simply, blogs. Apart from text, blogs may feature rich multimedia content. 
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that they can be deployed “into the wild” with very little or no infrastructural support. 

Moreover, as will be discussed more extensively in the next chapter, P2P services boast 

high resilience. Peers are expected to be volatile and the failure of any peer does not 

significantly impact the overall service. This volatility also accommodates the 

behaviour of intelligent mobile devices such as smartphones and PDAs (Personal Data 

Assistants) whose timescales of online availability are much different of that of typical 

computers. 

P2P architectures leverage their ability to function, scale, and self-organise in 

the presence of a highly transient population of nodes, network, and computer failures, 

without the need of a central server and the overhead of its administration, to offer new, 

more effective approaches on addressing existing needs7. Administration, maintenance, 

responsibility for the operation, and even the notion of “ownership” of P2P systems are 

also distributed among the users, instead of being handled by a single company, 

institution or person [Androutsellis-Theotokis, 2004]. Furthermore, P2P architectures 

have the potential to accelerate communication processes and reduce collaboration costs 

through the ad-hoc administration of working groups [Schoder, 2003]. The result is 

more flexible, user-centric and feature-rich network applications. So, while the P2P 

approach is not a panacea to every challenge faced in providing better Internet services - 

and indeed, regardless of the architecture‟s said limitations a lot of network applications 

are naturally better implemented in a client/server fashion - for many application 

domains a P2P approach is advantageous. Indeed, the author argues that the early 

success of P2P services like Instant Messaging, played an important role in the 

realisation of the potential of social networks and the recent attempts to capitalise on 

that potential with a new breed of web-based applications and communities (for 

example Wikipedia [Wikipedia], YouTube [YouTube] or flickr [flickr]), collectively 

put under the “web 2.0” banner [O‟Reilly, 2005]. 

To summarise, from the user‟s point of view P2P is particularly appealing 

because it offers: 
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 For example, both the file-sharing and instant messaging application domains existed long before the 

emergence of relevant P2P services, with FTP and the UNIX “talk” being the most famous 

client/server-based applications respectively. 
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 Easy access to a wide range of, otherwise unavailable, resources. 

 Better scalability and exploitation of the “network effect”. 

 Direct involvement in the service provision - more immediate and natural 

exchange of information. 

2.4 P2P application domains 

To this day, P2P architectures have been employed or proposed for a variety of 

different applications. Some present novel services made possible by the employment of 

the P2P concepts while others constitute “remakes” of existing network services, 

originally built using the client/server architecture, which leverage the P2P model‟s 

strengths. 

2.4.1 Content distribution 

P2P content distribution (under which file-sharing is included) enables the 

pooling and retrieval of content available at the edges of the Internet. This way, not only 

the pool of available information is increased many fold, but information that would not 

be easily accessible under the client/server model (e.g. the “hidden web” [Bergman, 

2001; Raghavan, 2001], information that does not have commercial interest for a 

company to promote, etc) becomes readily available. The peer-to-peer relationship is 

more intuitive and enables users to make available their own content to the world 

without many of the obstacles presented by client/server approaches. Furthermore, P2P 

file-sharing enables content distribution on a larger scale making every user a potential 

distributor. Instead of having a single server bear the burden of distributing a file to each 

client separately, which becomes very costly if the file proves popular, peers undertake 

this effort collectively, at virtually no cost to the publisher and with much better load-

balancing and redundancy. Apart from the obvious effects this has for the dissemination 

of information, new business models can be created pushing further the proliferation of 

the Internet as a content distribution medium. The embrace of P2P in the form of using 

BitTorrent [BitTorrent] for the legal distribution of movies and large files (such as the 

Linux operating system image files), or the recent BBC iPlayer [BBC iPlayer] offering 

by the BBC show that companies and organisations are keen to offer new ways of 

delivering content while minimising their requirements and investment for service 

infrastructure. 
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In general, P2P content distribution systems cover a broad spectrum, from light-

weight file-sharing applications, to more sophisticated systems that create a distributed 

storage medium for indexing, publishing, organising, searching, updating, and retrieving 

data with various degrees of fault-tolerance or security. Some concentrate on 

performance (for instance BitTorrent and Kazaa [Kazaa]) while others enforce 

anonymity or resistance to censorship (Freenet [Clarke, 2000]). Other examples include 

Gnutella [Gnutella], Oceanstore [Kubiatowicz, 2000], PAST [Druschel, 2001], Chord 

[Stoica, 2001], and eDonkey [eDonkey]. 

2.4.2 Communication and collaboration 

P2P Instant Messaging (IM) or “collaborative” systems provide simple, fast and 

effective one-to-one, one-to-many and many-to-many communication and collaboration 

between peer devices. Voice-over-IP (VoIP) and real-time video capabilities alongside 

text have made P2P IM services particularly attractive even for segments of the 

population with no significant technical background, making a lot of the traditional 

telcos reassess their long term strategies and business plans. Users are in the millions8 

[Mark, 2004], while the convergence of IM protocols (AIM [AIM], MSN [MSN] and 

Yahoo messengers [yahoo]) [Naraine, 2004] hints to the potential the vast social 

networks formed through such services have for the creation of value-added services. 

Other examples of IM and collaborative P2P applications include Skype [Skype], ICQ 

[ICQ], Groove [Groove] and Jabber [Jabber]. 

2.4.3 Internet service support 

A variety of Internet supporting services based on P2P infrastructures has been 

proposed. These include new types of services as well as “remakes” of existing Internet 

services that were originally based on the client/server model. Examples include 

Internet indirection infrastructures [Stoica, 2002], DNS systems [Ramasubramanian, 

2004; Park, 2004], P2P multicast systems [Castro, 2002a; Vanrenesse, 2003; Bhargava, 

2004], P2P-based publish/subscribe systems [Rowstron, 2001b; Pietzuch, 2003; Chirita, 
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 Skype [Skype], the popular P2P VoIP service reached the 100 million user mark on April 2006 

[Reardon, 2006]. 
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2004] and security applications, offering protection against denial of service or virus 

attacks [Keromytis, 2002; Janakiraman, 2003; Vlachos, 2004]. 

2.4.4 Database systems 

Database systems benefit from good scalability and fault-tolerance properties 

and, naturally, creating distributed database systems based on P2P infrastructures has 

attracted a lot of attention. The transient nature of peers introduces challenges to 

maintaining data consistency, making this area particularly active.  PIER [Huebsch, 

2003] is a distributed and scalable query engine built on top of a P2P overlay network 

topology that allows relational queries to run across large numbers of computers. The 

Piazza system [Halevy, 2003] provides an infrastructure for building Semantic Web 

[Berners-Lee, 2001] applications based on P2P. Finally, Edutella [Nejdl, 2003] builds 

on the W3C RDF (Resource Description Framework) metadata standard, to provide a 

metadata infrastructure and querying capability for P2P applications. 

2.4.5 Distributed computation 

This category includes systems that enable the processing of computationally-

intensive tasks by pooling the processing resources (CPU cycles and memory) made 

available by the participating peers. Tasks are broken down into smaller work units, 

manageable by typical computers, and distributed to peers where they are carried out. 

Results are then reported back and combined with these of other peers. This category of 

P2P services bears very close similarities with Grid computing [Foster, 2002]. It can be 

argued that Grid systems focus on infrastructure whereas P2P distributed computation 

systems concentrate on fault-tolerance. [Foster, 2003] discusses the matter in detail. 

Examples of such systems include projects such as Seti@home [Sullivan, 1997], 

genome@home [Larson, 2003], evolution@home [evolution@home] and others.  

2.5 Lessons from the deployment of contemporary P2P services 

The enthusiasm and, perhaps, hype created by the profound popularity of early 

P2P applications such as Napster and Kazaa [Kazaa] and the ability to share files “for 

free” has relatively subsided and a more elaborate observation on the high-level 

behaviour of P2P applications and their overall impact on the network can be made. 

Spearheaded by file-sharing applications, P2P services are steadily gaining in 

popularity. Despite the fact that a few years ago such applications did not exist, more 
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than 50% of all the traffic measured on the Internet backbones nowadays is generated 

by P2P-based applications [netflow; Sprint], while others claim that for residential 

customers P2P traffic amounts for up to 80% of the overall [Goldman, 2004; Ipoque, 

2007]. These figures are not only a measure of their popularity, which is reported to be 

steadily increasing [Cho, 2006], but also of their operational behaviour. 

The current Internet evolved from the expectation of carrying traffic generated 

almost predominantly by client/server applications and is, thus, engineered with these 

traffic characteristics in mind. Traffic was assumed to be highly asymmetric, match 

time-of-day patterns and be characterised by the popular “mice” and “elephants” 

analogy9.  The influence of the client/server model‟s asymmetry in roles and volume of 

uplink/downlink information exchange cannot be seen anywhere more clearly than in 

current access technologies like ADSL (Asymmetric Digital Subscriber Line) which 

allocate disproportionately more capacity for the downlink compared to the uplink. By 

making the exchange of large volumes of data easy and popular, P2P file-sharing 

applications invalidated many of these assumptions. The number of “elephants” 

increased dramatically in a network, not engineered with these traffic characteristics in 

mind. High-volume traffic flows can now appear on short timescales at almost any 

location at the network‟s edge, where bandwidth is most scarce. The long-range 

dependence (LRD) and degree of traffic self-similarity properties of aggregate traffic 

taken for granted for years [Leland, 1994; Floyd, 2001] are also reported to decrease 

with the predominance of P2P traffic [Azzuna, 2004]. This smoothing-out of traffic has 

implications for buffer dimensioning, bandwidth provisioning and congestion control. 

In addition, unlike client/server applications, P2P applications not only seek to utilise 

uplink capacity to its fullest, but also may operate unattended for days10. These 
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 The “mice” and “elephants” analogy describes the macroscopic behaviour of TCP (Transmission 

Control Protocol) [Postel, 1981a] traffic, as was observed for many years. In that, the large majority 

(around 80%) of Internet traffic was carried by a few long-lasting connections, called “elephants”, 

while the rest was caused by a large number of very short-lived connections, dubbed “mice” [Guo, 

2001]. 

10
 Current P2P file-sharing applications, for instance, do not require user presence after the request for 

content has been formulated. A user can create a list of downloads and leave the application running in 

the background. 
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dynamics clash with practices such as link oversubscription11 or other traffic 

engineering techniques network providers apply based on statistical assumptions drawn 

from a client/server-oriented perspective. P2P applications, with their symmetry, long 

connection lifetimes and traffic patterns, do not fit extremely well in the current Internet 

and, due to their aggressive use of multiple parallel TCP connections, can disrupt the 

operation of other network applications by over-consuming scarce network resources. 

As mentioned earlier, nodes in a P2P service have the same roles, must be highly 

autonomous and, in most circumstances, completely decentralised. In order for a P2P 

application to satisfy these requirements, and provide mechanisms to address the 

technical implications arising from the presence, identity and edge resources triptych 

outlined earlier, it usually contains its own protocol set for communication. The 

majority of P2P applications create overlays on top of the application layer where peers 

form their application-specific virtual topologies. Inside an overlay peers, amongst other 

tasks, need to discover their neighbouring nodes, locate resources, find out topology 

information, advertise their capabilities and make routing decisions, and they need to do 

these in a decentralised, infrastructure-independent manner. These tasks are achieved by 

message exchange, either in broadcast or unicast mode depending on the purpose of the 

message. Discovery and advertisement messages are in most cases broadcasted12, in 

order to reach as many recipients as possible, while point-to-point communication is 

used for direct interaction. Furthermore, because of the autonomous nature of peers, a 

P2P overlay is a highly dynamic environment. Connections may be formed or destroyed 

at will. Peers may join or leave without notice. This imposes additional problems as 

information needs to be refreshed often enough to ensure peers have a realistic picture 

of the conditions inside the overlay. 

As a result, considerable bandwidth is consumed by the current generation of 

P2P applications for signalling purposes [Azzuna, 2004]. At an extreme, according to 
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 Link oversubscription is the practice of allocating the available link bandwidth to more than one 

customer based on the fact that statistically, no subscriber will use all of the available bandwidth at any 

given time. This allows the provider to increase its revenue per link. A typical oversubscription ratio for 

residential ADSL connections is 50:1. 

12
 This is a common case with unstructured decentralised P2P topologies (examined in the next chapter), 

as well as with many structured. 
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measurements done in [Ripeanu, 2002], signalling traffic in the early Gnutella network 

made at points up to 55% of the overall traffic during the measurement period. In such 

cases, the excellent - in theory - scalability properties of P2P services no longer hold. 

Good scalability is especially critical in the P2P domain because, due to the network 

effect, the service increases in value with the addition of more peers and there is a 

strong incentive for new peers to join. Newer P2P services acknowledge these issues by 

employing more complex protocols and leveraging the characteristics of overlay 

topologies, as will be discussed in detail in the next chapter. Nevertheless, it becomes 

clear that autonomy and decentralisation come at a cost. 

Another realisation that came with the large-scale deployment of P2P services is 

that even under the P2P paradigm, “not all peers are the same” [Saroiu, 2002]. Peer 

devices have very diverse processing power, memory, storage or connectivity 

capabilities to mention just a few. Furthermore, there are differences in peer uptime and 

participation. In many systems, peers act selfishly avoiding contributing resources for 

the “greater good” of the service (the so called “free-riding”) [Chu, 2002; Figueiredo, 

2004]. For certain types of services, opting for a “lowest common denominator” 

approach to peer equality prohibits the exploitation of all available resources to their full 

potential and also may cause large service inefficiencies. In the P2P file-sharing 

domain, for instance, treating dial-up connected peers the same as their broadband-

connected counterparts leads to link saturation and crippling of service for the former 

and overlay instability for everyone. 

Finally, by creating their application-specific overlays, P2P services form 

topologies which can deviate significantly from the underlying physical Internet 

infrastructure. This results in large discrepancies between the peers‟ physical location 

and their place in the P2P overlay. It is not uncommon for peers that are physically 

located in different countries to be first-hop neighbours inside a P2P overlay [Klemm, 

2004; Cho, 2006]. As a consequence, P2P systems may suffer from non-optimal links, 

large packet round-trip times and trigger large and unnecessary costs for the network 

providers. This last point is particularly important for the network providers and will be 

discussed further in the following section. 

To conclude, the current generation of P2P applications exhibits the following 

high-level behaviour: 

 P2P overlays are extremely dynamic environments due to the continuous arrival 

and departure of peers at fast and unpredictable rates. 
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 The unpredictability of peer behaviour, in conjunction with the lack of any 

supporting infrastructure (which is one of the main characteristics of any P2P 

system), necessitates the generation of significant volumes of signalling traffic. 

 P2P systems can interfere with other network services because of their different 

traffic characteristics, capabilities and operation timescales, and the overall 

design of the current Internet. 

 P2P systems that fail to identify the different capabilities of participating peers 

and do not take into account the topological characteristics of the underlying 

physical Internet infrastructure, can become significantly inefficient, both for 

their users and for the network as a whole. 

2.6 P2P from the network provider‟s point of view 

It can be argued that applications such as Skype and BitTorrent have achieved 

widespread success and entered the public‟s consciousness as indispensable 

conveniences, making P2P the main driver in the adoption of broadband connectivity 

and the persistent demand for faster products from ISPs [Mennecke, 2005]. 

Despite that, most ISPs see P2P networking as a threat to their business rather 

than an ally. By enabling access and sharing of resources found at the edges of the 

network, P2P services disrupt the business models and planning ISPs conducted for 

years based on the asymmetric nature of client/server-based application traffic. Based 

on the assumption that such traffic will dominate their networks, ISPs built their 

infrastructure around technologies that accommodate asymmetry (such as ADSL) and 

developed business models that take advantage of it, providing attractive flat rate 

pricing schemes based on link oversubscription and time-of-day utilisation statistical 

models. 

With peers collectively providing a P2P service at the edges of the network 

however, the ISPs see their infrastructure at constant stress. As discussed earlier, a file-

sharing P2P application for instance will not only seek to utilise an ISP customer‟s 

connection to its full capacity in both directions, but may operate for days unattended. It 

has been reported that P2P services roughly double the total traffic and peak load on the 

ISP access links [Karagiannis, 2005].  Such utilisation has adverse effects on the ISP 

network causing undesirable latency or responsiveness for time-sensitive applications 

(Voice-over-IP, streaming, online gaming, etc), low responsiveness for web browsing 

during peak hours and increased packet loss. These in turn result in increased customer 
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dissatisfaction due to low quality of perceived service, complaints, customer churn and 

inability to support additional subscriber growth rates without further degrading the 

offered quality of service. 

More importantly however, P2P applications incur ISPs a more immediate type 

of cost. For an ISP not all traffic costs the same: While traffic that is confined within an 

ISP‟s network carries relatively little cost, traffic that needs to traverse its boundaries 

and be passed to other ISPs and AS‟s (Autonomous Systems) is much more expensive 

[Sandvine, 2002] and subject to often inflexible service level agreements (SLAs). For 

that reason, ISPs try to minimise this second class of “transit” traffic as much as 

possible, traditionally by peering agreements and web caching (e.g. [Norton, 2003]). 

Critically, each network undergoes extensive traffic engineering to ensure network 

resources are optimally utilised not only in terms of technical (e.g. resilience, load, etc.) 

but also economic (e.g. existing peering or transit agreements, business relationships 

etc.) objectives. P2P services create and operate within application-level virtual overlays 

whose structure is determined by the different P2P protocols they use. These overlay 

topologies rarely take into account and reflect the topology of the underlying network 

infrastructure, meaning that a direct connection between two neighbouring peers inside 

a P2P network may in actuality traverse many different routers, AS‟s and even 

continents. As a result, P2P applications create as part of their operation large numbers 

of inter-domain connections and costly transit traffic. These factors lead ISPs to view 

P2P services from a negative perspective and compel them to act accordingly. 

Responses in the direction of blocking or applying traffic shaping techniques on 

P2P application generated traffic, however, are short-term measures that fail to 

successfully address the broader issue. Firstly, most modern P2P applications use 

dynamic port addressing instead of static ports, making the efficient blocking or rate-

limiting of specific P2P application traffic non-trivial [Karagiannis, 2004; Sandvine, 

2003]. The encryption and obfuscation of P2P traffic as witnessed by recent BitTorrent 

clients make such a task even more complex. Moreover, such measures from ISPs may 

cause an “arms race” where P2P application developers will continuously implement 

features that make their applications more elusive to such techniques in order to avoid 

low performance, at the expense of the ISPs who will have to respond accordingly with 

increasingly intrusive measures. Such an arms race may prove a costly endeavour for 

the ISPs in its own right, as application-level (deep) packet inspection or traffic pattern 

identification involves considerable overheads that need to be compensated with 

additional expenditure on the infrastructure side. Even so, traffic shaping can only 
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provide temporary relief since it does not do anything to help improve the overall 

efficiency of the P2P overlay network‟s use of the network resources in place. At the 

same time, it leaves the problem of identifying unnecessary inter-ISP traffic unresolved. 

Finally, blocking or capping P2P traffic will probably be interpreted negatively by the 

P2P service-using customer base, if certain P2P applications have degraded 

performance or cannot function, with clear implications for customer satisfaction and 

churn. 

Acknowledging the appeal of P2P applications and the fact that they have 

become a driver for subscribers to migrate towards faster broadband services, a lot of 

providers adopt a different approach and choose to promote themselves as “P2P-

friendly”. In that direction, they focus on regularly upgrading their infrastructure by 

adding higher capacity links and equipment to maintain sufficient headroom for 

sensitive network applications to gracefully coexist with their resource-hungry P2P 

counterparts. This is not, on its own, a sustainable solution either. Apart from being very 

costly and often technically complex13, it alleviates the problem only temporarily. As 

more customers join, often with the motivation to use their high-speed connections, 

advertised as “unlimited”, to their fullest, there will be a point where bulk P2P transfers 

will again stress the network dictating a new round of upgrades. And again, in a market 

used in a competitive flat-rate pricing scheme, it may be very difficult to pass the costs 

of sustaining the infrastructure to the customers. Finally, as many ISPs do not own their 

own infrastructure but rather resell wholesale products this approach is not always 

straightforward. It thus becomes clear that ISPs cannot apply “traditional” responses to 

the challenges brought by P2P services on their networks and businesses. A different 

approach is needed to tackle the unique nature of P2P services. 

The pressing challenge is therefore to provide attractive P2P services, without 

however compromising other network services and sacrificing user experience in them. 

Management of P2P services can be a powerful tool to reach this goal. The central idea 

of this research is that ISPs should be able to manage certain characteristics of P2P 
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 Complexity arises not only because solving the optimisation problem - identifying how the finite 

resources can be allocated in the best possible way given a unique set of constraints (e.g. topology, 

demand, business ecosystem, etc) is hard, but also because the possibility of physical installation 

complications, incompatibility with existing infrastructure or downtime needs to be eliminated. 
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services that affect their infrastructure in a way that allows them to lessen that impact 

while allowing such services to operate in an unobtrusive and effective manner. Such an 

approach will help ISPs view P2P computing as an asset to their business while 

maintaining an environment where such services can flourish. Understanding P2P 

services and identifying the aspects of their behaviour where management can be 

applied beneficially is crucial. Too much intervention or control will render such 

services underperforming or near-inoperable and will reward these that take measures to 

evade such attempts. Correctly applied, on the other hand, P2P management can help 

create value for both the customer and the provider. 

2.7 Conclusions 

P2P applications have emerged as a powerful alternative to “traditional” 

client/server architectures. From a user perspective, they present a very attractive class 

of applications, due to the appealing “free” and unmediated use of networked resources 

found at the edges of the Internet. Nevertheless, it is clear that the deployment of P2P 

systems in a larger scale and of a broader scope - especially in the corporate 

environment where current P2P uptake is limited - depends strongly on providing more 

efficient and manageable P2P applications that address the issues discussed in the 

previous sections. This is especially critical from the network providers‟ point of view. 

While P2P services, and especially file-sharing applications, have proved to be a driver 

for subscribers to continuously migrate towards faster broadband services, network 

providers view P2P as a technology that creates value for end users and content 

providers at their expense. ISPs, thus, need to manage aspects of P2P behaviour in order 

to provide a high quality network service to all their subscribers (P2P users or not) and 

incorporate P2P into a viable business model. After all, the strong demand for P2P 

services in today‟s competitive market indicates that sooner or later ISPs will have to 

address customers‟ needs or lose them14. The challenge is to do it in a way that is 

sustainable both from a customer quality of service and a business perspective. 
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 In the United Kingdom, for example, operate approximately 200 ISPs, while 99% of the population has 

a choice of more than 10 [Conti, 2007]. 
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This chapter provided an introduction to P2P networking. The differences 

between P2P and client/server architectures were presented, along with a number of 

application areas and a discussion of general characteristics current P2P services have 

demonstrated. In the latter, common traits observed from the large-scale deployment of 

P2P services in general were presented, without delving into specific protocols and 

functions. The following chapter examines representative P2P protocols in detail, 

discusses how overlay topologies affect performance at the peer and service level and 

looks into individual peer behaviour and its effects. 
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3. PROTOCOLS, TOPOLOGIES AND 

PEER BEHAVIOUR 

3.1 Introduction 

As stated in the previous chapter, P2P services create virtual overlays at the 

application layer, with their own application-driven logical topology and routing 

mechanisms. Inside these overlays, peers may form networks whose topology is much 

different from that of the underlying physical infrastructure. These peer topologies, as 

will be shortly discussed, can be highly structured (where peers are interconnected in a 

specific way), completely unstructured, or somewhere in between. The existence of 

different topology classes is due to the fact that each class exhibits different strengths 

and weaknesses which limit its suitability to particular problem areas only. Indeed, in 

many cases a trade-off is evident; any advantages brought by the topology in carrying 

out certain functions come at the expense of inefficiency in other areas. The choice of 

the “right” topology is, therefore, a result of careful assessment of the P2P service‟s 

design goals and requirements and in turn will have a large influence on the way the 

service will be implemented and operate. 

Building on the introduction to P2P network characteristics given in the previous 

chapter, this chapter delves deeper into the behaviour of different classes of P2P 

networks and the effect they have on the Internet ecosystem. Large part of this analysis 

focuses on the examination of the role the fundamental types of P2P overlay topologies 

play on that behaviour. For each class, the way representative protocols operate is 

reviewed, discussing their strengths and shortcomings. Then, the focus is shifted to the 

behaviour of individual peers and how this affects the system as a whole. This 

examination gives the necessary insight on the kinds of challenges involved in creating 

and operating P2P services, and provides the link to the following chapters where the 

proposed framework for managing P2P services is presented. 
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3.2 Topological categorisation of P2P networks 

Networks like the Internet have gained such complexity that many of their 

topological properties cannot be determined with precision [Willinger, 1998]. Graph 

theory [Bollobas, 2002] is central to the study of such networks and the following terms 

and notation, ubiquitous in the relevant literature, are used throughout this chapter: 

 Definition 1: A network can be represented as a directed or undirected graph G 

= (V,E), where V is the set of vertices (nodes) and E is the set of edges 

(i,j) describing the connections between nodes i,j є V. 

 Definition 2: The term node degree signifies the number of edges (connections) 

a node possesses. 

 Definition 3: The characteristic path length of a network is the number of edges 

in the shortest path (in hops) between two vertices, averaged over all pairs of 

vertices. 

 Definition 4: The network diameter is the longest hop distance in the network. 

 Definition 5: The clustering coefficient denotes the probability that two 

neighbours of a node are themselves neighbours.  

Because each network has different goals to reach and faces different 

constraints, formalising a set of properties is necessary to the evaluation of network 

topologies. According to Minar [Minar, 2001], network topologies can be evaluated 

using seven fundamental properties: 

 Manageability: Complex systems such as large networks require management, 

such as updating, repairing and logging. Manageability is a measure of how easy 

it is to manage a network. 

 Information coherence: Indicates how authoritative is information found inside 

the system. Criteria of information coherence include non-repudiation, audit-

ability and consistency. 

 Extensibility: Specifies how easy it is to add new resources (new capabilities) to 

the network. 

 Fault tolerance: Specifies how tolerant the network is to failures. 

 Security: Identifies how well protected is the network from adversaries. 
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 Scalability: Specifies how large the network can grow, without degrading 

performance. 

 Resistance to politics: Specifies how hard it is for an authority to shut down the 

system. 

Until recently, three basic categories of P2P network topologies had been 

identified [Cohen, 2002]: Centralised, decentralised and unstructured, and, finally, 

decentralised and structured. A fourth category, hierarchical P2P topologies, needs to be 

added. The latter, as will be shortly discussed, combines elements from more than one 

of the other topology types to create two-tiered or multi-tiered networks, with the aim of 

combining the strengths of each tier‟s topology. Each category will now be reviewed in 

detail. 

3.2.1 Centralised server P2P networks 

An approach followed by the first version of Napster15, Skype [Skype] and most 

Instant Messaging systems, this model utilises a central server which indexes content or 

other resources made available by the participating peers. Peers connect to the central 

server for search queries, on which the server replies with the IP addresses of available 

peers that possess that particular resource16. Peers then establish a direct link between 

them to share that resource or communicate. The resulting topology is also called a 

“hybrid” P2P topology because the central server is essentially mediating in a 

client/server manner, but the two parties then establish a P2P communication. 

Although paradoxical, centralisation readily addresses some issues inherent in 

all P2P networks. The most significant is peer and resource location. The use of a 

centralised index guarantees that if a resource exists inside the network, it will almost 

certainly be located during a search - something that is not always possible in 

decentralised P2P networks, as will be soon discussed. Furthermore, the performance of 

                                                 

 

 
15

 Now Napster operates as a (client/server) pay-per-download music service, similar to Apple iTunes and 

other. 

16
 In the case of IM systems, the server usually holds the individual contact lists (“buddy lists”) and 

relevant authentication information and responds with the current IP addresses of contacts. 
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such approach is also unrivalled by fully decentralised schemes [Yang, 2001]. 

Additionally, a central server makes it easier to incorporate mechanisms for access 

control, authentication and trust management whose architecture so far relies heavily on 

centralisation, and to monitor the service. Finally, centralised server P2P networks are 

more capable of dealing with the “legacy client” problem17 and generally can have a 

tighter control of the overall service due to the existence of a non-distributed service 

component – the indexing server. 

 

Figure 3: The centralised P2P topology 

This model, however, has some considerable limitations. A hybrid P2P network 

essentially signifies a centralised topology with all the downsides this involves at the 

server side, such as introducing a single point of failure, a single point of stress, 

bandwidth bottlenecks etc. Since a large part of the overall service relies on a 

centralised component, unavailability of the index server due to failure or excessive 

load renders the service unusable. Denial-of-service attacks have the same effect: Loss 

of service, no matter how large the peer population is. Similarly, for the network as a 

whole to scale, the organisation that operates the server has to constantly provide more 
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 This term is used to describe older versions of P2P application software that are incompatible or 

support different functions from the latest version. 
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resources (e.g. more powerful indexing servers, higher capacity links) as more users 

join the network, at a significant financial cost. 

A fundamental characteristic of the centralised P2P topology is that the 

ownership of such a network is clear, in the sense that the service is managed by the 

entity owning the central indexing servers. This has certain effects, with most prominent 

the susceptibility to censorship or legal action if users engage in illegal activity (such as 

the sharing of copyrighted material), even if the central servers do not contain (store) 

such material. Reliance on a central server means that a legal attack can have the same 

effect as a denial-of-service attack. This makes hybrid P2P topologies unsuitable for 

services with a high requirement for anonymity, resistance to censorship, or simply 

resilience. 

Additionally, despite the existence of a centralised server, a P2P network 

remains an extremely dynamic environment where peers join and leave at will. As any 

central server cannot update its database sooner than a set period of time for system 

efficiency and scalability reasons, some of the entries will be inaccurate. Depending on 

the service, however, these inconsistencies may not have a significant impact on its 

quality as perceived by the user. 

A slight variation of the centralised P2P model is employed by the BitTorrent 

file-distribution protocol [Legout, 2005; Izal, 2004]. In that, a central server is running 

the centralised component of the BitTorrent service called the “tracker”. Trackers are 

discovered using special metadata files called torrent files, stored and retrieved from an 

ordinary web server, using a standard web browser. The web server and tracker can co-

exist on the same computer although this has implications for the overall scalability of 

the system. The tracker maintains an index of the IP addresses of all the peers currently 

downloading a particular file and provides BitTorrent peers with the IP addresses of a 

number of other already-connected peers, with which they engage in a P2P 

communication. The basic difference of BitTorrent with the hybrid model described 

above is the existence of the separate web server, facilitating out-of-band resource 

discovery in the form of providing torrent files since the protocol does not has such 

functionality built in. Apart from this difference, the tracker plays the role of the central 

server, giving BitTorrent networks the same advantages and disadvantages of every 

system based on a hybrid topology. 

The centralised P2P model attempts to address issues inherent in any P2P 

service, such as searching, resource and peer discovery and identity management, by 

using a central server providing these services in a centralised manner. This way 
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essentially, the challenge of implementing these functions satisfactorily in a distributed 

fashion is sidestepped for the simplicity and peace of mind the tried-and-tested 

techniques developed for client/server services offer. The strength of the P2P concept 

however lies on the fact that it does things differently from the client/server way. By 

introducing centralisation, the hybrid model loses significant flexibility and becomes 

limited to specific application areas and needs. Scalability and reliability issues arise, 

while the end of Napster and the closing-down of numerous torrent sites provide the 

best example of how easy it is to shut down networks like these without attacking a 

single peer. For these reasons, a lot of developers shy away from the hybrid P2P 

topology and instead focus on its fully decentralised counterparts, examined next. 

3.2.2 Unstructured decentralised P2P networks 

Unstructured decentralised P2P networks are networks whose topology, as their 

name implies, has no structure or any form of centralisation. In these networks, services 

are fully distributed and peers have to collaborate with each other to perform basic 

functions such as resource location and peer discovery. For that reason they are often 

called “pure” P2P networks. Lack of structure means that peers can connect to each 

other any way they see fit, forming topologies that evolve dynamically in a random 

manner. Because of that, the examination of unstructured decentralised network 

topologies borrows a lot of concepts from the study of other complex networks. 

Traditionally, networks of complex topology have been modelled using the 

random graph theory of P. Erdös and A. Rényi [Erdös, 1959; Bollobas, 2001]. Erdös 

and Rényi suggested that complex networks should be modelled as nodes connected 

with randomly placed links. More specifically, if N nodes are assumed and every pair of 

them is connected with probability p, a graph with approximately pN(N-1)/2 edges 

distributed randomly will be created. This results in network models where, despite the 

random placement of the links, most nodes have the same amount of links. The nodes 

follow a bell-shaped Poisson distribution which makes it rare to find nodes with more or 

fewer links than the average. Such networks are also called “exponential”, because the 

probability that a node is connected to k other nodes decreases exponentially for large k 

(i.e. the degree distribution is quickly decaying). 

On the other extreme, networks with clear design principles were traditionally 

assumed to be completely regular. The work of D. Watts and S. Strogatz in [Watts, 

1998] showed that there exist many biological, technological or social networks that lie 



 

43 

somewhere between these two extremes: Networks which are not completely random, 

nor completely regular. In order to examine this type of networks they proposed models 

where regular networks are “rewired” to introduce increasing amounts of disorder. 

These systems can be highly clustered, like regular lattices, yet have small characteristic 

path lengths, like random graphs. In other words, they are networks with a high 

representation of “cliques” where most pairs of nodes are connected with at least one 

short path. Networks of this type were called “small world” networks, to acknowledge 

the work of S. Milgram in the 1960‟s, when he quantified the phenomenon of the “six 

degrees of separation”18 [Milgram, 1967]. Kleinberg [Kleinberg, 2000], based on 

Milgram‟s experiments, demonstrated that in small world networks nodes are able to 

route messages to unknown targets. 

On their seminal paper, Faloutsos et al [Faloutsos, 1999] argued that the Internet 

topology obeys power laws. Power laws are expressions of the form y  x

, where  

is a constant and x and y are the measures of interest. The authors showed that an 

Internet router‟s degree distribution P(k) follows the power law P(k)~ k-γ with 

γ=2.48. Barabási and Albert showed that the World Wide Web page distribution also 

follows a power law with γ=2.1 [Barabási, 1999]. The difference from random 

networks is that while random networks are characterised by their bell-shaped 

distributions, power laws are continuously decreasing functions, as shown in Figure 4 

below. The essence of that difference is that while in random networks nodes enjoy a 

“democratic” distribution of links, power laws describe systems in which a few hubs 

dominate. Hubs are vertices that possess a very large number of edges compared to the 

average vertex. Both the random network and the Watts-Strogatz small world network 

models do not have great, big hubs [Evans, 2004]. Power laws, on the other hand, which 

describe networks whose degree distribution has a much longer tail, are suitable for this 

type of networks. Such networks, described through power laws, are called scale-free 
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 According to the phenomenon of the “six degrees of separation”, any two people in the world are very 

likely to be connected through six immediate acquaintances. This observation is a result of a series of 

experiments carried out in the 1960‟s by S. Milgram, and shows that vast social networks can have 

small characteristic path lengths. 
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networks. Scale-free networks maintain the small world property of high clustering and 

short characteristic path length. 

 

Figure 4: Random graph versus scale-free networks. 

The existence of hubs in scale-free networks is mainly accredited to two 

mechanisms: growth and preferential attachment [Barabási, 1999]. In the Erdös-Rényi 

model, it is assumed that the full inventory of nodes exists from the beginning; before 

placing any links. This is highly unrealistic, as most networks do not maintain a 

constant number of nodes over time. The World Wide Web, for instance, grows by 

having more and more pages added over time. Similarly, the Internet grows with the 

addition of more routers and hosts. 

A product of growth is preferential attachment. As new nodes appear, they can 

connect to any already connected node. However, they tend to connect to nodes that 

already have a lot of established connections than to nodes maintaining just a few. This 

can be easily explained: By connecting to already well-connected nodes a new node can 

take advantage of the improved reachability of the network offered by these nodes. This 

leads to these popular nodes acquiring more and more links as the network grows19 and 

becoming hubs. Interestingly, the mechanism of preferential attachment tends to be 

linear [Barabási, 2003]. 

The existence of hubs indicates that such networks display self-organising 

properties [Evans, 2004]. Self-organisation is considered here as the process in which 
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 A phenomenon quoted as “the rich get richer” [Barabási, 2003]. 
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the internal organisation of a system, normally an open system, increases automatically 

without being guided or managed by an outside source. 

The fully decentralized, unstructured overlay network formed by Gnutella20 was 

found to have the small world properties of small diameter and high clustering, as well 

as a node degree distribution which followed a power law with exponent γ=1.4 

[Jovanovic, 2001]. Therefore, there is strong support that Gnutella and similar 

unstructured decentralised P2P applications form networks with scale-free properties. 

This may seem surprising at first. Because no control is imposed on the way 

nodes join and leave the network by the Gnutella protocol, the network evolves 

topologically in an uncontrolled and unpredictable manner that does not outright 

indicate the formation of a scale-free network. Hub formation can thus be mainly 

attributed to individual peer behaviour and in particular to the existence of a small set of 

long-lasting peers. Measurements in [Saroiu, 2002] showed that although as much as 

60% of all peers stayed connected for an hour or less, there was a small percentage of 

peers that stayed connected for longer (360 minutes or more). These are peers which 

enjoy good connectivity, as it is the low-capacity peers that usually join the network for 

short periods of time. By being available for longer and serving more links, they end up 

being preferred by other peers and become hubs inside the overlay. 

The presence of hubs has certain effects on the fault-tolerance of Gnutella and 

similar P2P networks. Scale-free networks are extremely robust to accidental failures or 

random attacks [Albert, 2000]. While the random removal of a number of already-

connected nodes will result in a severe fragmentation of a random network into tiny, 

non-communicating “islands”, it will not significantly disrupt the topology of a scale-

free network. This is due to its inhomogeneous nature: The random removal of nodes 

will inevitably focus on the ones maintaining few connections, as they are a lot more 

than the hubs. Consequently, the removal of little-connected nodes will not affect the 

network topology significantly because most connections go through the hubs. Indeed, 
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 The discussion in this section applies to the early, completely unstructured Gnutella network (protocol 

version 0.4). Later versions of the protocol (such as version 0.6) added super-peer support, and will be 

discussed later in this chapter.  
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Albert et al report that as much as 2.5% of Internet nodes can be removed without 

affecting its diameter [Albert, 2000]. 

It has to be noted that, at the same time, the presence of hubs reveals a serious 

weakness. Despite the fact that it provides resilience to failures or attacks on random 

nodes, it makes the network extremely susceptible to planned attacks on the hubs. If a 

hub fails or is attacked by an adversary who possesses suitable topology information, all 

nodes connected to it lose connectivity. This leads to extreme network fragmentation. 

Indeed according to the aforementioned study, if as little as 5% of the most-connected 

nodes are removed, the network diameter doubles. 

Gnutella has demonstrated that unstructured decentralised P2P systems can be 

deployed “in the wild” without any form of support or intervention from additional 

infrastructure in order to operate, and will show considerable resilience. This important 

capacity is mainly accredited to the simplicity of the protocol which enables the peer 

network to attain self-organisation characteristics and form a scale-free topology. 

However, the early Gnutella network suffered from serious drawbacks in scalability and 

performance [Ritter, 2000; Portmann, 2001], almost crippling the service in the summer 

of 2000 and effectively hampering the deployment of such systems in a larger scale. At 

the core of the problem was the simple but inefficient communication scheme employed 

due to the lack of topology information. 

In Gnutella, searching and collection of topology information is accomplished 

by broadcasting messages on all available overlay links. This results in excessive 

overhead traffic due to messages being delivered several times to the same peers (since 

they may be reachable via multiple paths) while at the same time they reach peers that 

are not capable of contributing anything to the resolution of the query issued (in case of 

searching). In fact, the presence of hubs accentuates this issue as due to their prominent 

role they inadvertedly make the generation of duplicate messages over multiple paths 

unavoidable. A hop-count horizon is used to limit the effect of uncontrolled flooding, by 

which a message is dropped after travelling a specified number of hops. Nevertheless, 

this feature is not effective enough as the traffic generated inside this fixed horizon is 

still high. Measurements in [Ripeanu, 2002] and [De Meer, 2003] found that the 

signalling traffic (PING and PONG messages) inside the Gnutella network was 

excessively and unjustifiably high, especially when compared with user-triggered traffic 

(QUERY messages). Because there is no knowledge of the network properties, peers 

cannot know metrics such as the diameter of the network and make decisions 



 

47 

accordingly. Therefore, even a conservatively set TTL (Time To Live) hop count value 

may exceed the network diameter. 

Equally important is the lack of search guarantees offered by Gnutella. Since 

searching by broadcast merely reaches a random set of peers in the network due to the 

random coupling of peers, it does not provide any guarantees that the results of the 

search process are conclusive. Content that is actually available in the network may not 

be visible to all peers because the reachable horizon is restricted by the hop count. At 

the same time, the traffic caused by the search request may consume excessive 

resources in other parts of the network with no results. 

More efficient search techniques such as a distributed version of iterative 

deepening search or directed BFS (Breadth First Traversal) have been proposed to 

rectify this situation [Yang, 2002; Yang, 2003], by adapting the TTL value of search 

messages to iteratively reach larger parts of the network according to the results 

returned, or by broadcasting on selected routes. Others like [Cholvi, 2004], [Fessant, 

2004] and [Sripanidkulchai, 2003] propose the formation of communities of peers that 

share common interests where searches can be concentrated. 

3.2.3 Structured decentralised P2P networks 

3.2.3.1 Deterministic topologies 

As seen so far, nodes in an unstructured decentralised network can only have a 

limited view of the network: They have a set of neighbours which determines their 

scope (for instance the Gnutella “horizon”) but cannot practically know the global 

topology. Operations on unstructured P2P networks become ineffective primarily due to 

this fact. Peers do not know where in the network a specific resource might be located; 

hence their search technique is usually restricted to simple broadcasting. But as 

discussed earlier, broadcasting is a very inefficient and ineffective message passing 

technique that introduces scalability constraints and cannot offer search guarantees. 

Deterministic topologies address this issue - not by giving any node a global 

view of the network, which would imply centralisation - but by maintaining a 

deterministic topology of the network, which is known to all nodes. This way, nodes 

can have an idea of what the network beyond their scope looks like. This globally 

available information can then be used to reach locally optimal decisions while routing 

and broadcasting search messages. The information on the topology is packaged in a 

protocol that is used to police peers joining and leaving the network: Instead of allowing 
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peers to join and depart without any restrictions, peers are made to connect to specific 

peers already in the P2P network upon joining – in a way that maintains the topology in 

the desired state at virtually every moment in time. 

Such approaches include the HyperCup protocol [Schlosser, 2001; Schlosser, 

2002], the work of Saffre et al [Saffre, 2003], or aim at constructing random regular 

graphs [Law, 2002]. The HyperCup protocol borrows ideas from the area of 

multiprocessor computing and attempts to tackle the problem of scalability by 

organising peers into a hypercube-based graph structure. A complete hypercube graph 

consists of N = bLmax+1 nodes, where b is the base of the graph, i.e. the number of 

nodes in each dimension, and (Lmax+1) is the number of dimensions. In Figure 5, 

below, a hypercube with Lmax = 2 and b = 2 (i.e. a 3-dimensional cube with 2 nodes 

in each dimension) is presented. The links between the nodes in the figure are 

numbered, and by definition a node B is called the i-th neighbour of node A if node B is 

A‟s neighbour in dimension i. For instance, in Figure 5, node 6 is the 2-neighbour of 

node 3. Edge labels start at 0 and each node can only have one i-th neighbour. 

 

Figure 5: HyperCup topology. 

The HyperCup protocol employs two basic techniques (creating/destroying 

dimensions and using temporary or permanent neighbours) to maintain a topology close 

to the ideal hypercube (Figure 5), depending on the rate of peers joining or leaving and 

their positions21. Using this structured topology, the HyperCup protocol achieves the 

following goals: The network is completely symmetric: Each node in the network is 

thought to the same capabilities and duties, and no node incorporates a more prominent 
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 It is beyond the scope of this section to discuss the HyperCup protocol mechanisms in depth. Interested 

readers are kindly directed to the referenced bibliography. 
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position than the others. That ensures that (signalling) load balancing is optimal and no 

hotspots are created. Correspondingly, any node is allowed to accept and integrate new 

nodes in the network. Finally, HyperCup achieves a O(logbN) complexity in terms of 

messages sent when a node joins or leaves the network. 

Optimal broadcast can be achieved on hypercube topologies (i.e. broadcasted 

messages reach each peer exactly once), reducing the traffic load on the network 

compared to unstructured systems. HyperCup guarantees that exactly N-1 messages are 

required to reach every single node in the network, and that the last nodes are reached 

after logbN forwarding steps. Additionally, the characteristic path length L is L ≈ 

logbN [Schlosser, 2001]. The broadcasting scheme is achieved as follows: A node 

invoking a broadcast sends the message to all its neighbours, tagging it with the edge 

label of the link on which it was sent. Nodes receiving the message forward it only on 

links tagged with higher edge labels. This is illustrated in Figure 6, below. Peer 0 

broadcasts a message to all its neighbours, namely peers 1, 3 and 4. Upon receiving the 

message, Peer 1 examines the tag and forwards it only to links with labels higher than 0, 

i.e. to peers 2 and 5. Similarly, Peer 3 only forwards it to 6, since it received it from a 

level-1 link. Likewise, Peer 2 forwards it to Peer 7, it‟s only level-2 link. 

 

Figure 6: HyperCup message forwarding. 

3.2.3.2 Content-addressable networks 

If meta-information on a peer‟s resources is available, this information can be 

used to organise the network in order to be able to route queries more specifically based 

on their desired information and carry out more efficient searching. 

A very popular technique towards that goal comes in the shape of the so-called 

distributed hash tables (DHTs): Content descriptors such as file names are hashed, and 

peers in a P2P network are assigned to cover a particular area of the hash space. Thus, 

the location of any hashable content in the network can always be deterministically 

established by and reached from any peer. In essence, DHT-based systems tightly 
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control both the data placement and overlay topology. Chord [Stoica, 2001], CAN 

[Ratnasamy, 2001], Kademlia [Maymounkov, 2002] and Pastry [Rowstron, 2001a] are 

all based on the above concept. A brief analysis of how such systems operate follows, 

using Chord, one of the most-researched proposals, as its case study22. 

Chord, like all DHT-based systems, provides a distributed lookup protocol, that 

given a key, maps the key onto a node. Chord assigns keys to nodes using consistent 

hashing, which has some desirable properties. Firstly, the hash function balances the 

load (all nodes receive roughly the same number of keys) with high probability. 

Furthermore, it is also highly probable that when the Nth node joins or leaves the 

network, only a O(1/N) fraction of the keys are moved to a different location. 

Consistent hashing in Chord is facilitated using the SHA-1 hash function 

[Eastlake, 2001]. Each node and key is assigned an m-bit identifier. A node‟s identifier 

is obtained by hashing its IP address (called the “node ID”) while a key identifier is 

produced by hashing the key (called the “key ID”). The value of m is large enough to 

make the probability of two different values hashing to the same identifier negligible. 

Identifiers are ordered on an identifier circle, called a “Chord ring”, of size 

modulo(2m). Therefore, under Chord there exist N=2m nodes in a 1-dimensional 

circle. Nodes are mapped on the Chord ring according to their node ID. A key k is 

assigned to the first node whose identifier is equal to or follows the identifier of k in the 

identifier space. The latter is called the “successor node” of key k. 

Figure 7 illustrates a Chord ring with m = 6. Six nodes (N8 to N56) and four 

keys (K24 to K54) exist on the ring. The first key, K24, is mapped to node 30, as the 

successor of identifier 24 is node 30. Similarly, K28 is also mapped to node 30. K37 is 

mapped to node 37 since their identifiers are equal. Finally, K54 is mapped to node 56, 

as the successor of identifier 54 is node 56. 

There are two basic ways a node can locate a key in Chord. The first is a simple 

implementation that requires minimum per-node state information but is slow and 

inefficient. In that, each node only needs to know how to contact its current successor 

on the Chord ring. Queries for a given identifier are passed around the ring via these 
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successor pointers, until two nodes that are on both sides of the identifier in question are 

encountered. The second of that pair is the node for which the query is aimed. An 

example of this technique is illustrated in Figure 8, where node 8 searches for key 54. 

 

Figure 7: A Chord ring. 

 

Figure 8: Simple Chord routing. 

A scalable key location method also exists, which is a lot more efficient, but 

requires nodes to maintain additional routing information apart from information on 

their successor. Examining it goes beyond the scope of this overview, but a brief 

discussion is presented in Appendix A. 

When peers enter or leave the network, Chord attempts to maintain the system in 

the desired state by rearranging the hash mapping. When a node n joins the network, 

certain keys previously assigned to n‟s successor are mapped to n. Similarly, when a 

node n leaves the network, all its assigned keys are reassigned to its successor. Because 
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of the dynamic nature of the environment, the Chord protocol includes a stabilisation 

function that each peer runs periodically to update its successor pointers and finger 

table. Additionally, each peer attempts to maintain a list of a few of its next immediate 

successors so that it can still operate if its first successor fails. 

When in steady state, for efficient routing in an N-node system a node needs to 

maintain information about O(logN) other nodes and resolves all lookups via 

O(logN) messages to other nodes. Its designers claim that Chord can still operate with 

less information, but with degraded performance. 

The modus operandi of most other DHT-based systems is very similar to that of 

Chord. More specifically, all DHTs base their operation on lookup protocols that can 

map a key to the peer providing a resource. They dictate which connections peers 

should form with the rest of the network and which part of the keyspace they are 

responsible for. Where they mainly differ is in the routing schemes employed and the 

topological geometries created. For example, Chord and Pastry arrange peers in one-

dimensional rings, while CAN uses a virtual d-dimensional Cartesian coordinate space 

on a d-torus. Other geometries include trees [Plaxton, 1997] and butterflies [Fiat, 2002; 

Malkhi, 2002]. The significance of geometry lies in the different degrees of flexibility 

afforded by different geometries [Gummadi, 2003a]. The term flexibility here denotes 

the algorithmic freedom left after the basic routing geometry is chosen. This freedom is 

exercised in the selection of neighbours (how the neighbours of a node are picked) and 

routes (how the next hop when routing a message is picked). This flexibility is 

important because the ease of selection of routes and neighbours signifies how well the 

system can respond to an extremely transient environment. 

The size of the routing table (or state) versus the number of hops a message 

needs to travel in the worst case (or equivalently the network diameter) constitutes a 

fundamental trade-off in DHT-based P2P system design. Smaller search cost can be 

achieved by maintaining a larger routing table. At an extreme, maintaining state 

information for every peer in the network would offer the highest possible efficiency (a 

search cost of O(1)). Such an approach, however, would be impractical as the rate of 

peer arrivals and departures in the network would make the maintenance of the routing 

table very costly. On the other hand, a minimal routing table would lead to a very large 

network diameter and resulting search latency. As a result, most existing DHT-based 

systems (for example Chord, Pastry and Tapestry [Zhao, 2001]) opt for O(logN) 

efficiency and state [Xu, 2003]. 
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CAN is a notable difference to DHTs which settle for O(logN) state and 

efficiency. In CAN each node maintains O(d) state for d dimensions, and the lookup 

cost is O(dN1/d). Thus, in contrast to Chord or Pastry, the state maintained by a CAN 

node does not depend on the network size N. If d=logN, CAN lookup times and 

storage needs match Chord‟s. However, CAN is not designed to vary d as N (and thus 

logN) varies, so this match will only occur for the correct value of N corresponding to 

the fixed d. That makes CAN more suitable than Chord for dynamic environments, 

because only a few nodes have to be informed when a node arrives or leaves. However, 

the trade-off is still present. The smaller routing table makes searches longer, because in 

CAN the lookup cost increases faster than logN. 

DHT-based solutions enjoy performance and scalability characteristics that 

current unstructured decentralized systems cannot reach. Furthermore, they offer search 

guarantees, since if a key exists in the network, the node responsible for that key can 

always be found by any other node. Finally, the use of consistent hashing provides an 

inherent level of load balancing. Nonetheless, few of them have escaped the sphere of 

proof-of-concept and were deployed as part of real-world P2P services, since some 

practical issues have not yet been properly addressed. The first is the transient nature of 

the peer population inside the overlay. Peers come and go at fast and unpredictable 

rates. Measurements in [Saroiu, 2002] indicate a median uptime for a node of 60 

minutes. For a network of 100,000 nodes that implies a churn rate of over 1600 nodes 

arriving and leaving per minute [Chawathe, 2003]. This rate causes little problem for 

Gnutella and other unstructured decentralised P2P systems, as long as a peer does not 

become disconnected by losing all its neighbours simultaneously. Even so, it can re-join 

the network by repeating the bootstrap procedure at little loss. For DHTs however, these 

rates impose significant burden. In order to preserve the correctness and efficiency of 

their structure and routing schemes, most DHTs have recovery and stabilisation 

algorithms which they run to account for nodes entering and leaving the overlay. 

Recovery algorithms take time to operate and create overhead. Most DHTs require 

O(logN) repair operations after each node failure. If the churn rate is too high, the 

overhead caused by these repair operations can become substantial and cripple the 

system. Under bandwidth-limited conditions, a positive feedback cycle can occur which 

overloads the network, causing lookups to have high latency or to return inconsistent 

results [Rhea, 2004]. The same happens for the stabilisation algorithms. On the other 

hand, if these repair or stabilisation routines are not run, information consistency is 
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risked. Information loss is more critical in DHT-based systems than in unstructured 

networks. In Chord, the ring can become partitioned to smaller sections, whereas in 

CAN zones can disappear. In the same context, denial of service attacks can be more 

easily mounted on DHT-based systems by having rogue nodes just cause “failures” fast 

enough or report incorrect information. Sit and Morris discuss a number of such attacks 

for DHTs in [Sit, 2002]. 

Another limitation of current DHT-based P2P protocols is the requirement for 

exact identifiers when performing queries. DHTs require the exact name of an object or 

resource, so that they can translate it to a key and perform a lookup. This can be an 

issue, especially in file-sharing P2P applications. The exact name of a file may not be 

available in advance, especially since there are no naming conventions or global 

standards in place. Even when such information is available, however, such as system 

appears inflexible and unattractive for the majority of users, who are accustomed to 

using keyword search techniques both in the web and existing unstructured P2P 

applications. Keyword search is much more powerful, natural and easy to use. 

Supporting keyword search in DHTs, in contrast with unstructured P2P networks, is a 

hard challenge. Some approaches have been proposed, such as in [Harren, 2002] and 

[Shi, 2004], but they add considerable complexity to DHT designs and seem resource-

expensive to maintain in the face of the extremely dynamic movement of nodes, and 

thus content. 

In addition, the use of consistent hashing does not entirely solve the problem of 

optimum load balancing in a P2P network. While schemes based on consistent hashing 

offer a degree of load balancing, they do not prevent the emergence of “hot spots” and 

peer load imbalance in general. The random assignment of peer and resource identifiers 

as implemented in most existing DHTs, does not tackle the non-uniform distribution of 

objects in the identifier space and high degree of heterogeneity in peer loads and 

capacities. As a result, a peer may become responsible for a larger part of the key space 

than average, consequently being assigned a greater number of items and tasked with 

handling more messages. Additionally, a peer‟s load may vary greatly over time due to 

continuous insertions and deletions of objects and arrivals and departures of other peers. 

Identifying this limitation, alternative algorithms have been proposed, such as in [Byers, 

2003] and [Godfrey, 2004], designed for P2P systems. While a step towards the right 

direction, these approaches introduce overheads themselves and may interfere with the 

performance or stability of current P2P protocols not designed to accommodate them. 

As such, further research in the area can definitely be beneficial. 
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As noted in [Lua, 2005], the mismatch between the underlying network path and 

the DHT-based overlay path between two peers can result in high lookup latency and 

could adversely affect the performance of applications running over DHTs. In other 

words, the deterministic short overlay path of O(logN) of a DHT does not 

necessarily guarantee that high network delay and unnecessary long-distance network 

traffic will be avoided. 

Apart from [Garces-Erice, 2003] and [Ganesan, 2004b], none of the DHT-based 

systems examined seem to acknowledge or take advantage of the fact that peers vary in 

capabilities. For that reason, their designs are totally symmetric. However, peers have 

different capabilities and users stay connected for different periods of time. The level of 

contribution is also diverse with some peers sharing few resources while others 

displaying more altruistic behaviour towards the peer community. Overlooking these 

facts leads to “lowest common denominator” designs which lose some efficiency. As 

super-peer implementations (discussed shortly) have demonstrated, a level of capacity-

awareness can go a long way towards increasing the stability of the overlay while better 

bandwidth utilisation is achieved. 

Finally, lately there is a lot of attention paid to locality and topology-awareness 

for DHTs in order to improve performance. Almost all proposed systems have either 

these features directly built in their design (like Pastry and [Garces-Erice, 2003]) or 

suggest augmentations of their original design to include topology-awareness features 

with significant performance improvements when compared to their plain versions (for 

example Vivaldi for Chord [Dabek, 2004]). Other research in this area includes [Zhao, 

2002], [Ganesan, 2004a] and [Lua, 2004]. Work in this area indicates that topology-

awareness can offer noticeable improvements in routing performance in general. 

However, such capabilities can enhance any P2P system, not just DHTs. Hierarchical 

networks, discussed next, are an obvious choice. 

3.2.4 Hierarchical P2P networks 

Hierarchical P2P networks are essentially multi-tiered topologies with each level 

of the hierarchy representing a tier. Peers in a tier have additional responsibilities from 
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peers lower in the hierarchy. In their simplest form, hierarchical P2P networks are two-

tiered topologies where the top-tier peers, usually called super-peers23, have a superset 

of the functionality of ordinary peers (e.g. [Yang, 2003]). This typically involves 

assisting in searching, aggregating signalling traffic and keeping the network in an 

optimal state. For that reason, super-peers are generally peers that enjoy good 

connection characteristics (high-bandwidth connectivity, large uptimes and high 

availability) and adequate hardware capacity to support their additional functions. 

Under this scheme, the rest of the peer population (i.e. peers that are not super-peers) 

are usually called “leaf nodes”. 

Conceptually speaking, super-peer networks occupy the middle ground between 

centralised and entirely symmetric P2P networks: Super-peers play a role similar to that 

of indexing servers in the centralised P2P topology, handling search requests and other 

operations for their leaf nodes. Nomination for the role of the super-peer is usually 

performed in real time, with the P2P protocol containing all the necessary intelligence to 

dynamically “promote” a capable peer to super-peer status. In systems like Kazaa 

[Kazaa] and the newer implementations of Gnutella [GDF] (protocol version 0.6 added 

super-peer support), leaf nodes are only allowed to maintain connections for signalling 

to super-peers and not between them. A simple illustration of such a super-peer network 

can be found in Figure 9. 

 

Figure 9: A super-peer network 
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 They can also be encountered as “supernodes” or “ultra-peers” in the relevant literature. 
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Super-peers index content that is present on the leaf nodes which maintain 

connections with them. A leaf node searching for some content, sends its query only to 

the super-peer(s) it is connected to. The super-peer performs a local search of its index 

to determine whether another of its leaf nodes holds that resource. If not, the query is 

broadcasted amongst the super-peers, which, if successful, forward it to the appropriate 

leaf nodes. A successful search is completed with a direct connection between two leaf 

nodes. 

Hierarchical networks allow the formation of different topologies at each level 

of the hierarchy, creating systems that can potentially combine the strengths of each 

one. For instance, a tier may form a DHT-based topology taking advantage of search 

guarantees and lookup efficiency while another may be unstructured for higher fault-

tolerance. Hierarchies can also be built to accommodate interest-based or locality-based 

communities of peers. The use of hierarchy allows for such clustering without 

sacrificing other desirable network properties like short characteristic path length or 

fault-tolerance. Furthermore, there is clearer scope for identifying peers‟ different 

capacities and exploiting them to a greater extent (for instance as in [Srivatsa, 2004]). 

By reducing the number of nodes responsible for message handling and routing, 

signalling traffic is significantly reduced, and the network becomes more scalable 

compared to fully-decentralised unstructured P2P networks. Moreover, the search 

performance of such a network is closer to that of a centralised P2P system while 

defying the downsides of an entirely centralised system. More specifically, while a 

search takes O(N) steps in a completely symmetric system of N nodes like early 

Gnutella, it takes O(N/M) steps in a super-peer network like Kazaa, where M is the 

average number of peers connected to a super-peer. Thus, while the complexity of 

search cost is still linear, it has a less steep slope allowing for better scalability and 

performance. The search cost can be more drastically minimised when the top-level 

hierarchy uses a DHT. 

For unstructured topologies, a super-peer hierarchy brings additional stability to 

the network. Because the nodes elected to become super-peers tend to stay connected 

for longer compared to regular peers, the overlay attains a dense core of highly available 

nodes which supports the bulk of highly volatile peers [Stutzbach, 2005]. By having 

more stable points of connection for regular peers, the overall stability of the network is 

improved and each peer departure has a smaller impact on the network. Furthermore, 
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redundant connections to other super-peers can minimise the effect of super-peer 

departure or failure. 

The biggest issue for hierarchical P2P networks is that by definition they lose 

symmetry: Some peers in the overlay have additional duties. This raises the questions of 

how super-peer selection is best carried out, what is the optimal ratio of leaf nodes to 

super-peers for a particular scenario, what the additional duties mean for the load, 

performance and operation of the super-peers and what effect does this lack of 

symmetry has for the fault-tolerance and other properties of the service as a whole. The 

flexibility in employing and combining different topology models means that answers to 

such questions are specific to a particular implementation and often can only be 

provided after the service is deployed. Indeed, several early hierarchical P2P protocols 

relied on heuristic values for triggering super-peer promotion and maintaining a leaf 

node per super-peer ratio that were adjusted manually as the network evolved, instead of 

employing a purpose-built mathematical model (for example as described in [Kleis, 

2005]). 

Table 1, provides a comparison of three popular super-peer networks24. It 

becomes clear that each network builds its super-peer hierarchy differently to better 

address size and service requirements. 

 Gnutella (ver. 0.6) FastTrack (Kazaa) Overnet (eDonkey) 

Super-peers 10,000 - 100,000 5,000 - 40,000 20 - 40 

Leaf nodes ≈ 1 million ≈ 2 millions ≈ 1.5-2 millions 

Average leaf-to-SP 

connection 

duration 

≈ 93 minutes ≈ 34 minutes > 24 hours 

Super-peer 

promotion 

mechanism 

Protocol election Protocol election 

Voluntary 

installation of 

server software 

Table 1: Comparison of three popular super-peer networks. 
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 The information contained in the table was compiled from [Liang, 2004], [Loo, 2004] and statistics 

obtained from www.slyck.com, http://ocbmaurice.no-ip.org/index.html and the eMule client (collected 

on 1/9/2005). 
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Hierarchical P2P networks have been created as a response to the poor 

scalability and performance of their early unstructured counterparts. At the moment, the 

majority of P2P services deployed in the “real world” are based on super-peer 

topologies, displaying that this approach presents a desirable trade-off between 

performance, resilience and complexity. However, current super-peer topologies 

demonstrate only part of the flexibility offered by deploying multi-tiered overlays. The 

ability to combine different topologies in each tier allows for customised solutions that 

better fit the diverse requirements modern P2P services may have. Systems can be built 

that are capability-aware, locality-aware or interest-based while maintaining the 

necessary flexibility, characteristic of P2P networking. 

3.3 Peer behaviour characteristics 

So far, this chapter focused on protocol-specific aspects of P2P services and 

especially how the adopted overlay topologies affect functions like searching and 

routing. Equally important is the examination of individual peer behaviour; in particular 

because it is dependent on a large number of parameters external to the protocol. The 

user is perhaps the greatest. The user influences peer behaviour to a very large extent, 

especially regarding peer uptime, query workload and resource contribution. Peer 

uptime signifies availability and participation in the provision of the service to other 

peers. Small uptime results in higher churn rate and overlay volatility which affect the 

overall quality of service. Query workload describes the number, rate, type and other 

characteristics of queries made. Finally, the contributed resources encompass everything 

from the number, volume, heterogeneity and popularity of shared resources to the level 

of cooperation in making these resources available to other peers (i.e. whether the user 

shows altruistic or selfish behaviour). Quantifying and measuring these characteristics is 

crucial to understanding the macroscopic behaviour of P2P systems, not only so that 

better P2P services can be built but also to provide the necessary direction on how the 

infrastructure needs to evolve towards more graceful coexistence of P2P and other 

network services. Specifically for this thesis, an examination of such characteristics is 

necessary for the realistic simulation of peer behaviour discussed in the following 

chapters. 
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3.3.1 Free-riding 

The level of participation of peers in sharing resources is fundamental to the 

value one derives from a P2P service and, ultimately, its success. When peers contribute 

little, the overall wealth of pooled resources diminishes and so does the perceived value 

of the service. In this case, due to the network effect, users may choose to migrate to a 

similar service with a higher degree of participation, which in turn will decrease the 

original service‟s value further. Nevertheless, behaviour where users choose to share 

disproportionately little to what they consume is common in P2P services, and 

particularly file-sharing services. Called “free-riding” in reference to similar behaviour 

observed in society and linked to the “tragedy of the commons” [Hardin, 1968], it can 

be attributed to several factors. In the context of P2P, the most prominent is the scarcity 

of individual peer resources (e.g. disk space, bandwidth, etc) which leads self-interested 

users to limit their contribution to the community for personal benefit. For instance, due 

to the asymmetry of residential connectivity and the nature of TCP, limiting the 

upstream capacity allocated to a P2P application allows less congestion and delays for 

ACK packets to be transmitted and maximises downlink performance.  

Free-riding has been the subject of several studies. In 2000, Adar and Huberman 

[Adar, 2000] reported that 66% of Gnutella peers were free-riders. Three years later, a 

similar study on Gnutella found the percentage of free-riders to be 25% [Saroiu, 2003]. 

More recently, measurements in [Stutzbach, 2007] reported the percentage of free-riders 

to be closer to 13% of the population. This measurement regime however classified as 

free-riders those peers which did not provide their sharing list to the crawler25, thus 

excluding “easy-riders” (peers who contribute until they fully download a file, after 

which they stop sharing it [Figueiredo, 2004]) or peers which did not satisfy such a 

request due to privacy concerns26. Consequently, it is probable that the actual free-rider 

population is higher than reported, especially if “easy-riding” behaviour is considered 
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 A crawler is an application speaking the P2P protocol of interest, used to collect real-time data about a 

P2P system by connecting successively (“crawling”) to all available peers. 

26
 A number of applications offer this option as a countermeasure to copyright enforcement agencies 

using this method to collect information on unauthorised sharing of copyrighted content in P2P 

networks. 
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equally abusive to the system. Finally, Fessant et al [Fessant, 2004] observed that 68% 

of peers were free-riding in eDonkey. 

Systems like Gnutella and eDonkey offer no incentives or policing for sharing, 

making free-riding easy to accomplish. Newer systems take explicit steps to address this 

issue by incorporating incentive schemes, or algorithms that regulate individual 

performance according to the level of contribution at the protocol level. Such schemes 

utilise economic or game-theoretical concepts to present incentives to the user to share 

more, or directly limit the performance, or even participation, of peers who consume 

more resources than they contribute. The BitTorrent system developed an interesting 

amalgamation of both concepts. At the protocol level, BitTorrent incorporates a “tit for 

tat” algorithm which regulates individual download performance according to the peer‟s 

upload performance [Izal, 2004]. This ensures that peers who upload at slow speeds or 

do not upload at all will not be able to achieve high download performance from other 

peers. In addition, separately to the protocol, many trackers incorporate mechanisms to 

monitor and record a peer‟s upload-to-download ratio and penalise or altogether deny 

service to those peers who do not maintain an acceptable level of contribution to the 

community. This mechanism operates on a different timescale to the “tit for tat” 

algorithm as it judges a peer according to its overall contribution to the community over 

many torrents and not that of individual sessions. Moreover, this policing is done by the 

tracker and not the protocol, allowing an extra layer of resistance against modified 

clients (for instance as described in [Liogkas, 2006]). The combination of these two 

mechanisms ensures acceptable peer contribution at different degrees of granularity. 

In any case, free-riding is a reality that must be taken into account both when 

designing P2P services and when simulating P2P protocols and peer behaviour. Users 

will seek to maximise the value they derive from a service and may engage in selfish 

behaviour if the gains from such behaviour justify the costs. Free-riding is most 

prominent in systems where fair participation is not actively pursued or rewarded. The 

lack of mechanisms to ensure fair participation makes free-riding readily achievable at 

no obvious disadvantage (cost) to the user. P2P systems which incorporate such 

mechanisms essentially remove any gains arising from free-riding by either rewarding 

participation or by making it costly to engage in selfish behaviour. 
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3.3.2 Peer availability and churn 

Peer availability describes the capacity of peers to be present and accessible so 

that they can carry out their part of service provision. Peer availability is affected by 

short term (e.g. packet loss) or longer term (e.g. software/hardware crash) transient 

effects or even one-off events such as permanent departure from the service [Bhagwan, 

2003]. Churn, on the other hand, describes the continuous variation of the group of 

participating peers due to arrivals and departures. Availability can be characterised by 

measuring a peer‟s session duration (uptime) against its downtime. A session describes 

the time a peer stays connected to the overlay between its arrival and departure. It is 

expected that a peer will have many sessions over its lifetime. As a result, churn can 

also be quantified by measuring arrival and departure events. 

Churn and availability are important system characteristics due to the effect they 

have on the performance, stability and overall quality of service. High overlay dynamics 

lead to increased search cost and necessitate more signalling traffic while diminishing 

search performance and resource stability. DHT-based systems are particularly 

vulnerable since they need to maintain a structured topology, but unstructured systems 

suffer from the effects of high churn rate as well. Coping with churn and ensuring 

graceful operation in the face of frequent peer unavailability is central to the design of 

robust P2P systems. Towards that, it is valuable to examine these quantities in existing 

P2P networks.  

A number of studies have offered measurements of churn and availability in 

deployed P2P networks. Saroiu et al. [Saroiu, 2002] used a crawler to measure peer 

availability in Gnutella and Napster and compared it to the actual host availability at the 

IP level. Their findings suggested that 80% of the peers in Gnutella were available for 

less than 45% of the host machine‟s uptime while in Napster that percentage was closer 

to 83%. Furthermore, the median of session duration was for both Gnutella and Napster 

approximately 60 minutes. Chu et al. [Chu, 2002] did a similar study on Gnutella and 

reported that peer availability is influenced by the time of day in their geographical 

location. Their session duration measurements agreed with [Saroiu, 2002]. In [Sen, 

2002] Sen and Wang used offline analysis of flow-level data collected passively from 

multiple routers across a large tier-1 ISP backbone. They reported that 60% of peers in 

the FastTrack network (Kazaa) stay connected for 10 minutes or less while 20% of the 

overlay connections last for a minute or less.  They also confirmed the correlation 

between time of day and peer availability. Qiao and Bustamante [Qiao, 2006] reported 
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that in the Gnutella network 50% of all peers have a session length smaller than 4,300 

seconds, and 80% have session lengths smaller than 13,400 seconds (less than 4 hours). 

Only 2.5% of the session lengths measured were longer than one day. Similarly, for the 

Kademlia-based Overnet network (eDonkey) the median session length was around 

8,100 seconds, 80% of the peers‟ sessions lasted less than 29,700 seconds, and only 

2.7% of all session lengths lasted more than a day. In [Bhagwan, 2003] the authors 

made similar measurements which also demonstrated time-of-day effects in peer 

availability. They reported that on average a peer joins and leaves the network 6.4 times 

a day. They also approached peer availability by taking into account both short-term 

(daily) and long-term (permanent) arrivals and departures of peers. Their short-term 

results were compatible with these discussed above. Regarding long-term availability 

they suggested that over 20% of peers arrive for the first time or leave permanently 

every day. 

Due to the decentralised nature of P2P networks, measuring churn is not a 

precise process. The use of network crawlers, necessary due to the lack of a global 

vantage point, precludes the generation of an accurate snapshot of the global overlay; as 

by the time even the fastest crawler completes its crawl, a number of peers have left or 

joined the network. Also, otherwise available peers may be unreachable to the crawler 

because they are behind NATs or refuse crawler connections. More crucially, the 

measurement strategy followed may introduce bias. Stutzbach and Rejaie [Stutzbach, 

2006], identify peer sample selection as applied by [Saroiu, 2002] and [Chu, 2002] and 

length of measurement window (i.e. how sessions longer than the measurement period 

are accounted for) as two areas where bias can be introduced. 

Consequently, the findings presented in the aforementioned studies should not 

be considered highly precise, but rather indicative of the scale of dynamics in a 

constantly changing and evolving system. Nevertheless, certain observations can be 

drawn from where these studies agree, especially where different measurement regimes 

were used. Firstly, median peer session times for all the networks studied are in the 

order of tens of minutes, increasing slightly in newer studies. This increase can be 

attributed to the greater penetration of broadband connectivity and the employment of 

incentive schemes by newer systems as discussed in the previous section. Median 

availability is around 30% with less than 3% of peers staying available for more than a 

day. In all studies a number of peers have relatively long session times. A large part of 

the population, however, joins the network for a few minutes only, attributing to the low 

median figures. In general, these data suggest high overall churn rate for all networks. 
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Statistical characterisation of peer session length and peer inter-arrival times is 

particularly important for P2P network simulation. The appropriate distributions to 

match the real-life peer-arrival and peer session durations patterns for use in simulation 

have been the subject of much debate.  A number of studies have assumed both 

distributions to be exponential [Liben-Nowell, 2002; Rhea, 2004], as traditionally done 

when modelling independent events occurring at a constant average rate. Stutzbach and 

Rejaie [Stutzbach, 2006] found the use of Weibull or log-normal distributions more 

fitting to the set of data they collected. The majority of studies, however, consider the 

session length distribution as Pareto (heavy-tailed) [Bustamante, 2003; Leonard, 2005; 

Wang, 2007]. The results presented in [Gummadi, 2003b] and [Sen, 2002] mentioned 

earlier, also point towards a Pareto distribution. Given these results, modelling session 

length using a Pareto distribution and peer arrival using an exponential distribution (as 

in [Qiao, 2004]) appears to be the most appropriate route. 

The observation that there is strong correlation between peer availability and the 

local time of day suggests that peer availability is affected by the daily schedule of 

users. The period of lowest availability in a time-zone is observed between early 

morning and early evening – typically during normal working hours [Klemm, 2004]. 

Depending on the size and scope of a network this characteristic can have significant 

consequences. At the time of lowest availability, small networks with strong peer 

locality may experience a discernible reduction of the available pool of resources and 

inadequately replicated resources (such as files) may become temporarily unavailable. 

Distributed storage systems or databases, which are vulnerable to such a scenario, may 

thus need to take this issue into account and explicitly replicate objects to 

geographically-disparate peers to ensure availability at all times. In general, however, 

networks where peers extend to different time-zones or enjoy adequate participation at 

non-peak times are not susceptible to such effects. 

In conclusion, high churn rates are evident in all current P2P networks, 

regardless of protocol. Peers with very short session times have the largest effect on 

overlay dynamics. While P2P services are built on the premise that peers will have short 

and unpredictable lifecycles, high levels of churn are harmful as they reduce 

performance and affect their stability. The proliferation of broadband connectivity alone 

cannot be expected to lessen the rate of churn drastically. In fact, faster connectivity 

may lead to an increase in churn as tasks can be completed in shorter sessions, allowing 

self-interested users to leave the overlay sooner. As such, mechanisms to manage churn 

and minimise its impact on basic service functions need to be at the core of P2P service 
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development and not be added as an afterthought. This is particularly important for 

many DHT-based systems which although tuned to perform well in ideal conditions, 

suffer when deployed in actual networks. 

3.3.3 Content-related characteristics 

The exchange of content comprises one of the most popular application domains 

where P2P networking is applied. The unique impact on the network caused by the use 

of content-sharing P2P applications by a sizeable part of the public27 makes the 

examination of workload characteristics necessary for the comprehensive understanding 

of how such services behave. The analysis of volume, types and popularity of shared 

resources as well as how these attributes vary with time stimulated by user behaviour, 

can provide invaluable insights on how to build more efficient file-sharing 

infrastructures, while being critical for their realistic simulation. 

In P2P networks, content is generally made available in the form of distinct 

objects (files) shared by each peer. As such, P2P-accessible content is immutable. 

Because of that immutability, a peer needs to obtain a particular file only once. In 

contrast, web-based content is highly dynamic and may be updated, modified or 

personalised. As a result, it is natural for web pages (for instance of news sites, etc) to 

be fetched multiple times per client. As pointed out by Gummadi et al [Gummadi, 

2003b], unlike the Web whose workload is driven by document change, the primary 

forces in P2P file-sharing networks are the creation of new objects and the addition of 

new users. The P2P workloads are also typically larger than these of the web. A 

download of a large file in a P2P network may take multiple sessions to complete. 

Finally, the longer download times make user cancellation of P2P downloads before 

they are completed more common compared to web content. 

These differences between web and P2P workloads mean that concepts 

extensively researched for the former cannot be unreservedly applied to P2P file-sharing 

networks. The distribution of file popularity is one such area. While it is common 
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 The three most popular P2P file-sharing networks (eDonkey, Gnutella and FastTrack) claimed an 

approximate total of 7.5 million users in 2005 (source: www.slyck.com statistics 01/09/2005). 
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practice to use a Zipf distribution28 to represent object popularity on the web (e.g. 

[Breslau, 1999]), a number of studies deem it unsuitable for P2P workloads. Gummadi 

et al [Gummadi, 2003b] examined a 200-day trace of Kazaa traffic and observed that 

the file popularity distribution was not accurately represented by a Zipf distribution, 

especially for the most popular files. Instead, the graphical representation of the 

distribution curve produced using their collected data demonstrated a considerably 

flattened “head”. The consequence of that observation is that the most popular objects in 

a P2P network are significantly less popular than a Zipf distribution would predict. In 

other words, a Zipf distribution would overestimate the popularity of the most popular 

files. That difference was attributed to the “fetch-at-most-once” behaviour of peers and 

large object sizes in contrast with the web. The large size and resulting long time to 

download, in particular, motivates users to decide whether they are really interested in a 

file before downloading it. The same observations on the flattened head of the 

distribution were made by Klemm et al [Klemm, 2004] and Saleh and Hefeeda [Saleh, 

2006]. The former combined two Zipf distributions with different parameters to best fit 

the two parts of the curve (main body and tail). The latter proposed a Mandelbrot-Zipf 

distribution. Chu et al [Chu, 2002] similarly noted that Zipf did not provide an accurate 

representation of their data on Gnutella. They found that a log-quadratic distribution 

fitted better. However, they did not justify why that occurred or whether log-quadratic 

distributions should be appropriate for characterising file popularity in P2P networks. 

These studies show that in P2P networks a few files are highly popular but there 

exists a long tail of unpopular files. This observation is valid both when examining 

popularity by measuring instances of files (replication) and numbers of queries [Fessant, 

2004]. File replication per peer is reported to be highly skewed but does not follow a 

power law [Stutzbach, 2007]. Specifically, according to the aforementioned study most 

peers share a moderate amount of files (or bytes) while a few peers contribute an 

enormous amount. The median value for shared files is around 70 files while 0.01% of 
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 Zipf‟s law (named after linguist George K. Zipf) states that the frequency of the ith-most popular object 

is proportional to 1/i
s
, where s is the “Zipf coefficient” characterising the distribution. In the context of 

object popularity a Zipf distribution means that a small number of objects are extremely popular, but 

there is a long tail of unpopular ones. 
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peers share more than 7,500 files. The median value of shared space is around 650 MB 

while 0.1% of peers contribute more than 85 GB. 

In the same study the authors reported that 60% of all files in Gnutella are a few 

megabytes in size (between 1 and 10 MB). Audio and video files collectively 

constituted more than 73% of all files in the system, occupying more than 93% of the 

aggregate capacity (bytes). The audio files accounted for 67% of files and 40% of bytes 

while video files constituted around 6% of files but 52.5% of bytes (due to size). In 

comparison, an analysis of Gnutella in 2002 [Chu, 2002] reported that audio files 

constituted 67.2% of files and 79.2% of bytes and video files amounted to 2.1% of files 

and 19.1% of bytes. It can be assumed that file-sharing networks move towards larger 

workloads. 

It has to be noted that advances in storage technology and broadband 

connectivity penetration as well as the appearance of more advanced file-sharing 

systems will influence user behaviour and thus both workload and traffic volumes. The 

aforementioned reports therefore are relevant for the time frame and protocol they 

examined. Nevertheless, they provide valuable information on workload characteristics 

as well as user trends. 

3.4 Summary and conclusions 

Having examined the basic types of P2P systems, it becomes apparent that two 

predominant architectural routes exist: systems that form unstructured and systems that 

form structured overlay topologies. Their differences are fundamental: In the former, no 

control whatsoever is imposed on the way peers are interconnected, ultimately resulting 

in a topology of no discernible structure. Structured systems, on the other hand, have 

their peers form deterministic topologies, where each peer is attached to a particular 

point in the overlay. This way, the location of any peer or resource can be determined in 

a bounded number of steps. 

Unstructured systems are characterised by their simplicity and inherent self-

organisation features, but at the same time cannot scale efficiently to accommodate 

large numbers of peers. Structured systems in comparison enjoy superior scalability and 

performance and offer search guarantees. However, they cannot handle the dynamic 

nature of peers as well and in many applications require more complex mechanisms for 

translating and mapping a user query to a resource. 
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A lot of work is devoted to addressing the shortcomings of each side. Better 

search techniques, for instance, improve the search capabilities of unstructured 

networks. Similarly, better geometries make DHT-based systems more resilient to node 

failures. Such efforts, however, remain largely protocol-centric and rarely consider how 

the resulting service will affect the network ecosystem. The manageability of P2P 

services is equally important no matter which approach is taken to construct the overlay. 

The next chapter presents the proposed framework for the management and control of 

P2P overlays, aiming to address the broader issues arising from their use of network 

resources, while helping them operate at their maximum potential.  
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4. THE ACTIVE VIRTUAL PEER 

4.1 Introduction 

As discussed in the previous chapters, a key issue with current P2P architectures 

is that while they enjoy desirable self-organising properties and can be deployed with 

very little effort and support, they consume resources inefficiently and unfairly, starving 

other network services from bandwidth, conflicting with applied network engineering 

functions and traffic cost optimisations and even suffer from degraded performance 

themselves. The near-collapse of the early Gnutella network because of poor scaling 

[Ritter, 2000], helped identify two important issues: Firstly, that peers have different 

capabilities and should be treated as such [Saroiu, 2002], and secondly, that the 

introduction of structure and limited control inside a P2P network can be valuable [Lv, 

2002a]. 

In order to exploit heterogeneity into unstructured, decentralised P2P services, 

the introduction of hierarchy has been proposed. Super-peers and distributed mediation 

servers, as in later versions of Gnutella [Yang, 2003], Kazaa [Kazaa] and eDonkey2000 

[eDonkey] are based on such a concept. Others suggest the introduction of structure in 

the overlay, in order to improve performance and scalability by having a deterministic 

view of the network. DHT-based topologies represent the latter concept. 

These approaches, however, comprise only partial solutions to a more complex 

control problem. In particular, variability in service demand or load patterns can only be 

dealt with in a limited way. The demand for services may form hotspots which may 

shift within an overlay from one location to another over time. Furthermore, these 

protocol-specific designs rarely adopt a holistic view of the network which would take 

into account co-existence with other network services and the needs of network 

providers. In particular for the latter, the obliviousness of most popular P2P applications 

to the underlying network infrastructure cannot be dealt with by structure or hierarchy 

alone. The diversity and distributed nature of P2P protocols is in itself an obstacle to 

addressing these issues satisfactorily or in a consistent manner. P2P applications 
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therefore require a more flexible and dynamic method of control and management.  In 

particular, different control methods should be in place when and where needed, should 

be usable in combination with each other as flexibly as possible, and should be 

extensible in an evolutionary manner. In essence, the goal is to introduce and implement 

control and structure into P2P services on demand. But first, the nature and amount of 

control has to be identified. 

4.2 Objectives and requirements of P2P overlay management 

Acknowledging the nature and unique characteristics of P2P applications, it is 

important to examine how adaptive and un-supervised control mechanisms can be 

implemented without diminishing the virtues of the P2P model or introducing further 

complexity and overhead to the network. It is vital that control does not interfere with 

the autonomy of peers, impose obstacles to carrying out normal protocol functions or 

affect their performance negatively. Too much control may limit P2P application 

usability, causing user dissatisfaction and prompting developers to adopt evasive tactics. 

In order to be effective therefore, any control mechanisms must first and foremost 

understand and be compatible to the way P2P applications operate. 

The work presented in this thesis identifies as the primary causes behind the 

inefficient and unfair utilisation of network resources by P2P applications the separation 

and mismatch between P2P overlay and the network layer, the short and unpredictable 

lifecycles of peer relations and the inability to distinguish peers in terms of their 

individual capabilities, behaviour and motivation. Starting from there, four areas where 

control may be beneficially applied have been identified. 

The first is access control. Participants of P2P overlays can typically connect to 

any peer present and are granted access to all resources offered by other peers. Such 

unregulated access leads to inefficient operation and mismatching of overlay and 

underlay. Thus, the resource provider (network provider or content provider) needs to 

regulate the admission to the overlay. For instance, through access control the resources 

certain peers may access may be specified or sets of peers may be prevented from 

accessing them altogether. Additionally, access control can be the basis for building 

more complex management functions. 

The second area is resource management. The resources of individual peers are 

both limited and valuable and need to be treated with care. For instance, low-bandwidth 

or lightweight peers (e.g. mobile devices) should not be overloaded with requests and 
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exploited equally compared with their better-connected counterparts. This includes 

network resources which are limited and need to be shared fairly. Resource 

management has the task of protecting both peer-owned and network resources from 

inefficient uses. 

A third area of importance is traffic load. Overlay load control is concerned with 

the characteristics of traffic flows inside the overlay and their impact on both overlay 

and underlay. Its goal is to balance the load of overlay connections and map it optimally 

onto the underlying network infrastructure in order to maintain sufficient throughput for 

peers while also protecting other network services and uses. 

Finally, the fourth area of beneficial control is adaptive topology control. 

Overlay connections may be established or destroyed arbitrarily by peers since they can 

join or leave the network at any time. Topology control may enforce redundant 

connections and create alternative overlay paths, thus increasing the reliability of the 

service. In addition, topology control may influence the structure of the overlay to 

increase efficiency of broadcast traffic and, in combination with other forms of control, 

alleviate temporary hotspots of demand. 

The identified areas support the aim of having adaptive and application-suited, 

management strategies for P2P services. The outlined control objectives might at first 

appear to violate the populist concept of unlimited access to free resources in P2P 

services, but if properly used, control mechanisms governed by these objectives can 

increase the stability of P2P services based on overlays. The rest of this chapter 

describes how the proposed management architecture applies these forms of control in a 

way that guarantees application autonomy and unrestrained operation. 

4.3 The Active Virtual Peer concept 

The support infrastructure presented in this thesis comes in the form of a 

framework which facilitates a flexible and adaptive mode of P2P service and overlay 

management. Its main element is the Active Virtual Peer (AVP). As its name implies, 

an AVP is a virtual entity which interacts with other peers inside a P2P overlay. To 

these peers, an AVP is viewed as another peer, able to communicate with them via the 

P2P protocol in use. Its purpose is two-fold: the AVP offers the means for management 

of the P2P overlay, while enhancing the P2P service experience of its users. By 

inserting an AVP inside the P2P network an ISP can manage aspects of the service‟s 

behaviour in a manner that is transparent to the rest of the peers while having an 
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“insider‟s” view of it at the application level. At the same time, the AVP will attempt to 

make the P2P service operation more efficient by leveraging its broader view of the 

network, unique knowledge of the network infrastructure available only to the ISP, 

high-speed connectivity and high availability29 to serve other peers in its community. 

Being part of the P2P network, the AVP can enjoy the advantages of flexibility and self-

organisation inherent to P2P networking. Additionally, an AVP can perform functions 

not expected by an ordinary peer. An AVP will use the P2P protocol messages it 

collects to deduce real-time information about the state of the overlay and its peers and 

may create or modify such messages in order to affect their behaviour. 

An AVP consists of various distributed and coordinated components that 

facilitate different forms of management. By combining these components based on 

network conditions or administrative policies, AVPs of different scope or functionality 

can be created. The AVP architecture is P2P-based itself. It is envisaged that ISPs will 

deploy a number of AVPs throughout their networks, according to their needs. These 

AVPs will self-organise in a group and exchange information about peer behaviour in 

their vicinity that may not be visible from a single vantage point. Furthermore, in true 

P2P fashion, a group of AVPs will collaborate with each other to enlarge the scope and 

effectiveness of their operation and carry out tasks collectively. 

The AVP functionality is separated into three basic components. These AVP 

components are depicted in Figure 10. 

The main component of the AVP architecture is the Application Optimisation 

Component (AOC). The AOC contains the core functionality of the AVP and as such 

comprises the minimum configuration an AVP may have. Its task is to monitor, control 

and optimise the state of the P2P overlay at the application level. Towards that, the 

AOC captures, examines and modifies P2P protocol packets, creates and destroys 

connections with other peers and applies application-specific routing in conjunction 

with any access control policies in place. The routing performed by the AOC may be in 

response of inferred peer state or link state measurements, thus changing the load 

imposed on peers by protocol functions and overlay link characteristics like throughput 
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 It is assumed that AVPs, being part of the management infrastructure of a provider, will be run on 

adequately provisioned hardware and have high-speed connectivity. 
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or delay. The AOC allows for active overlay topology control, which is accomplished in 

two ways: The Active Virtual Peer may initiate, accept or terminate overlay connections 

based on access restrictions or topology features. Topology characteristics such as the 

number of available alternative overlay paths or characteristic path length may be 

enforced on the overlay structure. Furthermore, the AOC component makes use of the 

ALAN (Application-Level Active Networking) control mechanisms, examined shortly, 

for implementing its self-organisation features. The AOC can instantiate modules 

implementing AOC or other AVP functions whenever and wherever30 needed. These 

features enable the AOC to adapt the virtual overlay structure to varying demand, traffic 

patterns and connectivity requirements by launching new overlay connections and new 

virtual peers. These self-organisation features offer flexibility to the AVP to respond to 

the ever-changing conditions inside a P2P overlay. 

 

Figure 10: The AVP component architecture. 

Traffic management by the AVP is assisted by another component, called the 

Virtual Content Cache (VCC). The VCC provides P2P content caching capabilities at 

the application-level. By maintaining often-requested content in close proximity, and in 
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 The ability of AVP components to be instantiated on different parts of the overlay depends on the 

numbers and locations of the execution environments an ISP may provide. In that context “wherever” 

means “in any of the available locations”. 
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particular inside an ISP‟s domain, large economies in resources and performance gains 

can be achieved. The design and implementation of the VCC are discussed in depth in 

the next chapter. 

Finally, the capabilities of the AVP architecture can be augmented with the 

addition of the Network Optimisation Component (NOC). The role of this component is 

to provide the AVP with dynamic traffic engineering capabilities which will map the 

P2P overlay traffic onto the actual network layer much more effectively than current 

systems do on their own. A discussion of the NOC is presented later in the chapter. 

It is envisaged that the AVP architecture presented here will be extended with 

other components that can run on top of the AOC and complement the architecture with 

additional functionality. Such components may, for example, contain service-specific 

functionality to accommodate IM or P2P video streaming services. The AVP 

components themselves are developed in a modular way, so that multiple P2P protocols 

can be incorporated with little or no changes to the rest of the software. 

 

Figure 11: An example of an AVP deployment. 

Figure 11 depicts a scenario where two AVPs, AVP 1 and AVP 2, are located 

within a single administrative domain (e.g. within an AS). AVP 1 consists of two AOC, 

one VCC and one NOC component, while AVP 2 comprises of two AOC components. 
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Multiple ordinary peers, denoted by “P”, maintain connections to them and to each 

other. The two AVPs maintain overlay connections with each other. 

The AVP architecture was designed to meet a number of objectives deemed vital 

for the applicability and success of the concept. These are: 

 Transparency to P2P applications: Any solution requiring the active cooperation 

of P2P applications involves their modification, restricting its applicability to 

only those applications whose developers agree to incorporate the necessary 

features. Establishing communication channels and convincing developers is a 

major task, especially if the latter have concerns about performance degradation 

or feature control of their applications. The AVP design, therefore, was dictated 

by the need to operate without the active knowledge and cooperation of peers. 

 Compatibility to P2P philosophy: Effective management should originate from 

understanding how P2P networks operate, why they carry out certain functions 

the way they do and from respecting the desire of their users/ISP customers to 

run such applications without obstacles. Specifically, the management 

framework must avoid imposing control measures that affect the connectivity or 

degrade the search and download performance of peers. Moreover the system 

must be compatible to P2P timescales of operation, churn, and decentralised 

communication. 

 Improvement of P2P application performance: The capability to interact with 

P2P applications and control aspects of their behaviour gives an ISP the 

opportunity to leverage its role and unique knowledge of the network to improve 

application performance, especially since the difficulty of applications to infer 

such information on their own leads to inefficient decisions. Furthermore, it 

strengthens compatibility with the P2P concept and serves as proof to both 

customers and developers that the ISP does not apply management to restrict 

P2P usage but rather to streamline utilisation and protect network resources. 

This creates a win-win situation where both the ISP and the end-users benefit 

and ensures the acceptance of the management framework by the latter.   

 Scalability: P2P usage is already very substantial and appears to be steadily 

increasing [Cho, 2006]. Therefore the system must be able to scale with 

increasing numbers of peers without performance degradation that may affect its 

effectiveness. 
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 Manageability: Given the dynamic nature and complexity of P2P overlays, the 

system should not require constant supervision by a human operator, should be 

largely autonomous and easily manageable. 

 Extensibility: The design of the AVP should allow the system to be extended 

easily, both in terms of deployment size and in terms of capabilities. 

4.4 Implementation of the AVP with ALAN 

The proposed implementation of the AVP is based on the Application Level 

Active Networking (ALAN) concept [Fry, 1999; Ghosh, 2000; Ghosh, 2001]31. ALAN 

enables the dynamic deployment of active services in the network, but at the application 

rather than the router level (as in [Tenenhouse, 1996]). The aim of such an approach is 

to realise the advantages of active networking (the rapid creation of intelligent, 

personalised services), without facing the disadvantages of router-level implementation 

(implementation complexities, deployment costs, security issues, disinclination by the 

providers to change something that “works” etc). The ALAN infrastructure offers rapid 

deployment of network services and their on-demand provision to specified users or 

communities. ALAN is based on an overlay technique: Active nodes, which operate on 

the application level, are strategically placed within the network. These nodes, called 

Execution Environments for Proxylets (EEPs), enable the dynamic loading and 

execution of active code elements, called “proxylets”, from designated proxylet 

repositories. The resulting services may interfere with data transport and control. ALAN 

provides mechanisms for dynamic EEP discovery, application specific routing, and 

service creation by deploying a web of proxylets across the physical infrastructure. The 

“Self Organizing Application-level Routing” (SOAR) protocol [Ghosh, 2000], which is 

a key component of ALAN, enables clustering and grouping of proxylets. This way, 

ALAN facilitates the creation of an application-specific connectivity mesh and the 
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 ALAN comprises work carried out as part of the ALPINE (Application Level Programmable Inter-

Network Environment) project. ALPINE was funded by BT Labs and was a collaboration between 

University of Technology-Sydney, University College London, Imperial College London, University of 

Lancaster and University of Sussex. 
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dynamic forming of topology regions. Finally, ALAN provides the basic administrative 

mechanisms necessary for managing such an architecture. 

ALAN allows new services to be deployed in “the wild” and their effectiveness 

tested without compromising any existing network architectures. Moreover, 

infrastructures which interact with the application layer such as the AVP concept are 

better suited to be provided on the application layer itself, rather than involving lower 

layers, as claimed by the end-to-end argument [Saltzer, 1984; Reed, 1998]. Finally, the 

use of ALAN allows for AVP components to self-organise and be deployed when and 

where needed. 

An ALAN implementation of the EEP environment along with a control and a 

monitoring interface are available under the name “funnelWeb”. Proxylets for the 

funnelWeb implementation are written in the Java programming language [Arnold, 

1996] to take advantage of the language‟s portability and security model properties. 

Proxylets are packaged in the form of single Java archive (JAR) files and can be stored 

in normal web-servers. These web servers need no modification to serve as proxylet 

repositories, and as a result proxylets can be easily referenced via URLs (Uniform 

Resource Locators). Proxylets are loaded by reference, meaning that EEPs do not need 

to store copies. This makes the management of different versions of proxylets easy, as 

only the original copy of each proxylet needs to be controlled. The control interface 

available with funnelWeb (depicted in Figure 12) can be used to load, run, stop and pass 

parameters to a proxylet. The monitor interface provides status information for the 

proxylets that run on a particular EEP.  

 

 

Figure 12: The funnelWeb EEP control interface. 
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The AVP components are implemented by single or multiple interconnected 

proxylets. This allows the implementation of the AVP architecture in separate 

components. For instance, a proxylet may execute the AOC functions whereas an 

additional proxylet may form the Virtual Control Cache or the Network Optimisation 

Component. This approach facilitates flexibility and efficiency in the constantly 

changing conditions of a P2P overlay. Different configurations of AVPs (i.e. AVPs with 

or without VCC or NOC components) can be deployed in parts of the network that 

experience different characteristics, or even in the same part of the network at different 

times of the day when conditions have changed. In addition, it is possible that different 

proxylets exist which implement the same functions differently. This gives further 

choice over the functionality of the AVP. For the prototype implementation using 

funnelWeb, AVP proxylets are written in Java. An AOC proxylet running on top of an 

EEP is conceptually illustrated in Figure 13. 

 

Figure 13: AOC proxylet running on an EEP. 

Figure 14 illustrates the relationship between the network layer and the P2P 

overlay after the introduction of an AVP consisting of two proxylets. Although the 

proxylets execute on two different hosts, from within the application overlay, they are 

perceived as a single AVP. 
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Figure 14: Relationship between network plane and application overlay. 

4.5 Overview of AOC design 

The AOC component contains P2P protocol-specific sensors and effectors to 

monitor and interact with the P2P overlay respectively. As each P2P protocol differs, 

sensors and effectors are designed in a modular way so that the ability to understand 

new protocols can be accommodated as they appear. The sensors continuously collect 

information about the state and activity of peers an AOC is connected to, such as 

searches, shared resources, active connections or other information the protocol may 

provide. Information gathered from captured P2P protocol messages is supplemented 

with that collected from light-weight network probing (e.g. [Ng, 2003]). This 

information is combined with similar information collected by AOCs that reside in other 

parts of the overlay. The exchange and correlation of peer and overlay state information 

allows for coordinated control of the overlay. Especially for unstructured networks, a 

group of AVPs is more suitable to evaluate the conditions inside a part of a P2P overlay 

from multiple vantage points than a single monitoring entity and this information is 

distributed in order to achieve better results. Control is applied by AOC effectors, 

namely the “Router module” and the “Connection Manager module”. The Router 
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module governs the relaying of messages at the application level according to local or 

federated constraints, for instance access control or performance optimisation policies. 

The Connection Manager module handles overlay connectivity and enforces control 

through its selective manipulation. 

4.5.1 Router module 

The router module is itself internally organised in a modular, tree-structured 

way, wherein each supported P2P protocol has its own independent routing element. 

This way it is possible to keep protocol-specific functions encapsulated and separated 

from other functions. In addition, this allows for protocol-specific optimisations to be 

offered where available. For instance, the Gnutella protocol element has a probabilistic 

routing mechanism incorporated, which will be discussed shortly. Finally, an AOC 

protocol element supports routing between AOCs. 

 

Figure 15: Structure and information flow inside the router module. 

As illustrated in Figure 15, at the entry point of the router module lays the “root” 

routing element. Every received packet is passed to the root element, where all active 

connections are added as possible routes. From there, packets are passed to all protocol-

specific elements attached to it, which process them according to their specific 

capabilities. For instance, a Gnutella router element can perform Gnutella protocol 

routing while an AOC router module routes AOC protocol messages. Every element 

decides independently whether it can handle a packet or not. Different elements are 

grouped according to their purpose (e.g. the Gnutella element has a probabilistic routing 

capability, discussed shortly). At the end of each path the send element is found. The 

send element passes the processed packets to the connection manager for transmission 

to another peer or AOC proxylet. 
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4.5.2 Connection Manager module 

The connection manager module is responsible for the handling of all active 

connections (incoming and outgoing) and connection listeners maintained by an AOC. 

The module consists of two main components: the message processing queue and the 

connection list. As its name implies, the message processing queue queues and 

processes all incoming packets as they arrive. Packets may be passed to an appropriate 

P2P protocol handler for further processing, if an operation is required on the message 

contents, before forwarded to the router module described earlier. After the desired 

forwarding path(s) is established, the packets return to the connection manager for 

transmission. 

The connection list holds information about all connections handled at a given 

moment (e.g. connection type, protocol, destination, etc) to enable stateful management 

of overlay connections. Real-time connection statistics and error logs, which are 

collected by the relevant sensors, are also stored in the connection list. 

4.5.3 AOC administrative interface 

The AOC contains an administrative interface which facilitates the control and 

configuration of the proxylet by an administrator via a remote console over the network. 

The administrator can issue commands to execute AOC functions manually or modify 

configuration parameters. Additionally, the administrative console can provide the 

operator with run-time module information, connection information or display AVP 

routing tables. 

Configuration and management of AOC functions can also be carried out 

through the use of AVP policies. AVP policies are discussed in detail in Section 4.7. 

4.6 AOC functions 

4.6.1 Access control 

One of the core capabilities of the AVP is access control. The AOC component 

can create areas of control inside a P2P overlay, where all communications between the 

controlled domain and the global overlay are inspected and appropriately managed by 

the AOC. The goal is to control who can access the peers and their resources inside the 

domain of interest. An AOC proxylet imposes access control by blocking and/or 

modifying P2P protocol packets communicated between the controlled domain and the 
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rest of the network. The desired result is for peers inside the controlled domain to be 

able to reach directly only each other and become practically invisible to any peer 

outside that domain that is not granted access. At the same time, the AOC proxylet 

becomes the mediator between the controlled domain and the global network. 

The effectiveness of such a scheme depends on the P2P protocol of interest and 

the amount of autonomy the AVP operator wishes for the P2P service to retain. More 

specifically, how effectively an AVP deployment manages to separate the controlled 

domain from the rest of the overlay depends on how overlay operations such as peer 

join and searching are carried out by a particular protocol and whether the AVP operator 

wishes to apply a mild manipulation of these operations (for instance with the AOC 

capturing and manipulating only the messages it can receive naturally) or greater 

control. In the latter case, an AOC can become a sort of proxy for peers belonging to an 

ISP network, whose every communication with peers from other ISP networks passes 

through the AOC. 

Full access control gives AOCs an almost complete picture of local peer 

behaviour since all requests and transactions with other peers pass through the former. 

This is desirable because it makes other forms of management more effective. For 

instance, if VCC caching (discussed in the next chapter) is applied, it makes sense to set 

up fully controlled domains in order to maximise transit traffic savings. Given the peers‟ 

inherent autonomy, AVP access control may seem challenging, especially since no 

changes to the P2P protocol are required. However, it has been demonstrated that the 

initial neighbours of a peer, which are the outcome of the bootstrapping process, have a 

very large influence on its future search and download performance [Karbhari, 2004]. In 

other words, by ensuring that the proposed neighbour list sent to a peer during 

bootstrapping contains a number of AVPs (the more the better) and local peers only, a 

large step has been made towards ensuring that this peer will remain locally connected 

for the entirety of its session. This can be achieved with a trivial DNS redirection to a 

locally managed bootstrapping server (e.g. for Gnutella a GWebCache server 

[GWebCache]), as casually performed by Content Delivery Networks (CDNs). This 

approach can be strengthened further by ensuring unmediated P2P connections to the 
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rest of the network are rate-limited, although this is not necessary. Interestingly, even 

after bootstrapping, exchanged peer messages and “word of mouth” will steer peers 

towards connecting to AVPs and other local peers. Furthermore, the high availability 

and performance offered by the AVPs compared to ordinary peers is progressively 

“memorised”32 by local peers who will opt to connect to AVPs instead of random peers 

at their own accord. Lastly, an additional advantage of managing a local bootstrapping 

server besides access control is that it can be used to perform some initial load 

balancing of the local overlay. 

The clustering of local peers as a result of controlled domain creation may raise 

concerns that overlay stability and resilience is compromised. The AVP framework 

addresses this issue by having each AOC maintain numerous and purposefully varied 

connections to peers in different ASes to ensure that effective local peer scope remains 

robust even at high churn conditions. Inside the domain peers are redundantly connected 

to more than one AOC, minimising the risk of becoming disconnected in the case of 

AOC failure. 

Using Gnutella as an example, a scenario of access control will now be 

presented. A typical Gnutella packet contains the following information [GDF]: 

 Source and destination connection attributes (IP address, port number, GUID33, 

Message ID34) 

 TTL (Time To Live) and hop values 

 Payload type (Ping, Pong, Query, QueryHit, Push) 

Other protocols use similar attributes for their operation. Gnutella uses “Ping” 

messages for neighbour discovery. In Figure 16a, Peers 1 to 5 reside inside the global 

Gnutella overlay. Peer 2 sends out a Gnutella “Ping” message in order to discover other 

peers. Under the Gnutella protocol, a Ping has to be forwarded by the receiving peer (in 

                                                 

 

 
32

 Peers maintain “known host” lists of peers with whom they had successful transactions in the past for 

performance and resilience reasons. 

33
 A GUID (Globally Unique Identifier) is a 16-byte long string uniquely identifying a peer inside the 

Gnutella network. 

34
 A Message ID is a 16-byte long string identifying a particular message inside the Gnutella network. 
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this case Peer 5), to any peer directly connected to it. Moreover, every peer that receives 

a Ping message has to respond with a “Pong” message. Thus, Peer 2 eventually receives 

“Pongs” from Peers 1, 3, 4, and 5. In the access-controlled scenario, illustrated in Figure 

16b, an AVP manages a controlled domain (CD), where Peers 1 and 2 reside.  The AOC 

proxylet examines all communication to and from the CD. When Peer 2 sends out a 

“Ping” to discover other peers, the AOC proxylet intercepts the “Ping” message and 

forwards it unmodified to Peer 1 which also is part of the CD. In addition, the AOC 

proxylet modifies that “Ping” so it seems like it was initiated by itself, i.e. it changes the 

source connection information (IP address and GUID) of the message. Then, the AOC 

proxylet relays the modified message to the outside world, on selected routes if deemed 

necessary. Peer 2 receives “Pongs” by Peer 1 and the AOC proxylet and concludes that 

only these two peers comprise its neighbourhood. The AOC proxylet captures all 

messages originating from the global Gnutella network, modifies them if necessary, and 

forwards them inside the controlled domain. This way, the AOC proxylet makes sure 

connections to the CD are not created from the outside and gathers information about 

the global Gnutella network that can be indirectly utilised by the peers (e.g. searches) 

inside the CD. 

 

Figure 16: Access Control on Gnutella by the AOC. 

4.6.2 Routing control and load balancing 

The AOC routing module represents the core mechanism for application of 

control. As seen earlier, appropriate routing of messages can influence peer behaviour to 

a large extent. As a result, most other controls utilise the routing module as part of their 

operation. 

A particularly valuable form of routing control, which also overlaps with the 

goals of topology control, is control of local peer relations. Specifically, apart from 
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influencing the way local peers interconnect with each other for overlay membership 

and signalling functions as per access control, the AOC can also bias to a certain extent 

the selection of download sources by local peers and thus resulting transfer connections 

without diminishing typical transfer performance. When a local peer searches for an 

object and adequate sources exist both globally and inside the ISP‟s network, the AOC 

can promote the local sources by suppressing most (or all, depending on the amount of 

appropriate local replicas) non-local responses while forwarding local ones. The 

intended effect is the formation of local rather than inter-AS peering relations. 

Crucially, by leveraging the ISP‟s privileged knowledge of the underlying network 

infrastructure and their ability to obtain accurate measurements much more effectively 

than peers on their own, AOCs can direct peers towards optimal paths and appropriate 

neighbours even within the ISP‟s network. Therefore, routing control can be used as a 

tool to help the typically topology-agnostic peers avoid making costly and inefficient 

peering decisions. 

This traffic localisation does not only help in reducing costly transit traffic for 

the ISP, but also takes advantage of the typically lower latency and less congestion 

between peers of the same domain, which may manifest on improved download 

performance. Within the domain, source balancing can achieve load distribution 

between multiple similar sources. When no local sources exist, AOCs can still influence 

peer selection and avoid inefficient overlay peering decisions by minimising the number 

of ASes traversed (i.e. promote “close” foreign peers from the list of query replies), 

selecting peers from ASes with which the ISP has a favourable agreement (i.e. peering 

agreement or lower transit traffic rates) or, if such information is available (for instance 

through a NOC module), preferring peers on non-congested paths. 

The modular architecture of the routing module allows for protocol-specific 

optimisations or improvements to be incorporated for particular P2P protocols, which 

build upon AVP‟s performance-enhancing role. The “Probabilistic Routing” module is 

such an enhancement for unstructured decentralised networks which employ message 

flooding. The probabilistic routing module identifies broadcasted protocol packets (e.g. 

query messages, neighbour discovery messages, etc) and instead of forwarding them to 

all available neighbours as expected, it does only to a subset of them in order to 

minimise overheads and load from message flooding. This module builds on the idea of 

“random walks” described in [Lv, 2002b] and [Chawathe, 2003]. As such it is not a 

novel contribution on its own but rather a service, incorporated to demonstrate the 

modularity of the architecture. The overlay connections over which a message is to be 
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forwarded are selected based on a random value assigned to the message compared to a 

given threshold per connection. If the random value for a message is larger than the 

configured threshold, the packet is forwarded, otherwise it is suppressed. This module 

bases its operation on the fact that unstructured decentralised systems largely 

approximate the behaviour of scale-free networks where most of the messages pass 

through a few hub nodes. As long as messages pass through these hubs, there is a very 

large probability they will reach their destination without the need to be broadcasted on 

every available connection. Connection thresholds are adjustable as a means to apply 

basic overlay-based load control. If upon probing an AOC detects increased delay on 

the physical path between an AOC and its neighbour, it can increase the threshold of the 

corresponding overlay connection to prevent the further degradation of the path and/or 

overloading of the peer. 

It must be noted that probabilistic routing is applied only to messages that are 

broadcasted and contain request information, such as Pings and Query messages in 

Gnutella. Messages that are sent in response to another message, and thus contain 

valuable information for the peers, are not manipulated. 

 

Figure 17: Operation of the “Probabilistic Routing” module. 

An example of probabilistic routing is depicted in Figure 17. In this example 

four Peers (1, 2, 3, 4) are directly connected to an AOC proxylet. The proxylet has 

assigned different threshold values for the links to each of these peers. Peer 1 sends a 

broadcast message to the AOC. The AOC determines a random value of 0.5 for this 

Query (values are uniformly distributed in the interval [0, 1]). Since the random value is 

smaller than the threshold value on the link to Peer 3, the AOC component does not 
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forward the packet along this connection whereas it forwards it as normal on the links to 

Peers 2 and 4. 

4.6.3 Topology control 

Topology control as enabled by the AVP aims to enforce optimal P2P relations 

inside the overlay, based on information collected from overlay measurements, 

available NOCs or the peers themselves. The AOC component of an AVP performs 

topology control by selectively setting up or terminating connections to other AVPs and 

ordinary peers, creating alternative paths where needed and restricting reachability to 

others. These mechanisms are complemented by neighbour selection biasing, discussed 

in the previous section, an application of topology control based on routing control 

mechanisms. By shaping the way peers are connected and communicate inside the 

overlay, AVPs can improve overlay stability and the performance of peer functions. 

Stability is attained by ensuring that peers which act as hubs within the overlay 

are well-connected and can be reached via alternative overlay paths, critical paths are 

not formed through high-churn peers and in general, the effect of peer departure is 

constrained. Search performance is improved by bolstering peers‟ ability to reach other 

peers in the global overlay and their search scope, as discussed earlier. Furthermore, 

paths may specifically be created between AVPs to reduce the characteristic path length 

of the overlay. 

The following scenario, as depicted in Figure 18 and Figure 19, examines how 

the AVP can apply beneficial topology control on a part of the overlay. Figure 18 shows 

a number of peers organised in three controlled domains, managed by an equal number 

of AOCs. Heavy activity between peers of CDs 1 and 2 is all mapped on the path 

between routers A and B and thus may compete with non-P2P traffic, causing 

congestion. The three AOCs exchange overlay routes in order to re-route part of the 

traffic between CDs 1 and 2 over an alternative path. As illustrated in Figure 19, AOC 3 

opens connections to AOC 2 and a peer of CD 2, creating an overlay path that can reach 

CD 2 over another physical link. By tunnelling traffic between AOCs 1 and 3, P2P link 

load between CDs 1 and 2 is balanced. 
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Figure 18: Initial overlay condition. 

 

Figure 19: Overlay after AOC control. 

4.7 AVP policy model 

The AVP administrative interface allows the manual configuration and control 

of the AOC. An AVP operator may connect remotely to this interface through a console 

and configure an individual AVP or execute available commands. While such an 

interface is useful, it does not provide a practical or scalable solution for large AVP 

deployment management. Furthermore, AVPs are envisaged to function with little real-

time support from the network provider, ideally being “fire-and-forget” entities that 

self-organise and self-coordinate with minimal attendance from an administrator. 
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Nevertheless, in order to function, AVPs need configuration data and information 

necessary for coordinating their efforts. To address this issue, ideas from the area of 

policy-based network management are employed. Policy-based network management 

enables the configuration and management of a large number of network elements and 

resources through the use of abstract rules (policies), allowing the network to be 

managed as an entity and not as a sum of many and disparate components [Hewlett-

Packard, 1999]. 

Policy-based network management (PBNM) was proposed to make the 

accomplishment of several IT tasks easier: 

 Reduce the time, cost, and problems associated with individual device 

configuration and enforcing operational coherency. 

 Meet users‟ varied needs and expectations regarding network application 

performance and quality of service. 

 Optimise the use of network resources and slow down the cycle of network 

over-provisioning to improve performance. 

Policies contain one or more rules. Rules specify a set of conditions that, when 

evaluated true, result in an action being taken. Put simply, a rule makes the logical 

statement: IF (conditions) THEN action [Moore, 2001]. This is conceptually 

illustrated in Figure 20: 

 

Figure 20: The IETF policy model. 

In the context of this research, AVPs regulate their behaviour and determine 

their scope through policies that they receive either from the network operator or other 

AVPs. AVP policies are a simplified adaptation of the work carried out in the policy-

based management area, suited to the needs and design criteria of the AVP. The 

provision of a full-scale policy-based management supporting infrastructure (for 
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example as discussed in [Waters, 1999]) was deemed incompatible to the notion of 

AVPs being peers themselves, as it would reduce their autonomy and make their 

deployment more complex. Furthermore, supporting such an infrastructure would 

introduce overheads and increase the memory footprint of the AVP proxylets. 

Consequently, only the necessary features to support AVP functions were considered. 

For that reason, throughout the text the term “policy” refers to AVP-related policies 

unless explicitly stated otherwise. 

AVP policies contain configuration data, constraints to which capabilities an 

AVP should be allowed to use and instructions on what an AVP should do in relation to 

a particular event. Policies are normally assigned to an AVP upon activation, but 

additional policies may be sent and activated during operation. 

Two categories of AVP policies exist: System-wide policies that contain rules 

and information that every AVP in a deployment should be aware of, like the range of 

IP addresses or the list of AVP IDs owned by the network operator. This will prohibit, 

for example, AVPs from interfering with peers run by customers of other ISPs. The 

second category is individual configuration policies, which apply to individual AVPs or 

groups of AVPs that manage specific parts of the overlay. These may, for instance, 

contain a list of IP address subnets inside the operator‟s network that need to be grouped 

in a controlled domain (CD). Through configuration policies, the AVPs can identify 

which peers to apply a form of control to, which to block, or whether they are allowed 

or not to use certain capabilities, such as activating a VCC component or other AOC 

components. A configuration policy will also specify the conditions that need to be met 

before such activation. 

To avoid cases where two or more policies dictate conflicting actions, large-

scale PBNM infrastructures (for example as discussed in [Waters, 1999]) implement 

“conflict resolvers” or “conflict checkers” which examine policies and either indicate or 

additionally take action to resolve any conflicts discovered. To avoid complexity, such 

functionality was not explicitly developed and incorporated into the AVP infrastructure. 

A policy priority attribute is included, however, in the AVP policy model which 

classifies a policy‟s priority as “critical”, “normal” or “best-effort” according to its 

significance. This may assist in categorising policies according to significance and 

identifying conflicts manually. The consequence of this scheme is that it becomes the 

responsibility of the AVP operator to classify policies appropriately and avoid cases of 

conflict between policies of the same scope and significance, without relying on 

automated checking by the AVPs. Nonetheless, given the clear definition of the AVP 
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policy model and use of XML, discussed shortly, it is possible that existing tools may 

be modified to support AVP policies and facilitate automated conflict identification.  

AVP policies are represented using XML [BRAY, 2004], due to its platform-

independence and extensibility. The wide use of XML ensures a high degree of 

familiarity by IT professionals as well as an abundance of editors, parsers and other 

software to assist in the creation and management of AVP policies. An XML-Schema is 

provided to ensure the proper definition and validation of policies. The complete 

schema is included in Appendix B. An example of an AVP policy is presented in 

Appendix C. 

At the highest level, an AVP policy has the following structure (Figure 21): 

 Policy Identifier (polId): a unique identifier of the policy (e.g. policy_1). 

 Policy Group Identifier (polGroupId): Interrelated policies may be grouped 

together for easier management or to create policy bundles that collectively carry 

out a complex operation. Policies of the same group share the same group 

identifier. 

 Policy Type (polType): Indicates the type of policy – individual or system-

wide. 

 Policy Description (polDescr): A string containing a brief description or 

comments on the policy‟s purpose. 

 Policy Priority (polPriority): Indicates the priority of the policy. A policy 

can be classified as critical, normal or best-effort. 

 Validity Period: The validity period of a policy indicates the time period during 

which the policy should be in effect. This way the automatic activation or 

deactivation of policies based on system time is made possible. The validity 

period can also be set to indicate permanent scope or expiration date only. 

 Conditions: The set of policy conditions. 

 Actions: The prescribed actions that must be taken if the policy conditions are 

met. 
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Figure 21: AVP policy structure. 

In order to enable the formulation of conditions with sufficient flexibility and 

clarity, they are broken down into three parts: condition objects, condition requirements 

and evaluation parameters. The condition objects (CondObject) specify which 

parameters of the system need to be monitored or evaluated as part of checking the 

validity of the rule. The condition requirements (CondReq) contain the constraints 

applied on these condition objects. The evaluation parameters (EvalParams) specify 

the relationship between the requirements and objects and any other parameters 

necessary for the evaluation of a condition. Figure 22 illustrates the structure of the 

“Conditions” element. 

A condition object may be quantifiable or not. Quantifiable objects such as, for 

instance, the number of lost packets or queries made can be represented by the variable 

complex type. The event complex type of the schema is used to represent non-

measurable or non-quantifiable objects that occur at unpredictable times. The 

appearance of a new peer in the overlay or the transmission of a P2P protocol message 

are such cases and can be represented as events. 

The Variable complex type contains the following elements: 

 Variable identifier (varId): an identifier of the variable in question. 

 Variable type (varType), e.g. “numberOfQueries”. 

 The syntax (data type) of the variable (varSyntax), e.g. “unsigned integer”. 



 

93 

 

Figure 22: Condition element structure. 

Objects represented using the variable complex type have values that can 

vary with time. The values of these variables can be monitored and updated by AVPs 

depending on the policy. An example of a variable object in an AVP policy could be 

written as: 

<Variable> 

    <varId>noq1</varId> 

    <varType>numberOfQueries</varType> 

    <varSyntax>unsignedInt</varSyntax> 

</Variable> 

The Event complex type contains the following elements: 

 Event identifier (eventId): an identifier of a particular event. 

 Event type (eventType), specifying the type of event (e.g. 

“NEW_PEER_ARRIVAL”). 
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 Event data variable (eventVariable), used for reference to any event-

specific information that may be available. 

Although, event variables reuse the structure of the Variable complex type 

(i.e. have an identifier, type and syntax), they are used for characteristics that are not 

expected to change over time. An example of an event variable may be the IP address of 

a peer that just entered the overlay (the event in this case is the peer arrival). During the 

duration of that peer‟s session this address is not expected to change. 

The condition requirements contain the requirements or constraints that need to 

be applied on the values of the condition objects so that the evaluation can be carried 

out. A complete condition may have more than one condition requirements applied on a 

number of objects. The condition requirement (CondReq) complex type contains the 

following elements: 

 Requirement identifier (reqId): an identifier of a particular requirement. 

 Requirement type (reqType). Three operators are provided: 

 Greater than (GT) 

 Less than (LT) 

 Equal (EQ) 

 Requirement object (reqObject): the condition object (event or variable) that 

this requirement corresponds to. 

 Requirement parameters (reqParam): the values or thresholds with which the 

objects will be compared. These have a similar structure to the variable type (i.e. 

parameter identifier and syntax) and hold the actual comparison values. 

For instance, reusing the aforementioned “number of queries” example, an 

accompanying requirement specifying that the number of queries should be less than ten 

could be: 

<CondReq> 

    <reqId>Req1</reqId> 

    <reqType>LT</reqType> 

    <reqObject>noq1</reqObject> 

    <reqParam> 

        <parId>lessThanTen</parId> 

        <parSyntax>unsignedInt</parSyntax> 

        <parValue>10</parValue> 

    </reqParam> 
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</CondReq> 

The evaluation parameters (EvalParams) bind together the condition objects 

and requirements by specifying the logical operators (AND, OR, NOT) that need to be 

applied to carry out the evaluation of the rule. For example, an evaluation parameter 

could be of the form: (Req1 OR Req2). The evaluation parameters are represented 

as strings. 

The Actions complex type contains the elements necessary for the 

specification of the desired course of action, should the defined conditions be met 

(Figure 23). These are: 

 Action identifier (actionId): an identifier of a particular action. 

 Action type (actionType): the action that needs to be implemented (e.g. 

“drop_connection”). This corresponds to a function call (or sequence of) that 

will carry out the actual desired action. 

 Action parameter (actionParam): a parameter that may need to be provided 

in order for a specific action to be successfully carried out. This parameter is 

specific to the particular action and has the same structure as the requirement 

parameters (i.e. identifier, syntax and value). Not all actions may require a 

parameter, in which case this field is not used. 

 

Figure 23: Structure of the “Actions” element. 

4.8 The Network Optimisation Component 

By enabling peers to create their own, physical infrastructure-independent 

overlay topologies and make their own routing decisions inside them, P2P services 
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cause a mismatch between these two topologies and routing layers. While this mismatch 

can often prove advantageous for the service‟s resilience or performance, it is also 

responsible for two major issues: The first is the steep increase of transit traffic volumes 

associated with P2P services, caused by the creation of overlay peerings spanning 

multiple ASes despite the availability of local sources, as discussed earlier. The second 

is the interference or even conflict between the separate routing layers (i.e. the underlay 

and the overlay) operating independently, which may lead to unnecessarily congested 

paths, race conditions and undermining the intended effects of any traffic engineering 

applied. For instance, the overlay route selected based on some active measurement 

(typically delay) and mapped on certain network links may cause one of them to 

become congested. Moreover, as noted in [Keralapura, 2004], co-existing routing layers 

can experience race conditions and become synchronised, leading to route and traffic 

oscillations and cascading reactions. In general, the discrepancy between the overlay 

topology and the physical network topology may not only make P2P services less 

efficient but, more importantly, may also affect the performance of other network 

services as well. 

The AVP architecture attempts to address the aforementioned heavy utilisation 

of costly and scarce inter-AS links via the topology control capabilities of the AOC and 

via P2P content caching as enabled by the VCC, which is presented in the next chapter. 

At the same time, in order to address the more general problem of overlay/underlay 

mismatch, the Network Optimisation Component (NOC) was proposed as a part of the 

AVP architecture. 

The NOC is envisaged to provide the AVP with dynamic traffic engineering 

capabilities which will map the P2P overlay traffic onto the actual network layer much 

more effectively than current systems do on their own. By matching the physical and 

overlay topologies in locations of importance or ensuring that IP traffic engineering is 

not invalidated by overlay routing mechanisms, a P2P service may realise performance 

gains while the proper state of the network is maintained. Towards that, the NOC can be 

used to provide the AVP deployment with information on the state of the network that 

can be used to make informed overlay control decisions. 

The NOC provides the interface that the AVPs operating at the application layer 

can use to learn current information about the provider‟s network. At the very least, the 

NOC can be built as a database where ISP-specific information as well as network 

measurements and statistics from various sources can be collected, combined and 

provided from a single place in a consistent format. For instance, the NOC may be 
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queried for various kinds of ISP-specific information on local peers, such as the PoP 

(Point-of-Presence) serving the subscriber whose assigned IP address matches the one 

of a peer in question, as well as his/her subscription‟s connection type and capacity, 

contention ratio, imposed bandwidth caps and other relevant information. Such 

information can be vital in inferring a peer‟s true characteristics and capabilities with a 

certainty not afforded by probes or other methods, or by relying on what information 

P2P protocols report on their own. Furthermore, the NOC may extract and process 

information from interior and exterior gateway protocols which will provide AVPs with 

valid and current insights on how overlay routes and connections translate on the actual 

network infrastructure. For example, BGP (Border Gateway Protocol) [Rekhter, 2006] 

readily supplies information on the number of ASes separating two peers as part of its 

Network Layer Reachability Information (NLRI) updates. Such information can be used 

to help AOCs promote peerings between peers that are closer together or over suitable 

paths. 

Being part of infrastructure owned and operated by an ISP, the NOC can have 

access to network-related information that a user application (e.g. a peer client) cannot 

due to its lack of a suitable network vantage point or for confidentiality/security reasons. 

In other words, the NOC can take advantage of the ISP‟s privileged position and 

knowledge of the network to gather valuable information that regular peers cannot 

collect on their own. 

Due to the size and scope of the AVP architecture and the coverage of so many 

diverse research areas as part of designing and building the AOC and VCC components 

of it, it was not possible for the NOC to be developed further beyond this initial concept 

as part of PhD research. It is envisaged that the addition of a functional NOC can bring 

a manyfold improvement to the ability of an AOC to make optimal overlay topology 

control decisions and limit the impact overlay formation and routing have on the 

underlying network topology. Since however an NOC prototype was not built, all 

further discussion and evaluation of the AVP takes care not to assume the availability of 

such capabilities in either the prototype or the simulation model. 

It is a testament to the foresight and validity of the AVP architecture, first 

presented in 2003 [Koulouris, 2003], that towards the completion of this thesis 

independent work on the topic proposed that ISPs provide P2P applications with 

guidance on suitable neighbours and paths in the form of an “oracle” service while 

protecting ISP topology confidentiality [Aggarwal, 2007]. The similarity between the 

NOC and an oracle along with other related research is discussed in Chapter 8. 
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4.9 AOC prototype implementation 

For the prototype implementation of the AVP, an unstructured decentralised P2P 

file-sharing system was considered the most appropriate platform for AVP capabilities 

to be tested upon. P2P file-sharing applications are known to create large numbers of 

overlay connections with a lot of temporal and spatial connection variability, generate 

large amounts of traffic and exhibit high frequency of peer arrivals and departures. 

These characteristics were considered important in evaluating certain elements of the 

AVP such as access control or the VCC component (discussed in the next chapter). 

Consequently, the Gnutella protocol was chosen for the development and testing of the 

AVP prototype as it is well-researched, open source and actively used by large numbers 

of users. 

As discussed earlier, AVP components are written in the Java programming 

language, in the form of proxylets. The AOC prototype proxylet contains five basic sub-

components: 

 AOC router module 

 AOC connection manager module 

 Administrative interface module 

 Policy module 

 Gnutella protocol module (packet interfaces, protocol-specific functions) 

One of the main features of the AOC router module is the ability to handle 

multiple protocols simultaneously. For the prototype version of the AOC proxylet, two 

different protocols have been implemented: the Gnutella version 0.6 protocol and the 

AOC inter-communication protocol, called the AOC protocol. The prototype version of 

the AOC has thus the ability to route Gnutella packets and AOC-to-AOC packets as 

well as route between Gnutella and AVP networks. Table 2 lists all types of connections 

implemented by the AOC prototype. 

The AOC protocol, used for AOC-to-AOC communication, facilitates the 

exchange of information vital for the communication and self-organisation of the AVPs. 

The protocol was designed to be independent of existing P2P protocols and does not 

rely on any specific P2P protocol mechanisms, although it borrows ideas from 

unstructured P2P protocols such as Gnutella and eDonkey. A major feature of the AOC 
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protocol is the tunnelling of other protocol messages (for instance Gnutella messages) 

between AOC proxylets for topology control purposes. 

An AOC protocol packet contains the following fields, illustrated in Figure 24: 

 A 5-byte header specifying payload (message) type and packet size. 

 If the message is a route advertisement message (to exchange route and overlay 

topology information between AOCs), then only the source connection attributes 

(AOC identifier, IP address, Port number) and data payload are provided. 

 If it is a tunnelling message then it contains: 

 Source connection attributes (AOC identifier, IP address, Port number) 

 Destination connection attributes (AOC ID, IP address, Port number, alternative 

route) 

 Payload 

 Priority 

Connection type Protocol 

AOC-to-AOC AOC protocol (TCP) 

Gnutella-to-AOC Gnutella Protocol v0.6 (TCP) 

AOC-to-Gnutella Gnutella Protocol v0.6 (TCP) 

Administrative interface Telnet (TCP) 

EEP-to-AOC ALAN proxylet interface 

Table 2: Types of connections supported by the AOC prototype. 

 

Figure 24: AOC protocol message structure. 
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When P2P protocol messages are relayed, they are encapsulated in AOC 

protocol messages with a header pre-pended.  The entire header information occupies 

40 bytes. The header allocates four bytes for packet size and two bytes for packet type 

identification information. Additionally, the header contains two 16-byte fields for 

source and destination information, as well as two one-byte sections for the “time-to-

live” and the hop count fields. The overhead introduced by the encapsulation is not 

trivial, but permits the distinct handling of messages without holding state information. 

 

Figure 25: Using the AOC prototype. 

Figure 25 depicts the control and information interfaces available when 

operating the AVP prototype. The numbered windows correspond to the EEP control 

interface (1), EEP Monitor interface (2), console window where real-time proxylet info 

is displayed for logging/troubleshooting purposes (3) and AOC administrative interface 

(4) awaiting a command. AOC functions can be executed manually using commands 

like the following: 

 open [protocol] [IP address] [port number]: creates a new connection. 

Example: open gnutella 123.123.123.123 8000 

 close [protocol] [IP address]: closes an existing connection. 
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 pgnut add [IP address] [threshold]: adds a loss-probability threshold to a 

specified connection (threshold between 0.0 and 1.0). Example: pgnut add 

123.123.123.123 0.5 

 firewall add [domain identifier] [IP address]: adds an IP address or address 

range to the controlled domain referenced by „identifier‟. Example: firewall 

add cd1 123.123.123.123 

4.10 Summary 

This chapter introduced the core element of the P2P service management 

framework presented in this thesis: the Active Virtual Peer. The AVP addresses the 

challenge of introducing controls to the self-organising overlay of autonomous elements 

a P2P service forms by becoming part of it. An AVP appears as an ordinary peer and 

applies the intended management functions transparently through its interactions with 

other peers. 

The AVP architecture favours a modular design where components which 

implement different capabilities can be dynamically combined to form AVPs of 

different roles. After presenting the architecture and supporting platform, this chapter 

focused on the AOC, which implements the base functionality of the AVP and serves as 

its minimal configuration. Its high-level design as well as the way it applies access, 

routing and topology controls was discussed, before presenting the AVP policy model, 

created to facilitate better configuration and management of a multiple-AVP 

deployment. The motivation, value and intended operation of the NOC component was 

briefly examined next. The chapter was concluded with a discussion of the AOC 

prototype implementation. 

The next chapter continues the discussion of AVP mechanisms with the 

presentation of the VCC component, which provides content caching capabilities to the 

AVP.  
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5. THE VIRTUAL CONTENT CACHE 

5.1 Introduction 

As discussed earlier, one of the main downsides P2P services have from an 

ISP‟s perspective is the amount of traffic they generate that is not confined inside the 

ISP‟s network. While a considerable proportion of that traffic is necessary for the 

correct and effective operation of P2P services, it can be argued that by not taking into 

account peer proximity or geographic location, P2P services form topologies which lead 

to an excessive number of not particularly necessary but nevertheless costly inter-AS 

connections. For instance, it has been reported in [Gummadi, 2003b] that up to 86% of 

requested P2P objects were downloaded from peers outside the home network despite 

being locally available. While incorporation of intelligence that can take advantage of 

locality in the protocol level as suggested in [Zhao, 2002; Castro, 2002b; Castro, 2002c; 

Lua, 2004] and elsewhere can be a step towards the right direction, the implementation 

of such functionality remains a decision of the P2P application developer and may be in 

conflict with other service functional requirements, or viewed as a performance-limiting 

factor. Furthermore, it may clash with existing traffic management functions present at 

the lower layers and introduce race conditions between them [Keralapura, 2004]. In 

concert with the design philosophy of the AVP concept, a more desirable solution 

would be to minimise transit traffic generated by a number of similar P2P applications 

in a way that does not affect their operation and end-user experience. Content caching is 

key in such an approach as it allows the reduction of P2P-generated inter-AS traffic 

without being intrusive to the service. 

Caching is routinely employed in the web domain where it describes the storage 

of copies of popular objects (e.g. web pages, images etc.) in order to minimise 

bandwidth usage, server load and perceived response lag [Wessels, 2001; Rabinovich, 

2001]. In the context of P2P, caching can be highly effective because unlike the web 

where an increasing proportion of content is dynamic, personalised and thus un-

cacheable, content exchanged through file-sharing applications is almost universally 
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immutable. Therefore, by bringing often-requested content inside its network so that its 

subscribers can be served from an internal source, an ISP can reduce the amount of 

inter-domain traffic caused by bulk P2P transfers. The intended effect of P2P content 

caching is illustrated in Figure 26, below, alongside current normal P2P operation. 

 

Figure 26: P2P traffic flows without and with content caching employed. 

The Virtual Content Cache (VCC) integrates such content caching capabilities 

for P2P services directly into the AVP management framework. The gains are two-fold: 

Instead of having each peer fetch the same content from sources outside the ISP‟s 

network over expensive transit links, the content is fetched once by the cache and 

subsequently served from there. Secondly, peers are served from a local source that is 

expected to enjoy good connectivity and high availability. Depending on the popularity 

of a particular item and its original location, significant economies can be achieved, 

while offering a noticeably better quality of service to the ISP‟s subscribers. Finally, a 

side-effect of caching, especially if adopted by a number of ISPs, is the reduction of 

redundant traffic on the Internet backbones as well. 

Having presented the AVP architecture and examined the Application 

Optimisation Component (AOC) in the previous chapter, this chapter focuses on the 

VCC component of the AVP. The next section presents the design principles of the 

VCC, including a deployment scenario. A discussion of cache replacement strategies in 

general, along with a deeper examination of proposed strategies for the VCC follows. 

The VCC proxylet implementation is presented next. A brief examination of potential 

legal issues from the employment of P2P caching concludes the chapter. 
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5.2 VCC design 

5.2.1 Overview of the design 

The VCC is designed as an AVP framework component which provides P2P 

content caching capabilities. The modular design of the AVP implies that an AVP may 

maintain a VCC component or operate without one, depending on the requirements and 

operational scenarios the AVP operator may have formulated. The capability of an AVP 

to spawn VCC components is given by the network provider/owner of the AVP either 

automatically through AVP policies or manually through the administrative console 

(both presented in Chapter 4). The main aim of this modular architecture is, as discussed 

earlier, to make the AVP concept as flexible as possible by allowing the use of different 

AVP configurations as necessary. 

 

Figure 27: Application-level caching by the VCC. 

In Figure 27, a scenario of an AVP containing a VCC is illustrated. The AVP 

controls a domain of peers by applying routing and access controls as discussed in the 

previous chapter. The controlled domain may be the entire ISP network or part of it, 

depending on the particular AVP configuration. The AOC monitors the P2P protocol 

messages exchanged between peers inside the domain (which the AVP maintains a 

connection to) and gathers information about the kind of content each peer offers or is 

looking for. Each time a query for content made by peers inside the domain reaches the 

AVP, it is inspected but not propagated outside the controlled domain to avoid a 

possible unmediated reply. The AOC queries the VCC for the content in question and if 
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positive replies on behalf of the VCC, having the peer download the content from the 

local cache. If the content is not already cached but is deemed popular, the AOC 

forwards a modified query message outside the domain, so that “foreign” peers perceive 

the AVP as the actual initiator of the query. Upon receiving a positive response, the 

content is downloaded to the VCC and stored for future requests by “local” peers. 

Replies by local peers which have a copy of the requested content are not blocked but if 

the content is also cached, the AVP may include the VCC in the list of replies in order 

to improve user experience by offering another high-quality source. Requests made by 

peers outside the ISP‟s domain are not forwarded by default inside the domain, to avoid 

local responses and the resulting inter-domain connections. 

Being a modular design, the functionality and responsibilities of each AVP 

component are clearly separated. The AOC contains the basic AVP functions, 

interfacing with the peers, routing, modifying and forwarding messages and generally 

interacting with the overlay in real time. The AOC decides whether particular content 

should be cached and crafts the protocol messages necessary to direct eligible peers to 

download content from the VCC. Generally, the VCC is “invisible” to regular peers, 

both inside and outside the control domain, with the former downloading content from 

the VCC only after an AOC‟s mediation. As such, the VCC is not discoverable using 

ordinary P2P protocol procedures but only temporarily made visible as a source to 

eligible peers during a content transfer. 

Focused on its content caching responsibilities, the VCC has a more passive role 

if seen from a P2P perspective. The VCC manages the storage space available for 

content caching, the data tables containing the file indexes and relevant information 

(e.g. file sizes, numbers of requests, last-access times etc.) and the functionality 

necessary to provide a peer with the requested file or part of file, depending on the P2P 

protocol in use. Operations pertaining to the management of the cache are self-

contained and independent of the AOC. For instance, the execution of file replacement 

operations to release necessary storage space is done automatically by the VCC without 

intervention by the AOC. 

This separation allows for unlimited deployment flexibility, enabling ISPs to 

choose between having a single large VCC used by numerous AOCs, each AOC having 

its own VCC or any combination in between. More importantly, configurations can be 

changed on-the-fly and new capacity can be added easily. Crucially, the AVP 

architecture allows for a number of VCCs to be deployed on demand throughout the 

network. New VCC instances may be spawned on available execution environments in 
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response to changes in network conditions as identified by the AVP deployment in real 

time. Thus, caching tasks can be distributed to a number of locations, alleviating 

temporary hotspots, reducing load and increasing available cache capacity as needed. 

Similarly, when such support is no longer necessary, additional VCCs may be taken off-

line. 

More importantly, by separating message manipulation/peer redirection from 

file serving and storage management, AOCs can treat VCCs as “special” peers and 

follow strategies where VCCs and regular peers are not considered distinct entities with 

independent roles, but instead are exploited in combination. Specifically, instead of 

traditional caching according to demand as inferred from peer requests, the VCC can be 

used to complement natural replication on peers by explicitly replicating medium-

popularity content (i.e. letting peers handle the popular content and improve availability 

of targeted content) or cache selected types of content, if the ISP wants to offer a value-

added service. Taking this one step further, the ISP can supplement a cluster of 

“normal” VCCs with additional specialised VCCs providing a paid-for P2P CDN 

service. 

The downside of this separation is that an AOC needs to query a VCC for 

information about the cached content instead of having direct memory access, as in a 

monolithic design. Nevertheless this leads to a more fault-tolerant, decentralised design. 

In fact, the P2P-based design means that VCCs have practically no reliability 

requirements and thus can be run on inexpensive hardware. A VCC failure will have no 

larger impact on the overlay than the departure of any ordinary peer and because by 

definition the content cached is popular and thus naturally replicated, the loss of the 

VCC will not affect service availability. Essentially, all the recovery mechanisms are 

already provided by the P2P service itself. 

Finally, depending on the number of P2P protocols supported by the AVP, a 

number of different P2P applications may be served by the same cached content. 

Towards that, the VCC can serve entire files or parts of a file to peers to accommodate 

the way different P2P protocols operate. 

5.2.2 Cache strategies and replacement policies for the VCC 

The immutability of most cacheable content exchanged in P2P networks as well 

as the fact that peers will generally obtain that content only once, as discussed in 

Chapter 3, raise the question whether established web-caching techniques, designed for 
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content which is less immutable but may be served to the same recipient repeatedly, can 

be effectively transferred to the P2P domain. Consequently, existing cache replacement 

policies for the web need to be reassessed for applicability in P2P scenarios and new 

ones which will take advantage of the unique characteristics of P2P applications may 

need to be identified. The choice of the appropriate replacement policy, which will 

retain in the cache the “right” popular documents and replace rarely used ones, will 

have a direct effect on the performance and value of the VCC and any P2P caching 

approach for that matter. 

Cache replacement policy performance is typically evaluated by object hit-rate 

(also called “hit-ratio” and used interchangeably hereafter) and byte hit-rate. Object hit-

rate denotes the number of cache hits for a cached object as a percentage of the total 

number of requests for that object. Policies which achieve a high object hit-rate 

generally favour the caching of small objects as this allows the storage of more objects 

for the given cache capacity. Byte hit-rate denotes the number of bytes transferred from 

the cache as a percentage of the total number of bytes resulting from all object requests. 

Caching of bigger objects tends to increase the byte hit-rate. 

For the prototype implementation of the VCC and its subsequent evaluation, the 

following cache strategies/replacement policies have been considered: 

 LRU (Least Recently Used): The file with the oldest last-request timestamp in 

the cache is removed. 

 LFU (Least Frequently Used): The least-frequently requested cached file is 

removed. 

 LRUSS (Least Recently Used of Similar Size): The file with the oldest last-

request timestamp in the cache with size similar to that of the file that needs to 

be stored is evicted. 

 LFUSS (Least Frequently Used of Similar Size): The least-requested file in the 

cache with size similar to that of the file that needs to be stored is evicted. 

 LFUTS (Least Frequently Used Threshold Smaller): In this cache strategy only 

files smaller than a defined threshold value are considered for caching. Eviction 

is then decided by applying LFU on the group of cached files. 

 LFUTL (Least Frequently Used Threshold Larger): Same as LFUTS but with 

the difference that only files larger than the threshold are considered for caching.  

 ILR (Intelligent Least Requested): This policy considers for removal only those 

cached files whose number of requests is equal or less than this of the file to be 
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cached. It then applies an improved version of LFU to the candidate list to select 

the appropriate file for eviction. 

 ALR (Averaged Least Requested): This policy calculates the average number of 

requests attracted by all files currently in the cache and considers for removal 

only those cached files whose number of requests is equal or less than the 

average. It then applies an improved version of LFU to the candidate list to 

select the file to be evicted. 

The LRU policy releases capacity by removing the file that has stayed in the 

cache the longest since attracting a request. This serves as an indication that its relative 

popularity has dropped and will not offer further significant gains by being retained in 

the cache. This concept is known as temporal locality of reference and characterises the 

ability to predict future accesses to objects from past accesses [Podlipnig, 2003]. LRU is 

a common replacement strategy not only in the web caching domain but also in CPU 

instruction and virtual memory caching. 

The LFU policy operates similarly but considers the number of requests a file 

attracts instead of its last-access time. In that, the cached file with the lowest number of 

requests is removed. This policy is also common in the web caching domain [Cao, 

1997]. 

The typical size of P2P content makes the decision whether to retain or evict a 

file from the cache more critical than in web caching, as the associated costs of 

transferring and storing that file are much higher. Similarly, an erroneous decision to 

evict a file only to re-cache it later will have a large impact on traffic savings. For the 

typically small size (less than 1 MB) of cacheable web objects the current state-of-the-

art in storage devices means that capacity is rarely the limiting factor and replacement 

operations need not occur frequently. As a result, web caching strategies can be 

optimised to improve factors such as access latency (e.g. Lowest Latency First policy 

[Cao, 1997]) or may differentiate cached objects according to the day they were cached 

(e.g. Pitkow/Recker [Pitkow, 1994]) without sacrificing basic object hit-rate 

performance. P2P policies, on the other hand, primarily need to make optimal decisions 

regarding transit traffic reduction, indicating that the metrics of importance are byte hit-

rate and efficiency of storage space utilisation. 

For that reason, apart from the well-known and widely employed LRU and LFU 

which can also serve as benchmarks, additional policies have been proposed for the 
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AVP in order to examine whether they can serve as better-suited alternatives for P2P 

workloads. 

LRUSS and LFUSS are identical to LRU and LFU respectively, with the 

difference that they take into account the amount of space that needs to be released for 

the upcoming object storage as well. Specifically, these policies create a list of 

candidates from those cached files whose size is roughly (typically within ±1% of target 

size in MB) the same to the space required for the soon-to-be cached file. Then, they 

determine the file to be evicted inside that group based on its last-request time for 

LRUSS or popularity for LFUSS. As P2P content is typically much larger in size than 

web content, policies that take file size into account have the potential to be highly 

effective. For instance, they can avoid cases where a large file, which involved a 

significant cost to be cached but offers equivalent traffic savings, is erased to make 

room for a much smaller file based only on relative hit-count. Similarly, to obtain space 

for a large file, a simple replacement policy may dictate the deletion of a number of 

smaller files which could collectively offer higher traffic savings than if a single large 

file was removed. The validity of these assumptions will be put to test in Chapter 7. 

ILR takes a proactive view on caching, and especially cache admission, by 

maintaining information on both cached and non-cached files available in the network, 

extracted from the query and reply messages intercepted by AOCs. The privileged 

position of the latter in the overlay allows them to track requests by both local and 

foreign peers and keep file popularity scores based on them regardless of local peer 

request activity. This information can then be used to make informed decisions on 

whether it is worthy to cache a requested file or allow the peer fetch it without 

mediation. The rationale behind this approach is that it may be more costly to cache 

files ultimately belonging in the “long tail”35 at the expense of evicting existing files, 

than allow peers transfer them on their own. The transit traffic costs due to the 

unpopular file‟s transfer will be comparable in both cases (i.e. transfer to cache from 

external source and then to peer, or unmediated transfer to peer from external source) 

while the occupied cache space could be used for an equally or more popular, already 
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 Of course, the future popularity of a file is not known at the time of request. The caching of an 

unpopular file is thus considered a non-optimal caching decision. 
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cached (and thus transferred) file. While all schemes examined so far treat all requests 

equally by caching any file and rely on the replacement policy to retroactively judge 

which of the cached files are the most valuable to retain, ILR will only cache a file if 

there is an indication that it will offer more savings than retaining an already cached 

file. With ILR, cache space is treated as the scarcest resource and the strategy 

intelligence attempts to eliminate non-optimal caching decisions. 

What is important is that despite avoiding to cache newly-appeared files before 

their popularity is proven, the external traffic costs will remain comparable to the other 

schemes due to the existence of the AOCs. Specifically, while a file transferred from an 

external source may not be cached by a VCC outright, the AOCs can redirect future 

requests to the local peer that initially fetched it at no further external traffic cost. Only 

if there is no reliable local source (e.g. the local peer left the network) a new inter-

domain transfer may be allowed. If, in the meantime, the file proves popular enough it is 

cached, ensuring a highly-available local copy. Thus, with ILR a VCC essentially 

offloads some of its short-term caching responsibilities to local peers until a file‟s 

caching value is determined, with ideally no negative effect on external traffic. 

It has to be noted that ILR is not slow to identify really popular files. Because 

requests by foreign peers that are captured by AOCs are included in monitoring a file‟s 

popularity, newly appeared files that attract flash crowd behaviour can be identified and 

cached early on, even if the ISP‟s local customer base has not yet started to join the 

crowd (e.g. due to different time zones, etc). 

File eviction is handled by applying a modified version of the LFU policy on the 

subset of cached files whose number of requests is equal or smaller to that of the file to 

be cached. The aforementioned modifications are intended to improve the basic LFU 

algorithm by adding a safeguard against cache pollution and a refinement of evictee 

selection in the case of similar request counts. Cache pollution occurs when older files 

which do not hold caching value any longer have already built a high request count due 

to past popularity and manage to remain cached leading to incorrect evictions. In the 

modified LFU, if a file does not attract any hits inside a period T (typically 1800 

seconds – 30 minutes) it has its hit count halved, similarly in principle to LFU-Aging 

[Arlitt, 2000]. The second modification dictates that in the case of a tie in selecting the 

appropriate evictee (i.e. more than one file with the same number of requests), the one 

with the oldest last-request timestamp is removed. 

Given the large number of unique objects present in a P2P file-sharing network, 

it is not scalable or efficient for the AVPs to maintain permanent information on all of 
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them. Instead, a moving monitoring window of size T is employed to reduce the amount 

of information required for employing ILR. The monitoring window operates on the 

premise that files with actual caching value at a given moment will show current request 

activity (i.e. temporal locality of requests). Indeed, given the cache capacity scarcity 

compared to workload size, taking into consideration very old statistics can lead to sub-

optimal performance and cache pollution from once-popular files. A limited amount of 

information is stored on disk (a hash of the file name and contents along with a request 

counter and update timestamp) allowing the resulting database to remain manageable 

while holding information on a large number of objects36. 

ALR shares the same selective caching philosophy as ILR but applies slightly 

more complex criteria to assess caching suitability and identify the appropriate evictees. 

ALR periodically calculates the average number of hits attracted by all the files 

currently in the cache and uses that as an indication of the value carried by currently 

cached objects. Upon a file request, its number of accumulated requests Rf as monitored 

by the AOCs is compared with that average. If Rf is equal or higher to the average, the 

file is deemed eligible for caching; otherwise it is assumed that the current group of 

cached files carries more value than the requested file and the requesting peer is allowed 

to fetch it from the foreign source without mediation. If the file is eligible, the next step 

is the identification of the appropriate evictee(s). Any cached files that have attracted a 

lower or equal number of hits to the current average are inserted into a list where the 

modified LFU policy described earlier is applied. It is possible that the set of candidates 

is such that the replacement operation does not release enough space for the new file to 

be cached. In this case, the requesting peer is again allowed to fetch it on its own 

without mediation. In conclusion, in ALR a file is cached if two requirements are met: 

(i) the file has attracted an equal or higher number of requests to the current cache 

average, and (ii) a suitable evictee or group of evictees is found. 

LFUTS and LFUTL enable a simpler form of selective caching compared to ILR 

and ALR. They both employ a (configurable) threshold value T which determines 

whether a file may be admitted in the cache or not based on its size. In LFUTS only 
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 Similar indexes are maintained by many centralised or semi-centralised P2P systems (e.g. Napster, 

eMule) demonstrating that with careful design they can be viable. 
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files with size smaller than T are cached, while LFUTL does the opposite (i.e. only files 

larger than T are cached). The LFU policy is applied on the group of cached files to 

determine the appropriate evictee. 

5.2.3 Chunk versus full file caching 

It becomes evident that the proposed policies deal with entire files and not 

individual file parts (chunks). In contrast, recent work ([Wierzbicki, 2004; Saleh, 2006]) 

proposed the use of file chunk caching. In that, file chunks constitute the smallest 

caching unit allowing only portions of a file to be cached. Consequently, in chunk 

caching replacement policies operate on individual chunks and not entire files. 

The main strength of chunk caching is its inherently better management of 

available cache space in the face of user aborts or otherwise uncompleted file requests. 

Under full file caching, an intercepted request may lead the cache to transfer and store a 

large file unnecessarily if the requestor aborts the transfer prematurely. Chunk caching, 

in contrast, is not affected since the external transfer can be stopped as soon as or 

shortly after it is determined that the requestor left. The result is less external traffic due 

to aborted requests and ideally maximisation of byte hit rate due to focusing on bytes 

and not objects. 

However, the support of chunk caching involves significantly higher overheads 

for maintaining popularity and other relevant metadata for each chunk instead of a 

single set per file. More importantly, functionality to identify and deal with overlapping 

ranges of a file, cached at different times, needs to be implemented. Given that chunk 

sizes may vary not only between protocols but also between objects37, there is also the 

issue of deciding what the optimal size of the caching unit should be for the vast variety 

of objects shared. In contrast, the full file caching approach involves much lower 

overheads, does not involve functionality to deal with overlapping ranges and the 

required space to be freed in the cache can be known in advance for policies that take 

file size into account. 
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Furthermore, assuming that in normal usage scenarios every part of a file will 

eventually be requested (since an incomplete file may be unusable) demand for all parts 

is uniformly distributed. This is confirmed in [Wierzbicki, 2004], where using actual 

traces of Kazaa traffic the authors note that range requests are short and ask for any 

portion of the file. In other words, the advantage offered by chunk caching may only be 

applicable when dealing with unpopular requests that are consistently aborted. In other 

cases, whether the transfer is done over a number of steps or all at once, the end result 

will be fetching the same amount of bytes from the foreign source (i.e. the object‟s 

size). 

The superiority of each approach therefore depends on the amount and similarity 

of user aborts experienced in a P2P network. If that number is low in relation to 

successfully completed requests, both approaches will have comparable performance 

with chunk caching requiring increased complexity. If in contrast aborts are 

commonplace, that complexity may be acceptable due to the inefficient use of cache 

space by full file caching.  

The author is not aware of any study comparing cache performance in the face 

of user aborts using traces collected from different P2P networks, to eliminate bias 

effects and demonstrate consistent abort behaviour. Consequently, for the selection of a 

caching scheme for the VCC, no assumptions were made on the level of aborts. 

However, the design and functional requirements of the AVP framework indicated that 

full file caching is more appropriate. Although the VCC can serve both entire files and 

file ranges according to the P2P protocol in use, thus essentially supporting both types 

of caching, cache objects are managed at the file level and policies apply to fully 

downloaded files. This is to enable support for multiple P2P protocols as different 

applications may use different chunk sizes or modes of chuck request. In order to 

operate transparently with different P2P protocols and users, the VCC cannot negotiate 

with peers the serving of selected file ranges it has already cached instead of the ones 

originally requested, as many protocols do not support this feature. Therefore, the VCC 

trades overspecialisation to a single protocol for wider applicability. The effect of 

inefficient caching decisions due to user aborts is acknowledged and partially dealt with 

the inclusion of policies like ILR, and ALR which attempt to eliminate incorrect 

replacement operations, as well as by employing a hybrid admittance approach. In that, 

a caching operation is halted and the reserved cache space freed if an abort occurs 

before the requesting peer received at least 50% of the file size in bytes and no other 

peer has made a request for the same file in the meantime. 
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5.2.4 Distributed VCC caching 

For clarity, all discussion of the VCC and its policies so far implied the use of a 

single cache. However, the strength of the AVP framework lies with its support for the 

deployment of multiple VCC components throughout the network. As mentioned 

earlier, this permits caching tasks to be spread along a number of machines and 

locations, alleviating temporary hotspots, reducing both peer and cache load and 

increasing available cache capacity as needed with no downtime. VCC caching 

therefore offers high scalability while the lack of requirement for specialised hardware 

makes the provision of additional capacity straightforward. The decentralisation of the 

caching architecture in the form of a multiple-VCC deployment can be further exploited 

to support different caching models. Specifically, VCCs may operate as a distributed 

cluster coordinated by AOCs or they may additionally support cooperative caching. 

In the first approach only a single copy of a particular file exists in any cache, 

ensuring maximum utilisation of available cache capacity. That is, each VCC holds a 

different set of files from any other. The forwarding of a local request to the right VCC 

as well as admission decisions are managed by the AOC handling a particular request. 

An AOC will interrogate each VCC in parallel for the requested file38 and if it is present 

in a VCC, it will send a modified reply message to the requestor as discussed in the 

design overview. If the file is not cached and is to be fetched from a foreign source, the 

AOC needs to determine in which of the VCCs it will be best stored. The algorithm 

utilised to evaluate caching suitability takes into account cache space availability, RTT 

(Round Trip Time) delay between VCC and requesting peer and VCC load, giving a 

different weight to each factor. If C is the capacity availability, D the round-trip delay 

between VCC and peer in milliseconds and L the reported VCC load as a percentile 

value of its total capacity, VCC selection is carried out as described by the following 

high-level pseudocode: 
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 It is assumed that even the largest ISPs will not need to run such a large number of VCCs that this kind 

of communication will prove non-scalable. Nevertheless, if it proves problematic, AOCs may maintain 

a short cache of previous VCC replies or a more efficient indexing scheme to minimise communication 

costs. 
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for each VCC V: 

    Ltotal += LV 

    if CV is TRUE 

        insert V to candidate list S 

    else 

        insert V to candidate list S’ 

end for 

 

Lavg = Ltotal / (number of VCCs) 

for each VCC V: 

    if absolute(LV - Lavg) <= 10 

        balance = TRUE 

    else 

        balance = FALSE 

end for  

  

if S has only one member 

    return this VCC 

else if S has more than one member 

    if balance is TRUE 

        sort S by DV from lowest to highest 

    else 

        sort S by LV from lowest to highest 

    return top member  

else 

    if balance is TRUE 

        sort S’ by DV from lowest to highest 

    else 

        sort S’ by LV from lowest to highest 

    return top member  

C indicates the ability to cache a file without requiring a corresponding eviction 

when adequate free space is available. D serves as an indication of network proximity 

(as noted for example in [Obraczka, 2000]) as well as achievable throughput39, which in 

turn may be translated into download performance for the peer. Finally, measuring VCC 

load ensures that performance bottlenecks due to overloaded VCCs can be avoided and 

load is distributed evenly throughout the infrastructure. For simplicity, L can be 

estimated from the number of concurrent file transfers served by each VCC (indicating 

link load indirectly as well) assuming each one of them consumes a determined amount 
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 The (inverse) relationship between latency and throughput has been reported extensively in the 

literature (for instance in [Padhye, 1998]). 
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of CPU, memory and I/O (input/output) resources, or a more detailed method can be 

used to represent both hardware and network load. 

The algorithm maximises cache capacity utilisation and number of cached 

objects by overruling load and delay factors when a file can be cached without requiring 

a corresponding eviction. In any other case, the algorithm calculates the average load 

currently experienced in the deployment and examines whether any of the VCCs has 

more than 10 units of load difference from the average. This signifies load imbalance in 

the deployment and is addressed by nominating the less loaded VCC as the destination 

cache. When VCC load levels are comparable indicating balance, the algorithm selects 

the VCC with the lowest round-trip delay to the inquiring peer, optimising for 

proximity. 

What this approach achieves is the distribution of caching load in different parts 

of the overlay, avoiding the case of a single VCC becoming a bottleneck. Furthermore, 

assuming that the ability to host EEPs inside the ISP network is not limited by external 

factors, there is high flexibility in where to place VCCs both for upgrading and 

maintaining the infrastructure. Indeed, the AVP architecture offers the ability to activate 

or deactivate VCCs with a few administrative commands. Since the available caching 

capacity is treated as a single unified virtual cache and replication is avoided, the 

cumulative performance is estimated to be close to that of a single cache of equal size, 

factoring in some losses due to each VCC applying replacement policies independently 

and imperfect coordination. 

The second approach is to enable a closer cooperation between VCCs in caching 

high-value files. In the context of web caching, the term cooperative caching denotes 

the formation of a hierarchy of caches where each consecutive miss leads to 

interrogating a cache further up the hierarchy until the content is found or it is 

determined it needs to be fetched from its original source. For the AVP, cooperative 

VCC caching describes the replication of very popular objects amongst VCCs with the 

aim of exploiting locality advantages inside the ISP network. 

While the independent VCC approach maximises capacity utilisation by 

avoiding replication of cached objects amongst the caches, it does not explicitly deal 

with flash crowds or activity hotspots that might emerge inside the network. A 

particularly popular object is still served from a single VCC, which may prove a 

performance bottleneck for the time period required for enough copies to be naturally 

replicated on local peers to assist distribution. This issue can be addressed by creating 

replicas of such objects on other VCCs. Furthermore, if the very popular content is 
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brought closer to demand, traffic can be localised and proximity advantages such as 

improved throughput can be achieved. Sizeable ISPs therefore may wish to employ 

cooperative VCC caching as part of their broader P2P traffic engineering strategy.  

Under cooperative VCC caching, each VCC contributes a fraction of its total 

capacity for the replication of the currently most popular objects cached throughout the 

infrastructure. Specifically, each VCC is periodically asked to report the following 

information for the top n% (typically 1-5% but this can be adjusted to reflect cache size, 

number of VCCs, etc) most popular files in its cache at that moment: 

 File identifier information 

 Total number of hits attracted by file 

 Number of hits attracted by file since last update 

 Current total VCC load 

 Portion of load experienced due to serving the particular file (e.g. ratio of total 

load over number of active transfers of that file) 

 Change in load since last update 

The queries are typically made by a designated AOC, but for redundancy more 

than one may be assigned that role. The results from all the VCCs are collected and 

ranked into a global list using the following high-level algorithm: 

1. If a VCC is nearing overload, relieve it by prioritising replication of its heaviest 

hitters. The number of “urgent” replicas is determined by the amount of load 

reduction needed to bring the VCC to either a typical non-overloaded state (for 

instance, no more than 65% load) or to average VCC load as reported in that 

round. 

2. Replicate the top hitters from each VCC in a round-robin fashion. 

The processed list is then forwarded to all VCCs, which attempt to cache as 

many items as their contributed space can hold. It is possible that some of these entries 

may be already cached in VCCs from an earlier round. In that case, the VCC selects the 

next suitable entry until the space is filled or the list exhausted. 
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5.3 Implementation of the VCC prototype 

Similarly to the AOC, the VCC component is developed as a proxylet that runs 

on the ALAN funnelWeb platform [ALAN]. As such, it is written in the Java 

programming language. Although the VCC is designed so that multiple P2P protocols 

can be handled, the prototype implementation supports the Gnutella protocol only. 

However, no protocol-specific features are used in any of the core functions, 

maintaining extensibility. 

The VCC proxylet design can be separated into the following internal 

components, as illustrated in Figure 28: 

 

Figure 28: VCC component diagram. 

 An AOC Communicator which provides the communication interface with an 

AOC. The AOC Communicator listens for incoming requests from an AOC, 

interprets them and carries out the requested action by calling the appropriate 

functions of the VCC Controller. 

 A File Server which handles the serving of files to remote peers. The file server 

incorporates the following: 

 A Download Request Handler, which listens for and interprets requests by peers 

and responds with an appropriate HTTP (or other protocol-specific) response. 

Both full and partial file requests can be interpreted. For Gnutella 0.6 protocol 

support, HTTP is used. 

 Functionality for uploading the requested file or file range to the requesting 

party. 

 The VCC Controller. This component contains the basic functional elements of 

the VCC. These are: 
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 File Download Manager: Manages the request and download of a specific file 

from a peer for storage in the cache. The prototype supports the Gnutella 0.6 

protocol. 

 File Replacement: Handles the process of cache file replacement according to 

the replacement policy in place. The replacement strategies for the prototype 

were presented in the previous section. 

 File Indexer: Indexes and maintains information on all the files stored in the 

cache. An index containing file-specific information (e.g. file name, size, 

number of requests etc.) as well as any available metadata is stored locally. 

5.4 Legal considerations of caching P2P traffic 

The work presented in this chapter as part of the AVP framework began in 2002 

and was one of the first that proposed caching of P2P traffic [Koulouris, 2003] to 

alleviate its impact on the network, when most ISPs were still uncertain of how to 

respond to this then new class of network applications. In many occasions when the 

work was presented to the research community, the issue of ISP liability due to caching 

copyrighted material as part of P2P traffic was raised. The author believes that the 

discussion of this matter falls outside the scope of this chapter, which is the discussion 

of the design and technology of the VCC, as it is predominantly an issue of interpreting 

copyright law, which not only is a matter of ongoing discussion in the face of rapid 

social change brought by technological progress, but also requires an extensive legal 

background. Nevertheless, it is useful to acknowledge these concerns and briefly 

examine their roots. 

P2P file-sharing networks entered the public eye in a rather negative light, due to 

allegations by organisations representing copyright holders that the former facilitated 

intellectual property infringement and were responsible for large financial losses. 

Specifically, it was claimed that “the transmission of a file containing copyrighted 

works from one person to another results in a reproduction, a distribution, and possibly 

a public performance (in the world of copyright law, “public performance” includes the 

act of transmitting a copyrighted work to the public)” [Von Lohmann, 2003]. Initially 

the closing-down of Napster and other non-fully decentralised P2P networks and later 

the much publicised legal action against end-users (and academic institutions) polarised 

the public and perplexed many of the stakeholders on what their rights and 

responsibilities are. ISPs in particular appeared to be uncertain whether by 
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implementing network engineering and optimisation in regards to P2P traffic, they 

could be held liable of copyright infringement. 

From a technical standpoint, P2P traffic caching is no different than caching of 

web traffic, as most of the content present in a web page (e.g. images, text, multimedia 

etc) is copyrighted by some person or organisation. Since P2P networking can be 

reduced to a family of networking protocols (like HTTP), it can be presumed that ISPs 

are eligible to the same protection they enjoyed for years for web caching. Indeed, and 

again to the author‟s best interpretation, in the European Union [European Union, 2000] 

and countries like the United States [Online Copyright Infringement Liability Limitation 

Act, 1998] and Australia [Australian Copyright Act, 1968], ISPs are exempted from 

liability for caching copyrighted content, if that is a result of user activity. This “safe 

harbour” is provided if the ISP does not explicitly target, select or modify copyrighted 

material, none of which is made possible by the VCC. 

The fact that a number of ISPs in the UK (e.g. NTL [Anon, 2006]) and 

elsewhere (e.g. “True Internet” [Anon, 2007]) currently implement P2P caching 

solutions indicates that caching of P2P traffic, including as performed by the VCC, does 

not constitute copyright infringement on behalf of ISPs. 

5.5 Summary 

This chapter presented the content caching capabilities of the AVP, as provided 

by the VCC component. The rationale behind offering such a capability was discussed 

along with a basic deployment scenario explaining how such a system operates. Then, a 

number of existing, customised and novel cache replacement strategies for the VCC 

were examined. This set the tone for the discussion of different caching approaches such 

as full or partial file caching as well as advanced VCC capabilities like multiple-VCC 

deployment. The implementation of the VCC prototype proxylet followed. The chapter 

was concluded with a brief examination of potential legal considerations from the use of 

P2P caching, and how the VCC is affected by them. 

During the discussion of VCC replacement policies and advanced features, a 

number of assumptions were made on cache design and performance, which need to be 

validated. The AVP simulator, presented in the next chapter, will provide the necessary 

tool to achieve that goal. 
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6. THE AVP SIMULATOR 

6.1 Introduction 

Modern science employs simulations to examine systems that cannot be 

practically examined physically, due to sheer complexity, size or other obstacles; 

usually with the help of computers. Central to simulation is the concept of “model”. A 

model is the portrayal of the interrelationships of parts of a system in precise terms. This 

portrayal can be interpreted in terms of some system attributes and is sufficiently 

detailed to permit study under a variety of circumstances [Law, 2000]. Simulation is the 

“execution” of such a model, so that valuable information can be collected about the 

system and its future behaviour predicted. Many types of models and simulation 

approaches exist, some of which will be discussed later on. Ideally, simulations 

complement results or observations gathered from experiments, as by their very nature 

they use models - approximations of systems‟ attributes - to understand the behaviour of 

these systems. Therefore, it is a common approach to use simulation to account for the 

universal behaviour of a system and run experiments where possible to complement the 

simulation results for subsets of the system‟s overall behaviour [Floyd, 2001]. 

There are five necessary conditions for obtaining credible results from a 

simulation: (i) having an adequate understanding of the problem to be solved, (ii) 

having a correct model, (iii) using a valid simulation program, (iv) executing a valid 

simulation experiment, and (v) making a correct interpretation of the results [Page, 

1994]. A simulation program is valid, if it is a verified computer program (i.e. the 

program performs as intended) capable of accurately representing the simulation model 

and handling every parameter. Consequently, it is important that a P2P simulator is 

flexible and adaptable enough for expressing models of P2P behaviour, and especially 

those characteristics that are not encountered in more traditional types of networks. 

This chapter presents the AVP simulator, a software simulator developed to 

evaluate the AVP concept. First, the rationale behind the development of a purpose-built 

simulator is explained. The methodology and design decisions behind the software 
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follow. Next, the simulator architecture and basic functions are presented. Finally, the 

chapter is concluded with the examination of P2P and AVP protocol simulation models. 

6.2 Why develop yet another simulator? 

A number of simulators, either purposefully developed for (e.g. P2PSim 

[P2Psim], PeerSim [PeerSim], GPS [Yang, 2005]), or extended to support P2P networks 

(e.g. ns-2 [ns2, 2007; Fall, 2006], Narses [Narses]) exist. Additionally, the Overlay 

Weaver overlay emulator has been developed to assist in the design and testing of P2P 

protocols [Shudo, 2006]. The question which thus arises is why choose to develop 

another simulator from scratch when alternatives are readily available. The answer lies 

with customisation: While all but few claim flexibility and ability to simulate different 

types of P2P protocols, the fact remains that each tool is influenced by its developer‟s 

view of what is important to model in a P2P system. Consequently, most simulators are 

limited in the flexibility they provide in specifying or modifying the types of statistics to 

be collected besides the built-in ones, and the variety of parameters that can be specified 

in the system model. Ting [Ting, 2002] adds the inability to customise the initial 

network state (connections between the simulated computers and the network delay) of 

many current P2P simulators as an additional limitation to the level of model detail they 

can support. Further limitations are introduced when the basic topology mechanisms are 

fixed. P2PSim and Overlay Weaver, for instance, support DHT-based systems 

exclusively, making them unsuitable for simulating unstructured overlays. More 

importantly however, scalability, which is a crucial component of P2P network 

evaluation, varies widely with a number of simulators incapable of practically handling 

more than a few thousand nodes40. Finally, as pointed by [Naicken, 2007], the poor 

documentation accompanying many of the available simulators presents a further 

obstacle in using them more widely. 

Special mention needs to be made to ns-2, due to its wide use by the research 

community. ns-2 is a general packet-level network simulator, with many extensions to 
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 For example, [Naicken, 2006] reports that P2PSim supports a maximum of 3000 nodes while Overlay 

Weaver cannot practically support more than 2700 nodes. 
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support a variety of network types and access technologies (e.g. wireless networks). ns-

2 is heavily focused on accurately modelling the network, link and physical layers, 

which is not always critical for P2P applications that are mainly concerned with the 

application layer. Apart from the additional complexity in specifying the system model, 

this results in lower scalability and performance since a lot of data, processing power 

and memory is dedicated to simulate functions that in many P2P models can be 

reasonably abstracted. The considerable learning curve of ns-2 can also in some cases 

be a deterrent. For that reason, while ns-2 can generally support highly detailed models, 

it is not always the optimal choice for simulating any P2P overlay. 

Consequently, unless the intended system model is such that it can be adequately 

described by the built-in parameters of one of the available simulators, and the 

properties of interest measured by the supported statistics, one can either attempt to 

modify an existing simulator to implement the missing functionality or develop a 

suitable simulator from scratch. The code structure and overall design decisions taken 

by the original developer, in combination with the lack of necessary documentation may 

in many cases lead to the latter being a “cleaner” and more effective route than the 

former. In the case of the AVP framework, the need to specify the observable properties 

of interest and express the AVP system model at the desired level of detail indicated 

that existing simulators needed to be heavily modified, while not fully addressing 

scalability concerns. As a result, the development of the AVP simulator was considered 

a more appropriate solution. 

6.3 AVP Simulator design 

6.3.1 General principles 

The AVP simulator (AVPsim hereafter) was written in the C programming 

language [Kernighan, 1988] to take advantage of the high performance and portability 

the language enjoys. Furthermore, it was determined that the broader user base a generic 

programming language has compared to a simulation-oriented language (for example 

such as GPSS [Stahl, 1990]) would give the resulting code greater chances of being 

reused by the scientific community or have its validity examined. 

All functions, data structures and software components were designed to be as 

extensible as possible while at the same time being robust and following good 

structured programming principles (e.g. principle of least privilege, portable design, 
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modularity, extensive run-time error checking etc.). As a result, AVPsim is capable of 

robustly managing very large data sets avoiding the usual “traps” that come with them 

(memory corruption, unexpected behaviour or termination etc). At the same time, a 

large number of parameters can be portably set, and different configurations can be used 

to control the granularity of the simulation, allowing for simulations of a large array of 

different scenarios. 

When developing new simulation software, the designer almost inevitably faces 

the dilemma of choosing between performance and simplicity of design. Data 

structures, for example, which are fundamental in simulator design, can either be 

expressed in a simple manner such as arrays or in the more complex forms of linked 

lists, trees etc [Kruse, 1998]. Design choices like these can affect the effectiveness of 

the simulator in many and unforeseen ways [Watkins, 1993]. 

Apart from the evident trade-off of performance (execution speed or memory 

usage) and complexity, an unsound design decision can lead to code that is difficult to 

maintain and review, and ultimately risk the validity of the simulator. Such code will 

almost certainly contain logical bugs due to the complexity of verifying that all 

components operate as expected, which will affect the validity of the results [Handley, 

2005]. 

For the AVPsim, having a reliable design which minimises the possibility of 

logical bugs was considered a priority. Consequently, all components and interactions 

between them were kept as simple as possible at the expense of possibly lower 

performance (even when “clever” alternatives existed), in order to make certain that the 

software is as bug-free as possible and behaves accurately. Code optimisations were 

incorporated, but only in parts where overall complexity would not increase and after 

extensive testing to ensure optimisations do not alter operation. This approach, 

complemented with exhaustive functional- and system-testing rounds gives considerable 

certainty on the validity of the AVPsim. 

6.3.2 Methodology 

Two basic approaches generally exist for simulating a system: The stochastic 

approach, which involves the use of statistical (probabilistic) system models, and the 

deterministic approach, which corresponds to the use of mechanical (deterministic) 

system models. 
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Stochastic simulations generally have a probabilistic component and are used 

when the local behaviour of a system is only understood in statistical terms (e.g. some 

of the quantities involved vary in an unpredictable or random fashion), or where it is 

convenient to model many of its components using statistical or probabilistic models 

due to extreme system complexity. Because of that probabilistic component, stochastic 

simulations must be performed a number of times until there is an adequate sample of 

results to evaluate, since any single “run” of a simulation will have one of many 

possible outcomes. 

Deterministic simulations on the other hand are ideal when one solution set 

exists for a given input situation. There, all data and relationships are given with 

certainty. They are primarily used to extrapolate and evaluate outcomes given 

hypothetical inputs, or to examine the interaction of a number of interdependent 

deterministic models. 

Simulation models are also differentiated on the basis of the granularity of their 

treatment of time. Models of systems that involve clearly distinguishable events such as 

the arrival of a customer or the transmission of a packet, are called discrete models. In 

discrete models, the notion of the “event” is fundamental. It is a significant point in the 

course of a simulation, where the system state changes. Models where it is impossible to 

distinguish between specific events taking place are called continuous models. There, 

time is considered to be an unbroken flow and events cause a marginal change in the 

system attributes. 

Finally, simulations can be categorised as discrete event or trace-driven 

simulations. In a discrete event simulation, a model is represented as a “box” that has an 

internal source of random numbers. The random numbers drive the components of the 

simulation model: They are used to determine when events are to take place, branching 

probabilities and so on. The essential feature is that the model is self-contained and 

requires no external inputs to operate. 

Trace-driven simulations on the other hand require the use of trace data, 

generated from a real system to control the input sequences. The trace data are a profile 

of the system dynamics observed. As such, trace-driven simulations have an advantage 

over discrete event simulations, since much of the statistical work and any shortcomings 

that come with it are avoided. Nevertheless, trace-driven simulations usually have a 

limited scope as it not always easy to obtain a suitable trace for the system properties 

under examination. For that reason, they are usually confined to performance modelling 

with the aim of making moderate changes to an already running system. 
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AVPsim is a discrete event simulator based on a stochastic model. Events in 

AVPsim represent changes in the state of the system and the entities that comprise it. 

The primary entities are the peers that join or leave the P2P overlay and with their 

behaviour affect other peers and the overlay in general. Changes in the system are 

signified by discrete events that take place during the simulation, ordered by time of 

occurrence. Table 3 presents the most representative. Events may create other events 

upon execution, immediately or at a later time. For instance, when a peer exits the 

overlay in real life, all its connections to other peers are terminated. In the same way, 

when a “peer exit” event occurs during a simulation, it triggers “end connection” events 

for each connection the peer in question maintained with its neighbours. These events 

are inserted in the event list, to be encountered some - simulated - time later. 

Event Name Event Description 

New peer A new peer entity is created and inserted into the overlay 

Peer exit A peer leaves the overlay 

New connection A new connection between two peers is created 

End connection A connection between two peers is terminated 

Manage search 
File search and download functions such as searching for a file, 

gathering responses, selecting sources, etc are triggered 

Start download A download session between two peers is started 

End download A download session between two peers is ended 

Update 
Snapshots of the simulator state are created, consistency checks 

are performed etc 

Table 3: Basic AVPsim events. 

A master simulation timer is used to keep track of simulated time. At each value 

of the timer, the events that are scheduled to take place at that time are executed. 

Similarly to reality, many different events may occur at the same time. These are 

processed in the order they were inserted (i.e. in a first-in, first-out basis). When no 

more events are to occur at a particular time, the simulator timer is incremented to the 

next value. To summarise, the processing of events consists of the following steps: 

1. Determine the first event ei (the event with the smallest timestamp) of the event 

list. 

2. Set the simulation timer to the timestamp ti of  ei. 

3. Change the state variables according to the effects of ei. 
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4. Schedule new events and insert them in the event list if necessary. 

5. Remove ei from the event list. 

6. Repeat steps 1 to 5 until no more events remain in the event list or the simulation 

timer has reached its preset target. 

As no event is allowed to have an impact on any event in the past, always 

simulating the event with the smallest timestamp guarantees causality [Lüthi, 1994]. 

6.3.3 Random number generation 

Using a probabilistic component in a computer simulation requires special 

attention to be paid on the random number generation regime employed by the 

simulator. Leaving the paradox of using precise and deterministic machines to produce 

“random” numbers aside41 [Knuth, 1981; Press, 1992], it is very important to verify that 

the random number generator and the statistical distributions used in the simulator 

software are validated and do not produce correlation errors or other artifacts [Park, 

1988]. Use of an improper random number generator, either directly or indirectly by 

“feeding” a probability distribution function, can significantly impair the validity of the 

results. Unfortunately, that is the case with most generators provided as part of 

contemporary programming language standard libraries, including the C programming 

language “rand” function [Kerninghan, 1988; Press, 1992]42. 

For AVPsim, third-party random number generation libraries (Ranlib [ranlib] 

and Gnu Scientific Library [GSL]) were used for all distribution functions utilised. 

These libraries were successfully validated using statistical tests [Watkins, 1993; Knuth, 

1981] to verify that results gathered by the simulator are not contaminated by random 

number generator artifacts. Furthermore, all such random number functions are accessed 
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 John Von Neumann‟s quote that “Anyone who considers arithmetical methods of producing random 

digits is, of course, in a state of sin” sums it up quite nicely. 

42
 Computer random number generation is a large research topic requiring extensive discussion of its 

specifics, which fall outside the scope of this thesis. Interested readers are kindly directed to the 

bibliography mentioned throughout the section, which should provide a starting point. 
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from the main program via “wrapper” interfaces to allow the use of a different library if 

deemed necessary, with minimal changes to the source code. 

6.3.4 Topology generation and BRITE 

As part of a P2P overlay simulation, the simulator usually has to either generate 

or import a router-level network topology upon which to build the P2P overlay network. 

Depending on the granularity of the simulation model and the design decisions taken 

during the development of the simulation software (e.g. flexibility to add new data 

structures/functions, memory usage etc.) the latter can be a more desirable approach, as 

it allows the use of real-world traces or topologies generated by well-known and 

reviewed software. While AVPsim is designed so that it can be easily extended to 

generate its own router-level topology information, the preferred approach is to create 

such a topology using the BRITE topology generator [Medina, 2001b] and import it to 

AVPsim using the built-in import function. 

BRITE (Boston university Representative Internet Topology gEnerator) 

[Medina, 2001a; Medina, 2001b] is an Internet topology generation framework, 

developed at Boston University, that focuses on reflecting many aspects of the actual 

Internet topology (e.g. hierarchical structure, degree distribution etc.) with accuracy, 

providing many generation models in a single tool and being interoperable with other 

widely-used simulation applications such as ns-2 [ns2, 2007; Fall, 2006], SSF [SSF] and 

OMNet++ [OMNet++] as well as visualisation applications (e.g. Otter [Huffaker, 

1999]). It is written in both Java and C++, and as such is very portable. 

BRITE supports degree-based (i.e. power-law inspired) models as well as older 

models like Waxman and Transit-stub. Thus, by supporting BRITE, AVPsim can 

readily employ a large array of network topology models and interoperate with other 

tools (e.g. GT-ITM [Calvert, 1997]) without the need to implement this functionality 

from scratch and re-invent the wheel. In any case, acknowledging the arguments against 

power laws [Chen, 2002] and degree-based methods [Li, 2004] being the final word in 

representing large-scale Internet structure, the decoupling between Internet and overlay 

topology in AVPsim allows for new models to be readily incorporated as they appear. 

6.3.5 Basic AVPsim data structures 

Having imported a router-level network topology, the AVPsim then creates the 

basic data structures necessary for the simulation of a P2P overlay. Figure 29 illustrates 
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the basic relationships between the different entities of both the router-level and overlay 

topologies, and how they correspond to the internal AVPsim data structures. 

The node table43 and edge table hold information on the network nodes (routers) 

and edges (links between them) respectively, as inferred from the topology file. For 

nodes, such information includes location on the network plane, degree, AS 

correspondence, role (e.g. border or access router), etc. The edge table stores link 

capacities, minimum propagation delay figures, endpoint node IDs, etc. The peer list 

holds information about all peers present in the overlay at any given time. Each time a 

peer joins the P2P overlay, a new entry is created in the peer list containing its full 

profile; peer ID, list of resources it is sharing, on which router in the network plane it 

corresponds to and other attributes are stored there. Some of these entries, like the list of 

resources (e.g. files shared), may change over time based on peer activity. Additionally, 

each peer maintains a record of its active connections to other peers, known as its 

neighbour list. This list corresponds to entries in the “master” connection list (as shown 

in Figure 30) which holds detailed information on all active overlay connections. This 

information includes the mappings of overlay connections onto physical links (stored in 

the edge table) along with their static (e.g. source/destination pair, internal/transit 

categorisation, etc) and dynamic (e.g. current throughput and RTT, etc) properties. 

Transfer properties are specific to the payload transferred over the connection, such as 

file name and size. The relationships of the peer list with the other data structures of the 

simulator are illustrated in Figure 31. 

Finally, connections are categorised as originating and terminating within the 

“home” ISP (local connections), originating and terminating outside the ISP as well as 

traversing the ISP domain (differentiating between inbound and outbound transit 

traffic). 

                                                 

 

 
43

 Under the adopted naming convention “tables” store data related to the largely static router-level 

topology and “lists” data related to the constantly changing overlay topology. This differentiation is 

used to highlight the existence of two separate layers but does not dictate specific implementation 

decisions. 
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Figure 29: Basic AVPsim data structures and their relationship to the network. 

 

Figure 30: Looking-up overlay connection details. 
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Figure 31: The peer list and its association to other data structures. 

6.3.6 Presentation of results 

At the end of a simulation run, AVPsim presents on screen and in a text file a 

summary of the results. The following are the most representative: 

 Duration of simulation (in simulated seconds) 

 Number of unique peers simulated 

 Number of AVPs/VCCs simulated 

 Total P2P traffic volume generated 

 Internal traffic volume measured 

 Transit traffic volume measured (for the “home” ISP) 

 Traffic volume completely external to the ISP (originating and terminating on 

foreign peers) measured 

 Total number of downloads (by all peers) 

 Number of downloads by local peers 

 Number of downloads by local peers from foreign peers 
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 Number of downloads by foreign peers from local peers 

 Number of downloads by foreign peers from foreign peers 

 VCC hits44 

 VCC misses 

 Total number of downloads from VCC 

 Number of fetches by VCC from local sources45 

 Number of fetches by VCC from foreign sources 

 Amount of bytes served by VCC 

 Amount of bytes requested by VCC 

 Number of cache replacement operations 

 Unsuccessful searches (queries with no successful responses received) made by 

local and by foreign peers 

 AOC redirection operations to local sources 

Furthermore, three additional files are created in comma-separated value format 

(CSV) to allow easier manipulation using third-party software. The first contains 

information on every file transfer session that took place during the simulation run. 

Amongst the data logged are the peer identifiers of the two endpoints, average 

connection delay and rate of the transfer, transfer duration and amount of data 

exchanged, and number of hops traversed. The second log contains detailed 

measurements of each type of traffic (total, internal, inter-ISP inbound, inter-ISP 

outbound, total inter-ISP, external-to-external) recorded at regular intervals. How often 

a sample is taken is defined by the user (the default value is every 10 simulated 

seconds). This file can be used to plot traffic utilisation for any or all of the 

aforementioned types of traffic with adequate granularity. The third file contains 

overlay statistics, also sampled at regular user-defined intervals. These include the 

number of peers present in the overlay at the time of sampling, minimum and maximum 

                                                 

 

 
44

 VCC-related information is presented per individual VCC simulated. 

45
 This field is only relevant if a VCC is allowed to cache content already available locally to improve 

availability. Under normal scenarios a VCC will only cache content not already available by other local 

peers, in which case this quantity will be equal to zero. 
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number of overlay connections observed, average degree, number of active file 

downloads and percentage of local and foreign peers present. This file is mostly useful 

for plotting general overlay statistics. 

AVPsim also creates a text file listing the values of all modifiable simulation 

parameters, useful for determining the initial state of a simulation run when it needs to 

be repeated. 

Additionally, if the high-verbosity mode is selected (by compiling AVPsim with 

the “DEBUG_OUTPUT” option), AVPsim stores in text files the topology data 

imported from BRITE, the corresponding routing table created along with bandwidth, 

delay and path length figures for each link and complete overlay snapshots taken at 

regular intervals. The snapshots are in text form and contain full information about each 

peer (e.g. peer id, location on network plane, degree, list of shared resources, list of 

connections etc.) and overlay connection (e.g. source and destination peers, allocated 

bandwidth etc.) present at the time of the snapshot. These files are generally useful for 

debugging purposes but can be used to complement the primary results. In that 

direction, they are structured so that they can be easily parsed or converted to other 

formats if further manipulation is desired. 

Finally, AVPsim contains a function to export node and edge information in a 

“dot” [Gansner, 2002] or “otter” [Huffaker, 1999] file format so that a graph can be 

plotted if desired using the GraphViz suite of tools [Ellson, 2003] or Otter respectively. 

This provides a graphical representation of the imported router-level network topology. 

The same function may be used to visualise snapshots of the overlay but because the 

large number of peers and connections present under typical scenarios render the 

resulting graphs practically illegible, such visual representations have limited utility. 

6.4 Simulation model 

6.4.1 Connection model 

AVPsim distinguishes between two types of connections: protocol connections 

and transfer connections. Protocol connections carry signalling traffic used to 

communicate peer queries, send responses and carry out other protocol-specific 

functions. In protocols like Gnutella such connections determine the immediate 

neighbourhood of a peer and ultimately its search scope. AVPsim uses higher level 

mechanisms to simulate peer and resource discovery more efficiently and, thus, uses a 
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simplified model for protocol connections. In that, they are principally used to indicate 

endpoint association and are assumed to have a constant data rate during their lifetime. 

The rate is derived using a normal distribution with a configurable mean µ. As an 

indication of scale, Qiao et al [Qiao, 2006] report a rate of 200 B/s for control (e.g. 

Pings and Pongs) and 5-10 KB/s for query-related messages for a leaf Gnutella peer. 

The lifetimes of protocol connections are typically short, ranging from a few seconds to 

a few minutes [Ilie, 2004; Qiao, 2006; Azzuna, 2004], and are derived probabilistically 

using a Pareto distribution (unless they are terminated prematurely by peer departure). 

While online, a peer will try to maintain an average, protocol-specific number of such 

connections to other peers and will replace any terminated connections with new ones to 

other peers it discovers. 

Transfer connections are direct connections between two peers, created for the 

purpose of exchanging content. These are long-duration bulk TCP transfers whose 

performance depends on path characteristics such as capacity, latency, congestion and 

packet loss. Transfers are modelled as flows – unidirectional connections between a 

sender and a receiver over a path which is static for the duration of the transfer (i.e. 

multiple routes due to traffic engineering or failure are not considered). Each path has a 

fixed maximum capacity (equal to the bandwidth of the bottleneck link in the path) and 

minimum delay (equal to the sum of the propagation delays of all mapped links) 

Additional queuing delay is added depending on congestion to give the path RTT delay. 

Abrupt source departure notwithstanding, AVPsim calculates the duration of a transfer 

based on the amount of data to be exchanged plus overheads and the effective 

throughput of the connection. Overheads are calculated based on a Maximum Segment 

Size (MSS) of 1460 Bytes and a Maximum Transmission Unit (MTU) of 1500 Bytes. 

Because AVPsim is not a packet-level simulator, trade-offs were unavoidable in regards 

to level of model detail and execution time/scalability and the throughput estimation 

model is less detailed than, for instance, those described in [Padhye, 1998] and 

[Cardwell, 2000]. Specifically, the focus is on the steady state behaviour of TCP (which 

is reasonable for the payload sizes and transfer durations involved) and omits 

connection establishment and slow-start. It is assumed that each flow tries to maximise 

its own throughput resulting in flows achieving max-min fairness (e.g. [Mo, 2000]) in 

sharing link bandwidth. Thus, throughput is calculated based on number of competing 

flows and link bandwidth, starting with the most congested link (lowest share ratio) and 

recalculating every time a connection is added or removed. 
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6.4.2 Ordinary peer model 

Without delving into too much detail, the peer model can be described as 

follows. As in reality, the number of peers present in the overlay varies with time. Peer 

arrivals are independent events, as are searches and download requests made by 

different peers. Peer arrivals are therefore modelled as a Poisson process where inter-

arrival times are determined through an exponential distribution. Peer session durations 

are determined using Pareto (heavy-tailed) distributions. Finally, peer requests for 

content follow a bi-modal Zipf distribution to account for the “flattened” head of P2P 

file popularity, as discussed in Chapter 3. This ensures that the most popular files have 

lower popularity than a normal Zipf distribution would predict. Peer placement is 

random. A new peer may be assigned to any router on the node plane with equal 

probability. 

Before joining the overlay, the characteristics of a new peer instance are 

determined probabilistically based on the particular simulation parameters in use. These 

include download budget and number of files shared, as well as ISP correspondence and 

connectivity. Some random noise is added in this process to ensure that the peer profile 

assigned will not always define the peer‟s behaviour in the particular session, to account 

for variability in user behaviour or other external factors. Peer arrival is then signified 

by creating a new entry in the peer list, holding all information pertaining to this new 

peer. Then, similarly to reality, the peer joining the overlay enters a bootstrapping phase 

where it attempts to find a number of existing peers to connect with. The peer is 

presented with a list of candidates (e.g. as in GwebCache for Gnutella [GWebCache]) 

and attempts to create connections to them. Since the maximum number of protocol 

connections a peer can have is controlled by the P2P protocol, peers that already 

maintain the protocol maximum number of connections will not accept any further. The 

parameters that determine the minimum, maximum and average number of connections 

as specified by the P2P protocol are modifiable to accommodate the use of other 

protocols or protocol versions. 

While online, peers will generally attempt to search for and download a number 

of files. In AVPsim, this is facilitated through the use of specific “Manage search” 

events that trigger the necessary functions in a way that mirrors real P2P protocol 

behaviour without modelling interactions at the packet level. These include transmitting 

the search to a set of neighbours, collecting responses, setting up connections for 

content transfer and updating peer resource indexes when downloads are completed. If a 
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peer leaves the overlay before successfully completing any ongoing content transfers, 

these connections are terminated and the connection lists of its former neighbours 

updated. Furthermore, future scheduled download events are cancelled. 

Although the length of time a simulated peer will stay in the overlay is 

predetermined in the sense that it is set when the peer entity is created and a 

corresponding “exit” event is inserted, no assumptions are made by any simulator 

function on a peer‟s availability. This way, the essential characteristics of peer 

autonomy and service unpredictability are preserved. As a consequence, a peer may 

create connections or initiate a file download and leave moments later, before these 

functions complete. 

6.4.3 AVP model 

In accordance with the actual design of the AVP architecture, the simulated 

AVPs are to a large extent treated by AVPsim like ordinary peers. When an AVP is 

scheduled to join the overlay, an entry is created in the peer list holding regular peer 

information such as location, degree, list of connections to other peers etc. A special 

flag is set to indicate that this peer is an AVP so that AVP-specific functions can be 

utilised where applicable. Essentially, inside AVPsim an AVP has a superset of a 

regular peer‟s properties and shares a lot of common features and functions with it. This 

not only makes the real-life AVP concept more evident in the simulator design, but 

allows ordinary peers and AVPs to be treated identically when it comes to regular P2P 

protocol functions such as searching, creating connections etc. 

AVPs differ from ordinary peers in that they are typically assumed to have much 

longer lifetimes, often as long as the duration of the simulation. Thus, session durations 

are configured manually, unless the simulation scenario calls for AVP failure. 

Furthermore, AVP location is determined based on the locations of installed EEPs on 

the node plane. Typically EEPs are provisioned with higher capacity links. Finally, 

AVPs will attempt to maintain protocol connections with a larger variety of foreign 

peers, specifically in diverse ASes in order to ensure good global overlay connectivity. 

A consistent approach was followed for the VCC. Since a VCC component 

communicates directly only with other AOCs and is invisible to regular peer searches, it 

exists as a separate entity in the simulator memory space and an entry is not created for 

it in the peer list. AOCs can access the VCC and its data through querying, but ordinary 

peers cannot discover nor connect to it independently. Ordinary peers may connect to a 
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VCC only after an AOC re-direction operation. Depending on the simulation scenario, 

the AOCs monitor peer requests for content and signal the VCC to download and cache 

content according to demand. Similarly to reality, the simulated VCC monitors its 

capacity utilisation and enforces cache replacement policies if necessary, independently 

of the AVPs. The algorithms used to implement the cache replacement policies for the 

prototype and for the simulator are identical. 

6.5 Summary 

This chapter presented the AVP simulator. After a brief survey of available P2P 

network simulators and the rationale behind the decision to develop a new one, the 

design of AVPsim was outlined. Various design decisions and features were examined, 

including internal data structures, result presentation and the fundamental characteristics 

of the connection, AVP and P2P protocol models. 

The use of AVPsim features heavily in next chapter, where the evaluation of the 

AVP framework is presented.  
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7. EVALUATION OF THE AVP 

7.1 Introduction 

What traffic savings can be expected from applying topology control? Will peers 

experience any positive or negative effects from said control? Will caching parts of a 

contemporary P2P workload make a considerable difference to overall traffic? Which 

cache strategy performs best for a given set of requirements? What are the implications 

of deploying multiple VCCs? This chapter examines these and many more questions 

with the help of a comprehensive simulation model and provides extensive analysis of 

the results. 

The chapter is structured as follows: In the next section, the simulation setup 

used throughout the chapter is described. Then, the effect of local source promotion on 

traffic minimisation and application performance is examined. The establishment of the 

theoretical maximum cache performance follows. Next, the performance of different 

caching strategies in a single-cache deployment is evaluated using two distinct 

workload scenarios. Having established the necessary background to caching strategy 

performance and effects, multiple AVP deployments are evaluated next. The differences 

between autonomous and cooperative caching are examined using a variety of metrics. 

This is followed by the investigation of the effect of AVP placement on network and 

peer performance, along with an exploration of the economic considerations of AVP 

deployment.  Finally, the chapter is completed with the discussion of component testing 

of the AVP prototype. 

7.2 Simulation setup 

The impact of the AVP on P2P application operation as well as the performance 

of different cache replacement strategies and AVP configurations were evaluated using 

the AVPsim software presented in the previous chapter. For consistency with the 

prototype implementation, the Gnutella protocol was chosen as the basis of the 

simulation. As discussed in Chapter 3, most contemporary file-sharing applications 
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share close similarities in the content download phase and mainly differ in the ways 

they form their overlay topologies and locate peers and resources. Even when 

downloads from multiple sources are supported (as is the case with most contemporary 

applications) the differences lay in the number of concurrent connections maintained or 

algorithms employed to prioritise file chunk selection (e.g. [Legout, 2005]), but 

ultimately facilitate the exchange of the entire file (user aborts notwithstanding). For 

that reason, any observations made using this simulation setup are to a very large extent 

applicable to a number of different file-sharing protocols besides Gnutella. 

A workload of 600,000 unique files46 was simulated. Files occupied a range of 

different sizes normally distributed around the values of 2 MB, 5 MB, 80 MB, 350 MB 

and 700 MB which are common sizes for single non-media files (e.g. photos, text 

documents etc), single media files (e.g. mp3 files etc), archives of files (e.g. zip 

compressed files etc), short-duration video content and longer-duration video content 

respectively. The popularity distribution and replication characteristics of files based on 

type and size were modelled after the recent data presented in [Stutzbach, 2007] after 

being cross-examined with an older similar study [Chu, 2002]. Peer session times, inter-

arrival times and signalling connection lifetimes were modelled after the data and traces 

presented in [Qiao, 2006], [Stutzbach, 2005], [Ilie, 2004], [Klemm, 2004] and [Saroiu, 

2002].  In general, all simulation parameters were chosen after extensive scrutiny and 

comparison of available studies and traces as discussed in Chapter 3. Table 4 presents 

the values assigned to some of the most critical during the runs featured in this chapter. 

The underlying network topology was constructed using the BRITE tool, as 

discussed in the previous chapter. A hierarchical top-down approach was used wherein 

the top level describes the AS-level topology (i.e. each node represents an AS with 

edges representing inter-AS links) and the bottom level describes the router-level 

topology inside each AS. Both the “home” and “foreign” ISPs/ASes were constructed 

following the same basic router-level topology model with variations in size/number of 

                                                 

 

 
46

 A workload of 600,000 unique files is considered adequate for evaluating VCC caching. While many 

P2P networks claim millions of unique shared files a large percentage of them are duplicates that return 

a different hash value, have no sharing value (e.g. thumbnail files, metadata files, other operating 

system-related files etc that are shared along with other content) or are fakes/malware. Including such 

files in the simulation workload offers no direct advantages while inflating computational resource 

requirements. 
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routers. As illustrated in Figure 32, this model contains a number of access (or edge) 

routers located at each Point-of-Presence (PoP) handling the access network traffic 

handed-over from the local loop47, interconnected by backbone routers. Border (or 

gateway) routers provide connectivity with the rest of the Internet via different ASes for 

resilience. Aggregation (or distribution) routers are also included to realistically reflect 

contemporary ISP designs, as for instance described in [Cisco, 2005] and gathered from 

the findings of the Rocketfuel project [Sprint, 2002]. All internal links are assigned 

2.488 Gbps (e.g. OC-48) capacity and transit links 1 Gbps (Gigabit Ethernet). For 

readability, most link and router redundancy is omitted from the figure but is present in 

the synthetic topology. Last-mile link capacities between 256/512 Kbps and 1/8 Mbps 

(uplink/downlink) were assumed, to reflect current consumer offerings by ISPs48 for 

ADSL broadband access. 

Parameter Value 

Peer arrival rate (Exponential) λ=4 

Peer session duration (Pareto) α=1.09, xm=0.85 

Protocol connection duration (Pareto) α=1.88, xm=0.87 

File popularity (Zipf) head=0.65, body=1.18 

Number of global routers 10,000 

Number of ASes 990 

Table 4: Key simulation parameters of the featured runs 

Each simulation run was repeated three times with different random number 

generator seeds to eliminate the possibility of bias. As such, unless stated otherwise, all 

results are given as the arithmetic mean calculated from the three runs along with their 

standard deviation. Where that would affect the legibility or ability of the reader to 

easily analyse the results or graphs, Pearson correlation coefficients are instead provided 

to indicate the degree of correlation of simulation results from the three runs. These 

                                                 

 

 
47

 No distinction is made between ISPs employing LLU (Local Loop Unbundling) or using a wholesale 

provider to reach the customer premises. 

48
 Based on broadband deployment data collected from http://www.thinkbroadband.com and 

http://www.broadbandperformance.co.uk/availabilitymap.aspx. 



 

141 

coefficients, denoted by R2, were calculated using Formula (1) below, where xi is the 

measurement, mx the sample mean, xi’ the value of the measurement minus the mean 

and N the sample size: 

 R
2
 = 1-

∑      
  

 =1

∑     -    
  

 =1

 (1) 

Finally, although all the results presented in this chapter were generated using a 

single network topology for consistency, numerous simulation runs were performed 

with different topologies to ensure that bias was not introduced due to BRITE topology 

artifacts. 

In order to give a sense of the scale of the system simulated, for the specific set 

of simulation parameters and topology used 345,534 unique peers were simulated over a 

period of 24 hours. In normal operation they exchanged 55.3 TB of data over 1,361,265 

download sessions globally, with peers belonging to the “home” ISP transferring 

approximately 3 TB over transit links and 324.8 GB internally. 

 

Figure 32: Basic ISP router topology model. 

7.3 Evaluation of AOC routing/topology control and application 

performance improvement 

As discussed in Chapters 4 and 5, the AVP accomplishes P2P content caching 

through the combination of protocol message manipulation and peer redirection carried 

out by the AOCs and the provision of object storage/serving capabilities in the form of 



 

142 

VCCs. The redirection mechanism in particular is not limited to simple VCC support 

but instead is a core AVP routing/topology control capability which operates regardless 

of VCC presence. By leveraging the ISP‟s privileged knowledge of the underlying 

network infrastructure and their ability to obtain accurate measurements much more 

effectively than peers on their own, AOCs can direct peers towards optimal paths and 

appropriate neighbours and thus help them avoid costly and inefficient peering 

decisions. 

This section examines the extent of P2P application transfer-related performance 

improvement brought by AOC peer selection biasing compared to regular, random 

peering. Towards that, the same synthetic Internet topology was simulated for a period 

of 24 hours under normal P2P application operation (i.e. no AVPs present) as well as 

when an AVP consisting of a single AOC component (i.e. no VCC caching) was 

deployed in the “home” AS. All other parameters (e.g. number of peers, location of 

peers, query workload, capabilities, shares etc.) were identical to allow for direct 

comparison of results. Source evaluation was based solely on RTT measurement 

between inquiring peer and available sources and local/foreign peer identification, to 

capture the general case without assuming advanced AVP capabilities such as the 

presence of a NOC. As a result, in the case of foreign sources only RTT was taken into 

account regardless of AS hop distance. 

Table 5 highlights some of the most representative results collected from both 

scenarios. Specifically, it presents the total volume of transit traffic measured 

throughout the 24-hour period, the number of queries made by local peers that were 

resolved by other local peers (also given as a percentage of all successful locally-

initiated queries), the number of queries made by local peers that were not replied to by 

any local or foreign peer, the average (arithmetic mean) round-trip delay experienced on 

a connection initiated by a local peer, the average number of IP-level hops a connection 

initiated by a local peer corresponded to49, as well as the average time needed for a 
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 In the network model used in this thesis, an IP hop is defined as a direct link between two distinct 

routers. By that definition, routing a packet between two separate interfaces in the same router does not 

constitute a hop. In addition, IP hops are measured from the ISP PoP onwards (i.e. the part of the 

network connection from the user premises to the local exchange and, where applicable, over a 

wholesale provider‟s ATM-based backhaul network is not considered). As a corollary, peers that 

correspond to the same PoP are considered to be separated by one hop. 
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locally-initiated transfer of any 350MB file to be completed50. The standard deviation of 

results is provided in square brackets. 

 No AVP With AVP  Difference % 

Total transit traffic (Gb) 
25,038.65 

[±0.3601] 

19,989.18 

[±0.3226] 
- 20.17 % 

Queries resolved locally 
8,819 (11.82%) 

[±6.9761] 

39,041 (52.34%) 

[±28.3314] 
+ 342.69 % 

Unsuccessful queries by local 

peers 

11,204 

[±7.2572] 

11,100 

[±9.4163] 
- 0.93 % 

Average connection latency 
331.19 ms 

[±0.3459] 

200.67 ms 

[±0.3771] 
- 39.41 % 

Average IP hops per 

connection 

10.76 

[±0.0047] 

7.18 

[±0.0082] 
- 33.27 % 

Average transfer completion 

duration for a 350 MB file 

6,873.58 s 

[±0.5889] 

5,010.29 s 

[±0.9622] 
- 26.72 % 

Table 5: Traffic and connection characteristics of no AVP/single AOC 
deployments. 

In addition to the “big picture” presented in Table 5, Figure 33, Figure 34 and 

Figure 35 illustrate Cumulative Distribution Functions (CDFs) of the connection path 

length (in hops), delay and transfer completion times respectively for both scenarios. 

Table 6 presents the Pearson correlation coefficients of the data plotted in these figures, 

calculated from the three separate simulator runs. 

 Normal With AVP 

IP hops (Figure 33) 0.999529 0.999375 

RTT (Figure 34) 0.996973 0.995321 

Transfer time (Figure 35) 0.993242 0.991897 

Table 6: Degree of correlation of connection characteristics data between runs. 

                                                 

 

 
50

 As noted earlier, the file workload modelled consisted of files of various sizes (2MB – 700MB) and 

types. For brevity, transfer duration-related results are presented for a single file type only. 
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Figure 33: CDF of number of IP hops between source and destination peers 
under normal operation and when an AVP is present. 

It becomes evident from these results that the introduction of peer selection 

biasing results in the decisive reduction of the number of IP hops between source and 

destination peers, with almost 35% of connections terminating within 4 hops from 

source for the simulated topology in the presence of an AVP (cf. Figure 33). In 

comparison, connected peers are at most 4 hops away in only 6.5% of all cases under 

random neighbour selection. Crucially, the AVP manages to keep more than half 

(52.34%) of all transfers within the AS, compared to 11.82% when sources are selected 

randomly. This has a clear effect in the reduction of transit traffic, which in this case 

was reduced by approximately 20.17%. Moreover, even when overlay connections 

terminate outside of the ISP‟s network due to lack of local sources, they correspond to 

shorter path lengths compared to regular P2P protocol behaviour. With AVP mediation, 

75% of all peer connections correspond to 10 hops at most. In the un-biased scenario, 

the same happens for less than 42% of connections, while 75% of connections 

correspond to up to 13 hops. 

It has to be noted that this reduction in path lengths and, critically, in transit 

traffic volume, was achieved by simply promoting local sources where possible, without 

interfering with peer query criteria or reducing a peer‟s chance of locating a resource 
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when it was only available outside the ISP network. This is demonstrated by the number 

of queries made by local peers that were not successfully resolved, which was not 

affected by source promotion. The slightly fewer unresolved queries (0.93%) in the 

presence of the AVP can be attributed to the latter‟s broader search horizon due to 

maintaining more connections to foreign peers and having almost permanent uptime 

compared to an ordinary peer. 

Shorter path lengths are important not only because they lead to less inter-

domain traffic but also because they translate to less network load This is especially true 

of P2P bulk transfers which when carried out over unnecessarily long paths (when they 

could be served over shorter ones equally well) lead to congestion both in the backbone 

as well as transit links. This point is revisited later in the chapter. 

The promotion of local sources has a distinctive effect on peer transfer 

performance. Figure 34 demonstrates that AVP-promoted connections suffer from 

drastically less latency than connections formed under normal, un-biased P2P protocol 

behaviour51. While peers experience less than 100 ms of round-trip delay in only 4% of 

their connections under regular protocol behaviour, with AVP assistance this figure 

grows to 38%. Additionally, in the latter case half of all connections experience no more 

than 210 ms of delay, compared to up to approximately 330 ms experienced under 

random peering. Finally as the CDF reveals, under random peering the majority of 

connections experience between 200 ms and 450 ms of round-trip delay, while 17% 

achieves good performance (less than 250 ms delay) and another 7.5% suffers from 

more than 450 ms of latency. With AVP assistance in contrast, four distinct modes are 

observed: 35% of connections achieve very low latency (less than 80 ms) due to being 

terminated within the AS and in most cases very close to the originating peer‟s PoP. 

Then, another group of connections experiences relatively low latencies of up to 250 

ms. These are connections that terminate in one of the nearby ASes. The third group 

includes almost 40% of all connections and corresponds to latencies between 250 ms 

and 400 ms. The linearity of this part of the curve indicates that these connections 

comprise the bulk of longer inter-AS connections; generally a result of fetching non-

                                                 

 

 
51

 For clarity, the graph illustrates the CDF for up to 700 ms of latency. This covers 98% of all 

connections, excluding outliers. 
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adequately replicated objects. Finally, 10% of connections suffer from upwards of 400 

ms of latency. These are connections that traverse multiple ASes or paths affected by 

severe congestion. 

 

Figure 34: CDF of connection round-trip delay between source and destination 
peers under normal operation and when an AVP is present. 

The effect AVP source promotion has on latency minimisation is reflected on 

the effective connection throughputs achieved. Figure 35 displays the CDF of the time 

needed for a local peer to complete a 350 MB transfer for the first, and most significant, 

3.5 hours (12,600 seconds). As illustrated in the figure, local peers experience a healthy 

decrease across the spectrum of the time needed to fully transfer a 350 MB file 

compared to when sources are selected randomly. It should be stressed that instead of 

using a “special” download file as in many studies, any file of that size from the entire 

workload was considered, regardless of popularity or level of replication in the network. 

Since most files are not as well replicated as those of high popularity, the improvement 

in download times is often small enough to be “smoothed out” by the 5-minute bins 

used to calculate the CDF. In addition, source promotion alone cannot guarantee a faster 

transfer rate when sources are few and similar. Furthermore, the large size of a 350 MB 

file makes it more susceptible overall to packet loss and congestion which penalise 

effective throughput. Nevertheless, this ensures a realistic setting and demonstrates a 
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clear improvement in download times with AVP mediation. Therefore, the redirection 

of peers to local sources when they are available and closer sources in general has a 

positive effect on the download performance experienced by most users, because it 

creates the conditions to achieve higher connection throughputs and thus reduced 

download times. 

The simulation results collected from three separate runs have demonstrated 

very little variation between them, as indicated by their Pearson coefficients presented 

in Table 6. This eliminates the possibility of bias and ensures that the observations and 

conclusions drawn in this section describe the system accurately in its entirety, while the 

plots drawn using the mean values from the three runs reflect system behaviour without 

“hiding” salient details. 

To summarise, AVP-assisted neighbour selection achieves two important goals: 

 It reduces costly transit traffic by a significant amount where possible without 

otherwise limiting peer search and transfer functions. 

 It reduces average path length and delay which has a positive effect on download 

times. 

 

Figure 35: CDF of transfer completion time under normal operation and when an 
AVP is present. 
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7.4 Evaluation of VCC caching 

Having established the areas and magnitude of P2P application performance 

improvement achieved solely through AVP peer selection biasing, it is now time to 

investigate whether VCC caching, which essentially adds dedicated, high-availability 

local sources to the existing AVP overlay control capability, can offer any significant 

additional benefits to the network provider and P2P application users. 

Because VCC content caching encompasses numerous techniques and addresses 

some issues not typically encountered in traditional web caching approaches, the 

evaluation will be broken down into three parts. First, the viability of a VCC-based 

caching scheme will be examined from a transit traffic-minimising perspective.  Next, 

the various caching strategies presented in Chapter 5 will be evaluated against each 

other in a single VCC configuration. Finally, the multiple-VCC distributed caching 

capability will be assessed. 

7.4.1 Ideal cache performance 

The performance of a cache depends on a variety of factors such as the number 

of requests seen by the cache, the diversity of these requests (i.e. the slope and shape of 

the query distribution), the size of the cache and the efficiency of the replacement 

strategy used. Before examining the performance of VCCs under different strategies it 

is thus important to establish certain fundamentals for the particular simulation 

parameters (e.g. number of peers, query workload, replica distribution, file size 

distribution, peer session times, etc.) employed, as no useful conclusions can be drawn 

from simple comparison to other studies52. The first step is to measure the maximum 

theoretical traffic savings achievable through VCC operation within a defined period of 

time. Ideal VCC performance is established by having the VCC apply no cache 

replacement policies, effectively leading to an infinite size cache. 
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 For example, in [Leibowitz, 2002] a 67% maximum hit rate is reported whereas Dunn in the same year 

[Dunn, 2002] reports a figure of over 80%. This is because for infinite-sized Web proxy caches the hit 

ratio grows logarithmically with the client population of the proxy and the number of requests seen by 

the proxy [Breslau, 1999; Cao, 1997], making any observations only relevant to the particular work. 
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The same overlay was simulated for 24 hours (after a 6-hour simulator warm-

up53) under normal P2P operation and when an AVP containing an AOC/VCC pair was 

present. Figure 36 illustrates the inter-domain P2P traffic volume measured over this 

time period for these two cases (sampled every 120 seconds). For the largest part of the 

warm-up period (not shown) traffic volumes for both cases were comparable, as the 

empty cache was being populated with foreign content. Gradually however, an 

increasing number of requests was served from cached copies instead of foreign peers 

leading to the reduction of transit traffic, as evidenced from the graph. This resulted in 

approximately 200 Mb/s less transit traffic than normal towards the end of the 

measurement period. Overall, the effect of the introduction of a VCC on the reduction 

of external traffic is significant. Specifically, for the selected simulation parameters the 

maximum achievable cache object hit-ratio (or hit-rate) was 59.4% while the byte hit 

ratio was 56.3%. Of course, these figures represent the upper limit of cache efficiency 

for the particular workload when cache capacity limitation is not factored in. The 

introduction of cache replacement policies will inevitably reduce cache performance 

below these ceiling values. 

Table 7 presents overlay statistics collected during the aforementioned run along 

with the set discussed in the previous section. According to these results, the 

introduction of a VCC brings improvements in all relevant areas. Specifically, over the 

measurement period of 24 hours the addition of a VCC reduced transit traffic by 4,738.2 

Gb or 23.7% compared to only AOC neighbour selection biasing, and by 9,787.67 Gb 

or 39.09% compared to regular operation. Given the large peer set and file workload 

considered, even distribution of replicas and very modest cache warm-up time, this 

reduction is very substantial. A longer simulation would allow the modelling of flash-

crowd dissemination of new objects and uneven spread of replicas in the network which 

would pronounce the differences between simply redirecting to local sources when they 

are available and ensuring local copies exist in the cache in regards to transit savings. 
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 All cache simulations described in this chapter are kept “conservative” by starting with empty caches. 

While this unavoidably introduces compulsory (cold start) misses which hurt the maximum hit rate, it 

helps avoid biased results due to selecting possibly favourable initial states.  
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Modelling these traits within a 24-hour window however is unrealistic and would bias 

the results in the VCC‟s favour. 

 

Figure 36: Transit traffic volume with and without a VCC present. 

 No AVP Only AOC Infinite VCC 

Total transit traffic (Gb) 
25,038.65 

[±0.3601] 

19,989.18 

[±0.3226] 

15,250.98 

[±0.6874] 

Unsuccessful queries by local peers 
11,204 

[±7.2572] 

11,100 

[±9.4163] 

9,434 

[±19.5959] 

Average connection latency 
331.19 ms 

[±0.3459] 

200.67 ms 

[±0.3771] 

45.74 ms 

[±0.2776] 

Average IP hops per connection 
10.76 

[±0.0047] 

7.18 

[±0.0082] 

2.99 

[±0.0047] 

Average transfer completion duration 

for a 350 MB file 

6873.58 s 

[±0.5889] 

5010.29 s 

[±0.9622] 

2529.25 s 

[±0.5573] 

Table 7: Peer traffic and connection characteristics in “no AVP”, “single AOC” 
and “AOC+VCC” deployments. 

Crucially, the big difference comes in those characteristics that constitute an end 

user‟s perception of service quality. Both connection delay and path length are 

minimised, leading to almost halving the average download time for a 350 MB file, 
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compared to only relying on an AOC. Specifically, the addition of a VCC led to less 

than half the average path length and reduced average round-trip delay by 77.21%. 

The introduction of a high-availability local source in the form of the VCC had 

the effect of reducing the number of unsuccessful queries due to once-available files 

disappearing from the network (i.e. due to peer departure). Given that all but the least 

popular files would achieve a degree of natural replication and thus be available at 

alternative locations, this signifies searches for rare files. In practice, under any cache 

replacement strategy such files would be purged from the cache in favour of storing 

more valuable files, therefore a reduction of this magnitude is attributed to the cache‟s 

infinite capacity and unlike the rest of the measured characteristics it is not claimed as 

an advantage of the VCC. 

In short, by ensuring local copies of popular content exist, VCC caching builds 

upon the improvements brought by AOC source promotion by: 

 Offering a further significant reduction of transit traffic, independent of regular 

local source churn or load.  

 Reducing latency and path length many-fold, thus leading to faster downloads 

and improved service quality perception. 

7.4.2 Cache replacement strategy performance 

After establishing the theoretical caching maximum, the effect of the different 

cache replacement policies on cache efficiency was evaluated. First, the performance of 

each replacement policy at different cache capacities was examined. A single VCC 

deployment of 100 GB, 200 GB, 400 GB, 600 GB, 800 GB and 1000 GB (1 TB) 

capacity was simulated for a period of 24 hours for each of the replacement policies 

implemented. These are LRU (Least Recently Used), LFU (Least Frequently Used), 

LRUSS (Least Recently Used of Similar Size), LFUSS (Least Frequently Used of 

Similar Size), ILR (Intelligent Least Requested), ALR (Averaged Least Requested), 

LFUTS (Least Frequently Used Threshold Smaller) and LFUTL (Least Frequently Used 

Threshold Larger) as presented in Chapter 5. Again, all other factors remained 

unchanged between simulations. 

A cache hit is noted when the VCC stores and can readily serve the requested 

file range (or entire file) to the relevant peer. On the other hand, a hit is not awarded 

when the requested file is available in another local peer and the redirection to it was 

facilitated by an AVP, despite the mediation. A cache miss occurs when the requested 
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file is not present in the cache (or other local peers). Upon a miss, the VCC downloads 

and stores the requested file, unless the strategy employed performs additional checks 

first (e.g. ILR, ALR, LFUTS and LFUTL). In practical implementations a third 

possibility exists: Unlike many simulation-based studies which imply temporary 

capacity overflows or unlimited active transfer “scratch” space (as for instance in 

[Wierzbicki, 2004]), in the AVPsim model the necessary space is reserved beforehand 

for each file admission, as would happen in a practical deployment. This is space that 

most of the times will need to be released by a replacement operation. It is possible that 

the volume of requests is such that a VCC is simultaneously transferring too many files 

for storage in the cache and replacement operations need to occur so often that files are 

evicted shortly after their admission. Not only this can reduce cache operation to simple 

store-and-forward with no practical benefits, but it can also affect the availability of the 

physical device due to overloading.  

In order to avoid such a case, all policies apart from ILR and ALR implement a 

download transfer threshold. Specifically, if the amount of space reserved at any time 

by active transfers exceeds 50% of the total cache capacity, then the VCC suspends the 

admission of any further files and allows their unmediated transfer from foreign sources 

until the volume drops below the threshold. This event is denoted as a cache rejection. 

Depending on the query workload and cache size, all policies experience varying 

numbers of cache rejections. Because ILR and ALR apply replacement operations on a 

subset of cached files and employ cache rejection by design, they are the only two 

policies of the group not employing a threshold in this manner. 

Figure 37 illustrates the object hit-ratio (OHR) performance of the 

aforementioned policies, averaged over three simulation runs. For clearer comparison, 

these results are also presented in tabulated form in Table 8. Pearson coefficients 

indicating the degree of correlation between the simulation results from each run are 

presented in Table 9. 

Focusing on LRU, LFU, LRUSS and LFUSS for the moment, it becomes 

evident that policies which operate based on the volume of file requests such as LFU 

and LFUSS achieve higher object hit ratios throughout compared to LRU and LRUSS 

respectively, which focus on file last-request times. In other words, long-term behaviour 

(i.e. frequency of requests over time) proves to be a more effective metric to judge 

caching suitability than short-term behaviour (i.e. “age” of last request). This indicates 

that the effect of temporal locality which endows LRU and similar policies with good 

performance for web content or processor memory caching is not the most dominant 
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factor in P2P workloads. The dynamics of popularity in current P2P usage profiles 

change over longer timescales (i.e. days instead of hours). Furthermore, unlike web 

content which often builds its popularity through frequent modification and updates that 

lead to repeated access, P2P content is immutable and can generally only attract a “flash 

crowd” upon its initial insertion in the network. If the typical P2P query workload was 

characterised by predominantly flash crowd behaviour, then LRU-based policies would 

have an advantage over LFU-based ones. For present workloads however, LFU-based 

policies are clearly more suitable. 

 

Figure 37: Object hit ratio performance per cache capacity. 

A quick observation of the full results reveals that LFUTS offers the best OHR 

performance throughout, approximately 10% higher than the second best policy 

(LFUSS) at each capacity. On the other end of the spectrum, LFUTL attains the worst 

hit ratios, never reaching more than 10% at any capacity. These results are not 

surprising. Both policies employ a selective caching model where LFUTS caches only 

small objects (smaller than 80 MB) while LFUTL caches only large objects (larger than 

80 MB). Because LFUTS avoids the caching of large objects that would naturally 

occupy a lot of space at the expense of cached object count, it can use the available 

capacity to cache many small objects and return a hit in many more cases compared to 
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other policies. Conversely, because LFUTL caches only large objects, it can hold in the 

cache only relatively small numbers of them at any time, resulting in low object counts 

and thus hit rates. 

Size LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

100 

GB 
18.7 % 22.7 % 26.6 % 35.5 % 20.6 % 28.2 % 44.6 % 3.9 % 

200 

GB 
24.1 % 27.7 % 34.4 % 39.0 % 26.7 % 33.4 % 49.7% 5.0 % 

400 

GB 
28.9 % 32.6 % 39.7 % 41.8 % 34.3 % 37.1 % 53.2 % 6.1 % 

600 

GB 
32.8 % 36.3 % 41.9 % 43.0 % 38.0 % 39.5 % 54.0 % 6.9 % 

800 

GB 
36.9 % 39.9 % 42.7 % 43.5 % 40.4 % 41.0 % 54.5 % 7.4 % 

1000 

GB 
39.6 % 41.8 % 43.2 % 43.8 % 41.9 % 42.2 % 54.8 % 7.8 % 

Table 8: Replacement policy object hit ratios per cache capacity. 

LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

0.99969 0.999804 0.999572 0.999258 0.999754 0.999558 0.999203 0.997639 

Table 9: Degree of correlation of OHR simulation results between runs. 

From the 600 GB capacity point upwards the object hit rates LFUTS achieves 

stabilise close to that of the ideal, infinite cache (59.4%). This is a result of the file 

workload simulated, based on the most recent data available ([Stutzbach, 2007]), which 

is largely composed of small-sized files (e.g. 60% of all files are smaller than 10 MB). 

Big caches can store a large number of such files and reach a state where most of the 

truly popular files remain cached while the replacement policy operates on the edge of 

the “long tail”; where selecting one file over another does not affect overall hit-ratio 

significantly. Of course, in real life a workload is not static as new files are gradually 

made available while unpopular ones may be removed altogether. For the 24-hour 

period simulated, however, the use of a static workload is not unrealistic, especially 

since a large number of distinct objects (600,000) was simulated. 

Throughout the 100 GB to 1 TB capacity region, the superiority of LRUSS and 

LFUSS over LRU and LFU respectively is clearly identifiable. These policies combine 

a file‟s request age or frequency with its size and demonstrate a considerably higher 

object hit rate performance than their single-metric counterparts (LRU and LFU). Due 
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to factoring in size in the eviction decision, LRUSS and LFUSS manage to keep a stable 

number of cached objects by evicting exactly one file for each admission. The effects of 

this approach are visible in Figure 38 which illustrates the number of cache replacement 

operations performed by each policy during the simulation campaign. As the available 

capacity increases, the number of necessary operations drops for all policies but overall 

two distinct groups can be observed. The file size-aware policies (LRUSS and LFUSS) 

require noticeably fewer replacement operations than the simpler LRU and LFU at each 

capacity point, indicating better utilisation of available space per operation. Crucially, 

cases where a significant number of small files is evicted to make room for a single 

large file are avoided. This keeps the object count as high as possible at any given time 

and contributes to the considerably higher overall OHR. 

 

Figure 38: Cache replacement operations per policy and cache capacity. 

ILR and ALR comprise two selective caching strategies where a requested file is 

admitted into the cache only if it fulfils the conditions dictated by the strategy. Their 

object hit ratio performance lies roughly in the middle of the group, being higher than 

LRU, LFU (for 300 GB and higher) and LFUTL but lower than LRUSS, LFUSS, and 

LFUTS. Between the two, ALR shows higher object hit ratio performance, which is 

more pronounced in smaller caches. Finally, despite being the only two policies of the 
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group that do not employ a download volume threshold to deal with overwhelming 

query rates, the policy intelligence manages to identify and keep really valuable files 

stored while allowing all files enough time in the cache to let them “prove” their 

popularity. 

In general, the simulation results collected from the three runs demonstrate a 

very high degree of correlation (very close to the “ideal” value of 1), as shown on Table 

9. This indicates that the variation of OHR results between the different runs was 

minimal, eliminating the possibility of bias and ensuring that they are described 

accurately by the mean values plotted in Figure 37 and tabulated in Table 8. 

While valuable, object hit ratios alone cannot provide a definitive indication of 

replacement policy performance as they do not necessarily reveal the extent of 

bandwidth savings achieved. For that reason, VCC cache replacement policies were also 

evaluated according to byte hit ratio performance. Byte hit ratio (BHR) denotes the 

number of bytes transferred from the cache as a percentage of the total number of bytes 

resulting from all (local) peer requests. Figure 39 illustrates BHR performance for the 

aforementioned policies and cache capacities. The results are also presented in Table 10. 

 

Figure 39: Byte hit ratio performance per cache capacity. 
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Byte hit ratios reveal a different side of the story to object hit ratios. With the 

exception of the 100 GB size cache, ILR achieves the highest byte hit ratios across the 

board. ALR appears as second best in smaller caches, but for caches larger than 600 GB 

it is outdone by LFU. As with object hit ratios, LFU retains an advantage over LRU and 

this superiority of request frequency over age is also maintained between LRUSS and 

LFUSS. Furthermore, as with the OHR analysis, the Pearson coefficients estimated 

from the three separate simulation runs demonstrate a very high correlation of BHR 

results, giving confidence of their validity. These coefficients are presented in Table 11. 

Size LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

100 

GB 
14.9 % 21.2 % 13.9 % 17.4 % 22.6 % 23.0 % 5.4 % 20.5 % 

200 

GB 
21.1 % 25.9 % 18.7 % 21.2 % 27.5 % 26.9 % 7.2 % 25.1 % 

400 

GB 
26.8 % 30.9 % 24.2 % 27.1 % 32.5 % 31.2 % 8.2 % 29.9 % 

600 

GB 
31.1 % 34.2 % 29.0 % 31.0 % 34.9 % 33.5 % 9.2 % 33.0 % 

800 

GB 
33.7 % 36.2 % 33.3 % 35.0 % 36.8 % 35.4 % 10.0 % 34.8 % 

1000 

GB 
35.5 % 37.5 % 35.5 % 37.1 % 38.3 % 36.8 % 10.7 % 35.9 % 

Table 10: Replacement policy byte hit ratios per cache capacity. 

LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

0.999837 0.999802 0.999725 0.9996 0.999581 0.999403 0.998498 0.999682 

Table 11: Degree of correlation of BHR simulation results between runs. 

By estimating the value of a candidate object before admission, ILR manages to 

avoid most non-optimal caching decisions, which are costly, and this is reflected in the 

superior returns per cached byte it achieves. The similarly operating ALR is also in the 

top performers but, despite demonstrating better object hit ratio performance, is not as 

effective from a byte hit rate perspective compared to ILR. The reason is that because it 

enforces stricter admission criteria to ILR, ALR does not cache newly-appeared objects 

as early and may cause multiple downloads from external sources before finally caching 

them in high churn conditions (i.e. when the local source disappears before the object is 

further replicated naturally). This incurs a byte hit rate penalty which becomes more 

pronounced as capacity increases and the cost per non-optimal decision becomes 
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smaller. This is the reason why in larger caches LFU is competitive to, or even 

surpasses ALR. 

Unlike their object hit rate performance, the byte hit rates achieved by LRUSS 

and LFUSS are rather mediocre. This is because the size differentiation they employ 

mainly reduces cache operations and maintains a stable number of objects but 

ultimately, like LRU and LFU, operates on files and not bytes. Thus, while the byte hit 

rates they achieve improve steadily with each cache capacity increase, both policies 

replace byte-for-byte, not always identifying those files with the best byte returns in the 

process. 

LFUTS demonstrated the worst byte hit ratio performance of the group. While 

by selectively caching only small files this policy achieved superior object hit rates, it 

stored files that because of their size offered minimal transit traffic savings despite their 

repeated requests. In other words, the collective bytes served by the set of cached files 

could not offset the penalty incurred by fetching large files from foreign sources. 

On the other hand, LFUTL achieved high byte hit rates despite its inferior object 

hit rate performance for the same reason. While the average number of cached files at 

each configuration was an order of magnitude smaller than that of all other policies, the 

bytes served amounted to a large percentage of total requested bytes. 

Clearly, from the strategies examined those that favour the caching of smaller 

objects achieved high object hit rates but low byte hit rates. This is because from a 

cached object count standpoint it is preferable to replace one large object and miss it if it 

is requested again, than to replace many small objects to reclaim the same amount of 

space and suffer misses on many of them. On the other hand, in order to match the byte 

savings gained by serving a large file even once, a small file will need to be served 

numerous times. In other words, unless small files are universally more popular than 

large files, any policy that favours the storing of the former is going to suffer from 

reduced byte hit rate. 

In essence, a trade-off exists: Due to the size and dynamics of P2P workloads, an 

ISP deploying a P2P caching infrastructure has to decide whether to optimise for 

discrete object availability (i.e. to ensure a high object hit rate) or transit traffic 

minimisation (i.e. aim for a high byte hit rate). High cached object counts have the 

effect of improving the ISP subscribers‟ service quality perception as more searches can 

be successful and more objects can be served from the cache, which is expected to 

benefit from good connectivity, lower latency and high availability. On the other hand, 

transit traffic is expensive and minimising it by caching those objects that cost the most 
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to transfer over inter-AS links will have a direct effect on the ISP‟s operational costs. In 

most cases it is expected that ISPs will select the second option, as its effects are more 

up-front and affect their bottom-line. However, if the improved perception of network 

quality can be translated into a value-added service and more subscribers are thereby 

attracted, the bottom-line will also be positively affected, albeit indirectly. 

The file workload simulated up to this point was based on the most recent data 

available at the time ([Stutzbach, 2007]), in order to provide a realistic scenario of VCC 

performance evaluation at present time. As already stated, this workload is largely 

composed of small-sized files. The advances in storage technology and broadband 

connectivity, the uptake of new high-definition media formats (e.g. MPEG-4 H.264 

[ITU-T, 2005]) as well as user demand for richer content (a trend highlighted by the 

comparison of the aforementioned study with a similar but older one [Chu, 2002]) 

support the hypothesis that future P2P workloads will shift towards larger files and in 

particular video. This will have a direct impact on traffic generation and cache 

performance. To complement the earlier results and investigate the operation of the 

proposed cache replacement policies on future usage scenarios, the simulation campaign 

was repeated with a new file workload where video files occupied 20% of the file 

population compared to the earlier 6%. This increase is analogous to the increase of 

video files from 2.1% in 2002 to 6% in 2007 as reported by the aforementioned studies 

and is intended to approximate how P2P file workloads may evolve in the next five 

years. Furthermore, the higher proportion of large files in the workload will stress 

replacement policies harder, allow a finer examination of their performance and 

pronounce their differences. 

The simulation campaign was repeated with the new workload for cache 

capacities of 100 GB, 200 GB, 400 GB, 600 GB, 800 GB and 1000 GB. The rest of the 

simulation parameters remained the exactly same, to allow for a direct comparison of 

cache performance between the two workloads. Figure 40 provides a plot of object hit 

rate performance at the aforementioned cache capacities. Additionally, Table 12 

presents the results in tabulated form. Pearson correlation coefficients of the results are 

presented in Table 13. 

As expected, by assuming a heavier workload without increasing cache sizes 

accordingly, replacement strategies have to operate a lot more frequently and their 

differences are pronounced. LFUTS achieves the highest object hit rates for caches up 

to approximately 900 GB, beyond which it is surpassed by LFUSS. ALR and LRUSS 

are competitive, reaching almost similar performance. LFU maintains a steady 
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advantage over LRU, while ILR performs poorly in the smaller caches improving only 

from 800 GB and above. LFUTL, again, trails behind the rest. 

 

Figure 40: Object hit ratios per cache capacity (2nd workload). 

Size LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

100 

GB 
12.6 % 14.6 % 17.6 % 24.2 % 9.1 % 19.3 % 28.0 % 7.2 % 

200 

GB 
16,7 % 19.0 % 23.0 % 27.7 % 13.0 % 23.3 % 30.9 % 8.9 % 

400 

GB 
21,1 % 23.0 % 27.0 % 30.8 % 19.4 % 27.8 % 33.6 % 11.1 % 

600 

GB 
23.5 % 25.7 % 30.0 % 33.0 % 23.2 % 30.3 % 34.4 % 12.3 % 

800 

GB 
25.3 % 27.8 % 32.0 % 34.4 % 26.0 % 31.9 % 34.7 % 13.3 % 

1000 

GB 
26.6 % 29.3 % 33.4 % 35.5 % 28.4 % 33.1 % 34.9 % 14.5 % 

Table 12: Object hit ratios per cache capacity (2nd workload). 

Byte hit ratios (plotted in Figure 41 and tabulated in Table 14) demonstrate the 

superiority of ALR up to approximately 700 GB. Above 700 GB ILR achieves the 

highest byte hit ratio. LFU does not lag far behind, especially in small caches, but as 
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more space becomes available it cannot compete with ILR and ALR. The rest of the 

policies essentially demonstrate the same pattern as with the original workload, with 

LFUSS returning similar byte hit ratios to LRU, LRUSS being 2% to 4% lower and 

LFUTS exhibiting abysmal performance. The Pearson correlation coefficients of the 

BHR results, presented in Table 15, demonstrate very high correlation. 

LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

0.999545 0.999546 0.999445 0.998847 0.999714 0.999187 0.997331 0.996591 

Table 13: Degree of correlation of 2nd workload OHR simulation results between 
runs. 

 

Figure 41: Byte hit ratios per cache capacity (2nd workload). 

It is clear that all policies have to operate very frequently and the resulting hit 

ratios suggest that caching such a workload with very small caches is not effective. Files 

do not stay long enough in the cache to attract further hits while long transfer times (due 

to file size) make bad cache decisions even more costly. Of course, a 100 GB cache is 

modest even by today‟s standards. While the cache sizes remained the same to enable 

direct comparison with the previous workload, it is certain that storage capacities will 

increase along with the inflation of the workload. Assuming however that the workload 

evolves in such a way that available cache capacity cannot keep up (even temporarily), 
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some policies appear better suited than others. ALR is the most balanced policy 

achieving both high object and byte hit rates. LFU is not as effective but achieves a 

similar balance. The rest either need more “breathing room” to operate effectively (like 

ILR) or manage to hold their own in regards to object hit rates but at the cost of low 

byte hit rates (i.e. LRUSS and LFUSS). 

Size LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

100 

GB 
9.6 % 13.0 % 8.8 % 10.0 % 10.8 % 12.4 % 1.4 % 12.9 % 

200 

GB 
12.8 % 16.5 % 10.8 % 12.5 % 14.9 % 16.9 % 2.0 % 14.8 % 

400 

GB 
17.2 % 21.2 % 14.1 % 16.6 % 21.4 % 22.2 % 2.5 % 18.1 % 

600 

GB 
19.7 % 24.1 % 17.0 % 19.8 % 24.9 % 25.4 % 2.6 % 20.0 % 

800 

GB 
21.9 % 25.9 % 19.2 % 21.6 % 27.3 % 27.0 % 2.7 % 21.9 % 

1000 

GB 
23.5 % 27.6 % 21.2 % 23.4 % 29.3 % 28.7 % 2.9 % 23.9 % 

Table 14: Byte hit ratios per cache capacity (2nd workload). 

LRU LFU LRUSS LFUSS ILR ALR LFUTS LFUTL 

0.999355 0.999465 0.999589 0.999318 0.999584 0.999482 0.963359 0.999152 

Table 15: Degree of correlation of 2nd workload BHR simulation results between 
runs. 

In conclusion, the following observations were made while assessing cache 

replacement policy efficiency in single VCC deployments: 

 The frequency and diversity of queries and available cache capacity in relation 

to file workload indicate that request frequency-based metrics are more accurate 

than request time-based metrics. 

 Replacement policies that take into account more than one metric utilise 

available cache capacity more effectively than their single-metric counterparts. 

 Most policies are efficient towards either object hit rate or byte hit rate but not 

both. An inverse proportionality exists in their performance in these two metrics. 

 ALR demonstrated a good balance between object and byte hit rates, and is the 

proposed policy for the VCC. 
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 ILR is also competitive, especially if transit traffic reduction is the caching 

objective. In imbalanced workload-capacity situations its object hit rate 

performance may suffer. 

 Although not a top performer, LFU showed good balance between object and 

byte hit rate performance in both workload configurations. If implementation 

simplicity is a requirement and ample capacity is available, LFU can be 

considered as a “good enough” replacement policy. 

7.4.3 Multiple-VCC deployments 

In the previous section, the performance of the various replacement strategies 

considered for the VCC was assessed in a single VCC deployment. This allowed the 

identification of the best-performing strategies of the group as well as the establishment 

of performance benchmarks for each given capacity. This section builds upon these 

findings and examines how P2P applications are assisted when more than one VCC is 

provided. Two deployment scenarios (previously described in Chapter 5) are examined: 

First, when multiple VCCs operate autonomously in a cluster, followed by a cooperative 

caching scenario. 

The simulation set-up and parameters used in both scenarios were identical to 

the single-VCC experiments (using the “current” workload) for consistency of results. 

The cache replacement strategy applied in all scenarios was LFU. 

7.4.3.1 Autonomous VCC operation 

In this scenario each VCC manages a different set of cached files with no 

replicas shared between different VCCs. The existence of more than one caching 

location allows the focus to shift from pure cache hit performance-related metrics to 

transfer, and ultimately application, performance. In particular, the number of IP hops 

separating a peer from a file source and the latency experienced in the resulting transfer 

connections are measured. In addition, the load experienced on VCCs from serving files 

and managing caching and replacement operations in different deployments can now be 

compared. 

Table 16 presents the results from simulating a varying number of VCCs while 

keeping the combined cache capacity constant. A single-VCC run was included as a 

point of reference. The standard deviation values are presented within square brackets. 
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Cumulative object hit ratios were calculated by dividing the overall number of 

cache hits (i.e. the sum of each participating VCC‟s hits) with the total number of 

requests made by local peers. Since in this scenario the total available cache capacity is 

treated like a single virtual cache, comparable hit rates were expected in all 

configurations accounting for a small performance penalty due to the decentralisation of 

the caching infrastructure (e.g. imperfect inter-VCC coordination, communication 

overheads etc). Indeed, the simulation results show all configurations achieving very 

close OHR performance to the reference, with no (mean) result deviating more than 

0.05% from it. This indicates that cached object availability inside the ISP is not 

affected by the distribution of the cache capacity in different locations. 

 1 VCC 2 VCCs 3 VCCs 4 VCCs 5 VCCs 

Capacity per VCC 1x1TB 2x500GB 
1x200GB 

2x400GB 
4x250GB 5x200GB 

OHR (cumulative) 
41.81 % 

[±0.01%] 

41.80 % 

[±0.01%] 

41.75 % 

[±0.01%] 

41.77 % 

[±0.01%] 

41.76 % 

[±0.01%] 

Average VCC load 
72.68 % 

[±0.05%] 

36.47 % 

[±0.04%] 

24.65 % 

[±0.02%] 

18.54 % 

[±0.03%] 

14.81 % 

[±0.03%] 

Average IP hops to file 

source 

3.01 

[±0.02] 

2.76 

[±0.01] 

2.73 

[±0.02] 

2.69 

[±0.01] 

2.65 

[±0.01] 

Average connection 

RTT (ms) 

46.26 

[±0.15] 

41.86 

[±0.13] 

41.43 

[±0.09] 

40.51 

[±0.08] 

39.31 

[±0.09] 

Table 16: Variation between different VCC deployment configurations. 

In order to verify that the closeness of the multi-VCC results to the - effectively 

centralised - single-VCC performance is not a product of simulation model 

oversimplifications or other omissions, the simulations were run again, this time 

assuming a 5% message loss rate in inter-VCC coordination. Unlike network packet 

loss which in most cases can be detected and dealt with by TCP or higher layer protocol 

intelligence, message loss in this case is used to denote that the entire protocol message 

does not reach its destination. In this case the destination party has no indication that 

someone attempted to contact it and unless a retransmission occurs, the intended action 

is never carried out. In reality such a set of circumstances is very rare and indicative of 

severe network problems that would affect the overlay in much more direct ways 

anyway. Furthermore, AVP protocol messages need to be acknowledged and would 

normally be retransmitted on error. Nonetheless, simulations were repeated using a 

model where 1 every 20 messages on average between AOCs and VCCs would be 
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ignored and no retransmissions would occur, resulting in a sensitivity test of sorts. This 

affected operations by having one of the VCCs not receive a look-up query or one of the 

AOCs never receive a reply. The results of this second round of simulations showed 

between 1% and 3% lower hit rates, indicating that the system can cope even in such 

disadvantageous conditions since (i) even if a message is not delivered to some peers or 

AVPs it may reach others that can respond to it, and (ii) even if all 5% of file requests 

are for files that are in the cache and are all undelivered, the volume of processed 

requests is such that in the long term those losses will have a negligible effect on the 

overall hit rates. In other words, the slight hit rate difference between single and 

multiple VCC deployments is more due to the change in workload patterns and 

replacement operation frequency per VCC (due to the cache size difference) than due to 

communication errors. This is also evident when examining the penalty trend with 

respect to deployment size. The 3-VCC deployment, which is the only configuration 

where VCCs do not all have equal capacity, is penalised more than the 4-VCC and 5-

VCC deployments despite having fewer VCCs. This is because the performance of the 

200 GB VCC drops the cumulative hit rate average. 

Deploying more than one VCC has a profound effect on reducing the load 

experienced in each VCC. Naturally, being the only cache in an ISP network a single 

VCC will need to handle a large number of concurrent requests and transfers and thus 

operate under high load. In the simulations under discussion, the single VCC operated at 

approximately 73% average load, while peak load reached 91% of available capacity. 

While within operational limits, this is close to full capacity indicating that an influx of 

new peers or change in peer usage patterns will threaten the cache‟s availability. The 

addition of just one more VCC lowers individual load substantially (to 36.47%), while 3 

VCCs bring load to a manageable 24.65%. It becomes clear that each subsequent 

addition offers a smaller incremental improvement with the transition from 4 to 5 VCCs 

only lowering individual load by 3.73% units for the specific network simulated. 

The existence of more than one VCC means that there are more than one cache 

locations at different distances network-wise from a particular peer. It is interesting to 

examine if this has an effect on the quality of the resulting connections between peers 

and VCCs. Here, the term “quality” is used to describe connection characteristics under 

normal conditions (i.e. excluding drastic factors such as link failure) which can be 

largely determined by the throughputs achieved, as higher throughputs mean faster 

downloads. As in the preceding sections, connection quality will be quantified by 
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measuring connection round-trip delay and path length for connections initiated by 

peers of the “home” ISP. 

As discussed in section 7.2, the simulated network topology represents a 

medium- to large-sized “home” ISP with access, backbone, distribution as well as 

border routers providing connectivity with the rest of the Internet via different ASes for 

resilience. In the resulting topology the simulation results for the single-VCC 

deployment54 show that all local peer-to-local peer or local peer-to-VCC connections 

terminate within an average of 3.01 hops. Adding a second VCC resulted in a shorter 

average path length of 2.76 hops. The deployment of further VCCs demonstrates a 

progressive reduction of hop count, with each additional VCC translating into fewer 

average hops than in the single VCC case as more of the local peers find their content of 

interest cached closer. While the rate of reduction depends on the particular network‟s 

size and VCC placement, in this setup 5 VCCs resulted in an 11.96% reduction of 

average path length. This indicates a further localisation of traffic beyond that already 

offered by the placement of a single VCC and hints at the consequent reduction of 

congestion due to long flows. 

The connection delay measurements lead to similar conclusions. The average 

round-trip delay for intra-ISP connections with one VCC present was 46.14 

milliseconds (ms). As with path length, each further increase of the number of VCCs 

contributed towards its reduction. Ultimately, the 5-VCC deployment offered a 15.02% 

delay reduction compared to the single-VCC one. 

Both the IP hop and delay reductions are interesting considering that the main 

goals of the multiple autonomous VCC caching strategy are individual cache load 

minimisation and avoiding the single point of failure a sole VCC poses. While link 

latency plays a significant role on target VCC selection, the fact that each VCC holds a 

different set of files means that it cannot be guaranteed that the initial VCC selection 

decision based on load and network proximity to the peer making the first request (see 

Chapter 5) will remain optimal in terms of future demand. In other words, bringing 

                                                 

 

 
54

 It is assumed that VCC placement is strategic and reflects the particular ISP topology. If VCCs are 

placed randomly or inconsistently, it is possible for path length and especially latency to certain parts of 

the network to actually increase. Such an outcome has been demonstrated in simulation and is avoided 

in the present discussion as it goes against standard network engineering practices. 
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something close to one group of users may mean placing it further away from another 

group. However, it was demonstrated that increasing the number of participating VCCs 

resulted in shorter average path lengths and round-trip latencies than those attained with 

smaller deployments for the entire local peer base. 

The path length reduction can be mainly attributed to VCC placement following 

standard network engineering principles. In the case of a single VCC it makes sense 

from a network engineering and management perspective to place the cache in the core 

of the network so that no part of it is disadvantaged compared to others. When more 

VCCs are available, the ability to place them closer to the edge of the network becomes 

viable (and indeed is central to the AVP concept). In the present scenario, any additional 

VCCs were placed on PoPs (i.e. while retaining one at the original network core 

location), starting with those serving the most subscribers and moving to the smaller 

ones depending on the number of available VCCs. The fact that in many cases hop 

distance essentially does not increase between a PoP-to-core and a PoP-to-PoP 

connection due to redundant PoP interconnection (as for instance discussed in 

[Iannaccone, 2004]) along with natural replication on local peers and the subsequent 

AOC redirection to them, results in lower average path length. This does not mean that 

in individual cases peers don‟t end up fetching some cached object from further away 

compared to the single central VCC. On average however, the majority is served over 

shorter paths. 

At the same time, cache load, which in the single-VCC scenario could be an 

ongoing concern, is decisively reduced even when deploying only two VCCs. Besides 

ensuring optimal VCC load levels from an operational perspective, by spreading the 

load over a number of them the conditions for less response time (e.g. as noted in 

[Zegura, 2000]) and less congestion are presented. This, along with the lower 

propagation delay of shorter paths (and in the case of passing through fewer routers, less 

queuing and processing delays) results in the observed reduction of latency and the 

improvement of throughput. 

More importantly, both the primary (load reduction) and secondary (latency 

reduction) goals are achieved at no practical cost in terms of hit rate performance. The 

measured reduction due to cache separation was in the worst case less than 0.1%. 

7.4.3.2 Cooperative VCC operation 

In this scenario, in addition to its normal caching tasks each VCC periodically 

reports the top n% most popular files stored in its cache which can then be replicated in 
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other VCCs which dedicate a portion of their storage capacity for that purpose. The 

intended result is for very popular files to be made available in more than one location, 

and in particular closer to localised demand, so that cases of cache and link overloading 

due to high demand can be avoided. 

Table 17 contains the simulation results for a cooperative VCC deployment 

scenario where each VCC dedicates 0.5% of its total capacity to inter-VCC replication. 

Since the only difference to the earlier, autonomous VCC scenario is the periodic 

replication, it is interesting to see how this affects the results. 

 1 VCC 2 VCCs 3 VCCs 4 VCCs 5 VCCs 

Capacity per VCC 1x1TB 2x500GB 
1x200GB 

2x400GB 
4x250GB 5x200GB 

OHR (cumulative) 
41.81 % 

[±0.01%] 

41.76 % 

[±0.02%] 

41.58 % 

[±0.02%] 

41.45 % 

[±0.03%] 

41.28 % 

[±0.01%] 

Average VCC load 
72.68 % 

[±0.05%] 

28.60 % 

[±0.03%] 

13.91 % 

[±0.03%] 

10.60 % 

[±0.04%] 

7.88 % 

[±0.02%] 

Average IP hops to file 

source 

3.01 

[±0.02] 

2.71 

[±0.01] 

2.63 

[±0.01] 

2.58 

[±0.01] 

2.49 

[±0.01] 

Average connection 

RTT (ms) 

46.26 

[±0.15] 

41.08 

[±0.12] 

39.04 

[±0.10] 

36.86 

[±0.09] 

35.78 

[±0.06] 

Table 17: Variation between different cooperating VCC configurations. 

As in the autonomous VCC scenario, there is a hit rate reduction when 

increasing the number of deployed VCCs. However, in this case it is more apparent. 

The reservation of some cache space for replicating existing objects reduces the total 

available space for caching unique objects, thus reducing object hit rate. As each 

additional VCC brings an increase of the total capacity reserved for replication, 

deploying more VCCs results in lower cumulative object hit-rates compared to the 

single-VCC scenario. Therefore, the 5-VCC deployment reaches a 0.53% smaller object 

hit ratio compared to the single-VCC deployment. 

Individual load is again progressively reduced with each VCC addition. 

Compared to the autonomous VCC mode, load reduction is more dramatic at each 

configuration. For example, while the average load experienced by the 3-VCC 

deployment in autonomous operation was 24.65%, it was dropped to 13.91% with VCC 

cooperation. This can be attributed to the fact that the most “heavy-hitting” objects of 

each VCC, which are now replicated, are responsible for a considerable part of the total 

load experienced by each VCC. Thus, requests for a particular popular object which in 
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the earlier scenario would all be exclusively served by one VCC are now shared 

between VCCs, dropping individual load further. Consequently, in terms of load 

reduction the cooperative-VCC mode is clearly superior to using a single VCC, but also 

better than the autonomous-VCC mode. 

IP hop and delay reduction between local peers and sources follow the same 

pattern as in the autonomous VCC operation. Increasing the number of VCCs reduces 

the average connection delay and hop count compared to a central cache. The 

availability of highly-popular sources in more than one VCC, however, results in more 

evident reductions, especially when comparisons are drawn between the deployments of 

equal number of VCCs in the two scenarios. Comparing the cooperative 5-VCC to the 

single-VCC deployment, the former brings a 17.27% average hop reduction and a 

22.65% RTT reduction. In contrast, the autonomous 5-VCC deployment reached an 

11.96% path length reduction and a 15.02% delay reduction. Therefore, by ensuring that 

the “hottest” objects are cached at the network edge and for most peers at the same PoP, 

average delay and path length can be decisively reduced. This is particularly important 

given that requests for non-popular content that still result in connections over long and 

possibly congested paths act as outliers, inflating these averages. In conclusion, for 

peers whose query workload focuses on popular objects, the latency improvements will 

effectively be even more substantial. 

The amount of cache capacity dedicated by each VCC to store replicas affects 

system performance in a number of ways. Naturally, the more capacity is dedicated to 

inter-VCC replication, the less is made available to cache unique objects. This will 

reduce the object hit rate and may in turn affect negatively the volume of transit traffic 

and local peer transfer performance. Table 18 illustrates how the variation of replication 

capacity affects the metrics of interest for a 4-VCC deployment simulated over 24 

hours. 

It becomes evident that increasing the capacity available for inter-VCC 

replication drives individual VCC load down, as it allows for larger numbers of “heavy-

hitters” to be replicated. With the same workload, moving from 0.3% replication 

capacity to 10% resulted in a reduction of average individual load from 12.02% to 

1.90%. However, not all system properties benefit equally from more replication. 

Because total capacity is limited, liberally allocating portions of it for inter-VCC 

replication will have adverse effects on locally initiated overlay connections and the 

cumulative object hit rate. With less space available to cache individual objects, VCCs 

are forced to run replacement operations more frequently, expel valuable content 
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prematurely and suffer many more cache rejections. All these factors not only increase 

transit traffic volumes but translate into many more transfers over long, multi-hop paths. 

Put differently, dedicating resources beyond a certain point to replicating elements from 

the “head” of the query distribution will not improve download performance by a useful 

amount (as it is ultimately hard-limited by the path characteristics of the “last mile”), 

but at the same time the cost associated with obtaining any other file will increase and 

worsen overall performance. The rapid diminishing returns of placing more mirrors in 

terms of latency and server load balance were also reported in the context of web mirror 

placement in [Cronin, 2002]. For current workloads it was found that an allocation of 

between 0.5% and 1% of total capacity offers a good compromise between 

hop/latency/load reduction and acceptable hit rate penalty. 

Level of 

replication 
0.3% 0.5% 1% 1.5% 2% 10 % 

OHR 

(cumulative) 

41.62% 

[±0.02%] 

41.45% 

[±0.03%] 

41.37% 

[±0.03%] 

41.30% 

[±0.03%] 

41.15% 

[±0.04%] 

39.98% 

[±0.06%] 

Average 

VCC load 

12.02% 

[±0.06%] 

10.60% 

[±0.04%] 

7.50% 

[±0.05%] 

6.20% 

[±0.04%] 

5.03% 

[±0.03%] 

1.90% 

[±0.04%] 

Average IP 

hops to file 

source 

2.63 

[±0.02] 

2.58 

[±0.01] 

2.56 

[±0.01] 

2.63 

[±0.02] 

2.89 

[±0.02] 

4.12 

[±0.04] 

Average 

connection 

RTT (ms) 

36.98 

[±0.11] 

36.86 

[±0.09] 

36.26 

[±0.10] 

37.27 

[±0.13] 

39.08 

[±0.11] 

90.90 

[±0.19] 

Table 18: Variation of overlay metrics at different levels of replication. 

7.5 Evaluation of the AVP as a system 

7.5.1 Effect of AVP placement on network utilisation 

It was demonstrated in the previous section that a distributed VCC deployment 

results in lower individual load for each VCC as well as improved path length and 

latency characteristics for the majority of peer transfers compared to a central VCC. 

These findings hint at the increased localisation of P2P traffic within the ISP network, 

which is beneficial not only for participating peers but for all users of the network. 

While the ISP backbone is typically over-provisioned, the lifetimes and greedy nature of 

TCP-based bulk P2P transfers increase queuing delay and can cause congestion during 

peak times. Avoiding unnecessary multi-hop transfers across the network reduces 
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backbone load and protects inelastic and interactive traffic (e.g. real-time streams, web) 

which due to its server-based nature is carried over it. Therefore, pushing the VCCs 

away from the core and placing them at the edge of the network may prove beneficial 

from a traffic engineering perspective. 

 

Figure 42: Different degrees of P2P traffic localisation. 

While so far the separation of interest was between internal (often denoted local) 

versus inter-domain traffic for simplicity, it is now necessary to differentiate between 

different degrees of traffic localisation within the AS, as illustrated in Figure 42. With 

customers 1 and 2 corresponding to the same PoP the connection between their peer 

clients is local, consuming only access network and PoP resources. The connection 

between customers 1 and 3 is still intra-domain since they belong to the same ISP but 

has to additionally be carried over the ISP‟s backbone. Finally, the connection between 

customers 1 and 4 is inter-domain, with AS 2 providing transit service. 

Employing the same simulation configuration used throughout this chapter, 10 

new scenarios were simulated. These were: 

 Normal peer operation without any AVPs. 

 AVP operation with a single 1000 GB VCC placed at the core network. 

 4 multiple-AVP scenarios where the number of AVPs, each holding a 200 GB 

VCC, was varied between 2 and 5 in autonomous caching mode. 

 4 multiple-AVP scenarios where the number of AVPs, each holding a 200 GB 

VCC, was varied between 2 and 5 in cooperative caching mode with a 

replication factor of 0.5%. 
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Each scenario was simulated for a 24-hour period of operation after a 6-hour 

simulator warm-up. All AVPs consisted of one AOC/VCC pair each. For the single-

VCC configuration, the AOC/VCC pair was placed at the network core identically to 

that discussed in section 7.4.3. In the multiple-AVP scenarios the AVP placement 

strategy was to place each AOC/VCC pair at a PoP, prioritising by PoP size. Unlike the 

previous section, there is no VCC placed at the core in this case. 

In order to examine the effect different AVP deployment configurations have on 

traffic localisation and backbone load, the number of P2P transfer flows at the ingress 

queue of each backbone router was measured at frequent intervals. By comparing how 

much of the local peer workload is carried over the backbone in the aforementioned 

scenarios, the ability of different AVP configurations to localise P2P traffic at the PoP 

or regional aggregation level can be assessed. Figure 43 shows the number of P2P flows 

carried over the backbone as measured at four aggregation points, averaged over the 24-

hour measurement period. Measurements were taken every 120 seconds to allow for 

adequate granularity and capture transfers of small files. For clarity, only results from 

normal P2P operation, the centralised VCC and the 5-VCC configurations (in both 

caching modes) are plotted. 

It becomes clear that placing AVPs at the network edge not only matches the 

fundamental peer focus on edge resources, but succeeds in keeping a considerable 

portion of peer transfers local to the PoP or regional PoP cluster and away from the 

core. AOC local source promotion alone is able to reduce non-local flows by a 

substantial amount compared to normal P2P operation, as seen in the case of the central 

VCC where cached objects are still fetched from the core of the network. This is notable 

because, as discussed earlier, the AVP concept does not sacrifice peer performance in 

the pursuit of extreme localisation of peer traffic. These connections were kept local 

because appropriate local sources were found over paths that returned better latency 

estimates, even in the presence of the central VCC at the core. The 5-VCC edge 

deployment, however, increased localisation further by having an additional 7% 

(approximately 222) peer transfers on average satisfied locally at any given time for the 

workload examined. This is a notable improvement given that under autonomous 

caching mode the content of interest is in many cases not cached in the VCC local to the 

peer but in another, placed at a different PoP. Thus, many transfers still had to be routed 

over the backbone. Still, as the average hop reduction noted in section 7.4.3.1 indicated, 

placing VCCs at the edge increases the amount of valuable content that can be found 

one hop away, which in this case meant that more queries were satisfied at the regional 



 

173 

level. Clearly, however, the largest improvement in regards to P2P traffic localisation is 

unsurprisingly achieved by employing cooperative caching. With the most-requested 

files available in every edge VCC, the number of connections reaching the backbone at 

any time was 23% lower than the central VCC scenario. 

 

Figure 43: Effect of AVP placement on localisation of P2P transfers. 

As a side note, it is evident from the graph that not all backbone routers receive 

the same amount of traffic. Specifically, router-1 handles the most flows while router-2 

the least. Furthermore, unlike the rest, router-2 does not benefit as much from the 

transition from a central VCC to the autonomous 5-VCC deployment. This is a result of 

router-1 aggregating traffic from more PoPs, while PoPs themselves vary in size due to 

the number of subscribers served. 

Figure 44 plots the cumulative distribution of the time needed for a local peer to 

fully download a 350 MB file in normal conditions, when a large central VCC is 

provided and when 5 smaller replicating VCCs are deployed instead at the edge. 

Pearson correlation coefficients of the data collected from the three separate simulation 

runs are presented in Table 19. 

Comparing normal P2P operation with any of the two AVP deployments 

illustrates the importance of P2P content caching and intelligent source promotion in 
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optimising P2P operation. Crucially however, the superior localisation of transfer 

traffic, achieved by decentralising the caching infrastructure and placing the replicating 

VCCs at the edge of the network, has a very measurable effect on the download 

performance experienced by local peers. 

In short, the provision and placement of AVPs at the edge of the network and 

particularly the use of cooperating VCCs offers clear benefits in terms of high traffic 

localisation inside the AS, reduction of backbone P2P load and improvement of local 

peer transfer performance. 

 

Figure 44: Effect of AVP placement on peer transfer performance. 

Normal operation Central VCC Edge VCCs 

0.993242 0.998315 0.997654 

Table 19: Degree of correlation of completion time data between runs. 

7.5.2 Economics of AVP deployment 

So far, all evaluation of multiple-VCC deployments assumed a fixed amount of 

available cache capacity, varying only the number of active VCC components. This 

permitted the examination of how decentralised VCC caching compares to an 

effectively centralised cache for properties such as cache load and peer connection 
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latency. This examination however did not take into account one very critical factor: 

cost. ISPs have to optimise their network provisioning given a finite set of resources, 

while the market realities of this decade indicate that it is rather unlikely that an ISP will 

invest in any support infrastructure unless there is a strong expectation of profit or at 

least cost recovery. Given the level of flexibility afforded by the AVP architecture in 

creating deployments of different sizes, capabilities and degrees of decentralisation, it is 

therefore important to examine the practical relationship between AVP deployment 

costs and gains. 

If Tt represents the transit P2P traffic generated (measured either in volume or 

rate), Ti the internal P2P traffic and CAVP the cost of the AVP infrastructure which 

corresponds to the measurement period of interest, the P2P-related cost to an ISP over 

that period can be calculated using the following formula (where α and β serve as price 

scaling factors): 

 Ctotal = αTi + βTt + CAVP (2) 

For clarity, it is assumed that the hardware supporting each AVP execution 

environment (EEP) minus any storage devices is identical. That way the cost of the 

AVP infrastructure can be separated into a flat cost for the EEP hardware platform times 

the number of available EEPs, and the total cost of storage provided for VCC caching 

throughout the infrastructure (as a cost per GB). It is further assumed that cooling, 

power, installation/maintenance and administration costs for each EEP are included in 

the EEP cost. In other words, for n EEPs and m gigabytes of cache capacity, CAVP can be 

calculated as follows: 

 CAVP = nCEEP + mCVCC (3) 

While a multiple-AVP approach allows for relatively inexpensive hardware to 

be used without any mandatory fault-tolerance requirements (which is, after all, one of 

its immediate advantages), in the case of a deployment built around a central VCC the 

execution environment supporting the latter needs to be adequately provisioned to 

handle the combined workload of all local peers and ideally have load-

balancing/failover capabilities. For simplicity, it is assumed that the increased hardware 

requirements of such a configuration can be expressed as multiples of the 

aforementioned EEP unit hardware cost CEEP. In other words, although in practice a 
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central VCC will be considered to run on top of a single EEP, the higher specification 

hardware used can be represented by assigning a value higher than one to the n factor. 

In summary, the cost function (2) can be calculated as follows: 

 Ctotal = αTi + βTt + nCEEP + mCVCC (4) 

Employing the same simulation configuration used throughout this chapter, Ti 

and Tt pairs were collected for 26 different scenarios. These were normal peer operation 

and all 25 combinations of 1-5 AVPs with 200-1000 GB of VCC capacity each added in 

200 GB increments, operating in autonomous caching mode. Each scenario was 

simulated for a 24-hour period of operation after a 6-hour simulator warm-up. All AVPs 

consisted of an AOC/VCC pair and AVP placement was identical to that described in 

section 7.5.1. 

To gain an insight into real-world costs and scale the simulation results 

accordingly, a survey of ISP wholesale pricing for the year 2008 was carried out. While 

transit traffic can be billed based on volume (e.g. bits transferred), the predominant 

charging model is based on the 95-th percentile of peak rate (e.g. [Odlyzko, 2001b]). 

Specifically, bandwidth use is measured at regular intervals (typically every 5 minutes) 

and at the end of the billing period (typically a month) collected samples are ordered 

from highest to lowest. The top 5% of sorted samples is then ignored and usage is billed 

at the rate of the immediate next sample. Current transit prices for UK-based ISPs are 

widely reported to be in the region of £10 per Mbps per month [Evans-Pughe, 2009]. 

Hence, assuming a uniform daily traffic pattern so that the results from the 24-hour long 

simulations can be extrapolated to monthly use (i.e. no highest usage in any other day in 

the same billing month), β is £10 per Mbps per month. Storage was estimated at £0.20 

per GB with an effective lifetime of 1 year, leading to a 200 GB disk amounting to 

approximately £0.11 per day. Finally, CEEP was calculated to £2.19 for 24 hours of 

operation (capital and operational costs of £800 per year with a lifetime of 3 years). 

Internal bandwidth cost is widely regarded to be effectively zero because the 

network represents a fixed cost where, as long as demand does not exceed capacity, 

carrying more traffic costs nothing extra to the provider. This capacity is normally not 

the full capacity installed but rather the maximum utilisation level, as designated by the 

provider, which maintains the QoS (Quality of Service) targets set. The prevalent over-

provisioning strategy is to have in place at least twice the capacity consumed during 

peak utilisation in order to maintain low delay, jitter and loss rates and account for 
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failures or other events that may shift additional traffic over specific links. Thus, as long 

as the rate of aggregate traffic is not such that noticeable congestion is caused, the 

practical cost of traffic to the provider is zero. 

For day-to-day operation it is often valuable however to be able to put a price on 

internal traffic and estimate operational costs. Personal communication with a large UK-

based ISP revealed that (as of 2008) for practical purposes they calculate the ratio of 

transit to internal bandwidth cost as 4:1. In the interest of assessing costs with both 

models, the cost function was calculated for α=0 and α=β/4 (i.e. internal traffic cost of 

£2.5 per Mbps per month). 

Figure 45 and Figure 46 plot the ISP cost associated with P2P operation Ctotal 

over a period of 24 hours55 for different configurations of AVP deployments56 when 

α=0 and α=2.5 respectively. The ability of the AVP to reduce transit traffic, both 

through caching and to a smaller extent with localisation alone, has been demonstrated 

already earlier in the chapter. The plots however show that for current prices transit 

traffic reduction not only offsets the cost of the AVP infrastructure even when 

numerous EEPs are involved, but results in substantial savings for day-to-day operation. 

These savings are significant even when internal traffic has a non-zero cost, as 

illustrated in Figure 46. 

                                                 

 

 
55

 Traffic costs were calculated on the monthly rate and divided by 30 to estimate daily cost. 

56
 For consistency, in single-AVP configurations a value of n=1 is used. 
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Figure 45: Costs over a 24-hour period for α=0, β=10. 

 

Figure 46: Costs over a 24-hour period for α=2.5, β=10. 
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Because prices for transit billed by volume (bits transferred) are not openly 

available, the price of transferring 1 GB of data over a transit link will be estimated as 

follows. Assuming that the transit link has a maximum capacity of 1 Gbps then in a 30-

day month the maximum amount of data transmitted is 2,592,000 Gb (86,400 seconds 

times 30) or 324,000 GB (8-bits per byte), regardless of useful payload/overheads. At 

£10 per Mbps per month the maximum cost for the link is £10,000. Thus, 1 GB of data 

costs the ISP approximately £0.031 in transit fees. The minimum AVP configuration 

examined in this section of an AOC/VCC pair with 200 GB capacity costs £2.3 per day. 

Therefore even at the least cost-efficient configuration (from a useful cache capacity to 

EEP cost ratio standpoint) of those examined, the AVP needs to only serve 74.19 GB 

each day to pay for itself. Depending on the deployment size, each AVP served between 

5 and 10 times as much data over 24 hours in the aforementioned scenarios. 

Essentially, the AVP presents both direct and indirect gains for a network 

provider. Namely, an AVP deployment offers: 

 Direct gains from the reduction of operational costs due to the decrease of P2P-

generated transit traffic. 

 Indirect gains from the enhancement of overall P2P application performance 

which in turn improves customer-perceived quality of service and satisfaction. 

 Indirect gains from the improvement of network load conditions due to the 

management of P2P traffic which reduces the possibility of congestion. 

The degree of transit traffic reduction was investigated for a variety of AVP 

deployment configurations and it was demonstrated that it can be translated into a 

tangible monetary gain. Furthermore, the simulation scenarios examined revealed 

improved transfer characteristics that can lead to an increase of P2P application 

performance. Finally, evidence of better management of incurred traffic load on the 

network infrastructure was found, especially with larger AVP deployments. 

The improvement of P2P application performance offered by the AVP is of vital 

importance to an ISP because it affects the service quality perception of end-users, not 

only in regards to the P2P application in use but for the network service as a whole. This 

is crucial because even with a well-provisioned network and sensible QoS mechanisms 

in place, an ISP may have trouble communicating the level of service quality provided 

to its users, especially for overlay-based applications. Customers do not care about the 

challenges associated with service provision. More importantly, traditional QoS 
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mechanisms focus on the technical aspects of service provision, expressed in terms 

which describe well the requirements applications have from the network (i.e. 

throughput, delay, jitter, loss, etc), but have little meaning to an end-user. “Quality of 

Experience” (QoE) is a term increasingly used to bridge this gap [Kilkki, 2008], which 

describes how a customer perceives the usability of a service and how satisfied he/she is 

with the service he/she receives. The distinction is that QoS has become more relevant 

for the interactions between application and network while QoE focuses on the human 

dimension. As a result, QoE is subjective and while it is clearly dependent on QoS 

factors (i.e. packet loss will degrade application performance and ultimately affect 

negatively user experience), it is also affected by price (e.g. a customer paying a low 

price X for a service is more likely to tolerate congestion effects that if he/she paid 2X), 

public perceptions (e.g. “this level of service is acceptable because this is what others 

receive and deem acceptable”), ease of use and other factors. 

QoE is intimately linked to customer churn and ARPU (Average Revenue Per 

User) which are important for the “ISP as a business” because they are indicators of its 

ability to extract profit from its given infrastructure investment. Given the frequent 

reports that providers are largely unable to extract value from their networks and be 

profitable [Crowcroft, 2003] (in part due to the lack of an appropriate pricing model 

[Byun, 2004; Odlyzko, 2001b]), the ability to stabilise customer churn (gain customer 

loyalty), attract new customers (gain competitive advantage) and improve ARPU 

(translate customer satisfaction into selling additional/higher value services and 

bundles) is crucial. The AVP provides an ISP with an additional tool to achieve these 

goals, which is particularly important given that its primary goal is the minimisation of 

costs due to inefficient peerings and operations. Specifically, the AVP improves 

customer QoE in two ways: 

 It improves P2P application performance: The AVP optimises overlay structure 

and guides peers to sources which offer a higher probability of sustained high 

throughput. Although the AVP cannot guarantee that every single transfer will 

complete faster, since it does not control the availability of the necessary 

conditions (e.g. adequate number of sources, replicas over appropriate paths, 

etc), popular or semi-popular content which comprise the bulk of peer workload 

meet these criteria by definition. Furthermore, P2P traffic localisation ensures a 

consistent level of QoS as intra-AS traffic remains end-to-end under the control 

of one provider. Finally, source balancing and caching means that there is lower 
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possibility that a peer becomes overloaded with requests, preserving peer 

stability and responsiveness. 

 It helps protect other traffic classes from resource starvation: P2P traffic 

localisation leads to less long-lived bulk transfers carried over the backbone and 

competing for resources with other traffic. Distributed caching and load-

balancing makes link utilisation levels due to P2P traffic more stable and 

predictable, and helps an ISP apply more effective traffic engineering mitigating 

congestion. This allows other network services to operate unhindered. 

7.6 Proxylet testing and trials 

This section describes the component testing and trials performed on the AVP 

prototype. Four test scenarios were devised and carried out to test and assess the 

operation of the AOC prototype. The test apparatus consisted of a number of networked 

computers serving as Gnutella peers and EEPs. These computers were part of the UCL 

Networks and Services Research Lab (NSRL) research network which serves as a 

dedicated testbed for networking experiments undertaken by NSRL. The computers 

were arranged in two privately-addressed subnets representing an ISP network and the 

rest of the Internet respectively. All computers ran the Linux operating system with a 

2.6 version kernel. The funnelWeb software (version 2.1.5) provided the ALAN EEP 

functionality. For the Gnutella client, the „gnut‟ command-line based client [gnut] was 

chosen for the ability to directly access low-level Gnutella protocol functions (e.g. open 

connection, query etc) via its command line shell and the ease of remotely managing 

numerous clients via an SSH or telnet shell. A separate web server provided the 

proxylet repository. 

Configuration and management of the AOC proxylets was performed by 

remotely connecting to their administrative interface via telnet. For EEP management, 

the control and monitor interfaces of funnelWeb were used. The Gnutella clients could 

also be remotely controlled at any time via SSH. The following test procedures are 

presented in high-level description. Appendix D contains a short guide of „gnut‟ client 

commands, used during testing. 

7.6.1 Controlled Domain creation and signalling restriction 

The aim of this test is to assess the ability of the AOC to create a controlled 

domain (CD) and suppress the signalling traffic between the peers belonging in that 
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domain and the global Gnutella overlay. This is achieved by capturing, modifying and 

blocking P2P protocol messages to and from the CD as necessary, so that replies to the 

“internal” peers always originate from it. The desired outcome of the test is for Ping 

messages originating from within the CD to be answered only by other peers belonging 

in the CD or the AOC. No direct replies from peers outside the CD should reach the 

inquiring peers. 

For this test, three PCs running Gnutella clients and one serving as an EEP are 

used. Two of the clients (Gnut1 and Gnut2) represent peers belonging to the CD and the 

third (Gnut3) a peer of the global overlay. The AOC proxylet runs on the EEP. The 

„gnut‟ Gnutella client is run on all three PCs and a set of test files are shared. 

The test procedure is the following: 

1. Configure AOC with CD data (i.e. set IP address range) 

2. Connect Gnut1 with AOC 

3. Connect Gnut2 with AOC 

4. Connect Gnut3 with AOC 

5. Try to connect Gnut1 with Gnut3 

6. Try to connect Gnut3 with Gnut2 

7. Both attempts should fail 

8. Try to connect Gnut1 with Gnut2 

9. The connection should be successful 

10. Issue query “testfile1.txt” from Gnut1 

11. Wait for reply from Gnut2 

The above procedure demonstrates two points. Firstly, in step 7, it is 

demonstrated that connections between the controlled domain and the rest of the 

Gnutella overlay are blocked by the AOC. Secondly, queries issued from within the 

controlled domain are only answered by other peers of that domain (step 11). This test 

was completed successfully. 



 

183 

7.6.2 VCC operation 

The test procedure for assessing the operation of the VCC proxylet is very 

similar to the previous test. The aim of the test is to demonstrate the manipulation of 

P2P protocol messages and redirection of “local” peer queries so that file transfers are 

served by the VCC instead of “external” peers. This test presupposes the existence of a 

controlled domain, set-up as described earlier. The desired outcome is for successful 

queries made by peers within the CD to be served by other “local” peers and the VCC 

only. If the requested file only exists outside of the CD, the VCC should cache it and 

serve it to the requestor transparently. 

For this test, a PC serving as an EEP and four PCs running the „gnut‟ client are 

used. Two of the clients (Gnut1 and Gnut2) represent peers belonging to the CD. The 

rest (Gnut3 and Gnut4) are peers of the global Gnutella overlay. An AOC and a VCC 

proxylet run on the EEP. The test files to be requested are named “testfile1.txt” and 

“testfile2.txt”. The former is shared by peers Gnut2 and Gnut3. The latter is shared by 

Gnut4 only. 

The test procedure is the following: 

1. Configure AOC with CD data. 

2. Connect Gnut1 with AOC. 

3. Connect Gnut2 with AOC. 

4. Connect Gnut3 with AOC. 

5. Connect Gnut4 with Gnut3. 

6. Optional: Try to connect Gnut1 with Gnut3 to ensure CD operates as intended. 

Connection should fail. 

7. Issue query “testfile1.txt” from Gnut1. 

8. Confirm that Gnut2 replies. The query is blocked at the AOC and does not reach 

Gnut3. The AOC “sees” that the query was satisfied locally by Gnut2 (by its 

reply) and does not need to cache the file from Gnut3. 

9. Issue query “testfile2.txt” from Gnut1. 

10. Confirm that the AOC modifies the query and Gnut4 replies to VCC. 

11. Confirm that VCC replies to Gnut1, offering the file. 
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Figure 47: VCC operation test set-up. 

This test demonstrates that the AOC modifies queries before forwarding them 

outside the CD and redirects file transfers to the VCC when a query cannot be satisfied 

from “local” peers. As a result, future queries can be served from the VCC and inter-

domain traffic is reduced. The test was carried out successfully. 

7.6.3 Routing control 

The aim of this test is to demonstrate the ability of the AOC proxylet to suppress 

the forwarding of messages to a neighbour if it senses path state deterioration while 

forwarding them normally to other neighbours. By avoiding the passing of additional 

load over the overlay connection which maps onto the degraded path, it expedites the 

recovery of that path from congestion. 

For this test, the EEP and three additional PCs running the „gnut‟ client are used. 

In lack of a better way to control overlay link congestion or delay in real time for this 

test, the threshold parameters are manually passed to the AOC proxylet to indicate the 

link‟s state degradation. The test file “testfile1.txt” is shared by both Gnut2 and Gnut3. 

The test procedure (set-up illustrated in Figure 48) is as follows: 

1. Connect AOC to Gnut1. 

2. Connect AOC to Gnut2. 

3. Connect AOC to Gnut3. 

4. Issue query for “testfile1.txt” from Gnut1. 
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5. Confirm replies from both Gnut2 and Gnut3. 

6. Degrade link state to Gnut2 (manually increase threshold value of the 

connection between AOC and Gnut2). 

7. Issue query for “testfile1.txt” from Gnut1. 

8. Repeat step 7 a number of times. 

9. Confirm that a reply to a query is always received by Gnut3 but rarely by Gnut2. 

 

Figure 48: Routing control test set-up. 

This test demonstrates that once the threshold value assigned to a connection by 

the AOC is increased, fewer messages are forwarded over it. Because the aim of 

probabilistic routing control is to relieve an overloaded link but not isolate it completely 

(which incurs the danger of fragmenting the overlay), whether a message will be 

forwarded to it depends on the comparison of the overlay connection‟s assigned 

threshold to a random value. The higher the threshold value, the lower the probability 

that a message will be forwarded over it. Thus, queries are expected to reach Gnut2 but 

their number should be noticeably smaller than these reaching Gnut3. Table 20, below, 

presents the variation in the number of replies from Gnut2 in response to queries, when 

different threshold values are used. For each run, ten queries were made. 

Threshold Replies from Gnut2 Replies from Gnut3 

0.3 7 10 

0.4 6 10 

0.5 6 10 

0.6 3 10 

0.8 2 10 

1.0 0 10 

Table 20: Reduction in traffic to „Gnut2‟ with different threshold values. 
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This test was completed successfully. 

7.6.4 Protocol message tunnelling 

The aim of this test is to demonstrate the message tunnelling capability of the 

AOC which can be used as part of overlay topology control. Overlay connections will 

be initiated and terminated between AOC proxylets to re-configure the mapping of 

overlay to underlay. 

For this test, three PCs running Gnutella clients and two EEPs are needed. An 

AOC proxylet runs on each EEP. The test file “testfile4.txt” is shared by Gnut3. 

The test procedure is as follows: 

1. Connect Gnut1 with AOC1. 

2. Connect Gnut2 with Gnut3. 

3. Connect Gnut2 with AOC1. 

4. Connect AOC1 with AOC2. 

5. Issue query “testfile4.txt” from Gnut1. 

6. Wait for response from Gnut3. 

7. Connect AOC2 to Gnut3. 

8. Wait for AOC2 to advertise route to Gnut3, to AOC1. 

9. Disable Gnut2 (stop the client). 

10. Issue query “testfile4.txt” from Gnut1. 

11. Wait for response from Gnut3 via AOC tunnel. 

This test demonstrates the ability of AOC proxylets to create alternative 

connections and tunnel P2P protocol messages in order to maintain the overlay in a 

good state. In this test, once Gnut2 was disabled indicating a failure or unexpected exit 

from the overlay, messages between Gnut1 and Gnut3 were tunnelled through the 

AOCs.  
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Figure 49: Topology control test set-up. 

7.7 Summary 

This chapter presented a comprehensive evaluation of the effectiveness of the 

AVP concept under numerous scenarios. It was demonstrated that local source 

promotion as enabled by AVP routing and topology controls can facilitate the 

preference of local sources over foreign ones by local peers and reduce average 

connection path length and RTT delay, contributing in faster downloads. The reliance 

on local source availability inherent to passive local source promotion is overcome with 

the introduction of VCCs, which apart from reducing path length and latency further 

achieve significant savings by eliminating redundant transit traffic. VCC performance 

was examined under various replacement strategies and deployment configurations. It 

was found that while a central VCC may seem attractive from a short-term investment 

perspective, a distributed deployment at the network edge achieves important traffic 

engineering objectives and can improve customer service perception. The chapter was 

concluded with a discussion of four test scenarios applied to the prototype 

implementation of the AOC and VCC proxylets. 
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8. CONCLUSIONS AND FUTURE 

WORK 

8.1 Summary and contributions 

As discussed in earlier chapters, current P2P services do not fit well in the 

present Internet, leading to increased costs for network providers, disruption of non-P2P 

Internet services and inefficient operation for the services themselves. While imposition 

of bandwidth caps, port blocking, traffic shaping and even capacity over-provisioning 

have been employed to address these issues, it is now becoming widely accepted that 

none of these approaches can fully solve the problem in the long term. In addition such 

approaches can be costly and, with the exception of over-provisioning, unpopular with 

the customer base of each provider. 

The work described in this thesis developed from the position that instead of 

treating P2P applications as unwelcome applications whose use needs to be restricted, 

ISPs need to find ways to ensure their smooth integration within the Internet ecosystem 

and encourage their fair and considerate use of network resources. To meet these goals, 

the ability to manage how P2P services operate inside their networks in a transparent 

and flexible manner is needed. 

The Active Virtual Peer (AVP) provides such a framework for the flexible 

management of P2P overlays. Application Level Active Networking (ALAN) was 

chosen as a natural vehicle to enable evolutionary adaptation on the application layer. 

The incorporation of ALAN maintains the decoupling of network and application layers 

and provides operational support. Importantly, the ALAN infrastructure enables the 

AVP to respond to changes in network conditions rapidly and on timescales that match 

native P2P application behaviour. 

The presented AVPs for Gnutella implement means for overlay control with 

respect to access, routing, topology formation, and application layer resource 

management. The AVP concept not only allows the combination of separate algorithms 

and techniques with proven merit to address individual issues, but allows them to 
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operate over a flexible and adaptive framework. The significance of this approach lies 

with the expandability and adaptability of the system as P2P services evolve. The AVP 

can offer solutions suited to a particular P2P service when and where needed, and can 

be expanded as new P2P services appear. 

The flexibility of the AVP architecture does not end with the ability to deploy 

different AVP configurations, add or take offline proxylets on-the-fly, employ various 

caching strategies or select between autonomous and cooperative VCC caching. 

Crucially, the AVP architecture provides for incremental deployment of the 

infrastructure, which is a practical means to address scalability issues, accommodate 

budget considerations as well as attend to new needs that did not exist or were not 

identified upon initial deployment. Incremental deployment can come in the form of 

both upgrading existing EEPs with more capacity (e.g. more disk space for VCC 

operation or more CPU power/memory to deal with service load) and installing new 

EEPs in available PoPs (thus enlarging the deployment). As a result, the architecture 

allows for varying degrees of infrastructure homogeneity both in the hardware 

capabilities of EEPs and in the service roles of AVPs. It is quite possible, for example, 

to create hybrid deployments where a “core” of VCCs performing autonomous caching 

is supplemented with a few, replicating VCCs in selected locations. 

Furthermore, the AVP framework allows the provision of value-added services 

on top of the core management functions. For example, the AVP architecture allows for 

VCCs to be operated as a content delivery platform for the subscribers of an ISP. The 

ISP can deploy specialised VCCs that accelerate delivery of specific content for a fee 

alongside its regular deployment with minimal additional effort due to the support for 

customised proxylet versions running side-by-side by ALAN and the manageability 

afforded by AVP policies. Additional components, intended to improve specific P2P 

application facilities or offer some service differentiation may also be developed. 

Presently, a lot of effort goes into developing better techniques and protocols to 

address issues of current P2P systems. Significant work is devoted to ensuring peers are 

well-behaved, stay available for as long as possible and do not free-ride. However, users 

are disinclined to offer private resources to support other, anonymous users and in 

general contribute for as long as they receive something in return. This dimension is a 

major cause behind uneven P2P service performance and overlay volatility. Operated by 

the ISP, the AVP overcomes many of these issues by providing the support 

infrastructure necessary to address performance and stability issues without imposing 

any burden to end users. AVPs serve as selfless peers of high availability and good 
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connectivity, which organise into a stable foundation upon which the local overlay can 

evolve. Crucially, transparent operation ensures that built-in protocol incentives or 

mechanisms do not clash but rather improve AVP scope. 

While the primary objective of the AVP infrastructure is to eliminate inefficient 

peerings and operations due to the costs incurred for the ISP, it was demonstrated that 

the promotion of local sources over shorter paths, the caching of highly-popular files at 

the edge and the load-balancing of the local overlay results in noticeably faster 

downloads, improved resource availability and increased overlay stability for the 

customers of the ISP. This improves their Quality of Experience and provides the right 

incentive for both users and application developers to cooperate with the AVP for 

mutual benefit. This presents a long-term goal towards native P2P application AVP-

awareness which will further improve efficiency and expand the scope of beneficial 

guidance peers can receive from the network. 

In conclusion, the work described in this thesis made the following 

contributions, restated here for the benefit of the reader: 

 The aspects of peer behaviour that can be managed effectively without imposing 

fundamental limits to P2P service operation were identified. Realistic scenarios 

of how these controls can be applied on existing protocols were formulated. 

 A novel framework architecture was designed to implement the proposed 

management functions. The architecture was designed to meet numerous 

requirements and provides for high flexibility in deploying, managing and 

extending the framework components and their capabilities. 

 A policy model for the automated configuration and management of the 

framework elements was defined. 

 A prototype implementation of the framework was developed to investigate and 

evaluate the validity of the proposed management functions through experiment. 

 Caching strategies which are suitable and effective for P2P workloads, match 

peer behaviour and take advantage of capabilities specific to the AVP were 

developed and evaluated. 

Finally, the comprehensive evaluation of various functions and capabilities of 

the framework provided valuable insights into large-scale peer behaviour and its effect 

on network operation. 
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8.2 Related work 

The work described in this thesis began in 2002 when P2P computing in its 

current form was in its early stages. Between that period and the completion of this 

thesis, P2P has evolved significantly, becoming a thriving research area. At the same 

time, this rapid evolution meant that any research was essentially applied on a moving 

target. Within a few years numerous protocols appeared only to later disappear after a 

brief period of popularity, while user habits also evolved. More importantly, along with 

the steady growth of P2P traffic, came the realisation of the limitations of earlier 

systems and the need for better scalability and performance. As discussed earlier, 

scalability and performance issues were predominantly addressed in a protocol-centric 

manner, while network resource utilisation, which is more pressing to ISPs, received 

less attention. Below, is a list of research that can be considered related to the AVP. 

The inability of most early unstructured P2P applications to maintain topology 

and membership information in an efficient manner as they grow larger has been partly 

acknowledged by the developers of second-generation P2P protocols (e.g. Limewire 

[Singla, 2002], Kazaa [Kazaa] etc), who employed the concept of “super-peers”. As 

discussed in Chapter 3, this concept suggests the creation of a two-level hierarchy inside 

the overlay network, where the super-peers, i.e. peers possessing better networking 

capabilities and processing power, undertake message handling and routing on behalf of 

ordinary peers. The decreased number of peers responsible for these protocol functions 

reduces the signalling traffic significantly, making the network more scalable. The AVP 

concept shares some minor similarities in the sense that it also involves peers with 

additional functionality and responsibilities and it contains functions that reduce 

signalling traffic. AVPs, however, have a much broader scope than merely aggregating 

signalling traffic and search results. They are primarily designed to manage the overlay 

and can allow or prohibit access to peers or resources selectively, intelligently adapt to 

changes in the network, actively improve performance (i.e. not as a by-product of 

reduced signalling traffic) and support multiple P2P protocols. Finally, AVPs are 

provided by the ISPs as dedicated infrastructure to manage and improve the state of a 

P2P overlay. Super-peers in contrast, are run by their respective users and as such 

consume resources primarily for own use, offer no guarantees on availability and 

quality of service and operate with no consideration for the service‟s impact on the 

network. 
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Resilient overlay networks (RONs) [Andersen, 2001] were proposed as a way to 

improve end-to-end reliability and performance by offering control and choice on how 

data can be transmitted for end hosts and applications. Much like P2P networks, a RON 

is an application-layer overlay on top of the existing Internet routing substrate. RON 

nodes aggressively measure and exchange information about the quality of available 

routes and use it to provide alternative routes in the face of a problem, faster than 

standard lower-layer mechanisms (e.g. BGP). The ability of AVPs to monitor and 

restructure areas of a P2P overlay to improve stability and performance is not, however, 

comparable to the RON concept. Firstly, AVPs are transparent to peers, which remain 

unaware of any overlay control operations. Unlike RON which provides a client API 

(Application Programming Interface) an application must explicitly call to use the 

service, AVPs encapsulate peer messages and tunnel them to their destination without 

any change to the P2P application. More importantly, RON and overlay routing 

networks in general can be said to violate routing polices. Nodes provide transit in 

violation of inter-domain routing principles [Gao, 2001] while selfish routing [Qiu, 

2003] can undermine traffic engineering decisions. On the other hand, AVPs are ISP-

managed infrastructure designed to operate within the confines set by the provider, 

avoiding conflicts with any inter-domain routing policies and traffic engineering 

practices applied. 

Caching of P2P traffic has gained considerable traction in recent years. A 

number of companies such as Cachelogic [Cachelogic] and Sandvine [Sandvine] offer 

commercial products to ISPs in the form of network elements that reside at the gateways 

of the ISP network and redirect P2P download traffic to a local cache. Being 

commercial solutions, not adequate information is publicly available (to the best of the 

author‟s knowledge) for a fair and detailed assessment of their performance and 

capabilities. From what is known however, they show considerable differences to this 

work. The VCC, as part of the AVP framework, offers incomparable flexibility both in 

operating as well as in evolving the system. Unlike the aforementioned, generally static, 

solutions, under the VCC architecture a number of VCCs may be deployed on demand 

to address changes in network conditions in timescales that match P2P operation. 

Extending the system can also be as straightforward as adding or upgrading an 

execution environment, with generally no downtime. More importantly, the AVP/VCC 

is part of the P2P network, interacts with peers directly and gathers information from 

within the application overlay. This compatibility with the P2P service paradigm 
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strengthens the adaptability of the concept to future types of P2P services that may 

operate differently than the current generation. 

In [Wierzbicki, 2004] the authors apply existing cache replacement policies, 

developed for web caching, and compare them with others they propose for use with 

P2P traffic. They examine the characteristics of traffic generated by the Kazaa file-

sharing application and for that reason focus on the potential of policies that operate on 

file chunks to reflect Kazaa protocol behaviour, although they are also evaluated on 

caching entire files. Other work in this direction includes [Leibowitz, 2002], [Saleh, 

2006] and [Dunn, 2002]. All four concentrate on policy design and imply a traditional 

single cache deployment at the entry point of the network. The AVP research work 

similarly proposes and evaluates a number of policies applicable to P2P workloads, but 

more importantly describes a particular architecture and deployment method, and 

replacement policies which reflect the VCC mode of operation and capabilities. These 

notably include multiple P2P protocol support and dynamic multi-cache deployment. 

Furthermore, the VCC is only one component of the larger AVP framework which aims 

to improve P2P application performance beyond caching. The aforementioned works 

instead appear to overspecialise on particular protocol features (e.g. file chunk caching 

for Kazaa), sacrificing transparency, forgoing the ability to support multiple protocols 

from the same cache and diminishing the relevance of the proposed techniques on future 

P2P applications. 

Towards the very completion of this work, the idea that the impact caused by 

P2P applications on ISP networks needs to be addressed holistically and that ISPs can 

achieve much by encouraging “good” application behaviour in various ways compatible 

to them, which is central to the AVP concept, started appearing elsewhere. Aggarwal et 

al [Aggarwal, 2007] acknowledge the impact P2P applications have on ISP networks 

and propose the use of “oracle” services, provided by ISPs, to reduce inefficient and 

costly inter-ISP connections. The oracle service can propose appropriate neighbours to a 

peer using information like customer connection characteristics (capacity, congestion 

level, etc.) or geographical information (PoP, city, etc), that is readily available to an 

ISP but harder for a peer to infer on its own. Peers can then use these suggestions 

offered by the oracle instead of selecting neighbours independently. The claimed 

benefits are that this way an ISP can influence P2P routing decisions and “regain” its 

ability to perform traffic engineering, without degrading P2P application performance. 

Xie et al [Xie, 2007] similarly attribute the lack of input from ISPs, especially in 

relation to lower-layer traffic engineering, to the inefficient and unfair utilisation of 
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network resources by P2P applications. They propose a system that allows network 

providers to explicitly provide more information to P2P applications, with the aim of 

achieving better traffic control in cooperation with the latter. Again, much importance is 

given in the value and breadth of information an ISP can readily provide but peers 

cannot easily gather on their own. The proposed P4P framework consists of a control 

plane and a data plane component. The control plane comprises of portals called 

“iTrackers” that provide three kinds of ISP information to applications: network 

status/topology, provider guidelines/policies and network capabilities. The data plane 

provides P2P applications with feedback from routers, which can be used for the 

adjustment of peer flow rates. The end result is, like in the aforementioned oracle 

service, to allow P2P applications to use information provided by the ISP and make 

more informed decisions regarding overlay formation and routing, with the aim of 

limiting costly and inefficient uses of the available network resources. 

Ono [Choffnes, 2008] operates on the same premise as the aforementioned 

oracle service but proposes the inference of peer proximity and path state information 

from large Content Delivery Networks (CDNs) which, as part of their operation, have 

already deployed extensive sensor infrastructures to perform such measurements. The 

goal is to avoid having the ISP compile such information through its own means, which 

the authors consider a major obstacle in deploying the oracle service. The “hints” 

inferred from the CDN infrastructure are used to direct peers to suitable neighbours with 

the aim of reducing transit traffic and improving transfer characteristics. 

All three works bear close similarities to the AVP concept, as they select as their 

starting point the realisation that the best way for ISPs to deal with the negative effects 

of P2P applications running on their networks is to provide infrastructures that assist the 

latter in treating network resources more considerably. AVP, P4P and the oracle service 

base a lot of their functionality on the privileged position of the ISP to obtain current 

and accurate information on the network and use it for P2P traffic optimisation, which is 

something most P2P-related research overlooked for years. Ono is equally dependent on 

such information but attempts to acquire it indirectly through CDNs. Finally, all 

concepts share the view that their respective control is beneficial not only to the ISP but 

also to the end-user who, in general, will experience improved application performance. 

The AVP concept has however significant differences from the other proposals. 

The first is transparency: The AVP does not require any deliberate peer cooperation or 

changes to P2P protocols in order to interact with the overlay. All actions are carried out 

by message manipulation and control of peer groups. The other three concepts instead 
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require for the P2P applications to actively query their respective infrastructures, which 

implies that changes to P2P protocols and applications are necessary57. In the case of 

Ono this was made explicit by the development of an Ono plug-in module to work with 

a popular BitTorrent client. However, while the particular client supports such additions 

through an open architecture (and it is assumed it was selected for that feature), the vast 

majority of contemporary applications do not. The support of P2P application 

developers is, thus, not simply desirable (as in the AVP) but crucial and actively sought 

after. This, in return, requires for a significant number of ISPs to adopt any of these 

solutions, in order for a critical mass to be formed and convince developers to modify 

their applications. By losing transparency and having the peer consult the infrastructure, 

issues arise about how peers will discover infrastructure nodes and interpret the 

information provided. In such a scenario, is the infrastructure and communication 

protocol standardised and the various P2P applications expected to adapt, or multiple 

interfaces built to work with each protocol? Clearly, this leads to a chicken-and-egg 

situation further complicated by the existence of three competing approaches.  

The loss of transparency raises robustness and scalability issues. Since the AVPs 

appear like ordinary peers, the loss of an AVP will not affect the P2P network more 

than the departure of any well-connected peer. To ordinary peers this will look like 

another peer departure amongst the many they deal with in each session. The loss of the 

oracle service or of the iTracker in contrast means total service unavailability. If peers 

are not granted the ability to operate independently in the face of oracle or iTracker 

unavailability (for instance in order to enforce exclusive use of the system, as otherwise 

it may be ineffective) the P2P network will be seriously impaired. For that reason both 

concepts suggest the deployment of more than one server for scalability and fault-

tolerance. Essentially, both P4P and oracles trade off transparency for a more 

straightforward type of control. This is particularly true of the P4P which is more 

coupled to the application than the oracle service and, as such, less flexible. 

Ono forgoes the fundamental problem of obtaining current and valid network 

information by “piggybacking” on the infrastructure employed by an unrelated party, a 
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 P4P also requires modifications to DNS servers to support a P4P-specific record type. 
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CDN provider. However inventive, this approach results in a parasitic relationship 

which raises two main concerns: Firstly, the ISP which is described as the primary 

stakeholder (i.e. Ono primarily aims to reduce transit traffic which is purely an ISP 

concern) in Choffnes et al [Choffnes, 2008] does not have any control on the accuracy 

of the information inferred. Ono “hints” indicate peer proximity with some degree of 

success (e.g. peers that demonstrate similar CDN redirection behaviour are considered 

close) but are not accurate. More importantly, path RTT is a bad indicator of AS hop 

distance. To an ISP interested in minimising its own transit traffic, it is little comfort to 

know that most locally-originating peer connections terminate a few IP hops after 

leaving its own border routers. Secondly, with Ono the owners of the CDN end up 

providing an additional service without their consent or compensation. While in the 

aforementioned paper the authors are careful to stress that, from their assessment, Ono 

does not place a large burden on CDNs, it is not clear if the other side agrees. Even if 

utilisation due to Ono is small compared to legitimate CDN traffic, it is possible that 

CDN providers will seek reimbursement for the service they provide as they are profit-

oriented and bear the costs of the infrastructure. Essentially, Ono trades off the technical 

and economic issues involved with deploying a support infrastructure by relying on less 

accurate but seemingly free measurements obtained indirectly. 

With AVP, the cost of providing the necessary infrastructure “buys” the ISP 

much better control over transit traffic minimisation (as local and foreign sources are 

identified with certainty) and the ability to customise peer management to the specific 

needs and realities of its network. Unlike Ono, with AVP (as well as with P4P and 

oracles if similarly configured) the ISP has the ability to ensure that lower layer traffic 

engineering decisions are not invalidated by overlay paths. 

Crucially, the AVP comprises a framework of technologies where locality-

biasing or ISP-provided network information are not utilised in isolation but reinforce 

each other and complement other techniques. The AVP combines locality-biasing with 

routing controls that ensure overlay and peer load-balancing, and VCCs which ensure 

that the content most likely to cause transit costs and link congestion is local. 

The caching capability of the AVP not only makes for a more pragmatic but also 

for a more effective solution. On their own, localisation mechanisms are unlikely to 

offer the claimed benefits. Factors such as the size and dispersion of the swarm (i.e. peer 

population actively involved in the exchange of particular content at a given time), its 

maturity (i.e. number of available complete sources versus downloaders) or the rate of 

source churn are unique and mean that blindly pursuing localisation carries the danger 
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of breaking the overlay into smaller, weakly linked “islands” or ultimately causing 

slower transfers. On the other hand, having P2P applications purposefully mix P4P, 

oracle or Ono suggestions with random “noise” to ensure overlay robustness and scope 

limits both the amount of transit savings attained and the appeal of the aforementioned 

proposals. Furthermore, as Karagiannis et al have noted [Karagiannis, 2005], a P2P 

locality-aware solution can be expected to generate five times more traffic on average 

than a “perfect” caching solution. More importantly, because last-mile access 

technologies are still notoriously asymmetric (especially shared mediums like cable), 

localisation may have adverse effects on uplink last-mile congestion. Caching is ideal 

for asymmetric access technologies because it alleviates peer upstream load and 

congestion in the part of the network where upgrades are practically unfeasible. Finally, 

as discussed before, VCC caching is transparent to peers, requires no protocol 

modifications and can accommodate different P2P protocols from the same content. 

At any rate, the fact that recent work adopts the same ideas that sparked the AVP 

research some years earlier can only testify to the concept‟s validity and potential. More 

importantly, the AVP concept is not necessarily incompatible or competing with such 

approaches. While the need for transparent operation allows only for specific control 

mechanisms to be implemented, the ability of peers to query the infrastructure for 

information and act accordingly creates numerous possibilities for broadening the scope 

and capabilities of the AVP. Cooperation between P2P application developers and ISPs 

is a win-win situation which can benefit all parties immensely. Moreover, VCC caching 

can work particularly well with P2P protocols which support locality awareness; the 

latter providing another layer of efficient source selection and content distribution 

functionality within the ISP domain, once brought locally by the VCC from foreign 

sources. 

8.3 Future directions 

The AVP architecture can be supplemented, extended or modified in many 

ways. The author has identified the following as promising starting points: 

Although planned from the beginning as a core AVP component and capability 

[Koulouris, 2003], the Network Optimisation Component (NOC) was not fully specified 

or prototyped during the duration of this research. The separation and componentisation 

of AVP functions led to the AOC and VCC components taking priority along with the 

AVP simulator, as they encompassed necessary functionality both from a research and 
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practical prototype operation perspective. The NOC remained as a planned expansion, 

intended to provide the AVP with direct traffic engineering capabilities beyond what 

could be achieved by the AOC through manipulation of the overlay. 

Because P2P traffic is elastic, long-lived, edge-to-edge and, crucially, 

bandwidth-consuming, alleviating its impact on the backbone through localisation is 

only part of a broader traffic engineering goal. Ensuring traffic load is evenly spread 

across the network can help an ISP utilise its existing infrastructure more efficiently, 

smooth-out demand peaks, avoid congestion hotspots and delay a capacity upgrade. In 

that direction, many providers already apply such traffic engineering at the packet or 

flow level by distributing traffic over equal cost paths, either via MPLS or IP interior 

routing (for example link weight tuning in OSPF [Fortz, 2000]). The connection 

endpoints, however, are determined by the application, limiting the effect of 

management to the choice of intermediate hops. Clearly, the ability of the AVP to 

influence peer source selection (and thus the location of one endpoint of a TCP transfer) 

is powerful. With the NOC providing underlay information, the AVP can implement 

targeted and increasingly effective distribution of traffic based on, for instance, peer-

PoP association which real-time RTT probes cannot reveal. Furthermore, the NOC can 

provide the necessary bridge between the AVP deployment and any lower-layer traffic 

engineering or QoS mechanisms enabling a synergistic relationship between underlay 

and overlay management. 

The recent appearance of similarly-themed work (i.e. P4P, oracle service) 

presented both a benefit and a challenge. From one hand it communicated the urgent 

need for a tighter coupling of overlay and underlay to a wider audience. On the other, it 

limited the room for original contribution. Still, future work can avoid duplicating effort 

and, where applicable, incorporate P4P/oracle contributions to the AVP or vice-versa.  

Another direction for future work is the implementation and integration of 

additional P2P protocol modules in the AVP. The simultaneous handling of multiple 

P2P application overlays and support of several protocols in caching scenarios is 

valuable for two reasons: First, the ability to bridge together different overlays may 

reveal important gains in terms of resource utilisation and localisation of traffic (e.g. 

exploiting proximity of peers which use different protocols but exchange the same 

object). Second, the utilisation of the same cache by different protocols may give 

valuable insights in terms of query workload overlap and evaluate how cache hit rate 

and replacement strategy performance are affected. 



 

199 

The security-related aspects of the AVP architecture are another area that can 

benefit from further study. As part of the ISP infrastructure, an AVP deployment must 

be secure from unauthorised access which could be used for performing denial of 

service attacks or distribution of malware. A basic level of security is afforded by the 

ALAN architecture and the sand-boxing features of the Java programming language in 

executing proxylets. Further work could start from strengthening the AVP architecture 

(for instance, by adding SSH protocol support in the administrative console, apply 

cryptographic techniques for the run-time authentication of AVPs and encryption of any 

sensitive communications, etc) to equipping AVPs with facilities to identify peers that 

transmit malware so that corrective action can be taken.  

Further improvements can be made in the area of VCC caching. In particular, 

the investigation of additional caching strategies that can take advantage of the 

flexibility afforded by the AVP framework and of techniques to eliminate inefficient 

caching operations or maximise utilisation of caching capacity are two areas that can be 

explored further. Examination of how natural replication of content on peers can be 

leveraged in novel ways to optimise cache performance is another attractive prospect. 

Finally, many other aspects of the AVP concept and architecture can be 

extended or improved. The author hopes that the present thesis succeeds in providing 

the inspiration (or, in case of disagreement, motivation) needed. 
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APPENDICES 

Appendix A: Advanced Chord routing scheme 

A scalable key location method exists in Chord [Stoica, 2001], which is more 

efficient than the simple scheme depicted in Figure 50, but requires the nodes to 

maintain additional routing information apart from information on their successor. 

 

Figure 50: Simple Chord routing scheme. 

For faster lookups, each node n maintains a routing table of up to m entries 

(where m is the length of the Chord identifiers in bits), called the “finger table”. The ith 

entry in the finger table at node n contains the identity of the first node s that succeeds n 

by at least 2i-1 on the Chord ring. This node s is called the “i
th

 finger” of n. Under this 

notation, the 1
st
 finger of n is its successor. This is shown in Figure 51, where the finger 

table of node 8 is presented. As we might expect, the first finger of node 8 is node 14, as 

node 14 is the first node to succeed (8 + 2
0
)mod2

6
 = 9. In a similar manner, the last 

finger of node 8 is derived from (8 + 2
5
)mod2

6
 = 40, and is node 42. 

This scheme has two important characteristics: First, each node stores 

information about a only small number of other nodes and knows more about nodes 

following close on the identifier ring than about nodes far away. Secondly, a node‟s 

finger table does not contain enough information to directly determine the successor of 
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any arbitrary key. For instance, node 8 in Figure 51 cannot determine the successor of 

key 28 (node 30) by itself, as node 30 does not appear in its finger table. If, using this 

scheme, node 8 wishes to locate key 54, it will ask node 42 to resolve the query, since 

node 42 is its largest finger. Node 42 will in turn check its own finger table for the 

largest finger that precedes 54, which is node 51. Finally, node 51 will discover its own 

successor, node 56, and a query reply will be sent to node 8. 

 

Figure 51: Advanced Chord routing. 
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Appendix B: AVP Policy XML Schema 

 

<?xml version="1.0" encoding="utf-8"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 

  <xsd:element name="AvpPolicy"> 

    <xsd:complexType> 

      <xsd:sequence> 

        <xsd:element name="polId" type="xsd:string" /> 

        <xsd:element name="polGroupId" type="xsd:string" 

          nillable="true" /> 

        <xsd:element name="polType" type="AvpPolType" /> 

        <xsd:element name="polDescription" type="xsd:string" /> 

        <xsd:element name="polPriority" type="PolPriorities" /> 

        <xsd:element ref="ValidityPeriod" /> 

        <xsd:element ref="Conditions" /> 

        <xsd:element ref="Actions" /> 

      </xsd:sequence> 

    </xsd:complexType> 

  </xsd:element> 

 

  <xsd:element name="ValidityPeriod"> 

    <xsd:complexType> 

      <xsd:choice> 

        <xsd:sequence> 

          <xsd:element name="startTime" type="xsd:dateTime" /> 

          <xsd:element name="endTime" type="xsd:dateTime" /> 

        </xsd:sequence> 

        <xsd:sequence> 

          <xsd:element name="endDayOfMnth" type="xsd:gDay" /> 

          <xsd:element name="endHourOfDay" type="xsd:time" /> 

        </xsd:sequence> 

      </xsd:choice> 

    </xsd:complexType> 

  </xsd:element> 
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  <xsd:element name="Conditions"> 

    <xsd:complexType> 

      <xsd:sequence> 

        <xsd:element name="CondObject" type="CondObject" minOccurs="0" 

          maxOccurs="unbounded" /> 

        <xsd:element ref="CondReq" minOccurs="0" maxOccurs="unbounded" /> 

        <xsd:element name="EvalParams" type="xsd:string" /> 

      </xsd:sequence> 

    </xsd:complexType> 

  </xsd:element> 

 

  <xsd:complexType name="Event"> 

    <xsd:sequence> 

      <xsd:element name="eventId" type="xsd:string" /> 

      <xsd:element name="eventType" type="xsd:string" nillable="true" /> 

      <xsd:element name="eventVariable" type="Variable" minOccurs="1" 

        maxOccurs="unbounded" nillable="true" /> 

    </xsd:sequence> 

  </xsd:complexType> 

 

  <xsd:element name="CondReq"> 

    <xsd:complexType> 

      <xsd:sequence> 

        <xsd:element name="reqId" type="xsd:string" /> 

        <xsd:element name="reqType" type="ReqTypes" /> 

        <xsd:element name="reqObject" type="CondObject" minOccurs="1" 

          maxOccurs="unbounded" /> 

        <xsd:element name="reqParam" type="Param" /> 

      </xsd:sequence> 

    </xsd:complexType> 

  </xsd:element> 

 

 

  <xsd:complexType name="CondObject"> 

    <xsd:choice> 
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      <xsd:element name="event" type="Event" /> 

      <xsd:element name="variable" type="Variable" /> 

    </xsd:choice> 

  </xsd:complexType> 

 

 

  <xsd:complexType name="Variable"> 

    <xsd:sequence> 

      <xsd:element name="varId" type="xsd:string" /> 

      <xsd:element name="varType" type="xsd:string" /> 

      <xsd:element name="varSyntax" type="xsd:string" /> 

    </xsd:sequence> 

  </xsd:complexType> 

 

  <xsd:element name="Actions"> 

    <xsd:complexType> 

      <xsd:sequence> 

        <xsd:element name="actionId" type="xsd:string" /> 

        <xsd:element name="actionType" type="xsd:string" /> 

        <xsd:element name="actionParam" type="Param" /> 

      </xsd:sequence> 

    </xsd:complexType> 

  </xsd:element> 

 

 

  <xsd:complexType name="Param"> 

    <xsd:sequence> 

      <xsd:element name="parId" type="xsd:string" /> 

      <xsd:element name="parSyntax" type="xsd:string" /> 

      <xsd:element name="parValue" type="xsd:string" /> 

    </xsd:sequence> 

  </xsd:complexType> 

 

 

  <xsd:simpleType name="AvpPolType"> 

    <xsd:restriction base="xsd:string"> 
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      <xsd:enumeration value="IndvPol" /> 

      <xsd:enumeration value="SysWdPol" /> 

    </xsd:restriction> 

  </xsd:simpleType> 

 

  <xsd:simpleType name="ReqTypes"> 

    <xsd:restriction base="xsd:string"> 

      <xsd:enumeration value="GT" /> 

      <xsd:enumeration value="LT" /> 

      <xsd:enumeration value="EQ" /> 

    </xsd:restriction> 

  </xsd:simpleType> 

 

  <xsd:simpleType name="PolPriorities"> 

    <xsd:restriction base="xsd:string"> 

      <xsd:enumeration value="besteffort" /> 

      <xsd:enumeration value="normal" /> 

      <xsd:enumeration value="critical" /> 

    </xsd:restriction> 

  </xsd:simpleType> 

 

</xsd:schema> 
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Appendix C: AVP Policy example 

Starting from a logical IF/THEN statement, let‟s try to express a simple policy in 

XML using the format presented in Chapter 4 of the main text: 

IF (ip_address > 192.168.1.1) AND (ip_address < 

192.168.1.128) THEN add_to_CD(3) 

Such a policy could be used to instruct an AVP to assign any peers whose IP 

addresses lay in the range between 192.168.1.1 and 192.168.1.128 to the controlled 

domain with ID “3”. 

The first part contains the policy name and group identifier, classification 

(Individual configuration policy), a remark, priority (normal) and validity period: 

<?xml version="1.0" encoding="UTF-8"?> 

 

<AvpPolicy xmlns:xsi=http://www.w3.org/2001/XMLSchema-

instance 

xsi:noNamespaceSchemaLocation="http://www.ee.ucl.ac.uk/~tko

ulour/schemas/AVPSchema1.xsd"> 

 

<polId>CDpolicy001</polId> 

<polGroupId>testgroup</polGroupId> 

<polType>IndvPol</polType> 

<polDescription>adds peers to CD3</polDescription> 

<polPriority>normal</polPriority> 

<ValidityPeriod> 

    <startTime>2007-10-04T18:15:00.0Z</startTime> 

    <endTime>2007-10-06T18:15:00.0Z</endTime> 

</ValidityPeriod> 

The condition object is an event indicating the arrival of a new peer (“ev1”). Its 

IP address is referenced by event variable “ipAddr”: 

<Conditions> 

    <CondObject> 

        <event> 

            <eventId>ev1</eventId> 

            <eventType>new_peer_arrival</eventType> 

            <eventVariable> 

                <varId>ipAddr</varId> 

                <varType>ev1var</varType> 

                <varSyntax>string</varSyntax> 

            </eventVariable> 

        </event> 

    </CondObject> 
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The following requirements (“req1” and “req2”) cover the desired range of IP 

addresses. Specifically, req1 indicates that the value of “ipAddr” obtained by event 

“ev1” (i.e. the IP address of the newly-arrived peer) must be greater than the 

requirement parameter “req1par” which has the value “192.168.1.1”. Similarly, req2 

dictates that “ipAddr” must be smaller than “192.168.1.128”. The evaluation parameter 

field indicates that the „AND‟ logical operator must be applied on the two requirements: 

  <CondReq> 

    <reqId>req1</reqId> 

    <reqType>GT</reqType> 

    <reqObject> 

        <event> 

            <eventId>ev1</eventId> 

            <eventVariable> 

                <varId>ipAddr</varId> 

            </eventVariable> 

        </event> 

    </reqObject> 

    <reqParam> 

        <parId>req1par</parId> 

        <parSyntax>string</parSyntax> 

        <parValue>192.168.1.1</parValue> 

    </reqParam> 

  </CondReq> 

    <CondReq> 

        <reqId>req2</reqId> 

        <reqType>LT</reqType> 

        <reqObject> 

            <event> 

                <eventId>ev1</eventId> 

                <eventVariable> 

                    <varId>ipAddr</varId> 

                </eventVariable> 

            </event> 

        </reqObject> 

        <reqParam> 

            <parId>req2par</parId> 

            <parSyntax>string</parSyntax> 

            <parValue>192.168.1.128</parValue> 

        </reqParam> 

    </CondReq> 

    <EvalParams>req1 AND req2</EvalParams> 

</Conditions> 

Finally, the prescribed action is included. The action type indicates the operation 

that should be called (“addToCD”). A parameter (“3”) must be passed to that function, 

included in the “actionParam” field: 
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<Actions> 

    <actionId>act1</actionId> 

    <actionType>addToCD</actionType> 

    <actionParam> 

        <parId>act1par</parId> 

        <parSyntax>string</parSyntax> 

        <parValue>3</parValue> 

    </actionParam> 

</Actions> 

 

</AvpPolicy> 
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Appendix D: Basic Gnut commands 

This Appendix presents basic usage information for the gnut client. The 

information is compiled from the gnut manual pages (available online at: 

http://www.schnarff.com/gnutelladev/source/gnut/gnut-0.4.21/doc/gnut.html). For a full 

list of supported commands, installation instructions and basic and advanced usage 

tutorials please refer to the above documentation. 

List of Commands: 

 info [ctudhqns] - Displays information about the current status of the client. If 

given, the switches limit the output to: 

 c - list of current Gnutella Net connections. 

 t - file transfers in progress (both upload and download). 

 u - upload transfers in progress. 

 d - download transfers in progress. 

 h - host totals. 

 q - queries received and replies sent. 

 n - network traffic totals. 

 s - shared files on this machine. 

If info is selected with no arguments, the output appears as shown below: 

gnut> info 

HOST STATS:  Hosts: 19       Files: 2.72K      Size: 9.145G 

NET STATS:   Msg Received: 20         Msg Sent: 1 

             Bytes Rcvd: 740             Bytes Sent: 23 

QUERY STATS: Queries: 0        Responses Sent: 0 

SHARE STATS: Num Shared: 0    Size Shared: 0 

CONNECTION STATS: 

----------------- 

1)192.168.1.88:6346    Packs:    0:0    0:0    Bytes:    

0:0 

TID: 7171     Type: OUT   State:   CONN   Rate:   0:0  /sec 

 

 open host:port - Open outgoing connection to a host. 

 find (or search) string - Search the Gnutella network for string. find or search 

with no argument displays results.  
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 list - Shows all searches currently going on. 

 monitor keywords - Monitor incoming search queries. If arguments are 

supplied, they are used for a boolean AND match (ignoring case) before 

displaying search queries. 

 mreply keywords - Monitor replies to search queries that others have issued. 

While monitor lets you see what people are searching for, mreply lets you find 

out what's actually available on the network. As with monitor, arguments can be 

given to specify a boolean AND match (ignoring case) before displaying 

filenames.  

 mpush keywords - Monitor push requests issued by others. While mreply lets 

you see what files are available on the network, mpush lets you find out which of 

those files are actually in demand. 

 update - Send out ping packets to all connected hosts. 

 response regexp - Show the current query responses which match the given 

regular expression. 

 get range - Start downloading files referenced by range. If more downloads are 

requested than allowed by max_uploads, then the downloads are queued. The 

auto_download_retry flag affects the behavior of get, see below.  

 push range - Same as get, however only a push connection is attempted. 

 stop range - Stop the transfers referenced by range. The numbers you give the 

stop command come from the info or info t command.  

 clear range - Removes finished transfers from the transfer list. If no range is 

given, all completed transfers will be removed. You can also set the auto_clear 

variable to make this automatic. Range numbers work the same way as for the 

'stop' command.  

 kill range - Terminate the Gnutella connections referenced by range. 

 hosts - Displays the current host catcher (this can result in a lot of information). 

 hosts file - Reads in a Gnutella-hosts file. 

 share paths - Takes a ":" delimited list of paths to share. (";" on Win32)  

 scan - Rescans the files in the share paths.  

 quit (or exit) - Quit gnut. 
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