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Abstract

Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide
range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design
experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data
analysis in the literature remain inaccessible to much of the biological research community. In this study we examine
ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics
platform, applied to a set of human macrophage and dendritic cell samples.

Results: We describe and validate a series of data extraction, transformation and normalisation steps which are
implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability
is small (only around 2% of the mean log signal), while interarray variability from replicate array measurements has a
standard deviation (SD) of around 0.5 log, units (6% of mean). The common practise of working with ratios of Cy5/Cy3
signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using
Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription
reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed
data identifies an underlying structure which reflect some of the key biological variables which define the data set. This
structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety
of operators.

Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising
and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative
estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold
for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive
studies of the systems biology of eukaryaotic cells.

Background

The application of microarray technology to study the
expression of thousands of genes in biological samples
has become commonplace. The diversity of technologies
initially explored has been replaced by a landscape domi-
nated by a small number of proprietary platforms, which
differ principally in the type of probe used for hybridisa-
tion. Each platform has advantages and disadvantages,
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and knowledge of technical reproducibility and sources of
data variability is crucial to optimising experimental
design and data analysis. The reproducibility and compa-
rability of several different platforms has been rigorously
examined in the MAQC project, and overall the different
platforms give reassuringly similar results, with similar
accuracy and sensitivities [1].

We have collected a large number of array data sets
from Agilent human genome arrays [2]. The latest
releases of these arrays have approximately 44300 fea-
tures, which include various control oligonucleotides,
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and a set of 41001 different oligonucleotide 60 mers com-
plimentary to unique human mRNA sequences. Of these
41001, the latest Agilent annotation lists 29,806 as corre-
sponding to known genes and/or ORFs, of which 19392
are unique. Around 12000 probes correspond to as yet
unannotated stretches of human genome. The Agilent
platform is designed to be used as a two colour system,
probing and then detecting hybridisation of two different
cDNA samples labelled with different fluorescent dyes on
the same array (typically Cy3 in the green channel and
Cy5 in the red channel).

Although there are now many published studies using
the Agilent arrays, there is a paucity of studies systemati-
cally investigating the reproducibility and sources of vari-
ation in this microarray platform. There is also relatively
little software for implementation of data preprocessing
for this platform. Using a set of data generated from this
array platform, we dissect the major contributors to
experimental variability within the data. We develop a
new R package (agilp) to extract data from Agilent raw
data files, and implement a robust Loess normalisation to
a mean of multiple experiments. This reduces variability
to a level which allows accurate and informative compari-
sons between array data sets collected at different times
and by different operators. We also demonstrate that the
low level expression detected by the Agilent arrays for the
majority of genes in any one cell type likely corresponds
to a genuine high degree of transcriptomic complexity,
and is unlikely to arise from weak non specific cross-
hybridisation. The results of the study thus give confi-
dence to studies which use this technology and quantify
important performance parameters which can be used to
optimise the design and interpretation of future tran-
scriptomic experiments.

Results

Impact of logarithimic transformation

We initially examined a set of 77 data sets ( arrays 1-77 in
Additional File 1, Table S1) collected in our laboratory
over a period of about three years. In each experiment the
Agilent human whole genome expression arrays were
probed with a mixture of two cDNA preparations labelled
with Cy3 and Cy5 respectively. The Cy3 sample in every
experiment was a sample of "reference” cDNA prepared
from the Stratagene Universal Human Reference reagent.
The same batch of reference RNA was used in all cases,
although several different batches of labelled cDNA were
made. The Cy5-labelled cDNA was prepared from RNA
extracted from monocyte derived macrophages or den-
dritic cells, or the Mutz-3 leukaemic cell line cultured
and/or stimulated in a variety of different ways. A sum-
mary of the cell type/experimental stimulus for each
array is provided in Additional file 1 Table S1. The Cy5
channel for this first set of arrays therefore always pro-
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vided data for the experimental sample, while the Cy3
provided data for the reference.

The raw output from the scanner shows a large
dynamic range from around 60 to 200000 arbitrary units.
These data are commonly log transformed prior to
manipulation, in order to make the standard deviation
(SD) independent of magnitude, and improve the fit to a
Gaussian normal distribution. Both these assumptions
were therefore tested on the set of reference arrays.

The relationship between SD and mean magnitude of
signal across the arrays for each array feature, using raw
and log, transformed data is shown in fig 1a. Using a sim-
ple linear model, the SD of the raw data can be seen to be
magnitude dependent (slope = 0.37, R? = 0.87). Log,
transformation substantially stabilises the SD (slope 0.16,
R2 = 0.55)(fig 1b). Further Loess normalisation as
described in detail below stabilises the SD even further
(slope = 0.06, R2 = 0.22).

The normality of the distribution of the signal across
the arrays was tested using the Shapiro Wilk test for each
probe individually. The fit varied widely for different
probes. However, the proportion of probes whose distri-
bution did not differ significantly from normality (p >
0.05) increased from 55% to 78% when Log, transformed
data were analysed. Log, transformed data were therefore
used for all further analysis.

Variation attributable to intra array "experimental error."
Variation in signal between features with the same probe
sequence (i.e. probe replicates) provides a good measure
of intra-array variation. This variation can be evaluated
using 263 oligonucleotides which are replicated 10 times
in different positions of the 4 x 4 Human genome Agilent
arrays, and a "negative control" oligonucleotide (3 x SLv1)
which is present 153 times. The average SD for each set of
10 replicates for each of these 263 probes (including the
negative control) was calculated. The calculation was
repeated for data from five randomly chosen arrays. The
average SD was 0.20 log, units for the Cy5 signal, and 0.16
log2 units for the Cy3 signal (Table 1). The Cy3 and Cy5
signal within each set of replicates within a single array
was highly correlated, suggesting the variation was due to
local differences (e.g. the efficiency of oligonucleotide
synthesis, or the position of the oligonucleotide within
the array). However, the SD represented only 2% of the
mean log signal for all these replicate probes, highlighting
the reproducibility and homogeneity of array construc-
tion. Further analysis used the within array average of
replicate probes.

Variation attributable to inter array experimental "error."

We next examined the variation which arises from exper-
iments involving different arrays. In order to isolate the
variation arising from technical variables (e.g hybridisa-
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Figure 1 The relationship between SD and magnitude of signal. The signal SD calculated for each probe from Cy3 data from 77 reference arrays
was plotted against the mean signal. The calculation of mean and SD was done either using raw median signal intensity (left plot) or log, (median

tion conditions, inter array variation etc.) from variation
arising from differences in the biological samples being
tested, we first analysed variation in the Cy3 signal, which
represents hybridisation of an identical biological sample
77 times (Table 1, second column). The average SD for
each probe across the arrays for the Cy3 signal was 0.56,
representing 6.6% of the mean signal. By comparison, the
SD for the Cy5 channel, which includes additional varia-
tion from biological variables (e.g. different cell type, dif-

ferent stimuli etc.), as well as unknown intrinsic

biological variability was 0.91 (Table 1).

Reduction in variability by normalisation via linear
regression

In order to reduce variability by correcting for systematic
differences between arrays we normalised the data by
simple linear or LOESS local linear regression against the

Table 1: Intra and inter array variation, before and after normalisation

Within Array’ Log transformed without Log transformed with linear Log transformed with LOESS linear
normalisation? regression normalisation23  regression normalisation23
SD Cy5 0.20 0.91 0.56 0.52
SD Cy3 0.16 0.56 0.31 0.24
Correl Cy5:Cy3 0.84 0.53 0.45 0.40
CoVar Cy5:Cy3 0.02 0.34 0.1 0.09
SD Cy5/Cy3# 0.13 0.64 043 0.38

1.The SD for Cy3 and Cy5, and the correlation and covariance between Cy3 and Cy5 signals, was calculated across all replicates for each probe
which is represented by multiple within array replicates. The Table shows the average of these SDs for all this subset of replicated probes, from

arandom sample of five arrays.

2.The SD for Cy3 and Cy5, and the correlation and covariance between Cy3 and Cy5 signals, was calculated for each probe across all 77 arrays,

and then averaged across all probes.

3. The data were first normalised as detailed in Text and Legend to fig 2
4.The SD of the ratio of Cy5/Cy3 signal was calculated using equation 1 in text.
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mean signal of all the samples (i.e. a model in which the
mean and the slope is held constant).

To illustrate the effect of the normalisation, the Cy3
probe signal intensities from two sample arrays are plot-
ted against the average probe signal calculated from all
the arrays (Fig. 2). It is evident that for the first array, the
linear fit is relatively good across the whole range of data,
but there is a systematic decrease in signal intensity
across the whole range relative to the mean (Fig.2a; R? =
0.93). The normalisation of this array by subtraction of
the regression model provided appropriate correction of
the signal values (Fig.2b). In the second example, the lin-
ear fit is less good (R% = 0.857), and a local linear regres-
sion model (LOESS ) gives a better overall fit (Fig. 2c).
The normalisation of this array by subtraction of the
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regression model provided appropriate correction of the
signal values (Fig.2d,e).

We applied both simple linear and LOESS local linear
regression (dividing up the range into 10 local data sets)
across the whole set of arrays. Using the normalised data,
we calculated the average SD for each probe (the gene-
wise SD) across the set of arrays (Table 1). Linear regres-
sion normalisation decreased the average SD of the Cy3
reference array data set to 0.31. LOESS normalisation
decreased the SD further to 0.24 (3% of the mean log
intensity for the whole array) . 95% of genes had a SD <
0.46 log2 units. The equivalent SD values for the experi-
mental (Cy5) data were also correspondingly decreased
(Table 1). We also evaluated quantile normalisation, the
preprocessing normalisation implemented in the widely

X

x is the mean Cy3 signal from each probe across all 80 arrays.

n

thick solid line shows the fitted LOESS regression.
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Figure 2 Data normalisation by linear regression. y,, is the Cy3 signal from each probe from array n;

y'n is the linear corrected Cy3 signal from each probe from array n given by:
y'n =Y,-((a + Bx)- x) where a and [3 are the intercept and slope of the linear regression of y,, on x.
y" is the Loess corrected Cy3 signal from each probe from array n given by:

y','l where aand {3 are the set of intercepts and slopes of the Loess linear regression of y, on x, dividing the range of x into 10 equal segments.
Panels a) and b) show data for n = 1. ), d) and e) show data for n = 3. The dashed line shows x = y; the solid line shows the fitted linear regression. The
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used Affymetrix RMA [3,4] method, which reduced the
average SD for the Cy3 channel to 0.29.

Further reduction of variation by normalisation via ratio to
the reference sample

We next examined whether using the ratio of experimen-
tal to reference signal for each probe introduces signifi-
cant further benefit, as reflected in a further reduction in
variation of the data. The SD of the difference between
the two data sets "reference" and "experimental” is given
by:

SD? (Difference ) = SD? (experimental ) + SD? (reference )

(1)

- 2* Covariance ( experimental ) ( variance )

The covariance between experimental and reference
signal was therefore calculated for each probe across the
set of arrays (Table 1). The average covariance for all
probes was then used to calculate the corrected SD of the
difference (ratio) between experimental and reference
data sets. Using the ratio for each probe slightly
decreased the overall SD of the normalised data (Table 1).
The "probe specific" normalisation therefore provides an
additional small benefit (in terms of reduction in variabil-
ity) over and above the global normalisation introduced
above.

Unexpectedly, for probes showing the biggest stimula-
tion indices (i.e. the greatest response to interferon), the
stimulation index in the green channel is positively corre-
lated to the stimulation index observed in the red chan-
nel. This effect is only seen at high stimulation indices,
and the correlation is lost once the difference in signal is
less than 3 log, units.

The phenomenon is illustrated in fig 3. LOESS norma-
lised data was obtained from two sets of arrays of human
macrophages, one from a sample of unstimulated mac-
rophages and one from macrophages stimulated for four
hours with interferon beta. The signal obtained in the
presence of interferon was then subtracted from that in
the absence of interferon (i.e. thus deriving the stimula-
tion index) for each gene. The top 50 stimulation indices
obtained in this way (i.e. those probes showing the big-
gest differences between samples) were plotted against
the ratios observed for the corresponding green reference
channel for the same probe (which should show no "stim-
ulation index", since they come from identical samples)
(fig 3). A similar apparent interference (enhancement) of
the green signal by a large change in red signal was
observed in several other independent experiments. In
order to test that the enhancement was not a result of
optical crossover (unlikely given the non-overlapping flu-
orescence spectra of Cy3 and Cy5), an array was hybri-
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dised with Cy5 labelled DNA only. The maximum signal
observed in the green channel was less than 1% of the
equivalent red signal, even at the highest levels of red flu-
orescence. The molecular basis for the interference
between binding of the two differentially labelled samples
remains unknown, but the phenomenon has implications
both for using red/green ratio measurements, and for
experimental design which are discussed further below.

Low intensity signals in Agilent array hybridisation

One feature of Agilent arrays is a very large number of
probes have a low signal value, close to, but significantly
above background. This is illustrated by a comparison
between the signal distribution obtained from one repre-
sentative sample compared to the distribution of the sig-
nal from the "negative control" probe provided by Agilent
(fig 4a,b).

These data might support a hypothesis that a large
number of genes are being transcribed in any one cell
type. However, the conclusion is reliant on the the nega-
tive control supplied by Agilent. We therefore tested the
hypothesis independently. In view of the very large evolu-
tionary distance between Arabidopsis and humans, and
the process of Agilent selection of probe sequences so as
to avoid repetitive elements or highly conserved common
sequences, we predicted that the plant RNA samples
should show very little true hybridisation to the arrays. In
contrast, if the low level signals were as a result of ran-
dom low stringency interactions, this should occur to a
similar extent using the plant as the human samples. The
log signal frequency distribution for the average of three
Arabidopsis samples (the data could not be normalised in
the same way, since the assumptions that the mean signal
is the same is obviously false) was compared to the signal
distribution for human samples (fig 4c). The majority of
the probes from the arrays hybridised to the Arabidopsis
samples gave signals close to or just above the back-
ground probe.

The data from the Arabidospis samples could be used
to calculate an upper limit for "false positive" detection,
and hence estimate the proportion of probes showing real
positive signals with the human samples (fig 5). In order
to analyse the data, we calculated the% of probes showing
a positive signal at a range of arbitrary cut-offs above the
background probe signal. As discussed above, the %
probes showing a positive signal falls off slowly as the cut-
off is increased, remaining above 60% up to 0.6 log units
above background. In contrast, the % probes showing a
positive signal with the plant array samples fell off sharply
with cut-off. For example, at a cutoff of 0.5 log units
above background, less than 5% probes gave a positive
signal, in contrast with 65% when using the human sam-
ple.
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Figure 3 Interference between Cy3 and Cy5 sample signal. Loess normalised log, data obtained from a sample of RNA from unstimulated mac-
rophages was subtracted from data from a sample of RNA from macrophages stimulated with IFNB. The differences in signal in the Cy3 channel are
plotted against the equivalent differences in Cy5 channel. The plot shows data for all genes showing a difference (i.e. stimulation index) of >4 log,
units (blue), those genes showing a difference of 3-4 log, units (brown) and those genes showing a difference of 2.5-3 log, units. The linear regression
line and correlation coefficient for each set of genes was analysed separately.
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Array reproducibility viewed through multidimensional
scaling

Having established the basic parameters of error/variabil-
ity, we examined whether global patterns of gene expres-
sion were reproducible and robust when comparing data
collected over a time period of several years, and by dif-
ferent operators. The same data set of arrays log, trans-
formed and Loess normalised as detailed above were
analysed using classical multidimensional scaling (MDS),
a powerful unsupervised approach to identify relation-
ships between sets of arrays. Since the distance matrices
are based on Euclidean distance metrics this analysis is
mathematically equivalent to Principal Component Anal-
ysis.

A first step in MDS is to establish the number of
dimensions which provides a reasonable compromise
between preserving the main features of the data, and
minimising complexity. One common approach is to plot
the principal eigenvalues (or SDs) to look for an obvious
"step" in the slope (fig 6a). There appear to be discontinu-
ities at dimension 4 and again at 10/11. We therefore cal-
culated the goodness of fit parameter P, for different
numbers of dimensions (fig 6b):

ST o

K is the number of dimensions, n is the number of
arrays, and A, is the ith eigenvalue. A value of around 0.8
(at which around 80% of the SD has been accounted for)
has been proposed as a good cut-off for adequately repre-
senting the original data (e.g.[5] ). Ten dimensions were
therefore analysed. The justification for including this
unusually large number of dimensions is discussed fur-
ther below.

We first examined the distribution of arrays from the
point of view of cell type (fig 7). The range of y values
decreases with increasing dimension, illustrating the
expected decrease in overall variance. The major cell
types are clearly segregated within the first few dimen-
sions. Dendritic cells and macrophages are well separated
in the first dimension, irrespective of stimulus, or other
experimental variable. The dendritic cells derived from
the Mutz3 myeloid leukaemic cell line [6] map with den-
dritic cells in the first dimension but segregate away in
dimension 3. The variance in dimension 2, in contrast,
seems to reflect differences largely unrelated to cell type.
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We next examined the distribution in relation to stimu-
lus (fig 8). The dendritic cell response to LPS is clearly
identified in dimension 3 and 4. Interestingly, a set of 3
non-stimulated dendritic cell cultures also co-cluster
with the lipopolysaccahride (LPS) activated cells. Further
inspection revealed that these three cultures were derived
from monocytes all from the same individual, suggesting
that these dendritic cells may have been already "acti-
vated" prior to addition of LPS. Such "spontaneously acti-
vated” dendritic cells are a common observation in our
experience. A second interesting observation is that the
impact of LPS on macrophages (fig 8b) is seen in dimen-
sions different to that for dendritic cells (fig 8a) (i.e. not in
dimension 3, but clearly in dimensions 7 and 9 ). These
results suggest that the transcriptional response of mac-
rophages and dendritic cells to the same stimulus is made
up predominantly of different sets of genes.

We carried out two additional sets of hybridisations to
test the reproducibility of the arrays over time. Two old
samples of macrophage RNA (LPS stimulated ) were rela-
belled in Cy3, and hybridised to new arrays together with
old stored Cy5 labelled samples . The old and new arrays
cocluster, irrespective of dye labelling or long term stor-
age (fig 9a). In particular, all three sets clearly cocluster
with the LPS response group within the key "macrophage
LPS response " dimensions 7 and 9. Interestingly, the dif-
ferent repeats do segregate away from each other in other
dimensions (e.g. 4), suggesting that differences due to
experimental protocol can be distinguished from true
biologically interesting changes using this multidimen-
sional approach to data analysis.

In addition, we analysed a set of 12 newly prepared
Mutz-3 derived dendritic cell arrays (fig 9b) including a
set of three additional unstimulated cultures (i.e. biologi-
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cal replicates). All twelve sets cocluster with the old
Mutz-3 dendritic cells in dimensions 1 and 3 (i.e. away
from monocyte derived DC in dimension 3). Experimen-
tal variation which may reflect batch differences between
the first and second set of experiments is also detectable
in higher dimensions (not shown).

Discussion

In this study, we have developed a pipeline for processing
and analysis of data obtained using the Agilent human 44
K expression array platform. We have assessed commonly
adopted preprocessing computational procedures, tested
reproducibility of the method and the determinants of
variability. Interestingly, investigation of the true back-
ground signal intensity, suggested that there is low-level
transcriptional activity across most of the genome even in
highly differentiated macrophages and dendritic cells.
Finally, we have illustrated the application of multidimen-
sional scaling to interrogate complex relationships
between individual expression profiles in a large data set.

We confirmed that logarithmic transformation of the
raw data facilitates downstream data processing by signif-
icantly reducing the dependence of the SD on the signal
intensity, and by improving approximation to a normal
distribution for many probe signals. Log, transformation
did not completely standardise variance vis a vis intensity,
and in situations where this becomes critical, additional
more complex alternative transformations can easily be
incorporated e.g. [7].

A large number of different approaches to data normal-
isation have been explored in order to improve the repro-
ducibility of array data, particularly with the objective of
comparing data generated from different experiments [8-

12] . Many of these were designed for the Affymetrix
platform (e.g. RMA, dCHIP, GCOS) and are not readily
implemented for the Agilent platform . Nevertheless, we
compared the Loess normalisation used in this study to
the quantile normalisation which is the basis for data pre-
processing in RMA and RMA based packages [3,4].
Quantile normalisation and LOESS normalisation
reduced the average standard error of the data similarly.
However, as discussed in the original implementation of
the RMA normalisation algorithm [3], quantile normali-
sation may "overnormalise” giving identical or very simi-
lar values at the extremes of the quantile range. This
problem is less serious in dealing with data from the
Affymetrix platform, which uses multiple probe sets per
gene, and has inter probe variances often greater than the
inter array variance. One of the most detailed published
comparisons of alternative normalisation approaches did
also include a baseline Loess normalisation procedure
similar to the one used here [3]. The study found rela-
tively subtle differences between normalisation tech-
niques, but did not report absolute levels of error,
rendering comparison difficult.

The use of two colour ratio normalisation, which is
possible with the Agilent platform but not Affymetrix, is
in fact implemented in the proprietary normalisation
supplied by Agilent. The advantage of this normalisation,
over global array normalisations, is that it can theoreti-
cally correct for probe specific systematic errors. How-
ever, as shown in equation 1, ratios decrease variance
only when correlation between channels is high, and
noise in the "reference" channel is small. Previous studies
have in fact suggested that the Agilent normalisation pro-
tocol is sub-optimal. In fact, as illustrated in Table 1, the
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Figure 7 MDS representation of first set of arrays. In each plot, the y axis represents the MDS score; a small x axis value is randomly introduced for
each point in order to minimise overlap. Each dot represents one array. grey: DC; black: M3DC; red: MDM.

actual decrease in variance observed by introducing ratio
normalisation with the two colour array signals is very
modest. This modest gain needs to be weighed against
disadvantages of the ratio measure. Firstly, ratios behave
counter intuitively in terms of biological processes at
both extremes of the signal range, adopting increasingly
large negative values which tend to infinity as the experi-
mental signal approaches zero. Secondly, we detected an
unexpected interaction between independent Cy3 and
Cy5 signals at high signal intensities, although the mecha-
nisms remains unclear. Although the effect is only seen
for a small number of genes, it may nevertheless prejudice
the outcome of experiments which use a reference sample
in one channel. Overall, the use of the two colour format
to run a reference array for each experimental sample is
not supported by our study, a conclusion in line with pre-
vious studies [13].

In summary, the preprocessing steps implemented in
this study significantly reduce the variation due to experi-

mental, rather than biological variation. This value pro-
vides a good estimate of the overall SD of the signal
attributable to the various sources of intrinsic "experi-
mental error”. Given the Gaussian nature of log signal
variation for most probes, differences between experi-
ments of one log, unit should be detectable even with
rather low sample sizes. However, future studies using
spike-in controls, and including comparisons to q-PCR
data will be required to validate the analysis given here,
and to determine the true discriminatory power of the
data. More precise modelling, using probe specific vari-
ances computed from the large set of reference arrays, or
more sophisticated Bayesian inference [14]may further
improve the quality of the data.

The presence of a very large number of probes showing
low level hybridisation prompted us to try and distin-
guish background from low level gene transcription.
Hybridisation of the Arabidopsis samples established a
realistic background cut-off to determine the boundary at
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Data processing
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Figure 10 Pipeline for data collection, processing and analysis as implemented in this study.

which genes may be considered to be ON or OFF, and
showed transcriptional activity for approximately 70%
within human macrophage samples. This degree of tran-
scriptional diversity suggests transcription is going on
across the majority of the genome even in a single cell
type, and is in accord with recent estimates of cell tran-
scriptional complexity obtained from deep sequencing
[15,16], and also with the recent upward revision of esti-
mates of the frequencies of transcriptional start sites
within the human genome [17]. This data cannot how-
ever address the question of whether the mRNA message
are translated or even complete.

In general, the power of genome-wide arrays lies in its
ability to define a global transcriptomic response, made
up of complex patterns of interacting genes. In order to
analyse the extent to which these patterns remained
reproducible and robust in the face of experimental error
and variation, we used MDS which is equivalent to prin-
cipal component analysis for continuous Euclidean dis-

tance measurements and retains more of the information
than conventional hierarchical clustering.

MDS analysis of the macrophage/dendritic cell data set
(after Loess normalisation) confirmed that the key under-
lying structure of the data set is robust, and that sample
relationships are conserved even when samples are col-
lected at different times, and by different operators. For
example, the distinction between macrophages and den-
dritic cells, between normal and leukaemic dendritic
cells, and between resting and LPS stimulation were all
very robust to underlying experimental variation. Of
interest, the biologically meaningful variables such as
those described above, usually segregated from the "arti-
factual” variables (such as when the experiments was car-
ried out, or the array format) into a different dimension.
Since the MDS axes are orthogonal this suggests that the
biological and artifactual variables are often determined
by non-overlapping sets of gene probes, and the identifi-
cation of these genes is the subject of on-going analysis.
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Conclusion

Agilent long oligonucleotide expression arrays represent
a robust and increasingly affordable tool for mapping
transcriptional activity within the majority of human
open reading frames. With correct data processing and
normalisation, the genewise variability can be reduced to
a few % of the average signal intensity. The pipeline of
protocols for data collection, processing and subsequent
analysis developed in this study (fig 10) allows robust, and
reproducible identification of small gene differences, and
reliably preserves the complex transcriptomic relation-
ships associated with important biological variables.
Importantly, the common custom of using ratios of sig-
nals in the two channels is shown to be redundant, and
indeed in certain situations, to reduce the sensitivity of
the analysis. Furthermore, the sensitivity of the system
allows detection of a large number of low abundance
transcripts and confirms the widespread transcriptional
activity even within a single cell type.

Methods

Sample collection. The methods for human cell sample
collection, array hybridisation and sample collection have
all been described previously [18,19]. A summary of all
the samples used is given in Additional File 1 Table S1.

The reference sample is the Stratagene Universal
Human Reference reagent, which consists of a mixture of
RNA from ten different human cell lines (#740000, Strat-
agene, Agilent Technologies, Stockport, UK).

Seeds of Arabidopsis thaliana (L.) Heynh. were
obtained from the Nottingham Arabidopsis Stock Centre.
Plants were grown on 0.8% agar with 0.25 x MS salts,
adjusted to pH 5.6 with NaOH, under conditions
described previously [20]. At 19 days after sowing, non-
senescent, fully-expanded rosette leaves were pooled
from 8-22 plants and snap-frozen at -70°C. The experi-
ment was triplicated in three sequential blocks. RNA was
initially extracted from tissue samples using a modified
TRIzol extraction method [21]. Extracted total RNA was
then purified using the RNA Cleanup' protocol for
RNeasy columns with on-column DNase digestion to
remove residual chromosomal DNA (Qiagen, Crawley,
West Sussex, UK).

Labelled cRNA samples were generated from RNA
samples using the Low RNA Input Fluorescent Linear
Amplification Kit according to the manufacturer's
instructions (Agilent Technologies, Santa Clara, CA,
USA). cRNA was synthesised from the double-stranded
c¢DNA using T7 RNA polymerase, incorporating Cyanine
5-labelled CTP fluorescent dyes (PerkinElemer Life and
Analytical Sciences, Boston, MA, USA). Labelled cRNA
samples were cleaned using the RNA Cleanup' protocol
for RNeasy columns (Qiagen) performed at 4°C and
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eluted using two 30 pL volumes of nuclease-free H20.
Mean dye incorporation for labelled cRNA was 19.53 (+
1.99 SEM, n = 3) pmol dye pg-1 cRNA.

Hybridisation of the Agilent 4 x 44 K whole human
genome ¢cDNA microarrays according to manufacturer's
instructions http://www.agilent.com. Array images were
acquired with Agilent's dual-laser microarray scanner
G2565BA (5 p resolution) and signal data were collected
with dedicated Agilent Feature Extraction software
(v9.5.1).

The original scanner output files and the normalized
microarray data (see below) have been submitted to the
ArrayExpress database http://www.ebi.ac.uk/arrayex-
press, accession number E-TABM-942). A summary of
the samples is given in supplementary Table S1.

The R code for the extraction of raw data from scanner
files, removal of duplicates, and Loess normalisation, is
available (as function "AAProcess" in package agilp) from

the R CRAN repository. http://cran.r-project.org/web/
packages/.

The statistical analysis was mostly carried out in R. The
functions Shapiro.test and ks.test were used to test for
normality. Multidimensional scaling was carried out
using the functions distanceMatrix (using Euclidean dis-
tance) from the package ClassDiscovery, part of the
OOMPA  suite of libraries http://bioinformat-
ics.mdanderson.org/Software/OOMPA/, and the func-

tion cmdscale from the stats package.

Additional material

Additional file 1 Table S1: The details of all the arrays analysed in this
study. An Excel file containing the basic experimental annotation for each
array analysed, together with a data base identifier.
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