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Abstract

Transcription regulation plays a key role in determining cellular function, response to external

stimuli and development. Regulatory proteins orchestrate gene expression through thousands of

interactions resulting in large, complex networks. Understanding the principles on which these

networks are constructed can provide insight into the way the expression patterns of different

genes co-evolve.

One method by which this question can be addressed is to focus on the evolution of the structure

of transcription factor networks (TFNs). In order to do this, a model for their evolution through

cis mutation, trans mutation, gene duplication and gene deletion is constructed. This model is

used to determine the circumstances under which the asymmetrical in and out degree distributions

observed in real networks are reproduced. In this way it is possible to draw conclusions about the

contributions of these different evolutionary processes to the evolution of TFNs. Conclusions are

also drawn on the way rates of evolution vary with the position of gene in the network.

Following this, the contributions of cis mutations, which occur in the promoters of regulated

genes, and trans mutations, which occur in the coding reign of transcription factors, to the evolution

of TFNs are investigated. A space of neutral genotypes is constructed, and the evolution of TFNs

through cis and trans mutations in this space is characterised. The results are then used to account

for large scale rewiring observed in the yeast sex determination network.

Finally the principles governing the evolution of autoregulatory motifs are investigated. It is

shown that negative autoregulation, which functions as a noise reduction mechanism in haploid

TFNs, is not evolvable in diploid TFNs. This is attributed to the effects of dominance in diploid

TFNs. The fate of duplicates of autoregulating genes in haploid networks is also investigated. It

is shown that such duplicates are especially prone to loss of function mutations. This is used to

account for the lack of observed autoregulatory duplicates participating in network motifs.

From this work, it is concluded that the relative rates of different evolutionary processes are
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responsible for shaping the global statistical properties of TFN structure. However, the more

detailed TFN structure, such as network motif distribution, is strongly influenced by the population

genetic details of the system being considered. In addition, extensive neutral evolution is shown to

be possible in TFNs. However, the effects of neutral evolution on network structure are shown to

depend strongly on the structure of the space on neutral genotypes in which the TFN is evolving.
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Chapter 1

Introduction

Transcriptional regulation lies at the heart of many of the most important questions currently

facing Biology. Sets of regulatory interactions between genes can be characterized as transcription

factor networks (TFNs), which determine how those genes are expressed over time to give rise to

complex traits. This means that understanding how TFNs function and evolve is a vital step in

linking genotype to phenotype. Construction of the genotype-phenotype map is, in turn, a key

step in understanding how complex organisms function and evolve.

TFNs can be studied at different levels of detail, from coarse measures of global statistical

properties, such as network degree distribution [35, 47, 83, 116, 119], the function of specific

subnetworks, such as network motifs [2, 57, 68, 79, 88, 87, 110, 146], down to the molecular details

of transcription factor binding [11, 18, 39, 40, 63, 89, 108, 118]. A complete understanding of the

mechanisms of TFN evolution requires us to embrace all of these levels of detail. Some network

properties, such as a broad tailed degree distribution, are common to a wide range of biological

networks, not just TFNs, but also protein interaction networks, metabolic networks and even

social networks. Such universal properties require a general explanation which does not depend

on the details of any one system. Other properties are specific to TFNs, but are independent

of the species being considered. For example an asymmetrical in and out degree distribution

[47, 83, 119], modular network structure [58, 129], and certain network motifs [88, 87, 110] are

all found in organisms as diverse as bacteria, yeast and Drosophila. Properties such as these

require an explanation based on the general mechanisms of TFN evolution, but independent of

the details of any one species’ environment or specific evolutionary history. Yet other properties

are specific to particular species, or even vary from individual to individual within a population.
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For example the patterns of cis regulation involved in Drosophila wing patterning [43, 96, 97] or

yeast sex determination [124, 125] vary even between closely related species. These properties

require species specific explanations. When studying TFNs, an approximate rule of thumb is that

the greater the level of detail used when analysing a network, the more specific the information

obtained is to that particular network.

The research presented here seeks to use several different properties of TFNs to elucidate the

factors that are important in their evolution. It is focused on the role played by different types of

mutation and the role played by population genetic factors in shaping the structure of TFNs. In

this introduction I describe the methods of modelling the function and evolution of TFNs which

will be used to address these questions.

1.1 Modelling TFN Evolution

The function of TFNs can be studied both empirically and theoretically. Empirically, sets of genes

which are coregulated or involved in the same biological process (e.g development, homeostasis,

apoptosis) are identified. From this, subnetworks which perform a particular function can be

constructed. Typically such subnetworks are inferred from a combination of gene expression data

(e.g from microarry experiments), DNA binding data and binding motifs in the promoters of

regulated genes [47, 83, 119]. Additionally, network motifs - subnetworks consisting of a small

number of genes which occur at higher frequency in real biological networks than would be expected

by chance - can be identified. Network motifs are thought to represent the “functional building

blocks” of biological networks [88, 87, 110]. Once a network motif has been identified, it can

be studied for its functional properties (e.g noise filtering, bi-stability, rapid response to external

stimuli), allowing the function of larger subnetworks to be deconstructed.

Theoretically, the functional properties of TFNs can be studied by constructing models of

transcription regulation. These relate the expression of one gene to the expression of another,

given a regulatory interaction exists between them. Such models can be very abstract, for example

models in which TFNs are represented as boolean networks, with genes either in an “on” or an

“off” state [1, 61, 103, 111]. Alternatively they can be very detailed, for example when features

such as the binding energies of regulatory binding sites, nucleosome occupancy or protein-protein

interactions, are explicitly included in the models [108, 118, 125]. The functional properties of such

“toy” networks can often be explored analytically, if the networks considered are simple enough,

or else through computer simulation.
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In order to study the evolution of TFNs, an understanding of TFN function must be com-

bined with an understanding of the process through which evolution occurs. This can be done

by determining the possible mutations which can occur and give rise to changes to the network.

Empirically, these mutations can take four possible forms:

• cis mutations

• trans mutations

• gene duplication

• gene deletion

Mutations at cis are changes to transcription factor binding sites, which lie in the promoter region

of a regulated gene. These mutations may result in the increase or decrease of the binding affinity of

a binding site, which in turn may alter the function of the network. In addition, cis mutations may

result in the complete loss or gain of a regulatory interaction, which as well as potentially changing

the function of the network, also changes its architecture. Mutations at trans are changes to the

transcription factor protein itself. These mutations typically occur in the coding region of the gene

which codes for the transcription factor. A trans mutation may simultaneously affect some or all

of the regulatory interactions in which the transcription factor participates, or give rise to multiple

new interactions which did not exist previously. As such trans mutations can affect the functioning

of a network by altering the strength of several existing regulatory interactions, as well as changing

the network architecture by giving rise to the loss or gain of multiple regulatory interactions.

Gene duplication is the copying of a gene and (potentially) all of its regulatory interactions. Gene

duplication can occur through the independent copying of a single gene, or through sets of genes

being duplicated together. In the most extreme case, a whole genome duplication occurs in which

all of the genes and interactions in the TFN are copied. Duplication results in a change to the

architecture in the network, both by copying a set of regulatory interactions and by increasing

the size of the network. Gene deletion results in the loss of a gene and all of its regulatory

interactions from the network. This may occur through the loss of a single gene, or of sets of genes

simultaneously. Deletion results in a change to the architecture of the network through loss of

multiple regulatory interactions and a decrease in the size of the network.

When considering the evolution of a TFN, we must consider those mutations which arise in an

individual and then become fixed in the population. Therefore both the rate at which mutations

occur and the probability of them becoming fixed in the population must be determined, in order

14
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to understand the role that different types of mutation play in the evolution of TFNs. As well as

their effect on the primary function of the network, a number of other factors determine whether

a particular mutation will become fixed.

One of the most important of these factors is robustness. Robustness to intrinsic noise (due

to the stochastic nature of transcription) or external noise (due to variation in the environment

external to a cell) may be viewed as part of the function of a network - if a network is not sufficiently

robust to these forms of noise it can reasonably be said not to function properly [2, 1, 79, 78, 101].

However, the role played by mutational robustness in the evolution of TFNs is more ambiguous.

It has often been argued [20, 27, 31, 82, 112, 134, 133, 135] that robustness to mutations resulting

in changes to the strength of regulatory interactions, loss or gain of an interaction or loss or

gain of a gene, has played an important role in shaping the structure of TFNs. In addition to

robustness, other population genetic factors may have a strong influence on the evolution of TFNs.

Because TFNs are by their nature strongly interconnected, mutations may affect the functioning

of the network in a complicated way. In particular, mutations which affect multiple regulatory

interactions simultaneously may have strong pleiotropic effects. It is for this reason that it is often

argued that evolution is dominated by cis mutations, as they tend to affect only a single regulatory

interaction [43, 56, 97]. This also suggests that multiple mutations in a TFN will tend not to be

additive in their affect on gene expression, but will interact epistatically. This is particularly

important in sexual populations, in which recombination will tend to bring mutations at different

loci together in the same individual. As a result, it has been suggested that recombinational

robustness may play a significant role in shaping the evolution of TFNs in sexual populations [72].

Finally, the evolution of a TFN may be strongly influenced by whether the organism considered

is haploid or diploid. This results from the tendency of mutations in diploid networks to give

rise to dominance effects. In particular the different dominance effects arising from cis and trans

mutations may influence the extent to which these different types of mutations become fixed in

diploid as opposed to haploid organisms [70].

In addition to determining the mechanisms of evolution, other key questions concerning TFN

evolution are the extent to which network structure is shaped by neutral or adaptive processes

and the extent to which network structure constrains evolutionary change. These three questions

are strongly interconnected. Where networks evolve through an adaptive process, mutations are

fixed which improve the function of at least one of its subnetworks. Where evolution is neutral,

mutations are fixed which leave the global function of the TFN unchanged. Whether different
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types of mutations tend to be deleterious, neutral or adaptive will depend to a large extent on the

population genetic factors outlined above, as well as on the structure of the network. Similarly,

the extent to which network structure constrains evolutionary change is determined by the extent

to which networks of a particular structure are robust to different types of mutation. In order to

address these questions, it is common to construct “toy” models of transcription networks which

can be subjected to in silico evolution [3, 12, 20, 30, 54, 61, 75, 74, 80, 112, 113, 131]. This has

the advantage that populations of networks can be created, and the properties of these networks

studied in order to determine general principles about the evolution of TFNs. These properties

can then be compared to those observed in real networks, allowing predictions to be made about

the principles governing TFN evolution.

1.2 Models of Transcription Regulation

In order to construct a model of a TFN it is necessary to understand the mechanism through which

transcription regulation occurs. A TFN consists of nodes (genes) and edges (regulatory interactions

between genes), and provides a description of how the expression levels of different genes affect one

another. Depending on the level of detail included in a model of transcription regulation, a TFN

can be used to address different questions about the evolution of regulatory interactions. Models

which include little detail (for example boolean networks) are less computationally expensive to

model in silico and may be easier to deal with analytically, than models which include a high level of

detail. They are often used to construct large TFNs consisting of tens or hundreds of genes, which

can be subjected to in silico evolution in order to address questions concerning the architectural

properties of TFNs, such as the relationship between network structure and mutational robustness

[12, 61, 112, 113, 131]. In contrast, models that include a high level of detail can be used to explore

the properties of small networks (consisting of only a few genes), which are of special interest, such

as the noise filtering properties of negative autoregulation or feed forward loop (FFL) motifs [2, 77].

These approaches are often complementary. In this section I discuss four of the most commonly

used models of transcription regulation, and how they relate to one another. In addition, I discuss

the physical mechanism of transcription regulation which these models attempt to capture.
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1.2.1 Transcription Regulation

The basic mechanism of transcription regulation is the binding of transcription factors (TFs) to

the promoter region of a regulated gene. TF binding occurs at specific binding sites within the

promoter region of the regulated gene. Regulatory binding sites consist of a nucleotide sequence

(a binding motif), usually with a length of between 6 and 12 bp [76, 150]. These are identified

using a combination of DNA binding data and expression data, which allow a consensus sequence

for the binding motif to be determined. A consensus sequence can then be used to search for

other potential targets of a TF, which in turn allows the set of all regulatory targets of that TF

- its regulon - to be identified. Pairs of TFs which regulate the same target may interact, giving

rise to a more complicated regulatory process. In particular, different types of TF may compete

for the same binding site, (competitive binding). Alternatively, one TF may aid the binding of a

second TF to a target through a protein-protein interaction (cooperative binding), or by making

its binding site available by ejecting a nucleosome which covers it [67, 125]. TFs may also bind

non-specifically to regions of DNA, which can affect the ability of other TFs to bind to their specific

binding sites [40, 18].

In eukaryotes the ability of a TF to bind to a specific binding site is limited by the chromatin

structure at the region of the DNA in which the binding site lies [94, 100, 101]. When regulatory

binding sites are not occupied by a nucleosome, TFs are able to bind to them. However, when

binding sites are occupied by a nucleosome, TFs are unable to bind [48]. The changes in chromatin

structure which result in binding sites moving in and out of a state in which they are occupied by

a nucleosome is thought to be responsible for the bursting dynamics observed in the expression of

eukaryotic genes [101]. In order for transcription of a gene to occur, the correct chromatin struc-

ture at the transcription start site and the presence of a preinitiation complex (PIC) are required

[28]. Here I discuss the changes in chromatin structure which occur in the yeast Saccharomyces

cerevisiae, as this is the eukaryote for which a TFN has be most widely studied, and the organism

to which the results in later chapters will be compared. In S. cerevisiae it is found that, in general,

chromatin change is causally preceded by TF binding [94]. Bound TFs recruit histone acetyl trans-

ferases if they activate transcription, or deacetylases if they repress transcription [48, 94]. This

recruitment alters nucleosome acetylation, which alters nucleosome occupancy at a particular re-

gion of the promoter [48, 94]. Nucleosomes containing a variant histone H2A.Z, flank a nucleosome

depleted region just upsteram of the transcription start site [48, 99]. In order to allow transcrip-

tion initiation, H2A.Z nucleosomes are acetylated and ejected, making the transcription start site
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Figure 1.1: Mechanism of transcription regulation. For convenience, a gene whose protein product
activates its own transcription is shown. a) Transcription occurs in the nucleus (grey region).
When a TF is bound, transcription occurs and mRNA s produced. This is then transported out
of the nucleus into the cell (white region). mRNA is then translated into protein at the ribosome.
Protein is then transported back into the nucleus. b) When no TF is bound, a nucleosome occupies
the transcription start site, and no transcription occurs. However, any mRNA remaining in the
cell continues to be translated into protein, resulting in a time lag between transcription stopping
and protein concentration decreasing.
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accessible. Repression occurs when deacetylated nucleosomes return to the transcription start site,

preventing further transcription [60]. Bound TFs can either preclude or allow transcription initi-

ation by causing the transcription start site of the regulated gene to be bound or unbound by a

nucleosome. Alternatively, bound TFs may change the nucleosome occupancy at other regulatory

sites, in turn allowing other TFs to bind to those sites [67].

In addition to histone acetylation, it is necessary for a complete PIC to assemple at the tran-

scription start site. The PIC consists of general TFs and accessory complexes [28]. Assembly

of a PIC takes a long time (20-30 mins [143]) compared to the time required for ejection of the

nucleosome from the transcription start site (approximately 5 mins [15]). However, a partially

formed PIC may remain bound to the promoter following previous transcription events, speeding

up formation of a new PIC in subsequent rounds of transcription [28, 144, 145]. In this case,

reinitiation of transcription occurs as quickly as 3-5 mins [144, 145]. As a result the promoter may

occupy a number of states - that in which transcription cannot occur, that in which transcription

can occur but is slow to begin, or than in which transcription begins quickly [108].

Following transcription, mRNA is synthesised, which is translated at the ribosome into protein.

Where the translated protein is a TF, it in turn will then bind to its target genes to regulate their

transcription. The process of DNA binding, transcription and translation is illustrated in figure.

1.1. Although this qualitatively describes the process of transcription regulation as it occurs in S.

cerevisiae, it is often convenient to model transcription regulation more simply when studying the

evolution of TFNs in silico. In the following sections I describe four types of model which capture

this process of transcription regulation at different levels of detail.

1.2.2 Boolean Network Models

One of the simplest ways of representing a TFN is as a boolean network [1, 61, 103, 111]. In a

boolean network model, genes can only occupy one of two states - either “on” or “off”. Therefore

genes are thought of as either expressed at their maximum level or else they are not expressed at

all. The state of a boolean network consisting of N genes, at a time t, is given be the state vector

S(t) := (s1(t), s2(t).....sN (t)), representing the expression levels of each gene in the network. Time

in boolean networks is taken to be discrete. Therefore the time evolution of a gene, i, may be

written as

si(t + 1) = f




N�

j=1

wijsj(t)− θi



 (1.1)
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where f(x) is a threshold function such that f(x) = 1 if x > 0 and f(x) = 0 otherwise. The

term
�N

j=1 wijsj(t) − θi determines the input to gene i from all other genes in the network. wij

is the strength of the input from gene j to gene i. If wij = 0 there is no regulation of i by j.

If wij > 0, j activates i, whilst if wij < 0, j represses i. The matrix W of elements wij is the

connectivity matrix for the network and defines the network structure. The term θi defines the

activation threshold of gene i, so that when
�N

j=1 wijsj(t) > θi, gene i is “on”.

The evolution of boolean networks can be studied in silico, with mutations occurring which

change the strength of the interactions wij , and selection occurring either on the final equilibrium

state S(t → ∞) of the network, or else on the time evolution of the state of the network. The

second case can be used to model a developmental process (e.g [112]).

A simple generalisation of the model in equation (1.1) can be made by replacing the threshold

function f(x) with the sigma function σ(x), where

σ(x) =
1

1 + exp [−hx]
(1.2)

In this case genes are no longer either “on” or “off”, but have an expression level which may vary

continuously between 0 and 1. Here h defines how steep the threshold of the sigma function is,

so that in the limit h → ∞ the sigma function becomes the threshold function f(x). Models of

this type have been widely used to construct “toy” models of TFNs. They allow the dynamical

properties of ensembles of networks with different structural properties to be investigated [61],

as well as the evolution of properties such as mutational robustness [131], genetic canalization

[112] and epistasis [3, 74] in TFNs. They have also been employed to investigate the evolution

of real networks with a known function, such as the Drosphila sex determination network [75].

Such models are simple to construct and to simulate, and are therefore of use in the in silico

study of TFN evolution. However, they lack some important features of transcription regulation

as observed in real systems. In particular they do not model mRNA concentration, stochasticity in

gene expression or time delays associated with transcription and translation, which are important

factors in transcription regulation. For this reason it is sometimes difficult to draw clear conclusions

about the evolution of real TFNs from in silico studies of boolean networks and their derivatives.
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1.2.3 ODE Models

In order to capture the process of transcription regulation in more detail, many studies construct

a system of ordinary differential equations (ODEs). ODE models describe the time evolution of

gene expression,which is often referred to as protein concentration in this context. Perhaps the

simplest ODE model describes the rate of production of protein i, dPi
dt as

dPi(t)
dt

= βif




N�

j=1

wijPj(t)− θi



− γiPi(t) (1.3)

where f(x) is a threshold function and
�N

j=1 wijPj(t)− θi is the input to gene i from all the other

N genes in the network, just as described for boolean networks above [1]. The term βi is the

maximum rate of production and γi the rate of degradation of protein i. There is a clear analogy

between the ODE model in equation (1.3) and the discrete time model in equation (1.1), since

at equilibrium equation (1.3) either has solution Pi = βi

γi
(i.e. it is maximally expressed), or else

Pi = 0 (i.e. it is not expressed at all). However, this model can be used to investigate properties

such as the time taken for a gene whose expression is perturbed to return to equilibrium. This

may be important if genes are faced with a noisy external environment, or noise in the expression

of other genes in the network [1]. For example, this model has been used to show that negative

autoregulation functions as a noise filter, allowing genes to return quickly to their equilibrium

expression once they are perturbed. This in turn has been used to explain the abundance of

negatively autoregulating genes found in the Escherichia coli TFN [11, 106]. This model has also

been used to show that feed forward loop (FFL) motifs, which are found at high frequency in the

TFNs of both E. coli and S. cerevisiae [88, 87, 110] can be used to distinguish random fluctuations

in the external environment from persistent environmental signals, and therefore also act as a form

of noise filter [79, 78]. Just as in the case of boolean networks, the threshold function f(x) can

be replaced with a sigma function σ(x) in order to allow a greater range of equilibrium expression

levels.

A more complex system of ODEs can also be used so that mRNA concentration is explicitly

modelled. An example of such a system is given by
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dmi(t)
dt

= β
m
i f

�
N�

i=1

wijPj(t)− θi

�
− γ

m
i mi(t)

dPi(t)
dt

= β
P
i mi(t)− γ

P
i Pi(t) (1.4)

where βm
i is the maximum rate of production and γm

i is the rate of degradation of mRNA i, βP
i is

the rate of synthesis of protein from mRNA and γP
i is the rate of degradation of protein i. Models

of this type, which capture the time evolution of both mRNA and protein concentration, have

been used to study the properties of networks with complex dynamics, such as noise resistance in

genetic oscillators [128]. As in the two previous cases, the threshold function f(x) can be replaced

with other functions, such as the sigma function σ(x). equation (1.4) can be further modified to

include time delays resulting from the time taken for mRNA transcription and translation of mRNA

into protein. ODE models allow the dynamics of gene expression in TFNs to be studied in more

detail than in boolean network models, as they capture the time evolution of these networks more

accurately. However, modelling large TFNs using systems of ODEs can often be computationally

expensive. In addition, modelling the evolution of TFNs using ODEs may be difficult, since there

are a greater number of parameters (e.g rates of mRNA and protein production and degradation)

which may undergo mutation. The rates at which such mutations occur is not always known from

empirical studies, and the large parameter space associated with these models often makes an

exhaustive exploration of the dynamics of networks modelled in this way unfeasible.

1.2.4 Stochastic Models

Although ODE models are able to capture the time evolution of mean gene expression, they do not

capture the stochasticity in gene expression observed in both prokaryotes and eukaryotes. Selection

to reduce intrinsic noise in gene expression has been shown to be important in determining the

clustering of genes on chromosomes [10], as well as favouring certain network structures such as

negative autoregulation [11, 106, 118]. In this section I focus on models which represent transcrip-

tion regulation as a Markov process. Stochastic models allow the mean and variance in protein

number to be calculated explicitly for simple networks, and provide a framework for constructing

in silico models of larger networks, from which these properties can be measured. In this section

I refer to the number, r, of mRNA molecules and number, p, of protein molecules present in the
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system at time t (as opposed to the expression level or protein and mRNA concentration, as in the

previous sections). The scheme for one of the simplest such models of gene regulation is described

below. It is described by the probability distribution nr,p(t) that the system is in a state {r, p} at

time t. A single, unregulated gene evolves according to Scheme 1:

nr,p
βr−−−→ nr+1,p

nr,p
rβP−−−→ nr,p+1

nr,p
rγr−−→ nr−1,p

nr,p
pγP−−−→ nr,p−1

Scheme 1

where βr is the probability per unit time at which mRNA molecules are transcribed from DNA,

γr is the rate of mRNA degradation, βp is the rate at which mRNA is translated into protein and

γp is the rate of protein degradation. This scheme can be generalised to a TFN consisting of N

genes, indexed by i, with the state of the network given by {ri, pi} and the rate constants given by

βri , βpi , γri and γpi [118]. The simplest way to do this is to assume that regulatory interactions

in the TFN function such that the rate of production of mRNA at the ith gene depends linearly

on the number of proteins of the jth gene present [118], such that

βri = β
0
ri

+
N�

j=1

wijpj (1.5)

where β0
ri

defines the basic rate of transcription of gene i when no TFs are bound to its promoter,

and wij defines the strength of regulation of gene i by gene j. The first and second moments for the

steady state solution of this system can be calculated from simple linear equations, allowing the

mean and variance of mRNA and protein concentrations to be calculated directly [118]. This in

turn allows the noise in the number of proteins to be calculated for different network architectures.

The assumption that gene regulation effects the rate of mRNA transcription in a linear manner

is not realistic in general. However, if the system reaches a static equilibrium, the case in which

gene regulation effects the rate of mRNA transcription non-linearly can be dealt with. In this

case, at equilibrium, the non-linear function can be well approximated by its lineraization about
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the mean protein concentration [118]. Therefore the linear model described above can still be used

to calculate the mean and variance in protein concentration for such networks. In cases where

the system does not reach a static equilibrium, Scheme 1, and its generalisation to TFNs of many

interacting genes, can be used as a framework for simulations of TFNs in which gene regulation is

non-linear in the number of proteins present.

The stochastic model presented here considers promoters with only a single state - i.e. it does

not consider changes in chromatin structure which lead to changes in the rate of transcription.

However it is possible to construct a more general model along the same lines in which the promoter

undergoes transitions between an arbitrary number of chromatin states [108]. Once again, the mean

and variance in protein number can be calculated for this model, allowing the effects of changes in

chromatin structure on gene expression to be explored theoretically.

1.2.5 Statistical Physics Models

The three models above describe the expression levels of genes in terms of the concentration of the

TFs which regulate them. They all assume that gene expression follows a threshold function in

the concentration of the regulating TFs. However, if we wish to construct models for the evolution

of TF binding sites, we must understand how the probability of TF binding changes with the

binding site sequence. That is, we must determine how the threshold function which is used to

describe transcription regulation changes under cis mutations at the regulated gene. All TFs have

a probability of binding non-specifically to a region of DNA. However, specific TF binding occurs

at cis regulatory binding sites, typically of length between 6 and 12 bp, but with an information

content equivalent to approximately 6bp (due to some sites being degenerate, such that different

nucleotides at the same site give rise to the same binding strength at the binding site), recognised

as an optimal binding sequence [150]. The binding affinity of a single species of TF at a target gene

with a single specific binding site can be determined using a model derived from statistical physics

[40, 18]. In this case the probability that a TF is bound to a binding site is q(µ) where µ is the

chemical potential of TFs in the cytoplasm [40]. q(µ) is given by the equilibrium thermodynamic

expression

q(µ) =
1

1 + exp
�

E−µ
kBT

� (1.6)

where E is the binding affinity of a TF to the binding site, T is temperature and kB is Boltzmann’s
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constant. The binding affinity of a TF to the binding site can be calculated from the number of

mismatches between the binding motif and the optimal binding sequence [40]. In the simplest case,

it is assumed that each mismatched nucleotide contributes an amount kBT�, whilst each correctly

matched nucleotide contributes 0 to the binding energy. Therefore we can write E = kBT�r

where r is the number of mismatches between the real and the optimal binding sequences. The

chemical potential µ is found to depend on the number of TFs, NTF , in the cell according to

µ = kBT�0 + kBT ln[NTF ], where kBT�0 is the binding free energy of a single TF to nonspecific

binding sites (i.e to the rest of the genome). This allows us to write

q(NTF ) =
NTF

NTF + exp[�r − �0]
(1.7)

which is a Michaelis-Menten function, and is frequently used to describe the dynamics of gene

activation functions [18]. As the binding site moves closer to the optimal binding sequence (as r

decreases), the probability of a TF being bound increases. For a fixed number of TFs in a cell,

the probability of a TF being bound is a sigma function in the number of mismatches r. We may

view the binding site as undergoing a transition from a non-specific to a specific binding site when

the number of mismatches reaches the threshold r = �0
� . The case considered here is for a TF

regulating a single gene. In the case of global regulators, with many binding sites throughout the

genome, the number of TFs, NTF , available to bind to a specific binding site must be appropriately

adjusted by the number of possible binding sites [18].

Interactions between TFs, either cooperative or antagonistic, alter the probability of a TF being

bound to a promoter. As described above, models of gene regulation frequently use gene activation

functions with sharp thresholds. However, the function described in equation (1.8) does not give

rise to the type of “on-off” behaviour these models assume. It is possible to produce an activation

function with a sharp threshold if, firstly, multiple TFs must be bound to the promoter to activate

transcription, and secondly, if those TFs interact cooperatively when binding [18]. For example, if

h TFs of the same species must be bound to h binding sites in order to activate transcription, and

those TFs interact cooperatively, then the probability that transcription is activated is given by

q(NTF ) =
Nh

TF

Nh
TF + Kh

(1.8)

25



CHAPTER 1. INTRODUCTION

which is a Hill function with coefficient h, where K determines the threshold of activation [18] and

depends on binding site strength. Whilst many other activation functions are possible, depending

on the degree of cooperatively between TFs and the number of possible binding sites in a promoter

[18], equations (1.8) and (1.9) illustrate the general point that increasing the strength of a binding

site changes the threshold of activation, whilst changing the number of binding sites alters the

steepness of the threshold function.

The model presented here relates changes to single nucleotides in regulatory binding sites to

changes in the probability of TF binding, and therefore to changes in the expression of the regulated

gene. As such, it illustrates the possibility of modeling transcription networks at an extremely high

level of detail. However, such models require a great deal of computational power when applied to

large TFNs, in addition to consisting of a very large number of parameters. The models described

in this and the preceding sections, capture the dynamics of gene regulation at different levels of

detail. The conclusions that can be drawn about gene regulation at one level of detail can be used

to inform the assumptions made when constructing less detailed models. In this way, a trade-off

between the biological accuracy of a model and its tractability to theoretical or computational

exploration can be achieved. In the following section, I describe some of the questions that such

models of transcription regulation can be used to address.

1.3 TFN Architecture

The architectural properties of TFNs are of interest for a number of reasons. Firstly, examples of

complex networks other than TFNs abound throughout nature. These include protein interaction,

metabolic, ecological and social networks. Given the diverse nature of the systems in which these

networks are found, it is striking that they nonetheless share certain global statistical properties.

In particular such networks tend to be “small world”, with a short distance between any two

nodes, and highly clustered connections. They also tend to be “scale free” with a few nodes having

many connections, and most nodes having only a few connections [8]. These global properties

are found in a wide range of systems, which are constructed through different processes. For this

reason it has been suggested that these global properties reflect something more general about the

architecture of networks in nature. For example, it has been suggested that the scale free degree

distribution of networks gives rise to robustness to removal of nodes from the network [7, 8, 55].

Such robustness, the argument goes, is necessary for the continued functioning of all networks in

a noisy environment, and therefore is a general property of biological networks regardless of their
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specific function.

The second way in which the architecture of TFNs is of interest is through the way they are

clustered. TFNs are modular in structure and can be separated into units that function almost

independently [53, 58, 102]. Families of TFs with related function can be identified experimentally.

In addition modules can be identified from network structure, by identifying how interactions are

clustered (e.g [104]). The correspondence between functional and structural modules provides a

framework in which to study TFN evolution. A modular structure is a feature common to most

biological networks, however the function of particular modules varies, both between different

types of networks and between the TFNs of different species. The third way of studying the

properties of TFN architecture is by identifying network motifs. Network motifs are recurring

patterns of interconnections between small numbers of genes, and have been suggested as the

functional building blocks of biological networks [88, 87]. The patterns of motifs observed varies

between the type of biological network studied. However, motif patterns are conserved between

some highly diverged species, for example between the yeast and E. coli TFNs. The functional

properties of network motifs can be studied in isolation, and then used to deconstruct the function

of larger modules. In the following sections I describe the architectural properties of the yeast

TFN, which will be used as the basis for the study of TFN evolution in the following chapters.

1.3.1 Degree Distribution

Abstractly a TFN is a directed graph, consisting of genes with incoming edges, outgoing edges, or

both. Where a gene has outgoing edges, it regulates the expression of other genes, and is therefore

designated as a TF. Where a gene has only incoming edges, it does not regulate the expression

of other genes, and is therefore designated a target gene. The out degree distribution of a TFN,

nout(k), describes the probability that a TF has k outgoing edges. For both the yeast and E. coli

TFN, the out degree distribution follows a broad tailed distribution that is best described by a

power-law for large k:

nout(k) ∝ k
−γ (1.9)

A broad-tailed distribution indicates that there are a small number of hub TFs that regulate a large

number of genes [8]. Interpretation of power-law degree distributions, and the small world structure

they confer, has been the focus of a great deal of attention [7, 8, 13, 19, 92, 93, 132]. In particular, it
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Figure 1.2: Yeast transcription network. Around the edges of the network hub TFs can be seen, in
which many targets are co-regulted by a single TF. Data for regulatory interactions is taken from
[88].
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has been suggested that a power-law distribution may deliver an evolutionary advantage through

increased mutational robustness and evolvability [8]. This mutational robustness is said to be

conferred through the robustness of networks to the deletion of genes. Evolvability is conferred

through the existence of hub TFs, which can simultaneously effect the expression of many genes.

In contrast to the broad tailed out-degree distribution, the in-degree distribution, nin(k), ob-

served in TFNs is much narrower than a power-law, and has no broad tail. It is best described by

an exponential distribution:

nin(k) ∝ exp[−αk] (1.10)

The exponential in-degree distribution reflects the fact that only a few transcription factors com-

binatorially regulate any one gene. There exist no hub target genes (figure 1.2). For example,

in the yeast transcription network, 93 per cent of genes are regulated by less than five transcrip-

tion factors [47]. Asymmetrical in- and out-degree distributions are a striking global architectural

property of TFNs, and are not observed in other biological networks. It is therefore interesting to

consider how the evolutionary process through which TFNs are constructed differs from that of

other biological networks. Broad tailed degree distributions in networks are commonly attributed

to a process of preferential attachment, in which nodes gain new edges at a rate proportional

to the number of edges they already have. Exponential distributions are commonly contributed

to random attachment of edges, independent of the degree of a node. The presence of a narrow

in-degree distribution in TFNs suggests that the evolutionary processes which effect incoming and

outgoing edges are different. We can therefore seek to use the degree distribution of TFNs to gain

insight into the different ways that cis regulatory binding sites and TF function evolve [116].

1.3.2 Modularity

The modular structure of TFNs can be determined empirically either by grouping TFs by function,

e.g by their involvement in the same process, such as sex determination, apoptosis or nutrient

homeostasis [53]. Alternatively TFs can be clustered according to their position in the network,

e.g by identifying TFs which regulate similar sets of targets. Modules identified in these different

ways tend to have a high degree of overlap, demonstrating that modularity in network structure

reflects functional modularity [53, 58, 102, 104]. Identification of modules based on involvement

of TFs in the same cellular function, reveal between 50 and 100 distinct regulatory modules in
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Figure 1.3: Illustration of a nested hierarchy of modules. Each black circle contains a module
of TFs involved in related functions. Modules are coloured according to their position in the
hierarchy. Modules can regulate other modules at the same position or lower than them in the
hierarchy. The red module is at the top, blue modules in the middle and green modules at the
bottom of the hierarchy.
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the yeast TFN. In order to determine modules from network structure, measures such as the

clustering coefficient, which measures the tendency of genes to form “cliques”, are used [90]. The

clustering coefficient measures the tendency of pairs of genes which both interact with a third gene

to interact with each other. Measurements of the clustering coefficient in the yeast TFN are 5 times

higher than would be expected from a random network, suggesting a high degree of modularity

[47]. However, algorithms which separate TFNs into modules based on their structure reveal few

modules which are entirely separate from the rest of the network. Rather, networks are structured

as a nested hierarchy of modules, resulting in a highly interconnected network [8, 23]. The picture

of the yeast TFN which emerges is of a large number of modules with a high degree of overlap

between modules involved in different functions (figure 1.3) [23].

The conditions under which networks with a modular structure will evolve can also be inves-

tigated. For example, networks which are asked to perform two distinct signal processing tasks

will evolve a non-modular, interconnected structure if the tasks remain fixed throughout evolution.

However, if the signal processing task required of the network varies between generations, networks

will evolve a modular structure [58]. As such, modularity in TFNs can be seen as reflecting a re-

sponse to changing environments, as well as reflecting the different functions which sets of genes

are involved in.

1.3.3 Network Motifs

Modules themselves can be further deconstructed into functional subunits which perform dis-

tinct signal processing tasks. These functional subunits, termed network motifs, are identified by

searching for subnetworks consisting of a small number of interconnected genes, which are over

represented in real networks, compared to what would be expected from a random network [88, 87].

The smallest network motif, identified in the E.coli TFN, is the negative feedback loop. In this

network 42 out of 115 (37%) TFs are found to negatively autoregulate [110]. Negative autoregu-

lation is thought to provide both a reduction in intrinsic noise, as well as allowing rapid response

to external perturbation [1, 11, 106]. Larger network motifs have also been identified. If autoreg-

ulatory interactions are ignored, there are 13 possible interconnected subnetworks consisting of

3 genes (figure 1.4). In both yeast and E. coli, only one of these, the feed-foward loop (FFL -

figure 1.4, number 5), is over represented. The functional properties of FFLs have been extensively

investigated [1, 41, 77, 79, 78, 137].

A combination of modelling, simulation and experimental investigations [79, 78, 137] reveal
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1! 2! 3! 4!

5! 6! 7! 8!

9! 10! 11! 12!

13!

Figure 1.4: Three node motifs. Only the feed forward loop (number 5) is over represented in the
TFNs of yeast and E. coli, suggesting it has functional importance
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that FFLs may perform a number of functions, depending on the combination of activating and re-

pressing regulatory interactions that make them up. Most significantly, certain kinds of FFL which

occur commonly in observed TFNs have been shown to act as a filter for transient environmental

signals. FFLs are found to be robust to brief changes , but to respond well to sustained changes in

environmental signals. Similarly, larger motifs have been identified, and found to display a range

of expression dynamics (e.g the four node bi-fan motif [88, 87, 139]). The evolution of network

motifs is of interest, since there are several possible ways of explaining their over representation

in observed TFNs. Firstly, they may recur because they represent optimal solutions to signal

processing problems. Secondly, they may recur because they are easily evolvable from available

network mutations. In particular the possibility that observed network motifs are particularly easy

to evolve through gene duplication has been investigated. However, analysis of the genes involved

in motifs shows that duplicate genes are no more likely to occur as part of a motif than would be

expected due to chance. Finally, network motifs may be explained as a by-product of the muta-

tional process. In this case, motifs do not arise because they perform any particular function, but

arise as a product of neutral evolution or mutational robustness [22, 72]. For example, it has been

shown that FFL motifs can arise at high frequency as a result of recombination [72].

In order to address the questions which arise concerning TFN architecture, an understanding

of the mutational process through which TFNs evolve is necessary. In the next section I discuss

the types of mutations that arise in TFNs, and the roles they play in shaping TFN architecture.

1.4 Mechanisms of TFN Evolution

There are four types of mutation which give rise to changes in the structure of TFNs. These are

mutations at regulatory binding sites in the promoter regions of regulated genes (cis mutation),

mutations which affect the function of a TF at the gene which codes for it (trans mutation), du-

plication and deletion of genes (either TFs or TGs). Each type of mutation alters the structure

of the TFN in a different way. It is not sufficient to study only the rates at which different types

of mutation occur to understand the role of these different mutations in the evolution of TFNs.

Rather, it is the mutations which arise in a population and then become fixed which determine

the course of TFN evolution. The relevance of this is most clearly illustrated by gene duplications

which become fixed in a TFN. A duplicate gene will initially result in all the regulatory interac-

tions of that gene (both incoming and outgoing edges) being copied. However, many duplicates

will initially be redundant and rapidly fix new mutations. This in turn will result in many dupli-
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cates becoming pseudogenes which are subsequently lost from the population. Duplicates which

result in pseudogenes do not contribute to the evolution of TFN architecture, even if they occur

frequently. Where duplicates remain in the population, they will often undergo neofunctionaliza-

tion. Neofunctionalization is, in turn, often associated with changes to the regulatory interactions

participated in by the gene following duplication. Therefore duplicates may not become fixed in

a population along with copies of all the interactions of their parent, but undergo gain of new

interactions and loss of existing interactions. Less drastically, cis mutations may frequently occur

which result in the loss of a regulatory binding site. However, these may be compensated for by

protein-protein interactions between TFs which result in cooperative binding to targets [125, 126].

Therefore, although cis mutations may be occurring frequently, they may not be changing the

architecture of the network. This illustrates that measurements of sequence evolution at cis and

trans or rates of duplication and deletion, do not provide an accurate picture of the contribution of

these precesses to the evolution of TFN structure. In this section I discuss the types of mutations

which are seen to arise and become fixed in the evolution of yeast TFNs.

1.4.1 Evolution of Regulatory Binding Sites

The evolution of regulatory binding sites occurs through mutations which alter the binding strength

of a cis regulatory site for the transcription factor(s) which bind to it. A point mutation at a binding

site which brings the site closer to or further from the optimal binding sequence will either increase

or decrease its binding strength. As described above, the binding strength of a single site follows a

sigma function in the number of mismatches between the real site and the optimal site (equation

(1.8)). As such, a single point mutation can result in a site going from specific to non-specific or

vice versa [40, 89]. In addition, insertions or deletions in the promoter region of a gene may result

in a binding site being lost or gained. In both cases, it is reasonable to model regulatory binding

sites being lost or gained through a single mutation. Turnover, in which loss of a binding site for

one TF is compensated for by gain of a binding site for another TF, may also occur. In order to

understand how regulatory binding sites evolve, it is necessary to asses the evolutionary constraint

they are under, and the rate at which they are lost, gained or undergo turnover.

It is also possible to ask how the rate of evolution of regulatory binding sites varies from gene to

gene. For example, neofunctionalization of duplicate genes suggests that they will undergo a faster

rate of cis evolution than other genes. More generally, the rate of regulatory evolution at a gene

may depend on its position in the network, for example genes with more regulatory interactions
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may undergo a different rate of cis evolution than those with only a few interactions. In general,

the rate of cis evolution may vary with in degree, out degree, or both.

Studies of the S. cerevisiae genome suggest that only 2− 3% of the combined promoter regions

of genes is covered by TF binding sites under strong selection, whilst as much as 30% is covered

by binding sites under weak selection [98]. Comparison of S. cerevisiae with two closely related

yeast species, S. paradoxus and S. mikatae, reveals that, of approximately 20000 identified TF

binding sites, 80% are conserved in all three species, 5% are semi-conserved, whilst the remaining

15% are lost in at least one species. In addition, approximately half of the observed loss events

are the result of turnover [29]. Thus regulatory binding sites under strong selection cover only a

small fraction of yeast promoter regions, but there is significant change to these binding sites even

between closely related species, with turnover accounting for many of the observed changes.

The question of variation in the rate of cis evolution between genes has also been addressed

in yeast [121, 45]. Following gene duplication the expression of a pair of duplicate genes diverges

at a rate approximately 10 times the rate of divergence between ancient duplicate pairs [45]. This

suggests an accelerated rate of cis evolution following a duplication event, and an increased number

of evolutionary events changing regulatory interactions at duplicate pairs is indeed observed [45].

The question of variation in the rate of cis evolution with the position of a gene in the TFN is

harder to address empirically. However, if turnover is common it is likely that genes with more

interactions will gain new interactions and lose existing interactions at a faster rate than genes

with fewer interactions [116].

The resulting picture of cis evolution which emerges is one in which regulatory binding sites

are gained and lost frequently. The rate of cis evolution is seen to depend on the evolutionary

history of a gene, particularly on whether it has undergone a recent duplication. In addition it is

likely that the rate of cis evolution varies with the position of a gene in the network.

1.4.2 Evolution of TF Function

The relative contributions of changes to regulatory binding sites and changes to TF function in the

evolution of TFNs has been the subject of growing debate [16, 43, 70, 73, 97, 96, 115, 126, 125, 136,

142]. It has been argued that, since changes to a TF will affect multiple regulatory interactions

and therefore the expression of multiple genes simultaneously, they will tend to have pleiotropic

effects. In contrast, changes to regulatory binding sites will affect only the expression of one or a

few genes, and therefore will tend to minimize pleiotropic effects [73]. As a result, cis regulatory
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changes are seen as less likely to be deleterious than changes to TF function (trans mutations).

This leads to the expectation that the majority of regulatory evolution is through changes at cis.

This view has been challenged both on an empirical and a theoretical basis [73, 126, 125]. TFs

function through protein-DNA and protein-protein interactions. These interactions are usually

thought to be mediated by domain-domain contacts and the secondary structure motifs of the

protein [73]. However, there is growing evidence that many protein-protein interactions are in fact

mediated by short linear motifs (SLiMs), which consist of 3-10 amino acids, with an information

content equivalent to only 2 or 3 amino acids (due to different amino acids at some sites giving

rise to a functional SLiM) [73]. SLiMs also tend to lie in regions of the protein free from structural

constraints, which allows them to evolve independently of the rest of the protein. Protein-protein

interactions mediated by SLiMs allow the possibility of evolving each interaction independently,

thus greatly reducing the negative pleiotropic effects associated with changes to domain architec-

ture. This view is supported by patterns of conservation in TFs across eukaryotes, where it is

found that, whilst domain architecture is strongly conserved, SLiMs are poorly conserved between

lineages.

Figure 1.5: Interaction between cis and trans mutations. A black line connecting two TFs (green
and white semicircles) indicates a protein protein interaction between them. Black arrows between
genes indicate possible mutations. When a protein-protein interaction is present, cooperative
binding can compensate for loss of a TF binding site. A trans mutation leading to the gain of
a protein-protein interaction can allow a target gene to move between different patterns of cis
regulation. Thus cis and trans mutations can be seen to interact with one another to produce the
same pattern of regulation in different ways.

The view that TFs evolve primarily through changes to protein-protein interactions has in-

teresting consequences. In particular it suggests that mutations at cis and at trans will tend to

interact strongly. This is because if a TF requires a protein-protein interaction to bind to a target,

changes to the binding site of one TF will affect the ability of the other to regulate the target.

Similarly, gain of a protein-protein interaction resulting in cooperative binding between two TFs

may relax the evolutionary constraint on their associated binding sites (figure 1.5). The resulting
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interplay of cis and trans mutations can give rise to complex dynamics in the evolution of TFN

architecture.

1.4.3 Gene Duplication

In addition to cis and trans mutations, gene duplication also plays an important role in the

evolution of TFNs. Most significantly, gene duplication provides new genetic material on which

natural selection can act. A duplicate provides a new gene which can be adapted to new functions,

where the original copy of the gene may be constrained by its existing function. This process is

known as neofunctionalization. In addition, duplicate genes may take on some of the functions

of the parent gene. In this case, the functions of the original gene are split between a duplicate

pair, which may allow further optimization of those functions, which was not possible with only

one copy of the gene. This process is known as subfunctionalization. Both of these processes have

been found to be important in the evolution of TFNs [120]. More generally, all gene families which

make up the TFNs of existing organisms are thought to have expanded through duplication events

[34, 62, 66]. As such, gene duplication plays a central role in the evolution of TFNs.

Gene duplication can occur in a number of forms. Most common are tandem duplications,

in which some or all of a gene (its promoter and coding region) are duplicated along side the

original gene. In such cases, the duplicate gene will tend to be under the same regulation as its

parent. As a result, the effect on network structure is that each of the regulatory interactions of the

parent gene will initially be copied. However, as described above, the expression of duplicate genes

diverges rapidly as they undergo neo- or subfunctionalization, or become pseudo genes and are lost

from the genome. Duplications can occur on a larger scale, with sets of genes being duplicated

together. The largest possible duplication event is a whole genome duplication (WGD). WGD

events have occured a number of times during the evolution of eukaryotes [34, 66]. A recent WGD

in the evolution of S. cerevisiae has allowed the structure of TFNs before and after the event to

be investigated. A number of studies [17, 26, 46, 120] have indicated that the fate of duplicates

resulting from a WGD may be different from those resulting from small scale duplication events.

In particular, it was found that duplicates resulting from the yeast WGD tended to undergo

greater expression divergence than duplicates arising from small scale events [120]. This in turn

suggests that regulatory divergence (i.e cis evolution) plays a more significant role in the fate of

duplicates resulting from large scale events than those resulting from small scale events. A further

hypothesis is that expression divergence between duplicate pairs indicates neofunctionalization
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whilst conserved expression indicates subfunctionalization [120].

From the point of view of the evolution of network structure, gene duplication has two important

effects. Firstly, it causes networks to grow. Secondly, it causes genes to gain new interactions at

a rate proportional to the number of interactions they already have. Models of network evolution

through duplication have been extensively studied and shown to be able to reproduce both the

global statistical properties observed in biological networks, as well as certain network motifs

[13, 19, 44, 93]. However, the rate of gene duplication observed in yeast is low, and as a result the

effects of rewiring of the network through cis and trans mutation will overwhelm the effects of gene

duplication in shaping network structure. In addition, analysis of observed network motifs shows

that they do not, in general, contain pairs of duplicate genes. Therefore, although gene duplication

is undoubtedly an important process in the evolution of TFNs, it does not in itself account for the

structure of the networks observed in existing organisms.

1.4.4 Gene Deletion

The final process through which TFNs evolve is gene deletion. Loss of a gene from a network

alters the network structure, since it reduces the size of the network and removes all the regulatory

interactions which the lost gene participated in. As has been mentioned already , duplicate genes

frequently lose all function to become pseudogenes, before being lost from the network altogether.

In addition, a duplicate gene may render other genes in the network redundant, allowing them to

be deleted. While estimates of the rate of gene deletion are difficult, it is thought to be similar to

the rate of gene duplication [38]. Experiments in yeast indicate that a high proportion of genes

are non-essential [84], indicating that gene deletion events may be fairly common. However, the

apparent redundancy of genes in knockout experiments often does not take account of variation

in environmental conditions, in which genes which are redundant in one environment, may be

necessary in another.

Although there is a growing body of empirical evidence on the roles of different mutations

in TFN evolution, accurate estimates of evolutionary rates, and variation in evolutionary rates

between genes, are not available in most cases. However, the evolutionary mechanisms outlined in

this section can be used to construct models of TFNs. In the next section I discuss the selection

schemes which can be used with these models, and the role they play in shaping TFN structure.
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1.5 Selection in TFNs

Natural selection shapes the evolution of TFNs in a number of ways. Firstly, networks are adapted

to perform a particular function or set of functions. As such, selection on gene expression plays an

important role. Secondly, networks are subject to several sources of noise - intrinsic noise within

a cell, variation between cells and variation in the external environment. TFNs must be robust

to all of these sources of noise in order to function properly. Mutational robustness may also

play a role in TFN evolution, however the competing needs to be robust to deleterious mutations

whilst being able to adapt to changing environments makes this form of robustness qualitatively

different from the other forms described. Finally, neutral evolution may also play a significant role

in shaping TFNs. Neutral changes to regulatory interactions result in network structure being

strongly influenced by the relative rates at which different kinds of mutations occur. Determining

the contributions of these different evolutionary processes is one of the most important challenges

in the study of TFNs, and in the study of biological networks generally. In this section I describe

the different ways in which they affect TFN structure.

1.5.1 Gene Expression

TFNs must be adapted so that the correct genes are expressed at the correct time in order to

perform their function. This may take the form of different subsets of genes being activated

under different environmental conditions [53], as in the case of genes which maintain nutrient

homeostasis or trigger the haploid phase in S. cerevisiae. Alternatively it may require that gene

expression follows a particular time course, as in the case of developmental processes or circadian

oscillators. In general, not all genes in a TFN may be under strong selection for a particular

expression pattern. Since it is the output of the network upon which selection acts, upstream TFs

may have noisy expression provided this is compensated for by other genes in the network.

The study of TFNs in silico has often focused on selection for optimal gene expression (e.g [112]).

One method of doing this is to generate an artificial network, and define the resulting expression

patterns of the genes to be optimal. The network is then allowed to evolve with selection acting to

maintain optimal gene expression. This serves as a way of removing adaptive evolution from the

system, so that other forms of selection can be studied. Other studies require artificial networks

to evolve to perform a particular function (e.g [58]). Under a sufficiently realistic mutational

process, this allows the solutions adopted by the evolutionary process to be studied and compared

to real networks. This allows the conditions under which network properties, such as modularity
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or a particular pattern of network motifs, arise to be studied. An alternative approach is to

construct an in silico model of real a network with known function, and compare the properties

of that network to all other networks with the same function (e.g [75]). This gives insight into the

particular properties of the network that has been evolved. For example, this method was used to

show that the Drosphila sex determination network displays a high level of parsimony [75]. Finally

in silico models of large networks with known function can be constructed in order to determine

the relative importance of the various subnetworks (e.g via virtual gene knockout experiments).

For example, the developmental network of the sea urchin has been studied extensively in this way

[25].

A more general approach to the evolution of optimal gene expression is to determine subnet-

works which act as circuit elements. These circuit elements perform particular functions, e.g AND

gates, OR gates or bistable switches. By connecting together circuit elements a larger network

with a particular function can be constructed. The identification of circuit elements has generally

been through the investigation of the functional properties of network motifs.

In general the way in which selection for optimal gene expression affects network structure will

depend on the function which the network is being selected for. As indicated above, this means that

the study of optimal gene expression is often a task of reverse engineering - i.e given a network, can

we deconstruct it to determine which subnetwork performs which function? However, where there

is a large set different networks, all of which perform the same function, we can ask which network

from within that set evolution will adopt. The question then becomes, how do networks evolve in

a neutral space of functionally equivalent network? This depends strongly on the structure of that

neutral space. As such, an important challenge is to define the structure of the neutral space of

networks with particular functions of interest. This may allow us to define general rules for how

the structures of TFNs evolve.

The role of noise in gene expression has become the focus of intense research in recent years

[11, 51, 69, 100, 101, 106, 118, 128]. Noise in gene expression can be viewed as a hinderance, which

disrupts the proper functioning of a gene. Alternatively it can be viewed as a source of variation

which cells can exploit to there advantage. Where noise disrupts gene function, mechanisms that

reduce the level of noise in gene expression are selected for. Examples of noise reduction mechanisms

include negative autoregulation [11, 118, 106], feed forward loops [9, 41, 78] and the clustering of

coexpressed genes together on the genome [10].

Noise can be advantageous to an organism in a number of ways. Underlying most cases in which
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variability in gene expression can be seen as advantageous, is the ability of cells to stochastically

switch between a number of stable gene expression states [51, 101]. This produces phenotypic vari-

ation in a population. In microbial populations such stochastic switching between gene expression

states speeds the response time of an individual (and population) to changes in the environment,

such as changes in the abundance of available nutrients [51, 101]. In multicellular organisms,

stochastic gene expression can also be used in cell-fate decision during development. For example

in Drosophila eye development, whether cells become a blue-sensitive or yellow-sensitive photore-

ceptor is determined stochastically. This results in the desired distribution of photoreceptors across

the eye, without the need for a complex regulatory architecture to specify the fate of each indi-

vidual cell [141]. By using naturally occurring stochastic variation in gene expression, cells can

by-pass the need to evolve overly elaborate gene networks to perform complex functions.

1.5.2 Robustness

TFNs are found empirically to display a high level of robustness both to environmental fluctuations

and to mutations. However, the extent to which these properties are the product of direct selection

is not obvious. Environmental robustness can take several forms. As described above, the process

of transcription and translation is inherently noisy. This noise can be reduced via a number of

mechanisms, including through negative autoregulation by TFs [1, 11, 106, 118]. Similarly, noise in

the expression of upstream TFs, or in environmental signals external to the cell, can be produced

by adopting network structures which filter noise. Empirically, it seems that reduction of this type

of environmental noise is selected for. It has also been shown that noise can be used to advantage,

by producing variation in gene expression within a population [101]. Variation in gene expression

is maintained in a population as it allows the population to adapt to changes in the environment.

Similarly, noise in bistable systems which allows the network to switch stochastically between

states, and can provide a mechanism for an individual cell to sense its external environment [51].

In many cases, robustness to environmental noise may be regarded a part of the function of a

TFN. The mechanisms by which such noise is dealt with are interesting in themselves. However,

it has also been suggested that there is a relationship between environmental and mutational ro-

bustness. This relationship, known as the congruence hypothesis [85, 135], states that robustness

to one kind of perturbation also results in robustness to other kinds of perturbation. Thus, envi-

ronmental robustness, which tends to be strongly selected for, also conveys mutational robustness,

which is weakly selected for [127]. Whilst it is certainly true that the congruence hypothesis holds
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in some cases, it also possible to find examples in which it does not [82]. Thus, where mutational

robustness is observed, it still remains to be established whether this is the result of direct selection,

or a by-product of selection for other kinds of robustness.

The issue of mutational robustness is further complicated because it seems to act in opposition

to the idea that TFNs need to be able to adapt to new environments. If mutations do not

produce new patterns of gene expression, this means the network cannot adapt to changes in

the environment. This is clearly not desirable in many cases. Thus there is a trade-off between

mutational robustness and adaptability. This issue has been addressed extensively by studying

RNA [20, 27, 37, 133], where an explicit genotype-phenotype map is constructed, with RNA

sequence providing the genotype and RNA secondary structure providing the phenotype. The

neutral space of all genotypes that map onto the same phenotype can then be constructed. From

this it is possible to show that the larger the neutral space, the greater the number of different

phenotypes which border the neutral space. Since these neighbouring phenotypes are all accessible

to a population through a series of neutral mutations, the tension between mutational robustness

and adaptability can be resolved. It is highly plausible that a similar argument holds for the

structure of TFNs. However, the number of phenotypes accessible from a set of neutral genotypes

depends on the structure of the space of neutral genotypes. Therefore the necessity of exploring

the neutral genotype space associated with TFNs becomes clear.

The causes and consequences of mutational robustness remain contentions. There are strong

theoretical arguments that organisms will evolve genotypes such that the number of strongly dele-

terious, or lethal, mutations they are subject to is minimised [127]. Such mutational robustness

will arise when the product of the population size M and mutation rate µ is large, Mµ � 1.

However, it is less clear whether robustness to mutations which are weakly deleterious is directly

selected for in the same way. The situation is further complicated when sexually reproducing

organisms are considered. On the one hand recombination is capable of reinforcing selection for

mutational robustness [72]. On the other hand, complex dominance effects arise in diploid gene

networks which can reduce the effects of deleterious mutations and render mutational robustness

less important [70, 91]. Unravelling the effects of selection strength, mutation rate, recombination

and dominance on the evolution of mutational robustness remains an important challenge for the

development of a proper understanding of the evolution of gene networks.

The interplay between mutational robustness and adaptation is also a developing field. As

described above, mutational robustness can facilitate adaptation by opening up a wide range of
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alternative phenotypes to a population. As such, mutational robustness can be seen as increasing

the adaptability of a population when faced with new environments. However, it is not clear

whether selection for adaptability occurs directly. In this respect, one particularly interesting

potential mechanism for the evolution of adaptability is evolutionary capacitance. Evolutionary

capacitance occurs when a build up of genetic variation occurs in a population, the effects of which

are suppressed by an “evolutionary capacitor” [12, 30, 42, 71, 81, 109, 114, 123]. The effects of

this cryptic genetic variation can be revealed either due to changes in the environment, or due to

mutation at the gene which acts as an evolutionary capacitor. For example the Heat Shock Protein,

Hsp90, has been shown to reveal cryptic genetic variation in Drosophila when they are subject to

increased in temperatures [109, 114]. Similarly, the Yeast prion [Psi+] reveals genetic variation by

allowing read through of stop codons [123]. In order for selection to favour evolutionary capacitors

as a mechanism for facilitating adaptation, it is necessary that populations be subject to frequent

environmental changes which require adaptation. For a given rate of environmental change, θ,

an evolutionary capacitor can invade and be maintained in a population provided the population

size, M , is greater then a minimum Mmin. Mmin is typically quite small, and grows weakly as

Mmin ∝ θ−
1
2 [81], suggesting that evolutionary capacitors can be selected for their ability to adapt

to new environments.

1.5.3 Neutral Evolution

The possibility of neutral evolution in TFNs is well known. As discussed above, such neutral

evolution takes place in a space of neutral genotypes, and the course of that evolution depends on

the structure of the space. Neutral evolution in TFNs is likely to be a more complex process to

understand than in other systems, such as junk DNA or in the case of RNA structure described

above. In these cases neutral evolution through single nucleotide substitutions can be studied - i.e

only one type of mutation need be considered. However, in TFNs several qualitatively different

types of mutation can occur. These different mutations may interact, as illustrated in figure 1.5

for cis and trans mutations. As a result defining the neutral space of TFNs may be difficult.

Neutral evolution may also play a role in determining such TFN structural properties as motif

distribution [72]. For example, given a neutral space in which different three node motifs can be

adopted, the frequency with which FFLs occur depends on the relative rate of gain and loss of

regulatory interactions, and on the rate of recombination [72]. In particular it is found that FFL

frequency follows a peaked distribution in the rate of recombination. Studies such as this highlight
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the importance of considering non-adaptive explanations of network structure. The process of

mutation combined with the structure of the neutral genotype space can give rise to biases in

network structure which have nothing to do with adaptation. Just because a particular network

structure is common does not mean it is functionally important.

The different types of selection discussed here all play a role in shaping network structure.

However, just as important are the population genetic details of the system being considered. The

importance of recombination rate has already been mentioned. In the next section I discuss the

role of this, and other population genetic factors, in more detail.

1.6 Population Genetics and TFN Evolution

Population genetic factors play an important role in shaping the structure of TFNs. Factors such

as mutation rate, population size and the strength of selection determine the extent to which

populations evolve mutational robustness. In addition, since TFNs encode regulatory interactions

between genes, they also naturally encode epistatic interactions between loci. As a result, the effects

of multiple mutations are rarely additive in TFNs. The roles of recombination and dominance in

diploid, sexual populations are also significant, and tend to have very different effects with respect

to cis and trans mutations. Therefore, population genetic factors can be seen to influence both

the structure adopted by TFNs, and the types of mutations through which a TFN can evolve. In

this section I discuss these effects in more detail.

1.6.1 Population Size

The effect of population size on evolution is significant. For example, small populations are heavily

influenced by genetic drift, whilst very large populations are not. In the case of TFNs, population

size is of particular interest for the role it plays in neutral evolution and mutational robustness.

When evolving on a space of neutral genotypes, the most important factor is the product of

population size, M , and mutation rate, µ. If Mµ � 1, the population at any point in time is

monomorphic for a single genotype [127]. If a mutation arises, it is either completely lost, or fixed

by all members of the population. Therefore the whole population may be thought of as moving

from point to point in the space of neutral genotypes. If the population encounters a deleterious

mutation, it will not become fixed, provided the product of the fitness penalty s and the population

size is sufficiently large, Ms� 1. Thus the population may be thought of as moving from point to
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point in neutral genotype space, but never leaving it. The probability that the population adopts

any one genotype is simply the stationary distribution for the Markov process which describes a

random walk on the space of neutral genotypes. This is in turn determined by the rates at which

different kinds of network mutations occur. Mutational robustness does not influence the evolution

of the network in this case, only the structure of the space of neutral genotypes and the relative

rates of different network mutations determines TFN structure.

However, for large populations, in which Mµ� 1, mutational robustness plays a role in shaping

network evolution. In this case the population is not located at a point in neutral genotype space,

but is distributed over a number of genotypes. That is, the population contains a number of

different genotypes. When the population is at the edge of neutral genotype space, a certain

fraction of the population will suffer a deleterious mutation at each generation. This has the

effect that the more deleterious neighbours a genotype has, the more it is disadvantaged. As a

result, the population tends to move to genotypes which neighbour fewer deleterious genotypes,

i.e which are mutationally robust. This effect is independent of the strength of selection against

deleterious mutants (provided the selective disadvantage, s, satisfies Ms � 1), and of population

size (provided Mµ � 1). In TFNs, where different types of mutation can occur at different rates,

it is the mean rate of deleterious mutations which determines the degree of mutational robustness

of a genotype. Therefore the structure adopted by the network is determined by the structure

of neutral genotype space and the relative rates of different types of network mutation - It is the

mutational robustness of the genotypes in a region of neutral space which determines whether the

population lies in that space.

1.6.2 Sexual Reproduction

The structure and evolution of TFNs is influenced by whether or not the organism considered is

sexual or asexual. From the point of view of TFNs, the most significant difference between these

two cases is that sexual populations undergo recombination, whilst asexual populations do not.

The role of recombination in shaping TFN structure has not been fully characterized. However,

it is known that recombination can affect the degree to which populations develop mutational

robustness by bringing together different mutations in the same genome [3, 72, 74]. In relation

to this, it is interesting to consider how the structure of TFNs gives rise to epistatic interactions

between mutations. Directional epistasis occurs when the effect of a mutations on fitness changes

in the presence of other mutations in the genome. This can be synergistic, in which case the
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average effects of successive mutations becomes more harmful, or else it can be antagonistic, in

which case successive mutations become less harmful.

Epistasis is of particular interest when considering the evolution and maintenance of sexual

reproduction [3, 74]. The mutational deterministic hypothesis states that sex enhances the ability of

natural selection to purge deleterious mutations after they are brought together by recombination.

This suggests that synergistic epistasis is required in order for sexual reproduction to be maintained.

Studies of the in silico evolution of TFNs have shown that recombination in sexual populations

favours network structures which show mutational robustness. This in turn results in synergistic

epistasis. As a result, sexual reproduction favours network structures which display synergistic

epistasis, and thereby favours its own maintenance [3]. However, these conclusions have been

challenged by another in silico study of TFNs which finds that when reproductive mode and

epistasis are allowed to co-evolve, asexual populations out-compete sexual populations [74].

In the context of TFNs, it is easy to see that epistatic interactions between mutations are

likely to be the rule. For example the prevalence of multiple pathways linking TFs at the top of

a regulatory cascade to target genes at the bottom [134] is likely to result in synergistic epistasis.

This is because the redundancy resulting from the existence of multiple pathways means that

breaking one of those pathways will have little deleterious effect on the function of the network.

However, breaking of subsequent pathways is likely to be increasingly deleterious, as the number

of intact pathways completing the regulatory cascade decreases. A similar effect can be seen for

deletion of genes in the network. As has been observed previously, a scale free network structure

tends to make networks robust to random deletion of nodes. However, as more and more nodes are

deleted, the network will eventually fracture into disconnected subnetworks. Therefore deletion of

a single gene from a TFN may have only a small deleterious effect on its function. As more and

more genes are deleted, the deleterious effect is likely to increase rapidly.

In a more general sense, it can be seen that mutational robustness will tend to result in neg-

ative epistasis. This is because mutational robustness reduces the deleterious effect of mutations.

However, if multiple mutations occur, that robustness will eventually be lost and, and they will

become increasingly deleterious - the previously hidden intrinsic genetic load will become increas-

ingly exposed.. The hypothesis that recombination favours mutational robustness and synergistic

epistasis in TFNs leads to the expectation of clear structural differences between the TFNs present

in sexual and asexual populations. As a result, sex is likely to significantly influence the structure

of TFNs
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1.6.3 Dominance

The final factor which may influence the structure of TFNs is whether the network considered is

haploid or diploid. This is because of the dominance effects which may arise in diploid organisms,

and affect the ability of the network to fix certain kinds of mutations. The clearest example of

this is provided by the different effects of cis and trans mutations on gene expression. In a diploid

organism, if a gene suffers a cis mutation, resulting in the loss of a TF binding site, it becomes

heterozygous at the promoter region of the gene. Thus, instead of two copies of the gene being

regulated by a TF, only one copy is regulated. It is easy to see the the effects of this on gene

expression will tend to be additive. Indeed, cis mutations are found to show a high degree of

additivity in their effect on gene expression in Drosohila [70]. If a TF suffers a trans mutation in

a diploid organism, this results in one copy of the TF having one set of targets, and the other TF

having a different set of targets. As a result, both sets of targets are regulated by one copy of the

TF. This tends to result in deviations from additivity in gene expression, i.e dominance. Again,

dominance in the effects of trans mutations is observed in Drosophila populations [70].

Dominance may slow or accelerate adaptive evolution. In the case of over-dominace it may

favour hetrozygotes, and therefore result in heterogeneity in the structure of TFNs in a population.

In the case of under-domince it may provide a barrier to the fixation of adaptive mutations. The

study of the effects of dominance in Drosophila TFNs suggests that additivity in cis mutations

tends to favour them as a mechanism for adaptive evolution. As a result variation in TFNs between

closely related species tends to lie at cis. In contrast, the greater scope for the maintenance of

recessive deleterious mutations in a population means that variation within a population tends to

be at trans. The roles of cis and trans mutations are therefore further differentiated in diploid

populations as compared to haploids.

1.7 Research Aims

The aims of the research presented in this thesis are to elucidate the principles by which TFNs

are constructed by natural selection. The approach taken is to construct models of TFN evolution

which include an accurate representation of the mutational processes through which they evolve.

Different models of TF binding to regulatory binding sites are used to model mean gene expression

and noise in gene expression at different levels of detail. In addition a variety of population genetic

scenarios are considered in order to elucidate their role in shaping TFN structure. A number
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of different structural properties of TFNs are considered. The asymmetrical degree distribution

observed in yeast and E. coli is used as a starting point, to elucidate the roles of the different

mutational processes in TFN evolution. The interactions between cis and trans mutations are

then investigated in more detail. In particular, the influence of these mutations on the structure of

the neutral genotype space associated with TFNs is investigated. This is used to draw a number

of general conclusions about the neutral evolution of TFNs. Finally the evolution of the most

basic network motif - autoregulation - is investigated. This is used to illustrate how the population

genetic details of the organism considered strongly influence the evolvability of even this most basic

network motif. An investigation of the fate of duplicates of autoregulatory genes is also made. This

is used to elucidate why duplicate pairs of genes do not tend to form network motifs.

In all cases the models that are constructed are based on observations about the yeast and

E. coli TFNs. The conclusions which are drawn from these models are used to explain both

the similarities and differences in the structural properties of these networks. A combination of

analytical results and evolutionary simulations are used to draw conclusions about the mechanisms

through which TFNs evolve.

1.8 Thesis Outline

Chapter 2 is an investigation into the evolutionary process that gives rise to the asymmetrical

degree distributions observed in TFNs. Conclusions are drawn about the relative contributions of

different types of mutation to TFN evolution, as well as the way that evolutionary rates vary with

the position of a gene in the network.

Chapter 3 concerns the interaction of cis and trans mutations in the neutral evolution of gene

regulation. A space of neutral genotypes is explicitly constructed and the evolution of a population

in this space is described. The results are then applied to explain the observed large scale neutral

rewiring of the yeast sex determination network.

Chapter 4 concerns the evolution of negative autoregulation in diploids. Whilst negative au-

toregulation is frequent in E. coli, it is relatively rare in S. cerevisiae. This is explained through

an increase in the noise in gene expression in diploids which are heterozygous in the binding site

strength for their own gene product. This results in under-dominace and a barrier to the evo-

lution of negative autoregulation. The results are also used to consider the fate of duplicates of

autoregulating genes in haploids.

Chapter 5 discusses the conclusions which can be drawn from this work about the mechanisms
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of TFN evolution, and describe the directions of further work in this area.
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Chapter 2

Evolution of TFN Degree

Distribution

Transcription networks have an unusual structure. In both prokaryotes and eukaryotes, the num-

ber of target genes regulated by each transcription factor, its out-degree, follows a broad tailed

distribution. By contrast, the number of transcription factors regulating a target gene, its in-

degree, follows a much narrower distribution, which has no broad tail. We constructed a model of

transcription network evolution through trans- and cis-mutations, gene duplication and deletion.

The effects of these different evolutionary processes on the network structure are enough to pro-

duce an asymmetrical in- and out-degree distribution. However, the parameter values required to

replicate known in- and out-degree distributions are unrealistic. We then considered variation in

the rate of evolution of a gene dependent upon its position in the network. When transcription

factors with many regulatory interactions are constrained to evolve more slowly than those with

few interactions, the details of the in- and out-degree distributions of transcription networks can

be fully reproduced over a range of plausible parameter values. The networks produced by our

model depend on the relative rates of the different evolutionary processes. By determining the cir-

cumstances under which the networks with the correct degree distributions are produced, we are

able to assess the relative importance of the different evolutionary processes in our model during

evolution.
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2.1 Background

Transcription regulation plays a key role in determining cellular function, response to external

stimuli and development. Regulatory proteins orchestrate gene expression through thousands of

interactions resulting in a system too complex to be easily understood in detail. This makes

elucidation of gene regulation from a global perspectivethat of the transcription network as a

wholean important challenge.

Genes in a transcription network either have outgoing edges, incoming edges or both. Outgoing

edges from a gene represent the different targets that it regulates, while incoming edges at a gene

represent the different transcription factors that regulate it. A number of studies [47, 83, 119]

have established that, in both prokaryotes and eukaryotes, the degree distributions for outgoing

and incoming edges are very different. The out-degree distribution, nout(k), follows a broad tailed

distribution that is best described by a power-law: nout(k) ∝ k−γ . The exponent γ is observed

to be in the range 1 < γ < 2 [47, 83]. A power-law distribution indicates that there are a small

number of hub transcription factors that regulate a large number of genes [8]. Interpretation of

power-law degree distributions, and the small world structure they confer, has been the focus of a

great deal of attention [7, 8, 13, 19, 92, 93, 132]. In particular, it has been suggested that a power-

law distribution may deliver an evolutionary advantage through increased mutational robustness

and evolvability [8].

However, the in-degree distribution of transcription networks is much narrower than a power-

law and has no broad tail [47, 83, 119]. It is best described by an exponential distribution nin(k) ∝

exp[−αk]. The exponential in-degree distribution reflects the fact that only a few transcription

factors combinatorially regulate any one gene. There exist no hub target genes. For example,

in the yeast transcription network, 93 per cent of target genes are regulated by fewer than five

transcription factors [47].

The extent to which the in- and out-degree distributions of transcription networks are different

is intriguing, and the cause unknown. In this chapter, I develop a model to explain the evolution of

the asymmetrical transcription network degree distribution observed in yeast and other organisms.

I focus on the different types of mutation through which the network evolves. Changes to the

outgoing and incoming edges at a gene may occur as the result of mutation to a regulatory protein

(trans-mutation) or as the result of mutation to transcription factor-binding sites (cis-mutation).

These two processes change the network structure in different ways, but both result in either the

loss or gain of regulatory interactions between existing genes. In addition, genes themselves may
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be lost or gained in the network through deletion and duplication.

The rates at which a gene evolves may vary according to its connectivity in the transcription

network [84, 134]. We investigate two types of connectivity-dependent evolution. It is often argued

[8] that hub genes, which participate in many regulatory interactions, are particularly important

for the proper functioning of the network, and are therefore constrained to evolve more slowly. This

leads to the expectation of a slower rate of evolution among genes that regulate many downstream

targets and a faster rate of evolution among genes that regulate only a few targets. It has also been

suggested that a process of preferential attachment may occur in biological networks [8]. Under

preferential attachment, new interactions are gained in proportion to the number of interactions a

node already participates in. Such a process has been shown to occur in proteinprotein interactions

networks [92, 132].

I construct a model incorporating evolution through trans- and cis-mutations, gene duplication

and deletion along with variation in evolutionary rates depending on the connectivity of a gene. We

use our model to unravel the relationship between the rates of evolution of genes through different

processes in relation to the network structure.

2.2 Model

There are four types of network mutation in our model - gene deletion and duplication, plus cis-

and trans-mutation. The in- and out-degree distributions of the network are determined by the

rates at which these different types of mutation become fixed in the transcription network of a

population. Since there is a clear functional difference between genes that code for transcription

factors and those that code for other types of protein, we separate genes into two groups. Those

with regulatory functions are labelled transcription factors (TFs) and those that are only regulated

are labelled target genes (TGs). TGs have only incoming edges, while TFs may have either outgoing

or incoming edges. We establish the equilibrium in- and out-degree distributions for four different

versions of our model. In the first version, the rates of evolution are independent of a genes

connectivity. We then consider two types of connectivity dependence in TF evolution. In the

second version of our model, there is connectivity dependence such that the TFs with a large

number of interactions undergo trans-evolution more slowly than those with few interactions. This

is referred to as degree dependence in the rate of trans-evolution. In the third version of our

model, there is connectivity dependence such that TFs gain new targets at a rate proportional

to the number of targets they regulate. This is referred to as preferential attachment. The final
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version of our model includes both degree dependence in the rate of trans-evolution and preferential

attachment.

2.2.1 Gene deletion and duplication

We assume that when genes are duplicated they inherit all the regulatory interactions of their

parent. Evolution through duplication occurs at rate D+ and deletion occurs at rate D− per gene

(figure 2.1). A TF of out-degree k gains outgoing edges due to duplication of its targets at rate

kD+, and loses outgoing edges due to deletion of its targets at rate kD−. Similarly, a gene of

in-degree j gains incoming edges due to duplication of TFs at rate jD+, and loses incoming edges

due to deletion of TFs at rate jD−. If the rates of gene deletion and duplication are different,

this will result in either growth (if the rate of duplication is greater than the rate of deletion), or

decline (if the rate of deletion is greater than the rate of duplication) in the size of the network. We

assume that the rate of growth (or decline) of the network is small compared to the rate of rewiring

of regulatory interactions through trans- and cis-mutation [29, 38, 139]. Thus, we consider only

networks of constant size, and therefore assume that D+ = D− = D.

Figure 2.1: Mutations in a TFN. (a)(i) Duplication of a TFand all its outgoing edges, (ii) du-
plication of aTGand all its incoming edges. (b) Evolution via trans-mutation: (i) gain of an
interaction through trans-evolution; (ii) loss of interactions through trans-evolution. (c) Evolution
via cis-mutation: (i) gain of an interaction through cis-evolution; (ii) loss of an interaction through
cis-evolution.

2.2.2 Evolution of regulatory-binding sites and transcription factors

A trans-mutation results in a change in the ability of TFs to bind to the promoter region of a gene.

This may occur through a change in the binding affinity of a TF for a regulatory site. Alternatively,

it may be the result of a TF gaining or losing an interaction with another TF, which helps it bind

to the promoter region of a target [126]. Therefore, a trans-mutation in our model refers to a
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mutation affecting a transcription factor protein only. It does not refer to mutations affecting the

cis-regulatory regions of trans-acting genes. Following fixation of such a trans-mutation, a TF can

cease to control some of the genes it currently regulates and can gain control over new genes. We

assume that trans-evolution resulting in a TF potentially losing targets occurs at a constant rate

µ
−
trans. In this process, an existing target is lost with probability m. The probability, P

−
k,∆k, that

a TF with k out-edges loses ∆k of its targets following a trans-mutation is given by

P
−
k,∆k =

k!
∆k!(k −∆k)!

m
∆k(1−m)k−∆k (2.1)

Similarly, we assume that trans-evolution resulting in the gain of new targets by a TF occurs at

a constant rate µ
+
trans, which is independent of the out-degree of the TF. Overall, trans-evolution

results in a gene losing incoming edges at rate mµ
−
trans (per edge) and gaining a new incoming

edge at rate µ
+
trans(1 − k

N ) (figure 2.1b). The factor(1 − k
N ) gives the probability that the gene

gaining the new incoming edge is not one of the k genes currently regulated by the mutated TF.

A cis-mutation results in the gain of a new binding site or the loss of an existing binding site in

the promoter region of a gene. The rate at which binding sites are lost is µ
−
cis. The probability

that a gene, which is regulated by k TFs, loses an interaction through loss of a TF binding site is

kµ
−
cis. A gene may also gain a new regulatory binding site for any TF in the network to which it is

not currently connected, at rate µ
+
cis (figure 2.1c). Therefore, a gene currently regulated by k TFs

gains an incoming edge through cis-evolution at a rate µ
+
cis(1− k

N ). Throughout, we assume that

the size of the network N is large compared to any realistic in- or out-degree k, so that the terms

k
N may be neglected. Thus, new incoming edges are gained at constant rates µ

+
trans through trans-

evolution and µ
+
cis through cis-evolution. We also develop a model in which degree dependence

in the rate of trans-evolution occurs. In this model, a trans mutation, which results in TF-losing

interactions, is fixed with a probability that depends on its out-degree. Since a trans-mutation

affects the functioning of the transcription factor itself, it potentially alters all of the interactions in

which a TF takes part. We assume that a trans-mutation at a TF with k targets has a deleterious

effect on the functioning of the network that is proportional to k. We assume that a trans-mutation

resulting in the loss of edges from the network is fixed with probability proportional to 1
k . This

has the effect that the mean and variance in the number of outgoing edges that are lost by a TF

due to trans mutation is independent of k. In this way, the rates of evolution of TFs are degree

dependent. We consider the possibility of other forms of degree dependence in the discussion. A
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k number of regulatory interactions

NTG expected number of TGs

NTF expected number of TFs

N expected size of the network (N = NTF + NTG)

µ
+
trans rate of gain of interactions due to trans-evolution

µP
trans in preferential attachment modelthe rate at which new edges produced by trans-

mutation undergo preferential attachment based on the in-degree of genes

µR
trans in preferential attachment modelthe rate at which new edges produced by trans-

mutation undergo random attachment to genes

µ
−
trans rate of loss of interactions due to trans-evolution

m probability a TF loses an existing target immediately following a trans-mutation

µ
+
cis rate of gain of TF-binding sites through cis-evolution

µP
cis in preferential attachment modelthe rate at which new edges produced by cis-

mutation undergo preferential attachment based on the out-degree of TFs

µR
cis in preferential attachment modelthe rate at which new edges produced by cis-

mutation undergo random attachment to TFs

µ
−
cis rate of loss of TF-binding sites through cis-evolution

D rate of duplication and deletion

P
−
k,∆k probability that a TF of out-degree k loses ∆k edges as a result of a trans-mutation

Table 2.1: Model parameters

summary of all the parameters used in the model is given in Table 1.

2.2.3 Network Evolution

We allow evolution of the network by updating it at time intervals ∆t, taken so that at most one

mutation occurs and goes to fixation within each interval. Hence, the mean field equation for the

expected number of genes with in-degree k at time t, changes in the time interval ∆t by,
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∆nin =
�
Πin

TG+(k − 1) + Πin
TF+(k − 1)

�
nin(k − 1, t)

+
�
Πin

TG−(k + 1) + Πin
TF−(k + 1)

�
nin(k + 1, t)

−
�
Πin

TG+(k) + Πin
TF+(k) + Πin

TG−(k) + Πin
TF−(k)

�
nin(k, t) (2.2)

where Πin
TG+(k) and Πin

TG−(k) are the probabilities of a gene with in-degree k gaining or losing an

edge through mutation at the regulated gene; and Πin
TF+(k) and Πin

TF−(k) are the probabilities of

a gene with in-degree k gaining or losing an edge through mutation at a TF regulating it, in the

time interval ∆t. Similarly, the expected number of genes with out-degree k at time t changes in

the time interval ∆t by

∆nout =
�
Πout

TG+(k − 1) + Πout
TF+(k − 1)

�
nout(k − 1, t)

+ Πout
TG−(k + 1)nout(k + 1, t)

−
�
Πout

TG+(k) + Πout
TG−(k) + Πout

TF+(k)
�
nout(k, t)

+
N�

j=k

Πout
TF−(j, k)nout(j, t)−

k�

j=0

Πout
TF−(k, j)nout(k, t) (2.3)

where N is the number of genes (TFs and TGs) in the network; Πout
TG+(k) and Πout

TG−(k) are the

probabilities of a gene with out-degree k gaining or losing an edge through mutation at one of its

targets; Πout
TF+(k) is the probability that a TF with out-degree k gains a target through mutation

at the TF; and Πout
TF−(j, k) is the probability that a TF with out-degree j ≥ k loses interactions to

become a TF with out-degree k due to mutation at the TF.

The equilibrium in-and out-degree distributions for the model can be found from equations

(2.2) and (2.3), by setting the left-hand sides of both equations to 0. (see Appendix A). The

equilibrium in-degree distribution satisfies

�
Πin

TF−(k + 1) + Πin
TG−(k + 1)

�
nin(k + 1)

=
�
Πin

TF+(k) + Πin
TG+(k)

�
nin(k) (2.4)
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After making a number of approximations (see Appendix A), the equilibrium out-degree distribu-

tion satisfies

�
Πout

TG−(k + 1) + (k + 1)µ−transK(γ, m)
�
nout(k + 1)

=
�
Πout

TG+(k) + Πout
TF+(k)− kµ

−
transK(γ, m)

�
nout(k) (2.5)

for the model excluding degree dependence in the rate of trans-evolution and

�
Πout

TG−(k + 1) + µ
−
transK(γ, m)

�
nout(k + 1)

=
�
Πout

TG+(k) + Πout
TF+(k)− µ

−
transK(γ, m)

�
nout(k) (2.6)

for the model including degree dependence in the rate of trans-evolution. The positive parameter

γ arises from the approximations used to obtain equations (2.5) and (2.6) (see Appendix A),

and the functions K(γ, m) are specific to each of the models we consider and will be described

below. We now solve equations (2.4), (2.5) and (2.6) for the in- and out-degree distributions

for four specific models of transcription network evolution. We start using a simple model and

then investigate different models including degree dependence in the rate of trans-evolution and

preferential attachment, to ask what conditions are required to explain the observed difference

between the in- and out-degree distributions of transcription networks.

2.2.4 Simulations of Network Evolution

Simulations were carried out using ensembles of 1000 networks, each with an expected size of

100 TFs and 100 TGs. Networks were subject to 106 mutations after which the average degree

distributions were taken over the ensemble, and the mean degree distributions determined. The

evolutionary algorithm used allowed networks to vary in size between a lower and upper boundary

of 50 and 150 nodes, for both TFs and TGs. Loss of interactions through trans-mutation was

executed by deleting each of a TFs outgoing edges with probability m. For gain of new interactions,

random attachment was executed by selecting a gene and a TF at random and adding an edge
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Model 1 Model 2 Model 3 Model 4

Πin
TG+(k) µ

+
cis µ

+
cis µ

+
cis µ

+
cis

Πin
TG−(k) kµ

−
cis kµ

−
cis kµ

−
cis kµ

−
cis

Πin
TF+(k) kD + µ

+
trans kD + µ

+
trans kD + µR

trans + kµP
trans kD + µR

trans + kµP
trans

Πin
TF−(k) kD + kµ

−
transm kD + k

�
1
k

�
µ
−
transm kD + kµ

−
transm kD + k

�
1
k

�
µ
−
transm

Table 2.2: Incoming edge event probabilities

Model 1 Model 2 Model 3 Model 4

Πout
TG+(k) kD + µ

+
cis kD + µ

+
cis kD + µR

cis + kµP
cis kD + µR

cis + kµP
cis

Πout
TG−(k) kD + kµ

−
cis kD + kµ

−
cis kD + kµ

−
cis kD + kµ

−
cis

Πout
TF+(k) µ

+
trans µ

+
trans µ

+
trans µ

+
trans

Πout
TF−(k) µ

−
transP

−
j,j−k µ

−
trans

P−
j,j−k

j µ
−
transP

−
j,j−k µ

−
trans

P−
j,j−k

j

K(γ, m) 1
2(γ−1) (1− (1−m)γ−1) 1

2γ (1− (1−m)γ) 1
2(γ−1) (1− (1−m)γ−1) 1

2γ (1− (1−m)γ)

Table 2.3: Outcoming edge event probabilities

between them. Preferential attachment of incoming edges was executed by selecting a gene with a

probability proportional to its in-degree and a TF at random. A new edge was then added between

them. Similarly for preferential attachment of outgoing edges, a TF was selected with probability

proportional to its out-degree, and another gene was selected at random. An interaction was then

added between them. Simulations were run for a range of parameter values. Data shown are for

m = 0.01, corresponding to the case m → 0 (equation (2.15)). The rate of duplication used is

D = 0.26, the rate of gain of interactions through trans-evolution is µ
+
trans = 0.04, and through cis-

evolution is µ
+
cis = 0.31. The rate of loss of interactions through trans-evolution is mµ

−
trans = 0.25

and through cis-evolution is µ
−
cis = 0.14.

2.3 Results

2.3.1 Model 1: no connectivity dependence

In the first model, we assume there is neither any degree dependence nor any preferential attach-

ment in the rate of trans-evolution. The event probabilities for the in- and out-degree distributions

in this model are given in Table 2a. Substituting these in equations (2.4) and (2.5), we find for the
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in-degree distribution (see Appendix A)

nin(k) ∝ k
−λ exp[−αk]

where

α = ln
�

1 +
µ
−
cis + mµ

−
trans

D

�
,

λ = 1− µ
+
cis + µ

+
trans

D
(2.7)

This is approximately an exponential distribution, characterized by α, unless α is small, which

occurs if D � µ
−
cis + µ

−
transm, or λ is large and negative, which occurs if D � µ

+
cis + µ

+
trans . The

equilibrium out-degree distribution for this model obtained from equation (2.5) is

nout(k) ∝ k
−γ exp[−βk]

where

β = ln
�

µ
−
cis + D + µ

−
transK(γ, m)

D − µ
−
transK(γ, m)

�
,

γ = 1− µ
+
cis + µ

+
trans

D − µ
−
transK(γ, m)

(2.8)

and K(γ, m) is as in Table 2b. This distribution is a power-law characterized by γ only if β is 0.

This occurs if µ
−
cis = −2µ

−
transK(γ, m). However, as the rates, µ

−
cis and µ

−
trans, are both positive

constants, and K(γ, m) > 0 (Table 2b), this condition cannot be met. Therefore, this model cannot

produce a power-law out-degree distribution.

2.3.2 Model 2: degree dependence in the rate of trans-evolution

In this model, we allow degree dependence in the rate of trans-evolution. Substituting the event

probabilities for this model (Table 2a) into equations (2.4) and (2.6), we find for the in-degree

distribution

nin(k) ∝ k
−λ exp[−αk]
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where

α = ln

�
1 +

µ
−
cis + m

�
1
k

�
µ
−
trans

D

�
,

λ = 1− µ
+
cis + µ

+
trans

D
(2.9)

and
�

1
k

�
=

�N
j=1

nout(j)
j determines the mean rate of trans-evolution across the network. Following

the same procedure as for Model 1, this distribution will be approximately exponential unless α is

small or λ is large and negative, which occurs when D � µ
−
cis +

�
1
k

�
µ
−
transm or D � µ

+
cis +µ

+
trans,

respectively.

The equilibrium out-degree distribution for this model is

nout(k) ∝ k
−γ exp[−βk]

where

β = ln
�

1 +
µ
−
cis

D

�
,

D(γ − 1) + µ
+
cis + µ

+
trans = µ

−
transK(γ, m)

�
1 +

D

D + µ
−
cis

�
, (2.10)

and K(γ, m) is as in Table 2b. This distribution is a power-law characterized by γ only if β is 0.

This occurs if D � µ
−
cis. Under this condition, equation (2.10) has solutions with γ > 1 provided

mµ
−
trans > µ

+
cis + µ

+
trans.

2.3.3 Model 3: preferential attachment

This model includes preferential attachment, but excludes degree dependence in the rate of trans-

evolution (considered in Model 2). In preferential attachment models, the rate at which nodes gain

new edges is proportional to the number of edges already attaching to them. Preferential attach-

ment has been discussed widely in the study of other biological networks [8, 92, 132], including in

the proteinprotein interaction network of yeast [132].

We model preferential attachment of incoming and outgoing edges separately. For incoming

edges our model is as follows: new edges arise due to trans-evolution at rate µ
+
trans. When such a
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new edge arises, it may be either through preferential attachment or through random attachment

(i.e. the new edge attaches to each gene with equal probability) at the gene that is regulated.

In the case of preferential attachment, the probability that a gene gains a new incoming edge is

proportional to its in-degree. In the case of random attachment, the probability that a gene gains

a new incoming edge is independent of its in-degree. We assume that such new edges undergo

preferential attachment to a gene at rate µP
trans, and undergo random attachment at a rate µR

trans.

The rate at which a gene of in-degree k gains a new edge due to preferential attachment is kµP
trans,

and the rate at which it gains a new edge due to random attachment is µR
trans. The total rate at

which TFs gain new outgoing edges is then µ
+
trans = E

NT F
µP

trans + N
NT F

µR
trans, where E is the total

number of edges in the network.

Our model of preferential attachment for outgoing edges is of the same form: new edges arise

due to cis-evolution at rate µ
+
cis. The rate at which a TF of out-degree k gains new outgoing

edges due to preferential attachment is then kµP
cis, and the rate at which it gains new edges due

to random attachment is µR
cis. The total rate at which genes gain new incoming edges is then

µ
+
cis = E

N µP
cis + NT F

N µR
cis. Our model of preferential attachment is illustrated in figure 2.2a.

Figure 2.2: Preferential attachment and rewiring. (a) Preferential attachment: (i) preferential
attachment of incoming edges. A TF choosing between a TG with three incoming edges and a
TG with two incoming edges gains an interaction with the first with probability 0.6 and with the
second with probability 0.4 due to preferential attachment; (ii) preferential attachment of outgoing
edges. When choosing between a TF with three outgoing edges and a TF with one outgoing edge,
a TG gains an interaction with the TF with three edges with probability 0.75 and with the TF
with one edge with probability 0.25 due to preferential attachment. (b) Rewiring: (i) network
prior to rewiring; (ii) edge a is rewired to edge a’. This results in a change in the in-degree of two
TGs but leaves the out-degree of the TF unchanged. Edge b is rewired to edge b, changing the
out-degree of two TFs but leaving the in-degree of the TG unchanged.
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The event probabilities for the in- and out-degree distributions in this model are given in Table

2a. Substituting these into equations (2.4) and (2.5), the in-degree distribution is

nin(k) ∝ k
−λ exp[−αk]

where

α = ln
�

D + µ
−
cis + mµ

−
trans

D + µP
trans

�
,

λ = 1− µ
+
cis + µR

trans

D + µP
trans

(2.11)

This distribution will be approximately exponential unless α is small or λ is large and negative.

That is, unless D + µP
trans � µ

−
cis + µ

−
transm, or D + µP

trans � µ
+
cis + µR

trans. Therefore, we require

µP
trans ∼ µ

−
cis + µ

−
transm. The equilibrium out-degree distribution for this model is

nout(k) ∝ k
−γ exp[−βk]

where

β = ln
�

D + µ
−
cis + µ

−
transK(γ, m)

D + µP
cis − µ

−
transK(γ, m)

�
,

γ = 1− µR
cis + µ

+
trans

D + µP
cis − µ

−
transK(γ, m)

, (2.12)

and K(γ, m) is as in Table 2b. This distribution is a power-law characterized by γ only if β is 0.

This occurs if µ
−
cis = µP

cis − 2µ
−
transK(γ, m). Equation (2.12) then gives γ = 1 − µR

cis+µ+
trans

D+ 1
2 (µ−cis+µP

cis)
,

and the only solutions have γ < 1.

2.3.4 Model 4: degree dependence and preferential attachment

In the final model, we include degree dependence (as described in Model 2) and preferential at-

tachment (as described in Model 3). The event probabilities for this model are given in Table 2a.

Using these with equations (2.4) and (2.6), we find for the in-degree distribution

nin(k) ∝ k
−λ exp[−αk]
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where

α = ln

�
D + µ

−
cis + m

�
1
k

�
µ
−
trans

D + µP
trans

�
,

λ = 1− µ
+
cis + µR

trans

D + µP
trans

(2.13)

This distribution is approximately exponential unless α is small or λ is large and negative. That

is, unless D + µP
trans � µ

−
cis +

�
1
k

�
µ
−
transm, or D + µP

trans � µ
+
cis + µR

trans. Therefore, we require

µP
trans ∼ µ

−
cis +

�
1
k

�
µ
−
transm. The equilibrium out-degree distribution for this model is

nout(k) ∝ k
−γ exp[−βk]

where

β = ln
�

D + µ
−
cis

D + µP
cis

�
,

(D + µ
P
cis)(γ − 1) + µ

R
cis + µ

+
trans = µ

−
transK(γ, m)

�
1 +

D + µP
cis

D + µ
−
cis

�
, (2.14)

and K(γ, m) is as in Table 2b. This distribution is a power-law characterized by γ only if β is 0.

This requires µ
−
cis = µP

cis. Under this condition, the third term in equation (2.14) has solutions

with γ > 1 provided mµ
−
trans > µR

cis + µ
+
trans.

2.4 Discussion

To assess the four models we have presented, we compare their results to empirical observations

from the yeast transcription network. The out-degree distribution of the Saccharomyces cerevisiae

transcription network is best described by a power-law distribution with an exponent γ = 1.5,

while the in-degree distribution is best described by an exponential distribution with exponent

α = 0.4 [83].

Since the exponent of the out-degree distribution for yeast is greater than 1, we conclude

that Models 1 and 3, which do not include degree dependence in the rate of trans-evolution,

cannot account for the observed out-degree distribution of the S. cerevisiae transcription network.

63



CHAPTER 2. EVOLUTION OF TFN DEGREE DISTRIBUTION

However, Models 2 and 4, which include degree dependence in the rate of transcription factor

evolution, can both produce networks with power-law out-degree distributions whose exponent is

γ > 1. Therefore, we conclude that degree dependence in the rate of transcription factor evolution

could be an important factor in producing the structure of the yeast transcription network.

2.4.1 Empirical rates of evolution

We can further distinguish between Models 2 and 4 by referring to empirical data on the rates

of evolution in the yeast transcription network. The rate of gene duplication in yeast is found to

be in the range 1 × 105 - 6 × 105 per Myr [38]. The rate of evolution (gain or loss) of regulatory

interactions is an order of magnitude higher, approximately 36 × 105 per Myr [45]. Evolution of

regulatory interactions may occur due to changes in regulatory proteins (trans-mutations in our

model) or due to changes in cis-regulatory elements. A trans-mutation in our model refers to a

mutation affecting a transcription factor protein only. It does not refer to mutations affecting the

cis-regulatory regions of trans-acting genes. In practice, it is difficult to distinguish between the

effects of the trans- and cis-mutations of our model without much more detailed comparative data.

Studies on the contribution of the evolution of cis-regulatory elements and of trans-acting proteins

to the evolution of gene expression have mixed findings. Variation between yeast strains have been

found to be mainly due to variation in trans-acting proteins by some studies [138, 147, 148], while

this has been contradicted by others [105].

In Model 2, a power-law out-degree distribution is only produced if D � µ
−
cis. If we consider

the case in which trans-evolution is more rapid than cis-evolution, then, given a rate of evolution

of regulatory interactions of 36× 105 per Myr [45] and a rate of gene duplication of range 1× 105 -

6×105 per Myr [38], Model 2 suggests that the loss of regulatory interactions must be approximately

99 per cent due to trans-evolution. Such a disproportionate rate is not consistent with empirical

data on the relative contributions of trans- and cis-change to the evolution of gene expression in

yeast [105, 138, 147, 148]. Therefore, we can reject Model 2, as inadequate to explain the structure

of the yeast transcription network.

2.4.2 Preferential attachment

Model 4 can produce a power-law out-degree distribution provided µ
−
cis = µP

cis. This requirement

means that the rate at which transcription factors lose connections to target genes through cis-

mutations must be balanced by the rate at which they gain new targets through preferential
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attachment. From this we also conclude that preferential attachment for outgoing edges is a

likely factor in producing the observed yeast transcription network. The condition µ
−
cis = µP

cis

is identical to a model in which transcription factors undergo rewiring (figure 2.2b), and suggests

that transcription factors undergo a constant turnover of targets, without net gain or loss. In order

to determine whether preferential attachment among incoming edges occurs, we must consider the

in-degree distribution of Model 4. This is given by equation (2.13), with an exponential exponent,

a, of approximately 0.4. Given a low rate of duplication, equation (2.13) suggests that preferential

attachment of incoming edges at target genes is also likely to be a factor in producing the structure

of the yeast transcription network. Figure 2.3 shows the result of simulations using Model 4, which

confirm that this model can reproduce the observed structure of the yeast transcription network.

There are several mechanisms by which preferential attachment in transcription networks may

occur. One possibility is that different TFs have different “stickiness”, such that those which

are more sticky gain new targets at a higher rate than those which are less sticky. Stickiness is

considered to be an intrinsic property of a TF, resulting from its structure. A distribution of

stickiness amongst different TFs is able to give rise to network evolution identical to that which

results from preferential attachment [92]. Alternatively, preferential attachment may result from

turnover of TF binding sites. Turnover of binding sites occurs when a binding site for one TF

mutates to become a binding site for another TF. Thus there is no net loss or gain of TF binding

sites from the network. However, the rate at which a TF undergoes turnover of binding sites is

proportional to the number of binding sites it has. Thus a form of preferential attachment occurs.

As discussed above, our model suggests that turnover is a likely mechanism driving the evolution

of transcription networks, as our model requires µ
−
cis = µP

cis in order to reproduce the observed

out-degree distribution of the Yeast transcription network.

2.4.3 Evolution via trans-mutation

Our model for loss of interactions through trans-evolution includes two parameters, µ
−
trans, the

rate at which trans-mutations are fixed, and m, the probability each interaction is lost given that

a trans-mutation is fixed. This means that following a trans-mutation a transcription factor will

retain, on average, a fraction 1−m of its interactions. As it is difficult to estimate m, we consider

two important cases: m → 0 and m = 1. In the first case, transcription factors evolve by small

changes, one interaction at a time. In the second case, transcription factors lose all their existing

interactions, and subsequently gain new ones through both cis- and trans-evolution. In this case,
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Figure 2.3: Simulation results. Simulated networks with an expected size of 100 TFs and 100
TGs. Networks have an exponential in-degree and power-law out-degree with α = 0.4 and γ =
1.5. Simulations consist of ensembles of 1000 networks evolved for 106 mutations. Plot is on a
loglog scale. Simulations were run for a range of parameter values. A typical example is shown.
Data points show the degree distributions for simulated networks, solid lines are the predicted
distribution. In-degree is shown in grey. Out-degree is shown in black. The networks were
produced using model 4, including degree dependence in the rate of trans-evolution and preferential
attachment. Here, the rate of duplication is D = 0.26, the rate of gain of interactions through
trans-evolution is µ

+
trans = 0.04, and through cis-evolution is µ

+
cis = 0.31. The rate of loss of

interactions through trans-evolution is mµ
−
trans = 0.25 and through cis-evolution is µ

−
cis = 0.14.

the TF may be seen as completely losing its old function before acquiring a new function. When

m → 0, equation (2.14) for the out-degree distribution in Model 4 may be used to obtain the

approximation

γ = 1 +
mµ

−
trans − µR

cis − µ
+
trans

D + µP
cis

(2.15)

Similarly, if m = 1, equation (2.14) may be used to obtain
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γ =
1
2



1− µR
cis + µ

+
trans

D + µP
cis

+

��
1− µR

cis + µ
+
trans

D + µP
cis

�2

+
4µ

−
trans

D + µP
cis



 (2.16)

Therefore, given measurements of the relative rates of cis- and trans-evolution, it would be possible

to distinguish between these two cases.

Given values for the other parameters, the value of µ
−
trans required in equation (2.16) to produce

γ = 1.5 will be greater than the value of µtrans required in equation (2.15) to produce the same

distribution. The rate at which interactions are lost through trans-evolution is proportional to

mµ
−
trans. Therefore, the case m → 0 is consistent with a slower rate of loss of interactions though

trans-evolution than the case m = 1. This can be compared with recent work [44], suggesting

that gene network evolution may be characterized by a 2-2-1 pattern (net gain of two genes and

two edges along with loss of one edge). This suggests that loss of edges occur less frequently than

gains. In our model, the ratio of gain of two edges to loss of one edge is more consistent with the

case m → 0 than with the case m = 1, since when m → 0 edges are lost more slowly through trans

mutation as compared to gains.

2.4.4 Alternative forms of degree dependence

We have chosen to consider a form of degree dependence in the rate of trans mutation such that

the mean and variance in the number of outgoing edges lost by a TF following trans mutation is

independent of k. This is in contrast to the case without degree dependence, in which the mean and

variance in the number of edges lost is proportional to k. Whilst it is natural to contrast these two

cases, it is clear that other forms of degree dependence are possible. One case of particular interest

is to apply Kimura’s formula for the probability, u, of fixation of a mutant gene in a population

[64]. This is given by

u =
s

1− exp[−Ms]
(2.17)

for haploid populations with small s. Here s is the selection coefficient and M is the effective

population size. Effective population size is the size of an ideal population that would show the

same amount of dispersion of allele frequencies as that observed in the population being considered.

It is generally much smaller than the number of individuals in a population. If we assume that
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loss of each outgoing edge due trans mutation has a small deleterious effect σ, then the total

deleterious effect of a trans mutation which results in the loss of i outgoing edges is given by

s = −σi. Combining equation (2.17) with equation (2.1) for the probability that a TF with k

outgoing edges loses i edges, we have that the mean number of edges, k̄, lost by a TF following

trans mutation is

k̄ =

�i=k
i=0

k!
i!(k−i)!m

i(1−m)k−i σi
exp[Mσi]−1 i

�i=k
i=0

k!
i!(k−i)!m

i(1−m)k−i σi
exp[Mσi]−1

(2.18)

In general this cannot be solved. However, if we take Mσ � 1 we can write σi
exp[Mσi]−1 ≈

σi exp[−Mσi]. Using this, equation (2.18) can be solved to give

k̄ = 1 +
(k − 1)m

exp[Mσ](1−m) + m
(2.19)

Since Mσ � 1, this gives k̄ ≈ 1, and is approximately independent of k. Under these assumptions

all TFs will tend to undergo trans mutations which result in the loss of a single outgoing edge at

a time, independent of their out-degree, k. This has the same qualitatively effect on how trans

mutations affect the network, as does assuming degree dependence of the form used in models 2

and 4. It is the subject of further work to investigate the effects of degree dependence that arise

from Kimura’s formula in the more general case, when effective populations are small or selective

coefficients are large.

2.4.5 Growing and shrinking networks

We have considered networks in which the rates of gene duplication and deletion balance. However,

it is well known that duplication growth models of networks can produce power-law distributions

[13, 19, 44, 93]. We have not considered growing networks for two reasons. First, the observed low

rate of gene duplication in yeast means that genes will undergo rewiring events at a rate that is 10-

fold greater than the rate of duplication events. Second, the observed rates of gene duplication and

deletion are comparable [38] and suggests that the yeast transcription network is not undergoing

constant growth. Therefore, any model that relies on network growth by duplication to reproduce

the observed degree distributions in the yeast transcription network is not consistent with the data.

We have also investigated the case of shrinking networks. Although it is obvious that real
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networks cannot be continuously shrinking, the recent whole genome duplication in yeast [62] means

that there have been a great many redundant genes that have been lost resulting in an increased

rate of gene deletion. Thus, the network has recently been undergoing a period of evolution in

which it has been shrinking. We have considered a model in which a network is shrinking (see

Appendix A). We show that this model is not able to reproduce the observed structure of the

yeast transcription network without both degree dependence in the rate of trans-evolution and

preferential attachment. Therefore, this model does not alter our conclusions.

2.4.6 Autoregulation

In the analysis above, we neglected autoregulation of transcription factors. Autoregulation alters

the consequences of transcription factor duplication. When an autoregulating transcription factor

with k outgoing edges is duplicated, it gains an edge and becomes a transcription factor with

k + 1 outgoing edges. In our model, we assume that the transcription factors regulate each of the

possible N targets with equal probability. Therefore, the probability that a transcription factor of

out-degree k autoregulates is k/N . So the rate at which new transcription factors with out-degree

k are produced due to duplication of autoregulators is (k− 1)D
N nout(k− 1), and the rate at which

transcription factors with out-degree k are lost due to duplication of autoregulators is k
D
N nout(k).

Therefore, duplication of autoregulators provides a mechanism for a form of preferential attach-

ment, since it results in transcription factors gaining new outgoing edges at a rate proportional

to their out-degree. However, the rate at which this preferential attachment occurs is ∼ (1/N)

times the rate of gene duplication, D. Since N is large, duplication of autoregulating transcription

factors is therefore expected to have little impact on the equilibrium degree distributions produced

by our models. To verify these arguments, we carried out simulations in which autoregulation was

permitted in each of the four models (data not shown). The results showed that autoregulation had

only a minor quantitative effect on the outcome of the models provided the rate of duplication D

was not high. We also note empirical findings in the yeast transcription network, which show that

only 12 out of 131 (9 per cent) of transcription factors admit autoregulation [87]. Given this, the

rate at which new edges are produced through duplication of autoregulating transcription factors

is approximately an order of magnitude less than the rate of gene duplication. Even at this rate

of autoregulation, duplication of autoregulating transcription factors will not have a significant

impact on the degree distribution of the network.
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2.5 Conclusion

We have compared four simple models for the evolution of transcription networks. Genes are sep-

arated into regulatory transcription factors and non-regulatory target genes, which evolve through

mutation of trans- and cis-elements, as well as through deletion and duplication. When rates of

evolution are constant across the network, our model can reproduce the exponential in-degree and

power-law out-degree distributions characteristic of transcription networks. However, this model

cannot produce networks with the power-law exponent observed in- the out-degree of the yeast

transcription network. It is only when the effects of variation in the rate of protein evolution

are taken into account that the correct degree distributions are fully reproduced. This variation

takes two forms. First, degree dependence in the rate of trans-evolution, meaning that the more

regulatory interactions a transcription factor participates in, the more slowly it undergoes tran-

sevolution. Second, preferential attachment, meaning that genes gain new interactions at a rate

proportional to the number of interactions they already participate in. The requirement for pref-

erential attachment can be relaxed if the rate of evolution through gene duplication and deletion is

high compared to the rate of cis-evolution. We have proposed a model in which the rate of trans-

evolution among transcription factors varies in inverse proportion to the number of targets they

regulate. The true rate of trans-evolution depends on the rate of evolution of gene sequence and

gene expression [122]. The relationship between the evolution of gene expression, gene sequence

and position in the transcription network is likely to be complex and is not fully understood [132].

Our model suggests that variation in the rate of trans-evolution with the position of a gene in an

interaction network significantly affects the structure of that network. We have considered these

effects in relation to the structure of transcription networks, although they may also play a role in

shaping the structure of protein interaction networks and metabolic networks.

2.6 Appendix A

2.6.1 Derivation of Equilibrium Degree Distributions

In order to find the equilibrium in- and out-degree distributions we must set the left hand side of

equations (2.2) and (2.3) to zero. Equation (2.2) is straightforward to solve. It’s solutions satisfy

equation (2.4)

In order to solve equation (2.3) we make an approximation for the term
�N

j=k Πout
TF−(j, k)nout(j, t)−

�k
j=0 Πout

TF−(k, j)nout(k, t), which describes loss of interactions through trans evolution. For the
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model without degree dependence in the rate of trans evolution (Model 1 and Model 3), Πout
TF−(j, k)

is given by

Πout
TF−(j, k) = µ

−
trans

j!
k!(j − k)!

m
j−k(1−m)k

. (2.20)

By assuming a solution of the form nout(k) = Aoutk
−γ , where Aout is a normalization constant for

the out-degree distribution, we can use the approximation

N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
transnout(k)(1−m)γ−1 − µ

−
transnout(k) + O(k−(γ+1))

=
µ
−
trans

2(γ − 1)
�
1− (1−m)γ−1

�
[(k + 1)nout(k + 1)− (k − 1)nout(k − 1)] + O(k−(γ+1)) (2.21)

Observe that, when γ = 1 the right hand side of equation (2.19) is zero. To derive this, first note

from equation (2.18) that
�k

j=0 Πout
TF−(k, j)nout(k) = µ

−
transnout(k). We use Lemma 2 of [19] to

show that
�N

j=k Πout
TF−(j, k)nout(j) = µ

−
transnout(k)(1−m)γ−1 + O(k−(1+γ). To see this, we have

N�

j=k

Πout
TF−(j, k)nout(j) = Aoutµ

−
trans

N�

j=k

�
j

j − k

�
m

j−k(1−m)k
j
−γ

= Aoutµ
−
transk

−γ(1−m)k
N�

j=k

�
j

j − k

�
m

j−k

�
k

j

�γ

= Aoutµ
−
transk

−γ(1−m)k
�
1 + O(k−1)

� N�

j=k

�
j − γ

j − k

�
m

j−k

= Aoutµ
−
transk

−γ(1−m)k
�
1 + O(k−1)

� N−k�

i=0

�
i + k − γ

i

�
m

i

= Aoutµ
−
transk

−γ(1−m)k
�
1 + O(k−1)

�
(1−m)γ−k−1

= µ
−
transnout(k)(1−m)γ−1

�
1 + O(k−1)

�
(2.22)

valid for N � k (in fact, exactly valid in the limit N →∞). We now have
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N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
transnout(k)(1−m)γ−1 − µ

−
transnout(k) + O(k−(γ+1)). (2.23)

Using our assumed solution form we can also write

(k + 1)nout(k + 1)− knout(k) + knout(k)− (k − 1)nout(k − 1)

= 2(1− γ)nout(k) + O(k−(γ+1)) (2.24)

Equations (2.20) and (2.21) combine to give equation (2.18). For large k we can neglect terms

O(k−(γ+1)) and define K(γ, m) = 1
2(γ−1)

�
1− (1−m)γ−1

�
. This allows us to write

N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
transK(γ, m) [(k + 1)nout(k + 1)− (k − 1)nout(k − 1)] , (2.25)

which is the form used in equation (2.5).

For the model including degree dependence in the rate of trans evolution (Models 2 and 4),

Πout
TF−(j, k) is given by

Πout
TF−(j, k) = µ

−
trans

j!
k!(j − k)!

mj−k(1−m)k

j
(2.26)

Once again assuming a solution of the form nout = Aoutk
γ , we can use the approximation
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N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
trans

nout(k)
k

(1−m)γ − µ
−
trans

nout(k)
k

+ O(k−(γ+2))

=
µ
−
trans

2γ
(1− (1−m)γ) [nout(k + 1)− nout(k − 1)] + O(k−(γ+2)) (2.27)

To derive this, first note that in this case
�k

j=0 Πout
TF−(k, j)nout(k) = µ

−
trans

nout(k)
k . Again we use

Lemma 2 of [19] to show that
�N

j=k Πout
TF−(j, k)nout(j) = µ

−
trans

nout(k)
k (1 −m)γ + O(k−(2+γ). To

see this, we have
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= Aoutµ
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1 + O(k−1)
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= Aoutµ
−
transk
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= µ
−
trans
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(1−m)γ
�
1 + O(k−1)

�
(2.28)

valid for N � k (in fact, exactly valid in the limit N →∞) We now have

N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
trans

nout(k)
k

(1−m)γ − µ
−
trans

nout(k)
k

+ O(k−(γ+2)). (2.29)

Using our assumed solution form, we can also write
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nout(k + 1)− nout(k) + nout(k)− nout(k − 1)

= 2γ
nout(k)

k
+ O(k−(γ+2)) (2.30)

Equations (2.26) and (2.27) combine to give equation (2.24). For large k we can neglect terms

O(k−2+γ) and higher, and define K(γ, m) = 1
2γ (1− (1−m)γ). This allows us to write

N�

j=k

Πout
TF−(j, k)nout(j)−

k�

j=0

Πout
TF−(k, j)nout(k)

= µ
−
transK(γ, m) [nout(k + 1)− nout(k − 1)] , (2.31)

which is the form used in equation (2.6).

2.6.2 Solution for in- and out-degree Distributions

The procedure used to calculate the equilibrium degree distributions is the same for all four models.

The method is illustrated for Model 1. The solution to equation (2.2) for the in-degree distribution

of this model, using the incoming edge event probabilities from Table 2, gives an equilibrium degree

distribution

nin(k) = Ain

Γ
�

µ+
cis+µ+

trans

D + k

�

Γ(1 + k)

�
D

D + µ
−
cis + mµ

−
trans

�k

(2.32)

where Ain is a normalization constant. Following [19] we can write

Γ(k − c)
Γ(k)

=
�
1 + O(k−1)

�
k
−c (2.33)

For large k, terms O(k−1 can be neglected, and equation(2.29) can be written in the form given

in equation (2.7).

The solution to equation (2.5) for the out degree distribution of this model, using the outgoing
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edge event probabilities from Table 2, gives an equilibrium degree distribution

nout(k) = Aout

Γ
�

µ+
cis+µ+

trans

D−µ−transK(γ,m)
+ k

�

Γ(1 + k)

�
D − µ

−
transK(γ, m)

D + µ
−
cis + µ

−
transK(γ, m)

�k

(2.34)

Using the approximation given in equation (2.30), this can be written in the form given in equation

(2.8). The same procedure gives equations (2.9)-(2.14), the solutions to the remaining three models.

2.6.3 Shrinking Networks

We now consider a model of a shrinking network, in which the rate of gene deletion is greater

than the rate of gene duplication. This model is appropriate as a model of transcription network

evolution immediately following a whole genome duplication, such as that which occurred in yeast

around 100 million years ago [62]. We use a rate of gene duplication D+, and gene deletion D−,

such that

D
− = D

+ + ∆D (2.35)

where ∆D > 0. Firstly note that, the rate at which genes gain new edges through duplication

of other genes is kD+, and the rate at which they lose edges through deletion of other genes is

kD− = kD+ + k∆D. The rate at which new TFs of out-degree k are produced by this model is

D+nout(k), and the rate at which they are lost is D−nout(k). Therefore TFs with out-degree k

are lost at a rate ∆Dnout(k). Similarly, TGs with in-degree k are lost at a rate ∆Dnin(k).

To see that this term is not sufficient produce an out-degree distribution with exponent γ > 1,

we make the following approximation. Assuming an out-degree of the form nout(k) = Aoutk
−γ we

can write using equation (2.21)

∆Dnin(k) =
∆D

2(γ − 1)
[(k + 1)nout(k + 1)− (k − 1)nout(k − 1)] + O(k−(1+γ) (2.36)

Using this with Model 1, we now define K(γ, m) = 1
2(γ−1)

�
1 + ∆D

µ−trans

− (1−m)γ−1
�
. Then the

solution for the out-degree distribution of this model can be written as
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nout(k) = Aout

Γ
�

µ+
cis+µ+

trans

D+−µ−transK(γ,m)
+ k

�

Γ(1 + k)

�
D− − µ

−
transK(γ, m)

D+ + µ
−
cis + µ

−
transK(γ, m)

�k

(2.37)

which can be approximated to

nout(k) ∝ k
−γ exp[−βk]

where

β = ln
�

µ
−
cis + D− + µ

−
transK(γ, m)

D+ − µ
−
transK(γ, m)

�
,

γ = 1− µ
+
cis + µ

+
trans

D+ − µ
−
transK(γ, m)

(2.38)

A power-law degree distribution requires β ≈ 0. This occurs if µ
−
cis + ∆D = −2µ

−
transK(γ, m). If

D+ > D−, K(γ, m) is always positive and this equality cannot be satisfied. Therefore shrinking

networks cannot produce networks with a power-law degree distribution.

2.6.4 Growing Networks

For growing networks we may use the same model developed in the previous section, with ∆D < 0.

In this case we can have K(γ, m) < 0 and networks with a power-law out-degree distribution can

be produced.

Moreover, from equation (2.35), we can see that if −µ
−
transK(γ, m) > µ

−
cis +D−, networks with

a power-law degree distribution with γ > 1 can be produced. However, such a model requires

continuous network growth. Once the network stops growing, the equilibrium degree distribution

will move away from a power-law, to that given by Model 1. In order to sustain a power-law

out-degree distribution with exponent γ > 1 throughout evolution, degree dependence in the rate

of TF evolution is required.
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Chapter 3

Neutral Evolution of Cooperative

TF Binding

Transcription regulation can occur in a number of ways. The most basic mechanism is the binding

of a single transcription factor to a specific binding site in the promoter region of a regulated gene.

In addition to this, transcription factor proteins may interact to facilitate or prevent each other

binding to regulated genes. Observations in the yeast transcription network have revealed that

the evolution of such pairs of co-regulating transcription factors can have complex dynamics. In

particular, the yeast sex determination network appears to have undergone a significant degree of

neutral rewiring. This consists of the gain of a protein-protein interaction between co-regulating

transcription factors, accompanied by changes to the binding sites present at multiple target genes.

Despite these changes, the function of the network has remained unchanged. We constructed a

model for the neutral evolution of pairs of transcription factors which co-regulate sets of target

genes. We assumed transcription factors were able to to gain a protein-protein interaction, which

allowed them to co-operatively bind to their targets. This was assumed to occur through a trans

mutation at one of the transcription factors. In addition, we assumed that cis mutations, which

changed the strength of specific binding sites for the transcription factors at each of the regulated

genes, were able to occur. We showed that the probability of a protein-protein interaction becoming

fixed in a population follows a (soft) threshold function in the number of regulated genes. When the

number of regulated genes is below the threshold, a protein-protein interaction is almost entirely

absent from the population. When it is greater than the threshold, a protein-protein interaction is

close to fixation. The position of the threshold is determined by the rate of cis and trans mutations,
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as well as the size of the population being considered. These results are used to account for the

observed neutral rewiring of the yeast transcription network.

3.1 Background

Transcription regulation lies at the heart of many of the most interesting and important evolution-

ary questions currently facing biologists. It is key to determining the expression levels of individual

genes, and the co-expression of sets of genes. Changes to regulatory interactions are capable of pro-

ducing changes to gene expression on the scale of a single gene or of a large fraction of the genome

[52]. Developing an understanding of the mechanisms through which transcription networks evolve

is therefore an important challenge.

Evolution of transcription regulation occurs through a variety of mechanisms. A great deal of

debate has focused on the relative contributions of evolutionary change of regulatory binding sites in

promoter regions (cis evolution) [96, 97] and of the regulatory proteins themselves (trans evolution)

[73, 126, 125, 136]. Some authors have claimed a predominance of cis-regulatory changes because

of the expectation that trans mutations will tend to have negative pleiotropic effects, whereas cis

mutations do not [16, 96, 115, 136, 142]. However, a number of recent studies have challenged

this position and reported many cases in which trans evolution, along with cis evolution, plays an

important role, [70, 73, 125].

Some of the most striking evidence for the role played by changes in trans has been provided

by studies of single-celled yeasts [124, 126, 125]. These studies have focused on the evolution of

combinatorial gene regulation, in which pairs of transcription factors co-bind to sets of target genes.

Co-regulation is found to occur either (i) through the presence of binding sites for both transcription

factors in the promoter regions of target genes, or (ii) through trans interactions between the

two transcription factors which allows one to facilitate the binding of the other at the target

genes. Comparison of regulatory circuits in the ascomycete yeast species Saccharomyces cerevisiae,

Kluyveromyces lactis and Candida albicans reveal substantial changes to the transcription factors

involved in co-regulation, as well as to the target genes they regulate [125]. These changes have

involved the loss and gain of transcription factor binding sites (cis evolution), as well as the loss and

gain of trans interactions between transcription factors (trans evolution). The changes observed

in yeast transcription circuits are not necessarily correlated with changes to the regulatory logic of

those circuits rewiring of some regulatory interactions has occurred, but the input and output of

the network has remained the same. This leads to the suggestion that such rewiring of transcription
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networks may occur neutrally [124, 126].

In this chapter, I consider how neutral evolution of transcription circuits occurs when sets

of target genes are co-regulated by a pair of transcription factors. In contrast to most models of

transcription network evolution, we include population genetic details along with details of network

structure in our model. Such details are necessary if the evolution of gene networks through non-

adaptive processes is to be properly characterized and understood [72, 116]. I use this model to

investigate the conditions under which a trans interaction between two co-regulating transcription

factors is maintained in a population and how this depends on the number of target genes co-

regulated. We then investigate how the presence or absence of a trans interaction between co-

regulating transcription factors alters the level of genetic variation in a population and the ability

of a species to adapt to changing environments. We determine how population genetic details,

such as population size and rates of deleterious mutations influence the evolution of co-regulated

transcription networks. I characterize the dynamics of neutral evolution in such networks, that is

how a change to one part of a network can have knock on effects, resulting in changes to other

parts. We also investigate how mutations in cis and in trans interact, and determine whether

changes in cis can drive changes in trans and vice versa. I finally apply this analysis to account

for differences in the way genes are co-regulated in related yeast species.

3.2 Model

3.2.1 Regulation of a Single Target

We model the evolution of cooperative binding between a pair of transcription factors, A and B

in a haploid organism. We assume that the trans interaction allows A to cooperatively bind B at

the target genes of A. Therefore when a trans interaction is present both A and B bind to target

genes which have an unmutated binding site for A, even if the binding site for B has a mutation.

We assume that the trans interaction is asymmetrical. Therefore B is unable to bind A to genes

with an unmutated binding site for B, even when a trans interaction between the two is present

(figure 3.1).

To avoid complications of modelling the separate evolution of A and B, we treat the interaction

between A and B as a single locus, referred to as the trans locus. Two alleles are associated with

the trans locus: t+ when the trans interaction between A and B is present and t− when it is

absent. Initially we discuss a system in which only a single target gene is regulated (figure 3.1).
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We are interested in a system in which both transcription factors A and B are required to regulate

the target gene. This may occur in two ways. i) When a trans interaction is absent, A and B must

bind to the target independently. This means that the target gene must have unmutated binding

sites for both A and B. ii) When a trans interaction is present, A and B act cooperatively. This

means that the target gene only requires an unmutated binding site for A.

We treat the structure of binding sites in the promoter region of the target gene as a single

locus. This is referred to as the cis locus. The cis locus has four possible alleles associated with the

presence or absence of a mutation at a binding site for A and/or B. a+ corresponds to a binding

site for A which does not have a mutation, while a− corresponds to a binding site with a mutation.

Similarly b+ corresponds to an unmutated binding site for B being present, while b− corresponds

to a mutated binding site. The four alleles associated with the cis locus are denoted a+b+, a+b−,

a−b+ and a−b−. Our model for a single gene therefore consists of two loci.

3.2.2 Mutation and Selection

Mutations may occur in our model at both the trans and the cis loci. Mutations resulting in

the gain of a trans interaction (from allele t− to allele t+) occur at rate µ)trans
+, and loss of

this interaction (from allele t+ to allele t−) occur at rate µ)trans
−. At the cis locus, deleterious

mutations at a binding site for A (from a+ to a−) occur at rate µ−a , whilst back mutations at a

binding site for A (from a− to a+) occur at rate µ+
a . Similarly, deleterious mutations and back

mutations at a binding site for B occur at rate µ
−
b and µ

+
b respectively.

The fitness of different genotypes is given in Table 3.1. We assume that when a trans interaction

is absent, allele a+b+ has fitness w = 1. When a binding site for either A or B (or both) has a

mutation, a+b−, a−b+ or a−b− we assume a fitness reduction of s. When a trans interaction is

present, we also assume that allele a+b+ has fitness w = 1. When only a binding site for B has a

mutation, a+b−, we assume that cooperative binding between A and B prevents any loss of fitness.

When a binding site for A has a mutation, a−b+ or a−b− we assume a fitness reduction of s. This

fitness scheme is laid out in Table 3.1. It is clear from this that the presence of a trans interaction

buffers against mutations to a binding site for B.

3.2.3 Regulation of Multiple Targets

We wish to consider situations in which multiple target genes are co-regulated by the same pair

of transcription factors. We assume that A and B co-regulate N target genes. Each target gene
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t+ t−

a+b+ 1 1

a+b− 1 1− s

a−b+ 1− s 1− s

a−b− 1− s 1− s

Table 3.1: Fitness scheme for regulation of a single target gene in a population of asexual, haploid

organisms

µa
!

µa
!

µb
!

µb
!

µb
+

µtrans
!µtrans

+

Figure 3.1: Selection scheme used in this model for regulation of a single target. Addition of a trans
interaction between TF A (white semicircle) and B (black semicircle), buffers against changes in
cis to the binding site of B. The possible genotypes as depicted here are (from top left, clockwise)
- t−a−b+, t−a+b+, t−a+b−, t+a+b−, t+a+b+, t+a−b+. Unfit genotypes are indicated with a cross.
Possible mutations, and the rates at which they occur, are indicted with black arrows. Back
mutations form unfit genotypes to fit genotypes are not indicated, since they are neglected in our
analysis.

has binding sites for A or B that are independent of the other N − 1 target genes. If a trans

interaction is present between A and B, each target gene is free to suffer a mutation at a binding

site for B without a reduction in fitness. Each of the target genes may have four different genotypes

associated with its promoter region (corresponding to the presence or absence of a mmutation at

binding sites for A and B). Since these are assumed to be independent, this gives 22N possible

genotypes associated with the promoter regions of the target genes. In addition, there are two

possible genotypes associated with the trans locus. The space of possible genotypes, G, therefore

has size |G| = 22N+1.

We define the network of possible genotypes, with vertices corresponding to a genotype and

edges corresponding to possible mutations between genotypes. We may also define the subset g ∈ G
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of genotypes which have maximum fitness. This is referred to as the neutral genotype space, since

each genotype in the space can be adopted without loss of fitness. In our model, this corresponds

to genotypes in which all N target genes are regulated properly by both transcription factors A and

B. The network of neutral genotypes then has vertices corresponding to fit genotypes and edges

corresponding to possible mutations between fit genotypes. When a trans interaction is present,

there are 2N possible fit genotypes, since there are two possible alleles (a+b+ and a+b−) at each of

the N target genes. When a trans interaction is absent there is only one fit allele (a+b+) at each

of the N target genes. The size of the neutral genotype space, g, is therefore |g| = 2N + 1.

Rather than following all genotypes, we simplify by calculating the frequency of genotype classes

in which k target genes have a mutation at a binding site for B. This is justified by the assumption

that cis mutation rates are the same for all N regulated target genes, and the fitness effect of a

mutation is the same for any locus. A genotype with k mutations, mutates to a genotype with k+1

mutations at rate (N − k)µ−b and to a genotype with k1 mutations at rate kµ
+
B . The number of

genotypes belonging to the neutral space is thus reduced to g = N + 2. The neutral space consists

of N + 1 genotypes in which a trans interaction is present and between 0 and N target genes have

a mutation, and one genotype in which a trans interaction is absent. We now use this model to

determine the circumstances under which a trans interaction will become fixed in a population.

3.3 Results

3.3.1 Infinite Population Model

We determine the distribution of genotypes over g in an infinite population of haploid, asexual

organisms. Let the fraction of the population lying on g at equilibrium be P , and the mean fitness

of the population be w̄. At equilibrium, we have

P =
�ν�
w̄

P + Q (3.1)

where �ν� is the fraction of P , that, under mutation, remains on g between successive generations

(i.e the fraction of P which do not fall off g through mutation). Q is the rate at which individuals

outside of g mutate onto g [127]. We assume that any genotype lying outside g has markedly lower

fitness than those belonging to g, and that the mutation rates are small enough that the majority

of the population lies on g [127]. Therefore we may assume that the contribution of Q to equation
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0 1 2 k

µb
+ 2µb

+

3µb
+

kµb
+

Nµb
! (N !1)µb

! (N ! 2)µb
!

(N ! k !1)µb
!

0 1 2 k

t +

t !

µtrans
+ µtrans

! µtrans
! µtrans

! µtrans
!

Nµb
!

Figure 3.2: Regulation of multiple targets. Ovals indicate possible genotypes. Top row indicates
genotypes with a trans interaction, bottom row indicates genotypes lacking a trans interaction.
Numbers indicate the number of target genes with a mutation in cis. White ocals are fit genotypes
(those which lie on g), grey ovals indicate unfit genotypes. Black arrows give possible cis mutations
and the rates at which they occur. Red arrows indicate possible trans mutations and the rates at
which they occur. Back mutations form unfit genotypes to fit genotypes are not indicated, since
they are neglected in our analysis.

(3.1) is sufficiently small that it can be neglected. In this case, the mean fitness of the population

is w̄ = �ν�. For the neutral network we are considering, �ν� can be calculated simply as follows.

Let P− be the fraction of P that lacks a trans interaction, and P+(k) be the fraction of P that has

a trans interaction and in which k targets have a mutation at a binding site for B. We then have

�ν� = 1−Nµ
−
a −Nµ

−
b P− − µ

−
trans

N�

k=1

P+(k) (3.2)

Where Nµ−a + Nµ
−
b P− + µ

−
trans

�N
k=1 P+(k) is the fraction of P which mutates off g. The first

term comes from mutations at binding sites for A. The second term comes from individuals which

lack a trans interaction, undergoing mutations at a binding site for B. The third term comes from
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individuals which have a trans interaction and in which at least one target has a mutation at a

binding site for B, undergoing a mutation resulting in the loss of the trans interaction between A

and B.

The equation for the evolution of P− can then be written as follows

w̄P
�

− = P−(1−Nµ
−
a −Nµ

−
b − µ

+
trans) + µ

−
transP+(0) (3.3)

Similarly, the equation for the evolution of and P+(k) can be written as

w̄P
�

+(0) = P+(0)(1−Nµ
−
a −Nµ

−
b − µ

−
trans) + µ

+
b P+(1) + µ

+
transP− (3.4)

for k = 0 and

w̄P
�

+(k) = P+(k)(1−Nµ
−
a − (N − k)µ−b − kµ

+
b − µ

−
trans)

+(k + 1)µ+
b P+(k + 1) + (N − k + 1)µ−b P+(k − 1) (3.5)

for k > 0.

In order to solve this, we write P+(k > 0) =
�N

k=1 P+(k), and take the sum of both sides of

equation (3.5) to give

w̄P
�

+(k > 0) = P+(k > 0)(1−Nµ
−
a − µ

−
trans)− µ

+
b P+(1) + Nµ

−
b P+(0) (3.6)

We now make the simplifying assumption that µ
+
b P+(1) = 0. This is valid provided that only

a small fraction of the population lies at P+(1) (see Appendix B). Therefore equations (3.4) and

(3.6) can be written as

w̄P
�

+(0) = P+(0)(1−Nµ
−
a −Nµ

−
b − µ

−
trans) + µ

+
transP− (3.7)
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and

w̄P
�

+(k > 0) = P+(k > 0)(1−Nµ
−
a − µ

−
trans) + Nµ

−
b P+(0) (3.8)

Equations (3.3), (3.7) and (3.8) can now be solved explicitly to find the equilibrium distribution

of the population on g. We calculate the frequency of a trans interaction between A and B in the

population, P+ =
�N

k=0 P+(k). This gives

P+ =
µ

+
trans

µ
+
trans + µ

−
trans −Nµ

−
b

for µ
−
trans ≥ Nµ

−
b and

P+ = 1 (3.9)

otherwise. Equation (3.9) gives a good approximation for the frequency of the trans interaction in

the population, for values of µ
+
cis ≤ µ

−
cis (figure 3.1).

Equation (3.9) says that the frequency of the trans interaction between the two transcription

factors A and B follows a threshold function in N . If the number of target genes (N) is greater than

the threshold, N >
µ−trans

µ−b
, then the trans interaction between A and B is fixed in the population.

If the number of target genes is less than the threshold, the trans interaction is lost from the

population. When the number of target genes is greater than the threshold, such that the trans

interaction is fixed in the population, the equilibrium genotype distribution is given by

P+(k) =
�

N

k

� �
µ
−
b

µ
+
b + µ

−
b

�k �
µ

+
b

µ
+
b + µ

−
b

�N−k

(3.10)

This is a binomial distribution. Therefore the mean number of target genes which have a

mutation at a binding site for B in the population is given by the mean of the distribution, µ−b
µ+

b +µ−b
.
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Figure 3.3: Frequency of trans interaction in an infinite population. Figure shows the variation in
the frequency of the trans interaction with the number of target genes N . The relative mutation
rates used are µ

−
b = 0.1µ

−
trans (resulting in a threshold at N = 10) and µ

+
trans = 0.1µ

−
trans. The

solid line shows the frequecy of a trans interaction given by equation (3.9). Points show numerical
solutions to equations (3.3)-(3.5). Squares show a mutation rate of µ

+
b = µ

−
b and circles show a

mutation rate of µ
+
b = 0.1µ

−
b .

3.3.2 Small Population Model

The results above apply to infinite populations, but also hold for large populations in which the

product of the population size and the mutation rate is much greater than one; i.e. MµT � 1 [127],

where µT is the total rate at which a particular genotype undergoes a mutation. In this model

we may take µT = Nµ−a + Nµ
−
b + µ

−
trans as the maximum rate at which any genotype undergoes

mutation. This follows, since in general the rate of mutations resulting in wakening of a binding

site or loss of a trans interaction, are greater than the rate of mutations resulting in strengthening

of a binding site of gain of a trans interaction; i.e. µ−a > µ+
a , µ

−
b > µ

+
b and µ

−
trans > µ

+
trans.

We now consider the evolution of small populations, in which MµT � 1. When this condition

is satisfied, the entire population converges onto a single genotype [127]. In this case we can model

neutral evolution as the probability that the entire population moves from its current genotype

to a neighbouring genotype on g, with a probability determined by the rate of mutation between

those two genotypes. Deleterious mutations, resulting in the population moving off g, occur with

probability zero. This assumes that deleterious mutations never become fixed in the population.
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Let π− be the probability that the population has a genotype that lacks a trans interaction,

and π+(k) be the probability that the population has a genotype with a trans interaction, and in

which k of N target genes have lost a binding site for B. Since we assume only mutations between

genotypes belonging to g occur, the genotype of the population evolves according to

π
�

− = π−
�
1− µ

+
trans

�
+ µ

−
transπ+(0) (3.11)

for genotypes lacking a trans interaction and

π+(0)
�
= π+(0)

�
1−Nµ

−
b − µ

−
trans

�
+ µ

+
b π+(1) + µ

+
transπ− (3.12)

for genotypes with a trans interaction and k = 0, and

π+(k)
�
= π+(k)

�
1− kµ

+
b − (N − k)µ−b

�
+ (k + 1)µ+

b π+(k + 1) + (N − k + 1)µ−b π+(k − 1) (3.13)

for genotypes with a trans interaction and k > 0.

Equations (3.11)-(3.13) can be solved explicitly to find the equilibrium probability distribu-

tion (see Appendix B). The probability, π+ =
�N

k=0 π+(k), that the population contains a trans

interaction between A and B is

π+ =

µ+
trans

µ−trans

�
1 + µ−b

µ+
b

�N

1 + µ+
trans

µ−trans

�
1 + µ−b

µ+
b

�N (3.14)

Equation (3.14) is a sigma function in the number of TGs, N . This function is characterized by

threshold-like behaviour (figure 3.2).

The threshold occurs at the value of N , Nthresh, for which π+ = 0.5. Nthresh, is given by

Nthresh =
ln

�
µ−trans

µ+
trans

�

ln
�
1 + µ−b

µ+
b

� (3.15)
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Figure 3.4: Frequency of trans interaction in a small population. Figure shows the variation in
the frequency of the trans interaction with the number of target genes N . Solid line indicates
the stationary distribution, given in equation (3.14). Circles indicate the results of simulations,
using 1000 populations of 10000 individuals, with MµT ≈ 0.1. Values of µ

−
trans = 1000µ

+
trans and

µ
−
b = µ

+
b , to give a value of Nthresh = 10 and ∆N = 3.

The steepness of the sigma function, and therefore the sharpness of the threshold behaviour, can

be found by determining the slope of equation (3.14) at N = Nthresh. This yields

����
dπ+

dN

����
N=Nthresh

=
1
4

ln
�

1 +
µ
−
b

µ
+
b

�
(3.16)

The range of N , ∆N , over which the sigma function moves from being close to zero, to being close

to 1, is given by ∆N = 4

ln

„
1+

µ−
b

µ+
b

« . When N < Nthresh the probability of a trans interaction being

present in the population is low, and tends to zero when N < Nthresh− 1
2∆N . When N > Nthresh

the probability that a trans interaction is present in the population is high, and tends to 1 when

N > Nthresh + 1
2∆N .

We have shown that the probability of a trans interaction being present is a sigma function

in the number of TGs, N . The threshold above which a trans interaction is likely to be present

depends both on the ratio of forward and back mutations in cis, and on the ratio of the rates of
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gain and loss of a trans interaction between A and B. The steepness of the threshold depends only

on the ratio of forward and back mutations in cis. In the case where gain of trans interactions

and strengthening of binding sites for B occur very rarely, µ
+
trans → 0 and µ

+
b → 0, the threshold,

equation (3.15), is given by Nthresh → 1 and the steepness of the threshold, equation (3.16) tends

to infinity. In this case the frequency of trans interactions follows a step function, such that, if

more than a single TG is co-regulated by A and B, a trans interaction will be completely fixed in

the population.

3.3.3 Permanent fixation of a trans interaction

We now consider the probability that a trans interaction becomes permanently fixed in the popu-

lation. In order to do this we assume that the system contains two absorbing states; that in which

a trans interaction and none of the N target genes have a mutation at the binding site for B, π−,

and that in which a trans interaction is present and all N target genes have suffered a mutation

to the binding site for B, π+(N). We assume that the system begins in a state in which a trans

interaction is present, and none of the N target genes have suffered a mutation at the binding site

for B, π+(0). We calculate the probability, ρ+, that system reaches the sate π+(N)

ρ+ =
1

1 + µ−trans

µ−b

�N−1
k=1

k!(N−k−1)!
N !

�
µ+

b

µ−b

�k
(3.17)

(see Appendix B).

When µ
−
b ≥ µ

+
b , ρ+ is an increasing function of N . When µ

−
b ≈ µ

+
b , ρ+ is increasing for small N

and decreasing for large N - there is a finite value of N for which ρ+ is maximum. When µ
−
b � µ

+
b ,

ρ+ is a decreasing function of N figure 3.3. Therefore whether a trans interaction becomes fixed

when is an absorbing state depends on the number of target genes regulated and the ratio of loss

and gain of binding sites for B. It is therefore clear that if a pair of transcription factors undergo

a change to the number of target genes they regulate this will change the probability that they

evolve a trans interaction between them. In the case that gain is much less frequent than loss,

increase in the number of targets increases the probability of a trans interaction becoming fixed.

However, when gain and loss occur at similar rates (as may occur if, for example, change to a

single nucleotide is sufficient to constitute loss of a binding site), the probability of fixing a trans

interaction is maximum for a finite number of target genes.
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3.3.4 Recombination

The low rate of out-crossing in S. cerevisiae [107] has led us to consider asexual populations in

which recombination does not occur. However, recombination occurs at much greater rates in other

organisms and has the potential to significantly alter our results. A qualitative understanding of

how greater rates of recombination influence evolution in our model can be gained as follows:

For simplicity, consider mating between haploid organisms. We assume the N target genes are

in linkage equilibrium. Suppose an organism, which has a trans interaction and in which k of

the N target genes have a mutation at a binding site for B mates with another, which has a

trans interaction and in which j of the N target genes have a mutation at a binding site for B.

Provided no mutation occurs, the offspring of this mating will have a trans interaction. If we

assume the mutated binding sites for B are distributed randomly between the N target genes,

the probability that i of the N target genes lack a binding site for B in the offspring will be
�N

k

� �
1
2

k
N + 1

2
j
N

�i �
1− 1

2
k
N − 1

2
j
N

�N−i
, with the expected number of targets lacking a binding site

given by �i� = k+j
2 . Therefore the introduction of recombination means that mating between

organisms with a trans interaction can substantially change the number of target genes that lack

a binding site for B between parent and offspring.

Now consider the case in which an organism, which has a trans interaction and in which

k of the N target genes have lost a binding site for B mates with an organism which lacks a

trans interaction, and therefore does not lack a binding site for B at any of its target genes.

In this case the probability that the offspring lacks binding sites for B at i of its target genes

is
�N

i

� �
1
2

k
N

�i �
1− 1

2
k
N

�N−i and the expected number of targets lacking a binding site is �i� k
2 .

However, there is now a probability of a half that the offspring lacks a trans interaction. Therefore

the offspring will have reduced fitness unless i = 0, which occurs with probability
�
1− 1

2
k
N

�N . As

N increases, this probability declines exponentially, for a given value of k. Thus as N increases,

matings between organisms which lack a trans interaction and those which have a trans interaction

will result in unfit offspring 50% of the time. In the cases where the offspring of the mating are fit,

a trans interaction is present. Therefore recombination will tend to favour the presence of a trans

interaction as N increases.

This argument does not hold if we consider sexual reproduction in diploids. In diploids when

an organism is heterozygous for the presence of a trans interaction, we may assume that this is

insufficient to buffer against all mutations at cis. Thus heterozygotes will tend to have reduced

fitness following a cis mutation, whilst homozygotes which have a trans interaction will not. This
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is an example of under-dominance, in which the fitness of heterozygotes is reduced compared to

that of homozygotes. Under-dominance results in a barrier to evolution, which will tend to prevent

trans mutations becoming fixed in a population, even when they result in increased mutational

robustness. As a result we may expect recombination in diploids to act to prevent fixation of a

trans mutation in a population.

3.4 Discussion

We have constructed a simple model for the neutral evolution of co-operative binding in tran-

scription factor networks. We constructed our model based on observed changes in the yeast

transcription network [124, 126, 125], and have presented our results for a population of haploid,

asexual organisms. Our results show that trans interactions between a pair of co-operatively bind-

ing transcriptions factors will be fixed in a large population when it leads to an increase in the

mutational robustness of the network. A large population is defined as one in which the product

of the population size M and the total rate of mutation µT , is much greater than 1. When this

condition is satisfied, the population maintains genetic variation, with more than one member of

the neutral genotype space g present in the population.

When a trans interaction is absent, the frequency of deleterious mutations is determined by the

number of target genes multiplied by the rate at which binding sites for TF B suffer mutations.

When a trans interaction is present, mutations at binding sites for B are buffered against, but loss

of the trans interaction becomes deleterious (since target genes with a mutation at a binding site

for B become incorrectly regulated). When the rate of mutations at binding sites for B is greater

than the rate of loss of the trans interaction between A and B, Nµ
−
b > µ

−
trans, the presence of

a trans interaction leads to an increase in the mutational robustness of the network. Therefore

as the number of target genes being regulated increases, there is a threshold at Nthresh = µ−trans

µ−b

above which a trans interaction becomes fixed.

For small populations, mutational robustness has little effect on the evolution of the network

[127]. A small population is defined as one in which the product of the population size and the

total mutation rate is less than 1 (MµT < 1) [127]. When the population is small, it maintains

little genetic variation, and will in general consist of only a single member of the neutral genotype

space g. Deleterious mutations are assumed to never become fixed, and are not maintained in

the population over time. The network adopted by a small population is determined only by the

rates of mutation and the structure of the neutral genotype space, g. Intriguingly, our results show
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that in this case the trans interaction will also become fixed in the population when the number

of target genes is greater than a threshold, and be absent otherwise. However, unlike for large

populations, in this case the threshold is not driven by mutational robustness. The threshold in

this case is given by equation (3.15). It can be seen the position of the threshold depends in a

more complicated way on the different mutation rates. In addition, the threshold is less steep than

in the large population case. However, the same qualitative effect is observed in both the large

and small population cases - a threshold in the number of target genes, N , above which a trans

interaction is fixed and below which it is absent. In both cases we find that changes in regulon

size (the number of TGs co-regulated by A and B), is sufficient to drive the gain or loss of a trans

interaction in a population.

3.4.1 Accumulation of Genetic Variation

Changes to regulon size necessarily require some of the targets currently regulated by a pair of

transcription factors to lose their binding sites, whilst others, which are not regulated, must gain

new binding sites. In our model, when a trans interaction is absent from the population, all N

target genes must have fully functional binding sites for A and B. However, when a trans interaction

is present, this allows variation in cis, since the binding site for B may suffer mutation at each

target gene. If a trans interaction is present in the population, the probability that an individual

picked at random from the population has k mutations in cis is given by equation (3.10), (this

holds for both large and small populations - see Appendix B).

In a large population, if an organism has a mutation at a binding site for B at k of its N

target genes, this corresponds to
�N

k

�
possible genotypes, each occurring at equal frequency in the

population. The presence of a trans interaction therefore masks a great deal of variation in cis.

Loss of a trans interaction between A and B reveals this variation. Different combinations of target

genes that have a mutation at their binding site for B are revealed. Thus the presence of a trans

interaction allows the build up of genetic variation in cis, with loss of the trans interaction revealing

this variation. As a result, when a trans interaction is present in the population, the number of

alternative phenotypes accessible to the population through a single mutation is of order 2N . In

contrast, when the trans interaction is absent from the population, far fewer alternative patterns

of regulation are accessible through a single mutation. Each target gene may suffer a mutation in

cis to reveal a different regulatory pattern. As a result, when a trans interaction is absent from

the population, the number of alternative phenotypes accessible to the population through a single
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mutation is of order N .

We may hypothesize that in rare cases when a trans interaction is lost, the set of targets

with a mutation at B may represent an improvement on the previous regulatory scheme. For

example, this may occur when a population is subject to a change in environment resulting in new

regulatory schemes becoming advantageous [81]. In such cases the presence of a trans interaction

allows new, advantageous genotypes to evolve which would be inaccessible if the trans interaction

were absent due to the large number of (possibly deleterious) mutational steps required to reach

the new genotype. The ability to reveal new patterns of regulation amongst target genes may be

particularly advantageous when changes to regulon size occur.

In a small population, only a single genotype is present. Therefore when a trans interaction is

present in the population, although mutations may accumulate in cis, there will be little variation

between individuals. As a result loss of a trans interaction will only reveal a single alternative

pattern of regulation. Therefore the number of alternative phenotypes accessible to the population

through a single mutation is of order N . When the trans interaction is absent, the number of

alternative phenotypes accessible to the population through a single mutation is also of order

N . Therefore presence of a trans interaction does not provide greater accessibility to alternative

phenotypes in small populations.

3.4.2 Yeast Mating System

We now discuss our results in light of observed changes to mating type regulation in yeast. Yeast

has two mating types, a and α. The mating type adopted by a particular cell is controlled by

the MAT locus. This lies at the top of a regulatory cascade in which sets of mating-type specific

genes are activated. In a cells, a-specific genes are activated, whilst in α cells, α-specific genes are

activated. It is the manner in which a- and α- specific genes are regulated by the MAT locus that

we focus on in this section.

During the evolution of S. cerevisiae, the regulation of a-specific genes, which are expressed

in a-cells but not in α-cells, has undergone a neutral change of the type considered in our model.

In the ancestral mating-type network, a-specific genes are in a default off state. They are then

activated by a pair of transcription factors, MATa2 and Mcm1, in a-cells. This regulatory logic

has changed during the evolution S. cerevisiae. In the evolved network a-specific genes are up-

regulated in a-cells by Mcm1 alone, whilst in α-cells MATα2 interacts with Mcm1 to prevent the

activation of a-specific genes by Mcm1. These changes have taken place through the evolution of
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a trans interaction between Mcm1 and MATα2, in order to prevent activation of a-specific genes

in α-cells, along with an increase in the strength of the Mcm1 binding site already present at

a-specific genes such that Mcm1 alone can activate a-specific genes in a-cells [124].

This system can be compared to our model as follows: Strengthening of the Mcm1 binding site

is deleterious if a trans interaction is absent, since this leads to up-regulation of a-specific genes in

α-cells. Therefore a trans interaction buffers against increase in the binding strength of the Mcm1

binding site. Therefore the Mcm1 binding site, is the binding site for TF B in our model. The

binding site for TF A in our model may be thought of as the binding site for MATα2, present at all

a-specific genes [124]. Our model therefore remains qualitatively the same, but with the following

changes: The parameter k refers to the number of a-specific genes with strengthened binding sites

for Mcm1. The rate of mutations resulting in mutation at a binding sites for B, in this context has

a specific interpretation as the rate of mutations leading to strengthening of the Mcm1 binding

site. This strengthening of the Mcm1 binding site is observed to occur through an increase in the

AT content at regions flanking the binding site [124].

In a large population, a trans interaction will become fixed when the number of a-specific genes

is larger enough, such that the rate of mutations leading to strengthening of Mcm1 binding sites

is greater than the rate of mutations leading to loss of a trans interaction between Mcm1 and

MATα2. Similarly, in small populations, a trans interaction will tend to become fixed when the

number of a-specific genes is greater than the threshold given in equation (3.15). The threshold in

N above which a trans interaction becomes fixed differs between the large and small population

cases.

Thus leads us to two possible explanations for the neutral evolution of a trans interaction

between Mcm1 and MATα2 in the yeast sex determination network. Firstly, the neutral evolution

may be driven by changes in the number of a-specific genes regulated by the MAT locus. Secondly,

the neutral evolution may be driven by changes in population size between different yeast species,

resulting from adaptation to different environments.

We can consider the time to reach an absorbing state in the case of the yeast transcription

network.In this case the absorbing state is reached when a trans interaction is present between

Mcm1 and MATα2, and all a-specific genes have strengthened Mcm1 binding sites. When this

occurs, MATa2 is no longer required for the up-regulation of a-specific genes and is redundant

(figure 3.3). This has occurred in S. cerevisiae, where MATa2 has been completely lost. We

may regard this state as an absorbing state, since once MATa2 is lost, mutations resulting in the
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weakening of the Mcm1 binding site will become deleterious. Equation (3.17) indicates that when

the rate of mutations strengthening the Mcm1 binding site are greater than the rate of mutations

weakening the Mcm1 binding site, (µ−cis > µ
+
cis in the notation of our model) the probability of

the population reaching the absorbing state in which MATa2 is lost, is an increasing function

of N . When the rate of mutations strengthening the binding site is much less than the rate of

those weakening it (µ−cis � µ
+
cis), the probability of the population reaching the absorbing state

is a decreasing function of N . Finally, when the rates of strengthening and weakening of the

binding site are similar, (µ−cis ≈ µ
+
cis), the probability of reaching the absorbing state is a peaked

distribution.
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Figure 3.5: Probability of fixation of a trans interaction. Variation of ρ+ wth N is shown for
different values of µ−b

µ+
b

. From top to bottom the values used are µ−b
µ+

b

= 2 (triangles), µ−b
µ+

b

= 1

(asterisks), µ−b
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b

= 0.9 (dots), µ−b
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b

= 0.8 (squares) and µ−b
µ+

b

= 0.5 (circles).

Since strengthening and weakening of the Mcm1 binding site occurs through changes to the AT

content flanking the binding site, we suggest that µ
−
cis ≈ µ

+
cis is the most likely scenario, since these

rates are determined by the rates of single nucleotide substitutions, each of which either increase

or decrease the binding strength of the site.

3.4.3 Changes in Regulon Size

Our results indicate that neutral gain and loss of trans interactions depends critically on the

number of target genes co-regulated by a pair of transcription factors, as well as on population

genetic details, particularly population size and mutation rate. We therefore expect any observed
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neutral change of the type considered here to be either correlated with changes in the number

of target genes co-regulated by pairs of transcription factors, or with changes in the lifestyle of

the species being considered. In the case of the yeast mating type network, there are a number

of significant life-style differences between C. albicans, which contains the ancestral mating type

determination network and S. cerevisiae which contains the newly evolved network [124]. For

example, C. albicans has no haploid phase, with mating occurring between diploids, whilst in S.

cerevisiae mating occurs between haploids [86]. In addition, the environments inhabited by the

two species are very different, as might be expected from a pair of species that have undergone the

same degree of protein divergence as humans and sea squirts [33, 32, 125]. It is therefore difficult

to draw quantitative conclusions about the neutral evolution of the species based on our model.

However, if neutral evolution of co-regulation has occurred as described in our model, we may

expect the number of target genes co-regulated by pairs of transcription factors, the regulon size,

to have undergone substantial changes.

In the yeast sex mating type determination network, the number of a-specific genes is 13 in

S. cerevisiae, 8 in K. lactis and 9 in C. albicans. However only 4 a-specific genes are conserved

between all three species, suggesting substantial gain and loss of targets throughout the evolution

of the S. cerevisiae network. This pattern, with only a small fraction of target genes conserved

between all three yeast species, is repeated in the Mcm1-Yox1 and Mcm1-Fkh2 regulons, [125]. It

is therefore possible conclude that significant changes to regulon size do occur during the evolution

of yeast. This in turn suggests that neutral evolution of cooperative binding, as described here,

may play a significant role in determining the way genes are regulated by pairs of transcription

factors.

3.4.4 Co-regulation in the Yeast TFN

Our results may be compared to those of recent studies investigating the extent of co-regulation

of targets by transcription factors [5, 6, 4]. These studies reveal a number of trends. In the Yeast

transcription network, in many cases, TFs which regulate a large number of targets (network

hubs), have a larger than expected number of co-regulatory partners [5]. This is supported by the

observation that regulatory hubs tend not to be essential, and can suffer mutation or even complete

loss from a transcription network without strongly deleterious effects. This lack of essentiality is

suggested to be due to mutational robustness, provided by the presence of a large number of co-

regulatory partners [6]. These results suggest that co-regulation in the Yeast transcription network
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provides mutational robustness, which is in line with the results presented here. In addition the

finding that hub transcription factors tend to have more co-regulatory partners corresponds with

the intuition developed from our results, that the more targets a pair of TFs co-regulate, the more

likely they are to have a trans interaction between them. It would therefore be interesting to

reanalyse the full set of co-regulatory interactions in the Yeast transcription network in light of our

results, to see how number of targets co-regulated by a pair of TFs correlates with the probability

of them having a trans interaction between them. A further observation of these studies, states

that, in both Yeast and E. coli, the number of target genes co-regulated by a pair of TFs follows

a broad tailed distribution, best described by a power-law [5, 4]. Another possible extension of

our model is to analyse the evolution of the degree-distribution of the co-regulatory network, to

determine to what extent this is driven by mutational robustness.

3.4.5 Diploids

Our model can also be extended to account for diploids in the following way. In a diploid organism

we now have 2N target genes, which must be regulated properly. At the trans locus we now

have three possible cases: (i) when the trans locus is homozygous and lacks a trans interaction,

mutations at the binding sites for B are deleterious, (ii) when the trans locus is homozygous and

has a trans interaction, mutations at binding sites for B are buffered against and (iii) when the

trans locus is heterozygous. In the third cases two scenarios are possible. Either the heterozygous

trans interaction provides buffering against mutations at binding sites for B or it does not. In

the first case we have increased the size of the neutral genotype space, g, from N + 2 to 4N + 3

genotypes - 2N + 1 genotypes associated with the heterozygous case, 2N + 1 genotypes associated

with the homozygous case in which a trans interaction is present , and 1 genotype associated with

homozygous case in which the trans interaction is absent. In the second case we have increased

the size of g to 2N + 3 genotypes - 1 genotype associated with the hetwerozygous case, 2N + 1

genotypes associated with homozygous presence of a trans interaction, and 1 genotype associated

with homozygous lack of a trans interaction. However, the structure of the genotype space remains

qualitatively the same as in the haploid case; a small number of genotypes are available when a

trans interaction is absent, whilst a large number of genotypes are available when it is present.

Analysis of the diploid system described above gives the same qualitative behaviour as in the

haploid case a threshold in the number of target genes above which a trans interaction becomes

fixed.
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The above only holds true if no recombination occurs. As discussed previously, the effects of

recombination in diploids are likely to give rise to under-dominance, such that evolution of a trans

interaction is not favoured. A diploid model including recombination is complex to analyse but

such a model may be investigated computationally, and provides a possible direction for further

work. It will be interesting to compare the effects of different population genetic scenarios on the

evolution of trans interactions of the type described here. Such an analysis would allow us to make

predictions about the nature and frequency of combinatorial gene regulation in E. coli, Yeast and

higher Eukaryotes.

3.4.6 Alternative Selection Schemes

We have presented a simple selection scheme, in which we treat the trans interaction between A

and B as a single locus, and in which A is able to cooperatively bind B but not vice versa. Other

schemes, for example, requiring a mutation at both A and B for a trans interaction to be present,

or allowing B to cooperatively bind A, are possible. In addition, the introduction of diploidy allows

for more complex selection schemes, as described above. However, alternative selection schemes

give rise to the same qualitative structure of neutral genotype space, and our results are therefore

qualitatively unchanged by considering different selection schemes there is still a threshold value

for the number of target genes above which a trans interaction is fixed and below which it is absent.

3.5 Conclusion

We have presented a simple model for the neutral evolution of co-operative binding between pairs

of transcription factors. Our model is based on observed neutral changes in the yeast transcription

network, in which a new trans interaction has evolved between transcription factors which co-

regulate sets of target genes. This has occurred without apparent change to the logic of the

network, suggesting the evolution is neutral. We have shown that such a neutral change can occur.

It can be driven by changes to the life-style of a species (particularly changes in population size).

Alternatively, it can be driven by changes to the number of target genes co-regulated by a pair of

transcription factors.

We have shown that the probability that a trans interaction between two transcription factors is

present in a population, follows a threshold function in the number of target genes regulated. Above

the threshold, a trans interaction will be present in the population, whilst below the threshold it
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will be absent. When a trans interaction becomes fixed, this in turn allows genetic variation at

cis amongst the regulated target genes. As a result fixation of a trans interaction will tend to

be accompanied by significant changes to the cis regulatory regions of regulated target genes.

This neutral co-evolution of cis and trans is precisely what is observed in the yeast mating type

determination network.

Our model suggests that the neutral evolution of transcription networks may have complicated

dynamics. We have shown that changes to one part of a network, the number of target genes

regulated by a pair of transcription factors, can have knock on effects at both cis and trans. Far

from being small, these knock on effects represent significant changes to the way a set of target

genes are regulated. However, our results relate to neutral evolution in the case of a particularly

simple network. The evolutionary dynamics predicted or this network, suggest that the neutral

evolution of gene networks may be extremely complex when larger networks are considered. It

must therefore be concluded that in order to properly understand the evolution of gene networks,

a better understanding of their neutral evolution must first be gained.

3.6 Appendix B

3.6.1 Equilibrium Genotype Distribution for an Infinite Population

We now find approximate solutions to equations (3.3)-(3.5) in order to find the equilibrium fre-

quency of trans interactions in the population. In order to do this, equation (3.8) was derived by

assuming that the term µ
+
b P+(1) in equation (3.6) is sufficiently small that it can be neglected.

To show that this assumption is valid, we show that the mean time taken for an organism with

genotype P+(1) to reach genotype P+(0) via mutation, increases exponentially with N . As a re-

sult, the rate at which organisms mutate from genotype P+(k > 0) to genotype P+(0) declines

exponentially with N , and can be neglected. To calculate the time taken reach genotype P+(0)

from genotype P+(1) via mutation, we treat the set of genotypes P+(k) as a markov chain, with ab-

sorbing state P+(0). An organism will continue to mutate between different genotypes P+(k > 0),

unless it suffers a deleterious mutation (the trans interaction is lost) or it reaches the absorbing

state P+(0). If a deleterious mutation occurs, the organism is lost from the population. Therefore

we calculate the time taken for an organism to reach the absorbing state, provided it does not

suffer a deleterious mutation. Since all genotypes have the same fitness, this time will depend only

on the rates of mutation between the different genotypes belonging to P+(k).
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The mean time, t̄i, taken to reach absorbing state P+(0) from initial state P+(i) is given by

t̄i =
N�

j=1

t̄ij (3.18)

where t̄ij is the mean time spent in state P+(j) given the initial state is P+(i). The term t̄ij is

given by

t̄ij =
1
βj

�
1 +

αj−1

βj−1
+

αj−1αj−2

βj−1βj−2
+ . . . . . . +

αj−1αj−2. . . α1

βj−1βj−2. . . β1

�

for j = 1, 2, . . . . . , i, and

t̄ij = t̄ii

�
αiαi+1. . . αj−1

βi+1βi+2. . . βj

�
(3.19)

for j = i + 1, . . . . . , N [36].

Where αj is the probability of moving from genotype P+(j) to genotype P+(j + 1), which for

this model is given by αj = (N − j)µ−b . Similarly, βj is the probability of moving from genotype

P+(j) to genotype P+(j − 1), which for this model is given by βj = jµ
+
b .

We wish to calculate the time t̄1 to reach P+(0) from P+(1). Using equation (3.19) with (3.18)

this gives

t̄1 =
1

µ
+
b

N�

j=1

(N − 1)!
j!(N − j)!

�
µ
−
b

µ
+
b

�j−1

=
1

Nµ
−
b

N�

j=1

�
N

j

� �
µ
−
b

µ
+
b

�j

=

�
1 + µ−b

µ+
b

�N

− 1

Nµ
−
b

(3.20)
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Therefore the mean time taken for an organism to reach genotype P+(0) from genotype P+(1)

increases approximately exponentially with N . Organisms with a trans interaction and at least

one mutation in cis, suffer deleterious mutations (through loss of the trans interaction) at rate

µ
−
trans. Therefore the mean time taken for such an organism to suffer a deleterious mutation is

1
µ−trans

. If the mean time taken to suffer a deleterious mutation is greater than the mean time take

for an organsim with genotype P+(1) to reach genotype P+(0), t̄1 >
1

µ−trans

, then most organism

with genotype P+(1) will be lost from the population due to deleterious mutations. Therefore

when N satisfies

�
1 + µ−b

µ+
b

�N

− 1

N
>

µ
−
b

µ
−
trans

(3.21)

The value Nthresh = µ−trans

µ−b
is the value of N above which organisms without a trans interaction

suffer deleterious mutations more frequently than organisms with a trans interaction. It is plausible

to assume that µ
−
b ≤ µ

+
b . Therefore taking the upper limit, µ

−
b = µ

+
b , we can use equation (3.21)

to write

Nthresh >
N

2N − 1
(3.22)

For values of Nthresh > 1, equation (3.22) is always satisfied for all N ≥ 1. In addition t̄1 increases

exponentially with N . As such, we are justified in assuming t̄1 � 1
µ−trans

, even for relatively small

values of N . For example, taking Nthresh = 10 and µ
−
b = µ

+
b , it takes on average 10 times longer

for an organism with genotype P+(1) to reach P+(0) than it does for a deleterious mutation to

occur when N = 1 and 103 times longer when N = 10. For µ
−
b = 10µ

+
b , it takes 102 times longer

when N = 1 and 1010 times longer when N = 10. Therefore we can assume than organisms with

a genotype lying on P+(k > 0) will tend to suffer a deleterious mutation before they return to

P+(0).

This, along with the numerical results present in figure (3.3), justify neglecting the term

µ
+
b P+(1) in equation (3.6). As a result, equations (3.3), (3.7) and (3.8) form a straightforward set

of simultaneous equations which can be solved explicitly to give equation (3.9), for the approximate

equilibrium frequency of a trans interaction in the population,
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3.6.2 Equilibrium Genotype Distribution for a Small Population

Equations (3.11)-(3.13) for the probability that a small population has a particular genotype on

g can be solved explicitly, without recourse to approximation. At equilibrium equation (3.11) has

solution

π+(0) =
µ

+
trans

µ
−
trans

π− (3.23)

substituting this into equation (3.12), we have at equilibrium

π+(1) =
Nµ

−
b

µ
+
b

µ
+
trans

µ
−
trans

π− (3.24)

At equilibrium, equation (3.13) has solution

(k + 1)µ+
b π+(k + 1) = (N − k)µ−b π−(k) (3.25)

Substituting equation (3.24) into equation (3.25) results in the solution

π+(k) =
�

N

k

� �
µ
−
b

µ
+
b

�k
µ

+
trans

µ
−
trans

π− (3.26)

Therefore the probability that an organism with a trans interaction has k mutations follows a

binomial distribution with mean µ−b
µ−b +µ+

b

. Since we must have π− +
�N

k=0 π+(k) = 1, we have

π− +
N�

k=0

�
N

k

� �
µ
−
b

µ
+
b

�k
µ

+
trans

µ
−
trans

π− = 1 (3.27)

which gives

π− =
1

1 +
�
1 + µ−b

µ+
b

�N
µ+

trans

µ−trans

(3.28)

and taking π+ = 1−π− gives equation (3.14) for the probability that a trans interaction is present
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in the population.

3.6.3 Probability of Reaching an Absorbing State

Equation (3.17) for the probability, ρ+ that an organism (or population) with genotype π+(0)

reaches the absorbing state π+(N) as opposed to the absorbing state π−. This probability ρi of

reaching π+(N) given that the starting state is π+(i), is given by

ρi =
1 +

�i−1
k=1

�k
j=1

βj

αj

1 +
�N

k=1

�k
j=1

βj

αj

(3.29)

The term ρ+ is given by ρ1 in equation (3.29). Substituting values β1 = µ
−
trans, βk = (k − 1)µ+

b

(for k > 1), and αk = (N − k + 1)µ−b into equation (3.29) gives equation (3.17).

To see how ρ+ varies with N , we look at the change that results when N is increased by 1 -

∆ρ+ = ρ+(N + 1)− ρ+(N). In order to do this, we define

f(N) =
N−1�

k=1

k!(N − k − 1)!
N !

�
µ

+
b

µ
−
b

�k

(3.30)

If f(N) is increasing with increasing N , ∆ρ+ < 0, and if f(N) is decreasing with increasing N ,

∆ρ+ > 0. We consider how f(N) changes with increasing N as follows

f(N + 1)− f(N) =
N�

k=1

k!(N − k)!
(N + 1)!

�
µ

+
b

µ
−
b

�k

−
N−1�

k=1

k!(N − k − 1)!
N !

�
µ

+
b

µ
−
b

�k

=
1

N + 1

�
µ

+
b

µ
−
b

�N

+
N−1�

k=1

�
N − k

N + 1
− 1

�
k!(N − k − 1)!

N !

�
µ

+
b

µ
−
b

�k

=
1

N + 1

��
µ

+
b

µ
−
b

�N

−
N−1�

k=1

(k + 1)!(N − k − 1)!
N !

�
µ

+
b

µ
−
b

�k
�

(3.31)

If µ
−
b ≥ µ

+
b , f(N + 1)− f(N) < 0 for all N . To see this write

103



CHAPTER 3. NEUTRAL EVOLUTION OF COOPERATIVE TF BINDING

�
µ

+
b

µ
−
b

�N

−
N−1�

k=1

(k + 1)!(N − k − 1)!
N !

�
µ

+
b

µ
−
b

�k

=
�

µ
+
b

µ
−
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�N
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�N−1

−
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Since for this case
�

µ+
b

µ−b

�N

≤
�

µ+
b

µ−b

�N−1

for all N , f(N + 1) − f(N) < 0 for all N and ρ+ is a

monotonically increasing function of N .

For the case µ
−
b < µ

+
b , f(N + 1) − f(N) may be increasing or decreasing, depending on N .

Therefore we explore the variation of ρ+ with N for this case numerically (figure 3.5). To see that

f(N + 1)− f(N) > 0 in the limit N →∞, write

�
µ

+
b

µ
−
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�N
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�

µ
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�k−N
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(3.33)

Since all terms in the sum are of order N−1 or higher, in the limit N →∞, the sum tends to zero

and we are left with

f(N + 1)− f(N) =
�

µ
+
b

µ
−
b

�N
�

1−
�

µ
+
b

µ
−
b

�−1
�

(3.34)

and since µ
−
b < µ

+
b , this is positive, meaning that ρ+ is a decreasing function of N as N →∞.
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Chapter 4

Evolution of Autoregulatory

Motifs in Diploid Organisms

Transcription networks are subject to many forms of noise. They result both from changes in the

environment external to a cell, as well as from intrinsic noise in gene expression resulting from

the stochastic nature of transcription. In Escherichia coli, one of the most common strategies

to reduce intrinsic noise is through negative autoregulation. Negative autoregulation has been

shown, both theoretically and experimentally, to reduce the variance in gene expression compared

to genes which do not autoregulate. It has also been shown to speed the response times of genes to

perturbations. This is reflected in the fact that negative autoregulation is found in 37% of known

transcription factors in E. coli. We investigated the behaviour of negatively autoregulating genes

in diploids. This is of interest, since in diploids a pair of negatively autoregulating alleles form

a network of four interactions and three feedback loops. This is in contrast to haploids, where

negative autoregulation consists of a single interaction and a single feedback loop. We considered

heterozygous diploids, in which the strength of negative autoregulation differs between two alleles.

We showed that in such cases the contributions of the two alleles to total gene expression differs

considerably. In particular, when negative autoregulation is strong, we showed that one allele

will be almost completely unexpressed, with total gene expression accounted for by the other

allele. We also showed that the noise in the total expression of heterozygotes is often greater

than the noise in homozygous case. As a result, if noise reduction is selected for, this results in a

barrier to the evolution of negative autoregulation. This is reflected in the frequency of negative

autoregulation in the Saccharomyces cerevisiae transcription network, where between 2% and 4% of
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transcription factors negatively autoregulate. We also applied our results to duplicates of negatively

autoregulating genes in haploids. Our results suggest that negative autoregulation can mitigate

the effects of increased dosage from duplicate genes. However, once one of the duplicates suffers cis

mutations, it will tend to become under-expressed and behave as a pseudogene. This may explain

why duplicates of negatively autoregulating genes are no more abundant than duplicates of other

genes in the E. coli transcription network.

4.1 Background

Transcription factor networks (TFNs) consist of sets of genes and regulatory interactions between

those genes. The pattern of interconnections that make up a TFN encodes information about how

various sets of genes are co-expressed. As such, the regulatory interactions that make up a TFN

are under direct selection to optimise mean gene expression. However, regulatory interactions,

which allow sets of genes to be coexpressed, also allow perturbations which affect the expression

of one gene to affect the expression of other genes in the network. As a result, TFNs are also

under selection to minimize the effects of such perturbations - i.e TFNs are under selection for

robustness [20, 24, 31, 49, 65, 71, 82, 101, 130, 133]. Determining how robust a network is requires

an understanding of the expression dynamics of individual genes, how the expression levels of

different sets of genes covary, and the nature of the perturbations that the network is subject to.

The perturbations which affect a TFN may result from changes in the external environment of a

cell. Alternatively, they may result from the stochastic nature of transcription, which gives rise to

intrinsic variation in the expression of individual genes. Finally, they may result from mutations

which change the strength of regulatory interactions in the network [82, 101].

Perturbations which result from changes in the environment external to a cell may have a global

effect, such that they directly effect the expression of all genes in a similar manner, for example,

changes in temperature. In other cases, they have a local effect, and directly effect only a subset

of genes, for example, changes in the level of nutrients in the external environment. In general the

response of the organism to such environmental changes is to change its pattern of gene expression,

down-regulating some genes, up-regulating some genes, and keeping the expression of some genes

constant. For example, the transition between the haploid and diploid phase, in response to changes

in the availability of nutrients in the environment, seen in the yeast Saccharomyces cerevisiae,

requires down-regulation of haploid specific genes and up-regulation of diploid specific genes [124].

In contrast, perturbations resulting from noise in gene expression frequently requires the evolution
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of noise filtering mechanisms [1, 11, 51, 79, 78, 106, 110, 118]. These ensure that noise in the

expression of upstream genes is not passed on and amplified in the expression of the downstream

genes they regulate. Finally, changes to regulatory interactions resulting from mutations are often

deleterious, resulting in sub-optimal patterns of gene expression. As a result, networks are required

to evolve a degree of mutational robustness, such that the deleterious effects of such mutations are

minimized [31, 127, 133].

One approach to determining how a set of genes will respond to different types of perturbation,

is to look for patterns of regulatory interactions which perform particular functions. For example,

feedback loops may give rise to switch-like behaviour, to oscillation in gene expression, or to a

reduction in the level of noise in gene expression [14, 51, 106, 118, 128]. Feed forward loops may

act as noise filters, maintaining constant gene expression in downstream genes when faced with

transient environmental changes, but allowing changes in the expression of downstream genes when

environmental changes are sustained for long periods [79, 78]. In order to determine that patterns

of interactions which evolve to perform particular functions, network motifs have been defined

[88, 87]. Network motifs are patterns of regulatory interactions which occur at high frequency

in real TFNs, compared to the frequency that would be expected due to chance. The simplest

network motif that has been found in this way is negative autoregulation. This motif consists of

a single gene which suppresses its own transcription. Negative autoregulation occurs in 42 out

of 115 transcription factors (37%) in Escherichia coli [110]. The expected number of negatively

autoregulating genes that would occur due to chance in this network is 1.2± 1.1 [1]. The observed

frequency of negative autoregulators is 37 standard deviations from the mean number that would

be expected due to chance, and as such is highly significant [1].

The expression dynamics of negatively autoregulating genes has been extensively investigated.

It has been shown that negative autoregulation results in a decrease in the noise of gene expres-

sion, compared to genes with the same mean expression level which do not negatively autoregulate

[1, 106, 110, 118]. Similarly, the response time - the time for the expression level of a gene to

return to the mean under perturbation - for a negatively auto-regulating gene is less than the re-

sponse time in genes which do not negatively autoregulate [1, 106]. As such it has been suggested

that negative autoregulation has evolved as a mechanism for noise reduction. However, E. coli

is a haploid organism. The dynamics of negatively autoregulating genes in diploid organisms has

not been investigated. Yet the behaviour of negatively autoregulating genes in diploids is likely

to be different from that seen in haploids. Whereas in haploids negative autoregulation consists
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of a single gene and a single regulatory interaction, in diploids it consists of a pair of genes and

four regulatory interactions (figure 4.1). In this chapter I consider the dynamics of expression of

negatively autoregulating genes in diploids. In particular I consider whether negative autoregula-

tion can evolve as a mechanism for noise reduction in diploid organisms. The results obtained are

interpreted in the light of data on the frequency of negative autoregulation in S. cerevisiae. The

differences observed between the frequency of negative autoregulation in S. cerevisiae and E. coli

are explained as due to the requirement for S. cerevisiae to function as a diploid.

Haploid! Diploid!

Figure 4.1: In haploids negative autoregulation consists of a single interaction and a single feed-
back loop. In diploids (or following duplication of an autoregulating gene in haploids) negative
autoregulation consists of four interactions and three feedback loops.

4.2 Model

We develop two models for negative autoregulation. This is done by extending previous models of

negative autoregulation in haploids to the diploid case, and exploring their behaviour. The first

model is a simple system of ODEs, which allows us to explore the expression level of genes which

negatively autoregulate. This is used to investigate the way gene expression changes under changes

in the strength of negative autoregulation. The second model captures the noise in gene expression

which results from the stochastic nature of transcription, by modelling transcription as a Markov

process. This is used to investigate the way the noise in gene expression changes under changes in

the strength of negative autoregulation.

4.2.1 ODE model of Haploid Autoregulation

In order to study the expression level of negatively autoregualting genes, we employ a simple ODE

model which relates the rate of change of gene expression p, to the rate of production f(p) and the

rate of protein degradation γp [1]:
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dp

dt
= f(p)− γpp (4.1)

where f(p) is taken to be a Hill function [1]

f(p) =
βp

1 +
� p

K

�n (4.2)

βp is the maximum rate of protein production which would occur in the absence of autoregulation.

K determines the threshold of the Hill function, and is referred to as the repression coefficient for

negative autoregulation [1]. K is determined by the binding strength of the protein for its binding

sites in the promoter region of the regulated gene [18, 40]. The Hill coefficient n determines the

steepness of the repression function. The equilibrium gene expression p̄, occurs when the left hand

side of equation (4.1) is zero, giving

p̄ =
βp

γp

1
1 +

� p̄
K

�n (4.3)

In general equation (4.3) cannot be solved explicitly. However, we can find the equilibrium expres-

sion level if we approximate the Hill function, f(p), by a threshold function such, θ(p), such that

θ(p) = 0 for p ≥ K and θ(p) = 1 otherwise [1]. This is exactly valid in the limit n → ∞, and

provides an increasingly accurate approximation as n increases (figure 4.2).

When n →∞ the equilibrium gene expression p̄ is given by p̄ = K - it is determined solely by the

repression coefficient. Therefore, in haploid organisms, the expression of negatively autoregulating

genes is strongly determined by the repression coefficient K.

4.2.2 ODE Model of Diploid Autoregulation

In order to extend the model described in equation (4.1)-(4.3) to diploids we also make a number

of further assumptions. We refer to a pair of alleles, labelled 1 and 2. We assume that the proteins

produced by the alleles are identical, such that both alleles have the same degradation rate γp and

the same maximum production rate βp. We refer to the expression level of alleles 1 and 2 as p1

and p2 respectively. Similarly we refer to the repression coefficients of alleles 1 and 2 as K1 and

K2 and to the Hill coefficients as n1 and n2 respectively. The rate of change of protein produced
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Figure 4.2: Equilibrium gene expression in a haploid. As K increases (binding strength decreases),
equilibrium gene expression increases. For n → ∞ the relationship is linear. The relationship
deviates increasingly from linearity as the Hill coefficient n decreases

by each allele is then described by

dp1

dt
= f1(p1 + p2)− γpp1

dp2

dt
= f2(p1 + p2)− γpp2 (4.4)

where f1 and f2 refer to the Hill functions with parameters K1 and n1, K2 and n2, respectively.

The total expression of the gene is given by p = p1 + p2. By summing the pair of equations (4.4)

we are given

dp

dt
= f1(p) + f2(p)− γpp (4.5)

which results in equilibrium gene expression

p̄ =
βp

γp



 1

1 +
�

p̄
K1

�n1 +
1

1 +
�

p̄
K2

�n2



 (4.6)
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In homozygotes, we assume that K1 = K2 = K and n1 = n2 = n. As a result, equations (4.5)

and (4.6) become

dp

dt
= 2f(p)− γpp (4.7)

which results in equilibrium gene expression

p̄ =
2βp

γp

1
1 +

� p̄
K

�n (4.8)

and the diploid case is identical to the haploid case, with a maximum protein production rate of

2βp. However, in the heterozygote case, where f1(p) �= f2(p), equations (4.5) and (4.6) may give

rise to different expression dynamics and equilibrium expression levels from those which occur in

haploids.

4.2.3 Stochastic Model of Haploid Autoregulation

We now employ a stochastic model in order to calculate the noise in the expression of a negatively

autoregulating gene. The model is described by the number of mRNA molecules r, and the number

of proteins p present in a cell. The probability nr,p(t) that the system has r mRNA molecules and

p proteins at time t evolves according to Scheme 1:

nr,p
βr−−−→ nr+1,p

nr,p
rβP−−−→ nr,p+1

nr,p
rγr−−→ nr−1,p

nr,p
pγP−−−→ nr,p−1

Scheme 1

where βr is the rate at which mRNA molecules are transcribed from DNA, γr is the rate of mRNA
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degradation, βp is the rate at which mRNA is translated into protein and γp is the rate of protein

degradation. In order to include negative autoregulation in this model we assume that the rate or

transcription of mRNA, βr, is a function of the number of proteins p present in the cell, such that

βr(p) =
β0

r

1 +
� p

K

�n (4.9)

where β0
r is the maximum rate of mRNA transcription [118], and the parameters K and n of the

Hill function are as described in the previous section.

At equilibrium the repression function of equation (4.9) is well approximated by its linearization

about the mean value of p [118]. Therefore we can write

βr(p) ∼= βr(�p�) +
n

β0
r

�
β

0
r − βr(�p�)

�
βr(�p�)−

n

β0
r

�
β

0
r − βr(�p�)

�
βr(�p�)

p

�p� (4.10)

for simplicity we write

β
+
r = βr(�p�) +

n

β0
r

�
β

0
r − βr(�p�)

�
βr(�p�)

β
−
r =

n

�p�β0
r

�
β

0
r − βr(�p�)

�
βr(�p�) (4.11)

where β+
r describes the rate of transcription of mRNA at equilibrium, and β−

r gives the strength

of repression as a result of negative autoregulation [118]. This model can be solved explicitly

(Appendix C) to give the mean protein number �p� and the noise in protein number, expressed as

the ratio of the variance to the mean δp2

�p� at equilibrium [118]

�p� =
bβ+

r

γp + bβ
−
r

(4.12)

where b = βp

γr
is the mean number of proteins produced per transcript. The noise in protein number

is given by [118]

δp2

�p� =
�

γp − β−
r

γp + bβ
−
r

� �
b

1 + η

�
+ 1 (4.13)
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where η = γp

γr
is the ratio of mRNA to protein lifetimes. By replacing equations (4.9) and (4.11)

into equation (4.12) we find

�p� =
β0

r b

γp

1

1 +
�
�p�
K

�n (4.14)

(Appendix C) which is of the same form as equation (4.3) for the equilibrium protein concentration

in the haploid ODE model. For large n we then have �p� ≈ K, and β−
r = β0

rn
4K . Therefore the noise

in gene expression, given by equation (4.13) can be decreased by increasing n or decreasing K.

4.2.4 Stochastic Model of Diploid Autoregulation

The stochastic model for negative autoregulation in haploids presented above can be extended

to diploids. We assume once again that there are two alleles, 1 and 2, which are identical in

all respects except for the strength of negative autoregulation. Thus the rate of transcription of

mRNA from proteins is described by the function βr(p) = β1
r (p) + β2

r (p), such that

β
1
r (p) =

β0
r

1 +
�

p
K1

�n1

β
2
r (p) =

β0
r

1 +
�

p
K2

�n2 (4.15)

where K1 and n1 refer to allele 1 and K2 and n2 to allele 2. At equilibrium this can be approximated

by the linearization

βr(p) ∼= βr(�p�) +
n1

β0
r

�
β

0
r − β

1
r (�p�)

�
β

1
r (�p�) +

n2

β0
r

�
β

0
r − β

2
r (�p�)

�
β

2
r (�p�)

−
�

n1

β0
r

�
β

0
r − β

1
r (�p�)

�
β

1
r (�p�) +

n2

β0
r

�
β

0
r − β

2
r (�p�)

�
β

2
r (�p�)

�
p

�p� (4.16)

which gives
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β
+
r = βr(�p�) +

n1

β0
r

�
β

0
r − β

1
r (�p�)

�
β

1
r (�p�) +

n2

β0
r

�
β

0
r − β

2
r (�p�)

�
β

2
r (�p�)

β
−
r =

n1

β0
r �p�

�
β

0
r − β

1
r (�p�)

�
β

1
r (�p�) +

n2

β0
r �p�

�
β

0
r − β

2
r (�p�)

�
β

2
r (�p� (4.17)

replacing equations (4.15) and (4.17) into equation (4.12) gives

�p� =
β0

r b

γp



 1

1 +
�
�p�
K1

�n1 +
1

1 +
�
�p�
K2

�n2



 (4.18)

which is of the same form as equation (4.6) for the equilibrium protein concentration in the diploid

ODE model. The noise in the gene expression given be equation (4.13) is a function of β−
r in

equation 4.17. When β1
r (p) = β2

r (p) (the homozygous case), this is of the same form as β−
r in

the haploid case (equation (4.11)) and the noise in gene expression decrases with increasing n and

decreasing K. However in the heterozygous case, when β1
r (p) �= β2

r (p), the variation of the noise

in gene expression with the parameters K1, K2, n1 and n2 may be more complex.

4.2.5 Mutation

We now consider how heterozygotes of the type described above may arise. We have assumed that

the parameters of the Hill function K1, K2, n1 and n2 differ between the two alleles. Negative

autoregulation of the type considered here requires the presence of regulatory binding sites in the

promotor of each gene for its own protein product. A mutation at these binding sites will change

the strength with which they bind their own protein product, whilst leaving the binding strength

at the other allele unaffected. In contrast, a mutation which affects the protein produced by one of

the alleles will affect the probability of it binding to both alleles equally (see Appendix C). Thus

we focus on mutations in cis that affect the strength of regulatory binding sites at one of the alleles

only.

The effects of point mutations on the strength of binding sites has been investigated in a number

of studies [18, 40]. For a single TF binding site, the probability that a TF is bound to the promoter

is described by
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q(p) =
p

p + exp[�r − �0]
(4.19)

where each mismatched nucleotide contributes an amount kBT� to the binding energy of TFs for

the binding site, whilst each correctly matched nucleotide contributes 0 to the binding energy [40].

The parameter r is the number of mismatched sites between the real and optimal binding sites and

kBT�0 is the binding energy of a TF to an arbitrary sequence of DNA (i.e a non-specific binding

site).

Equation (4.19) describes the probability of a TF being bound to a single specific binding site.

This is a Hill function with Hill coefficient n = 1. The models presented above assume a binding

probability which follows a Hill function with Hill coefficient which may in general be greater than

1. In order to produce such a binding probability it is necessary to consider a case in which multiple

binding sites must be bound in order for transcription to be activated or deactivated [18]. The

probability that n binding sites are simultaneously bound by TFs is approximately

q(p) ≈ pn

pn + Kn
(4.20)

where K is the rate of dissociation of a TF from one of the binding sites (i.e the strength of the

binding sites themselves). Equation (4.20) is only valid if TFs bind with infinite cooperativity [18].

However, in the general case of an arbitrary number of binding sites and an intermediate degree of

cooperativity, the probability of TF binding follows a curve in which the steepness is determined

by the number of binding sites which must be occupied, n, and the threshold value of p for which

q(p) = 0.5 is determined by the strength of the binding sites, K [18]. Therefore we focus on a

binding probability which is described by a Hill function, as in equation (4.20), in order to gain a

qualitative understanding of the behaviour of negatively autoregulating genes in diploids.

4.3 Results

We now investigate the evolution of negative autoregulators in diploids. We focus on the way

mutations to autoregulatory binding site affect the expression level and noise in autoregulating

genes. As described in the previous section, mutations to autoregulatory binding sites alter K,

which determines the threshold value of p at which the probability of TF binding, q(p), is q(p) = 0.5.
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In contrast, the steepness of the function q(p) is determined by the number of binding sites which

must be bound in order for negative autoregulation to suppress transcription [18]. Therefore we

assume that mutations at cis alter K but not n. This means that in the cases considered here,

different alleles may have K1 �= K2, but always have n1 = n2. Initially we present results in

which n → ∞, such that q(p) is a step function with threshold K. This biologically unrealistic

assumption is then relaxed and it is shown that the results obtained by employing this assumption

hold for a wide range of cases.

4.3.1 Evolution of Gene Expression

We first use the diploid ODE model presented above to characterise the evolution of the mean

gene expression level in negatively autoregulating genes. Assuming n →∞, the mean equilibrium

gene expression is given by

p̄ =
βp

γp
[θ(p̄ < K1) + θ(p̄ < K2)] (4.21)

where θ(p < K) is a step function which has value 1 if p < K and value 0 otherwise. We can also

use equation (4.4) to determine the equilibrium expression levels p̄1 and p̄2 of alleles 1 and 2

p̄1 =
βp

γp
θ(p̄1 + p̄2 < K1)

p̄2 =
βp

γp
θ(p̄1 + p̄2 < K2) (4.22)

In solving equations (4.21) and (4.22) we assume that in all cases K2 ≤ K1, such that allele 2 has

either the same or stronger negative autoregulation than allele 1. Equation (4.21), for the total

expression level of both alleles has three possible solution forms, depending on the values of K1

and K2. These are given below. We do not consider the cases in which K > 2βp

γp
, since in this case

the genes behave as though there is no negative autoregulation, and genes are expressed at their

maximum level.
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Solution for K1 >
βp

γp
and K2 ≥ βp

γp

The solution to equation (4.21) lies at the intersection of the functions y(p) = p and z(p) =
βp

γp
(θ(p̄ < K1) + θ(p̄ < K2)). For the case K1 >

βp

γp
and K2 >

βp

γp
these two functions are plotted in

figure 4.3. From this it is clear that when K1 >
βp

γp
and K2 ≥ βp

γp
, the line y(p) will always intersect

the line z(p) when p = K2. Therefore if K1 and K2 differ, and the organism is heterozygous, the

total expression of both alleles together will be the same as for an organism which is homozygous,

with both alleles having binding sites of strength K2. In this sense, allele 2 shows complete

dominance over allele 1 for gene expression.

! p
" p

2! p
" p

0
K1K2

2! p
" p

! p
" p

y(p)

z(p)

p

Figure 4.3: Solution for K1 >
βp

γp
and K2 ≥ βp

γp
. When the function y(p) = p intersects the function

z(p). From this it is clear that the intersection always occurs when p = K2

In order to calculate the expression levels of each allele, we take p̄1 + p̄2 = K2 in equation 4.22.

Since K2 < K1, this immediately gives p̄1 = βp

γp
. That is, allele 1 is expressed at its maximum

level - the level at which it would be expressed in the absence of any negative autoregulation. The

expression level of allele 2 is then p̄2 = K2− βp

γp
. In the homozygous case, in which K1 = K2, both

alleles are expressed at the same level p̄1 = p̄2 = K2
2 . Since 2βp

γp
> K2, this means that allele 2 is

under-expressed in the heterozygous case compared to the homozygous case.

Therefore in the case K1 >
βp

γp
and K2 ≥ βp

γp
, smaller values of K (stronger binding sites) are

dominant over larger values of K in terms of gene expression. When an organism is heterozygous

for K, the allele with the larger value of K (weaker binding site) will be maximally expressed and

will contribute more to the total expression of the two genes than the allele with the smaller value

of K (stronger binding sites).
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Solution for K1 ≤ βp

γp
and K2 <

βp

γp

For the case K1 ≤ βp

γp
and K2 <

βp

γp
the intersection of the functions y(p) = p and z(p) =

βp

γp
(θ(p̄ < K1) + θ(p̄ < K2)) are plotted in figure 4.4. From this it is clear that when K1 ≤ βp

γp
and

K2 <
βp

γp
, the line y(p) will always intersect the line z(p) when p = K1. Therefore if K1 and K2

differ, and the organism is heterozygous, the total expression of both alleles together will be the

same as for an organism which is homozygous, with both alleles having binding sites of strength

K1. In this sense, allele 1 shows complete dominance over allele 2 for gene expression. This is

the opposite to the previous case. Therefore when K1 >
βp

γp
and K2 ≥ βp

γp
stronger binding sites

(smaller K) are dominant over weaker binding sites, and when K1 ≤ βp

γp
and K2 <

βp

γp
, stronger

binding sites are recessive to weaker binding sites in terms of gene expression.

! p
" p

2! p
" p

0
K1K2

2! p
" p

! p
" p

y(p)

z(p)

p

Figure 4.4: Solution for K1 ≤ βp

γp
and K2 <

βp

γp
. When the function y(p) = p intersects the function

z(p). From this it is clear that the intersection always occurs when p = K1

To calculate the expression levels of each allele, take p̄1 + p̄2 = K1 in equation 4.22. Since

K2 < K1, this immediately gives p̄2 = 0. That is, the expression of allele 2 is completely suppressed.

The expression level of allele 1 is then p̄1 = K1. In the homozygous case in which K1 = K2, both

alleles are expressed at the same level p̄1 = p̄2 = K1
2 . This means that allele 1 is expressed at twice

the level at which it is expressed in the homozygous case.

Therefore in the case K1 ≤ βp

γp
and K2 <

βp

γp
, larger values of K (weaker binding sites) are

dominant over smaller values of K (stronger binding sites) in terms of gene expression. When an

organism is heterozygous for K, the allele with the larger value of K (weaker binding site) will

be expressed at twice the level at which it is expressed in a homozygote whilst the allele with the

smaller value of K (stronger binding site) will not be expressed at all.
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Solution for K1 >
βp

γp
and K2 <

βp

γp

For the case K1 >
βp

γp
and K2 <

βp

γp
the intersection of the functions y(p) = p and z(p) =

βp

γp
(θ(p̄ < K1) + θ(p̄ < K2)) is plotted in figure 4.5. From this it is clear that when K1 >

βp

γp
and

K2 <
βp

γp
, the line y(p) will always intersect the line z(p) when p = βp

γp
. This is independent of K1

and K2, and means that the heterozygous case will in general have different expression to either

of the two homozygous cases.

! p
" p

2! p
" p

0
K1K2

2! p
" p

! p
" p

y(p)

z(p)

p

Figure 4.5: Solution for K1 >
βp

γp
and K2 <

βp

γp
. When the function y(p) = p intersects the function

z(p). From this it is clear that the intersection always occurs when p = βP

γP

To calculate the expression levels of each allele, take p̄1 + p̄2 = βp

γp
in equation 4.22. Since

K2 <
βp

γp
, this immediately gives p̄2 = 0. That is, the expression of allele 2 is completely suppressed.

The expression of allele 1 is then p̄2 = βp

γp
. Allele 2 is expressed at its maximum possible level.

Smaller Hill Coefficients

The results we have presented are for a Hill coefficient n → ∞. However this is not biologically

realistic. In most cases the repression function, which is determined by the probability of a TF

being bound to its binding site, will have a much shallower gradient. It is not possible to solve

equations (4.21) and (4.22) for an arbitrary Hill coefficient, n. Therefore we use computation to

compare the effects of small Hill coefficients on gene expression with the case in which n → ∞.

To do this we employ a measure of the degree of dominance in gene expression when K1 and K2

differ. The degree of dominance, dp, is given by [91]

dp =
p̄12 − 1

2 (p̄11 + p̄22)
p̄22 − 1

2 (p̄11 + p̄22)
(4.23)
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where p̄12 is the equilibrium expression level in the heterozygote case, and p̄11 and p̄22 are the equi-

librium expression levels in the two homozygote case, where both alleles have repression coefficient

of either K1 or K2 respectively.

When p̄12 = p̄11, dp = −1, indicating that allele 2 is completely recessive to allele 1. In our

model, where we assume K2 < K1, this means that stronger autoregulatory binding sites are

completely recessive to weaker binding sites. Similarly, if p̄12 = p̄22, dp = 1, indicating allele 2 is

completely dominant over allele 1. If p̄12 = 1
2 (p̄11 + p̄22), dp = 0, indicating expression is additive.

For intermediate values p̄22 < p̄12 < p̄22, dp is in the range −1 < dp < 1. The value of dp in this

case indicates the degree of partial recessiveness (if dp < 0) or dominance (if dp > 0) of allele 2 to

allele 1.

The degree of dominance in gene expression, for n = 2, n = 5 and n = 10 are compared to

the case n →∞ in figure 4.6. Here we also show the expression level of alleles 1 in heterozygotes.

The results show that decreasing the Hill coefficient decreases the degree of dominance in gene

expression which occurs when K1 and K2 differ. When n = 2, dominance only occurs when

K → 0, i.e when negative autoregulation is very strong. In contrast, the differential expression of

alleles continues even for small values of n. In all cases there are large regions in which one allele is

close to maximally expressed, and large regions where the expression of one allele is close to zero.

4.3.2 Evolution of Noise in Gene Expression

We now use the stochastic model of gene expression to determine the level of noise autoregulating

diploid genes. Once again, we employ the assumption that K1 and K2 differ between alleles. We

also assume that the Hill coefficient is very large, n � 1, such that negative autoregulation can

be approximated by a threshold function θ(p < K). Therefore equation (4.17) for the rate of

transcription in a diploid organism can be written as

β
+
r = βr(�p�) + nβ

0
r [1− θ(�p� < K1)] θ(�p� < K1) + nβ

0
r [1− θ(�p� < K2)] θ(�p� < K2)

β
−
r =

nβ0
r

�p� [1− θ(�p� < K1)] θ(�p� < K1) +
nβ0

r

�p� [1− θ(�p� < K2)] θ(�p� < K2) (4.24)

and equation (4.18) for the mean expression as

120



CHAPTER 4. EVOLUTION OF AUTOREGULATORY MOTIFS IN DIPLOID ORGANISMS

a!

b!

c!

d!

Figure 4.6: Dominance and allele expression for different Hill coefficients. The figure shows different
values of K1 and K2, with the colour indicating the degree of dominance (left) and the level of
expression of allele 1 (right). The diagonal line K1 = K2 corresponds to the heterozygous case. a)
Dominance and allele 1 expression for n = 10. b) Dominance and allele 1 expression for n = 5. c)
Dominance and allele 1 expression for n = 2. d) Dominance and allele 1 expression for n →∞.
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�p� =
β0

r b

γp
[θ(�p� < K1) + θ(�p� < K2)] (4.25)

We employ the results of the previous section to solve equation (4.25), and then calculate β−
r in

the case K2 < K1. This is then used with equation (4.13) to calculate the noise in gene expression

for different cases.

Solution for K1 >
β0

rb
γp

and K2 ≥ β0
rb

γp

In this case �p� = K2. This means that θ(�p� < K2) = 0.5 and θ(�p� < K2) = 1 which gives

β−
r = nβ0

r
4K2

from equation (4.24). In contrast, for the homozygotes, we have β−
r = nβ0

r
2K1

for allele

1 and β−
r = nβ0

r
2K2

for allele 2. This means that β−
r in the heterozygous case is always less than in

the homozygous case in which both alleles have repression constant K2. The noise is also greater

in the in the heterozygous case than the homozygous case in which both alleles have repression

constant K1, unless K2 < 0.5K1. However, since K1 lies in the range β0
rb

γp
< K1 < 2β0

rb
γp

, in order

for K2 < 0.5K1 we must have K2 <
β0

rb
γp

. Since this violates our assumption that K1 >
β0

rb
γp

and

K2 ≥ β0
rb

γp
, we conclude that in the heterozygous case β−

r is always smaller than in either of the two

homozygous cases. Since the noise in gene expression, given by equation (4.13), is a monotonically

decreasing function of β−
r , this means that the expression of heterozygotes is always more noisy

than either of the two homozygotes.

Solution for K1 ≤ β0
rb

γp
and K2 <

β0
rb

γp

In this case �p� = K1. This means that θ(�p� < K1) = 0.5 and θ(�p� < K2) = 0 which gives

β−
r = nβ0

r
4K1

from equation (4.24). In contrast, for the homozygotes, we have β−
r = nβ0

r
2K1

for allele

1 and β−
r = nβ0

r
2K2

for allele 2. This means that β−
r in the heterozygous case is always less than in

either of the two homozygous cases. As a result the expression of heterozygotes is always more

noisy than either of the two homozygotes.

Solution for K1 >
β0

rb
γp

and K2 <
β0

rb
γp

In this case �p� = β0
rb

γp
. This means that θ(�p� < K1) = 1 and θ(�p� < K2) = 0 which gives

β−
r = 0 from equation (4.24). In contrast, for the homozygotes, we have β−

r = nβ0
r

2K1
for allele 1 and

β−
r = nβ0

r
2K2

for allele 2. This means that β−
r in the heterozygous case is always less than in either of
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the two homozygous cases. As a result the expression of heterozygotes is always more noisy than

either of the two homozygotes.

Therefore we find that heterozygotes are always more noisy than homozygotes when negative

autoregulation occurs in diploids. If selection occurs such that less noisy gene expression (smaller

values of K) are favoured, this will result in under-dominance, and a barrier to the evolution of

stronger binding sites.

Smaller Hill Coefficients

The results we have presented above are for a Hill coefficient n � 1. However, when smaller

Hill coefficients are used it is not possible to solve equations (4.17) and (4.18). Therefore we use

computation to determine the effects of small Hill coefficients on noise in gene expression. To do

this we one again employ a measure of the degree of dominance in gene expression when K1 and

K2 differ. The degree of dominance in this case, dβ , is given by [91]

dβ =
β
−
12 − 1

2

�
β
−
11 + β

−
22

�

β
−
22 − 1

2

�
β
−
11 + β

−
22

� (4.26)

where β
−
12 refers to the value of β−

r in heterozygotes, and β
−
11 and β

−
22 refer to the values of β−

r in

the two homozygotes, with repression coefficients K1 and K2 respectively.

The degree of dominance for different values of K1 and K2 are presented if figure 4.7, for Hill

coefficients n = 2 , n = 5 and n = 10. In all cases dβ ≤ 0, indicating stronger autoregulatory

binding sites (smaller values of K) are always recessive to weaker ones (larger values of K), in terms

of noise in gene expression. When dβ < −1 this indicates that β
−
12 < β

−
11 and the heterozygote

has greater noise than either of the two homozygotes. From figure 4.7 it is clear that dβ < −1

occurs for a wide range of values of K1 and K2, even when the Hill coefficient is small. Thus,

even when Hill coefficients are small, mutations which give rise to stronger autoregulation result in

under-dominance in the degree of noise in gene expression. In particular under-dominance tends

to arise when K1 <
β0

rb
γp

and K2 <
β0

rb
γp

.

Evolution of a Single Binding Site

We can use our model to consider the evolution of a single autoregulatory binding site via point

mutations. In this case the probability a TF is bound to its own promoter is given by q(p) in

equation (4.19). Thus, the repression function, βr(p), in equation (4.16) is given by βr(p) =
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a! b!

c!

Figure 4.7: Dominance in noise for different Hill coefficients. Colours indicate the degree of domi-
nance in the noise in gene expression for different values of K1 and K2. These are always negative.
When dominance is less than -1, heterozygotes are more noisy than either homozygote. a) Domi-
nance in noise for n = 10. b) Dominance in noise for n = 5. c) Dominance in noise for n = 2.

β0
r (1− q(p)), i.e by the probability that a TF is not bound to its own promoter, which is

βr(p) =
β0

r

1 + p exp[�0 − �r]
. (4.27)

Therefore we have K = exp[�r − �0]. Empirically, the values of � and �0 can be reasonably

approximated by �0 ≈ 0 and � = 1
kBT ≈ 1.2 [40], which gives

K(r) ≈ exp[1.2r] (4.28)

and allows us to write the strength of a binding site K in terms of the number of mismatches, r,

between the real and optimal binding sites. We can then consider the evolution of a single binding

site through point mutations. We take K1 = K(r) and K2 = K(r − 1), and examine the noise in
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all heterozygotes as a binding site evolves (moves closer to the optimal binding sequence). We plot

the value of dβ against the number of correctly matched nucleotides in figure 4.8. This is done for

different values of the maximum expression, β0
rb

γp
, of a single allele, for a binding site 10 nucleotides

in length. When the degree of dominance, |dβ | > 1, then heterozygotes have more noisy expression

than either homozygote. If noise reduction is selected for, this will result in under-dominance.

From figure 4.8 we see that under-dominance will occur for a single binding site with maximum

expression β0
rb

γp
= 10000, when 5 out of 10 nucleotides are correctly matched to the optimal binding

site. Similarly, for β0
rb

γp
= 1000, under-dominance occurs when 7 out of 10, and for β0

rb
γp

= 100 when

9 out of 10 nucleotides are correctly matched to the optimal binding site.
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Figure 4.8: Degree of dominance for a single binding site. Horizontal axis plots the number of
nucleotides correctly matched to the optimal binding site. Horizontal axis indicates the magnitude
of dominance which occurs in heterozygotes in which one more nucleotide is matched to the optimal
binding site. When the degree of dominance is greater than 1 (dashed blue line), under-dominance
occurs, and heterozygotes are more noisy than either homozygote. a) Dominance for maximum
gene expression of 10000, under dominance when 5 out of 10 nucleotides are matched to the optimal
binding sequence. b) Dominance for maximum gene expression of 1000, under dominance when 7
out of 10 nucleotides are matched to the optimal binding sequence. c) Dominance for maximum
gene expression of 100, under dominance when 9 out of 10 nucleotides are matched to the optimal
binding sequence.

This shows that under-dominance can occur when selecting for noise reduction, even when only

a single auto-regulatory binding site is present in the promoter of the gene.
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4.4 Discussion

We have investigated the behaviour of negatively autoregulating genes in cells where two copies of

the gene are present. This is of interest for two reasons. Firstly, although negative autoregulation

is one of the most abundant network motifs in prokaryotes [110], the behaviour of such motifs in

diploids has not been considered in depth. Secondly, the behaviour of duplicates of autoregulating

genes is of interest in the evolution of other network motifs [117, 140]. We have constructed a

model which considers a pair of alleles, 1 and 2, both of which undergo negative autoregulation.

The alleles code for identical proteins, and therefore suppress the expression of both themselves

and each other. However, the strength of negative autoregulation is allowed to differ between the

alleles, such that they have different repression coefficients, K1 and K2. When this is the case,

smaller values of K indicate stronger negative autoregulation. We have determined both the total

expression of the pair of alleles, and the contribution of each allele to the total expression in the

case where K1 and K2 differ. This reveals firstly that dominance tends to occur in the total

expression of the alleles, and secondly that one allele will tend to be expressed at a higher level

than the other. In particular, when negative autoregulation is strong, one of the pair of alleles will

be almost completely off, and contribute little to the total expression of the pair.

We then investigated the noise in the total expression of a pair of alleles. This is of interest as

auotregulation is thought to serve as a mechanism of noise reduction in prokaryotes [1, 11, 118, 110].

This reveals that, in a wide range of cases, heterozygotes will be more noisy than either of the

two possible homozygote cases. Thus, under-dominance will occur in terms of the noise in the

expression of paris of alleles.

4.4.1 Barrier to the Evolution of Autoregulation in Diploids

The occurrence of under-dominance in the noise levels of negatively autoregulating genes has

interesting implications. In particular, if noise reduction is selected for, it suggests that there

exists a barrier to the evolution of negative autoregulation. To further characterize this effect we

have investigated the evolution of a single binding site through single nucleotide substitutions.

This suggests that, for genes with a high maximum expression [118] (figure 4.7a), a binding site

of 10 nucleotides, will encounter under-dominance when 5 out of the 10 nucleotides are correctly

matched to the optimal binding site. Thus, binding sites which are strongly matched to the optimal

binding sequence cannot evolve. Form this we may conclude that, where negative autoregulation

has evolved as a mechanism for noise reduction in diploids, the binding may tend to be weak. In
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contrast, for haploid organisms there is no barrier to the evolution of negatively autoregulating

binding sites, and as such we may expect stronger binding sites to evolve.

The effectiveness of negative autoregulation as a mechanism for noise reduction is increased

when multiple TF binding sites must be bound in order for repression to occur [18]. However, our

results indicate that, in such cases, the tendency for strengthening of TF binding sites to result

in under-dominance is increased, and thus results in an even stronger barrier to the evolution

of negative autoregulation (figure 4.7). Therefore we conclude that the evolution of negative

autoregulation as a mechanism for noise reduction faces significant difficulties in the diploid case

as compared to the haploid case. We therefore expect that the frequency of negative autoregulation

in diploids is likely to be less than observed in haploids.

In order to develop an intuition as to why under-dominance in the level of noise reduction occurs

in diploids, we consider the expression levels of individual alleles in heterozygotes. As described

above, in heterozygotes, the allele with the stronger autoregulatory binding site tends to be under-

expressed, and the allele with the weaker autoregulatory binding site tends to be over-expressed,

compared to the case in homozygotes. Noise level is given by the ratio of the variance in gene

expression to the mean gene expression. The variance is determined by the strength with which a

gene’s expression level is returned to equilibrium following a perturbation, i.e by the strength of

negative autoregulation. In a homozygote, each allele has mean expression K
2 and the strength of

negative autoregulation is K. However, in heterozygotes the allele with the weaker autoregulatory

binding site has increases expression as compared to the expression level in the homozygous case.

As a result, it has an increased noise level as compared to the homozygous case. The other allele

has reduced gene expression as well as an increase in the strength of negative autoregulation.

Therefore it has reduced noise level compared to the homozygous case. However, the allele with

reduced noise contributes little to total gene expression and in many cases may be completely

silent. Therefore total gene expression is dominated by the allele with increased noise, and the

total noise in the expression of heterozygotes is increased as compared to homozygotes.

4.4.2 Frequency of Autoregulation in Yeast and E. coli

In order to test this hypothesis we compare the frequency of negative autoregulation in E. coli

with that observed in S. cerevisiae [47, 88, 110]. The results are shown in table 4.1.

From this we see that, whilst 37% of TFs undergo negative autoregulation, comprising 7% of

all interactions in E. coli, in S. cerevisiae between 2% [88] and 4% [47] of TFs undergo negative
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E. coli [110] S. cerevisiae [88] S. cerevisiae [47]

TFs 115 131 124

Interactions 578 1094 909

Negative Auto 42 3 5

Positive Auto 14 9 5

Dual Auto 4 0 0

Table 4.1: Frequency of autoregulation in E. coli and S. cerevisiae

autoregulation, comprising between 0.3% [88] and 0.6% [47] of all interactions. There is an order of

magnitude difference in the frequency of negative autoregulation between E. coli and S. cerevisiae.

This is precisely in line with the results of our model. It is believed that negative autoregulation

has evolved as a mechanism of noise reduction in E. coli, which is haploid. In S. cerevisiae,

which exists most frequently as a diploid, the difficulty of evolving negative autoregulation due to

under-dominance would be expected to lead to a dramatic reduction in the frequency of negative

autoregulation. This is precisely what is observed.

4.4.3 Dominance Arising from cis Mutations

An intriguing insight from our model is that, when genes negatively autoregulate, mutations in

cis will tend to give rise to dominance in their effects on gene expression. This is in contrast to

cis mutations in most cases, which tend to be additive, with trans mutations tending to result in

dominance [70, 73]. In diploids mutations to a TF binding site will tend to affect the expression

of the allele at which it occurs, whilst leaving the expression of the other allele unchanged. This

makes evolution of cis regulatory regions easier than trans evolution.

This conclusion is supported by observations in Drosophila melanogaster, where it is observed

that genetic divergence between different lineages is associated with variation in cis [70]. This

suggests that alleles with cis mutations may be preferentially fixed by positive natural selection

because they tend to be additive more frequently [70]. In contrast the disruption of gene expres-

sion by recessive variation resulting from alleles with trans mutations suggests that these may be

important in understanding variation within populations [70]. The pervasive dominance effects

associated with negative autoregulation suggests that cis mutations at these genes may evolve dif-

ferently to cis regulatory regions at other genes. If mutations with higher additivity are favoured

by positive natural selection, this may provide a further explanation of the relative lack of negative
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autoregulation in S. cerevisiae as compared to E. coli.

4.4.4 The Fate of Silent Alleles

Our investigation of the contributions of different alleles to total gene expression reveals that the

allele with the weaker negative autoregulation tends to be over-expressed whilst the allele with the

stronger negative autoregulation is under-expressed. In particular, where autoregulatory binding

sites are strong, the allele with the stronger binding site will have its expression almost completely

suppressed. We refer to such suppressed alleles as silent.

This conclusion applies both to heterozygous diploids, and to duplicates of negatively autoregu-

lating genes in haploids which differ in the strength of their negative autoregulation. The tendency

for alleles to be silent applies quite generally to pairs of identical negatively autoregulating genes.

This can be seen from figure 4.6, in which allele expression can be seen to be low in one allele for

a wide range of values of binding site strength. Where an allele is silent, any further mutations it

suffers, either in cis or in trans, will be unexpressed.

In a diploid population, silent alleles will only be expressed in individuals which are heterozygous

for the allele with stronger negative autoregulation. If the frequency of such alleles is low, copies of

the allele may be silent for a number of generations. If an allele goes unexpressed for a number of

generations, there is an increased probability that it will have suffered a mutation when it is next

expressed. Thus silent alleles provide a potential store for genetic variation in diploid populations.

The tendency of alleles with stronger negative autoregulation to accumulate mutations may provide

another reason for the relative absence of negative autoregulation in S. cerevisiae as compared to

E. coli.

4.4.5 Duplication of Autoregulators in Haploids

Duplication of negatively autoregulating genes in haploids is of interest for two reasons. Firstly,

such duplications provide a potential mechanism through which other, larger network motifs may

evolve [117]. Secondly, the expression of a pair of duplicate negatively autoregulating genes with

identical binding site strength is the same (or close to) that of the unduplicated gene [140]. As such,

the possible deleterious effects associated with gene duplication which result from increased dosage

will be mitigated in genes which negatively autoregulate. This has led to two hypotheses. Firstly,

that duplicate pairs of autoregulating genes will tend to participate in larger network motifs, and

secondly, that negatively autoregulating genes will tend to have more duplicate copies fixed in
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a population, compared to genes which do not negatively autoregulate [117, 140]. Interestingly,

analysis of the E. coli transcription network reveals that neither of these hypotheses hold true

[117, 140]. The analysis of negatively autorgulating genes in diploids presented here provides a

possible explanation for this.

In particular, our analysis shows that, in order for a negatively autoregulating gene to avoid

becoming silent it must maintain a level of negative autoregulation close to that of its duplicate

pair. Any change to its negatively autoregulatory binding site, or any other mutation in cis that

alters the strength of negative autoregulation, will result in the expression of one of the pair being

suppressed. As discussed above, this will lead to the suppressed gene being released from selection,

and free to fix further mutations. In effect it will become a pseudogene, and will tend to be lost

from the population. In addition, the constraint placed by negative autoregulation on the cis

regions of duplicate pairs reduces the ability of the pair to evolve divergent expression patterns

and acquire new functions. It is only if one of the pair undergoes a trans mutation which affects

the ability of the gene to autoregulate that a duplicate can avoid these constraints (see Appendix

C). This removes the expectation that duplicates of negative autoregulators may be favoured over

duplicates of other genes, and is therefore in line with observations in the E. coli transcription

network.

4.4.6 Transcriptional Bursting in Eukaryotes

The stochastic model for gene expression in diploid organisms presented here allows a comparison

of the expression dynamics of negatively autoregulating genes with that observed in haploids. How-

ever, it does not take account of the fact that in many cases haploid organisms will be prokaryotes

whilst diploids will be eukaryotes. The model presented for haploids provides a good description of

transcription in prokaryotes. Gene expression in eukaryotes has somewhat different characteristics

to that of prokaryotes [101]. In particular, eukaryotic genes undergo transcriptional “bursts” in

which the gene itself randomly switches between a state of transcriptional activity and inactivity

[101]. As a result eukaryotes tend to have more noisy gene expression than prokaryotes.

The origins of increased noise in eukaryote gene expressions still the subject of debate, however

it is thought to result from changes in nucleosome occupancy at the transcription start site [101].

However, the increased noise observed in eukaryotic cells provides an additional explaination for

the relative lack of negative autoregulation in S. cerevisiae - that noise reduction of this type is

not necessary in eukaryotes. Whilst this does not contradict the results presented here, it suggests
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that a combination of factors may be responsible for these observations. Both the difficulty of

evolving negative autoregulation in diploids, as well as the lack of a need to do so may explain why

negative autoregulation is less prevalent in S. cerevisiae as compared to E. coli.

4.5 Conclusion

We have presented a model for the evolution of negative autoregulation in diploids. Negative au-

toregulation is of interest as it is one of the most prevalent network motifs in prokaryotes, where

it is thought to function as a mechanism for the reduction of noise in gene expression. Our results

show that in diploids, when a pair of alleles which differ in the strength of their negative autoregu-

lation, this leads to dominance in the level of gene expression. In addition, the contributions of the

different alleles to total gene expression is often highly assymetrical. In particular, when negative

autoregulation is strong, the allele with the stronger negative autoregulation will be almost com-

pletely suppressed. It is suggested that such silent alleles will be more prone to the accumulation

of mutations.

Dominance also occurs in the degree of noise in gene expression. In particular, in a wide

range of cases, heterozygotes are found to be more noisy than either of the two homozygote cases.

Therefore, in negative autoregulation is selected for as a mechanism of noise reduction, this would

lead to a barrier to the evolution of stronger negative autoregulation. Comparison of the frequency

of negative autoregulation in S. cerevisiae and E. coli, reveals an order of magnitude difference

between the two cases. This observation supports our conclusion that there is a barrier to the

evolution of negative autoregulation in diploids.

4.6 Appendix C

4.6.1 Stochastic Model of Negative Autoregulation

We have employed a model from the literature [118] in order to determine the noise in gene

expression when diploid negative autoregulation occurs. Therefore we quote the results for the

mean gene expression and noise in gene expression from this model without proof. Since we

are assuming that alleles in the diploid model are identical except for the strength of negative

autoregulation, we use results for the haploid model with the rate of mRNA production βr(p)

given by equation 4.16. In order to obtain equation (4.14) for the mean protein expression, we
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combine equations (4.12) and (4.13) to give
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replacing βp
r from equation (4.9) then gives equation (4.14).

4.6.2 Mutations in trans

Mutations in trans affect the function of a transcription factor itself. Therefore we assume that

it affects the ability of the TF to bind to both copies of the allele equally. When the two alleles

differ as the result of a trans mutation, our ODE model for gene expression in diploids becomes
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from this it is immediately obvious that the equilibrium expressions of the two alleles are identical

p̄1 = p̄2. Since the total gene expression is given by p̄ = p̄1 + p̄2 this gives p̄1 = p̄2 = p̄
2 . Combining

equations (4.30) and solving for the equilibrium protein concentration then gives

p̄ =
2βp

γp

1

1 +
�
p̄

�
1

2K1
+ 1

2K2

��n (4.31)

which is a Hill function with repression coefficient K = 2K1K2
K1+K2

. If a trans mutation occurs such

that one allele loses its ability to regulate the other, K2 →∞, then the effective binding coefficient

becomes K → 2K1. Therefore a trans mutation allows autoregulation to be lost in one allele

without the other allele becoming silent.
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Chapter 5

Conclusion and Further Work

5.1 Conclusion

The aim of this thesis is to investigate the construction of transcription factor networks (TFNs)

through natural selection. TFNs are central to many important evolutionary questions. They

capture the way sets of genes interact with one other to produce complex patterns of coordinated

gene expression. Patterns of gene expression are central to determining the function and behaviour

of a cell which in turn goes to determine the phenotype of an organism.

It is beyond the scope of any single piece of work to fully characterise the evolution of TFNs.

Rather than attempt to do this, I have focused on three important aspects of TFN evolution,

which are related to three different aspects of TFN organisation. It now remains to tie these three

aspects together, in order to construct a picture of how TFNs as a whole are constructed through

natural selection.

The first property of TFNs that was considered was the degree distribution. The degree distri-

bution of a network is one of the most general ways of characterising its structure. It is described

by n(k), which is the frequency distribution of nodes in the network that have k edges - i.e which

have degree k. A TFN is a directed network, such that genes may have incoming edges - indicating

they are regulated by another gene - or outgoing edges - indicating that they regulate another

gene. As such, a TFN has two degree distributions, one for the frequency distribution of incoming

edges, nin(k), and one for the frequency distribution of outgoing edges, nout(k). In contrast to

most other biological networks, the in- and out-degree distributions of a TFN are very different.

The in-degree distribution is best described by an exponential distribution, whilst the out-degree
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distribution has a broad tail, which can be described by a power-law distribution [47, 83, 119].

We constructed a model for the evolution of the TFN degree distribution through cis and trans

mutation, gene duplication and deletion. We allowed degree dependence in the rate of fixation

of mutations. This included preferential attachment, such that genes gain new interactions at a

rate proportional to the number of interactions they already participate in. This occurred for

both incoming and outgoing edges. We also allowed degree dependence such that TFs fixed trans

mutations more slowly, the more interactions they participate in. We showed that the in- and out

degree distributions observed in yeast and E. coli can only be reproduced if degree dependence in

the rate of trans evolution is included in the model. In addition the observed rates of mutation in

these organisms suggest that preferential attachment in both incoming and outgoing edges occurs.

From this model we are able to draw conclusions about the evolution of global TFN structure. In

particular, we conclude that the rate at which mutations are fixed at different genes depends on

their position in the network.

The second property of TFNs considered was the evolution of cooperative binding between

different TFs. Cooperative binding of the type considered occurs when a pair of TFs co-regulate

a set of genes. They are able to bind to the promoter regions of regulated genes independently,

through their specific binding sites. This can be aided by a protein-protein interaction between the

pair of TFs. This allows one TF to increase the strength of binding of the other TF to regulated

genes. The presence of a protein-protein interaction therefore decreases the constraint on the

specific binding sites of one of the TFs, since it is able to compensate for changes to the binding

strength of the specific site.

This model considers neutral evolution, since we assume that both TFs must always bind

to all the targets that they co-regulate, such that the expression of the regulated genes remains

unchanged. However, the manner in which the genes are regulated may vary, depending on whether

a protein-protein interaction is present or absent. Such a model describes observed changes in the

yeast sex determination network, in which neutral evolution of the type considered in this model

has been observed [124]. Our results showed that the probability of a protein-protein interaction

between the two TFs becoming fixed in a population follows a threshold function in the number

of target genes regulated. The threshold number of regulated genes is determined by the rate

of mutations in cis, which affect specific binding sites, and in trans which affect the protein-

protein interaction. In large populations a protein-protein interaction will become fixed when

doing so increases the robustness of the network to deleterious mutations. In small populations,
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where mutational robustness is less likely to evolve [127], a threshold still occurs. In this case the

threshold is softer than in the large population case, but once again depends on the rates of cis and

trans mutations. However the position of the threshold in the large and small population cases is

different in general.

From this work we conclude that fixation of a protein-protein interaction in a population is

likely to occur in response to a change in the number of genes co-regulated by a pair of TFs (regulon

size). This is corroborated by observations in the yeast transcription network, in which it is found

that significant changes in the sets of genes co-regulated by pairs of TFs have occurred [125]. We

also conclude that changes in population size may be able to drive loss or gain of protein-protein

interactions. As such, we conclude that the changes observed in the yeast sex determination

network can indeed occur as a result of neutral evolution.

The final property of TFNs that is considered is the frequency of negative autoregulation

observed in different networks. Negative autoregulation is one of the most abundant network

motifs found in E. coli [110]. It has been shown to function as a mechanism of noise reduction in

gene expression, both experimentally and theoretically [1, 106, 118]. We extended the theoretical

analysis carried out in haploid organisms, to the case of diploids. The expression dynamics of

genes which undergo autoregulation was considered. This was expected to differ from the haploid

case since a pair of identical autoregulating genes form a network of three feedback loops and four

regulatory interactions. In contrast, a haploid autoregulating gene consists of a single interaction

and a single feedback loop.

We investigated both the mean expression and noise in gene expression of negatively autoreg-

ulating genes in diploids. We showed that when the two genes differ in the strength of negative

autoregulation (the heterozygous case), the total expression of the pair of genes will show domi-

nance, such that it is similar to one of the two possible homozygous cases. We also showed that

the contribution of the different alleles to the total gene expression shows significant differences.

In particular, the allele with weaker negative autoregulation will always be over expressed, and the

allele with stronger negative autoregulation under expressed, relative to their expression levels in

the homozygous cases. We also showed that when negative autoregulation is strong, in the het-

erozygous case one of the alleles will be almost completely unexpressed, with the total expression

accounted for entirely by the allele with weaker negative autoregulation.

Similarly, the noise in gene expression in heterozygotes shows significant dominance. Impor-

tantly, in this case heterozygotes will always show a noise level closer to the homozygous case with
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the weaker level of negative autoregulation. Further, in a wide range of cases, heterozygotes show a

noise level which is greater then either of the two homozygous cases. Thus there is under-dominance

in the level of noise in gene expression. This suggests that, if negative autoregulation is selected for

as a form of noise reduction, it will be much more difficult to evolve in diploids than in haploids.

This is corroborated by observations in the yeast transcription network, in which the frequency of

negatively autoregulation is an order of magnitude less than in the E. coli transcription network

[47, 88, 110].

We also conclude that the the existence of unexpressed alleles, described for diploid autoregula-

tion, may be used to explain observations concerning the evolution of duplicates of autoregulating

genes in haploid organisms. In particular, it has been suggested that genes which autoregulate

may have duplicates fixed more frequently. However this is not observed [117, 140]. We suggest

that this is explained by the tendency of one of the duplicate pair to become unexpressed following

mutations in cis.

The picture of TFN evolution that emerges from these three pieces of work is as follows. Firstly,

the position of a gene in the network (i.e the number and type of interactions it participates in)

has a significant impact on the way that gene evolves. This is seen in the degree distribution of the

network, in which degree dependence in rates of evolution is required to reproduce observations.

It is seen in the evolution of cooperative binding, in which protein-protein interactions become

fixed or lost in response to the number of target genes co-regulated. It is seen in the evolution of

autoregulation, which is heavily favoured in E. coli but is relatively rare in yeast. This suggests

that insight into the evolutionary path of a gene may be gained by characterising its position

in a TFN - through it’s degree, through the number of genes it co-regulates with other TFs and

through the presence or absence of autoregulation. I suggest that this is likely to hold true for other

measures of a gene’s position in a TFN, such as participation in larger network motifs (e.g feed

forward loops). Therefore, by determining general rules about how genes which occupy different

positions in a TFN evolve, we can construct a picture of how TFNs as a whole evolve. For example

we can determine which TFs are likely to undergo the highest rate of trans or cis evolution, or the

likely fates of duplicates of genes which occupy different positions in the network.

The second conclusion which emerges, is that characterising the function of a particular network

is not in itself sufficient to characterise the evolution of that network. In particular, the network

structure which is adopted by evolution has been shown here to depend heavily on population

genetic factors. These include the relative rates of different types of mutation, population size,
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whether recombination occurs in a population, and whether an organism is haploid or diploid.

In general there may be many different network structures which are capable of performing a

particular function. When this is the case, the network structure that is adopted is likely to be

both the result of functional optimisation, and a result of population genetic factors. These in turn

may be the result of the environment in which a population exists or its evolutionary history. This

suggests that we must be cautious when attempting to determine the function of networks observed

in living organisms. Studying the function of such networks abstracted from the population genetic

details of the organism’s lifestyle may lead to false conclusions about that function.

The final conclusion which emerges concerns the role of trans mutations in TFN evolution. It

has often been suggested that the majority of evolutionary change which occurs in TFNs occurs

through changes in cis [43, 70, 97, 96, 115, 142]. In contrast, trans evolution has been said to occur

rarely due to the pleiotropic effects of changes in trans. Whilst this may be true, the work presented

here suggests that the role of trans evolution should not be neglected. Our results suggest that

some degree of trans evolution is required to explain the observed degree distribution of TFNs.

More significantly, our study of the evolution of co-regulation between pairs of TFNs suggests that

changes in trans may fascilitate changes in cis, such that the two processes cannot be considered in

isolation from one another. Thus we conclude that changes to protein-protein interactions between

TFs may be an important factor in driving evolutionary changes in cis and the evolution of TFNs

as a whole.

5.2 Further Work

The work presented here suggests three important directions for further work. The first direction

consists of a more general analysis of how diploid TFNs evolve as compared to haploids. This

was carried out for the particular case of negative autoregulation. A similar analysis could be

carried out for the full range of network motifs observed in E. coli, yeast and higher eukaryotes.

Such an analysis would require the effects of mutations on the function of these networks in

haploids and diploids to be determined. For motifs of more than one gene in higher eukaryotes, it

would also require the inclusion of recombination. Once this was achieved we would be able, for

example, to investigate the differences observed in the motif distributions in E. coli, S. cerevisiae

and Drosophila. This in turn would allow us to determine to what extent the differences in network

structure between these organisms is determined by being haploid vs. diploid, or by a low vs. high

rate of recombination, and to what extent the differences reflect intrinsic differences in the functions
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of these networks.

The second direction consists of a more general analysis of the co-evolution of the protein-

protein interaction network and the transcription factor network. This can be approached both

theoretically, through computational modelling, and through the use of bioinformatic data on

the structure of these networks. As a starting point, the results of chapter 3 could be tested

more generally using data on the protein-protein interaction network of yeast. The results of this

chapter suggest that gain of protein-protein interactions should be correlated with an increase in

the number of genes co-regulated by the interacting TFs, whilst loss of protein-protein interactions

should be correlated with a decrease in the number of genes co-regulated by the interacting TFs.

This hypothesis could be tested directly, and provide a starting point for further work into the

coevolution of these two networks.

The third direction concerns the impact of whole genome duplication on the evolution of tran-

scription factor networks. There have been a number of recent studies on the impact of whole

genome duplication on the evolution of gene expression [21, 50, 95, 59, 149]. These provide empiri-

cal evidence against which models of the evolution of transcription networks through whole genome

duplication can be tested. Whole genome duplications provides a wealth of raw genetic material on

which natural selection can act. However the constraints on how they can occur and subsequently

be integrated into the genetic architecture of an organism are poorly understood. The methodolo-

gies developed here could be employed to elucidate these questions. In particular, the impact of a

whole genome duplication on the global architecture of transcription and protein networks could

be approached both theoretically and computationally, using the methods developed in Chapter 2

of this thesis.
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