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ABSTRACT 

 

To extract a meaningful visual experience from the information falling on the retina, 

the visual system must integrate signals from multiple levels.  Bottom-up signals 

provide input relating to local features while top-down signals provide contextual 

feedback and reflect internal states of the organism.   

 

In this thesis I will explore the nature and neural basis of this integration in two key 

areas.  I will examine perceptual filling-in of artificial scotomas to investigate the 

bottom-up signals causing changes in perception when filling-in takes place.  I will 

then examine how this perceptual filling-in is modified by top-down signals reflecting 

attention and working memory.  I will also investigate hemianopic completion, an 

unusual form of filling-in, which may reflect a breakdown in top-down feedback from 

higher visual areas. 

 

The second part of the thesis will explore a different form of top-down control of 

visual processing.  While the effects of cognitive mechanisms such as attention on 

visual processing are well-characterised, other types of top-down signal such as 

reward outcome are less well explored.  I will therefore study whether signals relating 

to reward can influence visual processing. 

 

To address these questions, I will employ a range of methodologies including 

functional MRI, magnetoencephalography and behavioural testing in healthy 

participants and patients with cortical damage.  I will demonstrate that perceptual 

filling-in of artificial scotomas is largely a bottom-up process but that higher cognitive 
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functions can modulate the phenomenon.  I will also show that reward modulates 

activity in higher visual areas in the absence of concurrent visual stimulation and that 

receiving reward leads to enhanced activity in primary visual cortex on the next trial. 

 

These findings reveal that integration occurs across multiple levels even for processes 

rooted in early retinotopic regions, and that higher cognitive processes such as reward 

can influence the earliest stages of cortical visual processing. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Introduction 

 

Our experience of the world as a series of meaningful objects and scenes is 

constructed by the visual system from the dauntingly complex pattern of light and 

dark edges transmitted by the retina.  Transforming these complicated signals into 

meaningful information and experiences requires complex multilevel neural 

interactions with bottom-up processing, informed by the properties of the sensory 

signals themselves; and top-down influences whereby internal states such as attention, 

motivation and reward can influence the processes taking place at earlier stages of the 

visual pathway.  In this way, information can be integrated from different regions and 

processes to arrive at a coherent output.   

 

In this thesis, I will examine the influences of top-down (internal states) and bottom-

up processing on both behavioural measures of awareness and on signals from early 

(retinotopic) and later visual cortices. I will examine two very different model 

systems, perceptual filling-in and reward processing, providing converging evidence 

about their respective behavioural and neural effects on human visual cortex using 

multiple experimental techniques including functional MRI (fMRI) with retinotopic 

mapping, magnetoencephalography (MEG) and behavioural experiments.  

 

The first part of this thesis examines the neural basis of perceptual filling-in. This 

involves the interpolation of missing information to make sense of a world where 
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visual information is frequently absent or objects are occluded behind other objects.  

It provides a unique substrate for investigating this integration of bottom-up and top-

down neural processes as it involves the extraction of local feature information, lateral 

propagation of signals, and feedback from higher regions to constrain and inform 

feature recognition.  I will begin examining whether the earliest stages of cortical 

processing are involved in perceptual filling-in.  I will then look for evidence of top-

down control of this phenomenon by examining how attention and working memory 

affect the process of perceptual filling-in of artificial scotomas 

 

In the second part of the thesis, I will turn to study top-down influences on visual 

cortical processing more directly, but using some of the experiment tools, techniques 

and procedures learnt in the first part. Rather than focus on relatively well-studied 

top-down influences such as attention and working memory, here I will focus on the 

potential influence of receiving reward on visual processing.  Humans in common 

with other animals, optimise their behaviour to maximise the pleasurable experience 

that is reward.  It might be predicted, therefore, that receiving a reward could guide 

performance to bring about future reward.  In the context of visual processing, where 

a task is associated with a pleasurable outcome, this might be expected to influence 

future performance of that visual task.  Such a role for reward outcome as a top-down 

modulator of visual processing has not been explicitly examined previously in 

humans.  I will therefore examine how reward outcome influences visual cortex 

activity at the point of reward feedback and the effect of reward receipt on retinotopic 

visual cortex activity during subsequent performance of a visual task.   
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1.1.1 Bottom-up processing:  the organisation of the visual cortex 

 

Current knowledge of the organization of the visual system originates from 

behavioural, anatomical and neurophysiological studies in monkeys.  These have 

revealed two processing pathways both originating in primary visual cortex (V1) 

(Ungerleider and Mishkin, 1982): the ventral stream which identifies objects and 

projects from V1 through areas V2 and V4 to the inferior temporal cortex; and the  

dorsal stream which  projects through areas V2 and V3 to the middle temporal area 

and on to the superior temporal and parietal cortex and processes spatial relations of 

objects and guides object-related movement.  There is a largely hierarchical 

organisation of information processing within both streams, progressing from simple 

local attributes by cells in V1 to more global feature detection in inferior temporal 

cortex (Tanaka, 1993) and direction and velocity of motion in the middle temporal 

area (Mikami et al., 1986).  There is also an associated increase in receptive field size 

with progression from V1 towards the temporal and parietal lobes (Gattass et al., 

1981;Gattass et al., 1988).   

 

Neuroimaging studies in humans reveal extensive similarities between the human and 

monkey visual systems, with similar ventral and dorsal streams (Ungerleider and 

Haxby, 1994).  For example, tasks requiring the perception of object characteristics 

such as colour or faces lead to activity in area V4 and more anterior ventral stream 

regions (Zeki et al., 1991;Kanwisher et al., 1997) whereas those requiring motion 

perception are associated with activity in the dorsal stream, especially in a region 

homologous to monkey MT (Zeki et al., 1991;Tootell et al., 1995).  Moreover, the 

increasing complexity of processing seen in the progression from posterior to more 
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anterior areas in monkey visual cortex is also found in humans with more global 

feature processing such as face or object detection in more anterior regions 

(Kanwisher et al., 1997;Grill-Spector et al., 1998) with associated increases in 

receptive field size (Tootell et al., 1997).   

 

However, it is clear that bottom up mechanisms alone cannot provide flexible and 

responsive information in a rapidly changing internal as well as external environment. 

Consistent with this idea, anatomical studies in monkeys reveal that almost all 

connections between regions in the ventral stream are reciprocal (Felleman and Van 

Essen, 1991), with further feedback projections from areas outside this processing 

pathway, such as from prefrontal and parietal cortex (Cavada and Goldman-Rakic, 

1989;Ungerleider et al., 1989), providing potential pathways for top-down processing 

of visual information. 

 

 

1.1.2 Top-down processing of visual information 

 

Extensive neurophysiological and neuroimaging studies support the idea that visual 

processing in humans is also subject to top-down influences, whereby internal states 

such as attention or motivation which reflect our internal representation of the world 

can modulate the simpler processes occurring at earlier stages (for a review see 

(Gilbert and Sigman, 2007)).  There are several well-studied examples of these higher 

cognitive functions such as attention (Moran and Desimone, 1985;Treue and 

Maunsell, 1996) and working memory (Desimone, 1996;Soto et al., 2007) influencing 
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earlier stages of visual processing.  Here I will now briefly review some of the 

evidence for the effects of attention on visual processing and awareness. 

 

Single cell recordings in monkeys and neuroimaging studies in humans demonstrate 

that selective attention modulates neural processing in visual cortex.  Directing 

attention to a stimulus causes neural responses in monkeys to be enhanced in V1 

(Motter, 1993), V2 (Motter, 1993;Luck et al., 1997) and in V4 (Haenny et al., 

1988;Spitzer et al., 1988).  Similar enhancement with increased spatial attention is 

seen for neurons in MT (Treue and Maunsell, 1996) and the lateral intraparietal area 

(Colby et al., 1996).  Similarly in humans, attention enhances fMRI responses in 

primary visual cortex (Gandhi et al., 1999;Watanabe et al., 1998;Somers et al., 1999)  

and beyond (Tootell et al., 1998a;Martinez et al., 1999b), with a gradient in the 

influence of attention as one moves up the hierarchy from V1 (Tootell et al., 1998a). 

 

Initial studies of the top-down effects of attention on visual processing focussed on 

spatial attention, but it has become clear that feature-based non-spatial attention also 

modulates visual processing in monkeys (Motter, 1994;Treue and Martinez Trujillo, 

1999) and in humans (Corbetta et al., 1990;O'Craven et al., 1997).  Attention can 

even  influence visual processing in the absence of any visual stimulation.  

Neurophysiological studies show increased firing rates for V2 and V4 neurons when 

an animal is cued to attend to a location within the neuron’s receptive field, before the 

stimulus is presented (Luck et al., 1997;Treue and Martinez Trujillo, 1999) and 

similar effects are seen in humans (Kastner et al., 1999). 
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However, attention is just one example of top-down control on early sensory 

processing.  Other influences include expectation, or prior experience, where previous 

experience of representations of objects or scenes shapes how they are segregated 

(Dolan et al., 1997) and working memory, which influences visual processing 

independently from attention (Soto et al., 2007). However, it is not yet clear whether 

other higher cognitive processes can influence visual processing, and in particular, 

whether processes such as reward can modulate the earliest cortical stages of visual 

processing is still unknown.   

 

This thesis is concerned with exploring the integration of bottom-up and top-down 

signals in visual processing by exploring two key areas: the first is perceptual filling-

in, where the visual system interpolates information across visual space where that 

information is physically absent.  The second will explore an intriguing aspect of top-

down processing: the influence of higher processes such as the effect of reward on 

visual cortex activity in the absence of concurrent visual stimulation. 

 

 

1.2 Perceptual filling-in  

 

Perceptual filling-in is the interpolation of missing information across visual space.  It 

is a ubiquitous process in the visual system, necessary to make sense of the world.  

Light from portions of objects and scenes often falls upon interferences in the retina, 

such as the blind spot or retinal vessels; or falls behind objects in the real world and 

the visual system must process information across these occluders so that they are 

perceived as complete and not fragments.  It is an extremely effective process, as most 
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of the time we are entirely unaware that it is taking place.  It is also a natural process 

which takes place all the time, but researchers have observed that certain stimuli can 

be configured to promote perceptual filling-in.  These may exploit some of the same 

mechanisms underlying other forms of filling-in.   

 

Perceptual filling-in is a heterogeneous phenomenon. Here I will discuss different 

forms of filling-in and present a new framework for categorising the various types of 

perceptual filling-in.  I propose that this system, by grouping together common 

aspects of filling-in and separating out contrasting features, may provide some 

insights into possible mechanisms underlying the different forms of perceptual filling-

in.   

 

 

1.2.1 Nomenclature of perceptual filling-in 

 

There is some confusion in the literature regarding nomenclature, with the terms 

filling-in, perceptual filling-in and perceptual completion all being used to describe 

the interpolation of missing information across visual space but sometimes for 

different forms of filling-in.  In particular, some groups use filling-in to refer to 

surfaces (Sasaki and Watanabe, 2004) and perceptual completion to refer to contours 

(Sergent, 1988), but many influential groups use the terms interchangeably (Pessoa et 

al., 1998;De Weerd, 2006).  Here I will use the terms perceptual completion and 

perceptual filling-in interchangeably to refer to the perceptual experience of  

interpolation of information across visual space, for both contours and surfaces. It is 

also important to distinguish perceptual filling-in from neural filling-in (Pessoa et al., 
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1998).  Perceptual filling-in here refers to the perceptual experience of interpolation 

and does not imply anything about neural mechanisms.  Where mechanisms are being 

considered, this will be explicitly stated in the text.  Note, perceptual filling-in here 

refers only to situations where there is a conscious experience of the image, as occurs 

in illusory contours, but also occurs for occluded objects; for example, there is a 

subjective experience of seeing a whole car, even if it is obscured by a tree.  This is 

not the case, however, for the information behind the back of the head.  We do not 

have a perceptual experience of things happening behind us.  It is possible to imagine 

or infer what happens in the space behind our heads, but to experience it, we have to 

turn around.  For this reason, in this thesis, perceptual filling-in does not include the 

processing of information from the space behind our head or other similar forms of 

gleaning of absent information.  Filling-in is also used in areas of visual neuroscience 

to refer to aspects of surface perception (Neumann et al., 2001;Paradiso and Hahn, 

1996).  Although perceptual filling-in may share some of the same mechanisms that 

are involved in normal surface perception, this is not being explored here.   

 

 

1.2.2 Current theories of mechanisms of perceptual filling-in  

 

Two main hypotheses have been discussed in the literature for perceptual filling-in.  

The first hypothesis, described by Dennet (Dennett, 1991) and extended by others 

(Kingdom and Moulden, 1988;O'Regan, 1992), suggests that neural filling-in does not 

occur, but that the visual system simply ignores the absence of information across the 

scotoma or blind spot and labels or ‘tags’ the region with the information in the 

surround (‘more of the same’).  According to this theory, also termed the symbolic or 
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cognitive theory, there would be no retinotopic representation of the filled-in surface 

in earlier visual regions, but activity related to filling-in might be found in higher 

visual areas representing objects.  However, substantial evidence is accumulating for 

an active process for perceptual filling-in, with point-for-point representations of 

filled-in regions in retinotopic cortex. 

 

The second hypothesis is the isomorphic model that suggests a point-for-point 

representation of the filled-in surface will be found in early retinotopic regions.  This 

might be achieved by lateral propagation of neural signals, with the spread of 

activation across the retinotopic map from the border to interior surface of the filled-

in figure (Gerrits and Vendrik, 1970;De Weerd et al., 1995).  Alternatively, this might 

be achieved by passive remapping of receptive fields (Chino et al., 2001) such that 

visual input from the region surrounding the scotoma or blind spot is displaced so that 

it infiltrates the cortical region representing the blind spot or scotoma.   

 

 

1.2.3 Previous taxonomies of perceptual filling-in 

 

Taxonomies of perceptual filling-in have been proposed previously.  Pessoa (Pessoa 

et al., 1998) proposed two general divisions: modal versus amodal completion and 

boundary versus featural completion.  However, this taxonomy has been criticised as 

being unnecessarily complicated (Birgitta Dresp 1998, commentary on (Pessoa et al., 

1998)) and the major division of modal/amodal as unhelpful (Carol Yin 1998, 

commentary on (Pessoa et al., 1998)). 
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Dresp proposed a taxonomy based purely on psychophysical evidence rather than 

phenomenology.  She proposed divisions based on area, surface and contour 

completion, where area completion involves spreading of contrast into regions 

without clearly defined boundaries; surface completion involves the perception of 

figures from real or apparent contours and contour completion involves the perceptual 

grouping of collinear lines.  However, it is not clear that the distinction between area 

and surface completion is helpful and dismissing all phenomenological differences 

between types of perceptual filling-in misses the aim of a framework to explore 

commonalties and differences to better understand underlying mechanisms. 

 

Yin proposed a taxonomy reflecting the goals of visual completion: unity, shape and 

perceptual quality.  However, this taxonomy is very similar to the original Pessoa 

taxonomy (with shape determination closely linked to boundary completion and 

perceptual quality determination linked to featural completion) and it has been 

suggested that unity does not necessarily involve perceptual completion as disparate 

fragments may be experienced as unified without any visual completion taking place 

(for example when a group of dots moving coherently are experienced as unified) 

(Pessoa et al., 1998).   

 

 

1.2.4 A framework for categorising different forms of perceptual filling-in  

 

Here I propose a new framework for perceptual filling-in based on phenomenological 

and psychophysical characteristics.  I suggest that this framework provides some 
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insight into the possible underlying processes involved in filling-in by grouping the 

various types of perceptual completion. 

 

Perceptual filling-in can be broadly separated on phenomenological and 

psychophysical grounds into two types: perceptual filling-in which takes place 

instantly and perceptual filling-in which is delayed as it requires prolonged fixation 

before it can occur.  These can each be further subdivided according to whether 

perceptual filling-in will occur only in the presence of specific stimulus 

configurations (stimulus dependent) or will occur regardless of stimulus configuration 

(stimulus independent, often due to a deficit or particular feature of the visual system, 

see Table 1.1).  I will now explore the current understanding of perceptual filling-in 

within these categories and consider how this categorisation helps understanding of 

the processes involved in perceptual filling-in.  This review is not intended to be 

exhaustive, but will provide examples for each type of perceptual filling-in (instant 

versus delayed; stimulus dependent and stimulus independent) where these help to 

illustrate common and distinct features of filling-in. 
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 Stimulus dependent Stimulus independent 

Instant Illusory contours 

Illusory surfaces 

Neon colour spreading 

Craik-O’Brien-Cornsweet effect 

Afterimage colour filling-in 

Amodal completion 

Filling-in at the blind spot 

Filling-in of retinal scotomas 

Delayed Troxler fading 

Artificial scotomas 

Motion induced blindness 

Stabilised retinal images 

 

Table 1.1 Framework for categorising different types of perceptual filling-in, according to whether 

perceptual filling-in occurs instantly or is delayed and only occurs after prolonged fixation; and 

according to whether perceptual filling-in occurs only with specific stimulus configurations or will 

occur independent of the particular stimulus used. 

 

 

1.2.5  Instant perceptual filling-in dependent on stimulus 

configuration 

 

a) illusory contours 

 

One type of instant perceptual filling-in is the perceptual completion of illusory 

contours (also termed modal completion (Michotte et al., 1991)).  These are edges 

which are perceived in the absence of physical boundaries.  They are induced by an 

appropriate arrangement of local elements, or inducers, causing the perception of a 
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surface overlaying these inducing elements.  A classic example of illusory contours is 

the Kanizsa figure.  This is generated by a particular configuration of high contrast 

figures, such as incomplete and co-aligned black circles, which induce the illusory 

perception of a light shape (Kanizsa, 1979)(see Fig 1.1). 

 

 

Figure 1.1 Kanizsa figures and other examples of illusory contours 

 

Illusory contours can also be generated by displaced gratings, which can form edges 

or circular boundaries, depending on the configuration of the inducing gratings (see 

Fig 1) and can even be defined by depth cues (Mendola et al., 1999).  This type of 

perceptual completion, in addition to inducing the appearance of a complete contour 

or shape, is also characterised by the striking phenomenon that the region intervening 

between the inducers is filled-in with illusory brightness and colour that is determined 

by the inducers (Davis and Driver, 2003).   

 

One area of debate is whether illusory contours are processed at the same anatomical 

level as real contours.  Purely psychophysical studies in normal human vision suggest 
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a locus of perceptual completion in earlier visual areas as the tilt after-effect and 

motion after-effects can be generated with illusory as well as real contours (Smith and 

Over, 1975;Smith and Over, 1979) and tilt after-effects cross over between illusory 

and real contours (Berkley et al., 1994).  Furthermore, Kanizsa figures are detected 

without attention in a visual search paradigm (Davis and Driver, 1994;Senkowski et 

al., 2005) and if the high contrast inducers are placed on a checkerboard background 

which is misaligned with the inducing elements, the illusory contour disappears 

(Ramachandran et al., 1994), consistent with a close interaction between illusory 

contour processing and processes extracting local feature information.  Moreover, 

perceptual completion of illusory contours is worse across the vertical meridian 

(Pillow and Rubin, 2002), reflecting limitations in cross-hemispheric integration and 

therefore a locus more likely to be in V1 or V2, areas which are more sensitive to this 

hemispheric divide. Finally, patients with visuospatial neglect show improved 

performance on line bisection tasks when illusory contours are present, despite being 

unaware of their presence (Mattingley et al., 1997;Vuilleumier et al., 2001), 

consistent with a preattentive locus of boundary completion. 

 

Electrophysiological studies in animals have explored the type and location of 

neurons involved in perception of illusory contours (for a review see (Nieder, 2002)). 

An illusory bar induced by aligned corners placed outside the classical receptive field 

of V2 neurons yields significant responses (Von der Heydt and Peterhans, 1989).  

Subsequent experiments in cats and monkeys have shown that both V1 and V2 

neurons carry signals related to illusory contours, although signals in V2 are more 

robust that those in V1(Redies et al., 1986;Sheth et al., 1996;Ramsden et al., 2001).  

More recent studies have suggested the presence of interactions between V1 and V2 
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neurons in illusory contour processing, with responses occurring earlier in V2 (70-95 

ms) than in V1 (100-200 ms) (Lee and Nguyen, 2001). However, a recent report of 

illusory contour processing in monkeys instead implicates inferior temporal neurons 

(Sary et al., 2007) and lesions of monkey IT (which may be homologous to human 

lateral occipital complex (LOC) (Denys et al., 2004;Sawamura et al., 2005))  impair 

illusory contour discrimination (Huxlin et al., 2000).  

 

Illusory contours have been extensively studied in human neuroimaging experiments 

with conflicting results, some of which may be explained by confounding 

methodological issues, particularly differences in stimuli, such as stimulus size, ratio 

between inducers and total length of illusory figure and different types of inducers, 

such as static and moving features (for a review see (Seghier and Vuilleumier, 2006)).  

Some studies have shown specific activations in response to illusory contours within 

area V1 (Larsson et al., 1999;Seghier et al., 2000)  and the timing of responses seen in 

MEG and ERP studies is consistent with involvement of early cortical visual areas 

(Herrmann and Bosch, 2001;Ohtani et al., 2002;Proverbio and Zani, 2002;Murray et 

al., 2006).  However, other studies do not show the involvement of V1 during 

perception of static (Ffytche and Zeki, 1996;Kruggel et al., 2001;Stanley and Rubin, 

2003) or moving illusory contours (Goebel et al., 1998).  As with neurophysiological 

studies on primates, the involvement of area V2 in illusory contour perception has 

been more consistently shown, with most neuroimaging studies demonstrating 

activation of this region (Ffytche and Zeki, 1996;Goebel et al., 1998;Hirsch et al., 

1995;Larsson et al., 1999), although some studies did not find reliable evidence for 

involvement of V2 (Mendola et al., 1999). 
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Higher level regions have also been implicated in illusory contour processing.  One 

study found activations specifically associated with illusory contour processing in 

putative areas V7 and V8, and overlapping with the lateral occipital complex 

(Mendola et al., 1999).  A similar region was identified in other studies (Murray et al., 

2002a;Stanley and Rubin, 2003;Murray et al., 2004) and using ERP source mapping 

(Murray et al., 2004).  It is possible that this area was activated partly due to object 

processing within the Kanizsa figure. Interestingly, an MEG study using line gratings 

but no illusory figure failed to detect activity within the LOC (Ohtani et al., 2002) and 

when illusory contour formation was prevented using misaligned inducers (Stanley 

and Rubin, 2003), LOC was still activated, suggesting that LOC activity may not be 

specific to illusory contour processing. 

 

Other higher-tier visual areas that have been implicated in processing illusory 

contours include the right fusiform gyrus (Larsson et al., 1999;Halgren et al., 2003)  

and the kinetic occipital region (also called area V3B), which is activated by the 

perception of moving (Seghier et al., 2000) and static illusory contours (Kruggel et 

al., 2001) and a recent study (Montaser-Kouhsari et al., 2007) found orientation-

selective adaptation to illusory contours in a range of higher tier visual areas (V3, V4, 

VO1, V3A/B, V7, LO1 and LO2) as well as V1 and V2, with an increase in 

orientation-selective adaptation in higher regions. 

 

Taken together, electrophysiological and neuroimaging studies suggest that illusory 

contour processing is associated with  activity of neuronal populations in early visual 

areas, especially V2; and may also involve more global, high-level processing in 

higher visual areas, which may then feed back to the lower visual regions. 
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b)  Illusory surfaces 

 

i) Neon colour spreading 

 

Neon colour spreading is a striking and beautiful phenomenon whereby the neon-like 

glow of a colour escapes the boundaries of a real figure and seems to fill the 

surrounding area until it is limited by the boundaries of an illusory figure (for a 

review see (Bressan et al., 1997) (see Fig 1.2).   

 

                        

Figure 1.2. Neon colour spreading.  a) The central virtual circle appears as a transparent blue surface 

overlapping the black rings. Adapted from (Pinna and Grossberg, 2005). b) The Ehrenstein figure: red 

colour from the inner red segments of the cross seems to leak into its surround to produce the 

impression of a central red disc.  

 

This effect, first observed by Dario Varin in 1971 (Varin, 1971) and Harrie van Tuijl 

(van Tuijl, 1975), also occurs for achromatic figures, with illusory brightness 

spreading induced by grey segments on black inducers.  The illusion is strongest when 

the lines and segments are continuous, collinear and equally thick and the effect 

disappears if the subjective figure is encircled by a ring (Redies and Spillman, 1982).  

Others have shown that depth cues are important in producing this effect, with neon 
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spreading only occurring if the coloured elements are phenomenally in front of the 

inducing areas (Nakayama et al., 1990;Meyer and Dougherty, 1987) (although see 

also (Bressan and Vallortigara, 1991)).  The rules for whether colour or brightness 

spreading will take place seem to represent the colour and luminance prerequisites for 

perceiving a transparent subjective figure, as spreading usually occurs when the 

luminance of the segments is between the luminance of the embedding lines and that 

of the background (Bressan et al., 1997).   

 

Illusory contours seem to play a crucial role in delimiting the spread of neon colour 

illusions, with spreading particularly vivid when coloured segments are inserted into 

the blank area of a figure that otherwise would produce a colourless illusory figure 

(Watanabe and Sato, 1989;Watanabe and Takeichi, 1990). 

 

Neon colour spreading seems to involve very early visual processes: if the coloured 

cross and black arms are presented to different eyes but aligned to form a fused 

image, an illusory contour is perceived, but no colour spreading occurs (Takeichi et 

al., 1992) and neon colour filling-in (and the related, but contrasting watercolour 

illusion) has recently been explained in terms of competition within boundary 

perception (Pinna and Grossberg, 2005).  Specifically, boundaries of lower contrast 

edges might be weakened by spatial competition more than boundaries of higher 

contrast edges and this induces spreading of colour across boundaries, producing the 

illusion.  However, in a recent neuroimaging study in humans, neon colour spreading 

was associated with activity in V1 only when attention was controlled with a task at 

fixation (Sasaki and Watanabe, 2004), consistent with a process involving early visual 

regions but influenced by higher cortical functions. 
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ii) Craik-O’Brien-Cornsweet illusion 

 

The Craik-O’Brien-Cornsweet effect occurs when regions of the same luminance 

appear to differ in brightness because of differences in luminance at the borders 

between these regions (Craik, 1966;O'Brien, 1958;Cornsweet, 1970) (see Fig 1.3).  

For example, in Figure 1.3, the bars appear to alternate between light and dark despite 

the fact that the central portion of the bars are of equal luminance.  Thus the 

impression is similar to a square-wave grating of alternating uniformly luminant bars.  

This effect is abolished if the edges are occluded. 

 

 

Figure 1.3. A Craik-O’Brien-Cornsweet effect grating.  Note that although the luminance in the 

central regions of each panel is identical, alternate bars appear darker or lighter due to differences at the 

edges of the bars. 

 

It has been proposed that this effect is mediated by a form of cortical filling-in (Cohen 

and Grossberg, 1984;Gerrits and Vendrik, 1970) and this is consistent with 

psychophysical studies showing that brightness propagates at a fixed speed across the 

central retinal field (Davey et al., 1998) (but see also (Devinck et al., 2007) and 

(Dakin and Bex, 2003)).  An alternative hypothesis is that an abstract process occurs 

whereby a label such as ‘brightness’ is attached to one region (Burr, 1987), possibly at 

a later stage of visual processing, similar to the symbolic theory of filling-in.   
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In cats, brightness responses due to the Cornsweet effect are seen in Area 18 and to a 

lesser extent in Area 17 (Hung et al., 2001), consistent with local processes 

propagating brightness information.  More recently, the same group showed in 

macaque that V2 thin stripe regions are responsive to Cornsweet-induced brightness 

(as well as true luminance brightness) whereas V1 blob regions respond only to real 

brightness, suggesting that V1 responses reflect luminance properties signalled by 

local inputs, whereas V2 confers higher-order properties resulting from integration of 

non-local inputs (Roe et al., 2005). 

 

However, in humans, a recent study examining specific fMRI responses to edges in 

the Craik-O’Brien-Cornsweet illusion (Perna et al., 2005) found that the caudal region 

of the intraparietal sulcus and the lateral occipital sulcus responded specifically to the 

illusion.  They found that earlier visual areas, including V1, responded as strongly to 

the location of the edge as to a line of matched contrast and detectability, rather than 

to the brightness illusion, consistent with the suggestion that V1 does not encode 

illusory brightness, but that regions higher than V2 compute surface brightness. 

Conversely, a recent study using high spatial resolution fMRI shows that the 

brightness filling-in seen in the Craik-O’Brien-Cornsweet illusion arises instead from 

signals in populations of monocular neurons early in human lateral geniculate nucleus 

(Anderson, Dakin and Rees JOV 2009, in revision). 
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iii) Afterimage colour filling-in  

 

A recent and striking perceptual filling-in phenomenon has been described (van Lier 

et al., 2009) whereby afterimage colours can spread to previously uncoloured areas, 

when constrained by contours presented after the coloured image (Fig. 1.4), 

demonstrating the important role of boundaries in constraining perceptual filling-in of 

afterimages. 

 

 

Figure 1.4  Illustration of colour afterimages After adapting to the adapting stimulus, the test 

outlines are presented alternately.  The two outlines cause the appearance of a red and then a cyan 

afterimage, including in the centre of the figure, where previously no colour was present. Adapted from 

(van Lier et al., 2009). 

 

Taken together, perceptual filling-in of surfaces seems to be closely linked to 

boundary perception (real or illusory) and is likely to entail a multilevel process 

involving higher regions feeding back to earlier visual regions. 
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c) Perceptual filling-in behind occluders: amodal completion 

 

Objects in the natural world do not present themselves in isolation, but are often 

occluded by other objects.  Yet we do not have the impression of being surrounded by 

object fragments as the visual system perceptually fills-in the missing information to 

interpret the objects as complete (Fig 1.5).  

 

 

Figure 1.5  Example of amodal completion The appearance is of a green oval behind a black 

rectangle, although the oval is not seen in full. 

 

This type of perceptual filling-in, where fragments are taken to be the visible portions 

of an occluded object, is termed amodal completion.  Several theories have been 

proposed to explain this linkage of image fragments.  One classic theory is that local 

image cues are used to determine object relationships. For example, T-junctions are 

often present when an object is perceived as occluded and are likely to represent 

contour discontinuity (Kellman and Shipley, 1991;Nakayama et al., 1989).  Another 

local cue is the relative orientation of image contours (Kellman and Shipley, 1991): 

objects are more likely to complete behind an occluder if the angle between their 

extensions behind the occluder is greater than 90o, such that good contour 

continuation is more likely.  However, important exceptions can be shown where 

completion takes place in the absence of T-junctions or good contour continuation and 
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conversely, where relatable edges are present but completion is not perceived (see 

(Boselie and Wouterlood, 1992;Tse, 1999) for examples). 

 

Another theory emphasises the importance of more global cues in causing perceptual 

completion, such as symmetry, regularity or simplicity (Sekular et al., 1994;van Lier 

et al., 1994). According to this theory, completion tends to produce the impression of 

the most regular shapes (Buffart and Leeuwenberg, 1981).  However, other 

researchers have shown that observers do not always perceive the most regular shapes 

(Boselie and Wouterlood, 1992).  Other theories ascribe amodal completion to the use 

of volume cues to form the image (Tse, 1999) or common depth planes (Nakayama 

and Shimojo, 1992).  Indeed, the presence of a depth-appropriate occluder plays a 

critical role in determining whether completion takes place (Johnson and Olshausen, 

2005).   

 

Amodal completion seems to take place early on in visual processing.  For example, 

when subjects are asked to search for a notched circle in an array of circles and 

squares, if the notched circle abuts the edge of a square so that it seems to be occluded 

by it, the notched circle takes longer to find (see Fig 1.6) (Rensink and Enns, 1998) as 

it is perceived as a complete circle in a sea of complete circles.   
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Figure 1.6 Visual search for amodally completed target.  Identifying the notched circle is harder in 

(A) as it is amodally completed and perceived as a circle among the other circles.  In (B), the notched 

circle ‘pops out’.  Search display similar to those used in (Rensink and Enns, 1998), adapted from 

(Driver et al., 2001a). 

 

Neurophysiological studies support the notion that amodal completion involves early 

visual processes, with evidence of amodal contour responses about 100 ms after 

presentation of occluded images in macaque V1 cells (Lee and Nguyen, 2001) and V1 

monkey cells fire in response to an amodally completed bar behind a square (Sugita, 

1999).  V2 neurons in macaque also respond to partially occluded contours (Bakin et 

al., 2000). Moreover, in humans, ERP differences between occluded images and their 

deleted counterparts are seen as early as 130 ms after presentation (Johnson and 

Olshausen, 2005). 

 

Initial neuroimaging studies seemed to contradict these findings with some studies 

showing increased activity in LOC for occluded compared to scrambled images with 

identical local features (Lerner et al., 2002).  Yet the same authors found that 

completion effects occur very rapidly following stimulus onset (Lerner et al., 2004).  

More recently, fMRI adaptation paradigms have been used to show that the 

representation of an amodally completed figure evolves over time (Rauschenberger et 

al., 2006), with physical properties of the stimulus processed first (before 100 ms) 
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followed by the amodal completion of the stimulus (within 250 ms).  These findings 

were extended by a study identifying regions in early visual cortex involved in 

processing of local contour information during amodal completion and regions in 

inferior temporal cortex responding to the amodally completed shape (Weigelt et al., 

2007) consistent with both local and global processing in amodal completion.  

Conversely, a recent study used a stereoscopic manipulation to reveal that LOC and 

dorsal object-selective foci are specifically responsive to completed occluded objects 

(Hegde et al., 2008).   

 

Taken together, the process of filling-in behind occluders is likely to involve a large 

number of information processing steps in early and higher regions of visual cortex. 

These might involve distinguishing between the boundaries of the occluded and the 

occluding object, assigning each of the resulting partial views a surface and then 

filling-in the missing information of each part (Johnson and Olshausen, 2005) using 

clues from depth disparity and collinear edges and representing the fully completed 

shape.   

 

 

i) A common mechanism for modal and amodal completion? 

 

A subject of intense debate is whether modal and amodal completion share a common 

mechanism as both involve the connection of disjoint image fragments into a coherent 

representation of an object, surface or contour.  Kellman and Shipley (Kellman and 

Shipley, 1991;Kellman et al., 1998) have argued in their ‘identity hypothesis’ that the 

same interpolation mechanism is responsible for both processes, but that the 
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difference in appearance arises from depth of placement of completed contours and 

surfaces.  However, others have shown that there may be differences in the 

mechanisms underlying modal and amodal completion.  For example, Davis and 

Driver (Davis and Driver, 1994) found that search for modally completed figures is 

more efficient than for amodally completed counterparts.  Similarly, 

neurophysiological studies show a dissociation in responses to modal and amodal 

completion at the earliest stages of visual processing (Sugita, 1999;Von der Heydt and 

Peterhans, 1989) and in a series of experiments, Anderson and colleagues (Anderson 

et al., 2002;Singh, 2004) provide evidence for different mechanisms for the two 

processes.  Nevertheless, a recent study has refuted these claims and proposes a model 

consistent with both Kellman’s identity hypothesis and Anderson’s unstable percepts 

whereby V1 and V2 cells receive feedback from higher visual areas modulating 

responses to modal and amodal completion (Albert, 2007). 

 

 

1.2.6 Instant perceptual filling-in independent of stimulus 

configuration 

 

a) Filling-in at the blind spot 

 

The blind spot is the part of the retina where the optic nerve leaves the eye.  It is 

devoid of photoreceptors and therefore carries no visual information from the 

corresponding region in visual space.  It measures roughly 5o in diameter and its 

centre lies 15o medial to the fovea, slightly above the horizontal meridian.  In normal 

binocular vision, the cortical representation of the other eye compensates for this lack 
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of visual information.  Interestingly however, monocular viewing does not lead to the 

appearance of a blank patch in the visual field as the visual system perceptually fills-

in visual information across the blind spot from the surrounding colour and texture 

(Ramachandran, 1992) (Fig 1.7), as long as coherent elements are presented on both 

sides of the blind spot (WALLS, 1954).   

 

 

Figure 1.7. Example of perceptual filling-in at the blind spot. Hold the page 15 cm from your face, 

fixate the cross and close your right eye.  When the yellow disc falls across the blind spot, it will seem 

to disappear and be perceptually filled-in by the horizontal bars.  Adapted from (Komatsu, 2006). 

 

Behavioural studies suggest that this is an early, preattentive process involving 

sensory rather than cognitive mechanisms.  If several rings are viewed, with one ring 

positioned over the blind spot, this will ‘pop out’ as it is perceived as a disc in a 

background of rings (Ramachandran, 1992)).  Even an extremely narrow border (0.05 

deg) surrounding the blind spot, will generate the appearance of uniform colour 

filling-in the blind spot (Spillmann et al., 2006), consistent with the theory that this 

form of filling-in depends on local processes generated at the edge of the blind spot 

representation in early visual cortex.  Studies also indicate that this is an active 

process, as the perception of filled-in motion at the blind spot causes a motion after-

effect in the other eye suggesting that perceptual filling-in can cause adaptation of 

motion-sensitive neurons (Murakami, 1995).  Perceptual filling-in at the blind spot 

induces little or no distortion of the surrounding region (Tripathy et al., 1996) which 
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would argue against remapping or ‘sewing up’ of the region corresponding to the 

blind spot.  Moreover, spatial alignment thresholds are lower across the blind spot 

than across intact retina (Crossland and Bex, 2009), consistent with involvement of a 

low-level mechanism in perceptual filling-in at the blind spot. 

 

Single cell recordings from anaesthetised monkeys show that when filling-in takes 

place at the blind spot, neural responses are generated at the retinotopic representation 

of the blind spot in primary visual cortex (Fiorani et al., 1992;Matsumoto and 

Komatsu, 2005;Komatsu et al., 2002).  Some V1 neurons activated during perceptual 

filling-in at the blind spot have large receptive fields, extending out of the blind spot 

(Komatsu et al., 2002), suggesting the passive importing of information from the 

surrounding visual field.  Conversely, there is also strong evidence consistent for an 

active neural completion process as stronger activity is associated with bars spanning 

both sides of the blind spot than for bars stimulating only one side of the blind spot 

(Fiorani et al., 1992;Matsumoto and Komatsu, 2005).  Moreover, this most recent 

study (Matsumoto and Komatsu, 2005) demonstrated response latencies in V1 that 

were 12 ms slower for stimuli presented to the blind spot eye than to the other eye.  

These response latencies did not increase when more distal regions of the receptive 

field were stimulated, suggesting that they were not due to long-range horizontal 

connections, but might instead reflect feedforward signals to V2 which then feedback 

to V1. 

 

In humans, fMRI studies demonstrate the presence of a weakly responsive region in 

V1 corresponding to the cortical representation of the blind spot that is no longer 

evident in V2 (Tong and Engel, 2001;Tootell et al., 1998b).  A more recent study 
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using fMRI (Awater et al., 2005) failed to find distortions of representation around 

the blind spot during stimulation of the two sides of the blind spot independently.  

This is consistent with neurophysiological studies showing that perceptual completion 

at the blind spot is likely to occur through an active completion mechanism (Fiorani et 

al., 1992;Matsumoto and Komatsu, 2005), although, crucially that fMRI study did not 

examine cortical representation around the blind spot during perceptual filling-in at 

the blind spot. Consistent with previous studies, they also showed that by V2, the gap 

in cortical representation corresponding to the blind spot was no longer present. 

 

Taken together, these studies suggest that perceptual filling-in at the blind spot is 

likely to reflect active processes, probably comprising lateral propagation signals but 

also possibly involving feedback signals from extrastriate regions. 

 

 

b) Filling-in across retinal scotomas 

 

Patients with retinal scotomas due to macular degeneration or toxoplasma infection 

also experience perceptual filling-in (Zur and Ullman, 2003;Gerrits and Timmerman, 

1969;Alvarenga et al., 2008) which is instant, improves with increasing density and 

regularity of the filled-in patterns and occurs for scotomas as large as 6 degrees, at 

less than 2 mm from the fovea (Zur and Ullman, 2003).  Retinal scotomas are also 

associated with a twinkle after-effect, for areas as large as 20 degrees 

 (Crossland et al., 2007), consistent with an active completion process, but possibly in 

extrastriate areas, given the large area of this effect.  Interestingly, alignment 

thresholds over pathological retinal scotomas are not lower than across intact retina 
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(Crossland and Bex, 2009;Alvarenga et al., 2008), suggesting that perceptual filling in 

across retinal scotomas does not include low-level receptive field organisation. 

 

Single cell recordings in mammalian visual cortex have revealed conflicting results.  

In monkeys, cells within primary visual cortex representing the edge of the lesions 

expand their receptive fields within minutes after inducing bilateral retinal lesions 

(Gilbert and Wiesel, 1992) and several months after the lesion, the receptive fields 

have expanded and shifted to outside the lesion. Similar reports of receptive field 

reorganisation in V1 have been shown following monocular retinal lesions in cats 

(Chino et al., 1992) and following cortical lesions in kittens (Zepeda et al., 2003).  

Importantly, in adult mammals, this reorganisation occurs within hours of the lesion 

(Chino et al., 1992), but only if associated with absence of input from the fellow eye.  

However, other studies have failed to observe topographic remapping effects in V1 

after monocular retinal lesions (Murakami et al., 1997) or even following bilateral 

retinal lesions (Smirnakis et al., 2005), causing some significant controversy (Calford 

et al., 2005;Giannikopoulos and Eysel, 2006).  

 

In humans, reports are also inconsistent.  Visual cortex (including V1) deprived of 

retinal input due to macular degeneration shows increased activation with functional 

MRI to stimuli outside the corresponding region in visual space (Baker et al., 

2005;Baker et al., 2008).  Reorganisation also occurs following loss of visual input 

due to optic radiation damage following stroke (Dilks et al., 2007).  However, other 

studies have failed to find consistent evidence for cortical reorganisation in macular 

degeneration (Sunness et al., 2004;Masuda et al., 2008) and a recent study suggests 
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that large scale cortical reorganisation may only occur in association with the 

complete absence of functional foveal vision (Baker et al., 2008).   

 

Thus, the mechanisms underlying perceptual filling-in associated with retinal 

scotomas remain unclear.  If any reorganisation occurs in early visual areas, it is likely 

to be augmented by feedback projections from higher visual areas with larger 

receptive fields (Baker et al., 2008). 

 

 

1.2.7 Delayed perceptual filling-in, dependent on stimulus 

configuration 

 

a) Troxler fading and artificial scotomas 

 

Troxler fading or perceptual filling-in refers to the tendency of stimuli placed in 

peripheral vision to gradually fade from view with maintained central fixation 

(Troxler, 1804)(Fig 1.8).  Stimuli are more likely to fade if they are peripheral, have 

indistinct edges (Friedman et al., 1999) and when the luminance (Sakaguchi, 2001) 

and contrast difference between the target and surround is reduced (Sakaguchi, 2006).  

The faded percept returns with eye movements or blinking and is counteracted by 

microsaccades (Martinez-Conde et al., 2006). 
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Figure 1.8.  Example of Troxler fading.   Hold the page 20cm away from your face, fixate the cross 

with both eyes open, after a few seconds, the blue pattern will fade and disappear. 

 

This perceptual filling-in can be made even more striking if the background is 

replaced by dynamic twinkling noise (Ramachandran and Gregory, 1991), which 

causes perceptual filling-in to occur more rapidly (Spillmann and Kurtenbach, 1992) 

and the percept is then termed an artificial scotoma (Ramachandran and Gregory, 

1991) (see Fig. 1.9).   

 

The perceptual filling-in of artificial scotomas is similar in many ways to that which 

occurs with Troxler fading.  Both require prolonged fixation before perceptual filling-

in of the peripheral target can take place.  Both require the target to be in the near 

periphery and both processes are disrupted by eye movements and counteracted by 

microsaccades.  Perceptual filling-in of artificial scotomas occurs earlier than for a 

target of equivalent size and eccentricity to fade and perceptual filling-in of artificial 

scotomas occurs more consistently for salient targets (e.g. red or flickering targets) 

than would occur for Troxler fading.  Phenomenologically, a possible difference is 

that during perceptual filling-in of an artificial scotoma, the background is perceived 

at the position previously occupied by the target.  Furthermore, researchers have 

argued that the filling-in of an artificial scotomas is less likely to be due to adaptation 

as the border between the target and the surround is constantly refreshed (Spillmann 

and Kurtenbach, 1992).  However, it is not entirely clear that these two phenomena 
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are distinct and are not due to similar underlying neural processes.  For the purposes 

of this thesis, they will be considered as separate processes, but experimental findings 

will be discussed for both processes together, where this is helpful to understand the 

underlying mechanisms of either process. 

 

 

Figure 1.9 Example of an artificial scotoma.  A target is placed in the near periphery on the 

background of dynamic twinkling noise.  Participants fixate centrally and the target gradually fades and 

disappears.  Adapted from (Ramachandran and Gregory, 1991). 

 

Behavioural studies suggest that perceptual filling-in of artificial scotomas is 

associated with activity in early retinotopic cortex as filling-in is influenced by low-

level sensory factors such as eccentricity and boundary length (De Weerd et al., 

1998;Welchman and Harris, 2001) as well as increased differences in luminance or 

motion contrast between the target and its surround (Welchman and Harris, 2001). 

Similarly, the relative salience of the target compared to its background influences 

time to filling-in, with increasing perceptual salience associated with an increased 

fading time (Sturzel and Spillmann, 2001;Welchman and Harris, 2001). 

 Detection thresholds for Gabor patches presented within artificial scotomas are 

elevated by dynamic noise surrounds (Mihaylov et al., 2007) and after Troxler fading, 

participants are less able to detect a probe presented within a perceptually filled-in 
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target (Lleras and Moore, 2006), suggesting suppression of target-associated signals 

during the subjective experience of perceptual completion.  However, an earlier study 

(Kapadia et al., 1994) used a 3 line bisection task to measure distortions around 

artificial scotomas and found the apparent position of the middle line segment was 

drawn towards the interior of the artificial scotoma, suggesting possible 

reorganisation around the perceptually filled-in target.  This is also consistent with a 

more recent behavioural study suggesting cortical reorganisation surrounding 

perceptually filled-in targets (Tailby and Metha, 2004).  

 

Artificial scotomas can also induce after-effects (Reich et al., 2000;Hardage and 

Tyler, 1995), consistent with an active process.  Furthermore, high-level factors have 

also been shown to influence perceptual filling-in (De Weerd et al., 2006;Lou, 1999) 

as directing spatial attention to the peripheral target increases the probability of it 

perceptually filling-in.  Taken together, these studies are consistent with perceptual 

filling-in of peripheral targets occurring in retinotopic visual cortex, possibly with 

some contribution from higher visual areas, but the mechanism remains elusive. 

 

Physiological studies do not yet reveal a consistent pattern of neural activity 

associated with perceptual filling-in of artificial scotomas. In monkey, single neurons 

in V2 and V3 whose receptive fields overlap an achromatic target placed on dynamic 

noise increased their firing after a few seconds of eccentric fixation (De Weerd et al., 

1995). However, it is not clear whether such changes correspond to perceptual 

completion as the monkeys did not report their perception and conversely, in 

responding monkeys, V1 and V2 boundary neurons show decreased activity during 

Troxler colour filling-in (Von der Heydt et al., 2003). 
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In humans, luminance filling-in (filling-in of an achromatic target on a uniform 

achromatic background) is associated with a generalized (non-retinotopic) decrease in 

activation in V1 and V2, and increased activity in higher visual areas (Mendola et al., 

2006) but the neural correlates of perceptual filling-in of artificial scotomas have not 

yet been directly measured in humans. Thus, the processes underlying perceptual 

filling-in of peripheral targets remain unclear.  In particular, whether perceptual 

filling-in occurs in retinotopic cortex, is associated with increased or suppressed 

activity and the role of higher cortical functions in the process are still unknown. 

 

 

b) Motion-induced blindness 

 

Motion induced blindness (MIB) is a striking phenomenon in which a perceptually 

salient target repeatedly disappears and then reappears when superimposed on a field 

of moving distractors, after a period of maintained central fixation (Bonneh et al., 

2001) (Fig 1.10).  Target disappearance is influenced by low-level sensory factors 

such as eccentricity (Hsu et al., 2004) and size (Bonneh et al., 2001), the boundary 

adaptation effect (Hsu et al., 2006) and also placing the target behind the distractors 

(Graf et al., 2002). 

 

However, several features of MIB distinguish it from other forms of peripheral 

perceptual filling-in such as Troxler fading and perceptual filling-in of artificial 

scotomas.  Unlike peripheral perceptual filling-in, MIB targets perceptually fill-in 

more readily if they are of increased luminance and contrast compared to the 
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background (Bonneh et al., 2001) and MIB occurs after briefer periods of prolonged 

fixation.  Furthermore, if MIB targets are surrounded by a region without any 

distractor targets, this region is spared from any perceptual filling-in.   

 

 

Figure 1.10 Example of motion induced blindness. The grid of blue crosses rotates and participants 

fixate the central white point while attending to the yellow disc.  The yellow disc intermittently 

disappears and reappears.  (Adapted from (Scholvinck and Rees, 2009b)).  

 

MIB is unlikely to reflect local adaptation processes, as it persists for moving or 

flickering targets and even when targets and distracters are spatially separated 

(Bonneh et al., 2001).  Furthermore, high level factors seem to play an important role 

in MIB: disappearance of the target is subject to grouping effects, with targets tending 

to disappear together rather than separately if they form good gestalts (Bonneh et al., 

2001) and when two Gabor patches are presented as targets, they disappear together if 

they are collinear and in alternation if their orientation is orthogonal (Bonneh et al., 

2001).  Even when targets are invisible, they can still generate orientation-specific 

after-effects (Montaser-Kouhsari et al., 2004) or negative afterimages (Hofstoetter et 

al., 2004), suggesting that MIB occurs beyond the cortical site of these after-effects.  

Finally, attended targets are more likely to disappear than unattended targets 

(Scholvinck and Rees, 2009a). 
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Functional MRI studies have shown conflicting results.  One study (Donner et al., 

2008) found decreased activity associated with target disappearance in the region of 

V4 corresponding to the target, but increased responses with target disappearance in 

regions of dorsal visual areas corresponding to the mask, particularly in areas V3A 

and B and the posterior intraparietal sulcus.  These responses were superimposed on a 

delayed and spatially non-specific response in visual areas V1-3. In contrast, a more 

recent study found that disappearance of the target was associated with increased 

activity in V1 and V2 regions corresponding to the target and in V5/MT contralateral 

to the target (Scholvinck and Rees, 2009b). 

 

 

1.2.8 Delayed perceptual filling-in independent of stimulus 

configuration 

 

a) Stabilised retinal images 

 

When an image of an object is stabilised on the retina (for example using an optical 

lever system to ensure that the stimulus moves opposite to eye movements to cancel 

out eye movements), after a few seconds, it gradually fades away and is replaced by 

the texture or colour of the surrounding visual field (DITCHBURN and GINSBORG, 

1952;RIGGS et al., 1953).  Notably, complete stabilisation of the image (for example 

by projecting the internal structure of the eye onto the retina) causes images to 

disappear and never return (Campbell and Robson, 1961).  Within a stabilised image, 

single lines tend to disappear as units and parallel lines tend to disappear and reappear 

together.  The length of time that the target remains visible is partly a function of the 
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complexity of the target and meaningful figures remain visible for longer than 

meaningless figures (PRITCHARD et al., 1960).  Studies have also shown features of 

interocular transfer (Krauskopf and Riggs, 1959;COHEN, 1961) consistent with a 

cortical locus for the phenomenon.  Moreover, the part of the image to which the 

participant is directing attention remains in view longer than other parts and 

stimulating other modalities such as a sudden noise, causes reappearance of the image 

(PRITCHARD et al., 1960) consistent with involvement of higher regions in the 

disappearance of the images.  

 

This phenomenon may be an adaptive mechanism to prevent retinal vessels from 

interrupting our view of the world and also demonstrates the importance of constant 

eye movements in continually stimulating the visual system and preventing the 

apparent disappearance of visual scenes. It is possible that other forms of perceptual 

filling-in following maintained fixation share some common mechanisms with the 

fading of stabilized retinal images. 

 

 

1.2.9 Using this framework for perceptual filling-in to explore possible underlying 

mechanisms 

 

The framework described above is a new and useful way of categorising all forms of 

perceptual filling-in.  By considering perceptual filling-in within these categories, the 

commonalties and differences between the various forms of filling-in become 

apparent, which is essential in considering the mechanisms underlying perceptual 

filling-in.  Perceptual filling-in can be considered as an abnormal form of surface and 
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contour perception, as contours or surfaces are perceived where they do not actually 

exist in visual space.  It can be instant or delayed, and as becomes apparent from the 

framework described above, this depends on the presence or absence of existing 

boundaries.  Where perceptual filling-in occurs in the absence of real boundaries it 

will occur instantly.  For example, if the perceptual completion involves the formation 

of new boundaries (as in illusory contours, where no boundary is present), or the 

spread of surface in the absence of a boundary (as in the blind spot), perceptual 

filling-in is instant. 

 

Conversely, where perceptual filling-in occurs in the presence of an existing 

boundary, it will only occur after prolonged fixation, as this boundary must first be 

broken down by adaptive mechanisms, before perceptual filling-in can occur.  For 

example perceptual filling-in of artificial scotomas only occurs after prolonged 

fixation, as the boundary of the figure being filled-in must first be degraded by 

adaptive mechanisms.  Similarly for Troxler fading and even for stabilised retinal 

images 

 

This importance of boundaries in preventing interpolation processes has been 

discussed previously in the context of filling-in of artificial scotomas (De Weerd et 

al., 1995;Spillman and De Weerd, 2003), where a model has been proposed for a two 

stage process involving adaptation of figure boundaries followed by a faster 

interpolation process where the background fills-in the area previously occupied by 

the figure.  However, the importance of boundaries has not previously been applied 

systematically to all forms of perceptual filling-in.  By considering perceptual filling-
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in within this framework, the importance of boundary adaptation as a predictor of the 

timing of filling-in becomes immediately apparent.   

 

 

1.2.10 Perceptual filling-in in the context of general perception of contours and 

surfaces 

 

In order to understand perceptual filling-in, it is helpful to consider perceptual filling-

in in the context of processes involved in general perception of contours and surfaces.  

One influential model of general perception is FACADE  (Form-And-Color-And-

DEpth) theory, described by Grossberg (Grossberg, 1994;Grossberg, 1997;Grossberg, 

2003).  This theory describes two main systems in visual processing:  The Boundary 

Contour System and the surface system, termed the Feature Contour System.  

According to FACADE theory, all boundaries are in fact invisible and edges are only 

perceived as such as they arise as coherent patterns of excitatory and inhibitory 

signals across a feedback network from the retina through the LGN and V1 interblob 

and V2 interstripe areas (see Fig. 1.11).  Long-range cooperative interactions build 

boundaries across space while interacting with shorter-range inhibitory competitive 

interactions suppressing boundary groupings. These boundaries are, in a sense, 

invisible, as they are insensitive to contrast polarity, but simply pool information from 

cells sensitive to the same orientation but not necessarily of the same contrast 

polarities (Grossberg, 2003).  
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Figure 1.11 Schematic diagram of the Feature Contour System and the Boundary Contour 

System.  (Adpated from (Grossberg, 2003)). 

 

The surface system, on the other hand, termed the Feature Contour System, operates 

as a network from the retina, via the LGN to the V1 blob, V2 thin stripe and then V4 

stream.  It relies on discounting the illumination, to compensate for variable 

illumination and then filling-in the surface with colour or brightness, in a form of 

diffusion across visual space.  The surface system interacts with the Boundary 

Contour System to limit the diffusive spread of surface information.  Conversely, the 

Boundary Contour System becomes visible through interactions with the surface 

system. 

 

FACADE theory has been applied to perceptual filling-in previously (Grossberg, 

2003).  Here I extend it by applying it to the new system for categorising perceptual 

filling-in presented here and use it to make predictions for all forms of perceptual 

filling-in.  Where perceptual filling-in occurs for specific stimulus configurations 

following a delay, as in Troxler fading or filling-in of artificial scotomas, boundaries 

are invariably present.  As discussed above and by others (De Weerd et al., 1998), in 

order for perceptual filling-in to take place, these boundaries must first be adapted, or 

broken down, thus explaining the initial delay. 
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Where filling-in occurs instantly but is dependent on stimulus configuration, as in 

illusory contours and neon colour spreading, boundaries and surfaces are formed 

where they do not physically exist.  This may explain why filling-in occurs instantly.  

Moreover, these illusions exploit specific feature configurations which in the real 

world often signify borders and surfaces, such as in the context of camouflaged or 

occluded objects and are therefore interpreted by the visual system as the most likely 

natural configuration to explain the existing set of boundaries and surfaces.   

 

It is likely that forms of perceptual filling-in that are dependent on stimulus 

configuration exploit common mechanisms to those underlying perceptual filling-in 

independent of stimulus configuration which have been developed by the visual 

system to overcome deficits to visual system input.  Thus, in instant filling-in 

independent of stimulus configuration, as in the filling-in that takes place across the 

blind spot, the Feature Contour System is not limited by any boundaries, so filling-in 

continues almost instantly across regions of visual space.   

 

Conversely, retinal vessels do provide a boundary that would otherwise limit the 

spread of visual information.  The visual system has therefore developed mechanisms 

to prevent such interruptions to vision by causing images stabilised on the retina to 

fade and disappear over time.  These mechanisms are exploited in illusions such as 

Troxler fading and the disappearance of artificial scotomas.    
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1.2.11 Overview of thesis structure 

 

In the first part of this thesis I will examine the role of the bottom-up contribution to 

visual processing.  I will do this by exploring how stimulus-driven signals from 

artificial scotomas influence the perception of the stimulus that becomes invisible due 

to perceptual filling-in.  I will look for evidence of a neural signature of filling-in, 

evidence that it is an active process and attempt to determine the locus of perceptual 

filling-in.  In addition, I will explore whether the top-down influences of perceptual 

load and working memory load have any impact on the process of perceptual filling-

in.  In this section I will also examine an unusual and contrasting type of perceptual 

filling-in seen in the context of hemianopia, which may reflect the perceptual effects 

of a breakdown in top-down processing due to brain injury. 

 

In the second part of the thesis I will turn to the question of whether receiving reward 

can act as a top-down influence on visual responses, by exploring whether visual 

cortex activity can be modulated by reward outcome. 

 

 

1.3 Reward influences on visual processing 

 

1.3.1 Processes involved in reward-seeking behaviour 

 

A reward is any pleasurable event or experience that is obtained when a requisite task 

has been satisfied.  Most animals, including humans, will seek out rewards, 

performing tasks in order to obtain them.  To coordinate this behaviour, a set of 
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processes must be in place.  These include: the ability to represent the value of 

rewarding stimuli, the ability to predict when and where rewards might occur and to 

use these predictions to form decisions that will guide future behaviour (O'Doherty, 

2004).  Extensive neurophysiological, neuroimaging and lesion studies in humans 

have identified a group of brain structures including the ventromedial prefrontal 

cortex (encompassing both the orbital and medial prefrontal regions), the amygdala, 

striatum and dopaminergic parts of the midbrain as being essential components of an 

integrated network processing reward information (see Fig. 1.12).  Notably, this 

putative reward network does not involve sensory cortices, with neither primary nor 

association sensory cortices included.   The specific brain regions involved in each of 

these reward-associated processes will be reviewed in the next section. 

 

 

Figure 1.12 Representation of cortical and subcortical structures involved in reward processing.  

OFC, orbitofrontal cortex; AMG, amygdala; VS, Ventral striatum; DS, Dorsal striatum; mPFC, medial 

prefrontal cortex; GP, Globus pallidus; Thal, Thalamus; Hippo, Hippocampus. (Adapted from (Koob et 

al., 2008). 
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1.3.1.1 Brain structures involved in representing reward value 

 

The orbitofrontal cortex (OFC) has a key role in representing the reward value of a 

stimulus.  In macaque, neurons within orbitofrontal cortex respond more strongly 

during fruit juice consumption when monkeys are hungry than when they are satiated 

(Rolls et al., 1989). Similarly in humans, fMRI responses in OFC decrease when a 

liquid food is eaten to satiety (Kringelbach et al., 2003).  This role has been confirmed 

in other modalities in neuroimaging studies in humans, including visual (comparing 

neutral and happy expressions (O'Doherty et al., 2003)) and auditory stimuli (Blood et 

al., 1999). 

 

The amygdala may also be involved in processing reward value (for a review see 

(Holland and Gallagher, 2004)).  Rats with lesions to the amygdala show impaired 

performance in coding specific reinforcing outcomes (Balleine et al., 2003;Malkova 

et al., 1997), suggesting a role in learning the association between stimuli and the 

value of particular food rewards.  Similarly, in humans, hunger modulates fMRI 

responses in the amygdala to food stimuli (LaBar et al., 2001).  However, this role has 

recently been called into question by a study dissociating the effects of intensity and 

valence in olfaction (Anderson et al., 2003).  This study found amygdala activation is 

associated with the intensity and not valence of the stimuli and that, in contrast, OFC 

activation is associated with the valence rather than the intensity of stimuli, 

suggesting a primarily sensory rather than affective role for the amygdala in stimulus 

processing (see also (Small et al., 2003), for similar findings using gustatory stimuli), 
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although it could be argued that reward value depends not only on the nature of the 

reward but also on the amount of reward available (O'Doherty, 2004). 

 

 

1.3.1.2 Brain structures involved in predicting rewarding events 

 

Reward can be predicted when a neutral stimulus is followed by a reward in a 

contingent way.  After learning, this neutral stimulus becomes predictive of reward.  

In humans, neuroimaging studies show that the amygdala, OFC and ventral striatum 

are involved in reward prediction (Knutson et al., 2001;O'Doherty et al., 

2002;Gottfried et al., 2002), with learning-related changes in neural activity in 

response to conditioned stimuli in the OFC (Gottfried et al., 2002) and increased 

activity in dopaminergic midbrain, amygdala, striatum and OFC during anticipation of 

a taste reward (O'Doherty et al., 2002). 

  

1.3.1.3 A dissociation between reward expectation and reward receipt 

 

A longstanding area of controversy concerns the nature of responses to conditioned 

stimuli (previously neutral stimuli which after becoming associated with rewarding 

events, themselves become associated with reward-seeking behaviour).  Specifically, 

researchers have debated whether a conditioned stimulus itself acquires value and 

produces the same responses as the unconditioned stimulus (rewarding event) 

(Pavlov, 1927;Zener, 1937).  Neuroimaging studies seem to be consistent with distinct 

representation of conditioned stimuli, as the ventral striatum and amygdala respond to 
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predictors of reward but not to reward itself (Knutson et al., 2003) (O'Doherty et al., 

2002). 

 

1.3.1.4 Brain structures involved in reward-guided behaviour 

 

Having predicted that a stimulus is likely to lead to a reward, one must then act on this 

prediction.  Neuroimaging studies suggest a role for dorsal striatum in these response-

reward associations (Haruno et al., 2004;Elliott et al., 2004).  However, action 

preparation in response to rewarding stimuli is associated with enhanced activity in 

prestriate visual cortex, premotor cortex and lateral prefrontal cortex (Ramnani and 

Miall, 2003).   This finding suggests that reward-associated stimuli may influence 

regions beyond the established reward-processing network to bring about behaviour 

that is likely to produce more rewards in the future. 

 

 

1.3.2 Could reward influence the earliest stages of visual processing? 

 

Increasing reward has been shown to improve performance and even increase activity 

in primary somatosensory cortex during reward feedback, following a tactile 

discrimination task in humans (Pleger et al., 2008) and other mammals (Pantoja et al., 

2007).   

 

Recently, reward expectation has been shown to modulate activity in primary visual 

cortex.  When rats are presented with a visual stimulus associated with a reward, a 

proportion of neurons in primary visual cortex begin to express activity that predicts 
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the timing of the reward (Shuler and Bear, 2006). In humans, visual selective attention 

is modulated by the possibility of financial reward (Della and Chelazzi, 2006) and 

visual cortex shows increased activity when reward is expected in a spatial-attention 

task (Small et al., 2005).  Similarly, during stimulus presentation, activity is increased 

in stimulus-selective regions of visual cortex for rewarded compared to non-rewarded 

trials (Krawczyk et al., 2007) and prestriate visual cortex shows enhanced activity 

during the motor preparation stage for trials when reward is expected (Ramnani and 

Miall, 2003).  More recently, visual cortex activity was enhanced during presentation 

of visual stimuli previously associated with reward (Serences, 2008). 

 

Crucially, all these studies examined responses during the presentation of visual 

stimuli and therefore could not dissociate effects of reward outcome per se on the 

visual system.  These studies also do not clearly distinguish the effects of attention 

from those of reward, as higher reward values are likely to be associated with 

increased attention during presentation of a visual stimulus.  A 

 recent behavioural study has attempted to remove the effects of attention by 

rendering rewarded stimuli invisible by presenting continuously flashing contour rich 

stimuli to the other eye (Seitz et al., 2009).  The experimenters found that reward 

pairing, even in the absence of awareness, led to improvement in a visual task, 

showing that reward can influence visual processing even in the absence of 

awareness.  

 

In the second part of this thesis, I will use functional MRI to examine whether and 

how reward can influence BOLD signals in different areas of human visual cortex, but 

in the absence of concurrent visual stimulation.  Note that I will be examining 
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responses to reward outcome.  This is where correct performance in a visual task is 

followed by a cue informing participants that they have won a specified amount of 

money.  Although they will not physically be given the money during the trial, they 

will receive it at the end of the experiment.  This form of reward outcome has been 

validated in many previous studies (Pleger et al., 2008;Knutson et al., 2001;Petrovic 

et al., 2008). 

 

Critically, in the experiment presented in this thesis, I will distinguish between signals 

associated with the visual stimulus and those attributable to later non-visual reward 

feedback by employing a design separating these signals in time.  I will also examine 

whether reward on one trial can influence activity in visual cortex during the next 

trial.  One possibility is that reward modulates activity at later stages of visual 

processing, which in turn may affect behavioural measures of visual perception.  

Alternatively, reward may influence the earliest cortical stages of visual processing, 

either at the point of feedback or during visual performance at the next trial. 

 

 

1.4 Summary of studies presented in this thesis 

 

The first part of this thesis will explore top-down and bottom-up processes in 

perception using two forms of perceptual filling-in as model systems.  I will explore 

neural correlates of filling-in and consider evidence for boundary breakdown followed 

by lateral spreading as possible mechanisms.  The studies will use a combination of 

methods including functional MRI, MEG and behavioural studies in normal human 

participants and in patients. 
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The basis of fMRI and MEG acquisition and analysis as well as retinotopic mapping 

is summarised in Chapter 2. 

 

Chapter 3 presents a study using magnetoencephalography to examine brain responses 

during perceptual filling-in of an artificial scotoma.  By isolating neural population 

signals entrained at the frequency of flicker of the filled-in target, I will be able to 

track specific responses to that target and specifically compare activity between times 

in the trial when the target is present and visible and when it is present but invisible 

because it has perceptually filled-in. 

 

Chapter 4 presents a study exploring the neural location of perceptual filling-in of 

artificial scotomas.  Specifically, I will use high field functional MRI (fMRI) to 

examine Blood Oxygenation Level Dependent (BOLD) signals in retinotopic visual 

cortex during perceptual filling-in.  By using an almost identical paradigm to that used 

in Chapter 3, I will be able to compare the MEG and fMRI findings and provide 

converging evidence from these contrasting techniques for the pattern of neuronal 

responses during perceptual filling-in. 

 

Chapter 5 will turn to the question of how higher cortical functions can modulate 

visual processing in the context of perceptual filling-in.  In this chapter I will explore 

behaviourally the influence of two contrasting top-down manipulations on the latency 

and probability of perceptual filling-in of an artificial scotoma.   
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Chapter 6 presents a study of a different and unusual form of perceptual completion: 

hemianopic completion. This occurs in the context of hemianopia, where a figure is 

perceived as complete, despite only half a figure being presented.  I will use 

functional MRI to explore the neural structures mediating this form of completion in a 

patient with hemianopia.  I will consider this phenomenon in the context of the 

integration of information from object sensitive areas in the damaged brain. 

   

The second part of the thesis will address the top-down influences on visual cortical 

processing more directly, but instead of examining the relatively well-studied 

influences of attention and working memory, I will instead examine the potential 

influence of reward on visual performance and visual cortical processing. 

 

In Chapter 7 I will use functional MRI to investigate the possible effects of reward 

feedback on activity in human visual cortex while separating reward events (presented 

via auditory feedback) from visual events and assessing both within and trial-to-trial 

effects. 

 

1.5 Conclusion  

 

Visual processing requires complex multilevel computations to make sense of the 

information transmitted about the world around us from the retina.  This includes 

integration of information from early sensory processing with modulating influences 

from higher cognitive regions in order to interpolate information across visual space 

to compensate for deficits in visual information.  Moreover, higher cognitive regions 

can influence early visual processing even in the absence of concurrent visual 
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stimulation, but whether other cognitive influences, including processes such as 

reward can influence visual processing remains unknown.  Taken together, the series 

of experiments outlined above will explore the neural basis of the integration of 

bottom-up and top-down signals to interpolate missing information and the role of 

reward feedback in influencing visual processing in the absence of any visual 

stimulation.   
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CHAPTER 2: GENERAL METHODS 

 

2.1 Introduction 

 

This chapter describes the physics underlying functional MRI (fMRI), the analysis of 

fMRI data using statistical parametric mapping (SPM) and the localisation of early 

cortical visual areas in individual subjects using retinotopic mapping.  These methods 

were used in several of the experiments presented in this thesis.  Other methods used 

in individual studies, including long-range infrared eye tracking and preprocessing of 

the abnormal brain will be discussed in the relevant chapters where these techniques 

were used.  The precise methods used in individual experiments varied and additional 

methods were often used; therefore, each experimental chapter in this thesis also 

contains a methods section describing the relevant methods in detail. This chapter also 

describes the neurophysiology underlying magnetoencephalography (MEG), the 

analysis of MEG data using event related fields, time-frequency analysis and the 

localisation of MEG signals.   

 

 

2.2 Functional MRI 

 

2.2.1 Physics of MRI 

 

MRI (magnetic resonance imaging) is a technique used to produce high quality 

images of the human body.  It is based on the principles of nuclear magnetic 



 74

resonance, whereby hydrogen nuclei (protons) have magnetic properties called 

nuclear spin.  When protons are placed within a large external magnetic field (often 

called B0) they align with or against the external field.  The frequency of rotation 

(termed precession) about the axis (z) of the B0 field is termed the Larmor or 

resonance frequency (ω0) and is proportional to the strength of the external magnetic 

field: 

ω0 = γ B0 

More spins are aligned parallel to than against the large external magnetic field, 

resulting in a longitudinal component aligned with B0, but the phase of the precessing 

protons is randomly distributed so the net transverse magnetization (M0, orthogonal to 

B0) is zero.   

 

If an electromagnetic radio frequency (RF) pulse is then applied perpendicular to B0, 

at the resonance frequency, the protons will absorb this energy (excitation) and the net 

magnetization vector spirals down from the equilibrium position to the XY plane.  

When the RF pulse is turned off, there is a return of the net magnetization to 

equilibrium over several seconds.  During this process, called relaxation, the absorbed 

RF energy is retransmitted, as the MRI signal.  Relaxation involves two processes:   

 

Longitudinal relaxation occurs as the spinning protons and the surrounding tissue (or 

lattice) returns to thermal equilibrium.  As the spins move from a high to low energy 

state, they release RF energy back into the surrounding lattice.  This recovery rate is 

characterised by a time constant T1, which is different for every tissue, enabling MRI 

to differentiate between tissue types.  T1 values are longer at higher field strengths. 
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Transverse relaxation occurs as the protons begin to spin out of phase, with the 

magnetic fields of the spinning protons interacting (spin-spin interaction) to modify 

their rate of precession.  This causes a cumulative loss of phase, producing transverse 

magnetization decay, which is characterised by the time constant T2, which (like T1) 

is also tissue specific, but is unrelated to field strength. The signal unaffected by any 

magnetic gradient is termed the Free Induction Decay (FID). 

 

In practice, the MRI signal decays faster than T2 would predict based on a purely 

homogenous external magnetic field, and decreases exponentially at the time constant 

T2*.  T2* takes into account  imperfections in the homogeneity of the magnetic field 

which arise due to flaws in the magnetic field and distortions at the tissues borders, as 

well as tissue-specific spin-spin relaxation which are responsible for pure T2 decay.  

Of particular significance to functional MRI, T2* is also affected by magnetic 

susceptibility variations in blood vessels, where the level of deoxyhaemoglobin in the 

blood affects the T2* in the vessels and is the basis behind BOLD (blood oxygen 

level dependent) imaging.  For this reason, T2* imaging is used for functional MRI 

sequences.  T2 imaging uses a spin-echo technique to reverse the spins and 

compensate for these local field inhomogeneities.  T2* imaging is used for functional 

MRI sequences and is performed without refocusing the spins, sacrificing image 

resolution for additional sensitivity for the T2 relaxation processes.   
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2.2.2 Formation of images using MRI 

 

To produce an image, spatial information must be encoded into the MRI signal.  This 

is done by collecting signal from slices (slice selection) and then extracting 

information from the columns and the rows separately. 

 

Slice selection is performed by applying a second magnetic field gradient 

perpendicular to the slice plane.  This causes all the planes perpendicular to the 

gradient to have different precessional frequencies.  In this way, when the RF pulse is 

applied, only protons within the desired slice will be excited as they will be at the 

same frequency. 

A magnetic field gradient is then applied in the direction of the columns, by passing 

currents through coils placed around the subject.  This causes a change in phase which 

is proportional to the distance (thus termed phase-encoding).  The final step of spatial 

localisation is frequency encoding.  This is performed perpendicular to the phase-

encoding and gives spatial information in the x-plane.  These discrete increases in 

frequency and phase encoding divide each slice into small cubes, called voxels 

(volume elements).  All the protons within a voxel experience the same frequency and 

phase encoding.  The MR signal is therefore a mix of RF waves with varying 

amplitudes, frequencies and phases, containing spatial information.  This is then 

digitised and written into a matrix known as k-space, which is equivalent to a Fourier 

plane.  The k-space data is reconstructed into the original image using a 2D inverse 

Fourier transform.  
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2.2.3 Contrast 

 

The main source of contrast in MRI is spin density contrast where the image intensity 

is proportional to the local density of spins (known as proton density contrast).  Most 

proton signal comes from water, but there is not a great range in water content 

between tissues, apart from bone.  Other ways are therefore needed to differentiate 

between tissues.  These include relaxation times, contrast agents and blood 

oxygenation contrast.  For the studies in this thesis, contrast introduced by relaxation 

times and blood oxygenation are of most significance.  Different tissues have different 

MRI relaxation times which can be used to provide contrast based on differences in 

T1, T2 or T2*.  Relaxation time contrast is achieved by changing two sequence timing 

parameters: the repeat time between RF pulses (TR) and the time to echo following 

the excitation pulse (TE).  (One can also introduce relaxation time contrast by using 

other methods which will not be discussed here). 

 

T1-weighted contrast is achieved by reducing the value of TR.  If the TR is shorter 

than the tissue T1, longitudinal magnetization will not have recovered by the next 

excitation and the signal in those regions will be reduced and appear darker in colour, 

as higher signal causes the MR image to appear brighter.  T2-weighted contrast is 

introduced by increasing the echo time (TE).  A longer TE for regions with short T2, 

will lose signal and appear darker.  (Long TR is used here to minimise unwanted T1 

weighting). 

 

T2*-weighting can result when gradient echo sequences are used with a long TE.  

(Here TE is the time between the initial excitation of spins and the centre of the 
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gradient echo).  For long TE, tissues with long T2* will have higher signal.  T2* 

contrast caused by gradients around blood vessels are the basis of the BOLD signal.   

 

 

2.2.4 Echo-planar imaging 

 

Echo-planar imaging is a way of acquiring brain images very rapidly, with a complete 

slice acquired in less than 100 ms.  This is achieved by encoding all the lines of k-

space in a singe pulse, unlike other sequences which acquire one line per slice.  This 

is at the expense of limited spatial resolution and increased susceptibility to field 

inhomogeneities.  With its low acquisition time, EPI is most suitable for recording 

dynamic brain function.  All the fMRI experiments in this thesis were carried out 

using EPI sequences. 

 

 

2.2.5 The basis of the BOLD signal 

 

A fundamental principle underlying fMRI is the neurovascular coupling in the brain 

which ensures that blood flow and energy metabolism are tightly linked to neuronal 

activity. Therefore by measuring changes in the blood supply, neuronal activity can be 

indirectly determined.  A second important principle, first observed by Pauling and 

Coryell (Pauling and Coryell, 1936) is that oxygenated and deoxygenated 

haemoglobin have different paramagnetic properties.  Deoxyhaemoglobin has 

paramagnetic properties and increases the spin phase dispersion and therefore reduces 

transverse (T2) relaxation and T2*, resulting in a reduced T2*-weighted MRI signal.  
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Thus, deoxygenated blood produces a reduced BOLD signal compared to oxygenated 

blood in T2* sensitive images.  This was first exploited by Ogawa and colleagues in 

mice (Ogawa et al., 1990), later in cats (Turner et al., 1991), and subsequently in 

humans (Kwong et al., 1992;Ogawa et al., 1992), demonstrating that MRI can show 

blood oxygenation level dependent (BOLD) signal changes in the living brain.   

 

The haemodynamic response to neuronal activity is thought to consist of three stages 

(Heeger and Ress, 2002):  

1) An initial small decrease in signal below baseline, corresponding to the increase in 

deoxygenated haemoglobin due to oxygen consumption (Malonek et al., 1997). 

2) This is followed by a large increase in signal above baseline caused by vasodilation 

and increased blood flow resulting in a net increase in oxyhaemoglobin, despite the 

oxygen uptake by the surrounding tissues (Fox and Raichle, 1986;Malonek et al., 

1997). 

3) Finally, there is a decrease in signal back to below the baseline after the supply of 

oxygenated blood has reduced. This pattern of an initial dip, followed by a rise and 

then a decrease below the baseline is known as the Haemodynamic Response 

Function (HRF). The increase in BOLD signal is delayed in time with respect to 

neuronal activity, with a peak 4-6 seconds after the onset of neuronal activity.  The 

difference in susceptibility between oxygenated and deoxygenated blood is very small 

(about 0.02x10-6 cgs units (Turner et al., 1998)), thus image intensity changes are 

very small, no more than 2-4% at 1.5T (although signal loss is enhanced with 

increased static magnetic field of the scanner). 
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2.2.6  Neural basis of the BOLD signal 

 

2.2.6.1 Mechanisms underlying vascular response to neuronal activity 

 

The neurophysiological mechanisms causing the increase in blood flow in response to 

brain activity are still unclear and whether it reflects a response to synaptic or 

neuronal activity is also debated. Blood flow has been shown to increase in proportion 

to glucose consumption (Fox et al., 1988).   This has added weight to suggestions that 

the increase in blood flow is a result of synaptic rather than neuronal activity as 

glucose metabolism is tightly linked to synaptic activity (Schwartz et al., 

1979;Shulman and Rothman, 1998) and astrocytes, which are crucial for 

neurotransmitter recycling, rely on glycolysis (Magistretti and Pellerin, 1999).   

 

An alternative possibility is that the blood flow delivers oxygen required by neurons 

as initial studies suggested that the increase in blood flow is a direct result of the 

oxygen consumption of the tissues (Hoge et al., 1999;Davis et al., 1998).  This theory 

is supported by the observation that oxygen consumption increases with neuronal 

activity (although less than blood flow) and by estimates of brain metabolism 

suggesting that most energy is used by neurons, whose energy consumption is closely 

linked to firing rates, with only a small proportion of energy being used for 

neurotransmitter recycling by astrocytes (Attwell and Laughlin, 2001). 

 

However, both these theories are based on the assumption that the blood flow 

response is causally related to glucose or oxygen consumption, when the evidence 

shows only correlation.  Furthermore studies have shown that the blood flow response 
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is not affected by sustained hypoxia (Mintun et al., 2001) or by hypoglycaemia 

(Powers et al., 1996), suggesting that other factors are likely to be involved.  

Moreover, the blood flow response is extremely slow relative to the underlying 

neuronal activity (Heeger and Ress, 2002) and although oxygen usage co-localises 

with neuronal activity, the increase in blood flow occurs in a larger area (Malonek and 

Grinvald, 1996).  Therefore blood flow must be controlled by factors other than 

reduced energy.   

 

Another possibility is that cerebral blood flow is controlled locally by glutamate and 

possibly by GABA, as nitric oxide (an inhibitor of non-NMDA glutamate receptors) 

blocks the increase in blood flow (Akgoren et al., 1994;Yang et al., 1999) and 

exogenous glutamate or NMDA dilates pial arterioles (Yang and Iadecola, 1996).  

According to this theory, a glutamate-evoked calcium ion influx in postsynaptic 

neurons activates the production of NO, adenosine and arachidonic acid metabolites.  

These agents cause vasodilatation and thus reflect both the activity of neurons 

presynaptic to the cells releasing the metabolites and the level of depolarization of the 

postsynaptic cells (Attwell and Iadecola, 2002).  Other studies have suggested lactate 

release by astrocytes which would suggest a close link between BOLD signal and 

synaptic activity.  It is possible that all these processes are involved in modulating 

blood flow, with other, as yet unidentified mechanisms. 
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2.2.6.2 The relationship between BOLD signal and neuronal activity 

 

It is clearly important to understand the relationship between the BOLD signal and the 

underlying neuronal responses, in order to compare fMRI studies with 

electrophysiological and MEG experiments.  Several studies have shown a linear 

relationship between neuronal activity and haemodynamic changes in monkeys (Rees 

et al., 2000) and in rats (Mathiesen et al., 1998;Ogawa et al., 1990). 

 

One highly influential study (Logothetis et al., 2001) examined the relationship 

between the BOLD signal and neuronal activity which was simultaneously recorded 

using a microelectrode in monkey primary visual cortex.  They recorded both 

multiunit activity (MUA), which is thought to reflect the spiking activity of neurons 

near the electrode tip (within 200µm) (Legatt et al., 1980); and the local field 

potential (LFP), the low frequency component of the electrophysiological signal, 

thought to reflect synchronised dendritic currents averaged over a large volume of 

tissue (Mitzdorf, 1987), likely to reflect inputs and intracortical activity. They found 

that the LFP and MUA were both correlated with the BOLD response, but that the 

LFPs correlated slightly better.  This might suggest that the BOLD signals reflect the 

input and intracortical processing rather than just the spiking output of neurons.   

 

A recent study has added further to the controversy surrounding the link between 

neural activity and blood flow (Sirotin and Das, 2009).  This showed that the vascular 

response in visual cortex is modulated by the expectation of the task, but without any 

neural modulation, suggesting that the vascular response might be primed by a part of 
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the brain anticipating neural activity.  Further studies will be needed to clarify this 

complex relationship between neuronal activity and the BOLD response. 

 

 

2.2.7  Resolution of fMRI in visual cortex 

 

The spatial and temporal resolution of fMRI is limited by the spatio-temporal 

properties of the haemodynamic response to neural activity.  Within visual cortex, the 

spatial resolution is able to distinguish between stimuli 1.5mm apart (Engel et al., 

1997) and the temporal resolution within calcarine cortex has been estimated to have 

a delay of approximately 2.5s which rises to a peak 3 seconds later (Boynton et al., 

1996). 

 

 

2.3 FMRI analysis 

 

All fMRI data acquired for the experiments in this thesis were analysed, at least in 

part, using Statistical Parametric Mapping software, developed at the Wellcome Trust 

Centre for Neuroimaging (http://www.fil.ion.ucl.ac.uk/spm/).  SPM is a set of 

software tools implemented in MATLAB which allow preprocessing of raw fMRI 

data and subsequent statistical analysis.  Two different versions of this software were 

used in the experiments in this thesis, SPM2 and SPM5, according to the timing and 

requirements of the individual experiments.   
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The fundamental principle of fMRI analysis is the same for all experiments:  first the 

preprocessing of the raw fMRI data.  This involves a series of spatial transformations 

to align each individual participant’s data and then warp it either to the subject’s own 

anatomical space or to a standardised anatomical space.  These data are then 

smoothed in some, but not all experiments. 

 

Next, a model is created of the hypothesised BOLD signal changes during each 

condition of the experiment and the data generated by the experiment is fitted to this 

model using a General Linear Model (see below).  In some experiments, activation 

maps are generated from the resulting parameter estimates and tested for statistical 

significance.  In other experiments, the analysis of parameter estimates is only carried 

out on pre-defined regions of interest (retinotopic visual cortex in individual 

participants) and tested for statistical significance across participants.   

 

The stages of preprocessing and subsequent analysis differ slightly between 

experiments and will be discussed in detail for each experiment separately.  Here I 

describe the overall aim of the individual stages and the motivation for performing 

them. 
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2.3.1 Preprocessing 

 

2.3.1.1 Spatial realignment 

 

Despite head restraints, all participants move their heads a few millimetres during 

scanning, causing neighbouring brain regions to move in and out of the voxel being 

analysed, which is a potentially serious confound.  This is partly overcome using 

realignment.  This process realigns the time-series of images by applying a rigid-body 

transformation to realign each scan with a reference scan (either the first scan or the 

mean of all the scans) and then resampling the data using tri-linear, sinc or spline 

interpolation.  Six parameters are used to transform the image, representing 

adjustments in pitch, yaw, roll and in the X, Y and Z planes.  These are estimated 

iteratively to minimise the sum of the squares of the difference between each 

successive scan and the reference scan (Friston, 1995).  However, even after 

realignment, significant movement-related signals persist, which are non-linear and 

therefore cannot be accounted for by an affine linear transformation (Friston et al., 

1996).  These are due to the position of each voxel within the magnetic field, as the 

image intensity depends on the present and previous position of a brain volume 

(termed spin-excitation history), as well as movements between slice acquisitions.  To 

correct for these non-linear movement-related effects, the estimated movement 

parameters from the realignment procedure are estimated and subtracted from the 

original data in the design matrix during the model estimation stage of the analysis 

(Friston et al., 1996). 
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2.3.1.2 Unwarping 

 

The magnetic field in the head is not homogeneous, which causes geometric distortion 

of the image.  Echo-planar sequences are especially susceptible to geometric 

distortions, particularly close to regions with tissue/air interfaces (such as the sinuses).  

To reduce this distortion, a field map is acquired.  This involves combining additional 

EPI images with different gradient echo weightings.  In this way, an image is 

produced showing the magnitude of deviation in magnetic field at each voxel.  The 

magnetic field deviation is proportional to the extent of distortion.  The image can 

then be transformed by warping the distorted voxel positions to non-distorted voxel 

positions by calculating the magnitude of distortion.  The resulting images can be 

aligned better with the structural image. 

 

 

2.3.1.3 Coregistration to T1 structural image 

 

Coregistration is used to co-register each subject’s functional images with their own 

structural images.  In a similar way to realignment, it is achieved by applying a rigid-

body transformation to the mean functional image (created during realignment) and 

interpolating over the borders of old voxels using nearest neighbour, B-spline, 

trilinear or sinc interpolation.   The mismatch between the source and reference 

images is then calculated, and the parameters of the transform matrix required to 

reduce the mismatch are estimated.  The parameters can then be adjusted iteratively 

until the mismatch is minimised.   
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2.3.1.4 Spatial Normalisation 

 

Spatial normalisation is used to warp images from several participants into the same 

standard space to enable signal averaging across subjects.  This also allows sites of 

activation to be reported using coordinates within a standard space.  This is achieved 

by first determining the optimum 12-parameter affine transformation which will map 

the mean image (created during realignment) onto a standard anatomical template 

image.  Unlike coregistration where the images to be matched are from the same 

subject, the image needs to be warped using zooms and shears to register heads of 

different shapes and sizes.  A Bayesian framework is used where the registration 

searches for the solution which maximises the a posteriori probability of it being 

correct (Friston, 1995).  Next, non-linear registration is used to correct for differences 

in head shapes not accounted for by the affine transformation.  This is modelled by 

combinations of cosine transform basis functions and involves minimising the 

residual squared difference between the images and the template (Ashburner and 

Friston, 1999).  The estimated warp is then applied to all the functional images. 

 

The template used for normalisation is that defined by the Montreal Neurological 

Institute (MNI).  Voxel location is expressed using an x,y,z coordinate system, where 

x values indicate distance to the right (positive) and left (negative) of the mid-sagittal 

plane; y values indicate distance anterior (positive) and posterior (negative) to the 

vertical plane through the anterior commissure; and z values indicate distance above 

(positive) and below (negative) the inter-commissural line.  The origin (0,0,0) is 

located at the anterior commissure. 
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2.3.1.5 Spatial smoothing 

 

Spatial smoothing or filtering is achieved by convolving each volume with a 

Gaussian-shaped kernel, with the width of the kernel at full width half maximum 

(FWHM) determining the extent of spatial blurring.  Usually a kernel of 6-10 FWHM 

mm is used.  There are several reasons for spatially smoothing: 

1) To improve the signal-to-noise ratio.  By local averaging, the noise values will 

cancel each other out, leaving relatively more signal.  Ideally, the filter kernel should 

match the size of the signal. 

2) Statistical parametric analysis requires the data to be smooth as it relies on the 

underlying assumption that errors are normally distributed. 

3)  Smoothing the data compensates for small variations in anatomy between subjects, 

reducing the variation in the localisation of activations across participants.  

4) Smoothing also reduces the number of resolution elements (resels) which are 

assumed to be independent and are used for correction of multiple comparisons during 

later analysis. 

 

 

2.3.2 Statistical Parametric Mapping 

 

2.3.2.1  Overview 

 

Once the images have been pre-processed, statistical analysis is performed to identify 

voxels activated during the experiment.  In this thesis, Statistical Parametric Mapping 
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(SPM) has been used to analyse the fMRI data.  This uses estimates of brain responses 

at every voxel and analyses these using a standard univariate statistical test (termed 

the General Linear Model, GLM).  The resulting statistical parameters are then 

displayed as a three-dimensional image, called a Statistical Parametric Map (SPM), 

which identifies the voxels in the image where the brain has been activated by the 

task.  The Gaussian Random Field (GRF) theory is then used to solve the problem of 

multiple comparisons which arises when multiple statistical tests are performed on 

continuous data (as in images of brain responses).  This takes into account the spatial 

smoothness of the statistical map and thereby estimates the number of statistically 

independent voxels.  It also takes into account the size of the clusters of activation.  In 

this way, it corrects for multiple comparisons but in a more appropriate way than the 

very stringent Bonferroni correction, given the inter-relatedness of neighbouring 

voxels.  

 

 

2.3.2.2 General Linear Model 

 

General linear modelling is a way of setting up a model of what would be expected to 

be seen in the data and then fitting this model to the data.  For example, one aspect of 

the model is derived from the timing of the stimulus and a good fit would suggest that 

the data were likely to have been caused by that stimulus.  GLM is used here (and 

usually) in a univariate way.  This means that the model is applied to the time course 

of the responses from each voxel separately.   

A simple example is: 
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y = β*x + c + e 

 

Where y is the time course of the BOLD signal at a particular voxel, x is the model, 

with a value for each time point.  β is the parameter estimate for x, which is the value 

that x must be multiplied by to fit the data and therefore reflects the contribution of 

the variable x to the data; c is a constant and corresponds to the baseline of the data; e 

is the error in the model fitting which is assumed to be independent and identically 

distributed with zero mean and variance (Kiebel and Holmes, 2003).  For several 

explanatory variables (L) and several time points (j) the formula would be: 

 

Yj = xj1 β1 + xj2 β2 +  ... + xjl βl +  … xjL βL + ej 

 

The GLM can also be expressed in matrix notation: 

 

Y = Xβ + ε 

 

Where Y is the vector of observations or time course at a particular voxel and β is the 

vector of parameters to be estimated.  ε is the vector of error terms and X is the design 

matrix which has one row per observation and one column per model parameter (x), 

also referred to as explanatory variables, covariates or regressors. 

 

Regressors are created for every factor manipulated in the experiment by placing a 

stimulus function at the time point which corresponds to the effect of interest.  This is 

then convolved with a Haemodynamic Response Function (HRF) to account for the 

delayed and dispersed form of the BOLD response.  The HRF is modelled in SPM 
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using a multivariate Taylor expansion of a combination of gamma functions (Friston 

et al., 1998).  Other effects, including those which are not experimentally interesting 

such as movement parameters, are also included into the design matrix to account for 

as much variance in the data as possible and minimise effects of no interest.  Before 

fitting the model, the fMRI data are high-pass filtered to remove low frequencies 

which would be attributed to scanner drift, cardiac and respiratory artefacts and the 

data are low-pass filtered to reduce high-frequency noise in the time series.  Finally, 

the beta parameters (also called betas) for each voxel are estimated by multiple linear 

regression to minimise the sum of the squares of the differences between the observed 

data and the values predicted by the model. 

 

2.3.2.3 t and F statistics 

 

The betas, or parameter estimates (PE) from the β vector are converted into a useful 

statistic by comparing each value with the uncertainty of its estimation to produce a T 

value where: 

T=PE / standard error (PE). 

A significant fit with the data is where the PE is high relative to its uncertainty.  In 

this way, inferences about the relative contribution to the data of each regressor can 

be made.  An F-statistic can be used to test the null hypothesis that the parameter 

estimates are zero, to produce an SPM{F} image.  Parameter estimates can be 

compared directly to test whether one regressor fits more closely to the data than 

another by using a contrast.  This is done by subtracting one PE from another and 

calculating a new standard error for this value.  A t-statistic can be used to test the null 

hypothesis that there is no difference between the two conditions and used to generate 
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an SPM{t} image.  The statistical map can then be thresholded to determine, at a 

given level of significance, which areas are activated by a particular contrast.  

Thresholding is performed by selecting a significance level, usually using Gaussian 

Random Field theory, to take into account the spatial smoothness of the statistical 

map, but avoid the multiple comparison problem.    

 

 

2.4  Retinotopic mapping 

 

2.4.1 Retinotopic organisation of visual areas 

 

Human visual cortex is organised into multiple areas, each representing the visual 

field, but with neurons within the different visual areas responding in different ways.  

This varies from receptive field size, which increases from primary visual cortex to 

the higher visual areas V2, V3 and beyond (Smith et al., 2001); to more complex 

attributes such as modulation by directed attention (Kastner and Pinsk, 2004).  Human 

primary visual cortex (V1) occupies an area approximately 4-8 cm at the posterior end 

of the occipital lobe in each hemisphere, with most of V1 falling within the calcarine 

sulcus.  Studies of patients with occipital lobe lesions have established that the 

receptive fields of neurons in V1 are retinotopically organised (Holmes, 1918;Horton 

and Hoyt, 1991).  This means that the receptive fields are organised to form a 

continuous map within the cortical surface of the contralateral visual field.  Thus, 

from posterior to anterior cortex the representation of the visual field moves from the 

centre to the periphery.  In addition, the central fovea is represented by a larger 

proportion of cortical surface than a comparable region in the peripheral visual field.  
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Animal experiments have subsequently uncovered multiple maps with V2 adjacent 

and surrounding V1 (THOMPSON et al., 1950;Cowey, 1964;Essen and Zeki, 1978) 

and V3 adjacent and surrounding V2 (Hubel and Wiesel, 1965) and many more maps 

beyond these, extending to higher visual areas (Allman and Kaas, 1971;Gattass et al., 

2005).  The consistent topographic organisation is used to accurately determine 

boundaries between these multiple visual areas in the human brain (Engel et al., 

1994;Sereno et al., 1995). 

 

There are several important reasons for performing retinotopic mapping in this thesis 

and in other experiments:  

1) The differences in response properties of neurons in different visual regions means that 

they should be analysed separately as differences in activation can provide important insights 

for the particular experimental question.  

2) There is wide inter-subject variability in the precise anatomical location and size of the 

different visual areas (Dougherty et al., 2003).  It is therefore not possible to assign borders 

based on normalised coordinates. To compare activation in a particular region between 

individuals, it is necessary to determine where that region is in each individual separately.  

3) It is often necessary to localise the responses within a specific region in the visual field (for 

example to compare responses between different parts of the visual field). 

 

The retinotopic organisation of the visual areas allows the accurate delineation of the different 

visual areas.  This has traditionally been performed using phase-encoded mapping, whereby a 

contracting ring stimulates the visual field from the periphery to the fovea, thus creating a 

travelling wave of activity from anterior to posterior cortex, along the dimension of 

eccentricity.  The second dimension, of angular position, is represented by a path that spans 

from the lower to the upper lip of the calcarine sulcus, from the upper vertical, through the 
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horizontal to the lower vertical meridian (see Figure 2.1), determined by using a rotating 

wedge to stimulate the neurons. 

 

 

Figure 2.1 Retinotopic organisation of visual areas in the left hemisphere.  (A)  Representation of 

the visual field with icons representing the horizontal and vertical meridians and the central fixation 

(black dot, white surround) and periphery (white dot, black surround).  (B)  The position of V1 

(diagonal shading) and V2 (dotted shading) on a sketch of the medial surface of the left occipital lobe.  

The visual field icons indicate on the sketch the retinotopic organisation of areas V1 and V2, with the 

horizontal meridian in the middle of V1, at the depth of the calcarine sulcus and the vertical meridians 

at the borders between V1 and V2.  Note that central fixation is represented at the occipital pole and the 

periphery is more anterior.  The positions of the calcarine sulcus (Ca) and parieto-occipital sulcus (PO) 

are indicated (adapted from (Wandell, 1999)). 

 

The travelling wave reverses direction at the border between V1 and V2, and at the 

border between V2 and V3.  As the experiments in this thesis are mostly concerned 

with defining the borders between the visual areas, and not with precise locations 

within the visual areas, a simpler, more rapid method was used to define the borders, 

which is based on the same principles as phase-encoded mapping.  This method is 

meridian mapping, whereby the horizontal and vertical meridians are used to define 

the borders between visual areas: the midline of V1 represents the horizontal meridian 
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and the border between V1 and V2 represents the vertical meridian, both dorsally and 

ventrally. Instead of a rotating wedge, stimuli representing the horizontal and vertical 

meridians are used (see Figures 2.2 and 2.6). 

 

 

Figure 2.2 Visual stimuli used to identify cortical visual areas in human visual cortex  

 

2.4.2  Meridian mapping 

 

As described above, the aim of meridian mapping is to accurately determine, on a 

subject-by-subject basis, the boundaries of the early visual areas.  A high resolution 

structural scan and functional meridian mapping scans responding to stimuli in the 

horizontal and vertical meridians are collected for each participant (details are 

described in the Methods section of each experimental chapter).  These provide 

BOLD response patterns in 3D volumetric space which can then be projected onto the 

3-dimensional reconstruction of the anatomical image.  However, retinotopic 

information is better described in two-dimensional space on the cortical surface, as 

adjacent points on the cortical surface represent adjacent points in the visual field.  

Therefore, retinotopic mapping requires flattening of the cortical surface.   Two 

methods have been used in this thesis, for different experiments.  These will each be 

described here in turn. 

 



 96

2.4.2.1 Meridian mapping using MrGray 

 

This method uses MrGray software developed at Stanford (Teo et al., 1997;Wandell 

et al., 2000)(http://white.stanford.edu/~brian/mri/segmentUnfold.htm) and requires 

several stages: 

1) The grey and white matter in the T1 structural scan is segmented semi-

automatically by defining the white matter using luminance values and using MrGray 

software to ‘grow’ a grey layer over this (see Fig. 2.3).  The resulting grey and white 

matter is checked manually for every participant and discrepancies with the structural 

scan corrected manually. 

 

 

Figure 2.3 White and grey matter segmentation using MrGray 

The T1-weighted structural image of one participant, viewed using Mr Gray software, is shown in both 

panels.  Within a volume of interest (here defined as most of the occipital and part of the parietal 

lobes), the white matter is defined according to luminance values and checked manually for each 

participant individually.  The segmented white matter is shown here in purple.  The grey matter is then 

‘grown’ by the MrGray software onto the defined white matter surface (here shown in green), as shown 

in the right panel.  This is then checked manually, for each participant individually and any 

discrepancies between the automatically generated grey matter and the participant’s anatomy are 

corrected manually. 
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2) The white/grey interface generated during the semi-automatic segmentation step is 

then used to reconstruct the surface anatomy of the occipital lobe (Figure 2.4).  A 

mesh is also generated, covering the surface of the portion of the cortical area to be 

flattened and onto which the grey matter nodes can be mapped.   

 

 

Figure 2.4 3D rendering of the cortical surface of the right occipital lobe of one participant, 

generated following the segmentation process in MrGray. 

PO, parieto-occipital sulcus, CS, calcarine sulcus.  Note this is the right occipital lobe but is shown on 

the left side as in radiological convention, with the medial surface on the right. 

 

3) Next, the 3D mesh is unfolded or flattened maintaining the distance between 

adjacent grey matter nodes using mrFlatMesh software 

(http://white.stanford.edu/~brian/mri/segmentUnfold.htm ).  Grey layers are then 

mapped onto the flattened mesh to generate a flatmap, with a greyscale system where 

black represents sulci and white, gyri (see Fig. 2.5). 
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Figure 2.5 Flattened representations of occipital lobe generated using mrFlatMesh software  

Unfolded mesh (left panel) of the occipital lobe from a participant and flatmap from the same 

participant (right panel). 

 

4) Finally, the functional activations generated by the contrast of horizontal compared 

to vertical, and vertical compared to horizontal stimulation are displayed on the 

flattened representation of the occipital cortex using in-house software code (see Fig. 

2.6). 

 

 

Fig 2.6 Functional data from meridian mapping projected onto the flatmap and 3D 

representation of the occipital lobe of a participant.  Left panel: Functional data from horizontal 

(red) and vertical (green) meridian mapping projected onto the flatmap of a participant’s right occipital 

lobe.  These data are used to delineate boundaries between the different visual areas V1-V3.  Right 

panel: 3D reconstruction of the same participant’s right occipital lobe with the regions defined using 

the flatmap now projected onto the surface.  Note how V1 (red) lies within the calcarine sulcus and 

V2v and V2d (green) surround this region. 
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As described above, the boundaries between the visual areas lie at the most vertically 

responsive regions.  These activations can therefore be used to divide the flattened 

cortex into the early visual areas and the voxels within them exported as mask images. 

 

2.4.2.2 Meridian mapping using Freesurfer 

 

This method uses FreeSurfer software developed at Harvard (Dale et al., 1999) 

(http://surfer.nmr.mgh.harvard.edu/).  The cortical reconstruction and volumetric 

segmentation is automatically performed by the FreeSurfer software.  This involves 

removal of non-brain tissue using a deformation procedure (Segonne et al., 2004), 

followed by automated Talarirach transformation, segmentation of the subcortical 

white matter and deep gray matter structures (Fischl et al., 2002;Fischl et al., 2004), 

intensity normalisation (Sled et al., 1998) and tessellation of the gray/ white matter 

boundary.  There is an automated topology correction (Fischl et al., 2001;Segonne et 

al., 2007) and surface deformation is performed following intensity gradients to 

optimally place the grey/white and grey/CSF borders (Dale et al., 1999;Fischl and 

Dale, 2000).  This automated procedure generates a cortical model, the surface of 

which can then be inflated (Fischl et al., 1999) to better visualise the sulci.  Curvature 

information is added using intensity and continuity information from the segmentation 

and deformation procedure (Fischl and Dale, 2000).  Functional data in the form of 

activations responding to horizontal and vertical meridian stimuli are superimposed 

onto the inflated cortical surface.  These are used to delineate the boundaries of the 

early visual areas as described in the alternative method above (see Figure 2.7).  The 
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surface regions are then converted to volumes using FreeSurfer software for use as 

mask images in later analyses. 

 

 

Fig 2.7 Meridian mapping projected onto inflated hemisphere created using FreeSurfer The 

patterns of activation elicited by horizontal (shown in yellow) and vertical (shown in blue) meridian 

stimuli from a single participant are overlayed onto the inflated surface of the right occipital lobe of the 

same representative participant.  As can be seen from images generated using MrGray, the horizontal 

stimulus activates the midpoint of the calcarine sulcus and the vertical stimulus activates the gyri on 

each side.  
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2.5 MAGNETOENCEPHALOGRAPHY 

 

2.5.1 Introduction 

 

Magnetoencephalography (MEG) is a non-invasive brain imaging tool which records 

the weak magnetic fields generated by neuronal activity.  These magnetic signals are 

detected with superconducting coils connected to SQUIDs (superconducting quantum 

interference devices), which are extremely sensitive to changes in magnetic fields, 

detecting signals which are 1 million to 1 billion times smaller than the surrounding 

noise (Vrba and Robinson, 2001).  These SQUIDs are usually arranged within 

helmets in arrays of over 300 SQUIDs to record simultaneously from the whole 

cortex. 

 

The main advantage of MEG over fMRI is its excellent temporal resolution, of the 

order of milliseconds, unlike fMRI which has a temporal resolution of approximately 

1 second.  This allows MEG to follow rapid changes in cortical activity which might 

not be possible using fMRI.  MEG, like EEG (electroencephalography), is also a 

direct measure of neural activity, rather than the associated haemodynamic or 

metabolic effects measured by fMRI. 

 

One of the main disadvantages of MEG is its relatively poor spatial resolution 

compared with fMRI. However, unlike electric signals of EEG, magnetic fields are 

not distorted as they pass through the scalp and skull.  This allows more accurate 

solutions to the inverse problem for source localisation than can be achieved using 
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EEG, as will be discussed below.  A further feature of MEG is that it can only detect 

fields that originate from neurons oriented tangentially to the scalp.  Thus MEG is 

particularly well suited to investigating brain regions within the cortical sulci.  MEG 

therefore provides information that is complementary to fMRI and within this thesis 

the two methodologies will be used to provide, in some instances, convergent 

evidence for presented theories. 

 

2.5.2 Neurophysiological basis of MEG signal 

 

The human cortex contains millions of pyramidal cells (approximately 105 per mm2) 

arranged perpendicular to the cortical surface.  Nerve cells receive information in the 

form of electrical signals from other cells via synapses on their dendrites.  Within 

each cell, equilibrium exists between ions diffusing in and out of the cell, producing a 

negative potential of -70 mV within the cell.  When a neuron is excited by another 

neuron via an action potential, an excitatory postsynaptic potential (EPSP) is 

generated at the apical dendritic tree.  The apical dendritic membrane becomes 

transiently depolarised and electronegative with respect to the cell body and basal 

dendrites.  This potential difference causes a current to flow from the non-excited 

membrane of the soma and basal dendrites to the apical dendritic tree.  Some of this 

current takes the shortest route and flows within the dendritic trunk (also called the 

primary current).  The current loop must be closed to conserve electric charges, 

therefore extracellular currents flow even through the most distant part of the volume 

conductor (also called secondary or return currents) (see Figure 2.8a).  
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Figure 2.8 (a) Current dipole around a single neuron.  Primary current flows across the shortest 

route, with return currents flowing outside the cell.  Adpated from (Baillet et al., 2001).  (b) The 

relationship between the current in the brain and magnetic field detected outside the head.  A 

current source with strength Q causes a current flow Jv inside the brain.  This produces a potential 

difference V on the scalp (which can be measured using EEG) and a magnetic field B outside the head.  

Adapted from www1.aston.ac.uk/lhs/research/centres-facilities/meg/introduction/. 

 

Primary and secondary currents contribute to the magnetic fields detected outside the 

head, but the spatial arrangement of the cells are crucial in determining which currents 

produce fields outside the scalp. For an individual cell arranged perpendicularly to the 

cortical surface, this current flows perpendicular to the cortex.  However, the cortical 

surface is intricately convoluted into sulci and gyri, such that the current can be 

tangential or perpendicular to the scalp surface, depending on the location of the cell.  

Only currents tangential to the scalp will result in fields outside the scalp (see Figure 

2.8b).  Radial dipoles are oriented perpendicular to the surface of the skull and will 

therefore produce no magnetic field outside the skull.   
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The potential produced by an individual neuron is weak and the current-dipole 

moments required to explain the magnetic fields measured outside the scalp are of the 

order of 10nAm (Hamalainen et al., 1993).  Therefore, for fields to be detectable, a 

very large number of neurons (104 – 105) must be simultaneously activated (Wilkswo, 

1989). 

 

2.5.3 MEG acquisition 

 

2.5.3.1 Detection of brain magnetic fields 

Magnetic fields produced by neuronal activity are very small, even when multiple 

neurons are activated simultaneously, and the only detectors with adequate sensitivity 

are Superconducting Quantum Interference Devices or SQUID sensors.  A SQUID is 

a superconducting ring with one or two weak links known as Josephson Junctions 

(Josephson, 1962), these limit the flow of the supercurrent.  The voltage in the loop 

changes as a function of the magnetic flux passing through it. (See (Hamalainen et al., 

1993) for review). 

 

The SQUIDS are coupled to the magnetic fields by flux transformers.  These are also 

superconducting and consist of a pickup coil, which is exposed to the magnetic field, 

leads and a coupling coil which inductively couples the flux transformer to the 

SQUID ring.  Flux transformers operate based on the fact that distant noise sources 

have a spatially uniform magnetic field at the pickup coil, whereas brain sources close 

to the gradiometer have comparatively large spatial gradients.  This helps reduce 

noise from distant sources. They can take various configurations (see Figure 2.9). The 

simplest configuration of a flux transformer is the magnetometer, others include axial 
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and planar gradiometers which are better at compensating for variations in the 

background field.  For example, an axial first-order gradiometer consists of a pick-up 

coil and a compensation coil which are identical and connected in series but wound in 

opposing directions.  This makes them insensitive to changes which affect both coils 

identically, but sensitive to inhomogeneous changes.  Thus the pickup coil detects the 

signal and the compensation coil compensates for variations in the background field. 

 

 

Figure 2.9 Flux transformer configurations. (a) A magnetometer. (b) An axial first-order 

gradiometer. (c) A first-order planar gradiometer.  Arrows indicate current direction in the wires.  Plus 

and minus signs indicate magnetic fluxes of opposite polarities.  Adapted from (Hamalainen and Hari, 

2002). 

 

The CTF system at the Wellcome Trust Centre for Neuroimaging uses third-order 

axial gradiometers.  The locating accuracies of axial and planar gradiometers are 

essentially the same (Carelli and Leoni, 1986), although the planar gradiometers 

collect their signals from a more restricted area near their sources. 

 

2.5.3.2 Set-up of the MEG system 

 

A multichannel MEG system comprises more than 100 channels within a helmet to 

record the magnetic field distribution all around the brain simultaneously.  At the 
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Welcome Trust Centre for Neuroimaging, the Omega275 CTF MEG system 

(VSMmedTech, Vancouver, Canada) is used.  This has 275 3rd order axial 

gradiometers arranged to cover the entire brain. 

 

Both SQUIDs and flux transformers can only operate at extremely low temperatures, 

usually at 4K (-269oC).  They are therefore immersed in cryogen (usually liquid 

Helium).  The cryogen is enclosed in a thermally insulated container (known as a 

dewar), which is electromagnetically transparent to allow brain signals to reach the 

flux transformers and SQUID detectors.  The dewar is mounted in a movable gantry 

to allow for horizontal or seated positions.  This is often placed in a magnetically 

shielded room (MSR) to remove extraneous magnetic fields (see below).  The MEG 

signals are transmitted from the MSR to the computers for data analysis.  The MSR 

also contains a screen for stimulus delivery (see Figure 2.10). 

 

                     

Figure 2.10  Participant in MEG system in magnetically shielded room Plastic overshoes are worn 

to prevent inadvertent introduction of ferromagnetic elements into the MSR. 
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The participant is able to move their head within the MEG helmet and it is therefore 

important to accurately measure the head position relative to the sensors.  This is 

achieved by using three small coils (1 at each pre-auricular point, and one at the 

nasion).  During MEG acquisition, excitation currents are fed to these coils and the 

resultant magnetic field is measured to determine the head position. This is measured 

routinely at the beginning and end of each recording to ensure stable head position, 

requiring the participant to keep their head still throughout the MEG recording.  This 

places some additional limits on source modelling, as even cooperative participants 

find it difficult to keep their head still and fast methods are being developed to 

measure head position continuously. 

 

 

2.5.3.3 Noise reduction 

 

The magnetic signals from the brain are extremely weak, typically 50-500 fT 

(Hamalainen et al., 1993) compared to the ambient magnetic field (for example urban 

magnetic noise ranges between 1 nT to 1 micro tesla (Vrba and Robinson, 2001)) and 

there are many sources for this magnetic noise including the earth’s geomagnetic 

field, cars, radio and power fields and even the human heart.  It is therefore extremely 

important to eliminate external noise as far as possible.   

 

One step in reducing environmental noise is using a magnetically shielded room.  This 

uses various technologies including µ-metal which shields the inside of the room from 

low frequency magnetic fields; and thick layers of high-conductivity metals to set up 

eddy currents shielding against higher frequency magnetic interference.  Active 
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electronic circuits can also be used to cancel external disturbances.  In addition to the 

external active shielding, the MEG system itself can be equipped with compensation 

sensors, to detect background signals distant from the head.  A proportion of the 

output of these compensation signals can then be added to the output of the sensors 

detecting brain signals.  

 

 

2.5.4 MEG analysis 

 

2.5.4.1 Data Acquisition and sampling 

 

During acquisition, the analog signals are digitised.  Data are collected at a sampling 

rate of 240-480 Hz.  This rate determines the highest frequency of signal that can be 

collected undistorted, as sampling at too low a frequency can cause aliasing (detection 

of frequencies not actually present in the signal).  According to the Nyquist criterion, 

the sampling rate must be at least double the highest frequency in the sampled data, 

thus the sampling rates used in practice are well above this requirement. 

 

2.5.4.2 Signal processing 

 

The data are then band-pass filtered, usually at 1-45 Hz (Butterworth) to attenuate 

low- and high-frequency components.  Epochs are then extracted from the data at 

points time-locked to the stimulus and baseline corrected. The data are often then 

downsampled to reduce file sizes. 
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2.5.4.3  Artefact detection 

 

Artefacts in MEG are any magnetic activity recorded by MEG equipment that does 

not originate from cerebral sources. These can distort the ERF (event related field) 

and it is therefore necessary to detect and remove them.  They are typically generated 

by external sources such as eye movements, muscular activity or recording 

equipment.  Blinks and eye movements are particularity important sources of 

biological artefacts as they may be time-locked to the stimuli and can be of large 

amplitude.  They can be reduced by avoiding contact lenses where possible and 

building blink breaks into the paradigm and should be monitored and removed by 

recording eye movements and pupil diameter during MEG acquisition.  Trials with 

blinks or eye movements greater than a specified threshold can then be rejected.  

Other sources of artefacts include cardiac artefacts (stronger in the left than the right 

hemisphere channels) and artefacts due to muscular tension (EMG artefacts, which 

are weaker than in EEG) and artefacts due to respiration movements if the body or 

clothing contains magnetic material. 

 

EMG artefacts are reduced by asking participants to sit comfortably, relax and open 

their mouth slightly.  Other artefacts can be removed by rejecting trials with ERFs 

greater than a specified threshold, indicating channel drift or excessive muscle 

activity. 
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2.5.4.4 Event related fields (ERFs) 

 

Event-related fields are the small changes in magnetic fields detected outside the head 

time-locked to a specific stimulus event.  They are equivalent to event related 

potentials measured using EEG.  The evoked event-related fields in response to a 

single stimulus are very small relative to background activity (even after noise 

removal, filtering, and artefact detection) and therefore ERFs are extracted from the 

background MEG waveform and averaged together over many trials to increase the 

signal to noise ratio.  Averaging will enhance the signal providing that the following 

assumptions are met (Spencer, 2005):  that the signal in each trial has stable 

characteristics; that the background activity is random and uncorrelated with the 

signal and that the signal and noise linearly sum to produce the EEG or MEG 

waveform. 

 

The event related field is therefore a time-series plotting scalp magnetic field (in 

femtoTesla) over time (milliseconds), where fluctuations provide information about 

the internal state of the participant.  By recording from multiple sensors 

simultaneously, a spatial dimension is also introduced.  Thus MEG analysis involves 

analysis in the temporal and spatial domains.   

 

Temporal analysis of ERFs involves examining how waveforms recorded at a 

particular sensor vary over time across one or more experimental conditions.  This 

usually involves quantification of amplitude and latency characteristics of specific 

ERF components, which are positive and negative-going deflections in the ERF-
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waveform (Spencer, 2005).  However, this type of analysis is not possible with the 

experimental set-up in this thesis.  ERFs were measured time-locked to a continuous 

flickering stimulus and therefore all of the characteristic components usually seen 

following presentation of a single visual stimulus are removed by baseline correction.  

Therefore the analysis was limited to a qualitative comparison of the ERF waveforms 

between conditions and performed more detailed, quantitative analyses on data in the 

frequency domain.   

 

 

2.5.4.5 Steady state analysis 

 

MEG, like EEG, can be analysed in the frequency domain.  This is of particular 

relevance to the experiment presented in Chapter 3 of this thesis as this involved 

neural responses to the perception of a stimulus flickering at a known frequency.  

Oscillations can be classified as spontaneous, induced or evoked according to the 

extent of phase locking to the stimulus (Galambos, 1992).  Spontaneous activity is 

completely uncorrelated with experimental condition, induced activity is correlated 

with experimental condition but not phase-locked to the onset and therefore cannot be 

observed in averaged signals.  Evoked activity is phase-locked to the onset of an 

experimental condition.  Thus, it starts at the same time after every stimulation, has 

identical phase and may be visible in the averaged ERF.  In Chapter 3, evoked activity 

was measured. 

 

The MEG waveform can be decomposed into sinusoidal oscillations of different 

frequencies using various methods including filtering, Fourier transformation and 
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wavelet analysis.  In this thesis, wavelet analysis was used as it retains time course 

information.  Wavelets are simple oscillating amplitude functions of time, with a zero 

mean amplitude (Samar et al., 1999).  They are relatively localised in time and 

frequency space with large fluctuating amplitudes during a restricted time period and 

very low or zero amplitude outside that time period (see Figure 2.11).  This 

localisation property allows one to follow the time course of component structures in 

the MEG signal.  Wavelets can take a variety of shapes.  For the analysis in this 

thesis, the Morlet wavelet, also known as the Gabor wavelet, is used.  These are 

complex functions with real and imaginary parts consisting of a harmonic oscillation 

windowed in time by a Gaussian envelope.  They are particularly suitable for analysis 

of oscillatory activity due to their sinusoidal nature (see Figure 2.11). 

 

 

Figure 2.11 A Morlet wavelet 

 

To perform a wavelet transform, the original time series is convolved with a scaled 

and translated version of the wavelet function.  This generates a new signal of wavelet 

coefficients which are measures of how much the wavelet at that scale and position is 

included in the MEG waveform at each point (for an overview see (Herrmann et al., 

2005)).  Convolutions with Morlet wavelets can be computed to generate a time-

frequency representation of the signal.   
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The output of a wavelet transform is the wavelet power spectrum.  This is a measure 

of the signal energy contained in the time-frequency bin covered by the transform.  To 

represent evoked (phase-locked) activity, the wavelet transform is computed on the 

averaged signal. 

 

 

Figure 2.12 Example of time-frequency spectrum from an occipital sensor during presentation of 

stimulus flickering between black and white at 7.5 Hz.  Clear response at 15 Hz (double the 

stimulating frequency), throughout the time-window, reflecting response to every change in stimulus 

from black to white and white to black. 

 

 

2.5.4.6  Source analysis 

 

2.5.4.6.1 The inverse problem 

 

The aim of source analysis in MEG is to estimate the source current density 

underlying the MEG signals measured outside the head.  However, to identify the 

location orientation and time-courses of the source of MEG data, one deals with the 

‘inverse problem’ that there are an infinite number of possible neuronal source 

combinations within the brain which can give rise to a particular pattern of MEG 
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signals (von Helmholtz, 1853).  Therefore additional physiological information is 

often used to constrain the problem and help facilitate a solution.   

 

One approach to solving the inverse problem is to model the generators on a small 

number of sources or current dipoles, which represent neural activity in a few discrete 

brain regions, and finding the best fitting current dipole or equivalent current dipole.  

This is done by estimating the predicted output of that particular configuration of 

sources (the solution to the ‘forward problem’) and comparing this with the observed 

recording.  The precise anatomical locations, orientations and strengths of the MEG 

sources can then be estimated iteratively using the least squares method to minimise 

the difference between the observed and predicted MEG recording (Marquardt, 1963).  

In practice this method is based on several assumptions including a limited number of 

sources and approximations of head shape, so results need to be interpreted with 

caution. Additional constraints can be placed on the model based on information from 

functional neuroimaging and neurophysiological data and by using the MRI of the 

participant to reconstruct the cortical surface, leading to more stable and more 

accurate source localisation.  However, even with these constraints, finding the best 

fitting model for a time-varying signal is very challenging and the standard least 

squares approach may not yield the best estimate for the given parameters.  More 

complex algorithms are used to take into account the physiological characteristics of 

particular experimental questions (Huang et al., 2000;Aine et al., 2000).  Even with 

these advanced methods, however, the equivalent current dipole approach may not 

adequately model the underlying MEG sources.  Competing solutions with different 

source configurations may be indiscernible based on the given 
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magnetoencephalographic output.  Perhaps more crucially, the actual source 

distribution may not be adequately approximated by a dipole. 

 

An alternative approach, used in this thesis, is to assume that the sources are 

distributed within a surface or a volume, often called the source space, and use 

estimation techniques to find the most likely source distribution.  In this way, a 

reasonable estimate of even complex source configurations can be achieved without 

having to resort to dipole fitting.  In this thesis, a mesh of 3004 vertices based on the 

cortical surface from individual participants’ structural MRI, is used as the source 

space.  This limits the inverse problem by assuming the sources lie within the cortical 

grey matter and allows any configuration of sources, rather than the small number 

used in the equivalent dipole model.  However, an enormous number of possible 

solutions can be generated by this approach and a framework for constraining 

solutions is required.  This can be achieved using a Bayesian framework, whereby 

constraints or priors can be introduced probabilistically.  With this approach, any 

number of priors on the source or noise covariance matrices can be introduced in 

terms of variance components estimated from the data and an expectation 

maximisation algorithm is used to obtain a restricted maximum likelihood (ReML) 

estimate of the hyperparameters associated with each constraint.  This enables the 

maximum a posteriori solution for the sources to be calculated uniquely and 

efficiently (Phillips et al., 2002). Values can then be converted into voxel space and 

smoothed for further analysis. 

 

 

 



 116

2.5.4.6.2 Group analysis of source data using SPM 

 

Group analysis can then be performed in a similar way to analysis of functional MRI 

data, using Statistical Parametric Mapping.  Multiple linear regression is used to 

generate parameter estimates for each condition at every voxel for every participant.  

The resulting parameter estimates for each condition at each voxel can then be entered 

into a second level analysis where each participant serves as a random effect in a one-

tailed t-test and appropriate corrections made for non-sphericity and correlated 

repeated measures.  The resulting statistical parameters can then be displayed as a 

Statistical Parametric Map (SPM) to find the voxels within the image consistently 

identified as sources across all participants.   
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CHAPTER 3:  EXAMINING THE NEURAL CORRELATES OF FILLING-IN 

OF ARTIFICIAL SCOTOMAS IN HUMANS USING 

MAGNETOENCEPHALOGRAPHY 

 

3.1 Introduction 

 

Artificial scotomas are a form of perceptual completion seen in normal human vision. 

They were first described by Ramachandran and Gregory(Ramachandran and 

Gregory, 1991) and involve a uniform target placed in the visual periphery on a 

background of dynamic luminance noise.  After a few seconds of peripheral viewing, 

the target seems to fade, to be replaced by the background (Ramachandran and 

Gregory, 1991), thus leading to an “artificial scotoma” in the visual field.  This form 

of filling-in is a useful model system with which to probe the neural mechanisms 

underlying perceptual completion. Unlike other forms of perceptual completion (e.g. 

across the blind spot), texture filling-in has a clearly defined latency and onset (De 

Weerd et al., 1998;Welchman and Harris, 2001), making it possible to study how it 

unfolds in time.  It can also provide insight into the neural mechanisms of visual 

awareness in general, because changes in awareness occur without any change in 

physical (retinal) stimulation.  

 

 

3.1.1 Previous studies of the mechanism of filling-in of artificial scotomas 

 

Very little is known about the mechanism of filling-in of artificial scotomas. 

Psychophysical studies have shown that it is fixation-dependent (Spillmann and 
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Kurtenbach, 1992;De Weerd et al., 1998), promoted by a dynamic background 

(Spillmann and Kurtenbach, 1992) and that the time taken for the target to fill-in with 

surrounding texture is linearly related to the length of its bounding contour as 

projected onto visual cortex (De Weerd et al., 1998).  This strongly implicates 

retinotopic cortex as the neural substrate for such perceptual completion, but does not 

provide any insight into the processes taking place during filling-in of artificial 

scotomas. 

 

Neurophysiological investigations of texture filling-in have produced conflicting 

results.  In non-responding monkeys, filling-in of artificial scotomas is associated 

with increased activity in V2 or V3 (De Weerd et al., 1995).  Conversely, Troxler 

colour fading (filling-in of uniform chromatic targets on chromatic backgrounds) in 

responding monkeys is associated with no changes in activity in V1 and V2 

corresponding to the centre of the coloured target, but decreased activity in V1 and 

V2 neurons responding to the boundary of the target (Von der Heydt et al., 2003).  In 

humans, in luminance filling-in (filling-in of an achromatic target on an untextured 

achromatic background) V1/V2 activity is reduced and activity increases in higher 

visual areas, but with little evidence for any retinotopic specificity of these effects 

(Mendola et al., 2006).   

 

 

3.1.2 The challenge of examining activity associated with perceptual filling-in 

 

All of these previous studies have focused on measuring cortical activity associated 

with perceptual completion that was retinotopically specific to the area of the 
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scotoma. This has the potential disadvantage that it necessarily conflates the neural 

correlates of two distinct perceptual phenomena.  First, the ‘positive effects’ 

associated with filling-in of the textured background into the region of the visual field 

occupied by an achromatic surface. Second, the ‘negative effects’ associated with the 

physically present achromatic surface that is no longer perceived.  To differentiate 

these two factors, some way of distinguishing signals evoked by the perceptually 

filled-in target from the perceptually completed background is required.  Retinotopic 

location alone cannot distinguish these signals because the positive and negative 

effects of texture completion occur at the same location in the visual field.  

 

In this study, this problem was overcome by using frequency-tagged 

magnetoencephalography (MEG) (Tononi et al., 1998;Chen et al., 2003;Cosmelli et 

al., 2004).  A uniform target was flickered at 7.5 Hz and steady-state responses 

specific to this stimulus frequency were measured in contralateral posterior MEG 

channels.  These responses allowed the assessment of how stimulus-related signals 

changed when perceptual completion unfolded in time. Because the signals were 

specific to the stimulus (and its corresponding retinotopic location), and not the 

background (which had a broad frequency spectrum), it was possible to evaluate 

whether steady-state neuromagnetic responses persisted after perceptual completion. 

The presence of such signals would indicate an unconscious representation of the 

perceptually completed stimulus (Gerrits and Vendrik, 1970;De Weerd et al., 

1995;Matsumoto and Komatsu, 2005).  
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3.2 Methods 

 

3.2.1 Participants 

 

Seventeen neurologically normal adults (five females, 18 to 36 years old) with normal 

or corrected-to-normal vision gave written informed consent to participate in the 

study, which was approved by the local ethics committee.  One participant was 

rejected due to excessive head movement (mean>1.5mm), one was rejected due to 

falling asleep during the experiment and one was rejected due to misunderstanding 

experimental instructions.  Fourteen participants (four females, 18-36 years old) were 

therefore included in the analyses reported here. 

 

 

3.2.2 Stimuli 

 

Stimuli consisted of full-field random dynamic achromatic noise (subtending 33x24.8 

degrees) with a red central fixation cross (0.2 degrees) and a flickering peripheral 

target. Stimuli were projected using an LCD projector (Sanyo PRO xtraX, refresh rate 

60Hz, screen resolution 640x480) through a porthole and two mirrors onto a 

projection screen mounted in front of the participant. All stimuli were presented with 

MATLAB (Mathworks Inc.) using the COGENT 2000 toolbox 

(www.vislab.ucl.ac.uk/Cogent2000/index.html). To generate random dynamic noise, 

30 arrays of 200x200 pixels were created, each measuring 0.165 by 0.124 degrees that 

were randomly assigned a grey-scale at the start of each run.  These 30 arrays were 

then presented in a random order at the screen refresh rate (60Hz) to give the 
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appearance of random dynamic noise with a mean luminance of 20.7cd/m2.  An 

artificial scotoma was created by placing a small flickering square achromatic target 

(1.12 by 1.12 degrees) on the background in the lower left visual field at 9.43 degrees 

eccentricity (8 degrees across, 5 degrees down) flickering between black (luminance 

2.5cd/m2) and white (luminance 98.4cd/m2) at a rate of 7.5 Hz (8 screen refresh 

cycles). This frequency was chosen because it produces the largest amplitude 

oscillatory MEG signal (Pastor et al., 2003).  The lower half of the visual field was 

chosen for placement of the target, as filling-in has been shown to be more robust 

(Mendola et al., 2006) and because MEG signals have been shown to be stronger for 

stimuli presented in the lower visual field (Portin et al., 1999).  Behavioural 

experiments prior to scanning confirmed that the target was small enough to allow 

filling-in to occur, despite the pertinent flickering.  

 

3.2.3 Procedure 

 

On each trial, participants were presented with a screen of dynamic noise and a 

flickering target in the near periphery.  Participants were instructed to fixate centrally 

and indicate the disappearance of the peripheral target using a button press (‘2’ on the 

keypad) (see Figure 3.1). On some occasions, the stimulus was perceived to fade for a 

short time before disappearing and participants could indicate this fading with a 

different button press (‘1’ on the keypad).  Participants indicated any re-appearance of 

the target (for example following loss of central fixation) with a third button press (‘3’ 

on the keypad).  These button presses were used to define time-periods of ‘flicker 

visible’, ‘flicker-faded’, ‘flicker filled-in’ and ‘flicker returned’.  Each trial lasted 10 

seconds and was followed by a 500 ms interval during which a grey screen 
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(luminance 15.0 cd/m2) was presented.  A small red fixation mark was always present 

centrally.  Optimal trial length was determined prior to scanning.  In a proportion of 

trials (27%) the peripheral flickering stimulus physically disappeared 5 seconds after 

trial onset, whether the participant was reporting filling-in or not. As the target had 

been flickering, there were no stimulus-contingent after-effects. The periods of time 

after the stimulus had physically disappeared were defined as ‘flicker absent’ time 

periods.   Each participant completed five runs, each comprising 55 trials, and 

received quantitative feedback at the end of every run as a percentage of trials where 

they had reported filling-in for longer than 1 second.  Participants were encouraged to 

blink during specific rest periods during recording, but were not told to abstain from 

blinking during the rest of the experiment.  All participants received training prior to 

scanning, to ensure they could experience disappearance of the stimulus and assign 

consistent responses to different perceptual states. 
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Figure 3.1 (A) Stimulus configuration.  Visual stimuli consisted of full-field random dynamic 

achromatic noise with a small square achromatic target in the lower left visual field flickering at a rate 

of 7.5Hz.  (B) Procedure. (i) Normal trials: During each 10s trial, participants fixated centrally and 

indicated the perceived disappearance of the flickering target.  Time periods were defined as “flicker 

visible” (FV) whilst the target was present and perceived and “filled-in” (FI), whilst the target was 

present but not perceived.  This filling-in occurred at a variable time after stimulus presentation, 

depending on participants’ perception.  (ii) Catch trials: During 27% of trials, the flickering target was 

physically removed 5 seconds after the onset of the trial.  During these trials, periods were defined as 

“flicker visible”, for target present and perceived, “filled-in” for target present but not perceived and 

“flicker absent” (FA), for target absent and not perceived. 

 

 

3.2.4 MEG acquisition  

 

MEG data were recorded using 275 3rd order axial gradiometers using the Omega275 

CTF MEG system (VSMmedTech, Vancouver, Canada) at a sampling rate of 240 Hz 

within an electromagnetically shielded dimly lit room.  Participants were seated and 
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viewed computer-generated stimuli projected through a porthole and two mirrors onto 

a screen at a distance of 57cm.  Trigger events were recorded at every change of the 

target from black to white, where the stimulus was visible, and at the equivalent time 

when the flickering target was absent.  Each participant’s head position was 

determined using three coils attached to anatomical landmarks (nasion, right and left 

pre-auricular points), at the beginning and end of every run.  In a separate session, a 

photodiode was placed on the screen at the position of the flickering target to record 

the precise timing of the flicker and determine screen latency.   

 

 

3.2.5 MRI acquisition 

 

T1-weighted volumetric anatomical images were acquired with either a 3T Siemens 

Allegra system (n=11) or a 1.5T Siemens Sonata system (n=3), according to scanner 

availability.  (Dimensions 224x256x176, slice thickness=1mm).  Fiducial points were 

marked using vitamin E capsules.  

 

3.2.6 MEG analysis 

 

MEG data were analysed using SPM5 (Wellcome Department of Imaging 

Neuroscience, London, UK. www.fil.ion.ucl.ac.uk/spm). For all analyses, each ten 

second trial was divided into separate time-periods according to the participants’ 

button press responses, and taking into account any times where the target had been 

physically removed from the screen (see above).  Thus, three different time-periods, 

or conditions, were defined across all trials as follows: 
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1. “Flicker visible”. In this time period the flickering target was present on-

screen and participants indicated that they clearly perceived it, by the lack of 

button-press.  

 

2. “Flicker filled-in”. In this time period the flickering target was present on-

screen but participants indicated that it was invisible, with the dynamic noise 

appearing in its location through perceptual completion. This condition is 

physically identical to ‘flicker visible’ but differs in conscious perceptual 

state.  

 

3. “Flicker absent”. In this time period the flickering target was absent and 

replaced by dynamic noise.  Note that this condition is perceptually identical 

to ‘flicker filled-in’ but differs in physical stimulation due to the absence 

(versus presence) of the flickering target. (Fig 3.1B). 

 

Time-periods between ‘flicker-faded’ and ‘flicker filled-in’ button presses were 

discarded as these were most variable between and within individuals in terms of 

subjective experience.  Furthermore, as the participants improved at the task, the 

transition between faded and filled-in became increasingly short, so that for most 

participants, the flickering stimulus disappeared without fading. 
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3.2.7 Event-Related Fields 

 

For the computation of event-related fields the data were band-pass filtered at 1-45 Hz 

(Butterworth) and from each time period defined by participant responses, 180ms 

epochs were extracted from the time series, 50ms prior to the trigger event, when the 

target changed from black to white and 130ms after the trigger event.  Short epochs 

were used to capture the first trigger-related responses, to avoid loss of signal due to 

jitter.  Extracted data were baseline corrected and downsampled and individual 180ms 

epochs containing blinks or saccades greater than 2 degrees were discarded.  An 

artefact criterion of ±950 fTesla (n=12) or ±1150 fTesla (n=2) was used to reject trials 

with excessive EMG or other noise transients. Data were then averaged across trials 

for the same condition and a grand mean for all participants was calculated for each 

condition.   

 

 

3.2.8 3D Source Reconstruction of ERFs 

 

Source reconstruction was performed in SPM5 (Wellcome Department of Imaging 

Neuroscience, London, UK www.fil.ion.ucl.ac.uk/spm) using a distributed source 

solution based on a mesh of 3004 vertices derived from each individual participant’s 

structural MRI.  Event-related fields were then coregistered into structural MRI space 

using a landmark-based coregistration based on fiducial position (nasion and left and 

right pre-auricular).  Fiducials in MEG space were matched to the corresponding MRI 

space using rigid transformation matrices.  The same transformation was then applied 

to the sensor positions.  Forward computation was performed using a single sphere 
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method.  Inverse reconstruction of the evoked response used an empirical Bayesian 

approach (Mattout et al., 2006).  The entire time series for each condition was 

reconstructed.  The peak absolute value for each condition in each participant was 

found and the source estimation for that time-point used in further analyses.  Values 

were normalised to the mean and then converted into voxel space and smoothed with 

a 12mm FWHM Gaussian kernel.  Multiple linear regression was then used to 

generate parameter estimates for each condition at every voxel for every participant.  

The resulting parameter estimates for each condition at each voxel were then entered 

into a second level analysis where each participant served as a random effect in a one-

tailed t-test.  Appropriate corrections were made for non-sphericity and correlated 

repeated measures (Friston et al., 2002).  For these whole brain analyses, a statistical 

threshold of p<0.001 corrected for multiple comparisons was used. 

 

 

3.2.9 Steady state analysis 

 

Data were band-pass filtered at 1-45 Hz (Butterworth) and from each of the time 

periods defined by participant responses, consecutive, non-overlapping 500 ms 

epochs were extracted from the time series.  Each epoch was extracted exactly at one 

of the trigger events, where the target changed from black to white, to ensure phase-

locked averaging (Herrmann, 2001), with epochs starting 100 ms prior to the trigger 

and lasting until 400 ms after the trigger.  As epochs were non-overlapping, not every 

trigger was used as a start-point to extract data. The first 500ms epoch from every 10 

second trial was discarded to remove onset effects and allow build up of steady-state.  

The extracted data were baseline corrected and downsampled to 100 Hz.  Epochs 
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containing blinks or saccades greater than 2 degrees were discarded.   Artefacts were 

also discarded using thresholds specific for individual participants, as above.  These 

epochs were then averaged across trials for the same condition.  Mean number of 

epochs per condition was 1207 (SEM=91.5) for flicker visible, 1708 (SEM=174) for 

filled-in and 529.9 (SEM=34.1) for the flicker absent condition. Quantification of the 

evoked oscillatory activity was performed using a wavelet decomposition of the 

averaged MEG signal across a 2-45 Hz frequency range, using a complex Morlet 

wavelet, with a width of 7 cycles (as used elsewhere (Gross et al., 2004;Busch et al., 

2004;Jensen et al., 2002). 

   

Prior to statistical testing, the frequency spectra were normalised to the mean of the 

power at 30 to 45 Hz at the middle 20 ms of each 500 ms epoch (140-160 ms) at each 

of 58 sensors in a quadrant over the right posterior cortex (Fig 3.4A).   As the steady-

state phenomenon ran across the whole of each condition, the middle of each epoch 

was chosen to avoid loss of specificity at the borders of the epochs.  All analyses were 

carried-out on power data, and therefore included no negative values, such that 

averaging did not result in cancellation of field patterns.  Differences between pairs of 

conditions, for the mean of sensors in the right posterior quadrant (Fig 3.4), were 

tested for statistical significance using a one-tailed paired Student’s t test, with p<0.05 

indicating significance. 

 

Topographies were produced by linearly interpolating sensor information at 14-16 Hz 

at the middle 20 ms time point onto sensor space. These were then smoothed using a 

Gaussian kernel (FWHM 6 mm) and normalised to the mean of the power at 30-45 

Hz.  The power at 15 Hz was examined.  This is double the stimulus frequency of 7.5 
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Hz, as the fundamental response to patterned stimuli occurs at double the stimulus 

frequency (Fawcett et al., 2004). 

 

3.2.10 Eye movement recording and analysis 

 

During scanning, eye position and pupil diameter were continually sampled at 60Hz 

using infrared video-oculography (Iview X Hi Speed Tracking System, Tracksys Ltd, 

SensoMotoric Instruments). Eye movements were monitored on-line via a video 

screen for 11 participants. Due to technical reasons eye movement data could not be 

recorded in 3 of the included participants. 

 

Eye tracking data were analyzed with MATLAB (Mathworks Inc, Sherborn, MA).   

Epochs with blinks and saccades greater than 2 degrees were removed from the MEG 

data.  Mean rejection rate due to blinks and saccades was 21.2% for flicker visible 

(SEM=3.95), 19.7% for filled-in (SEM=3.53), and 25.4% for flicker absent conditions 

(SEM=3.20).   Mean eye position, expressed as distance from fixation, was then 

computed for the residual eye tracking data, for each condition and every participant 

from whom data were available.  A repeated measures ANOVA was used to establish 

whether mean eye position deviated significantly from fixation or between conditions. 
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3.3 Results 

 

3.3.1 Behavioural findings 

 

All participants reported reliable filling-in throughout the experiment, and that they 

were unable to distinguish between periods of perceptual completion where the 

stimulus was physically present but perceptually filled-in and periods where the 

stimulus was physically absent. No visual after-effects from the flickering stimulus 

were reported. 

 

Perceptual completion was reliably experienced in the majority of trials, with at least 

1 second of filling-in on 92.6% (SEM=2.29) of trials. Within each trial, perceptual 

completion occurred with variable latency but the change from beginning to fade, to 

filled-in completely, was rapid, with mean time from onset of fading to completely 

filled-in of 0.75s (SEM=0.16). Perceptual completion occurred at a mean latency 

across participants of 4.0s (SEM=0.23) after trial onset; mean duration of filling-in 

was 5.0s (SEM=0.39), persisting to the end of the trial on most occasions.  

 

3.3.2 Eye position data 

 

Repeated measures ANOVA showed no significant differences in grand mean eye 

movement from fixation between conditions for eleven (out of 14) participants for 

whom eye-tracking data were available (F(2,20) = 2.56, p=0.102). Thus, fixation was 

well maintained throughout, consistent with the high proportion of trials on which 

reliable filling-in was reported. 
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3.3.3 Event-Related Fields 

 

Figure 3.2B shows the grand mean ERF across all participants from a representative 

posterior sensor, time-locked to the change in the flickering target from black to 

white, for each of the three conditions separately.  During time-periods where the 

flickering target was present and consciously perceived, a clear sinusoidal event-

related field was identified. When the flickering target was not perceived and when 

the target was absent, no clear event-related field was seen.  This effect was 

qualitatively present in 12/14 participants in the right posterior sensors, but was not 

seen in any participants in frontal sensors (where no stimulus-evoked activity would 

be expected) (Fig 3.2B).  

 

 

 

 



 132

 

Figure 3.2 (A) Schematic topographic representation of the 275 channels in the MEG array.  The 

locations of the representative sensors MRO22 and MLC11 have been highlighted.  (L, Left, R, Right)  

(B) Grand mean event-related fields time-locked to the change in stimulus for 14 participants recorded 

at MRO22, which was representative of right posterior channels during epochs when the peripheral 

flickering target was visible (blue), filled-in (green) and absent (red).  Note that a sinusoidal event-

related field is seen, which is less prominent when the flickering target was filled-in and absent.  (C) 

Grand mean event-related fields for 14 participants in a representative frontal channel, sensor MLC11, 

with minimal separation between the event-related fields in the three conditions.  

 

Statistical parametric maps (Figure 3.3) of the reconstructed putative 3D sources (see 

Methods) of these event-related fields revealed that the most reliable generator (at a 

threshold of p<0.001, corrected) in occipital cortex for flicker visible and filled-in 

conditions was located in the upper bank of the right calcarine sulcus, consistent with 

the location of the flickering stimulus in the lower left visual field.  In the filled-in 

conditions, additional generators were also identified in more lateral areas of occipital 

cortex. Taken together, these findings suggest that signals associated with texture 
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completion in humans may originate from structures including primary visual cortex. 

However, caution is required in interpreting these findings due to the very close 

proximity of the likely retinotopic sources for the stimulus, plus the known extensive 

inter-subject variability in the spatial extent of retinotopic areas (Dougherty et al., 

2003) even after spatial normalisation. Nevertheless, these preliminary findings 

suggest that investigation of texture completion using a technique with higher spatial 

resolution such as functional MRI may be promising.  

 

 

Figure 3.3 Loci whose activity is significantly (P<0.001, corrected for multiple comparisons) 

associated with the putative generators of the event-related fields measured in flicker visible (a) and 

filled-in (b) conditions (see Methods for details). Normalised data from all subjects is shown, overlaid 

on a canonical T1-weighted structural image. The left hemisphere is presented on the left.  Colour 

represents the t-value, as indicated by the scale bar.  A statistically reliable source in the upper right 

calcarine sulcus (within red circle on sagittal view) is identified in both conditions, consistent with a 

V1 generator associated with the flickering stimulus which was placed in the left lower visual field. In 

the filled-in condition, additional generators located in more lateral occipital cortex are also apparent. 

However, caution is required in interpreting these data due to the significant inter-subject variability in 

retinotopic visual areas (Dougherty et al., 2003) and the close proximity of the likely retinotopic 

sources associated with the stimulus in V1-V3.  
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3.3.4 Steady state analysis 

 

Grand mean power spectra of steady-state evoked responses recorded from sensors 

over right posterior cortex (i.e. contralateral to the field of stimulation; see Methods) 

for the three conditions are shown in figure 3.4B.  An overall 1/f pattern was apparent 

across all three conditions, as reported previously for steady-state responses to visual 

flicker (Herrmann, 2001).  However, during epochs where the flickering target was 

clearly visible to the participants, two additional peaks were seen, at 7.5 Hz (the 

frequency of change in the target from white to black), and at 15 Hz (the frequency of 

any change, i.e. from white to black and from black to white). 
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Figure 3.4 (a) Schematic topographic representation of the 275 channels in the MEG array.  The 

locations of the right posterior channels used in further analyses have been highlighted.  (b) Mean 

power-frequency spectra for steady-state evoked responses recorded from all channels in the right 

posterior quadrant and averaged across 14 participants, during epochs where a peripheral flickering 

target was visible (blue), filled-in (green) and absent (red).  Note the peaks at 7.5Hz and at 15Hz during 

epochs when the target was visible.  (Flickering frequency white to black was 7.5Hz and frequency of 

any change was 15Hz).  A small peak in the alpha range (9-11Hz) is most prominent in the flicker 

absent condition.  Dashed lines indicate 7.5Hz and 15Hz.  (c) Normalised power in right posterior 

sensors at 7.5Hz and at 15Hz (d) compared between flicker visible (blue), filled-in (green) and flicker 

absent (red) conditions.  Data shown are averaged across 14 participants with error bars representing 

standard error of the mean and the symbol ‘*’ indicating statistical significance in a one-tailed paired t 

test (p<0.05). Normalised power is in arbitrary units.   

 

When the flickering target was physically present but perceptually filled-in by the 

background, smaller peaks in the power spectrum at 7.5 Hz and 15 Hz were seen 
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compared to when the stimulus was clearly visible. However when the flickering 

stimulus was physically removed (but the filled-in background dynamic noise 

remained visible), these peaks were no longer present.  Clearly visible stimuli evoked 

significantly greater power at stimulation frequencies compared to perceptually filled-

in but physically present stimuli (t(13) = 2.0, p=.027 for 7.5 Hz, one-tailed t test; t(13) 

= 2.1, p=.035 for 15 Hz, one-tailed t test). Similarly, when stimuli were physically 

present but phenomenally filled-in there was significantly greater activity than for the 

same perceptual appearance but with the stimulus was physically absent (t(13) = 1.8, 

P=.046 for 7.5Hz; t(13) = 2.087, P=.029 for 15Hz).  

 

 

3.3.4 Topographic displays 

 

Figure 3.5 shows interpolated topographic maps of normalised power at 15 Hz, the 

frequency of any change in the target, corresponding to epochs where the flickering 

target was visible, filled-in and physically absent.  During epochs where the stimulus 

was physically present, greatest power was seen in the right posterior quadrant, 

contralateral to the visual field of stimulation. This is consistent with (but not proof 

of) the retinotopic specificity of the effects. During epochs when the stimulus was 

filled-in, the greatest power was still seen in the right posterior quadrant, but the 

power was reduced compared to epochs where the flickering stimulus was perceived.  

The topographic map for epochs where the stimulus was physically removed 

demonstrates low power bilaterally in the posterior cortex.  Qualitatively similar maps 

were apparent for smoothed normalised power at 7.5 Hz. Similar topography across 
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all conditions suggests that similar neural generators are responsible for the 

differences in power in the frequency-tagged spectral components identified above. 

 

 

Figure 3.5 Topographic display of smoothed interpolated normalised power at 15Hz at the middle 

time-point within the epoch averaged across 14 participants. (See Methods). Colour indicates 

normalised power in arbitrary units. During epochs where the stimulus was physically present (flicker 

visible), greatest power is seen in the right posterior quadrant, contralateral to the visual field of 

stimulation.  During epochs when the stimulus was filled-in, greatest power is still seen in the right 

posterior quadrant, but the power is reduced compared to epochs where the flickering stimulus was 

perceived.  Where the stimulus was physically removed, (flicker absent) low power is seen bilaterally 

in the posterior cortex.  Note that with the axial gradiometer MEG system used, these data should not 

be interpreted as suggesting that the hotspot overlies the area of maximal activity. 

 

 

3.4 Discussion 

 

The neural correlates of perceptual completion were examined in this study using 

frequency-tagged MEG to isolate neural representations of a flickering target placed 

on a dynamic noise background. Power in posterior sensors contralateral to the target 

was significantly reduced when the flickering target was filled-in, consistent with 

stronger neural representation in visual cortex for visible compared to perceptually 

filled-in stimuli. However, the flickering target still evoked neural signals (compared 
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to a no-stimulus baseline) even when subjectively invisible and filled-in.  Note that 

signals from epochs where the target was gradually fading from awareness were 

removed from the analyses, so these findings reflect activation associated with epochs 

when the target was entirely invisible. There was therefore a persistent neural 

representation of the invisible target. Consistent with previous reports, modulation of 

stimulus-associated signals by conscious perception was stronger than by physical 

stimulus characteristics (Ress and Heeger, 2003).  

 

3.4.1 Visual cortex activity is reduced during filling-in in humans 

 

The neural mechanisms of such texture completion in humans have only rarely been 

studied. Consistent with the findings presented in this chapter, fMRI signals from 

contralateral V1/V2 are reduced for perceptual completion of small grey targets 

placed eccentrically on a uniform achromatic background (Mendola et al., 2006). 

However, such reductions in signal are not confined to the retinotopic location of the 

target but extend into representations of the background.  Due to the point-spread of 

the haemodynamic response (Disbrow et al., 2000) it remains unclear to what degree 

these effects are contaminated by signals from the immediate surround, or reflect 

signals originating from the retinotopic location of the filled-in surface.  In contrast, 

this study overcame this problem by using frequency-tagged MEG.  The spatial 

resolution of MEG is poor compared to fMRI.  But because the target flickered at a 

specific frequency, neural populations responding specifically to the target and not the 

background could be isolated even after filling-in had occurred.  It is possible that 

frequency-specific responses might spread over the cortical surface beyond the 



 139

precise retinotopic location of the target; but critically, such responses were 

specifically associated with the target and not the background.  

 

 

3.4.2 Neurophysiological studies show increased V2/V3 activity during filling-in 

 

This study examined how the population responses of neurons in visual cortex 

entrained by the flickering target changed as a function of participants’ perceptual 

reports.  In contrast, previous studies in monkey examined perceptual completion in 

anaesthetised animals that did not report their perceptual state (De Weerd et al., 

1995;Gilbert and Wiesel, 1992;DeAngelis et al., 1995).  During texture filling-in, 

neurons in V2/V3 show increased firing over a time course comparable to filling-in 

reported behaviourally in humans (De Weerd et al., 1995).  However, during 

chromatic filling-in, neurons in V1 with receptive fields at the target borders exhibit 

reduced firing, while those with receptive fields at the target centre show no change in 

firing rates (Von der Heydt et al., 2003). Differences between studies may arise from 

the different visual paradigms used to elicit perceptual completion. Nevertheless, 

without clear and consistent behavioural reports of whether perceptual filling-in 

occurred in all these previous studies, it is difficult to draw firm conclusions.  In 

contrast, the present study combined behavioural reports with measures of population 

activity to show that filling-in is specifically associated with a reduction in activity of 

neural representations of the filled-in target.  
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3.4.3 Other types of filling-in cause increased activity in human V1 and V2 

 

The extent to which other types of filling-in share common neural mechanisms with 

the texture completion investigated in this study remains to be established.  In 

humans, completion of moving gratings across a blank gap (Meng et al., 2005) and 

filling-in associated with motion induced blindness (Scholvinck and Rees, 2009b) is 

associated with enhanced activity in the retinotopic location where completion takes 

place. Unlike the present study, these previous studies did not explicitly ‘tag’ signals 

associated with the target that was filled-in. Thus signals associated with perceptual 

completion in V1 may represent the neural correlates of the perception of the filled-in 

background, rather than the overwritten target. Furthermore, enhanced activity in 

those studies may represent neuronal population responses to more salient signals 

after filling-in (a moving grating compared to a blank target and a moving 

background compared to a static yellow dot, for each study respectively).   

 

 

3.4.4 Other invisible stimuli are associated with reduced signal in human visual 

cortex 

 

The finding of reduced MEG power when a previously visible stimulus became 

invisible due to filling-in of an artificial scotoma suggests a reduction in the strength 

of neural representation in visual cortex for invisible (versus visible) stimuli. 

Consistent with this, frequency-tagged EEG and MEG studies also demonstrate 

reduced power for stimuli that become invisible during binocular rivalry (LANSING, 

1964;Tononi et al., 1998).  Moreover, recent fMRI studies consistently find that 
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signals from human ventral visual cortex are reduced when stimuli are invisible, 

compared to identical physical stimulation that results in conscious perception 

(Moutoussis and Zeki, 2002;Haynes and Rees, 2005). Thus, a consistent general 

feature of the human visual system is of stronger neural activity associated with 

conscious perception of a stimulus compared to equivalent physical stimulation that 

remains unconscious (Haynes and Rees, 2006).   Moreover, MEG and fMRI studies 

are consistent, despite the very different aspects of population neural responses 

recorded by the different techniques.  Some studies have also shown that additional 

areas of parietofrontal cortex are activated when a visual stimulus is consciously 

perceived (Lumer and Rees, 1999;Vandenberghe et al., 2000;Beck et al., 2001). In the 

present study, increased power associated with target visibility was restricted to 

contralateral occipital sensors. However, the frequency tagging approach deliberately 

isolated signals where neuronal population responses are entrained by the frequency 

of visual stimulation. Thus it would not be expected to reveal activity associated with 

perceptual completion in neuronal populations that are not strongly driven by retinal 

input (Herrmann, 2001), such as those outside occipital cortex.  

 

 

3.4.5 Persistent representation of invisible stimuli 

 

Target-specific responses were reduced but not eliminated during filling-in.  This 

indicates the presence of a persistent neural representation of a subjectively invisible 

stimulus. Consistent with this, several fMRI and EEG studies have shown that ventral 

visual cortex can retain a neural representation of subjectively (and objectively) 

invisible stimuli (Driver et al., 2001b;Moutoussis and Zeki, 2002;Fang and He, 
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2005;Haynes and Rees, 2005;Sergent et al., 2005).  These findings go beyond this 

earlier work by extending such observations to the new situation of low-level 

perceptual completion further confirming that activation in visual cortex is not 

sufficient for conscious awareness.  

 

 

3.4.6 Other possible causes of reduced power during filling-in 

 

Filling-in of the flickering stimulus necessarily followed a period when the stimulus 

was visible. However, these findings of maintained but reduced power following 

filling-in cannot be due to entrainment of MEG responses when the stimulus was 

visible persisting into the period of perceptual completion. To rule this out, the first 

400ms of data recorded after filling-in or after the physical withdrawal of the target 

were removed. Findings were unchanged compared to when these data were included 

in the analysis, suggesting that continued power measured at 7.5Hz during filling-in 

was not due to entrainment. Furthermore, these findings of reduced power when the 

stimulus became invisible during filling-in, was in the opposite direction to the 

recognised increase in power that occurs with visual steady-state responses during the 

first few seconds of stimulus presentation (Heinrich and Bach, 2001) (Although an 

adaptation decline does occur, this begins only after 10 seconds of stimulation, which 

is longer than the duration of the entire trial in the current experiment).  Such a 

tendency to increase would in any case be in the opposite direction to the observed 

reduction in power when the stimulus became invisible due to filling-in.  
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Eye movements were monitored throughout. Accurate fixation is necessary for filling-

in and participants were asked to continually monitor the target location even after 

disappearance to ensure continued invisibility.  Consistent with this, no significant 

differences were found in eye position or movements comparing the three different 

perceptual states (target visible, invisible or absent). The angular resolution of the 

infrared eye tracker was insufficient to rule out the possibility that there were different 

frequencies of microsaccades in the different perceptual states (Martinez-Conde et al., 

2006). However, any such microsaccades will not occur at a precise regular frequency 

of 7.5Hz or 15Hz, and so can neither account for the finding of decreased power at the 

specific frequency tagged by the flickering target during filling-in, nor for a persistent 

frequency-tagged representation of the invisible stimulus.  

 

The frequency-tagging approach isolated signals specifically associated with the 

target. After filling-in had occurred, participants nevertheless perceived the textured 

background at the location in the visual field previously occupied by the (now 

invisible) target. The continuing presence of a target-specific MEG response to this 

invisible target therefore indicates that a retinotopically specific representation of the 

target co-exists with a phenomenal percept of a different texture at the same location 

in the visual field. This may provide some constraints for theoretical or computational 

accounts of perceptual completion. Specifically, it is not consistent with accounts that 

posit that the phenomenal experience of perceptual completion is just the brain 

‘ignoring an absence’ (Dennett, 1991). Instead, the findings presented in this chapter 

are more consistent with filling-in being associated with neural signals that represent a 

presence rather than ignoring an absence (De Weerd et al., 1998;Spillman and De 

Weerd, 2003).  However, the persistence of the invisible target signal during 
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perceptual completion suggests that there must be additional brain mechanisms that 

suppress the target in awareness in favour of the background. These could include 

feedback connections from higher brain areas reflecting top-down control of this 

process taking place in early visual cortex.  Future research will be needed to 

specifically examine this possibility.   

 

 

3.5 Conclusion 

 

This chapter provides evidence that target-specific responses of human contralateral 

visual cortex are reduced when a target is rendered invisible by perceptual 

completion. However, even when invisible, target-specific responses remain, 

demonstrating persistent representation of the now invisible target. The next chapter 

will use functional MRI and retinotopic mapping to explore in more detail the spatial 

location of perceptual completion within human visual cortex.  
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CHAPTER 4: LOCALISING THE PROCESS OF FILLING-IN 
 
 
4.1 Introduction 
  

The previous chapter demonstrated that target-specific responses in contralateral 

posterior cortex are reduced when a target is filled-in.  However, the low spatial 

resolution afforded by MEG also raises the possibility that the signals associated with 

perceptual completion of the artificial scotoma arose from higher visual areas or from 

broader neural networks entrained by the frequency tagging approach.  Evidence was 

also presented for a persistent target-specific representation of the now invisible 

target.  One central question is whether the perceptual completion of the target with 

dynamic noise is associated with changes in early retinotopic areas representing the 

location of the target.  In addition it remains unclear whether signals from retinotopic 

visual cortex continue to represent the invisible target once it has been filled-in by 

dynamic noise.   

 

This chapter will explore these questions in more detail by examining activity in 

visual cortex representing the now invisible target using functional MRI and 

retinotopic mapping. 

 

4.1.1 Evidence for involvement of retinotopic cortex in perceptual completion 

 

Purely behavioural studies show that the latency to report perceptual completion of an 

artificial scotoma is directly related to the size of the perceptually filled-in target as 

projected onto visual cortex (De Weerd et al., 1998)  and occurs at different times 
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when more than one target is presented (De Weerd et al., 2006). These findings are 

consistent with an early retinotopic locus for the process underlying perceptual 

completion of an artificial scotoma. 

 

Physiological studies do not yet reveal a consistent pattern of neural activity 

associated with perceptual filling-in of artificial scotomas. In monkey, single neurons 

in V2 and V3 whose receptive fields overlap an achromatic target placed on dynamic 

noise increased their firing after a few seconds of eccentric fixation (De Weerd et al., 

1995). However, it is not clear whether such changes correspond to perceptual 

completion as the monkeys did not report their perception.  The previous chapter, 

described how, in humans, frequency-tagged signals measured with magneto-

encephalography (MEG) corresponding to a target placed on dynamic noise are 

reduced but not eliminated in posterior sensors when subjects report perceptual 

filling-in of the target (Weil et al., 2007).  However, due to the low spatial resolution 

of MEG it is not possible to be certain of the origin of these signals associated with 

filling-in of the artificial scotoma.   

 

Other forms of perceptual completion that may be related to that seen in artificial 

scotomas have also been studied, with a similarly mixed picture. In responding 

monkeys, V1 and V2 boundary neurons show decreased activity during Troxler 

colour filling-in (Von der Heydt et al., 2003).  In humans, luminance filling-in 

(filling-in of an achromatic target on a uniform achromatic background) is associated 

with a generalized (non-retinotopic) decrease in activation in V1 and V2, and 

increased activity in higher visual areas (Mendola et al., 2006).  Conversely, 
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perceptual completion of moving gratings across a blank gap increases activity in 

early visual areas representing the blank gap region (Meng et al., 2005).   

 

It therefore remains unclear whether retinotopic cortex is involved in the perceptual 

completion of an artificial scotoma and whether early visual cortex continues to 

represent the invisible target. 

 

To resolve these questions, Blood Oxygenation Level Dependent (BOLD) signals 

were studied before and after healthy participants had reported filling-in of an 

artificial scotoma using functional MRI.  Inducing reliable perceptual filling-in of an 

artificial scotoma requires a relatively small and eccentric target (De Weerd et al., 

1998) to be surrounded by dynamic white noise, thus introducing particular technical 

challenges for functional MRI due to the cortical magnification factor and strong 

responses of visual cortex to dynamic noise.  This study used individual retinotopic 

analyses to examine the modulatory effects of filling-in of an artificial scotoma on 

early visual areas. 

 
 
 
 
4.2 Methods 
 

4.2.1 Participants 

 

Twelve neurologically normal adults (five females, 19 to 37 years old) with normal or 

corrected-to-normal vision gave written informed consent to participate in the study, 

which was approved by the local ethics committee.   

 

 

 



 148

4.2.2 Stimuli 

 

Stimuli were identical to those used in the previous chapter for compatibility and 

consisted of full-field random dynamic achromatic noise (subtending 33x24.8 

degrees) with a red central fixation cross (0.2 degrees) on which was superimposed a 

small square achromatic flickering peripheral target in the lower left visual field 

(measuring 1.2 x 1.2 degrees at 8.75 degrees eccentricity, 7.5 degrees across and 4.5 

degrees down) (Figure 4.1a).  The target flickered between black (luminance 0.10 

cd/m2) and white (luminance 13.64 cd/m2) at a rate of 7.5Hz (8 screen refresh cycles) 

in order to maximally stimulate voxels within the cortical target representation, and 

for direct comparability with the previous chapter (Weil et al., 2007).  The lower half 

of the visual field was chosen for placement of the target, as filling-in is more robust 

for stimuli presented in the lower visual field (Mendola et al., 2006).  To generate 

random dynamic noise, 30 arrays of 200x200 pixels were created, each measuring 

0.165 by 0.124 degrees.  These were randomly assigned a grey-scale at the start of 

each trial.  These 30 arrays were then presented in a random order at the screen 

refresh rate (60Hz) to give the appearance of random dynamic noise with a mean 

luminance of 3.68 cd/m2.  Stimuli were projected using an LCD projector (NEC 

LT158, refresh rate 60Hz, screen resolution 640x480) onto a circular projection 

screen at the rear of the scanner.  Participants viewed the screen via a mirror 

positioned within the head coil.  All stimuli were presented with MATLAB 6.5.1 

(Mathworks Inc.) using the COGENT 2000 toolbox 

(www.vislab.ucl.ac.uk/Cogent2000/index.html).  
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4.2.3 Experimental paradigm 

 

On each trial in the main experiment, participants were presented with a screen of 

dynamic noise for fourteen seconds.  After 2.8s a flickering target appeared in the 

near periphery, on the background of the dynamic noise.  Participants were instructed 

to fixate centrally and report by a series of button presses what happened after the 

flickering target appeared. One button press indicated the first time the flickering 

target began to perceptually complete (‘1’ on the keypad). A different button press 

was used to report when the target was completely filled-in by the surrounding 

dynamic noise (‘2’ on the keypad). A third button indicated whether the target 

subsequently re-appeared before the end of the trial (for example, after a blink) (‘3’ 

on the keypad)  (Figure 4.1b).  Participants were instructed to be conservative in their 

responses and only indicate that the target had filled-in when it was definitely no 

longer visible. It was thus possible to determine behaviourally on a trial-by-trial basis 

the latency at which perceptual completion first began to occur; the duration over 

which completion took place; and those trials on which the target re-appeared after 

initially being completed. For analysis of the imaging data, the sequence of button 

presses was then used on a trial-by-trial basis to define different time-periods during 

which the target was physically absent or physically present and either perceived 

clearly or perceptually completed and invisible.  

 

Each trial lasted 14 seconds and was followed by a 500ms interval during which a 

grey screen (luminance 3.66 cd/m2) was presented. As the target had been flickering, 

there were no stimulus-contingent after-effects. A small red fixation mark was always 

present centrally.  Optimal trial length was determined prior to scanning.  In a quarter 
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of trials the peripheral stimulus was physically removed 7 seconds after trial onset, 

whether the participant was reporting perceptual completion or not (Figure 4.1b). The 

periods of time after the stimulus had been physically removed were defined as ‘target 

removed’ time periods.  

 

 

 Figure 4.1 (a) Stimulus configuration.  Visual stimuli consisted of full-field random dynamic 

achromatic noise with a flickering achromatic target (when present) placed in the lower left visual 

field.  (b) Procedure. (i) Normal trials: During each trial, participants fixated centrally and reported 

perception of the target using different button presses (indicated here by down arrows).  The first 

button indicated initial fading of the target, the second indicated when the target was completely 

perceptually filled-in and participants could press a third button if the target reappeared.  Time periods 

were defined as “onset”, when the target had not yet appeared; “visible”, when the target was present 

and perceived, prior to any button presses; and “perceptually filled-in”, when the target was present but 

not perceived as it was completely perceptually filled-in.  Note that periods between the first and 

second button press, which represented the time from initial fading of the target to completely 

perceptually filled-in, were excluded from analysis as they were very short and represented a mix of 
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different percepts.  Also note that the dynamic noise was present throughout the trial. (ii) Catch trials: 

In 25% of trials, the target was physically removed 7s after the onset of the trial (“removed”). 

 

Every participant completed six runs, each comprising 36 trials, and received 

quantitative feedback at the end of every run as the percentage of trials where they 

had reported perceptual completion for longer than 1 second.  Participants were 

encouraged to blink during specific rest periods during scanning, but were not told to 

abstain from blinking during the rest of the experiment.  All participants received 

training prior to scanning, to ensure they could experience perceptual completion of 

the artificial scotoma and assign consistent button press responses to different 

perceptual states.  

 

4.2.4 Imaging and preprocessing 

 

A 3T Siemens Allegra system was used to acquire both T2*-weighted echo planar 

images (EPI) with blood oxygenation level-dependent contrast (BOLD) and T1-

weighted anatomical images. Each EPI image comprised thirty-two 3-mm axial slices 

with an in-plane resolution of 3×3mm. The main experiment was split into six runs, 

each consisting of 280 volumes. This was followed by three runs to functionally 

localize the target for subsequent region-of-interest (ROI) analyses.  The first five 

volumes of each run were discarded to allow for T1 equilibration effects. Volumes 

were acquired continuously with a TR of 2.08 s per volume.  

 

Functional localizer scans were used to independently identify areas in retinotopic 

visual cortex responding to stimulation of the visual field location of the artificial 

scotoma in the main experiment. In a separate scanning run, participants fixated 
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centrally while viewing a square checkerboard the same size and location as the target 

in the main experiment (1.2 degrees by 1.2 degrees at 8.75 degrees eccentricity, 7.5 

degrees across, 4.5 degrees down, in the lower left visual field), with a check size of 

0.6 degrees, contrast-reversing at 10Hz on a grey background (luminance 3.66 cd/m2).  

The checkerboard stimulus was presented in 10 epochs of 15 s blocks interleaved with 

15 s rest periods with no checkerboard displayed.  A central red fixation cross was 

present throughout and participants performed a simple central fixation task to ensure 

fixation was maintained whereby a button press was required whenever a 0.15 by 0.15 

degree square appeared within a quadrant of the fixation cross.  The whole localizer 

experiment comprised 160 volumes (fMRI sequence and parameters were identical to 

the main experiment). 

 

During scanning, eye position and pupil diameter were continually sampled at 60Hz 

using long-range infrared video-oculography (ASL 504LRO Eye Tracking System, 

Mass) to ensure participants maintained fixation.  Eye movements were monitored on-

line via a video screen for all participants. Eye position was not recorded in five 

participants for technical reasons. 

 

 

4.2.5 Data analysis: eye tracking data 

 

Eye tracking data were analyzed with MATLAB 6.5.1 (Mathworks Inc., Sherborn, 

MA).  Blinks and periods of signal loss were removed from the data.  Mean eye 

position, expressed as distance from fixation, was then computed for each condition 

and every participant from whom data were recorded.  A repeated measures ANOVA 
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was used to establish whether mean eye position deviated significantly from fixation 

or between conditions. 

 

4.2.6 Data analysis: fMRI preprocessing 

 

Functional imaging data were analyzed using Statistical Parametric Mapping software 

(SPM2, Wellcome Trust Centre for Imaging Neuroscience, University College 

London).  All image volumes were realigned spatially to the first and resulting image 

volumes were coregistered to each participant’s structural scan. Box-car regressors 

were then generated that represented the timing and duration of each of the different 

perceptual states on a trial-by-trial basis, convolved with a synthetic haemodynamic 

response and mean corrected. Specifically, the button-press responses on each trial 

from each participant were used to define four distinct regressors: 

 

1. “Onset”. This regressor represented activity evoked from the beginning of 

each fourteen second trial until onset of the target, during which time full-field 

dynamic luminance noise and the fixation cross were displayed.  

 

2. “Target visible”. This regressor represented activity associated with a visible 

eccentric target i.e. between the times when the target was physically presented 

(2.8s after trial onset) until the participant reported fading or disappearance by 

button press. 

 

3.  “Target filled-in”. This regressor represented any activity associated with the 

perceptually completed (filled-in) target i.e. between the times of the second 
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button press (indicating that the participant no longer perceived the target) and (on 

a trial-by-trial basis) either the third button press (indicating that the target had re-

appeared) or physical removal of the target (on a quarter of trials; see above) or 

the end of the trial. Note that ‘target visible’ and ‘target filled-in’ conditions 

reflect physically identical stimulation (dynamic noise background, flickering 

eccentric target and fixation cross) but differ only in perceptual state (target either 

visible or filled-in)  

 

4. “Removed”. This regressor represented any activity associated with the 

dynamic noise background alone on those trials where the target was 

physically removed after seven seconds, whether the participant was reporting 

perceptual completion or not. Note that this condition is physically and 

perceptually similar to “onset”.  However, it always occurred at the end of the 

trial and was therefore not associated with any of the onset transients that 

would be expected at the beginning of the trial immediately after the onset of a 

full screen of dynamic noise.  It is perceptually identical to “target filled-in” 

but differs in physical stimulation due to the absence of the target. 

 

Periods between the first button press (initial fading) and the second button press 

(completely filled-in), were excluded from the fMRI analysis as they proved to be 

short (see Results) and were likely to represent a mixture of different percepts.  

 

In the functional localizer, blocks were defined by the physical presence or absence of 

the target.    Motion parameters defined by the realignment procedure were added to 

the model as six separate regressors of no interest.  Multiple linear regression was 
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then used to generate parameter estimates for each regressor at every voxel for every 

participant.  Data were high pass filtered (cut-off: 0.0078Hz) to remove low-

frequency signal drifts.  

 

4.2.7 Visual area localisation 

 

Retinotopic mapping was essential to accurately delineate the regions within visual 

areas V1 and V2 which were directly stimulated by the target.  This was necessary as 

the wide inter-subject anatomical variability of early visual areas precludes 

assignment of activations to visual areas based purely on normalised or averaged 

coordinates (Dougherty et al., 2003).  To identify the boundaries of primary visual 

cortex, standard retinotopic mapping procedures were used (Sereno et al., 1995;Teo et 

al., 1997;Wandell et al., 2000).  Flashing checkerboard patterns covering either the 

horizontal or vertical meridian (Figure 4.2ai) were alternated with rest periods for five 

epochs of 10 volumes over two scanning runs, each lasting 155 volumes.  SPM2 was 

used to generate activation maps for the horizontal and vertical meridians (Figure 

4.2aii).  Mask volumes for each region of interest were obtained by delineating the 

borders between visual areas using activation patterns from the meridian localizers.   

Standard definitions of V1 were followed together with segmentation and cortical 

flattening using the MrGray software (Teo et al., 1997;Wandell et al., 2000).  

 

The mask volumes for right V1 and V2 were used, in conjunction with the functional 

localizer images, to identify voxels showing significant activation (p < .05 family-

wise error corrected) for the comparison of trials where the target localizer was 

present, compared to rest periods, using the regression analysis described above.  This 
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comparison identifies voxels activated by the peripheral target stimulus in each of the 

retinotopic areas determined by the independent meridian mapping procedure (Figure 

4.2bii).  Regions-of-interest in area V3 were only identified in three subjects, as the 

target was small (1.2 degrees) and eccentrically placed (8.75 degrees), making higher 

visual areas more difficult to co-localize.   

 

To compare activation in the retinotopic target representation with control regions of 

retinotopic cortex that did not represent the target, activity was examined from 

regions of comparable voxel numbers representing comparable eccentricities from left 

ventral V1 and V2 (which represent the upper right visual quadrant) to produce 

control ROIs for each participant individually. In addition, activity in a larger control 

ROI that represented the entire right upper quadrant was also examined (compare with 

(Sterzer et al., 2006)). 
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Figure 4.2  Stimulus representation in visual cortex.   (ai)  Visual stimuli used to map the horizontal 

and vertical meridians (Methods).  (aii)  The outline of individual visual areas V1, V2d, V2v, V3d, V3v 

and the fovea, determined using meridian mapping (see Methods) are shown on the flattened cortex for 

a representative participant (right and left visual cortex). 

(bi)  The visual stimulus used to localize the region of interest, with a checkerboard at the region of 

interest.  (Note that the actual visual stimulus may have differed slightly in greyscale value and the 

checkerboard is not shown to scale). The open square indicates the part of the visual field represented 

by the control ROIs in V1 and in V2.  (bii)  Regions of interest (ROIs) in visual cortex representing the 

spatial location of the target were identified by combining functional localizer images with masks 

delineated for right V1 and V2 for each participant individually.  The spatial distribution of target-

specific stimulus-evoked activity (contrast of ROI localizer present versus absent, thresholded at p<.05, 

family-wise error corrected) is shown projected onto a flattened representation of right visual cortex for 

a representative participant.  The spatial distribution of the control ROIs in V1 (closed figure) and in 

V2 (open figure) are shown projected onto the flattened representation of left visual cortex for the same 

representative participant. 
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The final analytic step was to extract from the independently defined target and 

control regions the regression parameters for each experimental condition arising 

from the analysis of the main experimental time-series.  These were averaged across 

participants yielding estimates of percentage signal change for each condition 

averaged across V1 and V2 responding only to the target (target ROIs) or the control 

ROIs for every participant.  In order to determine whether any differences in activity 

between the conditions were retinotopically specific, activity in the target ROIs was 

compared with activity in the control ROIs.   

 

The statistical significance of any differences in activation within and between the 

regions was assessed with a repeated measures ANOVA, with region (target ROI and 

control ROI) and condition (onset, visible, filled-in, removed) as repeated factors, for 

V1 and V2 separately, with the Huynh-Feldt correction for non-sphericity where 

appropriate and post-hoc two-tailed t-tests.  

 

 

4.3. Results 

 

4.3.1 Behavioural Results 

 

All participants reported reliable perceptual completion of the artificial scotoma 

throughout the main experiment, and that they were unable to distinguish between 

periods of perceptual completion where the target was physically present but 

perceptually filled-in by the dynamic noise backgrounds and those trials where the 

target was physically removed mid-way through the trial. No visual after-effects from 



 159

the flickering target in the main experiment were reported.  Participants did not report 

perceptual filling-in of the functional localizer. 

 

During scanning, perceptual filling-in of the artificial scotoma occurred for at least 

one second on 90.2% of trials (SEM 2.78%). The mean latency before participants 

began to report perceptual filling-in was 4.2s after trial onset (SEM 0.33s). After the 

onset of perceptual completion was reported, full perceptual disappearance occurred 

rapidly with a mean duration from beginning to fade to completely perceptually filled-

in of 1.1s (SEM 0.24s). The mean duration of perceptual filling-in after the 

participants had reported completion was 5.0s (SEM 0.32s). Long-range infra-red eye 

tracking confirmed there were no systematic differences in total eye movements 

during the different perceptual conditions (F(1.1,6.9)=.59, p=.49, ε=.38). 

 

 

 4.3.2 Functional MRI analysis 

 

Cortical activity specifically associated with the target in V1 and V2 was examined by 

combining functional localizer images with mask images for V1 and V2 to create 

target ROIs.  The relatively eccentric location of the very small target (necessary to 

evoke reliable perceptual filling-in) makes such localisation challenging due to the 

cortical magnification factor, particularly for the smaller retinotopic visual areas. 

Nevertheless, for V1 and V2 the functional localizer was very effective.  Two clear 

clusters of activation were identified (p<.05 family-wise error corrected for multiple 

comparisons) in all participants and these clusters were located within the mask 

regions of V1 and V2 (determined using independent retinotopic mapping) (see 
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Figure 4.2).  It was therefore possible to be confident that activity measured within 

these target ROIs during the main experiment represented cortical activity associated 

with the target. The mean size of the target ROIs (at the conservative statistical 

threshold p<.05 FWE-corrected) was 3.25 voxels (SEM 0.34 voxels) in V1 and 7.75 

voxels (SEM 1.55 voxels) in V2, reflecting the expectation that the target would 

activate a relatively small volume of cortical tissue.  The activity in these target ROIs 

was compared with activity not directly related to the target in control ROIs.  These 

were similar sizes in voxels to the target ROIs, at equivalent eccentricities but in the 

opposite hemisphere and responded to a small region in the right upper visual field.  

This is an area as far as possible from the target and contained dynamic noise at all 

times during the trial (Figure 4.2) (see Methods).  The mean size of the control ROIs 

in V1 was 4.25 voxels (SEM 0.68 voxels) and 4.83 voxels (SEM 0.54 voxels) in V2.  

 

Due to the very small size (1.12 degree) and eccentricity (8.75 degree) of the target, 

cortex specific to the target in V3 was only localised  in three subjects.  It is therefore 

not possible to draw any meaningful conclusions about the pattern of cortical activity 

in V3 during perceptual filling-in. 

 

Signals extracted from the target ROIs in the main experiment were compared across 

each of the periods in every trial and participant reflecting the four experimental 

conditions (onset, target visible, target perceptually filled-in and target removed). 

Figure 4.3b shows BOLD signals from the target ROI in V1 and the control ROI in 

V1 associated with these different time periods  A repeated measures ANOVA with 

the Huynh-Feldt correction for non-sphericity showed a main effect of region (target 

ROI or control ROI), F(1,11)=5.0, p=.047, a main effect of condition,  
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F(2.2,24.7)=7.0, p=.003, ε=.75 and an interaction of region and condition 

(F(2.1,22.7)=6.2, p=.007, ε=.69).  These differences were due to a significant decrease 

in activity in the target ROI when the target became invisible after perceptual 

completion, (t(11)=3.5, p=.005).  Importantly, activity for the now invisible but 

physically present target remained significantly elevated in the target ROI compared 

to time periods when the target was physically removed (t(11)=6.8, p<.0005).  As 

would be expected, activity in the target ROI was also significantly greater when the 

target was visible than at the onset of the trial, before the target appeared (t(11)=2.3, 

p=.040); and activity in the target ROI was significantly greater during periods when 

the target was visible, compared to when it was physically removed (t(11)=5.6, 

p<.0005). 

 

In the control region in V1v ipsilateral to the target, that represents regions of the 

visual field distant from the target location (which were stimulated instead by the 

dynamic noise background throughout), there were no significant differences between 

activity evoked at onset of the dynamic noise background and when the target was 

presented (t(11)=-1.2, p=2.5 ) nor any significant differences between the physically 

different but perceptually identical conditions of target perceptually filled-in and 

target removed (t(11)=1.7, p=.12). These findings indicate that physical presentation 

of the target evoked responses in the target ROI but not the control region, consistent 

with the known retinotopy of these structures and the functional localiser. However, it 

is interesting to note that in the control ROI, which was not stimulated by the target, 

there was a small but significant reduction in activity comparing periods in the trial 

where the target was present but subjects were not reporting perceptual completion 

and after the target was reported as perceptually complete and now invisible 
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(t(11)=2.8, p=.02). On inspection this appeared to represent a more general 

suppression of signals during perceptual completion in regions not stimulated by the 

target (Figure 4.3b).  There was also reduced activity in the control ROI after the 

target was removed compared to periods when the target had been visible (t(11)=3.0, 

p=.013), which may reflect suppression from the already completed target continuing 

when the target was removed.  These findings are consistent with the notion that 

perceptual completion of the artificial scotoma might be associated to some extent 

with signals in V1 that were not completely restricted to the retinotopic target 

representation.  

 

On pairwise comparisons, there were no significant differences in activity in target 

and control ROIs (t(11)=1.6, p=.14) evoked at onset of the dynamic noise 

background, nor in the periods when the target was physically removed (t(11)=1.2, 

p=.25).  However, the activity evoked during trial periods when the target was visible 

differed significantly between target and control ROIs (t(11)=3.1, p=.010) as did the 

activity following reported perceptual completion in the target and control ROIs 

(t(11)=2.5, p=.030), thus confirming retinotopic specificity of these differential 

responses to the retinotopic representation of the target location in V1. 
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Figure 4.3 (a,b) Region-of-interest (ROI) in V1. (a) Voxels responding to the target within V1 (target 

ROI in V1), defined using the functional localizer, are displayed for a representative participant on a 

sagittal section of a T1-weighted structural image. The location of the target ROI in the upper bank of 

the right calcarine sulcus (corresponding to its location in the left lower visual field) is apparent. (b) 

BOLD signal change (percent relative to the global mean) averaged across all twelve participants (error 

bars = one SEM) in the target ROI within right V1 (closed squares) and for the equivalent sized control 

ROI in left V1 (open squares) plotted separately for each condition (onset; visible; perceptually filled-

in; removed; see Methods and Figure 4.1 for definitions).  Note that activity in the V1 target ROI 

decreased during perceptual filling-in, but that activity remained elevated compared to the baseline 

condition, when no target was present.  In contrast, in the control ROI there was also a small but 

significant reduction in activity during perceptual completion but no further reduction in signal change 

when the target was physically absent. The symbol ‘**’ indicates statistical significance (p<.005, 2-

tailed t test) and the symbol ‘*’ indicates statistical significance (p<.05, 2-tailed t test).  
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 (c,d) Region-of-interest (ROI) in V2.  (c) Voxels responding to the target within V2 (target ROI in 

V2), defined using the functional localizer, are displayed for a representative participant overlaid on a 

sagittal section of a T1-weighted structural image.  (d) BOLD signal change (percent relative to the 

global mean) averaged across all twelve participants (error bars = one SEM) for each condition within 

the target ROI in right V2 (closed squares) and the equivalent sized control ROI in left V2v (open 

squares).  The overall pattern of activity in the V2 target ROIs was similar to the V1 ROIs, with a 

significant decrease in activation when the participants reported perceptual completion of the target, 

compared to when they reported that the target was visible and a further decrease when the target was 

physically removed.  In the control ROI however, there were no significant differences between the 

conditions. The symbol ‘**’ indicates statistical significance (p<.005, 2-tailed t test) and the symbol ‘*’ 

indicates statistical significance (p<.05, 2-tailed t test).  

 

As a further control, activity in the whole of V1v ipsilateral to the target was also 

examined.  This region responds to activity in the upper right quadrant, an area only 

stimulated by dynamic noise and not the target.  Results were qualitatively unchanged 

compared to the smaller control ROI. A repeated measures ANOVA with the Huynh-

Feldt correction for non-sphericity showed a main effect of region (target ROI or 

whole V1v), F(1,11)=9.7, p=.010, a main effect of condition,  F(2.2,23.8)=5.1, 

p=.012, ε=.72 and an interaction of region and condition (F(2.1,22.7)=14.3, p<.0005, 

ε=.68).  As for the smaller control ROI, a significant reduction in activity was also 

found when the target was reported as perceptually completed compared to when it 

was visible (t(11)=2.2, p=.048), despite the fact that the target was presented in the 

lower left quadrant, a region not represented by left V1v (Figure 4.4a). 

 

Pairwise comparison showed no significant differences between activity evoked after 

the target was removed, comparing the target ROI in V1 and the whole of left V1v 

(t(11)=1.3, p=.21), but the levels of activity evoked by the onset periods, the target 
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visible and perceptually filled-in conditions were all greater in the target ROI 

(t(11)=2.3, p=.041, t(11)=4.7, p=.001, t(11)=3.2, p=.008). 

 

Figure 4.3b shows BOLD signals in V2 associated with perceptual filling-in of the 

artificial scotoma. A repeated measures ANOVA with the Huynh-Feldt correction for 

non-sphericity showed a main effect of region (target ROI or control ROI), 

F(1,11)=8.3, p=.015, a main effect of condition (onset, target visible and target 

perceptually filled-in and target removed), F(2.2,24.2)=5.3, p=.011, ε=.73) and an 

interaction of region and condition (F(3,33)=22.5, p<.0005).  As in V1, these 

differences were due to a significant decrease in activity in the target ROI when the 

target was perceptually filled-in (t(11)=4.09, p=.002); but activity evoked when the 

target was perceptually completed remained significantly elevated compared to when 

it was physically removed (t(11)=6.4, p<.0005).  There was also significantly greater 

activity in the target ROI when the target was visible compared to when it was 

removed (t(11)=8.8, p<.0005), and compared to the onset periods, before the target 

had been presented (t(11)=5.0, p<.0005).  In the target ROI in V2, there was also 

greater activity after perceptual completion had occurred compared to periods before 

the target had been presented (t(11)=3.6, p=.004) and activity was greater during the 

onset periods than after the target had been removed (t(11)=2.9, p=.016). 

 

In V2, these changes were clearly restricted to the retinotopic location of the target, as 

responses of retinotopic regions of V2 that did not represent the target (control ROI in 

V2v) showed no significant differences between periods when the target was visible 

and after perceptual completion (t(11)=1.3, p=.23,) or between any other conditions.  

(Onset and visible: t(11)=.067, p=.95; onset and perceptually filled-in: t(11)=2.1, 
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p=.064; onset and removed: t(11)=1.8, p=.097; visible and removed: t(11)=1.2, p=.27, 

perceptually filled-in and removed: t(11)=.07, p=.95). 

 

Furthermore, when the same conditions were compared between the two regions 

(target ROI in V2 compared to control ROI in V2v), there was no significant 

difference between the regions after the target was removed (t(11)=-.42, p=.68,) but 

there was a significant difference between the regions when the target was visible 

(t(11)=4.6, p=.001,) and when it was perceptually filled-in (t(11)=2.9, p=.015,).  

There was also a significant difference between the two regions before the target was 

presented (t(11)=2.6, p=.026). 

 

Activity was also examined in the whole of left V2v compared to the target ROI in V2 

(Figure 4.4b). A repeated measures ANOVA with the Huynh-Feldt correction for 

non-sphericity showed a main effect of region (target ROI or whole V2v), 

F(1,11)=7.0, p=.023, a main effect of condition,  F(2.2,23.8)=7.6, p=.002, ε=.73 and 

an interaction of region and condition (F(3,33)=43.0, p<.0005).  As in the small 

control ROI in V2v, no significant differences in activity were found in V2v between 

any of the conditions. 

 

Pairwise comparison showed no significant difference between the target ROI in V2 

and the whole of left V2v before the target was presented (onset) (t(11)=.89, p=.39) or 

after the target was removed (t(11)=1.0, p=.32), but the activity evoked by the target 

visible and perceptually filled-in conditions was greater in the target ROI (t(11)=5.2, 

p<.0005, t(11)=4.4, p=.001). 
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Figure 4.4  (a) Region of interest in V1 compared to whole left V1v.  BOLD signal change (percent 

relative to the global mean) averaged across all twelve participants (error bars = one SEM) in the target 

ROI within right V1 (closed squares) and for the whole of left V1v ipsilateral to the target as a control 

ROI (open triangles) plotted separately for each condition (onset; visible; perceptually filled-in; 

removed; see Methods and Figure 4.1 for definitions).  Note that activity in the target V1 ROI 

decreased when participants reported perceptual completion, but that activity remained elevated 

compared to the baseline condition, when no target was present.  In contrast, in the whole of left V1v 

there was also a small but significant reduction in activity when participants reported perceptual 

completion but no further reduction in signal change when the target was physically absent. The 

symbol ‘**’ indicates statistical significance (p<.005, 2-tailed t test) and the symbol ‘*’ indicates 

statistical significance (p<.05, 2-tailed t test).  

 

(b) Region of interest in V2 compared to whole left V2v.  BOLD signal change (percent relative to 

the global mean) averaged across all twelve participants (error bars = one SEM) for each condition 

within the target ROI in right V2 (closed squares) and the whole of left V2v (open triangles).  The 

overall pattern of activity in the V2 ROIs was similar to the V1 ROIs, with a significant decrease in 

activation when participants reported perceptual completion of the target, compared to when the target 

was visible and a further decrease when the target was physically removed.  In the whole of V2v 

however, there were no significant differences between the conditions. The symbol ‘**’ indicates 
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statistical significance (p<.005, 2-tailed t test) and the symbol ‘*’ indicates statistical significance 

(p<.05, 2-tailed t test).  

 
 

4.4 Discussion 
 
 

The major finding in this study was that the behavioural report of perceptual 

completion of an artificial scotoma in humans was accompanied by reductions in 

BOLD signals representing the perceptually filled-in target in V1 and V2.  In V1 (but 

not V2), regions of cortex distant from the target representation also showed subtle 

reductions in signal correlated with perceptual completion of the target, but these 

were significantly smaller than the reductions identified in the cortical locations 

corresponding to the target representation. The reductions in activity associated with 

perceptual completion of the target representation were not complete, as even after 

perceptual filling-in had occurred and the target was invisible, BOLD signals in the 

target representation remained elevated compared to when the target was physically 

removed. This is consistent with a persistent neural representation of the now 

invisible target in both V1 and V2.  

 

4.4.1 Perceptual completion of an artificial scotoma is associated with reductions in 

BOLD signals 

 

Perceptual filling-in of the target necessarily followed a period when the stimulus was 

visible. This raises the possibility that the decrease in signal observed comparing the 

visible and invisible (perceptually completed) target reflects a generalised decrease in 

V1 and V2 signals over time, or saturation of the BOLD signal evoked by the 
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dynamic noise background that attenuates over time. However, several aspects of 

these data make such a possibility unlikely. First, the decrease in signal which was 

observed was much greater for the cortical representation of the target compared to 

control ROIs (which represented regions stimulated by the dynamic random noise), 

and so cannot reflect a generalised adaptation of BOLD signals. Second, the BOLD 

signal within the target representation at the onset of each trial was lower than when 

the target was visible in both V1 ROI and V2 ROI.  Thus the procedure can detect the 

small differences in retinotopic activity elicited by presentation of a small target on 

top of a dynamic noise background, and signals were not saturated by the dynamic 

noise background.  Finally, a significant reduction in activity was observed during 

periods of trials when the target was physically removed compared to when the target 

was perceptually filled-in.  This could not reflect a generalised adaptation over time 

during the experiment itself as the periods when the target was removed (during 

‘catch’ trials, comprising 25% of the total trials) occurred at the same time periods 

during the trial as the periods when perceptual filling-in typically occurred. Taken 

together, these findings suggest that the differences in BOLD signal between 

conditions reflect changes in cortical activity rather than saturation or adaptation 

effects on haemodynamic responses.   

 

4.4.2 Filled-in targets are associated with activity which is elevated compared to a 

no-target baseline  

 

These data demonstrate that in regions responding to the target, activity was reduced 

during perceptual filling-in but remained elevated compared to periods when the 

target was physically removed.  This finding of persistent elevation (relative to 
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physical absence of the target) after perceptual completion cannot be an artefact of 

averaging signals from trials with variable latency or duration of perceptual 

completion for several reasons. Although individual experiences of perceptual 

completion can be gradual and of variable latency, both latency and duration of 

perceptual completion were determined on a trial-by-trial basis for each participant by 

examining their multiple button press responses (see Methods). The construction of 

the regressors on a trial-by-trial basis ensured that only time-periods when the target 

was reported by participants as completely invisible were reported in this particular 

contrast.  Periods of gradual fading were therefore excluded from the analysis and 

only the states before fading had commenced (‘target visible’) and after the target had 

become completely invisible (‘target perceptually filled-in’) were examined.  In 

addition, participants were instructed to be conservative in their reports and only 

report perceptual completion when they were sure that the target was invisible.   

 

 

4.4.3 Considering differences in activity in the control ROI in V1 

 

In the control ROI in V1v, a region that responds to the upper right visual field where 

no target was presented there were no significant differences in activity between 

periods prior to the target being presented and during periods when the target was 

visible, consistent with the retinotopic organisation of V1.  However, small but 

nevertheless significant reductions in activity were identified comparing periods 

before and after perceptual completion of the target had occurred.  These differences 

were significantly smaller than in the target ROI, indicating a degree of retinotopic 

selectivity but not as complete as in V2.  Interestingly, a significant reduction in 
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activity was also found in the control ROI in V1 when the target was physically 

removed compared to when it was visible.  In a region whose retinotopy reflects 

regions of the visual field stimulated only by the dynamic background it might be 

expected that these two time-periods show comparable levels of activity.  However, it 

should be noted that the target was physically removed at times during the trial when 

participants had typically already reported perceptual filling-in, so these time periods 

after the target was physically removed do not represent a true baseline, as any neural 

activity associated with the perceptual experience of filling-in may still be ongoing, 

and it might be expected that the reductions in activity seen during periods of 

perceptual completion would continue to be seen during these periods after the target 

is physically removed. 

 

 

4.4.3 Possible mechanisms 

 

One very influential model for underlying neural filling-in mechanisms associated 

with perceptual completion (Gerrits and Vendrik, 1970;Grossberg and Mingolla, 

1985;Neumann et al., 2001;Grossberg and Hong, 2006) is that lateral spreading which 

causes neural filling-in of surfaces in normal vision, is inhibited by the boundaries of 

an image.  This theory has been further developed on the basis of behavioural (De 

Weerd et al., 1998) and single neuron studies in monkey (De Weerd et al., 1995) as a 

possible neural mechanism underlying the perceptual completion of an artificial 

scotoma.  The proposed neural model consists of two stages: a slow period during 

which figure-ground segregation fails due to adaptation of neurons responding to the 

boundary between target and background. This is followed by a faster process of 
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feature spreading. Note that such a model is purely neural and makes no specific 

predictions about how these neural phenomena are related to the phenomenal 

experience of perceptual completion. In the present study, the relatively low spatial 

resolution of fMRI means that it is not possible to unambiguously disentangle the 

potential contribution of these two hypothesised neural processes to the observed 

signal changes or the perceptual experience of completion reported by the 

participants.  One possibility is that the target-specific reductions in activity observed 

in V1 and V2 during perceptual completion reflect specific inhibitory processes 

suppressing the target boundary. Such processes usually keep a uniform region 

segregated from the surrounding texture. This hypothesis would also be consistent 

with the increases in firing in some neurons associated with texture filling-in observed 

in monkey (De Weerd et al., 1995) as BOLD contrast fMRI primarily reflects 

synaptic activity within a cortical area rather than spiking activity per se 

(Viswanathan and Freeman, 2007).  The weaker non-retinotopic decreases in BOLD 

activity observed in V1, that have also been identified in a previous human fMRI 

study of luminance filling-in (Mendola et al., 2006), may reflect the more general 

process of feature spreading that allows perceptual filling-in to occur. However, not 

all evidence is consistent with a two-stage theory of slow border adaptation followed 

by a rapid neural filling-in. For example, changing properties of the border between 

target and background by increasing spatial blur and stereoscopic disparity does not 

affect the latency at which human observers report perceptual completion of the target 

(Welchman and Harris, 2003). This is somewhat inconsistent with the notion that 

border adaptation must occur prior to perceptual completion of an artificial scotoma, 

although it is possible that such findings depend on the eccentricity of the target and 

indeed for other types of stimuli, changes in border contrast do influence time before 
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perceptual completion is reported (Sturzel and Spillmann, 2001). Further research is 

therefore required to establish both the nature of the neural processes underlying 

subjective reports of perceptual completion and their relationship to the retinotopic 

reductions in population-specific responses that have been observed here.  

 

 

4.4.4 Comparison with previous studies 

 

This study necessarily conflates (due to the relatively low spatial resolution of fMRI) 

the neural correlates of the flickering target and the background noise, which after 

perceptual filling-in has been reported appears to occupy the same location in visual 

space.  Thus there are two distinct phenomenal aspects of completion taking place in 

the same location of the visual field; the disappearance of the target (although it 

remains physically present) and the appearance of the background (although it 

remains physically absent). In the previous chapter (chapter 3) (Weil et al., 2007), 

MEG was used with an identical stimulus to isolate signals evoked by the target 

during perceptual completion by measuring signals at the frequency of the flickering 

target before and after perceptual completion. Such frequency ‘tagged’ signals were 

reduced but not eliminated in contralateral posterior sensors after perceptual filling-in, 

consistent with a locus for perceptual completion in visual cortex and a persistent 

representation of the invisible target. However the relatively low spatial resolution of 

MEG meant that it was not possible to determine the precise locus in visual cortex. 

Although BOLD contrast fMRI is an indirect measure of neuronal activity and reflects 

the activity across neuronal populations, the findings in this study converge strikingly 

with these previous results to unambiguously demonstrate that changes in neuronal 
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population signals associated with reported perceptual completion of an artificial 

scotoma can be identified in retinotopic representations of the target in V1 and V2. 

Importantly, the two studies show qualitatively the same pattern of findings despite 

employing two different methods of measuring neuronal population activity, MEG 

and fMRI.  More research is needed to clarify the neuronal processes associated with 

the perceptual experience of filling-in and the role of individual components such as 

feature spread from the background and disappearance of the target. 

 

These findings concerning perceptual completion of an artificial scotoma with 

dynamic luminance noise are broadly consistent with a recent fMRI study in humans 

of luminance filling-in with static homogenous backgrounds (Mendola et al., 2006). 

In that earlier study, periods of perceptual invisibility were associated with reductions 

in activity in early visual cortex.  However, the decreases in activity associated with 

luminance filling-in measured in that earlier study were not restricted to the target 

location and extended throughout V1 and V2 including to regions not stimulated by 

the luminance target.  In contrast, the present study provides evidence that changes in 

activity after perceptual completion were retinotopically specific to the target 

representation in V1 and V2, but in addition V1 shows a weak general, non-

retinotopic reduction in activity associated with perceptual filling-in. Furthermore, the 

data presented in this study go beyond this earlier work by showing that although 

activity in the target representation in V1 and V2 is reduced after it becomes invisible, 

activity remains elevated compared to when the target is physically removed. This 

indicates that a representation of the now invisible target persists in human V1 and 

V2, consistent with the previous observations using MEG (Chapter 3) (Weil et al 

2007). Such an invisible representation is also consistent with the behavioural finding 
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that perceptually filled-in targets can nevertheless influence behaviour 

(Ramachandran and Gregory, 1991;Meng et al., 2005) and with the observation from 

very different paradigms that V1 can represent properties of invisible stimuli (Haynes 

and Rees, 2005;Kamitani and Tong, 2005). More generally, the broad consistency of 

these findings with earlier studies using different stimuli to elicit behavioural reports 

of perceptual completion suggest that a common mechanism may underlie the variety 

of target and background textures and artificial scotoma configurations that can elicit 

very similar perceptual experiences (Ramachandran & Gregory, 1991) but this will 

require further investigation. 

 

4.5 Conclusion 

 

These findings indicate that the earliest cortical stages of the human visual pathways 

show signals correlated with behavioural reports of perceptual completion of artificial 

scotomas. This suggests that the neural basis for such perceptual completion reflects a 

process manifest in signals from early visual cortex.  Moreover, the persistent signal 

associated with the perceptually filled-in and now invisible target demonstrates the 

continued representation of this invisible target in early visual cortex.  An important 

and unresolved issue is whether higher cognitive functions can influence this low-

level process of perceptual filling-in.  I will now turn to the second goal of this thesis, 

exploring the top-down influences on perception, starting by examining the top-down 

influences of perceptual filling-in. 
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CHAPTER 5:  EFFECTS OF HIGHER COGNITIVE FUNCTIONS ON 

PERCEPTUAL FILLING-IN OF AN ARTIFICIAL SCOTOMA 

 

5.1 Introduction 

 

The previous two chapters (chapters 3 and 4) have explored the neural correlates of 

perceptual filling-in of an artificial scotoma.  In particular, they have focused on 

activity in early visual cortex whilst such a stimulus is seemingly filled-in by a 

dynamic background, providing evidence for a low-level account of this phenomenon 

driven primarily by bottom-up sensory factors.  

 

However, it has recently become apparent that directing spatial attention (a ‘top-

down’ signal) to the target, can increase the probability that filling-in will occur (De 

Weerd et al., 2006). This provides some preliminary evidence that filling-in represents 

an interplay between top-down and bottom-up factors. Moreover, such evidence 

favours theoretical accounts of filling-in that propose it is an active process, rather 

than accounts that claim that filling-in merely reflects passive ignoring of information 

that is no longer represented in the brain (Dennett, 1991).  Furthermore, if filling-in is 

an active process and affected by top-down signals, then manipulations of those 

signals by different tasks might affect filling-in differently, but whether this is the 

case is not yet known. 

 

In this chapter, the influences of two contrasting manipulations of top-down signals 

on concurrent perception of an artificial scotoma were explored.  Either perceptual or 
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working memory load were independently manipulated to examine how these affected 

the probability and onset of filling-in of a peripheral artificial scotoma. Similar load 

manipulations have been used to investigate processing of task-irrelevant stimuli 

using perceptual load (Rees et al., 1997;Bahrami et al., 2008;Schwartz et al., 2005) 

and working memory load manipulations (de Fockert et al., 2001;Lavie et al., 

2004;Dalton et al., 2009) allowing specific predictions to be formed of the effects of 

these manipulations on the process of perceptual filling-in. 

 

5.1.1 Lavie’s load theory of selective attention applied to the process of perceptual 

filling-in 

 

Lavie’s load theory of selective attention and cognitive control (Lavie, 2005;Lavie et 

al., 2004) proposes that increasing the load of a perceptual task will consume 

capacity, thereby reducing resources dedicated to processing stimuli irrelevant to that 

task. Increasing perceptual load is operationally defined as either increasing the 

number of items that must be processed in the same task or, for the same number of 

items, making the perceptual task more demanding by increasing the number of 

stimulus features that must be processed (Lavie and de Fockert, 2003); within this 

theoretical framework, the terms perceptual load and attentional load are used 

interchangeably (see for example (Bahrami et al., 2007;Bahrami et al., 2008)).  

Indeed, both behavioural (Lavie and de Fockert, 2003;Bahrami et al., 2008) and 

neuroimaging (Schwartz et al., 2005;Bahrami et al., 2007) studies have consistently 

shown that increasing perceptual load reduces processing of stimuli outside the focus 

of attention. 
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If perceptual filling-in of artificial scotomas is an active process requiring attentional 

resources, then reducing the availability of such resources for processing both the 

target and background, by increasing the perceptual load of a concurrent task at 

fixation, should lead to a lower probability of filling-in and a delay in its onset. If, on 

the other hand, perceptual filling-in is a form of passive ignoring, as previously 

suggested (Dennett, 1991), opposite effects on these measures should be expected, 

because a reduction in attentional resources should make it easier to ignore missing 

information. 

 

To compare the effects of two different types of top-down signal, working memory 

load was also manipulated while examining perceptual filling-in of an artificial 

scotoma (see also (Macdonald and Lavie, 2008)). Importantly, by comparing how 

perceptual filling-in varied in association with two different concurrent tasks, any 

general effects of performing a concurrent task per se on perceptual filling-in was 

controlled for. Load theory proposes that increasing working memory load can have 

the opposite effect to that of increasing perceptual load in tasks where certain stimuli 

must be attended while others are ignored, because working memory is part of the 

executive control mechanism prioritizing stimulus processing. Hence, exhausting the 

capacity of working memory reduces the ability to maintain prioritization of current 

behavioural goals, leading to more processing of irrelevant distractors (Lavie et al., 

2004;de Fockert et al., 2004;de Fockert et al., 2001).  However, in the paradigm used 

in this study there were no distractors, only a primary task of working memory and a 

secondary task of monitoring perceptual filling-in of a figure placed on a background.  

It  was hypothesized that in perceptual filling-in, the background may play an 

analogous role to a distractor; in such a case, increasing working memory load may 
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impair the relative processing priorities of the target and background, increasing the 

salience of the background and affecting perception in the same way as for distractor 

processing, thus shortening the latency and increasing the probability of perceptual 

filling-in.  Alternatively, if without distractors, working memory served only to 

consume resources and divert attention away from the perceptual filling-in task, 

working memory load would, like perceptual load, delay and reduce the probability of 

perceptual filling-in. 

 

 

5.2 Methods 

 

5.2.1 Participants 

 

Twelve volunteers participated in experiment 1 (mean age 27.8 years, range 19-37 

years, 5 female, 10 right handed) and ten participated in experiment 2 (mean age 26.6 

years, range 21-32 years, 4 female, 10 right handed). All had normal or corrected-to-

normal vision and gave written informed consent to participate in the study, which 

was approved by the local ethics committee. 

 

 

5.2.2 Stimuli 

 

Visual stimuli were presented on a gamma-calibrated CRT display (21” Sony GDM-

F520; 800x600 resolution; 60 Hz refresh rate), placed in a darkened room, with 

participants wearing headphones for experiment 2.  Participants’ heads were 
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supported by a chin rest to ensure a fixed viewing distance of 57cm.  Stimulus display 

and response collection were controlled by Matlab 6.5.1 (Mathworks Inc.) using the 

COGENT 2000 toolbox (www.vislab.ucl.ac.uk/Cogent2000/index.html).  Stimuli 

consisted of full-field random dynamic achromatic noise (subtending 33º x 25º; mean 

luminance of 23.3cd/m2) and a flickering peripheral target. To generate random 

dynamic noise, 30 arrays of 200x200 pixels were created, each measuring 0.165º x 

0.124º with a grey-scale randomly assigned at the start of each run.  The 30 arrays 

were then presented in a random order at the screen refresh rate (60Hz).  The target 

figure was a small flickering achromatic square (1.12º x 1.12º) superimposed on the 

background in the lower left visual field at 9.43º eccentricity (8º across, 5º down) 

flickering between black (luminance 0.51cd/m2) and white (luminance 80.9cd/m2) at a 

rate of 7.5Hz (8 screen refresh cycles per presentation).  The lower half of the visual 

field was chosen for placement of the target figure, as perceptual filling-in is more 

robust in the lower visual field (Mendola et al., 2006).  The figure was flickered to 

avoid stimulus-contingent after-effects.  

 

 

5.2.3 Perceptual filling-in procedure 

 

On each trial, participants were presented with a screen of dynamic noise.  After 3s, a 

flickering target figure appeared in the near periphery, on the background of the 

dynamic noise.  Participants were instructed to fixate centrally (see specific 

instructions for each experiment below) and to indicate the appearance of the 

peripheral figure using three different keyboard buttons on the standard PC keyboard. 

When the figure first appeared they were required to press one button (‘1’ on the 
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keypad). If the figure disappeared (through perceptual filling-in) then participants 

were required to press a second button (‘2’ on the keypad). Participants indicated any 

re-appearance of the figure by a third button-press (‘3’ on the keypad).  These button 

presses were used to define the latency of perceptual filling-in (time until perceptual 

filling-in) and the reaction times to the appearance of the target at the beginning of 

each trial.  The probability of perceptual filling-in was defined as the proportion of 

trials during which the figure was perceptually filled-in for at least 1000 ms (until 

reappearance of the figure or the end of the trial).  Participants were encouraged to be 

conservative in their responses and only report perceptual filling-in once the figure 

had completely disappeared.   

 

Trials lasted 15 seconds and were followed by a 500ms interval during which a grey 

screen (luminance 21.8cd/m2) was presented.  Participants completed 4 blocks for 

experiment 1 (for 3 participants, data were recorded but not saved for 2 blocks for 

technical reasons) and 2 blocks for experiment 2.  Each block comprised 30 trials and 

participants received quantitative feedback at the end of every block consisting of the 

percentage of trials where they had reported perceptual filling-in for longer than one 

second.  Participants were encouraged to blink between trials and during specific rest 

periods between blocks, but were not told to abstain from blinking during the rest of 

the experiment.  All participants received training prior to testing, to ensure they 

could experience disappearance of the stimulus and assign consistent responses to the 

different perceptual states. 

 

 

 



 182

 

5.2.4 Eye movement recording and analysis 

During testing, eye position and pupil diameter were continually sampled at 250Hz 

using a high-speed video eye tracker (Cambridge Research Systems Ltd, Kent, 

England, www.crsltd.com).  Eye tracking data were analyzed with Matlab.  Blinks 

and periods of signal loss were removed from the data.  Eye position (defined as the 

mean position of the eye) and eye movements (defined as the variance around eye 

position) were then computed for each participant under each load (low / high) and 

visibility condition (peripheral target visible / perceptually filled-in).  A repeated 

measures ANOVA was used to establish whether eye position and eye movements 

differed between the various experimental conditions.  For experiment 1 (perceptual 

load task), eye movements were recorded and analysed for all twelve participants.  

For experiment 2 (working memory task), eye movements were recorded for all ten 

participants but could only be analysed for 8 participants for technical reasons.  

  

 

5.2.5 Experiment 1 - Perceptual Load 

 

Whilst participants monitored the appearance and perceptual filling-in of the 

peripheral figure, they concurrently performed a perceptual task which has been 

previously shown to allow effective manipulation of perceptual load (Schwartz et al., 

2005). This task required a serial visual search on a stream of targets presented at 

fixation. Crosses spanning 0.52º (vertical line) by 0.22º (horizontal line) were 

presented at fixation on a rectangular black background (1.3º x 1º). Crosses could 

appear in any of six colours (red, green, yellow, blue, cyan and purple) and two 
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orientations (upright or inverted; the horizontal line of the cross was placed 0.25º – 1 

pixel – above or below the centre of the vertical line, see Figure 5.1a).  Each cross 

was displayed for 250 ms followed by a blank period of 500 ms before the appearance 

of the next cross.  Perceptual load was manipulated so that for identical stimulus 

streams, participants performed either a low-load feature search (responding to red 

crosses among other cross colours), or a high-load conjunction search (responding to 

either upright yellow or inverted green crosses, but not the opposite conjunctions). 

Note that this study only examined dual-task conditions with concurrent performance 

of the perceptual load and filling-in tasks, contrasting two different levels of 

perceptual load. Crucially, this enabled the isolation of the effect of perceptual load 

independently from performance of a concurrent task per se. A comparison of filling-

in monitoring with and without a perceptual load task would instead have been 

confounded by a difference in the number of tasks and the need for executive task 

coordination, which was not the case here. 
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Figure 5.1. Experiment 1:  Effect of perceptual load on perceptual filling-in.  (a) Procedure.  

Participants reported the appearance and then perceptual filling-in of a peripheral achromatic figure 

using button-presses.  The figure flickered between black and white.  At the same time, participants 

viewed a series of central coloured crosses and monitored for the appearance of cross targets defined 

either according to their colour (red crosses, low perceptual load) or colour and orientation (upright 

yellow or inverted green crosses, high perceptual load). (b,c) Results.  (b) Increasing perceptual load 

altered the latency of perceptual filling-in onset. Latency of perceptual filling-in increased in the high 

(versus low) load perceptual task. (c) Probability of perceptual filling-in was reduced by high (versus 

low) perceptual load.  Data shown are averaged across twelve participants, with error bars representing 

standard error of the mean difference and ‘*’ indicating statistical significance (p<.05, 2-tailed t test). 

 

 

Participants responded with a button-press whenever a cross target was detected 

(down arrow on finger pad).   
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Half of the participants used their left hand to respond to the fixation task and their 

right hand to report filling-in; this was switched for the other participants, to ensure 

that handedness bias was not introduced.  

 

5.2.6 Experiment 2 - Working Memory Load 

 

Each trial began with presentation of a grey screen with a central red fixation cross 

while participants listened to a sequence of five numbers (1 to 5), always preceded by 

“zero”, presented through headphones.  Working memory load was manipulated by 

either presenting the number sequence in ascending order (low load) or in random 

order (high load). Participants committed the number sequence to memory.  This was 

followed by the 15-second perceptual filling-in task, which was identical to that in 

experiment 1.  Full-screen dynamic noise was presented and after 3 seconds, a 

peripheral target was added to the display. Participants monitored the target for 

perceptual filling-in while fixating centrally, using button presses to indicate what 

they perceived.  Different to experiment 1, there was no central perceptual task and 

participants fixated on a small static red cross (0.4o x 0.4o; see Figure 5.2a). At the end 

of the perceptual filling-in task, participants were presented with a grey screen and 

heard the word ‘probe’ followed by a digit chosen randomly from the original 

memory set.  They then had 3.5 seconds to report the digit that followed the probe in 

the original memory set by pressing the appropriate key on the keyboard’s number 

pad.   The last digit in the memory set was never the probe and all sets began with “0” 

to ensure that all five digits between 1 and 5 were used as responses in both 

conditions.  A new trial began at the end of the response period.  This working 

memory load manipulation has been used in previous studies (de Fockert et al., 
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2001;Dalton et al., 2009). In the low load condition the task is relatively easy. 

However, this approach has the advantage of avoiding any confound introduced by 

using dissimilar set sizes, which would have been the case if an alternative method of 

manipulating the number of digits held in working memory had been used. Although 

the low-load condition imposes relatively small demands on working memory, 

participants were still required to remember which type of trial they were performing. 

Thus the dual task and response requirements were fully matched across both working 

memory load conditions.   

 

 

Figure 5.2. Experiment 2:  Effect of working memory load on perceptual filling-in.  (a) Procedure 

Participants viewed a grey screen whilst hearing a sequence of 5 numbers, always preceded by ‘0’.  

The sequence was either presented in ascending order (low working memory load) or random order 

(high working memory load). Presentation of this sequence was followed by the perceptual filling-in 

task (see Figure 5.1 and Methods for full details), where participants reported the appearance and then 
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perceptual filling-in of a peripheral figure, whilst retaining the previously presented number sequence 

in working memory.  After fifteen seconds of monitoring the filling-in display, participants then 

viewed another grey screen and heard the word ‘probe’, followed by a number from the original 

memory set.  They then had 3.5 seconds to report the digit that followed the probe number in the 

original memory set.  (b,c)  Results.  The effect of high (versus low) working memory load on 

perceptual filling-in was in the opposite direction to that of high (versus low) perceptual load: (b) 

Latency of perceptual filling-in was reduced under high (versus low) working memory load. (c) The 

probability of perceptual filling-in was not affected by high (versus low) working memory load, but 

note it was already close to ceiling under low load.  Data shown are averaged across ten participants, 

with error bars representing standard error of the mean difference and ‘*’ indicating statistical 

significance (p<.05, 2-tailed t test). 

 

 

5.3 Results 

 

5.3.1 Experiment 1  

 

5.3.1.1 Perceptual load  

The perceptual load manipulation was effective: Mean reaction times to target crosses 

were faster for low perceptual load (483 ms) compared to high perceptual load (568 

ms; t(11)= 7.7, SEM=11.1 ms , p<.0005). There was also a higher mean percentage of 

correctly detected central targets (hit rate) for the low load (93%) compared to the 

high load (88%; t(11)= 3.2, SEM=1.4%, p=.009), ruling out a speed-accuracy trade-

off.  

   

5.3.1.2 Effect of perceptual load on perceptual filling-in 
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Increasing perceptual load reduced participants’ ability to initiate perceptual filling-in 

(Fig. 5.1b).  The mean probability of perceptual filling-in was reduced under high 

perceptual load (75%) compared to low load (83%; t(11)=2.8, SEM=2.8%, p=.017).  

Mean latency of perceptual filling-in was greater for higher perceptual load (7066 ms) 

than low perceptual load (6468 ms; t(11)= 3.1, SEM=191.8 ms, p=.01). 

 

To gauge the effect of perceptual load on reaction times, rather than on perceptual 

filling-in, the reaction times to the physical appearance of the flickering target were 

also measured.  Mean reaction times to the appearance of the target were slower under 

high perceptual load (1006 ms) than under low perceptual load (909 ms; t(11)=3.4, 

SEM=28.2 ms, p=.006).  However, the magnitude of the difference between the time 

to perceptual filling-in under high versus low load was far greater (598 ms) than for 

noting the appearance of the target (96 ms).  This suggests that although high load 

does increase reaction times to a target, it has a greater effect on perceptual filling-in 

than could be attributed to reaction time alone. 

 

 

5.3.1.3 Eye position data 

A repeated measures ANOVA on the mean eye position data showed no main effect 

of visibility condition (target visible or perceptually filled-in; F(1,11)=1.4, MSE=0.16 

p=.26) or perceptual load (low or high; F(1,11)=1.8, MSE=0.07, p=.21), and no 

interaction between condition and load (F(1,11)=1.7, MSE=0.04, p=.22). A similar 

ANOVA conducted on the variance of eye movements also showed no main effects of 

visibility condition (F(1,11)=1.5, MSE=1.16, p=.25) or perceptual load (F(1,11)=0.94, 

MSE=1.56 p=.35) and no interaction between condition and load 
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(F(1,11)=0.47,MSE=0.31, p=.51).  Thus the effects of perceptual load on the latency 

and probability of perceptual filling-in cannot be attributed to differences in fixation 

or eye movements.  

 

 

5.3.2 Experiment 2  

 

5.3.2.1 Working memory load 

The working memory manipulation was effective:  Mean reaction times were faster 

for low working memory load (679 ms) than for high working memory load (1267 

ms; t(9)=5.6, SEM=106 ms , p<.0005).  Accuracy was also better for low working 

memory load with a higher mean percentage of correct trials for the low load (99%) 

than the high load condition (82%; t(9)=3.2, SEM= 5.4%, p=.01), ruling out a speed-

accuracy trade-off. 

 

 

5.3.2.2 Effect of working memory load on perceptual filling-in 

The effect of working memory load on the latency of perceptual filling-in was in the 

opposite direction to that of perceptual load (Fig 5.2b).  Mean latency of perceptual 

filling-in (time until perceptual filling-in) was shorter for high (4796 ms) than for low 

working memory load (5428 ms; t(9)= 2.36, SEM=237 ms, p=.042).  In contrast to the 

effect of perceptual load on probability of perceptual filling-in, there was no 

difference in the mean probability of perceptual filling-in between high (97%) and 

low working memory load (98%; t(9) =.71, SEM=1.5%, p=.49).  There were also no 

differences in mean reaction times to the appearance of the target between high (787 
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ms) and low working memory load (1011 ms; t(9)=.87, SEM=256 ms, p=.40).  The 

present results are unlikely to be due to the different levels of load affecting 

participants’ response criteria, as the effect of perceptual load on response times to 

physical events (target onset) was an order of magnitude smaller than the effect on 

filling in (Experiment 1) and there was no effect of working memory load on such 

response times (Experiment 2). Future research could rule out the possibility of 

criterion shifts entirely, using additional conditions in which targets physically 

disappeared as well. 

 

 

 

5.3.2.3 Eye position data 

 

A repeated measures ANOVA on the mean eye position data showed no main effect 

of condition (target visible or perceptually filled-in; F(1,7)=0.51,MSE=1.76, p=.50) or 

load (low or high; F(1,7) =0.47,MSE=2.53, p=.51), and no interaction between 

condition and load (F(1,7)=0.25,MSE=1.82, p=.63). A similar ANOVA conducted on 

the variance of eye movements also showed no main effect of condition 

(F(1,7)=0.29,MSE=9.0, p=.61) or load (F(1,7) =1.1,MSE=24.6, p=.34) and no 

interaction between condition and load (F(1,7)=0.23,MSE=9.2, p=.65).  Thus the 

effects of working memory load on the latency and duration of perceptual filling-in 

cannot be attributed to differences in fixation or eye movements.   

 

 

5.4 Discussion 
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In this study, the effect of manipulating perceptual load and working memory load on 

the latency and probability of perceptual filling-in of an artificial scotoma was 

examined. Opposite effects for manipulations of perceptual load and working memory 

load were found on the latency and probability of perceptual filling-in of an artificial 

scotoma. Increasing concurrent perceptual load increased the latency and lowered the 

probability of perceptual filling-in of artificial scotomas. Conversely, perceptual 

filling-in occurred earlier when concurrent working memory load was increased.  

Taken together, these results demonstrate contrasting effects of different types of top-

down signals on the perceptual completion of an artificial scotoma.   

 

5.4.1 Effect of perceptual load on perceptual filling-in 

 

The finding that increasing perceptual load reduced the likelihood that participants 

would report initiation of perceptual filling-in is consistent with the predictions of 

load theory (Lavie, 2005) and now extends the theory’s scope to the phenomenon of 

perceptual filling-in.  Perceptual completion is more likely to take place when spatial 

attention is directed to the perceptually filled-in target (De Weerd et al., 2006).  If 

perceptual filling-in is indeed an active process requiring top-down control, then 

increasing perceptual load reduces the processing capacity available for the peripheral 

target, making perceptual filling-in less probable.  Low perceptual load leaves more 

processing resources, allowing perceptual filling-in to occur.  Thus these findings are 

consistent with perceptual filling-in being an active process, although whether it 

occurs through an isomorphic or a symbolic mechanism cannot be deduced from the 

data presented here. 
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5.4.2 Effect of working memory load on perceptual filling-in 

 

A second proposal in load theory addresses the way working memory determines 

stimulus processing priorities.  This predicts that high working memory load can have 

an opposite effect to that of high perceptual load in situations where different stimuli 

compete for processing resources.  Depleting the capacity of active cognitive control 

reduces the ability to maintain prioritisation of behavioural goals, leading to increased 

processing of distractors (Lavie et al, 2004).  In the present context of perceptual 

filling-in whilst performing a working memory task, there were no irrelevant 

distractors; participants held a number sequence in working memory whilst 

monitoring the perceptual filling-in of a figure placed on a dynamic noise 

background.  Moreover, reducing attention to the target is known to impair filling-in 

(De Weerd et al., 2006).  Therefore, how is it possible to account for the finding of 

enhanced perceptual filling-in with increased working memory load?  Load theory 

can instead provide some insight into the mechanism of perceptual filling-in itself. 

Despite the fact that the background was not defined as a distractor, the working 

memory load manipulation may have altered the relative salience of the target and the 

background. Under conditions of increased working memory load in a concurrent 

task, and a breakdown in the prioritisation of processing competing stimuli, the 

dynamic twinkling background may have become more salient compared to the target, 

causing an increase in breakdown of figure-ground segregation and enhanced 

perceptual filling-in.  This suggestion that perceptual filling-in is more likely when 
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the background is more salient than the target is consistent with previous findings that 

perceptual filling-in is enhanced by a dynamic twinkling background compared to a 

static but noisy background and enhanced for a static compared to a uniform 

background (Spillmann and Kurtenbach, 1992). Moreover, filling-in is also enhanced 

for reduced luminance, motion and contrast differences between the target and 

background (Welchman and Harris, 2001) and impaired for more salient red targets, 

compared to green targets (De Weerd et al., 2006).  I therefore propose that working 

memory load may impact on perceptual filling-in by modulating the relative saliency 

of the background and the target. An alternative hypothesis is that higher working 

memory load produces a state of generally increased alertness or arousal that in itself 

enhances perceptual filling-in (note, however, that there is no reason to assume 

working memory load has this effect but perceptual load does not).  Future work 

could disentangle these two hypotheses by explicitly contrasting the effects of 

manipulations of arousal and working memory load on perceptual filling-in. 

 

Although there was a decreased probability of perceptual filling-in when perceptual 

load was increased, there was no difference in probability of perceptual filling-in 

when working memory load was increased.  However, the probability of perceptual 

filling-in was already at ceiling in the low memory-load task, so the effects of high 

working memory load could not increase the probability of perceptual filling-in any 

further. In order to increase the power to detect a difference in probability of filling-in 

in the working memory load task, the perceptual filling-in target could be made larger 

or less eccentric, making perceptual filling-in less likely.  Nevertheless, in the present 

study the perceptual filling-in stimulus parameters were kept constant for the two 

manipulations in order to be able to contrast their effects. 
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5.4.3 Comparison with previous work examining effects of spatial attention on 

perceptual filling-in 

 

These findings are broadly consistent with a recent behavioural study (De Weerd et 

al., 2006) showing that directing spatial attention to the features of a figure increases 

the probability of it being perceptually filled-in by a textured background, compared 

to unattended figures. This study goes beyond this work as the effects of exhausting 

processing resources with a second, unrelated task were examined, rather than 

specifically directing spatial attention to the target itself.  In this way, it was possible 

to explore the role of attentional capacity for perceptual filling-in.  An attentional 

effect on the latency of perceptual completion was also found, whereas De Weerd et 

al (2006) did not. That study, however, directed attention without exhausting it. It is 

possible that in contrast, the perceptual load manipulation in the study presented in 

this chapter depleted processing capacity under high load to an extent that made it 

possible to detect this effect.  

 

The role of attention in modulating perceptual completion in humans has only rarely 

been studied in other forms of perceptual filling-in.  A study of colour fading during 

fixation (Lou, 1999) showed that attended discs were more likely to fade than 

unattended discs.  Similarly, a recent behavioural study of motion induced blindness 

(Scholvinck and Rees, 2009a) showed that attended, rather than unattended targets are 

more likely to disappear and that increasing perceptual load is associated with reduced 
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periods of invisibility.  Future work could examine to what extent these other forms of 

perceptual completion share common feedback mechanisms with perceptual filling-in 

of artificial scotomas. 

 

5.5 Conclusion 

 

This chapter has demonstrated that the effects of manipulating two different types of 

load in concurrent perceptual and working memory tasks have opposite effects on the 

latency of perceptual filling-in of an artificial scotoma. This provides new evidence 

for top-down influences from higher cognitive functions on the processes of 

perceptual filling-in and also suggests that such perceptual filling-in reflects an active 

process.  The next chapter will turn to a different and unusual form of perceptual 

completion, which occurs in the context of brain injury, and will explore the 

integration of information from object sensitive areas in the damaged brain. 
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CHAPTER 6: THE NEURAL CORRELATES OF FILLING-IN ACROSS THE 

VERTICAL MERIDIAN IN A PATIENT WITH HEMIANOPIA 

 

6.1 Introduction 

 

The previous chapters (chapters 3, 4 and 5) have examined filling-in in normal human 

vision.  Here I will investigate a different type of filling-in that occurs following brain 

injury.  Hemianopic completion is a form of perceptual completion where contours 

straddling the vertical meridian are perceived as complete in patients with hemianopia 

(Poppelreuter, 1917;Sergent, 1988;WARRINGTON, 1962). Its defining characteristic 

is that the patient reports as complete both incomplete (partial) stimuli (here referred 

to as paracompletion), as well as complete contours (here referred to as veridical 

completion), when the stimulus overlaps the vertical meridian defining the medial 

border of their hemianopia. It differs from blindsight in that completion leads to 

perceptual awareness of a complete contour, rather than the ability to respond 

unconsciously but accurately to stimuli placed within the perimetrically blind 

hemifield.  Hemianopic completion is not seen when incomplete stimuli are presented 

elsewhere in the visual field.  

 

 

6.1.1 Possible mechanisms for hemianopic completion 

 

Three types of explanation have been advanced concerning the neural mechanisms 

underlying hemianopic completion (Walker and Mattingley, 1997;McCarthy et al., 
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2006) . First, it has been suggested that completion is a constructive process, 

reflecting the operation of processes that in healthy individuals can lead to the 

perception of a complete form from partial information (e.g. modal or amodal 

completion). Alternatively, hemianopic completion might be secondary to spatial 

inattention and thus reflects lack of awareness of ‘missing’ sensory evidence.  Finally, 

it is possible that hemianopic completion can be explained by the presence of residual 

vision within the hemianopia or serious flaws in the methodology used for testing.  

 

In this chapter, high field functional MRI (fMRI) was used to study the neural basis of 

hemianopic completion in a single individual who has been particularly well 

investigated behaviourally (McCarthy et al., 2006). Importantly, systematic testing in 

this individual reveals no evidence of any asymmetric attentional deficit or any 

residual vision that might contribute to the completion except at high contrast.  These 

previous findings rule out a lateralized deficit of attention or residual vision 

contributing to his hemianopic completion.  Therefore this study examined whether 

hemianopic completion might reflect a constructive neural process in higher visual 

areas in the absence of input from earlier retinotopic cortex.  

 

6.1.2 Potential neural substrates for hemianopic completion 

 

There are a number of potential neural substrates for such a constructive process. 

Modal completion refers to the interpolation of borders (termed illusory contours, IC) 

between inducing edges and associated brightness enhancement of the perceived 

figure, while amodal completion is the perception of a complete object behind an 

occluder.  In healthy human subjects, there is general agreement that both processes 
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originate in ventral visual cortex, but some controversy over whether they share a 

common mechanism and whether perceptual completion is a process initiated at early 

stages of visual processing or commences at higher levels of the visual system 

(Murray et al., 2004;Rauschenberger et al., 2006).  For example, while in humans 

early retinotopic areas V1/V2 are activated by illusory contours (Ffytche and Zeki, 

1996;Seghier et al., 2000;Larsson et al., 1999), other studies implicate object-sensitive 

ventral visual regions anterior to retinotopic visual cortex such as the lateral occipital 

cortex (LOC) in IC processing (Mendola et al., 1999;Stanley and Rubin, 2003;Ritzl et 

al., 2003;Murray et al., 2004), amodal completion (Murray et al., 2004;Weigelt et al., 

2007) and dynamic shape integration of an object moving behind occluders (Yin et 

al., 2002) .  While these studies implicate higher visual areas in illusory contour 

perception, they cannot be used to test a hypothesis of a constructive process in higher 

visual areas in the absence of early visual input as retinotopic cortex is always present 

and stimulated.  POV lacks almost all retinotopic visual cortex contralateral to the 

stimulus, allowing such a hypothesis to be tested.  

 

Brain activity associated with hemianopic completion was therefore measured in the 

patient in both retinotopic early visual cortex and higher areas of ventral visual cortex.  

The incomplete figure was chosen following preliminary trials to generate completion 

of the semicircle (paracompletion) on around 50% of trials.  Importantly, the 

comparison was made between brain activity evoked by identical partial contours that 

either did or did not lead to behavioural reports of perceptual completion.  It was thus 

possible to compare trials during which identical visual stimulation led to two 

different perceptual outcomes, avoiding the problem of stimulus confound (Frith et 

al., 1999).  By contrasting these two situations, brain regions were sought that 
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reflected the process of perceptual completion independent from variation in physical 

stimulation. It was hypothesised that perceptual completion would be associated with 

differential neural activity (compared to non-completion) in either retinotopic visual 

cortex or areas consistent with LOC and that activity in higher visual areas in the 

absence of activity in earlier retinotopic cortex might reflect a constructive process for 

hemianopic completion.   

 

 

6.2 Materials and Methods 

 

6.2.1 Case Report 

 

POV is a 71 year-old right-handed man who presented 16 years prior to the study with 

a three year history of paroxysmal visual field disturbances and six month history of 

headaches.  Visual field testing at the time revealed a right-sided homonymous 

paracentral scotoma and after investigation he underwent a craniotomy to excise a 

tentorial meningioma.  Five days post-operatively, he exhibited a large right-sided 

homonymous scotoma with sparing along the vertical meridian superiorly and 

inferiorly and in the outer periphery. 

 

Imaging postoperatively revealed a left occipital cavity with damage to most of the 

left calcarine sulcus (apart from the most anterior portion) and involvement of the left 

posterior fusiform gyrus.   He made a good recovery and continued to live 

independently.  However, he noticed that he often made errors regarding the size and 

shape of objects extending into his blind hemifield.  This was explored 
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psychophysically and he demonstrates hemianopic completion that cannot be 

accounted for by spatial inattention or residual vision (McCarthy et al., 2006).  This 

previous study documented responses to complete and half shapes presented within 

the left, right and central visual field.  For these stimuli presented in the left visual 

field, POV responded correctly on 94% of occasions.  He detected the presence of 

stimuli presented entirely within the right visual field on 19% of presentations (the 

authors note very long latencies of > 3s for these presentations).  For stimuli presented 

within the centre of the visual field, POV reported as complete 38% of whole shapes 

and 22% of half shapes. 

 

Fifteen years following the excision, he continues to demonstrate hemianopic 

completion.  At the time of the investigations performed here, he remains fully 

ambulant and living independently in the community.  Structural MRI is unchanged 

(see Figure 6.1a) with a large left occipital cavity extending into the left occipital horn 

of the lateral ventricle.  Visual field testing using the Humphrey Field Analyser (30-2 

Full Threshold protocol; Model 750i, Zeiss) demonstrated a large right homonymous 

hemianopia with thresholds of <0 dB extending from the vertical meridian to 30 

degrees laterally, 18 degrees superiorly and 20 degrees inferiorly (see Figure 6.1b), 

which has remained stable for fifteen years.  Previous detailed neuropsychological 

testing revealed no significant intellectual or cognitive deficits and no evidence of 

neglect on line bisection tasks, digit cancellation and drawing tasks(McCarthy et al., 

2006).  There were no other neurological abnormalities. 
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Figure 6.1 (a) Anatomical location of the lesion.  Three sections (sagittal, coronal and axial) are 

shown through POV’s T1-weighted MRI.  A large cystic lesion is seen in the left occipital lobe which 

is in communication with the left lateral ventricle, involves most of the occipital lobe and extends 

anteriorly to involve parts of the inferior temporal lobe.  In the coronal and axial sections, the left 

hemisphere is shown on the left.  (b) Visual Field testing.  Humphrey Field Analyser plots for POV 

measured at the time of testing on Humphrey Visual Field Analyser, 30-2 Full Threshold protocol, 

demonstrating a large right homonymous hemianopia.  Locations marked as ‘<0’ represent locations 

where the brightest stimulus did not elicit a response. These areas are marked in black.  Note that fields 

are presented to 30 degrees eccentricity.  POV has residual vision on perimetry beyond 30 degrees but 

the stimulus was at 4.5 degrees eccentricity and the field of view in the MRI scanner is approximately 

20 degrees eccentricity. 

 

POV gave his informed consent to participate in this study and also for the publication 

of this clinical history, which was approved by the Institute of Neurology, University 

College London Ethics Committee.  The initials POV are not transparently related to 

his name. 
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6.2.2 Stimuli 

 

Visual stimuli (see Figure 6.2a) consisted of either a semicircular contour that 

appeared grey (radius 4.5 degrees and line width 0.16 degrees; luminance 6.5 cd/m2) 

or a matching grey circular contour drawn around a fixation point (comprising a black 

square 0.4 x 0.4 degrees surrounding a central white square 0.2 x 0.2 degrees) and 

presented on a grey background (luminance 8.5 cd/m2) The centre point of the 

semicircular or circular contour was shifted relative to the fixation point to lie one 

degree lateral to fixation in the blind (right) hemifield.  When a semicircular contour 

was shown, it was always placed within the sighted (left) hemifield and extended by 

one degree into the blind field. Thus physical stimulation was identical in the sighted 

(left) visual field for semicircular and circular contours, and differed only in the blind 

(right) visual field.  

 

Stimuli were projected using an LCD projector (NEC LT158, refresh rate 60Hz, 

screen resolution 640x480) onto a circular projection screen at the rear of the scanner.   

POV viewed the screen via a mirror positioned within the head coil.  All stimuli were 

presented with MATLAB 6.5.1 (Mathworks Inc.) using the COGENT 2000 toolbox 

(www.vislab.ucl.ac.uk/Cogent2000/index.html).  

 

6.2.3 Procedure 

 

Each trial started with presentation of a fixation point on a blank grey screen for 

750ms. For the first 250ms, the central square within the fixation target was coloured 
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red, to alert POV that the trial was starting and to encourage central fixation. This was 

followed by presentation for 100 ms of either a semicircular contour in the sighted 

(left) visual field (on 70% of trials) or presentation of a complete circular contour (on 

10% of trials).  After stimulus offset, POV was required to report his percept within 

2500 ms by pressing one of three buttons with his right hand (‘1’, ‘2’ or ‘3’ on the 

keypad).  Pilot behavioural studies indicated that these stimuli and presentation times 

reliably evoked one of three clearly distinct percepts in POV: a semicircular contour, 

a circular contour or a patchy (incomplete) circular contour.  POV was encouraged to 

be conservative in his responses and only report the perception of a circular contour 

when he was sure of this perception.  These button presses were used on a trial-by-

trial basis to define the percept associated with each physical stimulus presentation.  

On 20% of trials, no stimulus was presented (‘null trials’) and fixation maintained in 

order to assess baseline activity.  On these trials POV was not required to respond.  

Each trial was followed by an intertrial interval of 1900 ms.  
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Fig 6.2 (a) Stimuli and percepts.  POV was shown either (i) a semicircular contour (70% of trials) or 

(ii) a complete circular contour (10% of trials).  In each case the centre of the circle or semicircle was 

shifted 1 degree into the blind hemifield.  Stimulus duration was 100 ms.  For each trial POV perceived 

a semicircular contour, a patchy circular contour or a complete circular contour.  The perception of a 

complete circular contour on a trial when a semicircular contour had been presented constituted 

hemianopic completion.  20% of trials were null trials when only a blank screen with fixation point was 

presented.   (b) Behavioural results.  bi)  Proportion of trials when a semicircle was presented when 

each percept was reported.  bii) Proportion of trials when a circle was presented when each percept was 

reported. 

 

Trials were arranged into blocks of ten.  The order of presentation of a semicircular 

contour, circular contour or null trial within each block was selected randomly for 

each block.  Each scanning session consisted of 3 blocks of 10 trials.  Sessions were 

kept short at the request of POV to minimise the time he was in the scanner and due to 

fatigue.  POV completed a total of 20 sessions, spread over 5 days. This arrangement 
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allowed the number of trials to be maximised whilst minimising the duration of 

individual scanning sessions.  

 

6.2.4 Functional MRI scanning 

 

A 3T Siemens Allegra system was used to acquire both T2*-weighted echo planar 

(EPI) images with blood oxygenation level dependent contrast (BOLD) and T1-

weighted anatomical images.  Each EPI image comprised of thirty-six 3-mm axial 

slices with an in-plane resolution of 3×3mm.  The main experiment was split into 20 

runs, each consisting of 87 volumes. The first five volumes of each run were 

discarded to allow for T1 equilibration effects. Volumes were acquired continuously 

with a TR of 2.34 s per volume. 

 

During scanning, eye position and pupil diameter were continually sampled at 60 Hz 

using long-range infrared video-oculography (ASL 504LRO Eye Tracking System, 

Mass) and monitored on-line via a video screen to ensure that POV maintained 

fixation.   

 

6.2.5 Data analysis 

 

Functional imaging data were analyzed using Statistical Parametric Mapping software 

(SPM5, Wellcome Trust Centre for Imaging Neuroscience, University College 

London).  Slices were corrected for acquisition time using the most caudal slice as 

reference.  All image volumes were realigned spatially to the first and resulting image 
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volumes were coregistered to POV’s structural scan and smoothed with a Gaussian 

kernel (FWHM 6mm).   

 

Trial-specific regressors were created for each of the possible combinations of percept 

and physical stimulus type by generating delta functions that represented trial onsets 

and convolving with a synthetic haemodynamic response. There were thus six 

different regressors of experimental interest defined according to stimulus (semicircle 

or circle) and accompanying reported percept (semicircular contour, patchy circle or 

circle) (See Table 6.1).   

  

1. Semicircular stimulus, semicircular contour percept 

2. Semicircular stimulus, patchy circle percept 

3. Semicircular stimulus, circle contour percept 

4. Circle stimulus, semicircular contour percept 

5. Circle stimulus, patchy circle percept 

6. Circle stimulus, circle percept 

 

 Stimulus 

 Semicircle Circle 

Semicircle 1 4 

Patchy circle 2 5 Pe
rc

ep
t 

Circle 3 6 

 

Table 6.1 Possible combinations of presented stimuli and percepts.  Numbers refer 

to regressors in list above. 
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In addition, null trials were modelled to provide an implicit baseline. Motion 

parameters defined by the realignment procedure were employed as six separate 

regressors of no interest.  All regressors were entered into a multiple linear regression 

model and parameter estimates determined for all brain voxels. Data were high pass 

filtered (cut-off: 0.0078Hz) to remove low-frequency signal drifts and a mask of 

POV’s grey matter (produced using SPM segmentation) was explicitly applied. 

Appropriately weighted linear contrasts between the experimental conditions 

identified activated areas on a voxel-wise basis. The resulting set of t values 

constituted a Statistical Parametric Map (SPM{T}) which was globally thresholded at 

a level of p<.001, uncorrected for multiple comparisons. Here only those loci that 

survived a statistical threshold of p<.05 after correction for multiple comparisons are 

reported for the volume examined. 

 

 

6.2.6 Retinotopic analyses 

 

To identify the boundaries of retinotopic visual cortical areas, standard retinotopic 

mapping procedures were used (Sereno et al., 1995;Teo et al., 1997;Wandell et al., 

2000).  Flashing checkerboard patterns covering either the horizontal or vertical 

meridian were alternated with rest periods for five epochs of 10 volumes over two 

scanning runs, each lasting 155 volumes.  SPM5 was used to generate activation maps 

for the horizontal and vertical meridians.  Mask volumes for each region of interest 

were obtained by delineating the borders between visual areas using activation 

patterns from the meridian localizers.  Only contralesional visually responsive 
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retinotopic areas could be identified, corresponding to the size and location of his 

existing lesion (see Figure 6.1a).  Standard definitions of V1-V3 were followed, 

together with segmentation and cortical flattening using the MrGray software (Teo et 

al., 1997;Wandell et al., 2000).  This was used to define a number of retinotopic 

regions of interest.  Appropriately weighted linear contrasts were then used between 

the experimental conditions from the main analysis (above) to identify activated 

voxels within each retinotopic region of interest, effecting a small volume correction 

(SVC) for multiple comparisons within that region at a threshold of p<.05, family-

wise error corrected.  

 

6.2.7 Whole brain analysis 

 

Apart from the retinotopic analyses, in order to facilitate reporting of any activations 

in a common stereotactic space, the multiple regression analysis was repeated after 

spatial normalisation of each image volume to the standard template for the Montreal 

Neurological Institute (MNI) using the unified segmentation algorithm in SPM5 for 

spatial normalisation.  This has been validated as the most sensitive and robust 

method for normalising lesioned brains (Crinion et al., 2007).  Appropriately 

weighted linear contrasts were then used between the experimental conditions from 

the main analysis (above) to identify activated voxels and report those surviving a 

single-voxel p-threshold of p<.05, family-wise error corrected for multiple 

comparisons. To identify areas of ventral visual cortex that were visually-responsive, 

a small volume correction (p<.05, FWE-corrected) was used based on those voxels 

that showed differential responses to conditions where visual stimuli were presented 

(i.e. experimental conditions 1-6, above) versus null trials that were also within 20mm 
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of previously reported (Grill-Spector et al., 2000;Spiridon et al., 2006;Avidan et al., 

2002;Murray et al., 2003;Lerner et al., 2002;Downing et al., 2007;Eger et al., 2008) 

mean stereotactic coordinates of LOC (see e.g.(Yin et al., 2002)  for a similar 

approach).  

 

6.2.8 Eye tracking analysis 

 

Eye tracking data recorded during scanning were analyzed with MATLAB 7 

(Mathworks Inc., Sherborn, MA).  Blinks and periods of signal loss were removed 

from the data.  Mean eye position in the horizontal and vertical directions relative to 

fixation was then computed separately for the stimulation presentation period of each 

trial within each condition.  A positive value in the horizontal direction indicated 

movement into the right (blind) hemifield.  A one-way ANOVA was used to establish 

whether mean eye position in the horizontal and vertical direction deviated 

significantly between conditions.   

 

 

6.3 Results 

 

6.3.1 Behavioural findings 

 

On trials when a semicircular contour was presented, POV reported perceiving a 

semicircular contour (i.e. veridical perception) on 24% (SEM = 4%) of trials, a patchy 

circular contour (i.e. partial paracompletion) on 41% (SEM = 3%) and a circular 

contour (i.e. full paracompletion) on 33% (SEM = 3%) of occasions (see Figure 6.2b).  
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Thus POV showed hemianopic completion on 33% of trials.  On trials where a 

circular contour was presented, POV perceived a circular contour (i.e. veridical 

completion, despite part of the contour falling into his blind hemifield) on 92% (SEM 

= 5%) of times and a patchy circle on 3% (SEM = 2%) of times.  He did not perceive 

a semicircular contour on any of these trials.  He also never responded to a null trial 

(i.e. occasions when no visual stimulus was presented).  Mean reaction times for trials 

when the semicircular contour was presented were 971 ms (SEM = 167 ms) for the 

perception of a semicircle, 1269 ms (SEM = 180 ms) for the patchy circle and 1047 

ms (SEM = 132 ms) for a circular contour.  The mean reaction time for the perception 

of a circular contour on trials when a circular contour was presented was 978 ms 

(SEM = 159 ms).   There was no significant difference in reaction times for any of the 

presentations or perceptions apart from the perception of a patchy circle (only ever 

perceived during presentation of a semicircular contour) which differed significantly 

from perception of a semicircular contour (t(15)=7.1, p<.005) and a circular contour 

(t(15)=5.1, p<.005) during presentation of a semicircular contour and from perception 

of a circle during presentation of a circle (t(15)=5.4, p<.005).  In all cases, perception 

of a patchy circle was associated with slower reaction times.  This may have been 

because, as a hybrid between a circular and semicircular contour, a longer decision 

process was required in responding to the percept. 

 

6.3.2 Eye tracking analysis 

 

Long-range infra-red eye tracking confirmed there were no systematic differences 

across different trial types in mean eye position in the horizontal direction 

(F(3,291)=1.3, p=.27 and no systematic differences in mean eye position in the 
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vertical direction (F(3,291)=0.25, p=.86.  Mean eye position in the horizontal 

direction relative to fixation was 0.35 degrees (SEM = 0.10 degrees) during trials 

where a semicircular contour was presented and a semicircular contour was perceived, 

0.67 degrees (SEM = 0.18 degrees) during trials where a semicircular contour was 

presented and a patchy circle was perceived, 0.33 degrees (SEM = 0.09 degrees) 

during trials where a semicircular contour was presented and a circle was perceived 

and 0.43 degrees (SEM = 0.18 degrees) during trials where a circular contour was 

presented and a circle was perceived.   

 

Mean eye position in the vertical direction was 0.028 degrees (SEM = 0.063 degrees) 

during trials where a semicircular contour was presented and a semicircular contour 

was perceived, 0.097 degrees (SEM = 0.085 degrees) during trials where a 

semicircular contour was presented and a patchy circle was perceived, 0.030 degrees 

(SEM = 0.066 degrees) during trials where a semicircular contour was presented and a 

circle was perceived and 0.007 degrees (SEM = 0.084 degrees) during trials where a 

circular contour was presented and a circle was perceived.  Thus there were no 

systematic differences in movement toward or away from the blind hemifield between 

the different conditions, although with a slight tendency across all conditions towards 

eccentric fixation into the blind hemifield. 

 

6.3.3 Functional MRI 

 

Examination of the retinotopic data confirmed areas identifiable as V1-V3 in the 

undamaged right hemisphere. In the damaged left hemisphere, the occipital lesion 

extended throughout areas homologous to these right hemisphere retinotopic 
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structures and no clear retinotopic organisation was apparent (within the limits of the 

visual field of view of approximately 20 degrees in the MRI scanner). 

 

Data from the main experiment were next examined for a number of different 

statistical comparisons: 

 

a. Same physical stimulation, different percept: Hemianopic completion 

(paracompletion, 3-1 in Table 6.1) 

  

Stimulus-specific activation of cortical areas by hemianopic completion (specifically 

paracompletion) was revealed by statistical comparisons between trials when a 

semicircular contour was displayed but POV reported perception of a circular contour, 

versus trials when a semicircular contour was displayed and he reported perception of 

a semicircle. Note that for this comparison, the visual stimulus was identical in both 

conditions and only the conscious percept differed. Any differences in BOLD signal 

between these two conditions reflect neural activity specifically associated with the 

percept during hemianopic completion that was not confounded by any changes in 

physical stimulation. 

 

No significant clusters of activity were found within right, undamaged visual cortex in 

visual areas V1-V3 for this comparison, although when these areas were examined for 

activity in all conditions compared to the null condition, each visual area showed a 

significant cluster of activity (within V1, p<.0005 family-wise error corrected, t=7.11, 

k=24, when correcting for V1 as a small volume;  within V2, p<.0005 family-wise 

error corrected, t=7.85, k=17, when correcting for V2 as a small volume; within V3, 
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p<.0005 family-wise error corrected, t=5.56, k=1, when correcting for V3 as a small 

volume). Thus retinotopic areas V1-V3 show strong activation to visual stimulation 

(versus no visual stimulation) but do not show any significant differential activation 

associated with hemianopic completion.  

 

In contrast, anterior to retinotopic visual cortex this comparison revealed strong 

differential activation in the lingual gyrus in the right occipital cortex (Brodmann area 

19) (maximum coordinates [32, -62 4], t=4.01, p<.0005 uncorrected, p=.040 small 

volume family-wise error corrected; see Figure 6.3a and for the time-courses of 

activation see Figure 6.3b).  This is 17.5 mm away from the mean of previously 

reported coordinates of lateral occipital complex from 7 previous studies (see 

Methods).   
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Fig 6.3 (a) Areas activated by hemianopic completion.   The location of the most significant 

activations during hemianopic completion revealed by comparison of trials when a circle was perceived 

with trials when a semicircle was perceived, during presentation of a semicircle (paracompletion).  All 

activations are shown superimposed on POV’s T1-weighted anatomical image. p<.001 uncorrected.  

The white ring indicates strong differential activation for this condition when corrected for the small 

volume of a 20mm sphere centred on the mean MNI coordinates of the lateral occipital complex, 

t=4.01, p<.0005 uncorrected, p=.04 family-wise error corrected.  In the coronal and axial sections, the 

left hemisphere is represented on the left.  The colour of the activation represents the t value, as 

indicated by the scale bar.  (b) Timecourse of event-related activity.  The change in BOLD contrast 

as a function of peristimulus time is plotted for the peak voxel. 

 

Figure 6.4 provides a more detailed comparison of percentage signal change between 

the different conditions at the peak voxel of activation in this cluster at 2TR following 
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stimulus presentation. No other brain regions showed significant activity after 

correction for multiple comparisons. 

 

 

Fig 6.4 Percentage signal change at peak voxel across four experimental conditions at 2TR 

following stimulus presentation (see Methods for details). This voxel was selected on the basis of 

showing a significant difference in activity (see Results for details of statistical comparison) comparing 

perception of a circle (paracompletion) with perception of a semicircle (no completion). Activity in this 

voxel at this time point also differed significantly comparing the perception of a circle 

(paracompletion) with perception of a patchy circle (t(3)=4.0, p=.029).  Error bars represent standard 

error of the mean for activity over 4 runs.  The symbol ‘*’ indicates statistical significance (p<.05, 2-

tailed t test).   

 

It was not possible to examine equivalent differential responses to the veridical type 

of hemianopic completion (i.e. trials when a circular contour was displayed and POV 

reported a circular contour, versus trials when a circular contour was displayed and he 

reported a semicircular contour) as there were no trials on which POV was shown a 

circular contour and he reported a semicircular contour. 
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b. Same percept, different stimulation: comparison of the two types of hemianopic 

completion;  paracompletion and veridical completion (3-6  in Table 6.1) 

 

Next, the two types of hemianopic completion: paracompletion and veridical 

completion were compared to look for differential BOLD activity which might 

suggest a difference in cortical location for the two phenomena.  However, the 

comparison of trials when a semicircular contour was shown and a circle was 

perceived (paracompletion) with trials when a circle was shown and a circle was 

perceived (veridical completion) revealed no significant activation at a threshold of 

p<.05, FWE-corrected. These data were further inspected at the lower threshold of 

p<0.001, uncorrected but this also revealed no significant activation.  The absence of 

activity in this comparison suggests that there is no difference in neuronal activity 

when POV is shown a circle or a semicircle and sees a circle and therefore 

hemianopic completion of the circle is unlikely to be due to residual vision, although, 

especially in a single subject case study, it is always difficult to be certain that no 

difference exists between conditions based on the lack of statistical significance. 

 

 

c. Different stimulation, different percepts: no hemianopic completion (1-6  in Table 

6.1) 

 

The final examination was of brain areas differentially activated by the comparison of 

the perception of a circle when a circle was presented with the perception of a 

semicircle when a semicircle was presented.  Note that for this comparison both the 

percept and the stimulus differ, so any differences in brain activation might reflect 
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either stimulus-driven or percept-associated changes.  This comparison revealed 

significant activation in the right putamen (MNI coordinates 26, 6, 2; p<.005 family-

wise error corrected) and in the prefrontal cortex, insula and caudate on whole brain 

analysis (for details see Table 6.2).  Importantly, whole brain analysis did not reveal 

activation in visual cortex and examination of the same small volume used in the 

critical contrast of interest (‘a’ above) revealed no areas of activation meeting the 

family-wise error threshold for that small volume.  However, this absence of evidence 

of differences in activity should be interpreted with caution in this single subject 

study, which may have limited power to detect differences in activity where they 

exist. 

 

 

Location Coordinates 
[x,y,z] (MNI 
space) 

Number of 
voxels in 
cluster 

t value p value 

Right ventral putamen 26, 6, 2 52 6.12 <.0005 
Right prefrontal cortex 52, 34, -6 35 5.59 .001 
Left caudate -10, 0, 8 39 5.58 .001 
Left superior temporal 
gyrus 

-52, -56, 12 28 5.57 .002 

Right insula 36, -2, 8 29 5.56 .002 
Left posterior insula -34, -24, 8 28 5.47 .003 
Anterior cingulate 
cortex 

10, 46, -8 14 5.35 .005 

Left thalamus -6, -16, 10 17 5.28 .006 
Left putamen -26, -4, 2 21 5.17 .011 
 

Table 6.2 Veridical perception of a circle versus semicircle. Coordinates and t 

values for event-related activation associated with the comparison of veridical 

perception of a circle and a semicircle (p < .05 family-wise error corrected). 
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6.4 Discussion 

 

In this study, the neural correlates of hemianopic completion have been demonstrated 

in POV by comparing fMRI responses on trials where he showed completion of a 

semicircular stimulus with trials where an identical visual stimulus was displayed but 

he did not show completion.  Retinotopic mapping demonstrated no consistent 

retinotopic areas in left occipital cortex, consistent with the location and extent of his 

lesion (Figure 6.1a). In right occipital cortex retinotopic areas could be identified and 

were visually responsive, but did not show significant differential activity associated 

with hemianopic completion. Such differential activity was instead identified anterior 

to retinotopic cortex in the lingual gyrus in the right occipital cortex, contralateral to 

the lesion, ipsilateral to the illusory edge of the stimulus.  This region was located in 

visually-responsive ventral visual cortex near to reported coordinates for the human 

lateral occipital complex (Grill-Spector et al., 2000;Spiridon et al., 2006;Lerner et al., 

2002;Avidan et al., 2002;Murray et al., 2003;Downing et al., 2007;Eger et al., 2008).  

No difference was found in neural activity in POV between the two forms of 

hemianopic completion (paracompletion and veridical completion) which suggests 

that in POV, these two forms of hemianopic completion are likely to be due to similar 

processes. 

 

6.4.1 Comparison with previous studies 

 

Previous studies of hemianopic completion in patients have been confounded by 

problems of residual vision within the blind hemifield  (WILLIAMS and Gassell, 

1962;Torjussen, 1978), eye movements toward the blind hemifield (WILLIAMS and 
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Gassell, 1962), eccentric fixation (Sergent, 1988;Bender and Teuber, 1946) and visual 

neglect (Sergent, 1988;WARRINGTON, 1962).  These problems were avoided in this 

study in several ways.  First, the main comparison of interest was the completion of 

the incomplete form of a semicircular contour (paracompletion).  Thus any perception 

of a circular contour could not be due to residual vision, eye movements or eccentric 

fixation, as no circular contour was ever presented on such trials.  The possibility of 

residual vision in POV was also ruled out through careful (and repeated) visual field 

testing, which demonstrated a stable dense hemianopia with no preserved islands of 

visual function.  Eye position from fixation was also monitored throughout scanning 

and no significant differences were found between experimental conditions, thus 

ruling out the possibility that differences in eye position could account for these 

findings. It should also be noted that visual stimuli were presented for only 100 ms, 

which is too rapid for eye movements to be planned and subsequently executed into 

the blind hemifield.  Completion in POV could also not be attributed to blindsight 

(Marcel, 1998;Jackson, 1999) as the critical comparison reflects the comparison of 

partial stimuli for which there is no stimulus physically present in the blind hemifield 

that might give rise to a behavioural report in the absence of perception. Finally, 

completion cannot be attributed to spatial inattention as POV shows no evidence of 

neglect on formal clinical assessment. 

 

6.4.2 Hemianopic completion processes may be similar to those involved in illusory 

contour formation 

 

The principal finding is that contralesional visually-sensitive areas of ventral visual 

cortex near to reported coordinates for the lateral occipital complex (LOC) were 
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differentially activated on trials resulting in hemianopic completion versus physically 

identical trials that did not result in completion.  Low-level physical properties of 

visual stimulation were controlled for by comparing physically identical stimuli that 

gave rise to two different percepts.  The finding that activation was located in ventral 

visual cortex anterior to retinotopic cortex and close to LOC coordinates is consistent 

with the prior hypothesis that regions involved in the perception of objects are 

specifically involved in hemianopic completion. These findings further suggest that 

hemianopic completion may reflect higher level processes similar to illusory contour 

perception in healthy volunteers, with the edges of the semicircular contour here 

acting as inducing edges for completion.  It should be noted however, that this process 

may differ from illusory contour perception in that no low level visual processes seem 

to be involved here (and indeed POV’s lesion encompasses visual areas V1-V3).  

Furthermore, although the observed right hemisphere activity was close to coordinates 

for LOC, it cannot be unequivocally established that this activity fell within POV’s 

lateral occipital complex, in part because after a substantial cortical lesion, 

reorganisation may have occurred such that normal structural and functional anatomy 

is not entirely preserved.   

 

 

6.4.3 Could hemianopic completion arise due to failure of reciprocal inhibition 

from other brain regions? 

 

One possible mechanism underlying such a proposal is that LOC (or abutting regions 

of visually-sensitive ventral occipital cortex anterior to retinotopic cortex) may 

construct a unitary visual percept, uniting the two lateralised hemifield maps from 
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retinotopic visual cortex earlier in the visual processing pathway (Tootell et al., 

1998b). Importantly, POV has an extensive occipital lesion that encompasses most of 

the left retinotopic visual cortex and extends into the inferior temporal gyrus (see 

Figure 6.1a).  This is likely to deprive ipsilesional ventral visual cortex of input from 

the contralesional hemifield.  It is possible that reorganisation may have occurred 

causing undamaged, contralesional ventral visual cortex to compensate for this lack of 

input. Hemianopic completion may therefore be the result of unopposed activity of 

contralesional visually-sensitive ventral occipital areas by a breakdown in reciprocal 

inhibition between the left and right hemispheres.  This may explain why hemianopic 

completion is not a universal phenomenon, and is not always observed in patients 

with homonymous hemianopia(Poppelreuter, 1917;Sergent, 1988;Walker and 

Mattingley, 1997) .  It is possible that for hemianopic completion to occur, unopposed 

activity of contralesional areas of ventral occipital cortex is also required.  It can 

therefore be hypothesised that sufficient damage to retinotopic cortex to deprive 

ipsilesional visually-sensitive cortex anterior to retinotopic areas of input might be the 

necessary and sufficient criteria for hemianopic completion. Such a hypothesis should 

be tested in future work.  

 

 

6.4.4 Stimulation of the blind hemifield in patients with hemianopia but no 

hemianopic completion 

 

In patients with homonymous hemianopia who do not experience hemianopic 

completion, stimulation of the blind field can lead to activation of extrastriate cortex 

in the undamaged (ipsilateral) hemisphere. Of note, Nelles and colleagues examined 
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cortical activity during stimulation of the blind hemifield in 13 patients with 

homonymous hemianopias secondary to occipital lobe strokes (Nelles et al., 2007).  

Stimulation of the hemianopic visual field induced greater ipsilateral (contralesional) 

activation of extrastriate visual cortex in Brodmann area 18, although they did not 

specifically examine which retinotopic visual area this reflected.  Another study also 

reported that stimulation of the blind hemifield in a patient with blindsight resulted in 

activation in ipsilateral occipital lobe (Bittar et al., 1999) in V5 and V3/V3A. Those 

studies differ significantly from the study presented in this chapter in that they report 

stimulation within the blind hemifield in the absence of any corresponding perception 

rather than completion of partial stimuli into the blind hemifield. Nevertheless, they 

suggest that ipsilateral activation of visual cortex to stimulation of the blind hemifield 

may be a more generalised effect of plasticity following occipital lobe damage that 

may have wider implications for patients with damage to the visual pathways.  

Specifically, the intact hemisphere may play a role in mediating blindsight or in the 

rehabilitation of visual abilities in the blind field.  The mechanism for such a role for 

the ipsilateral hemisphere could arise from cortical plasticity through adaptation or 

reorganisation of cortical tissue, or via new connections (Bridge et al., 2008), or 

alternatively, via existing subcortical neural pathways and structures such as the 

superior colliculi.   

 

6.4.5 Limitations of this study 

 

There are several limitations to this study.  Results are reported for a single patient 

and it is not clear whether these results generalise to other patients with hemianopic 

completion. It should also be noted that POV reported perceiving a complete circle on 



 223

most trials when he was presented with a circle, despite a large dense hemianopia.  

Although the edges of the semicircle stimulus were aligned to the edges of his 

hemianopia, it is possible that the edges of the circle extended closer to the edges of 

the deficit and were therefore more powerful inducers of completion than the 

semicircle.  It is also more difficult to interpret activity during this condition.  The 

perception of a complete circle when presented with a circular contour (despite his 

hemianopia) could be due to hemianopic completion (in the same way as the 

semicircular contour showed completion) or other causes for example residual vision 

or eccentric fixation.  Importantly, no difference in neural activity were found 

between trials showing veridical and paracompletion, suggesting that in POV 

hemianopic completion of the complete circle was not due to these other causes. 

 

6.5 Conclusion 

 

The event-related fMRI findings in this study show that hemianopic completion is 

associated with increased activation in contralesional visually-sensitive ventral 

occipital cortex anterior to retinotopic areas and near to the lateral occipital complex.  

This may occur due to unopposed activity of contralesional object-sensitive areas in 

the absence of input from destroyed retinotopic cortex.  
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CHAPTER 7: INFLUENCES OF REWARD ON VISUAL CORTEX 

ACTIVITY 

 

7.1 Introduction  

 

The first section of this thesis (Chapters 3-6) examined the integration of bottom-up 

and top-down signals in the process of perceptual filling-in.  This chapter will now 

turn to an intriguing  and relatively underexplored area of top-down processing of 

visual information; the influence of reward feedback on visual cortex activity in the 

absence of concurrent visual stimulation. 

 

 

7.1.1 The effect of reward on visual task performance and visual cortex activity 

 

Reward can influence performance and brain activity on tasks requiring sensory 

discrimination. For instance, in somatosensory discrimination tasks, reward modulates 

primary somatosensory cortex activity in both humans (Pleger et al., 2008) and other 

mammals (Pantoja et al., 2007). However, it is less clear whether (and how) reward 

can modulate activity associated with visual discriminations in visual cortices.  

 

In humans, there is now some evidence that activity in visual cortex can be enhanced 

by reward expectation (Krawczyk et al., 2007;Small et al., 2005) and may track the 

value of visual stimuli during decision tasks (Serences, 2008).  But these studies 

either did not assess how reward for performance in explicitly perceptual tasks affects 
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distinct identified areas within visual cortex (including retinotopically mapped 

regions)(Krawczyk et al., 2007;Small et al., 2005), or they did not dissociate the 

possible modulatory effects of reward or object value on visually evoked responses, 

from any impact of reward receipt independent of visual stimulation upon visual areas 

(Serences, 2008). 

 

In this chapter, 3T fMRI was used in humans to examine whether and how rewards 

given for performance on a visual discrimination task can influence BOLD signals in 

different areas of human visual cortex.  Participants were required to discriminate the 

orientation of two achromatic gratings presented successively in one visual field, 

while ignoring similar (but independently-oriented) gratings in the other visual field. 

Subjects received financial reward for each correct judgement only at trial end, as 

indicated by auditory feedback.  Critically, in contrast to previous studies on the 

effects of reward or value on task performance and brain activity (Krawczyk et al., 

2007;Small et al., 2005;Serences, 2008), the event-related fMRI design made it 

possible to distinguish BOLD signals associated with visual discrimination of the 

gratings from those attributable to later (non-visual) reward feedback. Furthermore, 

because retinotopic mapping of early visual areas V1-V3 was used, and lateralised 

representations of the visual targets within these areas were identified, it was possible 

to specifically assess any impact of the reward manipulations for early retinotopic 

regions, as well as for higher areas of visual cortex, during administration of rewards 

in the absence of any concurrent visual stimulation.  
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7.2 Materials and Methods 

 

7.2.1 Participants 

 

Twelve neurologically normal right-handed adults (20 to 32 years old, five females), 

with normal or corrected vision by self-report, gave written informed consent to 

participate in the study, which was approved by the local ethics committee.   

 

7.2.2 Stimuli 

 

Each visual display (see Fig. 7.1a) comprised two achromatic circular grating patches 

drawn from a set of similar gratings (see below). Each patch subtended 4 degrees in 

diameter (spatial frequency 3 cycles per degree, luminance 0.10 to 13.64 cd/m2) 

presented in the left and right upper quadrants (one grating in each quadrant), at an 

eccentricity of 6.41 degrees (5 degrees along the horizontal meridian, 4 degrees 

vertically).  The background was a uniform gray screen of luminance 3.66 cd/m2.  A 

central fixation point (black square measuring 0.4 degrees diameter, luminance 0.10 

cd/m2, with central white square, 0.2 degrees diameter, luminance 13.64 cd/m2) was 

present throughout the experiment. 

 



 227

 

Figure 7.1. Procedure. Trials were grouped into short ‘mini-blocks’ of four with 2 possible reward 

levels: 10 pence or 80 pence per correct discrimination.  At the onset of each mini-block, participants 

heard an auditory cue informing them of the reward level for that mini-block.  The onset of each trial 

began with a small visual cue directing participants to attend covertly to either the left or right grating. 

Attended side remained constant throughout the mini-block.  This was followed by the visual stimuli to 

discriminate:  participants fixated centrally whilst attending to one side and were shown bilateral 

gratings for 300 ms, followed by a uniform grey screen, and then a further pair of bilateral gratings 

with different orientations.  The task was to decide, for the attended side only, which display (first or 

second) contained the grating with the more vertical orientation.  Participants were given 3-5 seconds 

to respond using a key press.  This was followed by auditory feedback, informing participants of the 

amount won for a correct response, e.g. “You get 80 pence”; or for an incorrect response: “You get 

zero pence”.  Jittering the separation of reward delivery from the discrimination task, together with the 

different levels of reward and the rewarded or no-reward outcome, made it possible to dissociate 

haemodynamic responses that were specific to the delivery of reward from responses associated with 

the visual discrimination (see main text).  The inter-trial interval was 3-5 seconds.  

 

The stimulus set comprised ten different gratings orientated in steps of one degree 

(four subjects) or two degrees (eight subjects) away from vertical in either the 

clockwise or anticlockwise direction.  Differences in orientation were determined on a 

per-participant basis to match individual performance levels, by means of pilot testing 
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implemented as a practice session in the scanner (without financial reward).   

Participants could only proceed to the main experiment if they achieved an accuracy 

of approximately 75% correct responses.  The task was made easier or more difficult 

using larger or smaller orientation differences according to the participant’s individual 

score during this initial piloting and pre-selection.  

 

Stimuli were projected using an LCD projector (NEC LT158, refresh rate 60Hz, 

screen resolution 640x480) onto a circular projection screen at the rear of the scanner.  

Participants viewed the screen via a mirror positioned within the head coil.  All 

stimuli were presented via MATLAB 6.5.1 (Mathworks Inc.), using the COGENT 

2000 toolbox (www.vislab.ucl.ac.uk/Cogent2000/index.html).  Auditory stimuli were 

recorded using a Behringer two channel mixer and presented using COGENT via 

etymotic headphones. 

 

 

7.2.3 Procedure 

 

Participants performed a temporal two-alternative forced-choice orientation-

discrimination task (Fig. 7.1a).  On each trial a pair of gratings was presented in the 

upper left and right visual fields for 300ms, followed after an interval of 1000ms by a 

second pair of gratings presented at the same location for 300ms (see Figure 7.1a). 

Participants were required to fixate centrally while attending either the upper-left or 

upper-right location, to discriminate which of the two gratings presented successively 

at that location (first or second) was oriented closer to vertical.  Three to five seconds 

after presentation of the second grating (randomly jittered), participants received 



 229

auditory feedback indicating the amount won.  This consisted of a recorded female 

voice informing them “you get 10 pence” or “you get 80 pence” following a correct 

discrimination, depending on the reward magnitude for that block; or “you get zero 

pence” for an incorrect discrimination.  Thus, the visual discrimination phase of the 

trial, when the gratings were presented, was separated from the later reward-phase of 

the trial, when only auditory feedback was given. BOLD signal attributable to reward-

phase feedback was decorrelated from that due to the visual stimulus presentation by 

including a temporal jitter of 3-5 seconds between visual stimulus and reward 

administration, by using different reward levels, and by titrating task difficulty to 

yield 60%-80% correct responses (and hence a large proportion of trials with no-

reward feedback).   The inter-trial interval was three to five seconds, again randomly 

jittered. Every correct response was followed by reward and every incorrect response 

by non-reward (0 pence), in order to maximise the learning effect of rewarded trials. 

 

On each trial, the orientation of the first grating on the attended side was chosen 

randomly from the pool of possible orientations for that subject (see stimulus 

description above). The second grating on that side was chosen from the remainder of 

the stimulus set with the same direction of rotation.  Thus, both gratings on one side 

were always oriented in either a clockwise direction, or an anti-clockwise direction, 

for any one trial.  But the difference in orientation between the two successive 

gratings could vary, with two levels of discrimination difficulty. The stimuli consisted 

of easy (2-8 degrees difference in orientation) and difficult discriminations (1-2 

degrees difference in orientation), titrated according to individual participants’ ability, 

with equal numbers of trials in each group (easy or difficult).  The orientation of the 
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gratings in each hemifield was always different, but otherwise independent.  The 

difficulty factor was randomly assigned for each trial within a block. 

 

Two magnitudes of possible financial reward were investigated: 10 or 80 pence for 

each correct discrimination.  Each magnitude was tested for each hemifield over 40 

trials in total for each participant.  Four successive trials of a particular reward 

magnitude were grouped into mini-blocks, otherwise randomly determined.  Each 

such mini-block also included one ‘rest’ trial.  Rest trials consisted of only a uniform 

grey screen (luminance 3.66 cd/m2) with a central fixation point but no gratings and 

no auditory feedback.  The sequential position of the rest trials within each mini-block 

was assigned randomly.  

 

The onset of each mini-block was signalled by an auditory cue (“10 pence” or “80 

pence”), indicating the level of reward for each correct discrimination within that 

mini-block.  This was followed by a visual cue directing participants to attend to 

either the left or right grating for all of the subsequent trials in that mini-block.  This 

visual cue consisted of a small black horizontal bar (0.2 by 0.1 degrees, luminance 

0.10 cd/m2) immediately to either the left or right side of the fixation point. 

 

Gratings were always presented in both the right and left hemifield, but participants 

were directed to attend covertly only to the one side that had to be judged (and was 

rewarded for a correct discrimination) in a given mini-block, by the small bar at the 

start of each such mini-block (see above), with side of covert attention decided 

randomly for each block.  The brief grating presentations, at unpredictable 
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orientations, minimized any after-effects.  Participants indicated their judgement 

using one or other of two possible button presses with their right hand. 

 

Participants were reimbursed for participation according to the summed reward across 

50% of randomly chosen trials, after scanning.  Thus the financial rewards were real. 

 

 

7.2.4 Functional MRI scanning 

 

A 3T Siemens Allegra system was used to acquire T2*-weighted echo planar (EPI) 

images with BOLD contrast.  T1-weighted anatomical images were acquired using a 

1.5T Siemens Sonata system. Each EPI image comprised of forty 3-mm axial slices 

covering the whole cerebrum with an in-plane resolution of 3×3mm. The main 

experiment was split into five runs, each consisting of 243-260 volumes (duration of 

the run differed slightly between participants due to the jittering between stimulus 

presentation and feedback, and the intertrial jittering). The first five volumes of each 

run were discarded to allow for T1 equilibration effects. Volumes were acquired 

continuously with a TR of 2.4 s per volume.  

 

The main experiment was followed by four further functional imaging runs to 

independently functionally localize the retinotopic representations of the peripheral 

gratings in particular, for subsequent region-of-interest (ROI) analyses (see below).  

Participants fixated centrally while viewing a circular checkerboard the same size and 

location as each grating in the main experiment (4 degrees diameter at 6.41 degrees 

eccentricity, 5 degrees across, 4 degrees up), contrast-reversing at 10Hz on a uniform 
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grey background (luminance 3.66 cd/m2); see Fig 7.2(c). This checkerboard stimulus 

was presented for 5 volumes on either side, interleaved with rest periods lasting for 3 

volumes with a uniform grey screen and no checkerboard displayed.  That whole 

sequence was then repeated 8 times for each run.  A central fixation point was present 

throughout, with fixation confirmed by eye-tracking, as for the main experiment also 

(see below).  This stimulus localizer procedure comprised 140 volumes in total (fMRI 

sequence and parameters were identical to the main experiment). This was followed 

by two further runs to functionally localize the borders of retinotopic visual areas V1, 

V2 and V3.  Flashing checkerboard patterns covering either the horizontal or vertical 

meridian (see Fig 7.2 (a)) were alternated with rest periods for five epochs of 10 

volumes over two scanning runs, each lasting 155 volumes.  Finally, a Siemens 

standard double-echo gradient-echo fieldmap sequence was acquired for distortion 

correction of the EPI images.  (Echo times: 10.0 and 12.46 ms, TR = 1020 ms, matrix 

size = 64x64, 64 slices covering the whole head, voxel size = 3x3x3mm). 

 

 

7.2.5 Eye tracking 

 

During scanning, eye position and pupil diameter were continually sampled at 60Hz 

using long-range infrared video-oculography (ASL 504LRO Eye Tracking System, 

Mass) to ensure participants maintained fixation.  Eye position was monitored on-line 

via a video screen, for all participants, and this confirmed good adherence to the 

fixation requirement. Eye position was recorded to disk and subsequently analyzed for 

six participants (see below), but was not stored for the other six due to technical 

problems. 
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7.2.6 fMRI whole brain analyses 

 

Functional imaging data were analyzed using Statistical Parametric Mapping software 

(SPM5, Wellcome Trust Centre for Imaging Neuroscience, University College 

London).  EPI images were corrected for geometric distortions caused by 

susceptibility-induced field inhomogeneities. A combined approach was used which 

corrects for both static distortions and changes in these distortions due to head motion 

(Andersson et al., 2001;Hutton et al., 2002). The static distortions were calculated for 

each participant by processing the fieldmap, using the FieldMap toolbox implemented 

in SPM5. The images were then realigned and unwarped using SPM5 (Andersson et 

al., 2001), using procedures that allow the measured static distortions to be included 

in the estimation of distortion changes associated with head motion.  Images were 

then spatially normalised to the standard template for the Montreal Neurological 

Institute (MNI), using the unified segmentation algorithm in SPM5 for spatial 

normalisation and smoothed with a Gaussian kernel (FWHM 10mm), in accord with 

the standard SPM approach.  

 

Trial-specific regressors were created by generating delta functions that represented 

trial onsets for each of the combinations of attended hemifield (left or right) and 

reward magnitude (high or low) during the visual-phase of each trial; and for each of 

the combinations of attended hemifield (left or right), reward magnitude (high or low) 

and whether or not reward was given for the feedback-phase.  These were convolved 

with a synthetic haemodynamic response.  In addition, rest trials were modelled for 
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both the visual- and feedback phases to reduce residual error in the estimation of the 

event-related haemodynamic response function (Dale, 1999).  Motion parameters 

defined by the realignment procedure were employed as six separate regressors of no 

interest.  Data were high- pass filtered (cut-off: 0.0078Hz) to remove low-frequency 

signal drifts; the regressors were then entered into a multiple linear regression model, 

and parameter estimates determined for all brain voxels.   

 

Appropriately weighted linear contrasts were conducted between the experimental 

conditions of interest, and corresponding parameters were estimated on a voxel-wise 

basis. The resulting set of t values constituted a Statistical Parametric Map (SPM{T}), 

which was assessed in two different ways. For the whole brain analyses, where there 

was a prior hypothesis, appropriate small volume corrections were used (using a 

threshold of p<0.05, corrected for multiple comparisons across the small volume 

examined) (Worsley, 2003) based on the PickAtlas 

(http://www.fmri.wfubmc.edu/cms/software#PickAtlas) to independently define 

anatomical regions of interest. These comprised subcortical areas previously 

described as being activated by reward, (specifically ventral striatum) (Elliott et al., 

2000;O'Doherty et al., 2001;Knutson et al., 2001); plus areas known to be activated 

by visual stimuli (specifically, the occipital lobe). For all other areas a more 

conservative correction was used across the whole brain volume at a cluster threshold 

of p<0.05, family-wise error corrected. 
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7.2.7  fMRI retinotopic analyses 

 

In addition to whole-brain group analyses, activation was also examined within 

retinotopic regions-of-interest (ROIs) in early visual cortex, corresponding to the 

visual field locations of the visual stimuli, as separately localized.  In accordance with 

standard practice, these analyses were carried out on an individual-participant basis 

without spatial normalisation and with a correspondingly smaller degree of spatial 

smoothing.  Image volumes for each participant were realigned spatially to the first 

and resulting image volumes were coregistered for each participant to their own 

structural scan and smoothed with a Gaussian kernel (FWHM 6mm) to improve signal 

to noise.  Trial-specific regressors were generated using the same procedure as in the 

whole brain analysis, followed by multiple linear regression (using SPM5, as above) 

to produce voxel-wise estimates of activation for each experimental condition. 

 

To identify the boundaries of retinotopic visual cortices V1-V3, standard retinotopic 

mapping procedures were used (Sereno et al., 1995;Teo et al., 1997;Wandell et al., 

2000).  SPM5 was used to generate activation maps for the horizontal and vertical 

meridians.  Mask volumes for each region of interest were obtained by delineating the 

borders between visual areas using activation patterns from the meridian localizers.  

Standard definitions of V1, V2 and V3 were followed, together with segmentation and 

cortical flattening using Freesurfer (http://surfer.nmr.mgh.harvard.edu/).  Please note 

that for all ROI analyses, only 11 (out of a total of 12) participants were included, as 

one participant had moved between the main functional experiment and the localiser 

experiment such that their occipital pole was mislocated to lie outside the range of the 

main scanned volume. 
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The mask volumes for V1, V2 and V3, in conjunction with the functional localizer 

images for stimulus-responsive regions, were used to identify voxels showing 

significant activation (T = 2.5, with some variability across participants to ensure 

contiguous collection of voxels) for the comparison of trials where the target localizer 

was present, compared to rest periods, using the regression analysis described above.  

This comparison identifies voxels activated by the grating stimulus in each of the 

retinotopic areas as determined by the independent meridian mapping procedure.  The 

final analytic step was to extract from these independently defined ROIs the 

regression parameters for each experimental condition arising from the analysis of the 

main experimental time-series.  These were averaged across participants, yielding 

estimates of percentage signal change for each condition, averaged across voxels in 

V1, V2 or V3 that responded to the visual field location corresponding to the gratings 

for every participant.   

 

 

Figure 7.2.  Stimulus representation in visual cortex (a) Illustration of flickering checkerboard 

visual stimuli used to map the horizontal and vertical meridians.  (b) The outline of individual visual 
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areas V1, V2d, V3d, V3v and V3d determined using meridian mapping are shown on the surface of the 

right hemisphere for a representative participant.  (c) Illustration of the flickering visual stimulus used 

to localise the stimulus responsive ROI within retinotopic cortex as appropriate for a left-sided grating, 

using a checkerboard at the visual field location of interest.  An equivalent checkerboard was presented 

within the right visual field instead, to localise the stimulus-responsive ROI for a right-sided grating.  

Note that the actual visual stimulus may have differed slightly in greyscale value and the checkerboard 

is not shown to scale.  (d)  Regions of interest (ROIs) in visual cortex representing the spatial location 

of the peripheral target were identified by combining functional localizer images with masks delineated 

for V1-V3 for each participant individually.  The spatial distribution of target-specific stimulus evoked 

activity (contrast of ROI localizer presented on left versus right side, threshold t=2.5) is shown 

projected onto the inflated surface of the posterior aspect of the right hemisphere, for a representative 

participant.   

 

The statistical significance of any differences in activation during the main 

experiment within the ROIs defined by the independent localiser scans was assessed 

with separate repeated-measures ANOVAs, with condition (attended side, reward 

level, reward received or not) as repeated factors, for each of the ROIs in V1, V2 and 

V3 separately.  

 

7.2.8 Eye tracking analysis 

 

Eye-tracking data recorded during scanning were analyzed with MATLAB 7 

(Mathworks Inc., Sherborn, MA).  Blinks and periods of signal loss were removed 

from the data.  Mean eye position in the horizontal and vertical directions relative to 

fixation was then computed separately for the visual- and reward-feedback phase of 

each trial within each condition.  A positive value in the horizontal direction indicated 
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a shift into the right hemifield.  A repeated-measures ANOVA, was used to establish 

whether mean eye position deviated significantly between conditions. 

 

 

7.3 Results 

 

7.3.1 Behavioral data 

 

Increased monetary reward was associated with improved accuracy of visual 

discrimination for easier trials (t(11)=2.3, p=.048), but not for the most difficult trials 

where the difference in orientation between successive gratings was smallest 

(t(11)=0.46, p=.65); see Fig 1b.  The accuracy of visual discrimination did not differ 

between right and left hemifields (t(11)=0.87 p=.44, ns); see Fig 7.3c.   

 

 

Figure 7.3 (a) Higher reward levels were associated with improved accuracy in the visual 

discrimination task for the easier but not the hardest trials.  (b) There were no differences in accuracy 

for visual discrimination of gratings attended in the left or right hemifields.  Error bars = one standard 
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error of the difference between paired conditions.  The symbol ‘**’ indicates statistical significance 

(p<.05, 2-tailed paired t-test), NS, not significant. 

 

The effect of receiving a reward on a given trial on the discrimination accuracy of a 

subsequent trial was also considered (Pleger et al., 2008;Pleger et al., 2009).  There 

was an increase in the conditional probability of the next trial being correct after 

receiving a reward on the previous trial, compared to not receiving a reward on the 

previous trial (t(11)=2.36, p=.038, 2-tailed t-test); see Fig 7.4. This pattern did not 

significantly differ for higher versus lower rewarded trials (F(1,11)=0.11, p=.75, n.s).   

 

 

Figure 7.4  Trial-to-trial effects of receiving reward. (a) Behavioral results.  Receiving reward was 

associated with improved accuracy on the subsequent trial, compared to after a trial that had not been 

rewarded.  Group means of 12 participants are shown. Error bars indicate the standard error of the 

difference between paired conditions and the symbol ‘**’ indicates statistical significance.  (p<.05, 2-

tailed paired t test ). 

 

7.3.2 Functional MRI data 

 

Three related sets of analyses were performed on the data. These focused on the 

visual discrimination phase of each trial, the reward phase and finally on trial-to-trial 
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effects. In each case the convention is used of reporting ROI-based results in 

retinotopic visual cortical areas V1-V3 first, followed by results from the whole-brain 

analyses outside these retinotopic areas.  

 

 

7.3.2.1. Visual discrimination phase 

 

The visual discrimination phase consisted of presentation of lateralised grating 

stimuli, one of which (the attended side) was discriminated. No reward feedback (for 

correct versus incorrect trials) was presented during this phase, though it would be 

possible to anticipate the overall level of reward that could be gained as participants 

were aware whether that trial was in a high or low reward block. It was therefore 

anticipated that retinotopic effects of spatial attention would be found in visual cortex 

for the ROI-based analyses, but no effect of future reward (i.e. correct versus incorrect 

trials) would be seen, and there were no specific hypotheses regarding the effects of 

reward anticipation.  

 

Comparing the effect of attending to the left or right grating revealed a main effect of 

attention for contralateral (versus ipsilateral) attention in the retinotopic 

representations of the stimulus location in V1 (F(1,10)=16.0, p=.003), V2 

(F(1,10)=19.3, p=.001) and V3 (F(1,10)=26.1, p<.005); see Fig. 7.5.  This is 

consistent with previous findings (e.g. (Kastner et al., 1998;Martinez et al., 

1999a;Buchel et al., 1998;Silver et al., 2007).  There were no effects of contralateral 

(versus ipsilateral) attention outside retinotopic cortex on whole-brain analysis (all 

p>0.05, corrected for multiple comparisons).  
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Figure 7.5 Differences in brain activity during visual discrimination.  BOLD signal change 

(percent relative to the global mean) averaged across 11 retinotopically mapped participants, for the 

ROIs responding to the grating stimuli in V1, V2, V3 during the visual-discrimination phase of the 

trial. Responses are plotted separately for gratings attended in the contralateral or ipsilateral hemifields.  

Error bars are standard error of the difference between paired conditions and the symbol ‘*’ indicates 

statistical significance (p<.05, 2-tailed paired t-test). 

 

During the discrimination phase of the trial, participants had not yet been informed 

whether they were correct (or not) and so did not know whether they would receive a 

reward on that trial. Consistent with this, no differences in activity were detected (all 

p>0.4 in retinotopic ROIs) in the discrimination phase on trials that would later be 

rewarded (i.e. correct) versus not rewarded (i.e. incorrect). Similarly, there were no 

significant differences in activity in visual cortex on whole-brain analysis outside 

retinotopic visual cortex (all p>0.1, corrected).  

 

Finally, significant differences in brain activity were identified comparing the 

discrimination phase of trials in high (versus low) reward blocks, irrespective of 

whether those trials would be rewarded during the feedback phase. In retinotopic 
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ROIs there was no main effect of anticipated reward level in V1, but there was a main 

effect of reward level in V2 (F(1,10)=5.7, p=.038) and a trend in V3 (F(1,10)=3.5, 

p=.09)  Outside retinotopic cortex, whole-brain analysis revealed significant 

activation within the ventral striatum (coordinates [-12 20 0], t=4.22, p=.039 small-

volume corrected), left superior temporal gyrus (coordinates [-60, 12, 2], t = 5.37, 

p<.005 fwe-corrected), left cingulate gyrus (coordinates [-8, 18, 42], t=5.21, p=.005 

fwe-corrected) and right inferior frontal gyrus (coordinates [48, 26, -6], t=4.56, 

p=.025 fwe-corrected). There was also an interaction between easy and hard difficulty 

level and reward level in V1 (F(1,10)=5.1, p=.048), resembling the interaction 

observed in the behavioral data (see Fig. 7.3a). 

 

Taken together, these findings are consistent with attentional modulation of stimulus 

representations in visual cortex during task performance, which may partially relate to 

the reward value of the perceptual discrimination in the different reward conditions 

(see also (Serences, 2008)). Importantly, the inability to identify any significant 

difference between correct (rewarded) and incorrect (non-rewarded) trials at the point 

of discrimination suggests that any effects in visual cortex seen at the later phase of 

(non-visual) reward delivery (see below) do not reflect an attentional or value-

modulation difference between trials that are later rewarded and not rewarded. 

 

 

7.3.2.2. Reward feedback phase 

 

The effect of reward during the (non-visual) reward-feedback phase of each trial was 

examined next.  Note that during this phase of the trial, participants were given 
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auditory feedback via headphones whilst viewing a grey screen (present throughout 

the experiment), but were not shown any visual stimuli. As there was no visual 

stimulation during this phase, it was hypothesised that any effects of lateralised 

attention from the earlier part of the trial would be minimal. The specific interest in 

these analyses focused on any differences between correct (rewarded) and incorrect 

(not-rewarded) trials, which now became apparent to participants at this phase of the 

trial, plus any effects of high (versus low) reward.  

 

In retinotopic cortex, stimulus-responsive ROIs did not show any significant (p<0.05) 

main effect of reward (versus no reward) in V1, V2 or V3 (see leftmost three bars in 

Fig. 7.6b). There was also no main effect of attention (contralateral versus ipsilateral), 

nor interactions between reward and attention for the ROIs in V1 and V2.  For the 

ROI in V3, there was a main effect of attending to the contralateral side during the 

feedback period (F(1,10)=9.9, p=.01) and an interaction between reward and side 

attended (F(1,10)=13.4, p=.004), suggesting that reward had some lateralised effects 

on V3 that could not be identified in V1 and V2.  
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Figure 7.6 Changes in brain activity during reward feedback. (a) Whole brain analysis reveals 

cortical regions showing increased BOLD signal for rewarded versus non-rewarded trials, during the 

(auditory) feedback-phase of the trial.  Activations are projected onto axial, coronal and axial MRI 

slices of a T1-weighted canonical brain, thresholded at p<.005 uncorrected for display.  See Results for 

coordinates, p-values and t scores.  (b) In visual ROIs, the difference in percent signal change between 

rewarded versus non-rewarded trials is shown, divided by the sum of activation for the ROIs in V1, V2 

and V3 and for higher visual cortex (as identified on whole brain analysis).  Error bars are standard 

error of the difference between paired conditions  

 

In contrast to these effects of reward (versus no reward) on retinotopic cortex, whole 

brain analysis revealed many more areas responding differentially to reward (versus 

no reward). Importantly, activation of higher visual areas beyond retinotopic cortex 

was found (coordinates [28, -88, 8], t=5.41, p=.005 and [-30, -88, 6], t=4.35, p=.046, 
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small volume corrected; see Fig 7.6). The visual areas activated by this contrast 

(rewarded versus unrewarded trials during non-visual feedback) were lateral and 

anterior to the ROIs in V1-V3 (see Fig. 7.7). The peak coordinates ([-30, -88, 6] and 

[28, -88, 8]) fell within the range of area LO1, a region of the lateral occipital 

complex which shows robust orientation-selective adaptation to gratings defined by 

luminance, contrast and orientation cues (Larsson and Heeger, 2006;Larsson et al., 

2006).  It is therefore likely that the regions activated during the feedback period of 

rewarded trials are close to, or within, part of the lateral occipital complex.  

 

 

Figure 7.7 Cortical regions showing increased BOLD signal for rewarded versus non-rewarded trials 

during the feedback phase of the trial (threshold: p<.005 uncorrected) shown in yellow, along with the 

combined ROIs for the gratings in V1, V2 and V3 for 11 participants (shown in blue), all projected 

onto coronal, sagittal and axial MRI slices of a T1-weighted canonical brain at the coordinates shown.  

Note that the regions responding to rewarded trials are anterior and lateral to the regions responding to 

the gratings within V1-3. 

 

In addition to these visual areas anterior to V1-V3, significant activation was also 

identified for rewarded trials (versus unrewarded trials) in left ventral striatum, an 

area previously associated with reward and reward prediction (Elliott et al., 

2000;O'Doherty et al., 2001;Knutson et al., 2001) (coordinates [-6, 14, -2], t=4.09, 

p=.049 and [16, 16, 4], t=4.04, p=.099 small volume corrected; see Fig 7.6a). 
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Differential reward-related activation was also detected in orbitofrontal cortex 

(coordinates [-8, 38, -16], t=8.06 p=.067, fwe corrected on whole brain analysis). A 

full list of areas activated by the contrast of reward (versus no reward) is given in 

Table 7.1.  

 

Location Coordinates 
[x,y,z] (MNI space) 

of peak voxel 

Number of voxels 
in cluster 

T value p value 

Orbitofrontal cortex -8, 38, -16 461 8.06 .067 
Ventral striatum: left 
                            right 

-6, 14, -2 
16, 16, 4 

112 
61 

4.09 
4.04 

.015* 

.033* 

Right putamen 32, -10, 4 786 6.74 .005 
Left middle frontal gyrus -22, 14, 62 681 5.63 .012 
Left superior parietal lobe -28, -68, 48 573 5.13 .027 
Right visual region 28, -88, 8 524 5.41 .005* 
Left visual region -30, -88, 6 286 4.35 .046* 

* small volume corrected (see Methods). 

 

Table 7.1.  Reward versus no reward during (auditory) feedback phase 

 

Finally effects of reward magnitude (high versus low reward) in either retinotopic 

cortex or on whole brain analysis were considered. No significant (all p>0.05) 

differential activation was found for this contrast in retinotopic ROIs. On whole brain 

analysis significant activation was identified in left precuneus (coordinates [-14, -46, 

34], t=6.52, p<.005 fwe-corrected), in the left substantia nigra (coordinates [-10, -20, -

16], t=5.59, p=.001 fwe-corrected) and left medial frontal gyrus (coordinates [0, 40, 

42], t=3.86 p=.017 fwe-corrected). 

 

Importantly, several aspects of the design and results presented thus far argue against 

purely ‘attentional’ interpretations of the observed reward effects, or interpretations 

based on previously observed ‘value-based’ modulations (Serences, 2008).  First, 
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there was no effect of correct/incorrect in higher visual areas during the 

discrimination phase of the trial (see above), when participants viewed the gratings 

and effects of contralateral attention were observed.  Thus any differences between 

reward/ no reward during non-visual reward feedback could not have arisen due to a 

carry-over of generalised alertness, increased attention, or value-based processing 

increases during the visual discrimination task.  Second, during the feedback-period, 

visual input did not differ between conditions, as the feedback was always given 

auditorily, with participants merely fixating an unchanging point on an otherwise 

uniform grey screen.  

 

Taken together, these data show that in the reward phase of the trial, the most 

prominent effects of reward (versus no reward) were observed not in retinotopic 

ROIs, but in bilateral retinotopic visual cortex immediately anterior to V1-V3 

(consistent with the putative anatomical location of LO1), plus areas of striatum and 

prefrontal cortex previously implicated in reward processing.  

 

7.3.2.3. Trial-to-trial effects 

 

Finally, the effect of receiving a reward on a given trial on brain activity on a 

subsequent trial was considered (Pleger et al., 2008;Pleger et al., 2009) given the 

behavioral findings above that reward improved discrimination accuracy on a 

subsequent trial. The trial-to-trial impact of receiving reward  was linked to BOLD 

activity in visual cortex during the visual-discrimination-phase for the next trial 

(cf.(Pleger et al., 2008), for a somatosensory analogue). In retinotopic visual cortex, 

the ROI analysis revealed a significant interaction between the direction of attention 
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(contralateral versus ipsilateral) in the discrimination phase of a trial, and whether the 

previous trial had been rewarded (or not) in V1 (F(1,10)=5.42, p=.042). Paired t-tests 

confirmed that this interaction was driven by higher responses for contralateral 

compared to ipsilateral attention in the previously rewarded trials (t(1,10)=2.3, p=.043 

and t(1,10)=1.075, p=.31 for contralateral compared to ipsilateral attention in the 

previously non-rewarded trials; see Fig.7.8 for plot of activity evoked in each 

condition).  

 

 

Figure 7.8 Effect of rewarded trials on percent signal change in V1.  BOLD signal change (percent 

relative to the global mean) averaged across 11 retinotopically mapped participants, for the V1 

stimulus-responsive ROI, during the visual-discrimination phase of the trial, shown for trials 

subsequent to reward receipt, or to non-reward, separately when attending to ipsilateral or contralateral 

gratings.  Note that for trials preceded by reward receipt, there is a greater difference in percent signal 

change between attending to a contralateral versus ipsilateral grating, than after unrewarded trials.  

Error bars indicate the standard error of the difference between paired conditions and the symbol ‘**’ 

indicates statistical significance (p<.05, 2-tailed paired t test). 

 

No similar interactions were found either in V2 (F(1,10)=0.80, p=.39) or V3 

(F(1,10)=0.02, p=.9). Similarly, on whole brain analysis, there were no significant 

clusters of activation for this interaction of previously rewarded trials with attended 
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side.  Critically, this effect of reward (vs no reward) was not seen in retinotopic visual 

areas during the feedback phase of the trial itself. This suggests that reward 

administration on the previous trial affects subsequent BOLD responses of retinotopic 

areas to visual stimuli specifically at the previously rewarded location, rather than 

resulting in general feedback-related activity to retinotopic visual areas. This argues 

against accounts of the findings in terms of general resetting signals related to trial 

end (Jack et al., 2006), or carry-over effects from the reward phase of previous trials, 

which would not be spatially specific. 

 

Taken together, these data show that receiving reward was associated with improved 

performance on a subsequent trial and significantly enhanced activity on that 

subsequent trial in attended stimulus-specific representations in primary visual cortex.  

 

 

7.3.3 Eye tracking analysis 

 

Long-range infra-red eye tracking confirmed there were no significant differences (all 

p>.3) between different trial types in mean eye position in the horizontal direction 

(our stimuli were arranged horizontally), neither in the discrimination phase nor the 

reward phase of the trial.  

Pupil size was slightly but significantly larger during unrewarded compared to 

rewarded trials in the reward feedback phase (2.1% larger in the unrewarded trials, 

F(1,5)=7.5, p=.04).  Note that this difference cannot account for the changes in BOLD 

signals observed during the feedback phase, which were in the opposite direction (i.e. 

greater BOLD signal on rewarded versus unrewarded trials, while the pupil size 
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differences observed would result in slightly less retinal illumination on rewarded 

versus unrewarded trials).  

 

 

 Condition Mean eye 
position x 
direction 
(degrees) 
(± SEM) 

Mean eye 
position y 
direction 
(degrees) 
(± SEM) 

Mean pupil 
size (% 

compared to 
mean) 

(± SEM) 
Discriminatio
n 

Low reward level attend 
left 

-0.01 (0.43) 0.12 (0.15) 99.5 (0.61) 

 Low reward level attend 
right 

-1.18 (1.95) 0.92 (0.64) 99.1 (0.70) 

 High reward level attend 
left 

0.94 (0.42) 0.38 (0.22) 99.4 (0.40) 

 High reward level attend 
right 

0.77 (0.35) 0.57 (0.35) 98.9 (0.72) 

Feedback Rewarded 
Low reward level attend 
left 

-1.38 (1.73) 0.29 (0.61) 99.3 (0.31) 

 Rewarded 
Low reward level attend 
right 

-0.12 (0.49) -0.27 (0.31) 99.9 (0.87) 

 Rewarded 
High reward level attend 
left 

1.96 (1.68) -0.06 (0.41) 99.6 (0.36) 

 Rewarded 
High reward level attend 
right 

0.45 (0.27) 0.21 (0.49) 98.6 (0.79) 

 Not rewarded 
Low reward level attend 
left 

-0.48 (0.58) -0.11 (0.31) 101.2 (0.96) 

 Not rewarded 
Low reward level attend 
right 

1.07 (0.46) 0.26 (0.39) 102.1 (1.1) 

 Not rewarded 
High reward level attend 
left 

-0.44 (1.0) 0.42 (0.94) 102.0 (1.0) 

 Not rewarded 
High reward level attend 
right 

0.80 (0.99) 0.20 (0.88) 100.5 (1.2) 

 

Table 7.2 Eye position data. Mean eye position for six participants in the vertical (x) 

and horizontal (y) position from fixation, measured in visual degrees and mean pupil 
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size (measured as % compared to the mean for all trials) for each condition at each 

phase within a trial.  SEM is standard error of the mean. 

 

 

7.4 Discussion  

 

In this chapter, brain activity associated with lateralised visual discrimination was 

dissociated from brain activity associated with subsequent (non-visual) receipt of 

financial reward, as signalled by auditory feedback; and from the influence of reward 

receipt upon brain activity for the subsequent trial. Activity in parts of visual cortex 

was found to be modulated at all three of these successive phases, but the anatomical 

locus and nature of these modulations had a specific relationship to different 

processes associated with visual discrimination and reward.   

 

During visual discrimination (before reward delivery), activity in retinotopic ROIs 

representing the visual gratings was modulated by spatial attention, in accord with 

previous findings that retinotopic cortex can be modulated by spatial attention during 

task performance. For retinotopic areas, anticipation of high (versus low) reward 

modulated activity only in V2 (with a trend in V3); whereas higher visual areas 

(anterior to retinotopic areas V1-V3) showed no effects of reward level during the 

visual-discrimination phase (when attentional effort associated with reward incentive 

might conceivably have arisen, but did not). Furthermore, there were no effects of 

correct (versus incorrect) discrimination in any visual areas during visual 

discrimination, suggesting that any effects of reward (and correctness) seen during the 
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feedback-phase of the trial were not due to a carry-over of differences in signal arising 

during discrimination. 

 

As the trial progressed, auditory feedback signalled reward when no visual stimuli 

were present.  Although there were no differences in visual stimulation at this point 

(in contrast to previous observations of reward/value modulations of sensory 

processing (Krawczyk et al., 2007;Small et al., 2005;Serences, 2008)), significant 

activity increases were nevertheless observed in higher visual areas for rewarded 

versus non-rewarded trials. The signals in higher visual areas reflect a categorical 

effect of reward or reward valence feedback, rather than just trial end, or resetting 

(Jack et al., 2006) as that would affect correct and incorrect trials equally.  Moreover, 

the signals seen in this study are associated with activity in ventral striatum and OFC, 

regions activated by reward.   

 

The higher visual areas activated for rewarded versus non-rewarded trials were 

anterior and lateral to retinotopic V3 (Fig 7.7), overlapping with coordinates 

identified previously as part of the lateral occipital complex (Larsson and Heeger, 

2006). This area is sensitive to the orientation of gratings (Larsson et al., 2006) 

similar to those used in the current study, but its responses are not strongly lateralised 

with respect to field of presentation.  The observation of feedback-associated 

activation of this area may therefore be consistent with effects of reward on neural 

representations of oriented stimuli at this intermediate level of visual processing. In 

contrast, no effect of reward (or reward level) was found on earlier (lateralised) 

retinotopic representations, in areas V1 and V2 that are known to contain neural 

populations selective for stimulus orientation (Hubel and Wiesel, 1968;Kamitani and 
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Tong, 2005). These observations thus indicate both that reward feedback can 

modulate higher visual cortex even in the absence of visual stimulation, and that its 

effects on neural populations representing a stimulus differ qualitatively at different 

levels of the visual system.  

 

 

7.4.1 Comparison with previous studies of reward influences on visual processing 

 

The findings presented here provide new evidence that parts of human visual cortex 

can be modulated by reward feedback, even when this is delivered non-visually. In 

addition to modulating visual cortex, the comparison of reward and non-reward 

feedback also activated ventral striatum and orbitofrontal cortex. These areas are 

consistently activated in a variety of reward paradigms (Elliott et al., 2000;O'Doherty 

et al., 2001;Knutson et al., 2001), confirming their role as key nodes in a reward 

network. The findings that reward also affects visual cortex are consistent with a 

small, emerging number of studies exploring possible impacts of reward for 

mammalian visual cortex. For example, pairing a visual stimulus with subsequent 

reward leads to a proportion of neurons in rat primary visual cortex expressing 

activity that predicts reward timing (Shuler and Bear, 2006). In humans, reward is 

associated with improved visual performance (Seitz et al., 2009) and visual cortex 

activity is increased by reward expectation (Krawczyk et al., 2007;Small et al., 2005). 

However, unlike the present work, those recent studies did not dissociate reward 

feedback from the visual discrimination itself, and therefore did not demonstrate that 

non-visual reward signals per se can evoke visual cortex activation.   
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This work also differs fundamentally from previous work in non-human primates 

showing that neurons in parietal cortex represent the value of competing choices 

(Sugrue et al., 2004;Platt and Glimcher, 1999) and a recent fMRI study in humans 

showing value-based modulation as early in the visual processing pathway as V1 

(Serences, 2008).  Those studies characterised the effects of value tied to a particular 

stimulus or region of space, whereas in the study presented here, the effects of overall 

reward magnitude in visual cortex were examined (analogous to (Pleger et al., 2008) 

in the somatosensory domain).  The design of the study presented here also made it 

possible to examine the effects of reward feedback and how this influenced 

discrimination ability on subsequent trials, rather than just the effects of reward 

magnitude at the time of choice.   

 

 

7.4.2 Possible mechanisms for reward feedback to visual cortex 

 

This study shows for the first time that non-visual reward feedback following visual 

discrimination can lead to enhanced BOLD signals in (higher) visual cortex.  Such 

signals may reflect a ‘teaching signal’, possibly propagated via feedback connections 

from areas involved directly in reward processing and involving neuromodulators 

such as dopamine (see (Pleger et al., 2009)) and noradrenaline. This study thus 

suggests a hypothesis that could be formally tested in future studies, using effective 

connectivity analysis in conjunction with pharmacological manipulations. Dopamine 

is released following stimuli that predict reward,(Romo and Schultz, 1990) and 

noradrenergic neurons may respond to unpredicted more than predicted rewards 

(Foote et al., 1980;Aston-Jones et al., 1994).  Although dopaminergic innervation of 
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the visual cortex is relatively sparse (Berger et al., 1988), even primate visual cortices 

receive at least some dopaminergic fibres (Berger and Gaspar, 1994).  Feedback 

messages carried by dopamine and/or noradrenergic neurons might influence the 

efficacy of synaptic transmission, providing a potential mechanism for how 

behavioral learning via reward feedback (Schultz and Dickinson, 2000) may result in 

improved visual perception, via enhanced sensitivity to relevant stimulus features.  

 

 

7.4.3 Trial-to-trial effects of reward 

 

Attention directed to the lateralised gratings modulated retinotopic activity during 

discrimination, but no evidence was found for lateralised modulation by reward 

signals in V1 or V2 (which instead were associated with bilateral modulation of 

higher visual areas and lateralised modulation in V3).  What mechanisms could 

explain how reward signals delivered to higher visual areas might subsequently 

influence neural activity associated with task performance in a lateralized 

discrimination?  One possibility is that the neuronal representations modulated in 

higher visual cortex have some critical role in task performance (potentially consistent 

with their role in representing orientation, see (Larsson et al., 2006). But the data 

presented here also provide tentative support for an alternative mechanism: Receiving 

reward on the preceding trial was associated with improved accuracy for the visual 

discrimination on the subsequent trial, indicating a trial-to-trial behavioral effect of 

reward.  Moreover, during the visual-discrimination phase of the next trial following a 

rewarded trial, enhanced BOLD signals were found associated with the stimulus 

representation in primary visual cortex contralateral to the attended grating (see Fig 
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7.8).  This indicates that receiving a reward at the end of one trial (which affects 

higher visual cortex) was associated not only with more accurate visual discrimination 

on the next trial, but also with enhanced signals in lateralised early retinotopic cortex 

representing the task-relevant stimulus during the discrimination phase of the next 

trial. Thus, the reward signals observed in higher visual areas during the reward phase 

of a trial may lead to interplay between those higher visual areas and lateralised 

stimulus representations in earlier visual cortex that process the task-relevant stimulus 

on a subsequent trial. Such an account remains possible rather than proven, but might 

be tested in future variations of this paradigm, e.g. with causal interventions such as 

transcranial magnetic stimulation, targeting specific visual areas at different 

timepoints during and between trials. 

 

 

7.4.4 Comparison with previous studies showing effects of reward on 

somatosensory processing 

 

The work presented here may be compared to the effects of reward feedback on 

somatosensory cortex (Pleger et al., 2008;Pleger et al., 2009).  These showed 

lateralised reactivation of primary somatosensory cortex during reward feedback, 

unlike the study presented here which shows bilateral activation of higher visual 

areas, with effects contralateral to the stimulus only for the subsequent trial. It is 

possible that the differences between these studies reflect differences in the 

architecture by which reward signals affect different sensory cortices (possibly due to 

anatomical proximity of somatosensory cortex to reward areas, different levels of 

dopaminergic innervation, and/or a more hierarchical organisation of processing in 
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visual cortex). Alternatively, the differences may reflect the specific task and stimuli 

in each experiment. Although the task presented here was intended to be optimised for 

evoking primary visual cortex responses, it is possible that discriminating the 

orientations of two gratings presented sequentially requires input from higher visual 

areas (Larsson et al., 2006), that may be more efficient for sustained representation.  

The role of learning might also differ, as in the current study there were larger 

numbers of possible combinations of gratings in the task, than for the somatosensory 

stimuli used in (Pleger et al., 2008). Finally, the somatosensory studies found effects 

of reward magnitude on signals in human primary somatosensory cortex which may 

reflect increased power, as these studies used four different levels of reward whereas 

this study used two levels. But despite these differences, there were also clear 

similarities between the two studies, including: responses of ventral striatum and 

orbitofrontal cortex to reward, clear findings that sensory cortices (whether 

somatosensory or visual) can be affected by reward feedback, and presence of trial-to-

trial effects, whereby receipt of reward on one trial led to an enhanced response in 

contralateral primary cortex for the discrimination-phase of the next trial, as well as to 

better performance.   

 

 

7.5 Conclusion 

 

In this chapter, evidence has been presented for top-down reward-associated feedback 

signals in higher visual areas, even without concurrent visual stimulation, and also 

that rewarded trials are associated with improved behavioral performance and 

increased activity in human primary visual cortex during the discrimination period of 
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a subsequent trial.  I have thus provided new evidence consistent with a teaching 

signal being propagated (possibly from ventral striatum and/or orbitofrontal cortex) to 

higher visual areas, and ultimately impacting on contralateral primary visual cortex 

during discrimination for the next trial after reward receipt. Having documented such 

influences of rewarding visual discrimination in the human brain, further work is now 

needed to characterise whether these influences may be task-dependent, or reflect a 

more general architecture for reward influences on visual processing. 
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CHAPTER 8: GENERAL DISCUSSION 

 

8.1 Introduction 

 

The experimental studies in this thesis explore the integration of bottom-up and top-

down signals in visual processing of perceptual filling-in, where the visual system 

interpolates information across visual space where that information is physically 

absent; and in the processing of reward feedback in the absence of concurrent visual 

stimulation.  This general discussion will review the findings of the experimental 

chapters and will consider the implication of these findings in the context of normal 

perception and in visual perception following damage to visual structures.  Finally I 

will consider further experimental studies that could be used to test hypotheses 

generated from the studies presented here.  The experimental studies can be grouped 

according to whether they examine the perceptual completion of artificial scotomas 

(Chapters 3,4,5), hemianopic completion (Chapter 6) or the influence of reward on 

visual processing (Chapter 7).   

 

 

8.2 Perceptual filling-in of artificial scotomas 

 

The first part of this thesis is concerned with perceptual filling-in of artificial 

scotomas.  These occur when a uniform target is placed in the near periphery on the 

background of dynamic twinkling noise.  After a few seconds of central fixation, the 

target will perceptually fill-in to be replaced by the background.  The neural processes 
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involved in this form of perceptual completion are not yet clear.  Detection thresholds 

for Gabor patches presented within artificial scotomas are elevated by dynamic noise 

surrounds (Mihaylov et al., 2007) and during Troxler fading observers are less able to 

detect a probe presented within a perceptually filled-in target (Lleras and Moore, 

2006).  These findings are consistent with suppression of neural responses during 

perceptual filling-in, although this has not previously been measured in humans 

during perceptual completion of artificial scotomas.  

 

8.2.1 Neural responses during perceptual completion of artificial scotomas 

measured using MEG 

 

Chapter 3 examined neural responses during perceptual completion of an artificial 

scotoma using MEG.  By tagging the target at a known frequency, responses specific 

to that target could be examined.  In this way a fundamental problem of investigating 

filling-in was circumvented, as it is often unclear whether recorded responses are 

related to the filled-in target or to the background.  The major finding was that 

responses specific to the target were reduced when the target was perceptually filled-

in, consistent with stronger neural representation for visible compared to invisible 

stimuli and suggesting that perceptual filling-in is associated with suppression of 

neural responses.  Although the spatial resolution of MEG is too to low detect 

whether these responses were specific to the spatial location of the target, these 

findings are consistent with the isomorphic theory of perceptual filling-in, as they 

demonstrate that responses specific to the frequency of the flickering target are 

reduced during the experience of perceptual completion and that perceptual filling-in 

is an active (albeit suppressive) process. 
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This reduction in responses during perceptual filling-in may reflect a reduced neural 

response to a now invisible target.  Alternatively, the suppression of responses from 

the target might be causing it to become invisible.  Disentangling whether the 

reduction in responses to the invisible target is the cause or effect of it becoming 

invisible has important implications for understanding the processing of invisible 

stimuli.  Does a target become invisible, causing a reduction in target-specific neural 

responses or does the process of perceptual filling-in cause a suppression in neural 

responses, which causes it to become invisible?  This might be addressed by exploring 

more closely the timecourse of responses following perceptual filling-in but this is 

limited by the current methods.  Unlike for a visible stimulus, when the exact time of 

presentation is known by the experimenter, the point when a target becomes invisible 

due to filling-in is known only by the participant.  He or she can communicate this 

using for example button press responses, but these are inherently delayed compared 

to the time point of invisibility.  It is therefore not possible to determine accurately the 

time at which a target becomes invisible.  It might be possible to approximate this by 

using participant-specific reaction times to determine as closely as possible the point 

at which the target fills-in and then examine the power of stimulus-specific responses 

before and after the point of transition between the target being visible and filled-in as 

has been done previously (Scholvinck and Rees, 2009b).  However, this remains an 

approximation and would still be unlikely to be accurate enough to shed light on the 

temporal unfolding of the neural responses at the point of transition from visible to 

invisible. 
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A second important finding of the experiment in Chapter 3 was that although the 

responses to the target were reduced after it became invisible, they were still greater 

than a no-target baseline.  This is consistent with a persistent neural representation for 

the now invisible stimulus and suggests that, in common with previous reports of 

neural responses to other invisible stimuli (Moutoussis and Zeki, 2002;Fang and He, 

2005), even when a target becomes invisible as it is perceptually filled-in by its 

background, it continues to evoke responses within visual cortex.   

 

Although the target was flickered in this study, allowing the measurement of 

responses specific to the target, the background was not flickered.  Thus, from the 

experiment presented here, it is not possible to determine the neural activity of 

responses specific to the background.  This is of particular relevance for perceptual 

filling-in of artificial scotomas, as the background perceptually fills-in the region 

previously occupied by the target.  It would be of great interest if, for example, in 

contrast with signals specific to the target, background signals increased during 

perceptual filling-in.  Future work could therefore examine responses specific to the 

background during perceptual filling-in.  This could be done by flickering the target 

and the background at different frequencies and examining changes in power at each 

of these frequencies after perceptual filling-in has occurred.  An alternative strategy 

might be to repeat the paradigm but this time flickering the background and not the 

target.  This would require a larger target and a restricted background (more similar to 

the display used in (De Weerd et al., 1998) so that the background to target ratio is 

lower than for a whole screen of background), to increase sensitivity to detect possible 

changes in power as perceptual filling-in takes place. 

 



 263

Another issue which might be explored using the superior temporal resolution of 

MEG, is that of the precise temporal dynamics which take place during perceptual 

filling-in of an artificial scotoma.  One influential model for the neural mechanism 

underlying filling-in (Gerrits and Vendrik, 1970;Grossberg and Mingolla, 1985) is 

that the lateral spreading which causes neural filling-in of surfaces in normal vision is 

inhibited by the boundaries of an image.  This theory has been further developed on 

the basis of single cell recordings in monkeys (De Weerd et al., 1995) and 

behavioural studies in humans (De Weerd et al., 1998) to explain the possible 

mechanisms underlying perceptual filling-in of an artificial scotoma. The suggested 

model consists of two stages: a slow period during which adaptation of the neurons 

responding to the boundary between the target and the background causes the failure 

of figure-ground segregation.  This is then followed by the faster process of featural 

spreading.  Therefore a specific question arising from this MEG experiment might be 

whether there is any evidence for this two-stage process, with a slow breakdown in 

the boundary of the target and then a faster spread of neural activity.  This might be 

addressed using a similar paradigm to that used in Chapter 3, but instead of flickering 

the whole target at one frequency, flickering the border and the interior of the target at 

different frequencies and looking for a dissociation in their responses immediately 

prior to the time when perceptual filling-in is reported. 

 

8.2.2 The anatomical locus of perceptual completion of artificial scotomas 

 

Chapter 4 explored the anatomical location of perceptual filling-in of artificial 

scotomas.  Behavioural and neurophysiological studies have been consistent with a 

locus in early retinotopic cortex (De Weerd et al., 1998;De Weerd et al., 1995)  but 
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this had not yet been explicitly demonstrated in humans.  I showed that the 

behavioural report of perceptual filling-in of an artificial scotoma is accompanied by 

reductions in BOLD signals representing the filled-in target in V1 and in V2.  This 

lends further weight to the active neural hypothesis for perceptual completion and 

argues against other theories of perceptual filling-in, especially Dennet’s ignoring an 

absence (Dennett, 1991), but also the symbolic theory (labelling an area as more of 

the same (O'Regan, 1992)), and even the suggestion that filling-in involves ‘sewing 

up’ of the filled-in region (Kapadia et al., 1994), as this chapter presents evidence of 

retinotopic (or point-for-point) reductions in BOLD signal in the cortical 

representation of the target during perceptual filling-in. 

 

Moreover, the BOLD responses to the perceptually filled-in target were greater than 

the no-target baseline, providing evidence for the persistent representation of the 

invisible target at the retinotopic location corresponding to the target in visual space.  

These findings, consistent with those presented in Chapter 3 using MEG, provide 

converging evidence from different experimental modalities that during perceptual 

filling-in, the now invisible filled-in target continues to evoke responses within visual 

cortex. 

 

Interestingly, there was a subtle but important difference in responses to perceptual 

completion between V1 and V2.  In V2, the reduction in activity was exclusive to the 

retinotopic representation of the target. However, in V1, a reduction in BOLD signal 

was also seen in regions not responding to the target.  It is possible that these 

differences represent distinct roles for V1 and V2 in perceptual filling-in.  The target-

specific reductions in activity observed in V1 and V2 might reflect specific inhibitory 
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processes suppressing the target boundary so that it is no longer segregated from the 

surrounding texture.  The weaker, non-retinotopic decreases in activity observed only 

in V1, might instead reflect the more general process of feature spreading which 

allows filling-in to take place.  Such a hypothesis might be tested by examining 

activity related specifically to the border of the target and comparing this to activity 

within the target’s interior (as above).  It might also be interesting to specifically 

examine activity related to the region surrounding the target. 

 

An important issue not addressed by the experiment in Chapters 3 and 4 is the 

question of possible underlying neural mechanisms mediating perceptual completion.  

Spillmann and Werner (Spillmann and Werner, 1996) have proposed three possible 

candidate mechanisms of long-rage interactions to account for the phenomenon:  The 

first is a feedforward circuit whereby spatially separated signals converge at higher 

levels, to produce output where a perceptually filled-in surface is indistinguishable 

from a real surface.  The second involves recruitment of intrinsic horizontal 

connections to allow interactions within one visual region, to provide links between 

stimulated regions.  The third model involves long-range feedback projections from 

higher regions to group cell responses at lower levels.  These three models could be 

tested by performing functional connectivity analyses, such as psychophysiological 

interactions or dynamic causal modelling which are methods to assess the functional 

relationships between different brain regions. 

 

An intriguing alternative model for understanding the findings in Chapters 3 and 4 is 

that proposed by Friston (Friston, 2005).  This describes all hierarchical sensory 

processing in an empirical Bayes framework, whereby the role of backward 
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connections is to provide contextual feedback to earlier stages in the cortical 

processing pathway, by minimising prediction error.  This is the difference between 

the observed input and that predicted by the generative model and inferred causes.  

Where an earlier cortical stage (say for example V1) finds a surprising input, an error 

signal is passed to the next stage (here this would be V2).  If this input can be 

explained by V2, a suppressive signal passes back to V1, otherwise an error signal is 

passed to successively higher stages until the surprising finding can be explained.  

Thus any evoked response can be understood as a transient expression of prediction 

error which is then suppressed by predictions from higher cortical areas.  Friston uses 

this model to interpret previous observations that when disparate elements form 

coherent shapes (Murray et al., 2002b) increases in activity are seen in LOC, but 

reductions are seen in primary visual cortex.  He suggests that this reduced activity in 

V1 is a result of grouping processes performed in higher areas.  The findings 

presented in Chapter 4 (and also in Chapter 3) are consistent with this model.  The 

reductions in activity in V1 and V2 may be due to predictive suppression from higher 

cortical regions.  Perhaps the more generalised suppression seen beyond the 

retinotopic ROIs in V1 during perceptual filling-in also reflects suppressive signals 

from higher cortical regions explaining away the prediction error, although it is not 

entirely clear why there would be a difference between V1 and V2 for suppression 

within and beyond the ROIs.  It is of course possible that the absence of a generalised 

reduction in activity outside the retinotopic location of the target in V2 is a false 

negative finding and that there are in reality no differences in the pattern of responses 

between V1 and V2 during perceptual filling-in.  This might be addressed by 

repeating the experiment with more participants.   
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The fMRI study of perceptual filling-in described in Chapter 4 examined activity 

within early retinotopic regions during perceptual filling-in of artificial scotomas, but 

was not optimised to detect modulations of activity in higher cortical regions during 

this process, particularly during the transitions from not filled-in to perceptually 

filled-in.  For example, during binocular rivalry, perceptual switches are associated 

with increased activity in parietal and frontal regions (Lumer et al., 1998) and in 

motion induced blindness perceptual switches are associated with increased activity in 

left frontal cortex (Scholvinck and Rees, 2009b).  A further extension of this study 

might therefore explore this question of top-down involvement in perceptual filling-in 

in more detail, by examining the transitions between not filled-in and perceptually 

filled-in on a whole brain analysis.  This might involve the use of reaction time data to 

determine as accurately as possible the point at which perceptual filling-in occurred.   

 

8.2.3 Top-down involvement in perceptual completion of artificial scotomas 

 

This question of top-down involvement in perceptual filling-in was addressed in the 

behavioural study described in Chapter 5.  The major finding was that two different 

manipulations of high-level cognitive functions had contrasting effects on perceptual 

filling-in of an artificial scotoma.  Increasing perceptual load caused filling-in to 

occur with longer latency and lower probability; conversely, increasing working 

memory load caused filling-in to occur earlier (although probability of filling-in was 

unaffected with the stimulus parameters used here).  These findings were interpreted 

in the context of load theory (Lavie et al., 2004).  By increasing perceptual load, there 

was reduced processing capacity available for the peripheral target, making filling-in 

less probable.  This is consistent with recent work showing that directing spatial 
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attention to a target makes it more likely to perceptually fill-in (De Weerd et al., 

2006).   

 

The second proposal in load theory addresses the way that working memory 

determines stimulus processing priorities.  This predicts that high working memory 

load will have the opposite effect to that of perceptual load where stimuli compete for 

processing resources.  According to the theory, higher working memory load depletes 

the capacity of active cognitive control and reduces the ability to maintain 

prioritisation of behavioural goals, causing increased processing of distractors (de 

Fockert et al., 2001).  However, in the paradigm presented in Chapter 5, where 

perceptual filling-in was taking place whilst participants performed a working 

memory task, there were no irrelevant distractors.  To account for the enhanced 

perceptual filling-in I hypothesised that the relative salience of the target and the 

background might have been modulated by the working memory manipulation.  

Under the conditions of increased working memory load and the breakdown in 

prioritisation of behavioural goals, the dynamic twinkling noise might have become 

more salient compared to the target.  More salient backgrounds are more likely to 

promote filling-in as a dynamic background is associated with enhanced filling-in 

compared to a static background and a textured background is associated with 

enhanced filling-in compared to uniform backgrounds.  I therefore propose that 

working memory load impacts on perceptual filling-in by modulating the relative 

saliency of the background and the target.  Such a hypothesis could be tested by 

directly examining the relative salience of the target and background during the 

working memory manipulation, for example using response times to stimulus 

features.   
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An alternative hypothesis is that increased working memory load instead simply 

causes an increased state of alertness or arousal.  This could be tested in future work 

by manipulating arousal.  For example it might be possible to compare perceptual 

filling-in at different times during the day or night.  Alternatively measures of general 

alertness could be recorded during the working memory load manipulation, such as 

response times to peripheral targets.  It should be noted that reaction times to the 

appearance of the peripheral target did not differ between the high and low working 

memory load manipulation suggesting that, for this measure of alertness, there was no 

difference between the two levels. 

 

One possible problem with this experiment is whether the working memory and 

perceptual load tasks actually affect perceptual filling-in, or instead simply alter the 

response criterion made by the participants. It is possible that with higher load the 

response criterion changes and this affects the latency of responses.  In other words, 

the findings reflect processing at the decisional level instead of the perceptual 

experience of filling-in.  This would involve a change in response criterion in 

different directions for the two different load tasks.  That is, a higher response 

criterion during high perceptual load and lower response criterion during high 

working memory load, but this is still a possible explanation.  It is challenging to 

explicitly test this hypothesis using the current paradigm, as this would require a 

measure of hits and misses to quantify the response criterion and there are no clear 

hits or misses for perceptual completion as it is a subjective experience.  However, a 

close approximation could be achieved by having the target physically disappear for 

brief intermittent periods (during the time when it is known to be visible and not 
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filled-in) and measuring hits and misses (as well as reaction times) for this 

disappearance under the different load conditions.  If there were no significant 

differences in response criterion or reaction times between the high and low loads, 

then the findings presented in this chapter could be attributed to perceptual and 

working memory load effects on perceptual completion, and not to any decisional 

process. 

 

Taken together, these studies have shown that perceptual filling-in of an artificial 

scotoma takes place in early retinotopic cortex, in V1 and V2.  Together with previous 

studies showing that perceptual filling-in is strongly modulated by stimulus-related 

properties such as eccentricity and contrast (De Weerd et al., 1998;Welchman and 

Harris, 2001) this suggests that it is essentially a bottom-up process.  I have also 

shown that during perceptual filling-in, stimulus specific activity is reduced, although 

not down to a no-target baseline and I have provided some evidence consistent with a 

two-stage process for filling-in, involving breakdown of target boundaries followed 

by a more rapid non-specific spread of feature filling-in.  In addition, I have also 

demonstrated that this low-level process is influenced in a top-down manner by high-

level functions such as perceptual load and even working memory. 

 

Future work could specifically explore commonalities between perceptual filling-in of 

artificial scotomas and other forms of filling-in, in particular evidence for featural 

spread of filling-in limited or not limited by stimulus boundaries.  For example, 

comparing filling-in across artificial and real scotomas.  Here, an intriguing difference 

is that where perceptual filling-in occurs across real scotomas, it is instantaneous, with 

patients experiencing a surface as complete, despite their retinal disease.  It might be 
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possible to retinotopically map the scotoma, using the twinkle after-effect experienced 

by patients with scotomas to localise the scotoma (Crossland et al., 2007) and then 

examining responses in the scotoma regions of interest whilst patients view a 

patterned stimulus.  This question is further complicated by the question of whether 

remapping occurs following retinal scotomas, which is still hotly debated (Baker et 

al., 2008;Dilks et al., 2007). 

 

 

8.3 Hemianopic completion 

 

Chapter 6 examined a different form of perceptual completion: hemianopic 

completion, which occurs in the context of hemianopia and is characterised by the 

patient reporting as complete both complete and incomplete contours, where the 

completed stimulus straddles the vertical meridian.  I examined fMRI responses in a 

patient with a dense right-sided homonymous hemianopia following surgery to excise 

a meningioma.  BOLD responses were compared for trials where a semicircle was 

reported as a complete circle, with trials where the semicircle was reported as a 

semicircle.  Differential activity was shown in the lingual gyrus in the right occipital 

cortex, contralateral to the patient’s lesion, ipsilateral to the illusory edge of the 

stimulus and close to reported coordinates for the human lateral occipital complex.   

 

The paradigm avoided problems of residual vision and eye movements toward the 

blind hemifield, as the main comparison of interest was the completion of the 

incomplete semicircle, where no stimulus was present in the blind hemifield.  

Furthermore, neglect was ruled out as a confound as the patient had been extensively 
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behaviourally tested prior to scanning (McCarthy et al., 2006) and showed no 

evidence of neglect on formal testing.   

 

Based on the experimental findings, I proposed that hemianopic completion might 

result due to unopposed activity of contralesional visually-sensitive ventral-occipital 

areas, whereby, each side predicts a completed form based on the information from 

earlier retinotopic regions and this is verified by reciprocal feedback between left and 

right hemispheres.  In this patient, with an extensive occipital lesion encompassing 

most of the left retinotopic visual cortex and extending into the inferior temporal 

gyrus, this reciprocal feedback might be impaired, causing hemianopic completion 

(see Fig 8.1). Specifically the absence of negative feedback from ipsilesional higher 

visual areas to contralesional higher visual areas may result in relatively increased 

activity and the erroneous perception of a circle. Thus hemianopic completion might 

represent an example of perceptual completion caused by absence of top-down or 

lateral feedback signals. 
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Figure 8.1 Model for hemianopic completion.  In healthy subjects, presentation of a semicircle might 

cause negative feedback to the ipsilateral LOC contralateral to the side of the semicircle due to absence 

of input from ipsilateral V1-V3 (as no semicircle is present in the opposite hemifield).  This suppresses 

any assumed completed circle and the semicircle is perceived.  However, in patients experiencing 

hemianopic completion, there is no negative feedback to contralesional LOC, so the assumed circle is 

perceived and relatively increase activity is seen in contralesional LOC. 

 

Such a hypothesis could be specifically tested in several ways:  in the first instance, 

this single-patient study could be extended by looking for activation during 

hemianopic completion in several patients showing this phenomenon. Transcranial 

magnetic stimulation might also be used to specifically target ventral-occipital regions 

during or immediately following perception of a semicircle in normal observers, to 

attempt to provoke hemianopic completion.  In patients with hemianopia following 

stroke, lesion overlap studies might be used to look for differences in lesion anatomy 

between patients showing hemianopic completion and those that do not. 
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Walker and Mattingley (in their commentary on Pessoa’s guide to perceptual filling-

in (Pessoa et al., 1998)) have suggested several other possible explanations for 

hemianopic completion:  They suggest that it might be a form of amodal completion 

in which the hemianopic region is treated as a large occluder (similar to models for 

the blind spot proposed by Durgin (Durgin et al., 1995)).  Alternatively, it might 

reflect top-down activations of stored object representations, reducing the threshold 

for detecting stimuli falling in the blind field.  Interestingly, they contrast hemianopic 

completion with pathological completion occurring in patients with parietal neglect 

which they describe as being consistent with the brain ignoring an absence of 

information, similar to the model suggested by Dennet (Dennett, 1991) for filling-in 

in general. 

 

Taken together, the findings presented in Chapter 6 demonstrate that during 

hemianopic completion, there is increased activity in contralesional visually sensitive 

ventral occipital cortex anterior to retinotopic regions and near to the lateral occipital 

complex.  This increase in activity is in contrast with the reduction in activity seen 

during perceptual filling-in of an artificial scotoma.  This could be because a contour 

is perceived where it does not actually exist, unlike the case of perceptual filling-in of 

artificial scotomas where the target is not perceived and is instead replaced by the 

background.  Alternatively, in the light of the model proposed by Friston (Friston, 

2005) and also the model describe above, this might be because hemianopic 

completion is a pathological form of completion where the usual suppressive 

feedback signals are impaired, leading to abnormally increased activity and the 

illusion of a contour where it does not actually exist. 
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8.4 Effect of reward on human visual processing 

 

In the second section of this thesis, in Chapter 7, I explored further the role of top-

down signals in perception by examining a different form of top-down influence: the 

role of reward feedback on visual processing.  Two recent studies have demonstrated 

that reward has direct modulatory effects on somatosensory processing, with reward 

feedback causing lateralised increases in activity in primary somatosensory cortex 

(Pleger et al., 2008), which can be modulated by dopamine (Pleger et al., 2009).  

However, the effects of reward feedback on visual processing have been less well 

explored as studies of reward influence on visual processing have not dissociated 

reward receipt from visual stimulation (Krawczyk et al., 2007;Serences, 2008).  In 

Chapter 7, I used fMRI to examine whether reward can modulate activity in visual 

cortex.  Critically, I used an event-related design which allowed me to separate out the 

visual discrimination task from reward feedback to specifically examine responses in 

visual cortex during reward feedback.  Furthermore, by using retinotopic mapping of 

early visual areas, I was able to examine responses within these early retinotopic 

regions during reward feedback and in other phases of the trial.  I found that reward 

feedback (as signalled auditorily) increased BOLD signal in visual areas beyond 

retinotopic cortex, in addition to activity in regions known to be modulated by reward.  

Furthermore, when correct visual performance led to reward, this in turn led to 

enhanced visual activity contralateral to the judged stimulus on the next trial, for 

retinotopic representations of the judged visual stimuli in primary visual cortex. 
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This study therefore provides evidence that reward can influence visual processing 

both directly (at the point of reward feedback) and indirectly (during the next visual 

discrimination) as another form of top-down control.  This finding makes 

evolutionary sense, as for an animal to maximise reward outcomes, it is sensible to 

optimise rewarded behaviour and therefore to use reward outcomes to feed back and 

improve performance in tasks associated with later rewards.  However, this has not 

been previously demonstrated and the sensory cortices are not traditionally thought of 

as being part of the reward network, despite the fact that primate visual cortices 

receive at least some dopaminergic fibres (Berger and Gaspar, 1994).  Thus the 

findings in this experiment might be useful when considering the relationship between 

perception and learned behaviour. 

 

Several aspects of this study raise important questions which could be addressed by 

further investigations.  The finding that reward feedback causes bilateral activation in 

higher visual areas, beyond retinotopic cortex and yet lateralised effects on the next 

trial raises the question of whether these reward-associated modulations of higher 

visual areas are specific to the orientation discrimination task used in Chapter 7, or 

whether they are related to reward feedback associated with any visual task.  Further 

studies could therefore explore effects of reward feedback on visual cortex activation 

following different perceptual tasks such as spatial acuity or contrast perception tasks 

which might be predicted to involve early retinotopic cortex.  It would also be 

interesting to explore whether these reward effects seen in somatosensory and visual 

domains extend to other modalities such as auditory processing. 
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The finding that receiving a reward on one trial was associated with enhanced signal 

in lateralised primary visual cortex on the next trial provides evidence consistent with 

a teaching signal propagated from reward-responsive areas such as ventral striatum 

and/ or orbitofrontal cortex, to higher visual areas and then primary visual cortex on 

the next trial.  This hypothesis could be tested in future studies, for example using a 

causal intervention such as transcranial magnetic stimulation (TMS) to target specific 

visual areas at specific timepoints during and between trials, or by combining TMS 

with fMRI.  Alternatively, the timecourse of such a teaching signal could be explored 

using neurophysiological techniques such as EEG or MEG to examine the timing of 

responses in visual areas following reward.  Such a model could also be tested using 

dynamic causal modelling of either the fMRI or MEG data of the same paradigm. 

 

The mechanisms of reward feedback to visual areas could be further explored using a 

pharmacological manipulation of the paradigm.  If the effect of reward is mediated by 

dopamine signals, such feedback might be enhanced by direct administration of 

dopamine, or inhibited by a dopamine antagonist such as risperidone or olanzapine 

(see (Pleger et al., 2009) for a similar study in the somatosensory domain).  It might 

also be interesting to look at the impact of reward feedback on visual processing in 

targeted patient groups with damage to specific reward-associated structures, such as 

focal basal ganglia lesions or Parkinson disease, where visual processing is largely 

unaffected. 
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8.5 Conclusion 

 

In summary, the findings presented in this thesis provide evidence for bottom-up and 

top-down interactions in perceptual filling-in and explore the integration of top-down 

and bottom-up signals following reward feedback.  I have shown that stimuli present 

in the outside world can be rendered invisible by processes taking place in early 

retinotopic cortex, but that this process is modulated by higher cognitive functions; 

and that higher cognitive functions such as reward can directly impact on visual 

processing in early retinotopic cortex.  The examples explored within this thesis have 

relevance for visual processing in general.  I began this thesis by considering the 

complexity of visual information with which the visual system is presented at each 

moment and the enormous task of translating this into a series of meaningful objects 

and scenes.  Much of this information is fragmented and requires organisation and 

interpolation by higher visual regions feeding back to inform processes taking place 

earlier in the visual pathways.  Similarly, information from other higher cognitive 

functions such as reward outcome can be used to attune visual processing in early 

retinotopic regions.  The studies presented in this thesis demonstrate the integration of 

signals from bottom-up and top-down processes within the areas of perceptual 

completion and reward processing.  The consequences of these interactions and the 

underlying mechanisms require further study.  However, the existence of these 

interactions adds weight to current models of both perceptual completion and reward 

processing and should be considered when exploring other areas of human perception, 

as it is only through integration from multiple levels that visual information can be 

successfully processed. 
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