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(a) FTSE 100 daily price series
(b) FTSE 100 daily returns series
(c) Autocorrelation coefficients 
or returns and returns-squared 

A graph showing the simulations of networks with input size range of [1-11] input lags. Hidden neurons in 
the range of [0-10] in models with a single output neuron. The stripped pattern in this graph matches the 
(input-hidden) parameter count of the graph on the far left. We observe that the in-sample (RMSE, HR) 
performance increases with the number of parameters in the estimation model. Out-of-sample (RMSE, HR) 
performance is better in smaller models.  The training time was also correlated to the number of parameters. 
However, the epochs required for convergence were independent of the number of parameter with a mean 
value of 12 epochs. Two minimisation criteria were used for training as indicated in the legend. 

(a) FTSE 100 Volatility estimate. (c,d) Autocorrelation coefficients 
or returns and returns-squared. (b) FTSE 100 daily returns residual after volatility compensation.
Results show that most of the volatility and returns information was extracted leaving a residual 
close to a normal-Gaussian distribution.

(a) Residual of FTSE 100 returns 
estimation using the Correlation 
Higher Order Neural Network.

Even after returns estimation 
Kurtosis and ! levels remained the 
same.
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(c) Autocorrelation of Residuals
(d) Autocorrelation residuals-
squared. 

These results show that the 
autocorrelation levels were reduced 
in the residuals domain, however; 
Residuals-squared stayed at the 
same level indicating no change in 
volatility.

AIC performance improvement* 
when using HONNs over 
standard linear models.

Out of sample Root Mean 
square error slightly improved 
as well.

Hit Rate performance was 
worse for Linear model and
the best was NN.
* AIC variation was in the 3rd 
significant figure indicating 
consistent performance.

Both AIC and RMSEo indicators 
were improved significantly after 
extracting the volatility 
information from the residual of 
the FTSE-100 index daily returns. 

The FTSE 100 series was converted into a returns series with properties closer to a 
stationary Gaussian distributed data set using the following equation.

W11

W
21

W22

W2
3

W
2M

W12

W1N

y
t!n

y
t!2

y
t!1

ŷ
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Number of parameters of a Neural Network and 4 Higher Order Neural Networks.

Higher Order Neural Network output y(t) 
as a function of Weights (W,b) and inputs 
Xi. 

Optimisation criterion for network 
weight update estimation.

Error gradient estimation 
represented as the Jacobian matrix

Weight update using 
Levenberg-Marquardt 
algorithm.

Root Mean Squared Error, 
evaluation criteria used to 
benchmark performance 
of model estimation.

Hit Rate (HR),  is an estimate of the rate of 
correct direction 
of the estimated
 output.

Generalised AutoRegressive Conditional 
Heteroskedasticity (GARCH)

Volatility estimation 
from previous error 
values along with the 
previous volatility 
estimate.

Log-Likely-hood minimisation 
criterion that incorporate changes 
in volatility along with the error. 

Akaike information criterion, used to 
select the best models based on the error 
and the number of parameters used for estimation.

This work compared Higher Order Neural Networks 
(HONN) with Neural Networks, and linear regression for 
short term forecasting of stock market index daily returns.

Two new HONNs, the Correlation HONN (CHONN) and the 
Horizontal HONN (HorizHONN) outperform all other 
models tested in terms of the Akaike Information Criterion, 
out-of-sample root mean square error, of FTSE100 and 
NASDAQ giving out-of-sample Hit Rates of up to 60% with 
AIC improvement up to 6.2%. New hybrid models for 
volatility estimation are formed by combining CHONN with 
E/GARCH are compared with conventional EGARCH, 
providing up to 2.1% and 2.7% AIC improvement for 
FTSE100 and NASDAQ. 


