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Accuracy of dementia diagnosis—a direct comparison
between radiologists and a computerized method
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There has been recent interest in the application of machine learning techniques to neuroimaging-based
diagnosis. These methods promise fully automated, standard PC-based clinical decisions, unbiased by variable
radiological expertise. We recently used support vector machines (SVMs) to separate sporadic Alzheimer’s
disease from normal ageing and from fronto-temporal lobar degeneration (FTLD). In this study, we compare
the results to those obtained by radiologists. A binary diagnostic classification was made by six radiologists
with different levels of experience on the same scans and information that had been previously analysed with
SVM. SVMs correctly classified 95% (sensitivity/specificity: 95/95) of sporadic Alzheimer’s disease and controls
into their respective groups. Radiologists correctly classified 65-95% (median 89%; sensitivity/specificity: 88/90)
of scans. SVM correctly classified another set of sporadic Alzheimer’s disease in 93% (sensitivity/specificity:
100/86) of cases, whereas radiologists ranged between 80% and 90% (median 83%; sensitivity/specificity: 80/85).
SVMs were better at separating patients with sporadic Alzheimer’s disease from those with FTLD (SVM 89%;
sensitivity/specificity: 83/95; compared to radiological range from 63% to 83%; median 71%; sensitivity/specificity:
64/76). Radiologists were always accurate when they reported a high degree of diagnostic confidence. The results
show that well-trained neuroradiologists classify typical Alzheimer’s disease-associated scans comparable to
SVMs. However, SVMs require no expert knowledge and trained SVMs can readily be exchanged between
centres for use in diagnostic classification. These results are encouraging and indicate a role for computerized
diagnostic methods in clinical practice.
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Introduction These methods promise fully automated, standard PC-based
There has been recent interest in the application of  clinical decisions, unaffected by individual neuroradiologi-
machine learning techniques to neuroimaging diagnosis.  cal expertise. Such methods have increasingly been applied
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to a number of diagnostic problems in neuroimaging ranging
from gender-based classification (Lao et al., 2004) to a variety
of diseases including Alzheimer’s disease and mild cognitive
impairment (MCI) (Kawasaki et al, 2007; Teipel et al.,
2007a, b; Davatzikos et al., 2008b; Fan et al., 2008).

We recently used support vector machines (SVMs) to
solve the problem of separating mild to severe sporadic
Alzheimer’s disease from normal ageing and from fronto-
temporal lobar degeneration (FTLD) with structural MRI
(Kloppel et al., 2008b). SVM-based classification can be
seen as a two-step procedure. In a first step, SVMs learn the
differences between two diagnostic groups (i.e. Alzheimer’s
disease and healthy controls or Alzheimer’s disease and
FTLD). This knowledge is then tested on a new brain scan,
not used in the training procedure. This test scan will only
be assigned to the correct group if group separation is
based on disease-related changes. Neuropathological exam-
ination served as a gold standard against which classifica-
tion accuracy was compared. Given that neurodegeneration
primarily affects grey matter (GM), we first extracted GM
segments from T1-weighted brain scans and normalized
them into standard anatomical space. Such segments
contain several thousand voxels. After pre-processing, each
voxel reflects the magnitude of the local GM volume. SVMs
are multivariate in nature and so information from all
available voxels is combined to reflect differences between
groups. During this training process, those subjects that are
most difficult to separate are used to define the ‘boundary’
between the diagnostic groups.

Using a whole brain, GM-based SVM, we achieved up to
95% correct classification (range = 87.5-95%) depending on
the patient group. These results have been subsequently
confirmed by others (Davatzikos et al., 2008c) and indicate
a performance equal to or better than that achieved by
radiologists (Wahlund et al., 2005). A retrospective compa-
rison of SVM results with radiological expertise reported in
the literature would be imprecise. The severity of degen-
eration, technical image quality, the availability of addi-
tional clinical information and the frequency of each
diagnostic group in any sample could all bias such a
comparison. We therefore undertook a direct prospective,
blinded comparison of diagnostic accuracy between radi-
ologists and the automated SVM-based method using the
same scans and associated clinical information.

Material and Methods

Three imaging datasets were rated by six radiologists with dif-
ferent levels of experience in the diagnosis of dementia. Three
radiologists were based at the Mayo Clinic (Scottsdale, USA), one
was a visiting radiologist from Melbourne University (Australia)
to the Dementia Research Centre (UCL Institute of Neurology,
London, UK), one worked at the Hurstwood Park Neurosciences
Centre (UK) and one at the Department of Neuroradiology
(Freiburg, Germany). All had at least 6 years experience of clinical
radiology. Four were neuroradiologists who routinely saw brain
scans, which comprised >40% of their workload; two were general
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radiologists who estimated that brain scans comprised <5% of
their daily workload. They thus reflected the range of expertise
encountered in typical clinical settings.

The first image set, from a community and referral-based
sample in Rochester, Minnesota, USA, comprised 20 sporadic
Alzheimer’s disease and 20 matched controls with a mean age
of 80 years (range: 51-102); the great majority were older than
75 years. All sporadic Alzheimer’s disease diagnoses were neuro-
pathologically confirmed according to criteria formulated by a
working group of the National Institute on Aging and the Reagan
Institute of the Alzheimer’s Association (NIA-RIA, 1997). Scans
were excluded from analysis if they showed gross structural
abnormalities other than atrophy. Diagnostic assignation was
based on the combined results of medical history, clinical
examination, psychometry and neuropathology. Criteria for
diagnosis of normal cognition were independently functioning
community membership with (i) no active neurological or psy-
chiatric disorder; (ii) no psychoactive medication; (iii) a normal
neurological examination; and (iv) no ongoing medical problem
and (v) no associated treatment that might interfere with cognitive
function (Jack et al., 2004).

The second set comprised 18 pathologically proven sporadic
Alzheimer’s disease scans and 19 scans from patients with
pathologically proven FTLD, matched for age, scanner and mini
mental state examination (MMSE) score. The Alzheimer’s disease-
patients all fulfilled NINCDS-ADRDA criteria for definite
Alzheimer’s disease in that the clinical diagnoses were confirmed
histopathologically after cerebral biopsy or at autopsy (McKhann
et al., 1984) according to Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) (Mirra et al., 1991) and NIA-RIA
criteria (NIA-RIA, 1997). There was no clear family history in any
subject. All FTLD patients were diagnosed according to consensus
criteria (Neary et al., 1998) into one of the three FTLD subtypes
during life: nine patients had behavioural-variant FTLD, eight had
semantic dementia and two had progressive non-fluent aphasia.
In total, there were eight patients with tau-positive pathology
and 11 patients with ubiquitin-positive, tau-negative pathology,
diagnosed according to consensus pathological criteria (McKhann
et al., 2001); behavioural-variant FTLD (five tau-positive, four
ubiquitin-positive), semantic dementia (two tau-positive, six
ubiquitin-positive) and progressive non-fluent aphasia (one tau-
positive, one ubiquitin-positive). FTLD patients tended to be
younger than Alzheimer’s disease patients in this group, but not
significantly so (P=0.1).

The third set comprised patients referred to a specialist centre
who underwent appropriate specialist diagnostic workup and for
whom there was a pathological diagnosis. There were 14 sporadic
Alzheimer’s disease cases in this set (taken from the second set),
most of whom were younger than 75 years at onset, and matched
controls (mean age 64, range 51-85). The 14 sporadic Alzheimer’s
disease cases were selected to match them to the controls in terms
of age and scanning equipment (see below). Controls were
considered cognitively normal if there was no evidence of
abnormality on clinical examination at follow-up or if histological
material confirmed the absence of Alzheimer-related change.
Demographic details are presented in Table 1.

Scans from the first set were obtained with 11 different General
Electric Signa 1.5T scanners (T1-weighted image parameters:
TR=23-27ms, TE=6-10ms, flip angle 25° or 45°, voxel size
0.86mm x 0.86 mm x 1.6 mm or 0.94mm x 0.94mm X 1.6 mm,
matrix dimensions 256 x 192). The major hardware elements
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Group (n) Sporadic Alzheimer’s Sporadic Alzheimer’s Sporadic Alzheimer’s
disease setl/controls disease set2/FTLD disease set3/controls
Alzheimer’s Controls (20) Alzheimer’s FTLD (19) Alzheimer’s Controls (14)
disease (20) disease (I8) disease (14)

Sex (F/M) 1179 10/10 6/12 8/l 5/9 5/9

Age (mean, range) at 81.0 (51-102) 79.5 (55-91) 66.0 (53—-85) 61.7 (46-73) 65.0 (53-85) 63.0 (51-8I)

MRI-scan
MMSE-score (mean, range) 16.7 (7-29) 290 (27-30) 16.2% (5-29) 18.0 (0-26) 16.17 (10-20) 29.2 (28-30)
Years from MRI-scan to 1.7 (0.2-34) NA 3.5(0.3-72) 5.8 (1.3-11.0) 3.6 (0.3-72) NA

death (mean, range)

*MMSE scores obtained around the time of scanning only available from 12 subjects.

(body resonance module, gradient coil and birdcage-head
transmit-receive volume coil) were unchanged throughout time
and across all scanners. For sets two and three, data were acquired
from three different 1.5T scanners from different manufactures.
Image parameters were TR=35 or 15, TE=5 or 5.4 or 7, flip
angle 35° or 15°. Scanners and scanning parameters were balanced
across groups and within groups as well as between Alzheimer’s
disease patients and FTLD patients. This criterion was achieved by
excluding four Alzheimer’s disease subjects from the third set
compared to the control group. Because the mix of scanners
used was different for normal elderly controls and FTLD subjects,
the same four Alzheimer’s disease subjects were included for
comparison between Alzheimer’s disease and FTLD subjects
(second set) to maintain an equal balance of scanners between
groups. See Kloppel et al. (2008b) for further details.

To allow a fair comparison, radiologists were provided
information about the age range of patients and controls and
informed that the two diagnostic categories for differentiation
were age matched and equal in number. In other words,
radiologists were not told the age for each scan but only for the
group as a whole (but see our additional analysis below). The
radiologists made categorical decisions on each scan to mimic
SVM-based diagnoses. They were also asked to rate their level of
diagnostic confidence (low, intermediate or high). Radiologists
rated the datasets in the order they are listed above. We disclosed
the diagnosis of a third of patients and controls to the radiolo-
gists for the third dataset so as to mimic the training of an SVM,
which uses exemplars for that purpose that are themselves similar
to those categorized. Diagnoses were disclosed just before radiol-
ogists started with this third dataset but not before completing
categorization of the other two sets. Disclosed cases were randomly
chosen ensuring that equal numbers of cases and controls were
selected and these subjects were not included in scoring. No time
limit was set. All radiologists viewed all scans and were asked to
diagnose scans in order and to avoid a comparison of their results
with the opinions of other radiologists. We report accuracy,
sensitivity and specificity (considering a detected Alzheimer’s disease
patient a true positive) with median and range for each set
separately. The SVM results are taken from our previously reported
study for comparison (Kloppel et al., 2008b).

Results

One radiologist separated the first set of sporadic
Alzheimer’s disease cases from cognitively normal subjects

as accurately as the SVM; otherwise, the SVM performed
better than radiologists (see Table 2 and Fig. 1).
Radiological diagnostic accuracy increased substantially
(reaching 100%) when high diagnostic confidence was
expressed. To evaluate the effect of experience, defined as
the percentage of brain scans in their daily workload, we
correlated this figure with diagnostic accuracy. A significant
correlation indicated that classification accuracy improved
with the level of experience (Fig. 2) for sporadic
Alzheimer’s disease cases in set 1 (Spearman’s r=0.90;
P=0.007, one-tailed) and when sporadic Alzheimer’s
disease had to be separated from FTLD (r=0.77;
P=0.036). No such correlation was found for the third
dataset. The time required to classify all three datasets
ranged from 70 min to 510 min (median = 198).

Since we sought to compare diagnostic ability directly
between radiologists and the computer-based method, we
did not provide information usually available in clinical
practice, such as age. To exclude any significant effect of
such an omission, five radiologists repeated their classi-
fication on the second dataset (FTLD versus Alzheimer’s
disease) after learning the age of each subject and the
diagnosis of a third of them. Wilcoxon signed rank test
shows no significant improvement in accuracy [with age
information and training: median accuracy 72.40% (range
62.7-82.8); without age information or training: 64.9%
(range 56.8-83.8)].

Discussion

The results we present indicate that computer-based
diagnosis is equal to or better than that achieved by
radiologists. This result has a number of implications
that suggest a general adoption of computer-assisted
methods for MRI scan-based dementia diagnosis, which
should be seriously considered. The most important of
these are: (i) improving diagnosis in places where trained
neuroradiologists or cognitive neurologists are scarce;
(ii) increasing speed of diagnosis without compromising
accuracy by eschewing lengthy specialist investigations
and (iii) recruitment of clinically homogeneous patient
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Table 2 Diagnostic performance of radiologists reported with median and range (in square brackets)

Sporadic Alzheimer’s

Sporadic Alzheimer’s
disease set 2/FTLD

Sporadic Alzheimer’s

disease set 3/controls

disease set I/controls

Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Sensitivity

Accuracy

85.0 (66.4-95.3)

641 (474-793) 710 (55.6—-85.6) 82.5 (62.4-93.2) 80.0 (58.5-91.0)

Radiologists (95% Cl) 88.8 (754-96.8) 875 (72.4-95.3) 900 (754-96.7) 68.6 (50.1-8.5)

[80.0-100.0]

[80.0-90.0]
100.0 (73.2-100) 85.7 (56.2-97.5)

[80.0-90.0]

[56.8-83.8] [579-90.0] [55.6—83.8]

892 (73.6-96.5) 83.3 (577-95.6) 94.7 (719-997) 92.9 (75.1-98.8)

[60.0-95.0]
95.0 (73.1-997)

[70.0-95.0]

95.0 (73.-997)

[65.0-95.0]
95.0 (81.8-99.)

[range]
SVM (95% Cl)

95% confidence intervals (Cls, in parentheses) are calculated according to the efficient-score method (Newcombe, 1998; http://faculty.vassar.edu/lowry/clinl.html). For radiologists, Cls

are reported for the median of all radiologists. Cls were based on 20 subjects in the third dataset for radiologists as one-third of diagnosis was disclosed.
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populations for pharmacological trials. A significant corre-
lation between accuracy and experience is very under-
standable and speaks to a need for specialization, especially
in dedicated cognitive neurology clinics. However, primary
care and local referral play an important role in the
diagnosis of a disease as common as Alzheimer’s disease.
In this context, computerized methods may be especially
helpful for screening purposes. Screening of the worried
and those with MCI are other possible applications, but
direct validating studies will be necessary to extend the
conclusions of our results to these diagnoses.

All radiologists achieved a relatively high accuracy on
the third dataset (see Table 2 and Fig. 1). Figure 2 suggests
that disclosing the diagnosis of a third of cases in set 3
may have helped the less-experienced radiologists as they
score in a range similar to that of experienced radiologists.
Interestingly, this effect was absent when these radiologists
repeated the separation of Alzheimer’s disease and FTLD
after a subset was disclosed. It is possible that pathological
changes separating Alzheimer’s disease from healthy aging
can be picked up more easily from a few examples than the
differences between two types of dementia.

Given the diagnostic accuracy achievable, machine
learning-based categorization methods, such as the SVM
technique, we have evaluated and now compared to
radiological expertise, substantially extend the role of
computers in clinical decision making (Ashburner et al.,
2003). Clearly, experienced radiologists working under
ideal conditions are very accurate if confident of a
diagnosis. However, the computerized method does not
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Fig. 2 lllustration of the correlation between experience (given as the percentage of brain scans out of all scans in daily routine practice)

and accuracy. sAD = sporadic Alzheimer’s Disease.

depend on experience, though crucially it does depend on
an appropriately and accurately validated image data for
training. Our previous study (Kloppel et al., 2008b) was
the first to use pathological confirmation of diagnosis as
a criterion for inclusion of scans into the training set.
This choice of gold standard limited the number of
mildly affected subjects in the training set and hence
any conclusion can be drawn from this study. The
separation of moderately affected sporadic Alzheimer’s
disease subjects from controls and other types of dementia
is clinically useful but extension of inferences to the mildly
affected is less certain. While it can be argued that the
100% sensitivity of SVMs on the third dataset indicates
that even the few mild sporadic Alzheimer’s disease cases
were correctly identified, the inclusion of such cases made
group separation more difficult in the eldest and resulted
in the two controls of greatest age being misclassified
as Alzheimer’s disease sufferers. From the first set, a single
Alzheimer’s disease case was wrongly identified as a
control by SVMs. Interestingly, an MMSE score of
29 indicated that this subject was very mildly affected.
The application of automatic classification methods to a
large set of mildly affected Alzheimer’s disease cases will be
an important next step in the development of the method.

Our proof-of-principle study (Kloppel et al., 2008b)
shows that an SVM trained on validated scans from one
imaging centre can be used successfully to classify structural
images obtained elsewhere. The results of this study
underline the importance of MRI scans in the diagnosis
of dementia (Scheltens et al., 2002; Ashburner et al., 2003;
Frisoni et al., 2003; Teipel et al., 2008). They indicate that
a validated MRI-based SVM is more accurate than the
average clinical diagnosis of probable Alzheimer’s disease
even when based on well-established diagnostic criteria
(Knopman et al., 2001).

What is needed now are large numbers of well, ideally
pathologically, defined scans from a range of different
diseases. Those scans could then be used to train SVMs
either for differential diagnosis or for comparison against
healthy controls. The trained SVMs could then be
exchanged between different imaging centres to aid clinical
diagnosis. Such well-defined scans are also needed to
identify the optimal number of scans required to con-
struct an SVM that performs optimally in classification.
Our preliminary analysis suggests that performance declines
when fewer than 20 subjects are included from each
diagnostic group (Kloppel et al., 2008a) but the number is
likely to depend on the extent and variability of disease-
specific changes in brain structure. Large-scale imaging
initiatives, such as the Alzheimer’s Disease Neuroimaging
Initiative (Mueller et al., 2005) which provide unrestricted
access to image data (Butcher, 2007) are an important
resource in this regard. While they are not currently
associated with pathological features, there are increasing
numbers of MCI patients who convert to Alzheimer’s
disease. The detection of MCI is another important
potential application of classification-based methods
(Fan et al., 2008).

In the clinical setting, a new scan could be compared
against a number of trained SVMs to further explore their
diagnostic usefulness and the sensitivity of the classification
method. Although good clinical screening will limit the
number of diagnostic choices, they are often larger than in
this study where the choice was limited to two types of
dementia and to healthy aging.

There is already a variety of fully automatic scan-based
diagnostic tools described (Davatzikos et al., 2008a; Teipel
et al., 2007b; Vemuri et al., 2008) and it is likely that
even better methods may become available in the future.
New methods are needed to provide a probabilistic rather
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than categorical classification framework that adds a level
of confidence to a diagnostic decision.
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