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Bayesian Factorial Linear Gaussian State-Space
Models for Biosignal Decomposition

Silvia Chiappa and David Barber

~ Abstract— We discuss a method to extract independent dynam- to ours is (Non) Linear Dynamical Factor Analysis (NDFA)
ical systems underlying a single or multiple channels of observa- [4], [5]. Whilst being an attractive and powerful method,
tion. In particular, we search for one dimensional subsignals to standard NDFA places no constraint that the observatioms ar

aid the interpretability of the decomposition. The method uses f df ixing ind derstcal hich k
an approximate Bayesian analysis to determine automatically the ormed irom mixing indepencensicaiarsources, which makes

number and appropriate Comp|exity of the under|ying dynamicsy interpretation of the resulting sources d|ﬁ|cu|t Furthere,
with a preference for the simplest solution. We apply this method NDFA does not directly force the sources to contain pargicul

to unfilttered EEG signals to discover low complexity sources frequencies but rather attempts to bias the discoveredtssur
with preferential spectral properties, demonstrating improved  p, carefy| initialization [5]. In addition, NDFA uses nonéiar
interpretability of the extracted sources over related methods. . 7 L .
state dynamics (and mixing), which hampers inference and
makes the incorporation of known constraints more complex.

I. INTRODUCTION Inference in the Variational Bayesian LGSSM has previ-
Decomposing a multivariate time-serieg, ¢t = 1,...,7, Ously been achieved using Belief Propagation, and differs
n=1,...,V into a set ofC simpler subsignals (sources) isfrom inference in the Kalman filtering/smoothing literatur

a central goal in signal processing and is of particularese for which highly efficient and stabilized procedures exist.

in the analysis of biomedical signals. The goal of this pap&fntral contribution of this paper is to show how inferenae

is to introduce a model which can automatically determiree performed using the standard Kalman filtering/smoothing
the number of sources underlying the observations and 'Rfursions by augmenting the original model.

which we can bias the sources to be in certain frequenc

ranges. Furthermore, we are interested in taking into agcod!- FACTORIAL LINEAR GAUSSIAN STATE-SPACE MODELS

the temporal structure of the time-series which can help inIn LGSSMs [6], the hidden state vectdrs and the visible
obtaining a good decomposition, especially wh&n> V. observations;.r are linearly related by:

More specifically, our criterion for the decomposition isth h n

indeper?dent dyﬁamical systems generate thg sources which, he = Ahpa+ s b~ N 2) 51~ N (O, )
under linear noisy mixing, give rise to the observations: Fo Yt = Bhy +ny, n{ ~N(Oy,Zy),

any two scalar sourceg ands; and all timest, we seek a \where A’ denotes a Gaussian distribution. The notatipn

model of statistically independent dynamigési ., s1.;) = stands for abD x 1 zero vector. Probabilistically:
p(st.)p(s].7). Furthermore, the aim is to find a matri¥’ -

that relates the sources = vert(s}, ..., s¢) to observations h _ B ol h Vol B

vy = vert(vi,...,v)) through noisy mixing. This is a form O '1)t_1_[2p(vt| p(helhi-1),

of Independent Components Analysis (ICA) [1] although it .
differs f?om the morep standard as)éumrftion)o[f ]indepen%en gh p(velhe) =N(Bhy, Sv) andp(he|hi1) =N(Ahi—1, Za).
at each time step, that 'ﬁ(é"i-wsfﬂ _ Hlep(8§)p(8{). 0 make mde_p_endent dynamlca_l subsys_tems we use block
We consider a Linear Gaussian Sfate-Space Model (LGSSI\q ,gonal transition and s?ate noise matrloe,sE_H anq >,
which is a powerful, yet interpretable and tractable, mod ere e?ch block: he_1$ dimensionfi,. A one dimensional .
We constrain the LGSSM in order that independent dynamicsaﬁurce 5t forc eacf; lndependent dynamcal subsysctgm IS
processes can be identified and furthermore that scalammuﬁormeol froms; = 1chi, _where Lisa unlt_ \(ector andy; is
can be extracted from the signal. To determine the corrdff state Of_ the dynamical systecmCombmmg tThe souTrces,
number of underlying processes and bias the solution tawalfe can Wr|tel 5 = C},Dht’ where P. ~ dm.g(.ll’ o 10.)’ .
a certain dynamics, we use a Variational Bayesian analydis = v¢rt(hi, ..., hi’). The resulting emission matrix is
which defines a prior distribution over the model parameter%onStra'ne,d, to be O,f the forr_ﬁ% = WP, WhgreW IS the

There are several existing decomposition methods which * ¢’ mixing matrix and P IS a ¢ x H projection, with
encode constraints such as desired frequencies of the inde—. Z_c He. Such a constrained form faf is required to
pendent sources (see for example [2], [3]). However, theg&owde interpretable scalar sources.
methods do not automatically determine the correct numbe¢AYESIAN FACTORIAL LINEAR GAUSSIAN STATE-SPACE
of underlying sources nor do they consider the dynamics o MODELS
the signal in the model structure. A closely related techaiq

In our Bayesian treatment of learning we define the priors

Lyert(a, b, c) is the matrix formed by vertically stacking, b andc. p(Ala) andp(W|53), wherea and 5 are hyperparameters. We
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do not define any prior fo, v, 1 and ¥, which will whereh, = Ph;, andJd;; is the Kronecker delta function. The
formally be considered as hyperparametei@he total set of mean is given by:

hyperparameters i® = {«, 8, Xy, Xy, u, X}. Therefore: B - .
Wih= 37 Bwligua (50T, (B, b
p('UlzT‘@):/ p(vi.7|A, W, 0)p(Ala)p(W|B)dAdW . (1) kol
AW

Here we take the ML-Il (‘evidence’) framework, which in-Determining ¢(A)

volves maximizing p(v1.r|©) with respect to© [4], [7]. Optimally we have a factorized distributiog(4) =
Ideally, the number of sources effectively contributingthe I1.q(A°), wheregq(A°) is Gaussian with inverse covariance
observed signal should be small. This suggests the prior: gi\;en by (dropping the dependence @n

c ﬁ v/2 B T
174 = ' -3 1‘/=1 WLQJ . — — j
p(W|5) Jl:[l (%) € =2 = Eala <h§,1hi,1>q(h  +adiudi
= t=2 i1
We can biasA to be close to a desired transitioh (possibly The mean is:
zero) by using: T
c A\ /2 _ao s (4edey? (Aig)=) [EALMG‘AWFZ il 2 <hilh?>q(m1:t>'
p(Aflac) = (7) I k,l n t=2
m
_ c 3
for each component, so thatp(A|a) =[], p(A°|a.)®. Inference on q(hy.z)
Variational Bayes Optimally q(h1.7) is Gaussian since its log is quadratic in
Optimizing Eq. (1) with respect t® is difficult due to the h1.7, being namely.
intractability of the integrals. Instead we consider thevdo 1 Z
bound [4], [7]: _Z _ Ty =1(y, —
[4], [7] > ;wt W Phy)TS5 (v, tht>>q<w> 3)
L =log p(vi.7|©) >Hy (A, W, hyi.7) (2

N =
[M]=

+ <10gp(vlzT7 hl:Ta A7 W)>q(A,W,h1:T) ) — <(ht — Ahtfl)T Egll (ht — Aht,1)>

‘ a(4)

||
N

where we dropped the explicit dependence@mon the rhé.
The notationH, () signifies the entropy of the distribution\WWe can carry out the averages ovérand IV since g(A)
d(z), and(-) .., denotes the expectation operator. For certa@fid ¢(W) are Gaussian and the above is quadrafic in the
variational distributionsg, we hope to achieve a tractableParametersA and . In order to compute the required
bound, which we may then optimize with respectgand ~Statistics(he),,,) and (he_1hf) , . our aim is to rep-

©. The key approximation in Variational Bayes (VB) isresent Eq. (3) as thieg G(hi.7|91.7) of a LGSSM with some
q(A,W|hy.7) = q(A,W). Since A and W separate in the suitable parameters. To do that we use a mean + fluctuation

rhs of Eq. (2), optimallyg(A, W) = q(A)q(W), hence: decomposition:
L= —D(q(A),p(A)) — D(g(W),p(W)) + Hy(h1.1) <(vt — Bh)"S7 (v — Bht)> w)
1 1, hir|A, W =F. g
+ (og plors P [A W) gy zya(ayaom) — (v — (B) h) Sy (v, — (B) he) + h{ P S Ph

D(q(z), p(z)) is the KL divergencelog q(x)/p(x)),(,- The

VB procedure iteratively performs co-ordinate wise asagnt Where(5) = (W) P and the fluctuation is by determined by:

F with respect tog(W), ¢(A), g(h1.7) and©. v
Swli= D Bl [5v' ], slel...Co @)
Determining ¢(W) k=1

By examiningF, optimally, ¢(W) is a Gaussian. The co- Similarly:
variancelXy .. ., = (Wi — (W) ) (Wyy — (W aver- _
[ W]z]Jcl <( J < ]>)( kil < kl>)>( <(ht _Ahtfl)TEHl(ht —Aht,1)> "
q

ages wrtq(17)) is given by the inverse of:
~ i~ _ Ty—1 T
[E;Vl]ij.kl = [Zl;l]ik Z <hihi> (hs) + Bidirdji = (b = (A) b)) By (e = (A) har) + By Salut,
’ + q\nt

H
[Sal; = Z Salijm [B5' ], l€l... H

2A Bayesian treatment oLz, Yy, p and X is straightforward using =
1,k=

conjugate priors (see [7], [8]) but is not taken here for spaestrictions

and since we have little preference for constraining thesarpeters. ~
3For dimensional reasons, we can also assume a Gaussian pri:heonTO represent Eq. (3) as a LGSSMhl:Th)l:T)’ we augment

columns ofl¥ with exponent-1 3; WJTE‘jle. This simplifies the statistics v« and B as:

of ¢(W) and Eq. (4). The same holds fet. This is also convenient when N ~

we assume a prior foE and Xy, since it ensures conjugacy [7], [8]. 0y = vert(vy,0y,00), B =wert((B),Ua,UwP),
4strictly we should write throughouf(-|v1.7). We omit the dependence

on vy.r for notational convenience. SFor simplicity, we ignore the contribution from; and a constant term.
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PrmAAANNANNY] - ity i) were mixed into three observations = Ws, + 7, for W

WWWWWNWMWWWWWWWWWW W/WWWMWWMWMWWW chosen with elements from a zero mean unit variance Gaussian
distribution, and-y, = I (Fig. 1b). We then trained a Bayesian

WWWMWM FLGSSM with 5 sources an@d x 7 transition matricesAc.

0 S0 100 150 200 250 300 0 50 200 150 200 250 300 To bias the model to find the simplest sources, we used zero
(@) () matrices A¢ for all sources. In Fig. 1c we plot the estimated

MNWV\W‘ WWWMWWMMWWWWWWWMWWM sources from our method after convergence. Two of the 5
sources have been removed, and the remaining three are a

FWM M\A/\/VW/\/\N reasonable estimation of the original sources. Anothesiptes
approach for introducing prior knowledge is to use a Maxi-

L’/J/\# mum a Posteriori (MAP) procedure by adding a prior term to

WWWMWM the original log-likelihoodog p(vi.r|A, W, ©) +1log p(A|a) +

log p(W|3). However, it is not clear how to reliably find the

WWWWWWMWWWWWWWM hyperparameters « and § in this case. One solution is to

0 %0 100 150 200 250300 0 50 100 150 200 250300 estimate them by optimizing the new objective function flgin
© @) with respect to the parameters and hyperparameters (tthis is

Fig. 1. (a) Original sources;. (b) Observations resulting from mixing the so-called joint map estimation — see for eXamme [10])_ The
original sourcesp; = Wt +ny, ny ~ N(Oy, ). (c) Recovered source

s . : e
using the Bayesian FLGSSM. (d) Sources found with MAP FLGSSke complgxny of this approach s 3|_m||ar to the_ unaugmented
retained sources have been rescaled to aid visualization. Bayesian LGSSM, although in this case solving a Sylvester

equation is required for updating the parameters. A typical
where U, is the Cholesky decomposition of 4, so that result of using this joint MAP approach on the artificial data
ULUa = Sa. Similarly, Uy is the Cholesky decomposition ofis presented in Fig. 1d. The joint MAP does not estimate the
Sw. The equivalent LGSSM is then completed by specifyingyperparameters well, so that an incorrect number of ssurce
A= (A), Sy =3y, Sy = diag(Sy,1,1), i =p, X = X8 s found, and the sources are not as well estimated as in the
In this way any standard inference routines in the literatur@ayesian procedure.
may be applied to compute(h;) = G(ht|01.7), including
those specifically addressed at improving numerical stabil B. Application to EEG Analysis
[9]. In the experiments, we used the standard predictor-|, Fig. 2a we plot three seconds of EEG data recorded
corrector filtering and Rauch-Tung-Striebel smoothing B] from 4 channels (located in the right hemisphere) while a
minor modification to the standard predictor-correctoefitg  person is performing imagined movement of the right hand.
routine may be applied for computational efficiency (see [Hs is typical in EEG, each channel shows drift terms below
for details). This method is considerably simpler and mMore Hz which correspond to artifacts of the instrumentation,
general than the procedure given in [7], which is based @fgether with the presence of 50 Hz mains contamination.
Belief Propagation and do not correspond to any of thghese effects mask the rhythmical activity related to the
standard forms in the Kalman filtering/smoothing literatur ental task, mainly centered at 10 and 20 Hz, which we

want to extract. Standard ICA methods such as FastiICA
Finding the Optimal © do not find satisfactory sources based on raw ‘noisy’ data,
and preprocessing with band-pass filters is usually reduire
Additionally, in EEG research, flexibility in the number of

| |
\ |
\ |
| |

Differentiating 7 with respect to9 we find that, optimally:

3, = |4 o — H? recovered sources is important, since there may be many
Ty W2 oy °c 3 .<[AC—AC]2,> ’ independent oscillators of interest underlying the olestions
o) J I/ q(Ae) and we would like some way to automatically determine their

effective number. To preferentially find sources at patéicu
1 - frequencies, we specified a block diagonal matfx with
Xy = TZ<(”t’WPht>(“FWPht) >q(W)q(h,)’ each block being a rotation at the desired frequency
t=1 ' cos (2nw/N) —sin (2rw/N) .
T . , whereN is the number
. 1 e e e aere AT sin (2nw/N)  cos (2rw/N)
Y = T— Z <(htﬂ4 ht—l)(ht*A ht—l) > ...  of samples per second. In order to extract the dominantsdrift
1 & a(A)q(h§_y.,) . o —
= below 1 Hz, the mains contaminations and the oscillations

Y= <(h1—,u) (hl—p)T> v k=) - related to the mental task, we defined the following 16
a(h1) groups of frequencies: [0.5], [0.5], [0.5], [0.5]; [10,11],
A. Demonstration (10,11], [10,11], [10,11]; [20,21], [20,21], [20,21], [ZAL];

In a proof of concept experiment, we used a FLGSSM 501, [50], [50]’ [50]. Hence, the total hiddep dimensiontbé
generate 3 sources with random5 x 5 transition matrices LG.SSM IS H = 4.82 The temporal. evolution of the sources
Ae — 0, and> = 5. = I see Fig. 1a. The Sourcesobtalned after training the Bayesian FLGSSM is shown in
B = VH - o= g-1a Fig. 2b (grouped by frequency range). This method removed
6Strictly, we need a time-dependent emissidn= B, fort — 1,...,7— 4 unnecessary sources from the mixing mat#ix that is one

1. For time T, By has the Cholesky factdy 4 replaced by a zero matrix. [10,11] Hz and three [20,21] Hz sources. We can see that the
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N A there are 2 main 50 Hz sources (first two factors), although a
T small 50 Hz activity is present also in other factors, namely
M M 7, 11, 12 and 14. The slow drift has not been isolated and

is present in almost all factors. The information related to

b s oA T e it hand movement, namely [10,20] Hz activity, is spread over

1 2 3

M MWWM ° (@) factors 3, 4, 9, 10 and 13, which however contain also other
frequencies. The prior specification of independent dynami

WW w WW“WMWWWM processes at particular frequencies has therefore helped t

e R e T—T WA Bayesian FLGSSM to better isolate the activity of interest

into a smaller number of sources and, among these sources,

o] sl P e to separate the contribution of oscillators at 10 Hz and 20 Hz

WWMWVV\MWW’\MMW [ o] I11. CONCLUSION
‘ v vvvvvvv‘

We presented a method to identify independent dynamical

} } } } M sources in noisy temporal data, based on a Bayesian pracedur
\ |
\ | M

which automatically biases the solution to finding a small
number of sources with preferential dynamics. This proce-
MWW{MWWWWWWWWM Pt Y dure is closely related to others previously proposed in the
[ \ M”WW literature, but has the property that the sources are tHeesse
projections from higher dimensional independent linear dy

\ \
COMAMRAN AN ] namical systems. Here we concentrated on the projection to a
v Y N | M single dimension since this aids interpretability of thgnsils,
! 1. 1 o g being of particular importance for applications in bioneedi
Hhosonttersinpionn] — NAVARONA signal analysis. An advantage of our linear dynamics ambroa
WAV N Ot s e is tractability of inference, and we demonstrated how the
’ O "o ' ] statistics of the hidden variables in the Bayesian LGSSM can
MWM be estimated by using any Kalman filtering/smoothing rautin

- . The method is able then to automatically extract signals, fo

(d) example, biased towards particular frequencies.
Fig. 2. (a) Three seconds of unfiltered EEG data recorded #efectrodes.
(b) The 16 sources; estimated by the Bayesian FLGSSM. (b) Sources
estimated by the MAP FLGSSM. (c) The 16 factors estimated by AIDF REFERENCES
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