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ABSTRACT 

This thesis presents a study on an adaptive traffic signal controller for real-time operation. 

An approximate dynamic programming (ADP) algorithm is developed for controlling traffic 

signals at isolated intersection and in distributed traffic networks. This approach is derived 

from the premise that classic dynamic programming is computationally difficult to solve, and 

approximation is the second-best option for establishing sequential decision-making for 

complex process. The proposed ADP algorithm substantially reduces computational burden 

by using a linear approximation function to replace the exact value function of dynamic 

programming solution. Machine-learning techniques are used to improve the approximation 

progressively. Not knowing the ideal response for the approximation to learn from, we use the 

paradigm of unsupervised learning, and reinforcement learning in particular. Temporal-

difference learning and perturbation learning are investigated as appropriate candidates in the 

family of unsupervised learning. We find in computer simulation that the proposed method 

achieves substantial reduction in vehicle delays in comparison with optimised fixed-time 

plans, and is competitive against other adaptive methods in computational efficiency and 

effectiveness in managing varying traffic. Our results show that substantial benefits can be 

gained by increasing the frequency at which the signal plans are revised. The proposed ADP 

algorithm is in compliance with a range of discrete systems of resolution from 0.5 to 5 

seconds per temporal step. This study demonstrates the readiness of the proposed approach 

for real-time operations at isolated intersections and the potentials for distributed network 

control.  
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CHAPTER 1 INTRODUCTION 

The last three decades saw steady growth in car ownership and road traffic worldwide. In 

the United Kingdom, the Department of Transport (2009) reported that total road traffic 

increased by 87 per cent between 1980 and 2007, from 277 to 517 billion vehicle kilometres 

per annum. The majority of the growth has been in car traffic, which has risen by 88 per cent 

since 1980, from 215 to 404 billion vehicle kilometres. Trends with similar magnitude were 

seen in other major industrial countries as well as in emerging economies.  

Rising road traffic intensifies the degree of congestion in road network, which in result 

causes prolonged travel time to the general public, adds extra cost to economic activities, and 

raises the pressure on road safety and environment. Congestion effect in the U.K., using the 

current government method of evaluation, is that the annual cost of £20 billion would increase 

to £30 billion by 2010 (Goodwin, 2004). In the USA, traffic congestion caused $78 billion 

annual drain on economy in the form of 4.2 billion lost hours and 11 billion litres of wasted 

fuel (Texas Transportation Institute, 2007). Congestion cost reached 267 billion Euro per 

annum for the EU-17 in 2000 (INFRAS/IWW, 2004).  

Managing road congestion, therefore, is of strategic value to the pursuit of sustainable 

activity and economic development. For this end, cities, regional councils, and state transport 

agencies are persistently searching for ways to mitigate urban traffic congestion, while 

minimising costs and maintenance requirements. There are several ways to tackle road 

congestion. On the macro-level, it is common to use economic levers to regulate traffic 

demand, and encourage transport mode switches to benefit strategic interests. Examples of 

this are fuel taxes and congestion charges to private vehicles. At the micro-level, intersections 

of urban areas often limit network capacity and are common congestion points. Therefore, 

controlling traffic that has already entered into urban road networks relies on having an 

efficient and well-managed traffic signal control systems.  
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1.1 Traffic Signals 

Traffic signals are used to manage conflicting requirements for the use of road space by 

allocating right of way to different sets of mutually compatible traffic movements during 

distinct time intervals. The objectives of signal control vary in accordance with the prevailing 

policy of urban traffic management and control.  

Although the history of traffic signals dates back to 1914 in the USA, their operation 

acquired prominence in the post-war era, since when road networks have become increasingly 

congested. The evolution of traffic signal control concept saw broadly three generations. The 

first-generation had preset signal sequence and duration, and required manual maintenance. 

This kind is usually referred as fixed-time methods. The Traffic Network Study Tool 

(TRANSYT, Robertson, 1969; Vincent et al., 1980) is one of the established tools for 

calculating fixed-time plans. The second-generation systems, which largely came into service 

in the 1980s, are characterised by the feature of adjusting signal timings according to detected 

traffic at real-time. Inductive loops are commonly used, and microprocessors facilitate real-

time process of information and calculation of signal timings. Successful commercial 

products of this sort are the Split Cycle Offset Optimisation Technique (SCOOT, Hunt et al., 

1982) and the Sydney Coordinated Adaptive Traffic System (SCATS, Luk, 1984). Each of 

those products has been employed in more than one hundred cities worldwide. In field 

evaluations, the optimised responsive systems such as SCOOT consistently outperform 

previous method, as shown by the results in Table 1-1. The benefits from responsive systems, 

together with rapid advances in communication and information technologies, have driven the 

development of a new generation of concept of signal control system. The third-generation is 

distinguished by dynamic decision-making and distributed control structure. This generation 

of system is fully adaptive, i.e. with adjustable control parameters and adjusting routines, and 

signal timings are optimised progressively over time as detector information becomes 

available. The quantities to be calculated are the sequences of signal changes and the 

associated timings. These decisions are based upon estimates of current queue lengths and 
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information from detectors about traffic which will arrive at the intersection within the next 

few seconds, as well as about traffic that is leaving the junction. For network control, these 

systems exploit the computational power of standalone microprocessors to operate at separate 

local sites. Although prototypes of this sort emerged as early as in the 1980s, such as OPAC 

(Gartner, 1982, 1983a, 1983b), PRODYN (Henry et al., 1983), UPTOPIA (Mauro et al., 1989) 

and RHODES (Mirchandani and Head, 2001), this generation of controller remains largely in 

the stage of development or in field evaluation.  

A full review of both established and developing control methods is provided in Chapter 

2 of this thesis.  

Table 1-1 SCOOT Field Evaluation Results 

Source: Mountain-Plains Consortium (MPC) Report No. 03-141 Adaptive Signal Control II (2003) 

1.2 Control Methods for Traffic Signal 

Controlling traffic signals at intersections is a challenge that has both theoretical and 

practical value. Control variables for traffic signals usually include cycle time, green split, and 

offset. Cycle time is the duration of a repeatable signal timing sequence, and green split 

% Benefit over previous control 
method 

Location of SCOOT Installation Previous Control Method Year 

Delay Travel Time 
São Paulo, Brazil (ver. 2.4) Fixed-time (TRANSYT) 1997 0 - 40 - 

São Paulo, Brazil (ver. 3.1) Fixed-time (TRANSYT) 1997 0 - 53 - 

Nijmegen, The Netherlands (ver. 2.4) Fixed-time 1997 25 11 

Toronto, Canada (ver. 2.4) Fixed-time 1993 17 8 

Beijing, China (ver. 2.3) Fixed-time 
(Uncoordinated) 

1989 15 - 41 2 - 16 

Worcester, UK (ver. N/A) Fixed-time (TRANSYT) 1986 3 - 11 7 - 18 

Worcester, UK (ver. N/A) Isolated Vehicle Actuation 1986 7 - 18 15 - 32 

London, UK (ver. N/A) Fixed-time 1985 19 6 - 8 

Southampton, UK (ver. N/A) Fixed-time 1985 39 - 48 18 - 26 

Coventry, UK - Foleshill Road (ver. N/A) Fixed-time (TRANSYT) 1981 22 - 33 4 - 8 

Coventry, UK - Spon End (ver. N/A) Fixed-time (TRANSYT) 1981 0 - 8 0 - 3 
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determines allocation of cycle time to competing road users. Offset regulates the coordination 

between adjacent intersections.  

Control methods can be broadly divided into non-optimised and optimised categories. 

The non-optimised methods use a set of heuristic rules to define relationships between signal 

timings and traffic conditions. System D (Department of Transport, 1984) and SCATS are 

examples of this sort. The optimised methods calculate timings to satisfy control objectives 

that usually aim to minimise estimated vehicle delays and stops, equalise degree of saturation 

on approaching links, or maximise intersection capacity.  

The optimised methods can be further divided into off-line and on-line groups. Early 

research in optimisation calculated fixed-time plans off-line. For isolated intersections, 

Webster (1957) used unconstrained optimisation to minimise approximated average vehicle 

delay in respect of cyclic length and green split. Allsop (1971a, 1971b) used linear and 

convex programming to solve constrained formulation that aims to maximise reserve capacity 

and to minimise average rate of delay. As for optimised network control, Little (1964) used 

mixed-integer-programming (MILP) to find the solution to coordination between a pair of 

intersections. The TRANSYT system employs a cyclic traffic model to facilitate a direct 

search technique that minimises total rate of delay and stops in a network.   

An example of optimised on-line system is the SCOOT system, which employs 

optimisation routines for cycle, split and offset respectively. The optimisation routines are 

limited to choice of incremental changes in signal timings. Cyclic traffic profiles are used to 

evaluate performance measures.  

Research in advanced adaptive systems that lead to the development of OPAC, 

PRODYN, and RHODES uniformly recognised the importance of dynamic programming 

(Bellman, 1957) in solving sequential decision-making for complex systems. Dynamic 

programming (DP) decomposes a complex problem into a series of sub-problems with 

discrete time steps between them. At each time step, the system is characterised by a number 

of state variables that specify the sub-problem. The more complex the sub-problem is, the 

greater the size of the state-space, which is a n-dimensional space whose axes are the state 
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variables. Consequently more calculation is required to solve each sub-problem. Computation 

routine of DP involves construction of the value function that associates expected future value 

with each state. This value function, which is central to DP, serves to evaluate possible 

actions in order to achieve optimality. The range of different possible actions is defined by a 

specific control policy. The routine of DP is iterative, and executing an action results in a 

transition from a state at one time to another state at a later time. A model of the system is 

used to represent the dynamics of state transition. Finally, the DP algorithm requires a distinct 

property referred as the principle of optimality, which says that knowledge of the current state 

of the system conveys all the information about its pervious behaviour necessary for 

determining the optimal policy henceforth. Any problem lacking this property cannot be 

formulated as a DP problem. Under this principle, results obtained from DP are global 

optimal.   

However, the advantages of DP are countered by difficulties in implementation. 

Difficulties come mainly from two factors. One is the computational requirement associated 

with the size of state space, and the other is the incompleteness of information. Intensive 

computation requirement suggests that DP is not compatible with real-time operation where 

possible actions have to be evaluated within a short time and computation power is limited at 

standalone facilities. Additionally, requiring complete traffic information concerning future 

arrivals is usually unrealistic. In fact, for traffic signal control, no exact DP algorithm has ever 

been implemented for an operational prototype.  

Other approaches were therefore sought to achieve sequential decision-making that 

approximates the behaviour of DP. Artificial intelligence (AI) techniques are popular 

candidates for desk-top research. However, the closed black-box style commonly associated 

with AI solutions, such as artificial neural networks, genetic algorithms and fuzzy logic, make 

comprehension and generalisation difficult. Furthermore, from a practical point of view, 

dependability of the traffic signals is vital to road safety at intersections. Putting safety of road 

users into hands of inscrutable and hence incomprehensible controllers raises ethical issues of 

responsibility. On the other hand, using approximation techniques can reduce the difficulties 
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associated with DP. A possibility that is practically related to the present case of signal 

control is to develop approximations for paths of the decision process that lie in the future. 

Approaches like this are referred as approximate dynamic programming (ADP).  

1.3 Approximate Dynamic Programming 

Approximation methods for DP can be broadly divided into a few categories according 

to what is being approximated. As was discussed in the previous section, key components of 

the DP routine are the model of the system, control policy and the value function. In this 

regard, we have three main categories for approximation. 

1. Model approximation. This approach is used in cases where the dynamics of the 

system are too complicated to model, or are only partially observable. Complex 

dynamics can be approximated by a simpler model, thus reduce the complexity and 

computational demand. Examples of this in traffic control are macroscopic models that 

describe vehicle motions in simple terms. Taking Daganzo’s Cell Transmission 

Model (1994) as an example, acceleration and deceleration are not modelled, and traffic 

either stops in a queue or moves forward at constant speed. Using this model, fewer state 

variables are required to describe the dynamics of the traffic than models that consider 

acceleration and deceleration of vehicles individually. 

2. Policy approximation. This approach involves parameterisation that captures the 

relationship between control policy and independent variables. In traffic control, we may 

propose a parametric structure to relate extension of green time to length of queue 

(Teodorovic et al., 2006). If this approach is successful, over iterations, value of 

parameters converges, and an optimal control policy is therefore established. The main 

drawback of this approach is that the policy-evaluation routine, which evaluates optimal 

control policy, can be intractable itself. In this case, one must resort to gradient-based 

methods that search for local optima of policy variables.      

3. Value function approximation. This approach parameterises the value function and 

computes parameter values that lead to an accurate approximation to the optimal value 
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function. Desirable properties of this approximation structure include differentiability, 

reduced complexity compared to lookup-table representation, appropriate algorithms for 

computing parameter values, and capability of approximating the optimal shape of the 

function with accuracy (Ferrari and Stengel, 2004).  

Approximation to the entities described above can be either performed separately or 

jointly. For example, Werbos (1994) proposed an algorithm that combines policy 

approximation and value function approximation. Nevertheless, value function approximation 

is central to the concept of ADP. Using this approach, algorithms for computing parameters 

can be variants of exact DP algorithms. This implies that an important family of machine 

learning can be incorporated for computing parameters online  this is known as 

reinforcement learning.   

The ADP concept has important implication for several engineering fields. Studies of 

possible applications of ADP have been seen in intelligent electric power grids 

(Venayagamoorthy et al., 2000), flight control (Ferrari and Stengel, 2004), space vehicle 

design (Kulkarni and Phan, 2003), large-scale logistic problems (Powell, 1996; Powell and 

Topaloglu, 2003) and resource allocation problems (Papadaki and Powell, 2002, 2003; Powell 

and Van Roy, 2004).   

1.4 Reinforcement Learning 

Reinforcement learning is used to estimate values for the parameters of specified 

functional relationships between actions and their effects. A system that is learning from a 

control process can be seen as a learning agent. The agent is not told which actions to take, 

but instead must discover which action yields the best performance by trying them. In the 

most interesting and challenging cases, actions may affect not only the immediate 

performance but also the next state and, through that, all subsequent performance. Two 

characteristics  trial-and-error, and delayed effects  are the main distinguishing features 

of reinforcement learning. This learning technique is closely related to DP, as it relies on the 

formulae of DP to estimate future values of performance as well as the immediate ones. In 
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this regards, reinforcement learning fits well into the category of value function 

approximation.  

There are many theoretical and practical issues associated with the use of reinforcement 

learning for value function approximation. The most important ones pertain to the 

convergence of parameters. Previous studies that presented convergence results include 

Sutton (1988), Watkins and Dayan (1992), and Tsitsiklis (1994), all of which consider only 

cases where the number of adjustable parameters is the same as the cardinality of the state 

space. The more general case, involving the use of function approximation, was addressed by 

Dayan (1992), Gordon (1995), Tsitsiklis and Van Roy (1996, 1997) and Singh et al. (1995), 

who established convergence with probability 1 to a linear approximation of the value 

function. General conditions for convergence using nonlinear approximation are yet to be 

established. An example of divergence using nonlinear approximation function and trained by 

reinforcement learning was presented in Tsitsiklis and Van Roy (1997).   

1.5 Objectives of this Doctoral Study 

This study aims to develop adaptive traffic signal control by applying state-of-the-art 

ADP techniques. The focuses of methodological development are to investigate value 

function approximation using reinforcement learning, and establish a theoretical framework in 

which various approximation structures and reinforcement learning techniques can be 

incorporated for the case of adaptive traffic signal control.  

From the engineering aspect, this study aims to develop the ADP concept for distributed 

real-time traffic signal control, in which case standalone facilities are limited in computational 

power and information of future traffic arrivals emerges over time. Operation environments 

that can be accommodated by the method presented here include most isolated intersection 

layouts and also typical grid traffic networks. Computational demand of a single ADP 

controller should be sufficiently managed by an ordinary PC available in the current market. 

Online information is received from ordinary loop detectors. Communication between 

neighbouring intersections may use existing traffic management facilities. 



 22 

1.6 Organisation of the Thesis 

The reminder of the thesis is organised as follows. In Chapter 2, we review the 

established traffic signal control methods as well as relevant state-of-the-art concepts. In 

Chapter 3, a systematic investigation is presented for applying the ADP concept for real-time 

control. This chapter first identifies the limits of the DP, then introduces basic ideas of ADP 

and approximation structures, and finally discusses applicable machine learning techniques. 

In Chapter 4, we introduce the models of traffic dynamics at signalised intersection and 

establish a few important structural properties of the value function, after which an 

appropriate ADP structure and algorithm are proposed. Chapter 5 contains a series of 

numerical results from experimental scenarios that include both isolated intersections and 

small coordinated traffic networks. Concluding remarks are presented in Chapter 6.  
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CHAPTER 2 TRAFFIC SIGNAL CONTROL METHODS  

This chapter provides reviews of established as well as developing methods for traffic 

signal control. The general objective for traffic signal control is recognised by Wood (1993) 

as: 

“Promote the objectives of urban traffic management and control in many different 

ways, including both tactical considerations and more strategic ones. The general 

purpose of tactical traffic management includes ensuring good operations of the 

junction and network with current and expected arrivals of traffic. The purpose of 

strategic traffic management is broader and includes possibilities such as 

prioritisation and promotion of different groups of travellers such as pedestrians or 

bus passengers by provision of appropriate facilities, and limitation of capacity for 

motor vehicles to manage traffic growth.”  

The objectives are managed by operating signals either locally or co-ordinately throughout 

network. Heydecker (2004) identified control decisions for signal controllers as:  

1) The order in which signals are switched to green indications; 

2) For how long each green indication should persist.  

There is a rich literature on traffic signal control. This review focuses on those with 

distinguished implication to research and engineering. The rest of this chapter is organised as 

follows. Important terminologies for traffic signal control are introduced in Section 2.1. 

Established control methods are reviewed in Section 2.2. Developing methods in adaptive 

control, particularly those involve machine learning, are reviewed in Section 2.3. The research 

scope and methodologies for this doctoral study are discussed in Section 2.4.   

2.1 Traffic Signal Terminologies 

The definitions of key terminologies of traffic signals are as follows. 

Link: A group of adjacent lanes on which traffic forms a single combined queue.  
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Phase: A group of one or more traffic or pedestrian links that receive identical signal 

indications. 

Stage: A set of one or more traffic and/or pedestrian phases that receive a green signal 

during a particular period of the cycle. 

Inter-green: The period between the end of the green display for one stage and the start 

of the green display for the next stage. 

Minimum (Maximum) green: The minimum (maximum) permitted period of green 

display for a phase. 

Cycle: Usually considered to be the time between successive starts of the green stage 1.  

Offset: Offset is a time difference between the start times of two signal phases of stage 1 

at adjacent intersections.  

The relationships between phase, stage, inter-green and cycle are illustrated in Fig.2.1. 

An example of signal coordination with offset and a fixed-time plan is shown in Fig.2.2.  

 

 

Fig. 2-1 Definitions of Phase, Stage and Cycle as traffic signal control terminologies, and their 
relationships; mutually compatible phases are grouped into stages, and certain phase may appear in 

more than one stages, such as Phase B in Stage 1 and Stage 2. 
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Fig. 2-2 An idealised time-distance diagram showing signal coordination with offsets and a fixed-time 
plan; both of the northbound and southbound movement pass a cascade of intersections without stop 

and reduction in speed. In this case offsets are measured from time 0 to the starting of common phase at 
each intersection. Source: Traffic Advisory Leaflet 1/06, Department of Transport, U.K. 

The operation of traffic signal settings can be classified broadly into fixed-time and 

traffic-responsive. Fixed-time methods use historical traffic data to calculate stage sequence, 

duration and the associated inter-stage structure in advance. By contrast, traffic-responsive 

methods adjust indicated green times according to observed traffic flows. Traffic detectors, 

loop detector in particular, are common instruments for observing road traffic at real-time.  

These are two distinct styles of formulation for control decisions. The first one is 

stage-based, in which signal controller determines the sequence and duration of stages. This 

has the advantage of dividing time into a series of intervals throughout each of which a single 

stage runs; these intervals are separated by inter-stage periods within which signals change 
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between green and red. The second style is phase-based, in which controller determines the 

sequence and duration of phases in a cycle. Control decisions can be described within each of 

these two styles, and hence optimisation formulations can be either stage-based or 

phase-based. 

2.2 Established Control Methods 

In this section we review established control methods, including fixed-time and traffic-

responsive methods. The established methods are well acknowledged in traffic engineering as 

well as in analytical studies.   

2.2.1 Fixed-time methods 

Fixed-time control methods are usually calculated under the assumption that for some 

specified time intervals the mean rate at which traffic arrives is constant and usually is within 

the range that can be accommodated at the junction. Short-term variations in arrival rates are 

admitted as random variations in the arrival processes and are ignored by the control strategy.  

Webster (1957) considered minimising the sum of flow-weighted delays at a junction. 

Webster’s method is stage-based, and assumes a fixed cyclic sequence of stages and inter-

stage structures. By considering only the most heavily loaded links, Webster devised rules to 

calculate stage durations and a cycle time that approximately minimise the rate of delay as 

estimated by his own formula. These rules were derived using an approximate analysis of a 

simple junction configuration and can only be applied when the sequence of stages is 

sufficiently simple.  

 Allsop (1971a) formulated delay minimisation and capacity maximisation based on the 

stage-based approach. Like Webster’s method, this requires pre-specified stage sequence and 

inter-stage structures. More flexible signal timings allocation can be achieved if individual 

phases are taken into consideration in the design. Without the need to maintain specific stage 

structure, signal timings can be assigned directly to individual phases as long as mutually 

incompatible phases are separated by sufficient inter-green times for safe operation.  
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The phase-based formulae are more flexible than the stage-based one because the 

sequence of signal indications and the structure of the inter-stage periods are implicit 

endogenous variables. Heydecker and Dudgeon (1987) showed that, in case of more 

complicated junction layouts, considerable benefits could be gained by using the starting 

times and durations of green signal indications for phases as variables rather than working 

through the intermediary of stages. This phase-based formulation also offers a convenient 

means to represent interactions between traffic links. However, the benefits are achieved at 

the expense of requiring a greater number of variables and constraints. Improta and Cantarella 

(1984) formulated the phase-based approach for the design of traffic signals as a Binary-

Mixed-Integer-Linear-Program (BMILP). More recently, the lane permitted movements have 

also been represented as binary variables to form an extension to the phase-based design 

framework which supports the integrated design of junction geometry, lane allocation and 

signal timings (Wong and Wong, 2003). It is expected that junction layouts once determined 

will not be reconstructed during daily operations. Nevertheless, signal timings can be fine-

tuned to accommodate latest demand patterns. Off-line methods of this kind require 

information about approaching flows for their calculation. Signal settings can usually be 

optimised analytically for practical implementation. 

Examples of established software packages for fixed-time signal plans include the 

Traffic Network Study Tool (TRANSYT, Vincent et al., 1980), Optimised Signal Capacity 

and Delay (OSCADY). The plans obtained from the software packages usually serve to 

provide a benchmark for analytical studies and a reference library for operation.  

2.2.2 Non-optimised traffic-responsive methods 

Non-optimised systems use a set of heuristic rules to relate signal timings to detected 

traffic conditions. Real-time adjustments to signal timings are not optimised in respect to 

performance measures.  

System D or vehicle actuated (Department of Transport, 1984) is implemented by using 

vehicle detectors to estimate when the flow-rate over the stop-line falls below the saturation 
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level, as would occur when a queue is dissipated. In practice, the output from detectors on 

different links is pooled and a stage will be extended until no vehicles are detected during a 

critical interval on any link that will lose right of way. 

Van Zuylen (1976) developed a method that uses similar heuristic within a phase-based 

framework. This incorporates additional flexibility as no sequence need be specified. Then, 

the controller is free to change green indication from phases having no queues remaining and 

to select other phases according to their demands and their compatibility with phases still 

running. Although this method is relatively easy to implement, the more complex an 

intersection, the further it departs from the simple two-link case for which the policy was 

developed. The non-uniform arrivals, which occur more often in reality, will further reduce 

the validity of the policy. 

Sydney Coordinated Adaptive Traffic System (SCATS, Luk, 1984) is a two-level 

hierarchical system developed in Australia by the Road and Traffic Authority (RTA) of the 

state of New South Wales. The SCATS uses information from vehicle detectors, located in 

each lane immediately in advance of the stop-line, to adjust signal timings. The SCATS does 

not optimise signal timings in respect to performance measures. Instead, it acts as a heuristic 

feedback system adjusting signal timings based on changes in traffic flows from previous 

cycles. The system assumes that higher cycle lengths mean greater intersections capacity, and 

therefore calculate splits proportional to approach demand and longer offsets for increased 

traffic volumes. Measurement for demand is degree of saturation (DS) and that for traffic 

volume Link Flows (LF). A linear relationship between DS and cycle length is assumed. For a 

given LF pattern, offset is adjusted according to a linear relationship with cycle length. Signal 

timings are incrementally adjusted every cycle to avoid large fluctuations.  

Non-optimised systems mechanically match detected traffic conditions to preset heuristic 

rules. Although these systems are simple to implement and robust in control, control 

performance is not optimised.  
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2.2.3 Optimised traffic-responsive methods 

Optimised traffic-responsive methods usually involve state-space representation of 

control system and sequential decision-making. The control objectives are commonly set to 

optimise some measures of generalised control performance over a time period, whilst 

accommodating both systematic and random variations. The quantities to be calculated are the 

sequences of signal changes to be invoked and the associated timings. This can be formulated 

in dynamic programming (DP), and solved by using Bellman’s equation (1957). Important to 

DP formulation of the control problem are definitions of state variable. Bell et al. (1990) 

identified the state of a traffic signal control system as a composite of two elements: the state 

of traffic and the state of controller. They further elaborated that: 

“The state of traffic at a junction can be specified by the number of vehicles queuing 

in each of the links and the arrivals of vehicles in the near future: the former of these 

is influenced by the signal controls applied. The state of the controller can be 

specified by the signals that are green, any changes that are currently underway, the 

times at which they will be completed and the times of expiry of any minimum or 

maximum permitted durations.” 

This structure of state imposes a substantial computational difficulty for implementing 

Bellman’s equation, because in general the state space to be investigated corresponds to the 

product of all possibilities for each of these state variables. In addition to the computational 

difficulty, Bell et al. further commented on DP solution for traffic signals: 

“Normal backward dynamic programming techniques are not particularly suitable 

for use in real-time control of this kind. This is because an unnecessarily large 

number of state sequences are considered and calculations commence at the end of 

the look-ahead where information on arrivals is least certain.” 

This comment reaffirms conclusions drawn in Robertson and Bretherton (1974), Gartner 

(1982) and Henry et al. (1983).   
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DYPIC (Robertson and Bretherton, 1974) is a DP approach that serves only for 

analytical purpose. The computational difficulty of DP solution restricts implementation of 

DYPIC for engineering purpose. The authors proposed a quadratic function to approximate 

exact value function, and developed a heuristic solution based approximation function. The 

heuristic solution adopts the concept of rolling horizon, which means that: first, the planning 

horizon is split into a ‘head’ period with detected traffic information and a ‘tail’ period with 

predicted traffic information; second, an optimal policy is calculated for the entire horizon, 

but is only implemented for the ‘head’ period; finally, when the ‘head’ period expires and 

new information becomes available, the process rolls forward and repeats itself.  

OPAC (Gartner, 1982, 1983a, 1983b) is a distributed real-time traffic signal control 

system. OPAC does not use the formulae of dynamic programming; rather it uses optimal 

sequential constrained search (OSCO) to plan for the entire horizon, and employ terminal cost 

to penalise queues remaining in the system at the horizon. The horizon is 60 seconds (60s) 

long, 10s of which is the ‘head’ period supplied with detected real-time traffic information, 

and the rest with predicted traffic information. Gartner (1983a) reported that OPAC in both 

simulation and field tests saved 5-15% from existing traffic-actuated methods, with most of 

the benefits coming from situation of high degree of saturation. The concerns of OPAC are 

that the restrictions in OSCO search reduces the flexibility of decision making, and a long 

planning horizon (60s) raises practical questions about optimising far into the future on the 

basis of predicted information when the decisions planned for the ‘tail’ may never the 

implemented.  

PRODYN (Henry et al., 1983) adopts rolling horizon approach and extends Robertson 

and Bretherton (1974)’s heuristic solution to distributed network control. To avoid computing 

Bellman’s equation at many grid points that eventually poses the problem of dimensionality, 

the heuristic solution is particularly designed so that it aggregates state variables into a few 

subsets, and the value of being in a subset is only evaluated when it is actually being visited. 

By evaluating all the subsets that can be possibly visited, PRODYN calculates the optimal 

trajectory of control policy in a planning horizon of 75s. The process then rolls forward one 
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step in time. Experiments (Henry 1989) showed that PRODYN yields an average reduction in 

total travel time of 10%. 

UPTOPIA (Urban Traffic OPtimisation by Integrated Automation, Mauro et al., 1989) is 

a hybrid control system that combines online dynamic optimisation and offline optimisation. 

This is achieved by constructing a system hierarchy that has an area level and a local level. 

The area controller generates a reference plan, and local controllers adapt this reference plan 

and dynamically coordinate signals in adjacent intersections. The rolling horizon approach is 

again used by local controllers, and is 120s long, with the process being repeated every 3 

seconds. To automate the process of updating reference plans, which are generated by 

TRANSYT, an AUT (Automatic Updating of TRANSYT) module is developed. AUT first 

collects traffic data continually from the detectors in the network. The data are processed to 

calculate typical traffic flows for various parts of the day. Afterwards AUT prepares the data 

for TRANSYT calculation and starts TRANSYT optimisation. The benefits recorded after 

UTOPIA’s implementation show an increase of 15% in average speed for private vehicles and 

28% for public transport with priority. 

The following two systems differ from the cases reviewed above. They are not based on 

state-space representation of system and do not involve the concept of DP.  However, they do 

employ optimisers to calculate signal timings in respect to a set of performance measures.  

MOVA (Vincent and Peirce, 1988) is purposely designed for dynamic operation at 

isolated intersection. The system generates signal timings cycle-by-cycle to optimise an 

objective function, which is to minimise delay and stop in an uncongested situation and 

maximise capacity in a congested situation. The timings vary continuously according to the 

latest traffic condition. Upon changing signal stage, MOVA uses vehicle gap detected through 

pairs of upstream detectors to terminate green extension. The criterion for extension is 

whether the gap reaches certain critical values. MOVA updates its signal plans every half-

second. 

SCOOT (Hunt et al., 1982) is a centralised adaptive system developed in U.K. by the 

Transport Research Laboratory. The SCOOT system optimises green time splits, offsets, and 
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cycle length separately. The split optimiser equalises saturation in an intersection by 

minimising the maximum degree of saturation on links approaching the intersection. The 

degree of saturation is calculated by using the traffic Flow Profiles. This optimiser runs 5 

seconds before the current green stage expires, and decides whether a stage should start 4 

seconds earlier, remain the same, or start 4 seconds later. Offset optimiser once per cycle uses 

the Flow Profiles to predict performance measures throughout a cycle for an intersection. 

These predictions are used for evaluating three options for offset: reduce offset by 4 seconds, 

keep the current offset, or increase by 4 seconds. The cycle length optimiser operates on a 

region of intersections that are expected to have good progression between them. It looks at 

the degree of saturation for all links in the region. If those degrees are at ideal level, the 

optimiser increases the Minimum Practical Cycle (MPCY) length for each intersection by a 

small fixed step, and if all degrees are below ideal level, the MPCY is reduced by a small 

fixed step.  

Systems reviewed above respond to the changes in traffic with adjusted control variables. 

They are characterised by the feedback path of the control output, and constantly monitor the 

traffic. However, they do not engage machine learning in the feedback path, and do not adjust 

control polices or parameterised value functions accordingly. These systems do not evolve as 

information of control environment accumulates. In the next section, we review methods that 

explore machine learning in adaptive traffic signal control.  

2.3 Developing Methods in Adaptive Traffic Signal Control 

This part of review focus on methods engaging machine learning in adaptive traffic 

signal control. These control systems can be thought of as having two loops. One loop is a 

normal feedback with the process and the controller. The other loop is the parameter 

adjustment loop. A machine learning technique is usually required to supervise the parameter 

adjustment. There are broadly two trends in developing this sort of adaptive controllers, one 

focusing on using heuristic based AI techniques, the other on reinforcement learning.  
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2.3.1 Heuristic based methods 

Papis and Mamdani (1977) used fuzzy logic method to develop a controller for isolated 

intersection. Applications of fuzzy control in traffic networks were studied by Nakatsuyama 

et al. (1984), Nakamiti and Gomide (1996), Nakamiti and Freitas (2002) and Srinivasan et al. 

(2006). Generic reinforcement learning techniques for network optimisation were studied by 

Mikami and Kakazu (1994). Spall and Chin (1997) used artificial neural network (ANN) to 

map traffic patterns to cyclic signal timings, and used perturbation algorithm to obtain 

reinforcement signal to adjust neural weights.  

A common feature for the heuristic solutions above is that traffic signal controller learns 

the mapping of detected traffic patterns to signal timing plans. The plans are usually stored in 

a library, and are retrieved to meet the prevailing traffic patterns. The learning process can be 

either performed offline or online. The traffic patterns are usually preset, and the signal 

timings cyclic. The “black-box” effects are usually associated with fuzzy logic control and 

generic solutions. This makes the solutions case-sensitive, and difficult for generalisation.  

2.3.2 Reinforcement learning related methods 

RHODES (Real-time Hierarchical Optimized Distributed Effective System, Mirchandani 

and Head, 2001) is a hierarchical adaptive traffic signal control system that addresses 

dynamic network loading, network flow control and intersection control as three operations 

layers. At each level of the hierarchy there is an estimation/prediction component and a 

control component. The predictions are processed by a specific model that uses detected real-

time information to estimate link free-flow speed, queue discharge rates, turning probabilities, 

and characteristics of platoons. Online adjustment to these estimates influences the control 

component in decision-making. The intersection controller uses dynamic programming (DP), 

and defines state variable i as the amount of time that has been allocated to all past phases 1, 

2, …, j. The decision in phase j is to allocate uj time units to the current phase. The DP 

algorithm is completed when each possible decision for each phase has been evaluated in a 

forward recursion. Then backward recursion is used to determine the sequence of phases and 
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their durations. The network flow controller enumerates all possible decisions to 

accommodate conflicting demand from traffic platoons. The RHODES system reports 30-

50% reduction in delay from semi-actuated systems in tests by simulation. The key issue with 

RHODES, however, is the computational burden on the intersection controller. The 

definitions of the state and decision variables register a dimension of u2j, and the DP approach 

computes for each possible decision for each phase. If there are 10 optimal allocation of time 

units for each phase, and 4 phases in total, the intersection controller performs 108 

computations before rolling forward to the next step, not to mention that the network 

controller has to enumerates all possible decisions for managing platoons. It is unclear from 

the literature on how the system handles the computation demand in real-time.  

Teodorovic et al. (2006) used ANN to map future traffic arrival pattern to green time 

extension for the current phase. For each pattern of vehicular arrivals, DP is used to find green 

time splits for all the approaches that results in optimal performance. The complete pattern-to-

split dataset is then used to train the neural network, which then generates the mapping from 

pattern to action. As the training is performed offline, the implementation of the heuristic 

based on neural network demands negligible CPU times for computation. This approach 

produces a track of decisions that are as good as DP. The shortcoming of this approach is that 

the neural network training is offline, and traffic patterns have to be identified manually. A 

preset state sequence is required to formulate both DP and neural network solutions.  

Cai (2007) proposed an approximate dynamic programming (ADP) solution for an 

isolated intersection. This approach addresses issues of dimensionality and incomplete 

information that arise in applying DP in real-time. Rather than using a heuristic to replace the 

principles of DP, the ADP approach uses a linear function to approximate the value function. 

As a result, the dimension of the state-space is substantially reduced to the size of a few 

functional parameters. This approach adopts a forward rolling process that uses limited online 

formation (10s of future vehicle arrivals) to plan ahead and update approximation 

progressively. Perturbation learning is used to update the approximation, which perturbs the 

system with incremental changes in state variables. Experimental results showed that the 
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performance of this preliminary ADP controller is as good as existing adaptive control 

methods.  

Heydecker et al. (2007) extended the same ADP approach to more complex intersection 

layouts. The results showed that the ADP approach reduced about a half in vehicle delays by 

comparison with the best fixed-time plans.  

Li et al. (2008) presented another approach to develop ADP solution to traffic signal 

control. They used action dependent heuristic dynamic programming (ADHDP) approach 

initially developed by Werbos (1992). This approach uses two neural networks, one for 

mapping state to action, and the other for mapping state to discounted future value. Despite 

the initiative, this preliminary study lacks clarity in the definition of state and objective 

function. The study does not include performance comparison with established methods.   

Cai et al. (2009) generalised the ADP control algorithm for isolated intersections. They 

use ANN as a universal approximator to value function and reinforcement learning as the 

learning paradigm. This study provides a generic definition of traffic state, controller state, 

state transition dynamics, and approximation function. The ANN based approximation 

structure can approximate both linear and non-linear value functions. This is particularly 

useful for expanding investigation because many delay functions (Webster 1957; Kimber and 

Hollis, 1979) are non-linear. This general ADP algorithm allows various machine learning 

techniques to be employed. Temporal-difference (TD) learning and perturbation learning were 

studied as two examples. The two learning techniques produced equal performance in 

experiment. The general ADP algorithm is compatible with a range of system resolutions, 

from 0.5s to 5s per temporal increment. Numerical results showed that reduction in vehicle 

delays from the optimised fixed-time plans is 43% at 5s resolution, and 67% at 0.5s resolution. 

Fundamentals of this approach and the numerical experiments are presented in the rest part of 

this thesis.   
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2.4 Discussions 

In this chapter we reviewed established traffic control systems as well as those that are 

being developed. This review suggests that traffic-responsive systems are more effective in 

managing traffic at intersections than fixed-time systems, and that optimised responsive 

systems are better for non-stationary traffic environment than non-optimised ones. The state-

of-the-art in adaptive traffic signal control includes using state-space presentation and 

sequential decision making at real-time. The advantage of using state-space presentation is 

that it applies to both linear and non-linear systems, and convenient to model multiple-input, 

multiple-output process. Sequential decision-making is preferable in traffic signal control 

because it offers the capability of effectively adapting to the evolutionary traffic. For a system 

represented in state-space, dynamic programming (DP) is the ideal solution to find the 

optimal sequence of decisions successively in time. However, the DP solution challenges 

traffic engineers in its computational difficulty and demand of complete information. These 

challenges make DP inadequate for real-time control, and approximation is the second-best 

solution.  

Early studies in approximating DP derived approximation function from regression 

analysis, and did not engage mechanisms to adjust approximation online. Recent studies 

began to use real-time machine-learning techniques to adjust parameters of the approximation 

structure. The family of reinforcement learning fits well with approximate dynamic 

programming (ADP) because they use the formulae of DP to calculate learning signals and 

propagate the learning signals back to adjust the approximation structure. Reinforcement 

learning does not require the provision of ideal target or output for learning. Instead it learns 

from the trial-and-error process.   

The rolling-horizon approach has been widely used in optimised traffic-responsive 

systems. It is particularly useful in a process where information of future traffic emerges 

successively in time. Controller calculates signal plans into the future, but only implements 

the signal plans for the current time, and then rolls forward to repeat calculation. In discrete 
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systems, the smaller the time step, the finer the resolution of the system. Finer resolution 

means faster revision of signal plans, hence quicker response to changes in traffic. The 

rolling-horizon approach can be integrated to the ADP algorithm. This simply implies that the 

control algorithm calculates timings for the planning horizon at every time step, and 

implements the calculated timings only for that step.  

The next chapter presents the fundamentals of ADP and machine learning techniques.  
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CHAPTER 3 APPROXIMATE DYNAMIC PROGRAMMING  

In this chapter, we investigate the fundamentals of the ADP concept, based on which we 

present a practical solution for real-time traffic signal control. We begin with definitions in 

Section 3.1 We then discuss the limitations of DP in practical use in Section 3.2. On the 

understanding of the DP formulae, we introduce the basic features of the ADP concept in 

Section 3.3. The completion of the ADP algorithm requires proper approximation 

architectures as well as appropriate real-time machine learning techniques to update the 

components of the architecture. These two important building blocks of ADP are discussed in 

Section 3.4. To show that the ADP concept is not limited to single architecture of 

approximation, we discuss an alternative method that explores structural properties of the 

original DP problem in Section 3.5. A summary of this chapter is provided in Section 3.6.  

3.1 Definitions 

We define the following variables and parameters for the discussion on dynamic 

programming:  

i is a vector of system state, 

J (i) is the exact value function (cost-to-completion) associated with state i, 

u   is a decision vector, 

U   is the decision space, 

J (i, u) is the exact value function associated with state i and decision u, 

w   is a column vector of traffic arrival information,  

W   is a vector of time-dependent traffic arrival information, 

p (j|i,u) is the transition probability from state i to j by implementing decision u,  

P is a matrix of transition probabilities, 

α   is a discount factor, 

g (·)  is a one-step cost function, 

∆t  is a discrete time interval, and tm = tm-1 + ∆t. 
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For a control problem defined on time series, dynamic programming decomposes the 

problem into stages, each corresponds to successive discrete time epoch on the time serie. The 

time serie and stage defination can be shown as: 

 

 

 

In each stage, dynamic programming evaluates decisions ut ∈U, and impletes optimal 

decision u
*

t. With exogenous information process { w0 , w1 , … , wt } and decision u
*

t, the 

system is transferred from state it to it + 1. This control process can be expressed as: 

{ }0 0 0 1 1 1 1 1 1, , , , , ,..., , , ,m m m mi u w i u w i u w i∗ ∗ ∗
− − −F = . 

Dynamic programming is the only exact solution for the control process described above. 

However, its application for many real-time control problem is restricted. We extend 

discussion on this with details in the following section.  

3.2 Limitations of Dynamic Programming 

Given the initial state i0 and a sequence of decisions ut at discrete time t, a dynamic 

programming algorithm is to solve  

( )
1

1 0
0

min ,
t

m
t

t t
u U W

t

E g i i i iα
−

+∈
=

 
= 

 
∑ .     (3-1) 

The backward dynamic programming solution recursively computes the Bellman equation 

( ) ( ) ( ){ }1 1min , ,  for 1, 2,...,0,
t t

t t t i t
u U w

J i E g i i J i i t m mα+ +=
= + = − −   (3-2) 

where decision ut is selected from a finite set of U at each time step, and the expectation 

operator is taken in respect to the probability in state transition from it to it+1 with decision ut. 

J (it) values are stored in a look-up table, where the dimension of the table is equal to the 

dimension of the state space. Each cell of the multi-dimensional table corresponds to a cost-

to-completion value from a certain stage.  

t0 t1 t2 t3 tm-2 tm tm-1 

Stage 0 Stage m-1 

∆t 



 

 

40 

40 

To allow this approach to be solved coherently, its problem should have the Markovian 

property. A process is said to have the Markovian property if  

P { it+1 = j | i0, i1, . . . , it } = P{ it+1 = j | it }, 

for t = 0, 1, . . . and every sequence i, j, i0, i1, . . . , it-1. This implies that knowledge of the 

current state of the system conveys all the information about its previous behaviour necessary 

for determining the optimal policy henceforth. In case where the Markovian property holds, 

backward dynamic programming guarantees that an optimal policy for the whole problem is 

found when state i0 is reached.  

Despite the simple form exhibited by the Bellman equation and the global optimality it 

guarantees, dynamic programming is often of little practical value. A problem formulated in 

dynamic programming usually cannot be solved analytically, and computational requirement 

for finding optimal solution numerically is in exponential order to the size of state space. 

Additionally, a complete set of information for the whole problem is required. For operations 

at real-time, we usually do not have complete information a priori.  

To show the problem of dimensionality associated with DP, let us consider a problem 

that has state variable it , information variable wt , and decision variable ut.  

1. The state space. If state variable it = ( it(1), it (2), …, it (K) ) has K 

dimensions, and supposing that each it (n) takes one of Mi possible values, 

the total number of states at each step t is Mi
K. 

2. The information space (or the space of random noise). If the information 

variable wt = ( wt(1), wt(2), …, wt(L) ) is L-dimensional, and each wt (n) 

takes one of Mw possible values, the size of information space is Mw
L.  

3. The decision space. If decision variable ut = ( ut(0), ut(1), …, ut(N) ) has N 

dimensions, and each ut (n) may take Mu possible values, the total number 

of eligible decision is Mu
N.  

The Bellman equation requires that at each step t, for each it (n), wt (n) and ut (n), a J value is 

calculated so that an optimal decision can be made. The computational requirement for this 

numerical solution is 
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K L N

i w uM M M× × .     (3-3) 

In the case that K=10, L=5, and N=5, and Mi
K= Mw

L= Mu
N=10, the total amount is  

10 5 5 2010 10 10 10× × = .     (3-4) 

Powell (2007) referred to this as the ‘three curses of dimensionality.’ Such a computational 

requirement makes dynamic programming impractical for real-time operation, because the 

time it takes to finish an iteration may well exceed the duration of discrete time increment ∆t. 

This is a direct concern for controlling traffic signals at real-time. The time window for 

evaluating and implementing a decision is generally not more than 5 seconds.  

The example presented by Eq. (3-4) is nowhere near a complicated problem. A problem 

with larger state space may well become computationally intractable in dynamic 

programming. In the case of traffic signal control, Henry et al. (1983) found that, for a traffic 

intersection of 4-link only, the memory requirement for a look-up table approximation of J 

values is “tremendously high” and impossible for a controller to find optimal solutions at real-

time. 

Another major obstacle in applying DP for real-time control is incomplete information. 

In real-time optimisation, the incomplete information may refer to knowledge of underlying 

model of the control process, the state transition probability, or the exogenous process used as 

system input. In our case, we concern about the traffic arriving information, which is 

exogenous to the control process and used as input to the system. The recursive calculation 

using Eq. (3-2) assumes that complete information is available up to time m so that the 

calculation can start from step m − 1. The complete information includes exact knowledge of 

exogenous process and distributions of state transition model. In reality, real-time information 

about arriving traffic is obtained from sensors in short advance, normally not more than 10 

seconds in urban area. Although using DP for the 10-second optimisation problem is a 

possible solution, this prevents the controller from interacting with the control process to 

accumulate knowledge over time, thus reducing the advantage of adaptive control.  
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it 

 
it+1 State 

Step t Step t+1 

Value J(it, ut) J(it+1) 

ut 

Contribution of ut 

 
Fig. 3-1 A sample state transition of deterministic dynamic programming. State is transferred from it to 

it+1 by implementing decision ut. 

In order to bring the principles of DP to real-time control, there are two immediate tasks: 

first, reducing the dimensionality of the control problem; second, accumulating limited sensor 

information progressively to improve knowledge of underlying control process. In the next 

section, we show the concept of ADP addresses the tasks.   

3.3  Fundamentals of Approximate Dynamic Programming 

Approximate dynamic programming is a derivative from DP. The fundamentals of ADP, 

therefore, are derived from those of DP. In this section, we expand the discussion on the 

fundamentals of DP to show ADP as a general approach to solve the problems of DP in real-

time control, rather than being a specific solution. Section 3.3.1 contains discussions on 

deterministic and stochastic dynamic programming. Section 3.3.2 introduces DP formulae for 

finite and infinite problems. Some shorthand notations are introduced in Section 3.3.3 to 

facilitate further discussions. Section 3.3.4 introduces the iteration algorithms to solve DP 

with infinite horizon. The basic features of ADP are introduced in Section 3.3.5.  

3.3.1  Deterministic and stochastic DP 

According to the lauguage of dynamic programming, a deterministic problem is one in 

which the state at the next step is completely determined by the state and policy decision at 

the current step. The Bellman equation for a deterministic problem can be written as 
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. 

. 

. 

 

1 

Step t+1 

J(j) 

Decision 

Contribution  
from step t 

 
it State 

Step t 

Value J(it, ut) 

ut 

 

2 

 

j 

. 

. 

. 

pi1 

pi2 

pij 

Probability 

g1 

g2 

gj 

 

Fig. 3-2 A sample of state transition in probabilistic dynamic programming. The transfer from state it 
by implementing decision ut follows a probabilistic distribution. Value J(it) is the expected value of 

making decision ut at state it. 

( ) ( ) ( ){ }1 1min ,
t

t t t t t
u U

J i g i i J i iα+ +∈
= + .    (3-5) 

Comparing with Eq. (3-2), the difference here is that there is no need to include the 

expectatoin operator E. Deterministic dynamic programming is shown diagrammatically in 

Fig. 3-1.      

A stochastic (or probabilistic) problem differs from a deterministic one in that the state at 

future steps is not completely determined by the state and policy decision at the current step. 

The transition in states follows a probabilistic distribution. However, this transition is 

consistent with Markovian property, because the probabilistic disstribution can still be 

completely determined by the current state and the policy decision made at that step. 

Assuming that state variable i is K-dimentional, the Bellman equation can be reorganised for 

probabilistic problem as 

( ) ( ) ( ) ( )( )
1

1 , 1 1
1

min ,  for 1,2,...,
t t

t

K

t t t t t t t t t
u U

i

J i p i i u g i i J i i Kα
+

+ + +∈
=

= + =∑ .  (3-6) 

Fig.3.2 shows diagrammatically the probabilistic state transition.  

As for traffic signal control, we have the following principal assumptions: 
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Assumption 3-1 At each time step t, the system receives some sensory information of future 

vehicle arrivals wt before a decision ut is required.  

Assumption 3-2 Vehicle arrivals form a Poisson process, which is exogenous to the traffic 

signal  control system. 

Assumption 3-1 reflects the norm in real-time traffic signal control, where roadside 

sensors can be installed upstream of the intersection to inform controller of future arrivals. 

The controller may accordingly make adjustment to signals before the detected traffic have 

arrived at the intersection. Under this assumption, the state at the next time step is determined 

by the system state xt , information wt and policy decision ut at the current step. The state 

transition at each step is deterministic.  

However, Assumption 3-2 gives rise to a stochastic process for arriving. Since state 

transition is influenced by random arriving traffic, the process of {it} can be seen as a 

stochastic process with Markov property, i.e. a Markov process.  

3.3.2 Finite and infinite horizons 

A problem formulated in dynamic programming is said to have a finite horizon if the 

value function J (⋅) accumulates over a finite number of steps, say m, which can be expressed 

as 

  ( ) ( ) ( )
1

0 1 0
0

min ,
m

m t

m t t
u

t

J i E h i g i i iα α
−

+
=

 
= + 

 
∑ ,   (3-7) 

where h(im) is a terminal cost for ending at final state im . A finite problem formulated in 

dynamic programming can be solved numerically through steps t = m-1, m-2, …, 0 by 

recursively calculating Eq. (3-2). Problems of this sort often bear interest of achieving 

optimisation over a specific horizon. A good example of such is the shortest path problem.  

Similarly, a problem is said to have an infinite horizon if value function J (⋅) 

accumulates infinitely, which can be expressed as  

( ) ( )1 0
0

min ,
u

t

t t
u U

t

J i E g i i i iα
∞

+∈
=

 
= = 

 
∑ .   (3-8) 
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The infinite horizon problem is of particular interest to understand steady-state 

properties in Markov process. At steady-state, the state transition probabilities become time-

invariant, and the value of J (⋅) converges. The steady-state properties are important to derive 

analytical solutions to the control problem. Solving the infinite horizon problem, requires an 

iteration algorithm that leads to convergence in values of J (⋅) and a stopping criterion that 

specifies the region of convergence. There are two common iteration algorithms: value 

iteration and policy iteration. The two algorithms are discussed in Section 3.3.4.  

Since the solution to DP formulae of finite horizon is arrived differently from that of 

infinite horizon, it is important to distinguish the properties of horizon for a control problem. 

As for traffic signal control, if we take the problem as of finite horizon, difficulty arises from 

establishing the terminal cost h(im), which presents the long-term influence of current 

decisions. There is no existing approach to determine terminal cost analytically in the studies 

of vehicle queuing at signalised traffic intersection. Alternatively, if the control problem is 

formulated with infinite horizon, we may use iteration algorithms to accumulate knowledge 

over time and eventually achieve convergence to exact values of J (⋅). In this regard, we 

formulate traffic signal control with infinite horizon in this study.  

3.3.3  Shorthand notations  

Before proceeding with the discussion on iteration algorithms that solve a dynamic 

programming problem of infinite horizon, it is convenient to introduce some shorthand 

notations in expressions what would be otherwise complicated to write.  

We define an operator T, ∀ i ∈ X , that  

( )( ) ( ) ( ) ( ){ }
1

1 1 1
0

min , ,
t t

t

N

t t t t t t t
u U

i

TJ i p i i u g i i J iα
+

+ + +∈
=

= +∑ ,  (3-9) 

where TJ  produces a vector, and TJ (i) refers to element i of this vector.  

Let us further define a k k× transition matrix P whose ijth entry is pij( j | i, u). In vector 

form, we can write TJ as 

{ }minTJ P g Jα= + .     (3-10) 
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Let S be the space that contains all value functions, then, operator T is a mapping 

:T S S→ .      (3-11) 

An iteration algorithm that maps J to TJ for m iterations can be then denoted as  

( )( ) ( )( )( )1 ,m mT J i T T J i i X−= ∀ ∈ .   (3-12) 

where for convenience we write 

( )( ) ( )0
0 ,  T J i J i i X= ∀ ∈ .    (3-13) 

For a specific policy µ , we define an operator Tµ such that 

( )T J P g Jµ µ α= + ,     (3-14) 

for vector J ∈S.  

This shorthand notation is useful for showing mathematical proofs, and particularly for 

the proof of convergence of iterations algorithms. However, this notation is not used for 

describing models and control algorithms related to traffic signal control in this study.  

3.3.4  Iteration algorithms 

There are two common iteration algorithms for solving infinite DP problems. One is 

value iteration and the other is policy iteration.  

Value iteration is a process that generates a sequence of T
n
J starting from an initial 

vector J0, which is expressed in Eq. (3-12) and (3-13). Value iteration algorithm is 

summarised in Fig. 3.3. Because that value iteration requires an infinite number of iterations 

to obtain the exact vector J, a termination criterion is required, which in Fig. 3.3 is express as  

( )1 1 / 2m mT J T J ξ α α−− < − ,    (3-15) 

where ξ is a specified error tolerance, α is a discount factor, and ||TJ|| is the max-norm defined 

by:   

( )( )max
i X

TJ TJ i
∈

= ,     (3-16) 
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Step 1. 
 
 
 

Initialisation  
Set ( )0 0,  .J i i X= ∀ ∈  

Choose an error tolerance parameter ξ > 0, and a discount factor α ∈ (0,1). 
Set m = 1. 

Step 2. For each i X∈ compute 

( )( ) ( )( )( )1m mT J i T T J i−= . 

Step 3. If ( )1 1 / 2m m
T J T J ξ α α−− < − , J  = T

m-1
J, process stops;  

else m = m + 1 and go to step 2.  

Fig. 3-3 The value iteration algorithm for dynamic programming problem of infinite horizon; shorthand 
notation T is used.   

Therefore, ||TJ|| is the largest absolute value of a vector of elements. The value iteration 

process is terminated if condition in Eq.(3-15) is satisfied. The proof of convergence of value 

iteration can be found in Powell (Section 3.9.2, 2007).  

Policy iteration is an alternative to value iteration, and always terminates finitely. This 

iteration algorithm is popular in cases where value of a specific policy is to be found. Policy 

iteration starts from a initial policy µ0 and generates a sequence of new policies µ1, µ2, …, µm. 

A policy iteration has two steps, the first is the policy evaluation step that calculates  

m m
J T Jµ µ= ,     (3-17) 

and the second is the policy improvement that performs  

1 arg
mm TJµµ + = .    (3-18) 

This process is repeated with µm+1 used in place of µm until we have 

( ) ( )
1

,
m m

J i J i iµ µ+
= ∀  

A stopping criterion such as stated by Eq.(3-15) may also apply here to increase the speed to 

convergence. The proof of the convergence of policy iteration can be found in Puterman 

(Theorem 6.4.6, page 180, 1994) and Bertsekas and Tsitsiklis (Section 2.2.3, 1995).   

Both of the two common iterative algorithms are widely adopted in ADP techniques. A 

rich field in ADP called functional approximation (or J function approximation) is primarily 

based on value iteration. On the other hand, look-up table approximation techniques that 

establish state-actions pairs are usually built on policy iteration.  
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3.3.5  Features of ADP 

Discussions in previous sections introduced the fundamentals of the original dynamic 

problem that is to be approximated by ADP. There are three basic features of ADP, regardless 

of the specific applications.  

First, ADP aims to significantly reduce computational requirement so that the original 

DP problem becomes tractable in solution and feasible in implementation.  

Second, ADP adopts a forward process rather than the backward recursive calculation. 

This forward process, i.e. stepping forward in time, allows ADP to use information becomes 

available between time t and t+1 to facilitate decision-making. It is normally assumed in ADP 

research that the observation of exogenous information, such vehicle arrivals, becomes 

available after a decision is made, but before the next decision epoch. To make an optimal 

decision without detailed information can be facilitated by Monte Carlo simulation, which 

generates a sample path for the system. A decision calculated for the sample path takes the 

system to a post-decision state, which is referred to be the state immediately after the decision 

is implemented. State transition only happens after specific information is observed.  

Third, the approximation that is used in ADP improves progressively. It is common that 

the exact values of functional parameters are not known a priori. Upon each observation of 

state transition, the ADP algorithm updates the parameters of the approximation function by 

applying certain learning techniques.    

In this thesis, a continuous function is employed to approximate the J values, thus 

replacing a look-up table of J(i). This substantially reduces computational requirements, and 

makes ADP practical for real-time implementation. The system process is stochastic because 

it is influenced by exogenous and random vehicle arrivals. The state transition is deterministic 

because the system receives real-time information of future arrivals before evaluating a 

decision, as stated in Assumption 3-1. This feature avoids the need to distinguish between 

pre-decision and post-decision states. To make this practical, we assume no errors in data 

detection and transmission in the system.  
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We define a continuous approximation function ( ), : KJ r X⋅ × →ɶ ℝ ℝ to replace the 

exact ( ) :J X⋅ → ℝ , where r is a K-dimensional parameter vector of Jɶ , and X the state space. 

By indexing successive states with positive integers, we can view the state space as the set 

X = {1, …, n}, where n is possibly infinite. The sequence of states visited by the stochastic 

process is denoted by {it | t = 0, 1, …}. At each discrete temporal interval t, we have a new 

observation of state transition and calculate 

( ) ( ) ( ){ }1 1arg min , ,
t

t t t t t t
u U

u i E g i i J i rα∗
+ +∈

= + ɶ ,   (3-19) 

and record 

( ) ( ) ( ){ }1 1
ˆ min , ,

t
t t t t t

u U
J i E g i i J i rα+ +∈

= + ɶ .    (3-20) 

After a state transition is observed, a common objective in updating approximation function is 

to find  

arg min
Kr

r J J
∗

∈
= −

ℝ

ɶ ,     (3-21) 

by incrementally calculating correction signal ∆r and updating estimation through 

1t t t tr r rη+ = + ∆ ,      (3-22) 

The correction signal tr∆  is usually obtained from machine learning process.  

Convergence of r to r
* by using an incremental process described by Eq. (3-22) is 

guaranteed if specific approximation structures and learning techniques are used. Theories 

and assumptions for the convergence are further discussed in the next section. A general ADP 

algorithm is illustrated in Fig. 3-4.  

Using approximation function ( ),J r⋅ɶ , we avoid the need of a look-up table of ( )J i . 

This reduces computational requirement from a magnitude exponential in state space size to a 

magnitude that is polynomial in state space size. It is easy to calculate the reduction in 

computation through Eq. (3-3) and (3-4). Other variables being equal, let us assume both state 

i and parameter r of the function ( ),J i rɶ are of dimension 10, the computational requirement 

for making   
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 Fig. 3-4 A generalised approximate dynamic programming algorithm 
  

5 5 1110 10 10 10× × = ,    (3-23) 

which is 109th of the requirement in classic dynamic programming described in Eq. (3-4).  

In comparison with other contemporary adaptive traffic signal control methods, the 

features of ADP offer the following advantages. First, using state-space representation, the 

ADP method establishes a higher degree of awareness of the prevailing traffic condition. 

Second, it achieves sequential decision-making at real-time, which gives controller larger 

freedom to respond to stochastic vehicle arrivals. The frequency of decision-making can be 

improved by using a higher resolution for the discrete time system. Third, the mechanism for 

updating approximation function provides better prediction of the impact of decision from 

current state, which serves as a leverage to balance immediate control performance and that of 

the long-term. These advantages are likely to deliver better performance than other rule-based 

adaptive controllers in real-time operation.  

3.3.6  Summary 

In Section 3.3 we discussed the formulae of the original dynamic programming in a 

number of generic terms. These terms include the deterministic and stochastic problems, the 

finite and infinite horizons, and the value and policy iterations. Based this, we showed that the 

basic feature of the ADP concept is to replace exact J values with an approximation function 

Step 1. 
 
 
 

Initialisation  
a)  Initialise r0. 
b)  Choose an initial state i0, i ∈ X.  
c)  Set t = 1. 

Step 2. System receives random noise wt.  
 

Step 3. For t = 1,2,É , m-1,  
 
a) Calculate  

   
öJ i

t( )= T ɶJ( ) i
t
,r

t( ). 

b) Calculate  

  
∆r öJ i

t( )( ). 

c) Update parametric vector r 

  
r

t+1
= r

t
+η

t
∆r öJ i

t( )( ). 

d) transfer system to new state it+1. 
Step 4. If t < m go to step 2.  

 

 ( ) ( )( )ˆ ,t t tJ i TJ i r= ɶ

( )( )1
ˆ

t t t tr r r J iη+ = + ∆

( )( )ˆ
tr J i∆
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( ),J r⋅ɶ  so that computational requirement can be reduced substantially, and reliance on 

complete information is relaxed. Starting with any arbitrary values of functional parameters r, 

we showed the incremental process of updating the parameters at real-time. The incremental 

process requires corrections to estimation, which are usually supplied by learning techniques. 

In the next section, we discuss approximation structures together with real-time learning 

techniques.  

3.4  Learning to Approximate 

An ADP strategy that uses ( ),J r⋅ɶ  in place of exact J values offers an open framework 

for theoretical development. Just as that there is no standard mathematical formulae for 

dynamic programming, there is no standard formulae for ( ),J r⋅ɶ . We will therefore investigate 

into appropriate architectures for approximation function. Once appropriate approximation 

architecture is established, learning techniques can then be applied to update parameters of the 

approximation function progressively. Approximation architectures are introduced in Section 

3.4.1. General machine learning theories are introduced in Section 3.4.2, and specific ones 

that are used for this study in Section 3.4.3 and Section 3.4.4. Integration of learning 

techniques to the ADP value iteration algorithm is discussed in Section 3.4.5. A concise 

conclusion is provided in Section 3.4.6.  

3.4.1  Approximators 

In this thesis an approximator is a continuous approximation function to exact cost-to-

completion values J. The group of approximators can be broadly classified into two categories: 

linear approximators and non-linear approximators. However, it is worth noting that 

continuous function is not the only way for J function approximation. A common form that is 

not continuous is aggregation, which belongs to categorical approximation.  

Our interest in this study primarily lies in linear function approximation. There are two 

reasons: the first is that linear function is simple for both implementation and training; the 
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second is that literatures on ADP with linear approximator are relatively rich and well proved. 

A separable linear approximator can be expressed as  

( ) ( ) ( )
1

, ,
K

j

j

J i r r j i i Xφ
=

= ∀ ∈∑ɶ ,    (3-24) 

where r = (r(1), r(2), … , r(K)) is a column vector with each entry a parameter of 

approximation function, and each φj is a mapping function defined on the state space X. The 

function φj can be viewed as feature-extraction function (or basis functions) that maps state to 

real-valued feature vector, while each r (j) can be viewed as the associated weight. Feature 

function based approximation architecture is illustrated in Fig. 3-5. 

Let φ'(i) = (φ1(i), φ2(i), …, φK(i)), where the prime denotes transposition, the 

approximation can also be written as 

( ) ( ), , 1,...,J i r r i i nφ′= ∀ =ɶ ,    (3-25) 

or 

( )J r r= Φɶ ,      (3-26) 

where Φ is a X K×  matrix whose jth column is equal to φj and,  

( )

( )
1

| | 1

  ...     

| |
K

n

φ
φ φ

φ

′− − 
  Φ = =   
   ′− −   

.    (3-27) 

 
Fig. 3-5  A feature-extraction based approximation architecture 
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The first derivative with respect to the parameter vector r is given as 

( ) ( ),J i r iφ∇ =ɶ  ,     (3-28) 

and we have 

( )J r∇ = Φɶ ,      (3-29) 

where ( )J r∇ ɶ is the Jacobian matrix whose ith row is equal to ( ),J i r∇ ɶ .  

Non-linear approximation is a field of rich literature too. Here we limit the discussion to 

non-linear approximator based on ANN. According to Haykin (1999), an ANN is 

A directed graph consisting of nodes with interconnecting synaptic and activation 

links, and is characterised by four properties: 

1. Each neuron is represented by a set of linear synaptic links, an externally applied 

bias, and a possibly non-linear activation link. The bias is represented by a synaptic 

link connected to an input fixed at +1. 

2. The synaptic links of a neuron weight their respective inputs. 

3. The weighted sum of the inputs defines the induced local field of the neuron in 

question. 

4. The activation link squashes the induced local field of the neuron to produce an 

output. 

In mathematical terms, we can describe a neuron j by writing the following equations: 

1

k

j ji i j

i

v r x b
=

= +∑ ,    (3-30) 

and  

( )j jy vϕ= ,     (3-31) 

where  

x1, x2, …, xk are inputs to neuron j;  

rj1, rj2, …, rjk here represent the synaptic weights of neuron j;  

bj is the bias;  

vj is the induced local field; 
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Fig. 3-6 A model of a neuron 

φ(·) is the activation function;  

yj is the output of the neuron.  

A model of neuron is shown graphically in Fig. 3-6. Depending on the activation 

function φ(·), a neuron can be either linear or non-linear. Without touching the profundity of 

the non-linear family, we present two typical examples: threshold function and sigmoid 

function.   
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Fig. 3-7 Threshold function 
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Threshold function, which is described in Fig. 3-7, can be specified as 

( )
1 if  0

0 if  0

v
v

v
ϕ

≥
= 

<
. 

The sigmoid function is a common form of activation function. It is defined as a strictly 

increasing smooth function. An example of the sigmoid function is the logistic function 

(Fig. 3-8) defined by 

( )
( )

1

1 exp
v

av
ϕ =

+ −
 

where a is the slope parameter of the sigmoid function.  

Neural networks are constructed on the inter-connected neurons. Typical architectures of 

neural networks include single-layer feedforward networks (Fig.3-9) and multilayer 

feedforward networks (Fig. 3-10). In feedforward networks, inputs propagate strictly from 

input layer to output layer, on a layer-by-layer basis. The pathways of information in neural 

networks are indicated by the arrows in Fig. 3-9 and Fig. 3-10. A layered network can be 

expressed mathematically as  

...kn lm ji i j

n m i

y r r r x bϕ ϕ ϕ ϕ
    

= +          
∑ ∑ ∑ ,   (3-32) 

which maps Xn
x∈ℝ to Yny∈ℝ .  
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Fig. 3-8 Logistic function at a = 0.8 
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Fig. 3-9 A feedforward single-layer neural network 
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Fig. 3-10 A feedforward multilayer neural network 

 

The scheme of nested sigmoid functions described in Eq. (3-32) is a universal 

approximator defined by universal approximation theorem, which can be stated as  

Theorem 3.1. Let φ(·) be a non-constant, bounded, and monotone-increasing continuous 

function. Let Im denote the m-dimensional unit hypercube [ ]0,1
m

. The space of continuous 

functions on Im is denoted as C(Im). Then, given any function F ∈ C(Im) and ε >0, there exists 

an integer n and sets of constants βj, bj, and rji, where j = 1, …, n and i = 1, …, m and 

function given by: 

( )1
1 1

,...,
n m

m j ji i j

j i

f x x r x bβ ϕ
= =

 
+ 

 
∑ ∑≜ , 

such that:  
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( ) ( )1 1,..., ,...,m mF x x f x x ε− <  

for all x1, x2, …, xm that lie in the input space Im.  

The proof of Theorem 3.1 is provided in Cybenko (1989). The universal approximation 

theorem is an existence theorem in the sense that it provides the mathematical justification for 

the approximation of an arbitrary continuous function as opposed to exact representation.  

It is worth noticing that when a neural network consists of a single neuron j, Eq. (3-32) 

becomes  

1

m

j j

j

y r x bϕ
=

 
= + 

 
∑ .     (3-33) 

If ϕ is linear then linear relationship establishes between x and y.  

3.4.2  Learning paradigms 

In common practice, neural network weights are initialised arbitrarily. Learning 

techniques are required to update the weights.  

The term learning in the context of neural networks is defined by Mendel and McClaren 

(1970) as: 

“Learning is a process by which the free parameters of a neural network are 

adapted through a process of stimulation by the environment in which the network 

is embedded. The type of learning is determined by the manner in which the 

parameter changes take place”.   

The paradigms of learning can be broadly classified into two categories: supervised 

learning and unsupervised learning. The former assumes that the exact output of a system is 

known externally, but unknown to the neural network, which is a part of the operating system. 

Each time the exact output is used to correct the output of the neural network, and an error 

term is generated. The error term is then propagated backward into the neural network to 

adjust neural network parameters, from output neuron node to the input layers, layer-by-layer. 

When the exact output is transferred to neural network through a number of iterations, we 
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may then dispense with the external source and let the neural network operate in a self-

sufficient manner.  

The paradigm of unsupervised learning, as the name implies, pertains to the condition of 

having no exact output for the learning process to match. Unsupervised learning is aimed at a 

task-independent measure of the quality of representation, and the free parameters of the 

network are optimised with respect to that measure. Once the network has become tuned to 

the statistical regularities of the input data, it develops the ability to form internal 

representations for encoding features of the input and thereby to create new classes 

automatically. Central to unsupervised learning is reinforcement learning. Barto et al. (1983) 

defines reinforcement learning as:  

“A ‘behavioural’ learning problem performed through interaction between the 

learning system and its environment, in which the system seeks to achieve a specific 

goal despite the presence of uncertainties”. 

Trial and error search are important characteristics of reinforcement learning. According 

to Sutton and Barto (1998), a reinforcement learning system generally consists of four basic 

components: a policy, a reward function, a value function, and a model of the environment. 

The policy is the ultimate determinant of behaviours and performance. The reward function 

returns the immediate and defining feature of the problem faced by the agent. Value function 

predicts the rewards in the long run. And the model of the environment predicts (in stochastic 

environment) or determines (in deterministic environment) the next state. It can be seen that 

reinforcement learning is directly related to dynamic programming, as we may match the 

components of reinforcement learning to Eq. (3-1) and (3-2). Dynamic programming, 

therefore, provides the mathematical formalism for sequential decision making, whilst 

reinforcement learning provides the capacity for adjusting free parameters through the 

interaction with the environment. This combination of mathematical formalism and learning 

paradigms completes the theoretical framework of ADP. Without the knowledge of exact J 

values (otherwise we would just use dynamic programming to solve the problem), it is 
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reinforcement learning that enables the ADP method to improve approximation through its 

interaction with the operation enviroment.  

3.4.3  Neural network training  

Neural network training is to find the set of neural weights that provide the best fit 

between a set of network output and a set of provided output, given the same set of input data. 

Typically, these problems are of minimizing the sum of least squares errrors 

( )2

1

1
minimize  

2K

m

r
t

e t
∈ =

∑
ℝ

,     (3-34) 

with error e being defined as  

( ) ( ) ( ),t t te t J i J i r= − ɶ .     (3-35) 

where ( ),t tJ i rɶ  is the approximation function and ( )J i  the exact values. Throughout this 

thesis, ||·|| stands for the Euclidean norm, given by Tx x⋅ = .  

We can further define an error function  

( )21

2t e tξ = ,      (3-36) 

and rewrite Eq. (3-39) as  

( )
1

minimise  
K

m

r
t

tξ
∈ =

∑
ℝ

.     (3-37) 

Given a state sequence {it | t = 0, 1, …, m} and an observation sequence J1, J2, …, Jm,  to 

solve the least square problem defined by Eq. (3-36) and (3-37), we can use linear least-

square (LLSQ) algorithm for linear approximation, and use a gradient descent algorithm or 

Newton’s method for non-linear approximation. The concern here is that methods above have 

to process the entire data set of the pair of it and Jt before updating r, and the size of data can 

make computation costly because of computing correlation function and matrix inversion. On 

the other hand, in real-time operation observation of Jt may only occur once per time 

increment. Consequently, we prefer an incremental method for the least square problem so 

that  
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1

m

t

t

r r r
=

← + ∆∑      (3-38) 

where ∆r is an incremental correction of parameter value. This is a distinctive property of 

least-mean-square (LMS) algorithm (Widrow and Hoff, 1960). To show the incremental 

update in LMS, let us first consider an function approximation built on a linear neuron 

( ) ( ) ( )
1

,
K

j

j

J i r r j i bφ
=

= +∑ɶ .    (3-39) 

If we take the partial derivative of the squared error with respect to the synaptic weights r and 

biases b at the tth iteration, we have 

( )
( )

( ) ( )
( )

  for 1,2,...,
t t

t e t
e t j K

r j r j

ξ∂ ∂
= =

∂ ∂
, 

and 

( ) ( ) ( )
t t

t e t
e t

b b

ξ∂ ∂
=

∂ ∂
. 

Next, we look at the partial derivertives in respect to the error et.  

( )
( )

( ) ( )( )
( ) ( )

( ) ( ) ( )
1

,
=

K
t

t j t

jt t i

J i J i re t
J i r j i b

r j r j r j
φ

=

∂ −   ∂ ∂
= − +   ∂ ∂ ∂   

∑
ɶ

, 

which can be simplied as 

( )
( )

( )j

t

e t
i

r j
φ

∂
= −

∂
, 

and 

( )
1

t

e t

b

∂
= −

∂
. 

Then, the change of the weight and the bias are calculated according to the delta rule 

( ) ( )
( )ji

ji

t
r t

r t

ξ
η

∂
∆ = −

∂
, 

which gives: 
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Fig. 3-11 Information flow graph representation of the LMS algorithm; estimated output Jɶ from the 
neural network is measured against to the ideal (target) output J ; the error between the estimated and 

ideal output is processed by the LMS algorithm and then propagated backward to the neural network to 
correct neural weights r.  

 

( ) ( )tr e t iη φ ′∆ = ,    (3-40) 

and 

( )tb e tη∆ = ,     (3-41) 

where η is a learning rate that serves as a measure of the memory of the LMS algorithm.  

Finally, weights and bias are updated through 

1t t t
r r r+ = + ∆ ,     (3-42) 

and 

1t t t
b b b+ = + ∆ .     (3-43) 

It is customary to assign arbitrarily initial values to r0 and b0. Proof on convergence of LMS 

can be found in Haykin (Section 3.5, 1999). A graphical representation of LMS algorithm is 

shown in Fig. 3-11.  

Comparing to other incremental methods to adjust functional parameters, such as 

Kalman filtering, the LMS is simple and robust. It does not require memory of a set of past 
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estimations or calculating matrix inversion, thus being efficient in computation. It does not 

require knowledge of the statistics of the environment, thus being model free and robust. 

Comparing to method of steepest decent, which produced a well-fined tragectory in parameter 

space, the LMS algorithm produced a stochastic tragectory. This means that the main 

drawback of the LMS is the rate of convergence in terms of the number of iterations required.  

As for non-linear approximation built on multi-layer neural networks, the usual method 

for training network weights is back-propagation (Werbos, 1974). Similar to LMS, it looks 

for the minimum of the error function in weight space by incrementally applying a correction 

∆rt to the synaptic weight rt. The denomination of this algorithm reflects the backward 

pathway of error information as in contrast to the forward propagation of input information. 

Back-propagation can be broadly seen as an extended LMS to non-linear neural network.   

We consider a neuron j in a multi-layer non-linear neural network that maps [x, r] 

to ( ),J x rɶ , where x denotes neuron input vector. The objective for network training is the 

same as stated in Eq.(3-36) and (3-37), and the correction ∆rji(t) is calculated by the delta rule: 

( ) ( )
( )ji

ji

t
r t

r t

ξ
η

∂
∆ = −

∂
.     (3-44) 

For the consistence with Eq. (3-32) which defines a layered network, we use yj(t) to 

denote the scalar output of non-linear neuron j, and consequently define that 

( ) ( ) ( )( ) ( )( )2
21 1

2 2j j

j C j C

t e t J x t y tξ
∈ ∈

= = −∑ ∑ ,   (3-45) 

where J is the exact output and C is a set of neurons. We further define that: 

( ) ( )( ) ( )je t J x t y t= − ,     (3-46) 

( ) ( )( )j j jy t v tϕ= ,     (3-47) 

( ) ( )
0

m

j ji i

i

v t r y t
=

=∑ .     (3-48) 

The derivative of error function in respect to weight can be written in chain rule as 
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

j j j

ji j j j ji

e t y t v tt t

r t e t y t v t r t

ξ ξ ∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂
.    (3-49) 

Differentiating both sides of Eq. (3-45) with respect to ej(t), we get 

( )
( )

( )j

j

t
e t

e t

ξ∂
=

∂
.      (3-50) 

Differentiating both sides of Eq. (3-46) with respect to yj(t), we get 

( )
( )

1j

j

e t

y t

∂
= −

∂
.      (3-51) 

Then, we differentiate both sides of Eq.(3-47) with respect to vj(t) and get 

( )
( )

( )( )j

j

j

y t
v t

v t
ϕ

∂
′=

∂
,     (3-52) 

where the use of prime signifies differentiation with respect to the arguement. Finally, 

differentiatnig Eq. (3-48) with respect to rji(t) yields 

( )
( )

( )j

i

ji

v t
y t

r t

∂
=

∂
.      (3-53) 

Substituting Eq. (3-50) ─ (3-53) to Eq. (3-49), we get 

( )
( )

( ) ( )( ) ( )j j j i

ji

t
e t v t y t

r t

ξ
ϕ

∂
′= −

∂
.    (3-54) 

Accordingly, the use of Eq. (3-54) in (3-44) yields 

( ) ( ) ( )ji j ir t t y tηδ∆ = ,     (3-55) 

where the local gradient δ(t) is defined by  

( ) ( ) ( )( )j j j jt e t v tδ ϕ ′= .     (3-56) 

Neural weights are updated in the same manner as Eq. (3-44). The bias in the expression of 

back-propagation has been integrated into rj0 (corresponding to the fixed input y0 = +1).  

This far, we have discussed the learning paradigms and the process for learning signals 

to propagate through neural networks to update neural weights. To complete the learning 

process, a learning target is required. In supervised learning the targets are the corresponding 
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exact outputs, and training can be either performed by using batch-learning techniques such as 

Newton’s method, or by using incremental methods such as LMS and back-propagation 

algorithm. In reinforcement learning, we do not have a source of exact outputs, otherwise 

dynamic programming would just meet the need of adaptive control, albeit at a computational 

burden. In the following section, we discuss a reinforcement learning technique that allows a 

system to learn from its own interactions with the process, and updates approximation 

incrementally over time.  

3.4.4  Temporal-difference (TD) learning  

 Temporal difference (TD) learning, originally proposed by Sutton (1988), is a method 

for approximating long-term future cost as a function of current state. The TD method is 

central to reinforcement learning in that it does not require a source to provide exact learning 

target; rather, it learns from observing actual state transition cost and then updates 

approximation parameters according to the difference between estimation and the actual 

observation. In functional approximation to J, the TD method solves a stochastic prediction 

problem in which experience comes in observation-outcome sequences of the form i0, 

i1, …, im, J, where each it is a vector of observations available at time t in the sequence, and J 

is the outcome of the sequence. For each observation-outcome sequence, the learner produces 

a corresponding sequence of approximations ( )tJ iɶ . The approximations are also based on a 

vector of modifiable parameters or weights, r. Since approximation function ( )tJ iɶ  depends 

both on it and r, and it can be rewritten as ( ),tJ i rɶ .  

Let a linear approximation function ( ),J i rɶ  defined by Eq. (3-39), by building bias b into 

r(0) corresponding to fixed input φ0 = +1, we have 

( ) ( ) ( )
0

,
K

j

j

J i r r j iφ
=

=∑ɶ . 

Furthermore, we define a projection operator ∏ as 
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{ }
arg  min

KJ r r

J J J
′∈ Φ ∈

∏ = −
ɶ ℝ

ɶ ,    (3-57) 

where the norm || · || can be defined by letting 

1/2
,J J J= , 

where ,⋅ ⋅  is the inner product. The approximation function Jɶ (·, r) can be seen as an 

orthogonal projection of J on { }Kr r′Φ ∈ℝ with respect to inner product ,⋅ ⋅ . The projection 

∏J, therefore, is a natural approximation to J, given the fixed sets of basis functions Φ. In 

particular, ∏ J is the solution to the least-squares problem of  

( ) ( )
2

arg min ,
r

i S

r J i J i r∗

∈

 = − ∑ ɶ  .  (3-58) 

Proof of ∏J defined by Eq. (3-57) as a solution to Eq. (3-58) is provided in Van 

Roy (Theorem 3.9, 3.10, 3.11, 1998) and in Appendix 3.A of this thesis (Lemma 3.A.6).   

To update the approximation in TD learning is then to update the parameter vector r so 

that Eq. (3-58) is solved. Furthermore, we assume that r is updated only once for each 

complete observation-outcome sequence and thus does not change during a sequence. For 

each observation, an increment ∆r is determined, and after a complete sequence has been 

processed, r is changed by all the sequence’s increments: 

0

m

t

t

r r r
=

← + ∆∑ . 

From the discussion in Section 3.4.3, we can either employ gradient method, such as 

deepest decent or Newton’s method, to update r if we wait until the entire process of it is 

completed and J(i) becomes available, or we can use LMS or back-propagation if a desired 

response is provided at each time increment. In reinforcement learning, we cannot wait for the 

procession of the entire state sequence before updating r. Instead, the TD approach represents 

the error tJ J− ɶ  as a sum of changes in approximation, that is, as  

( )
def

1 1  where  
m

t k k m

k t

J J J J J J+ +
=

− = − =∑ɶ ɶ ɶ ɶ .    (3-59) 

Function parameter r is updated incrementally as 
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( ) ( )

( )

( )

1
1 1

1
1 1

1
1 1

                                         

                                         

m m m

t r t k k r t

t t k t

m k

k k r t

k t

m t

t t r k

t k

r r J J J r J J J

r J J J

r J J J

η η

η

η

+
= = =

+
= =

+
= =

← + − ∇ = + − ∇

= + − ∇

= + − ∇

∑ ∑ ∑

∑ ∑

∑ ∑

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

,   (3-60) 

where the incremental correction ∆rt is expressed as  

( )1
1

t

t t t r k

k

r J J Jη +
=

∆ = − ∇∑ɶ ɶ ɶ .    (3-61) 

Because each ∆rt depends only on a pair of successive approximation and on the sum of 

all past values for r tJ∇ ɶ , this  process reduces memory demand substantially. We refer to the 

process given by Eq. (3-61) as the TD(1) method.  

In response to the difference between two successive approximations, TD(1) is a special 

case in which some or all of the preceding approximations are altered to an equal extent. In 

other cases, we may prefer to assign greater weight to more recent approximations. This leads 

us to a generalisation of TD procedure by introducing an exponential weighting factor λ so 

that for 0 ≤ λ ≤ 1, we have  

( )1
1

t
t k

t t t r k

k

r J J Jη λ −
+

=

∆ = − ∇∑ɶ ɶ ɶ .    (3-62) 

Note that for λ = 1, Eq. (3-62) is equivalent to the TD(1) procedure. For λ<1, TD(λ) produces 

weight changes different from the Widrow-Hoff procedure where exact learning targets are 

known. The difference is the greatest in the case of TD(0) where λ = 0. This is because weight 

increment in TD(0) is determined only by its effects on the approximation with the most 

recent observation 

( )1t t t r tr J J Jη +∆ = − ∇ɶ ɶ ɶ .     (3-63) 

It can be seen that TD(0) has the same learning mechanism as LMS, but with different errors. 

It is easy to verify that that the TD(1) procedure converges to the true cost-to-completion J, 

we here prove that the TD(λ) approximation in general coverges asysmptotically to the true 

value.  
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Tsitsiklis and Van Roy (1997) generalised the convergence theory for TD(λ) algorithms 

within the domain of infinite-horizon and finite-state dynamic programming problems with 

discounted cost and linear cost function approximation. Before the formal statement of 

assumptions and convergence theory, let us define a TD(λ) operator on a discrete time system 

by 

( )( )( ) ( ) ( ) ( )1
1 1 0

0 0

1 , |
m

m t m
t t m

m t

T J i E g i i J i i i
∞

λ +
+ +

= =

 
= − λ λ α + α = 

 
∑ ∑  (3-64) 

where λ ∈ (0,1). In the case where λ = 1, we define the operator as:  

( )( )( ) ( ) ( )1
1 0

0

, |t
t t

t

T J i E g i i i i J i
∞

+
=

 
= α = = 

 
∑ , 

which is identical to Eq. (3-8); in the case where λ = 0, we define the operator as:  

( )( )( ) ( ) ( )[ ]0
1 1 0,t t tT J i E g i i J i i i+ += + α = . 

For i ∈ X, we introduce weighted function spaces L2(X, D) to denote the set of vectors  

{ }n

D
J J J DJ′∈ = < ∞ℝ . 

where D is the diagonal matrix with diagonal entries π (i), i = 1,…, n,  

( )
( )

( )

1 0 ... 0

0 2 ... 0

...

0 0 ...

D

n

π
π

π

 
 
 =  
  
 

. 

and π(i) stands for the steady-state probability of visiting state i. We further denote the 

expectation with respect to the steady state distribution as E0[·]. The outstanding assumptions 

for this convergence theorem are: 

Assumption 3-3 (a) The Markov chain has steady-state probability π(1), …, π(n) which are 

positive, that is, 

{ } ( )0 0lim 0,  ,t
t

P i j i j i jπ
→∞

= = > ∀ , 

and 

Pπ π′ ′= . 
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(b) The one-step costs gt(it, it+1) satisfy 

( )2
0 1,t tE g i i +  < ∞  . 

The next assumption ensures that the basis functions (or the feature-extraction functions) 

are linearly independent and do not grow too fast.   

Assumption 3-4 (a) The matrix Φ given by Eq. (3-29) has full rank. 

(b) Each basis function satisfies 

( )2
0  for 0,1,...,jE i j Kφ  < ∞ =  . 

The next assumption essentially requires that the Markov chain has a certain “degree of 

stability.” 

Assumption 3-5 There exists a function f: X +→ ℝ (nonnegative real numbers) satisfying the 

following requirements: 

(a) For all i0 and m ≥ 0,  

( ) ( ) ( ) ( ) ( )0 0 0
0

m t t mE i i i E i i f iτ τ
τ

φ φ φ φ
∞

+ +
=

′ ′  −   ≤  ∑ , 

and 

( ) ( ) ( ) ( ) ( )1 0 0 1 0
0

, ,m m t t m t mE i g i i i E i g i i f iτ τ τ
τ

φ φ
∞

+ + + + + +
=

  −   ≤  ∑ . 

(b) For any n > 1, there exists a constant ωn such that for all i0, t, 

( ) ( )0 0
n n

t nE f i i f iω  ≤  . 

The final assumption places standard constraints on the sequence of stepsizes.  

Assumption 3-6 The learning rate, (or stepsize), ηt are positive, non-increasing, and 

predetermined, and moreover, satisfies  

2

0 0

 and t t

t t

η η
∞ ∞

= =

→ ∞ < ∞∑ ∑ . 

The convergence theorem can then be stated as: 

Theorem 3.2 (Tsitsiklis and Van Roy, 1997) Under Assumptions 3-3, 3-4, 3-5, and 3-6, the 

followings hold: 
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(a) The exact J values are in L2(X, D). 

(b) For any [ ]0,1λ∈ , the TD(λ) algorithm with linear approximation function converges 

with probability 1. 

(c) The limit of convergence r
*
 is the unique solution of the equation 

( ) ( )T r r
λ ∗ ∗∏ Φ = Φ . 

(d) Furthermore, r
*
 satisfies 

1

1 DD
r J J J

αλ
α

∗ −
Φ − ≤ ∏ −

−
 

The proof of Theorem 3.2 is originally provided in Tsitsiklis and Van Roy (1997) and is again 

provided in Appendix 3.A using the notations and definitions of this study. It can be shown 

that Assumptions 3-3(b), 3-4(b), and 3-5 are automatically true whenever an irreducible 

aperiodic Markov Chain with a finite state space is considered.  

The essence of this analysis is to write the TD(λ) algorithm as 

( )1t t t tr r Ar cη+ = + + ,     (3-65) 

where ηt is a positive learning rate satisfying Assumption 3-7. Convergence is obtained at 

0Ar c+ = ,     (3-66) 

where A and c are given by 

( ) ( )
0

m

m

A D P I Pαλ
∞

=

′= Φ − Φ∑ ,    (3-67) 

( )
0

m

m

c D P gαλ
∞

=

′= Φ ∑ ,     (3-68) 

where D is the diagonal matrix with diagonal entries π (i), i = 1,…, n, and g is the vector with 

components  

( ) ( )
1

,
n

ij

j

g i p g i j
=

=∑ .     (3-69) 

We can have an additional insight in Eq. (3-65) by employing the generalised form of 

TD(λ) expressed by Eq. (3-62), and rewrite Eq. (3-65) as 
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( ) ( )

( )

1 1
1

1

     ,

t
t k

t t t t t r k

k

t
t k

t t t k

k

r r J J J i

r d i

η λ

η λ φ

−
+ +

=

−

=

= + − ∇

= +

∑

∑

ɶ ɶ ɶ

     

where we use  

1t t td J J+= −ɶ ɶ       (3-70) 

to denote the temporal difference at time t. For the special case where λ = 0, we have  

( )1 .t t t t tr r d iη φ+ = +      (3-71) 

Theorem 3.2 provides the theoretical justification for incremental adjustment to r in 

linear function approximation using TD(λ) learning. This method is easy to implement and 

efficient in computing. There are, however, two concerns about this approach.  

The first concern is Assumption 3-6, which requires stepsize ηt diminishing to zero. A 

deterministic and diminishing stepsize slows down the rate of convergence, as shown by 

Nedić and Bertsekas (2003), who proposed a λ-least square policy evaluation method (λ-

LSPE) as an alternative to TD(λ) in approximating the exact J values. By bringing in least 

square method to update r at each iteration, the λ-LSPE method guarantees convergence while 

adopting a constant stepsize η = 1. The convergence by using λ-LSPE is faster than TD(λ) in 

terms of number of iterations. Nevertheless, λ-LSPE approach requires use of a correlation 

function and computes matrix inversion. This will be computationally costly if the state space 

is large. Similar arguments apply to the least square temporal difference method (LSTD) by 

Boyan (2002) which solves directly the system of equations that characterises the 

convergence of TD(λ), using all the information available from simulation.  

The second concern is that if an online TD(λ) method does not sample states with the 

frequencies of the Markov chain, it does not always converge. This has been evidenced by 

specific case studies shown in Bertsekas and Tsitsiklis (Example 6.12, 1996), and Tsitsiklis 

and Van Roy (Section 9, 1997).  

Finally, we notice that the implication of TD(λ) method so far only pertains to single step 

value iteration, which means that each iteration only involves a single step state transition 
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from it to it+1. In online traffic signal control, we may have information about further arriving 

traffic from upstream detectors, which may cover several discrete time steps. To utilise the 

detected information or to simulate the process further into time, it may involve a multi-step 

transitions. This leads to TD(λ) in multi-step value iteration, which is discussed in the next 

section.  

3.4.5  TD(λ) and multi-step value iteration 

Multi-step value iteration involves multiple state transitions in a single iteration. In 

particular, for M ≥ 1, let us consider the M-transition Bellman’s equation 

( ) ( ) ( )
1

1 0
0

, ,  1,2,...,
M

t M

t t M

t

J i E g i i J i i i i nα α
−

+
=

 
= + = = 

 
∑  

The value iteration method corresponding to this modified problem is 

( ) ( ) ( )
1

1 1 1 0, ,  1,2,...,
t M

k M

t k k t t M

k t

J i E g i i J i i i i nα α
+ −

+ + + −
=

 
= + = = 

 
∑ ,  (3-72) 

Using the definition of temporal difference, we solve this problem by finding 

( ) ( ) ( )
1

1 1
0

arg min , , , ,  0,1,...
t m M

k m

t m t m t k k k
r

m k m

r J i r J i r d i i tα
+ −

−
+ +

= =

 
= − − = 

 
∑ ∑ɶ   (3-73) 

Using the approximation function ( , )J r⋅ɶ  defined by Eq. (3-25), the incremental gradient 

version of the iteration Eq. (3-73) is given by 

( ) ( )
1

1 1, , 0,1,....
t M

k t

t t t t k k k

k t

r r i d i i tη φ α
+ −

−
+ +

=

= + =∑    (3-74) 

This incremental approach pertains to neither TD(0) nor any specific TD(λ). Bertsekas et al 

(2004) consider this method as an intermediate between TD(0) and TD(λ)  it is closest to 

TD(0) for small M, and to TD(1) for large M. Using Theorem 3.2 and its assumptions, we can 

verify that Eq. (3-74) converges.  

Eq. (3-74) is the method adopted in this study to train neural networks. It can be directly 

implemented to back-propagation. It offers an opportunity of looking forward into time, 
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utilising information about the future events, rather than looking only backward through time. 

Past information is built into the evolving functional parameters.  

3.4.6 Summary 

In Section 3.4, we introduced linear and non-linear approximations to exact J values. We 

generalised the concept of functional approximation using neural networks. Neural networks, 

by choosing appropriate architecture, can exhibit either linearity or non-linearity. The training 

of neural networks requires machine-learning techniques. Supervised and unsupervised 

learning are the two common learning paradigms. Without a source of exact output to correct 

the neural network output, our discussion focused on unsupervised learning, and on 

reinforcement learning in particular. Reinforcement learning adopts a trial-and-error method 

so that the learning agent accumulates knowledge by observing its own behaviour. The 

learning process generates a correction every time when an observation of behaviour becomes 

available. This correction is propagated back to the learning agent so that the parameters of 

the approximation functions are adjusted incrementally. The LMS is a common incremental 

method for linear approximation function and back-propagation for non-linear multi-layer 

neural networks. Back-propagation can be seen as a generalised LMS method. The temporal 

difference learning is the key to reinforcement learning. We showed that under a few 

assumptions, the TD(λ) process converges with probability of 1. Of particular interest to us is 

using TD(λ) in multi-step value iteration, in which a single iteration may involve multiple 

state transitions. We showed that TD with multi-step value iteration is a special case that can 

be seen as an intermediate between TD(0) and TD(1).  

Unsupervised learning is a general concept, and therefore is not limited only to TD(λ) 

method. In the next section, we introduce perturbation learning as another method of 

formulating unsupervised learning.    
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3.5  Perturbation Learning 

In Section 3.4, we discussed about linear approximation built on neural networks and 

trained by temporal difference learning method TD(λ). We discuss perturbation learning here 

as an alternative learning method to adjust the linear approximation function ( ),J r⋅ɶ . The 

function parameters are estimated by perturbing system state with partial increment so that the 

partial derivatives are calculated numerically. This method is motivated by the structural 

property of the J (⋅) function. Papadaki and Powell (2003) used this approach to solve batch 

service problems, which share similarity with the traffic signal control problem.  

3.5.1 Monotonicity of the value function 

We begin the discussion here with the structural properties of the J (⋅) function. Let i 

denote system state, w information of exogenous process, and µ control policy, we have 

( )
( ) ( ){ }arg min , , ,   ,

u U w
u E g i u J j i w u i j X

µ
α

∈
= + ∈ .   (3-75) 

A generic representation of state transition can be written as  

( )1 ,t t t ti f i u w+ = + .     (3-76) 

where function f (·) denotes the vector that gives the state after a decision is implemented. 

Since the process of wt is exogenous and random, a stochastic version of Eq. (3-76) can be 

written as 

( ) ( ) ( ) ( )( )1 1Pr , Pr ,t t t t t t t ti i u J i w J f i u w+ + = + .   (3-77) 

An important structural property of the J(⋅) function is its monotonicity. Puterman 

(Proposition 4.7.3, page 106-107, 1994) establishes the conditions for non-decreasing (non-

increasing) monotonicity of J (⋅). Papadaki and Powell (2007) extended the monotonicity 

results to partially ordered multidimensional case. Before preceding the discussion on the 

conditions, we need the following definitions.  

We define partial ordering operator ≺ or ≻ on the N-dimensional set X. We 

define   i j or i j≺ ≻ for ,i j X∈ , if for all { }1,2,...,k N∈ we have i (k) ≤ j (k), or i (k) ≥ j (k). 



 

 

74 

74 

We further define a real-valued function :J X → ℝ as partially non-decreasing or non-

increasing if for all ,i i X+ − ∈ such that i i+ −≻ , we have J (i+) ≥ J (i−) or J (i+) ≤ J (i−).  

Furthermore, given that if for some { }1,2,...,k N∈  we have j (k) < J (i, u)(k), then 

( )Pr , 0j i u = , since wt is assumed non-negative. We only need to take expectation over state j 

that satisfies ( ),j f i u≻ in the following equations concerning state transition. 

To prove our main result we need the following lemma: 

Lemma 3.1 Suppose that Jt+1 (i) is partially non-decreasing (non-increasing) in X, and that 

for 0i∆ ≻ , ( ) ( ), , ,  f i i u f i u u U+ ∆ ∀ ∈≻ , then we have, 

( ) ( )
( )

( ) ( )
( )

1 1
, , , ,

Pr , Pr ,t t

j X j f i i u j X j f i u

j i i u J j j i u J j+ +
∈ +∆ ∈

+ ∆ ≥∑ ∑
≻ ≻

,  (3-78) 

(where the inequality is reversed in the non-increasing case). 

Proof: For ( ),j f i u≻ and by Eq. (3-77) we have 

( ) ( ) ( ) ( )( )Pr , Pr ,j i u J j w J f i u w= + .   (3-79) 

Using (3-79), (3-78) becomes  

( ) ( )( ) ( ) ( )( )1 1Pr , Pr ,t t

w w

w J f i i u w w J f i u w+ ++ ∆ + ≥ +∑ ∑ .  (3-80) 

The above holds under the assumption that Jt+1 and f (·) are partially non-decreasing 

respectively. q.e.d. 

The following theorem states sufficient conditions for partial monotonicity of the J 

function in our study. 

Theorem 3.3 Suppose the following conditions hold: 

(a) For 0i∆ ≻  we have ( ) ( ), , ,  f i i u f i u u U+ ∆ ∀ ∈≻ . 

(b) The one period cost function g (·) is partially non-decreasing (non-increasing) in i X∈ for 

all u U∈ , t = 0, 1, …, m − 1.  

(c) The terminal cost h(im) is partially non-decreasing (non-increasing) in i X∈ . 

Then value function J is partially non-decreasing (non-increasing) in i X∈ .  
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Proof: Under condition (c) the results hold for J(im) = h(im). For any J, by Eq. (3-79), we have  

( ) ( ) ( ) ( )( )min , Pr ,
w

J i g i u w J f i u wα
 

= + + 
 

∑ . 

Given that the decision vector space is finite, there exists tu U+ ∈ that attains the above 

minimum for state i = i
+. Thus, the J function can be written as 

( ) ( ) ( ) ( )( ), Pr ,
w

J i g i u w J f i u wα+ + + + += + +∑ . 

For i i+ −≻ , and due to condition (a) and (b) and Eq. (3-80), we have 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( )

, Pr ,

          min , Pr ,

          .

w

u U
w

J i g i u w J f i u w

g i u w J f i u w

J i

α

α

+ − + − +

− −

∈

−

≥ + +

 
≥ + + 

 

=

∑

∑  

J (i) is therefore partially non-decreasing in i. q.e.d. 

Theorem 3.3 is derived from Puterman (1994) and Papadaki and Powell (2007). The 

former work established sufficient conditions for monotonicity of value function involving 

scalar state variable, and the latter extended the conditions to include partially-ordered vector 

state variable.  

The monotonicity of J function for a traffic signal control problem is discussed in 

Chapter 4 after the introduction of system dynamics. In the rest of this section, we show the 

general approach to establish perturbation learning.  

3.5.2 Perturbation of system state 

Consider a linear approximation function ( ),J i rɶ defined by Eq. (3-39), and let ∆i(k) be a 

N-dimensional vector of zeroes except for a unit increment in the k
th element, perturbation 

learning computes 

( )
( )( ) ( )
( )

ˆ ˆ
t t

t

J i i k J i
r k

i k

+ ∆ −
∆ =

∆
,    (3-81) 

where  
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( )
( )

( ) ( )( ){ }ˆ min , , , ,
t

t t t t t t t t
u U w

J i E g i w u J f i u w r
µ

α
∈

= + +ɶ . 

We then smooth to obtain an updated estimate of the function parameter 

( ) ( ) ( ) ( )1 1 ,  for 1,2,...,t t t t tr k r k r k k Nη η+ = − + ∆ = ,  (3-82) 

where ηt is a sequence of diminishing stepsizes that satisfy Assumption 3-6.  

The perturbation learning overall is simple for implementation. A drawback of this 

approach is that the computational demand increases substantially as the dimension of state 

vector i increases. This is because ∆r(k) is computed numerically at each time, which is unlike 

the temporal difference (TD) learning that updates parameter vector r simultaneously. For the 

same reason, extending the perturbation learning to non-linear approximation becomes even 

more difficult. Papadaki and Powell (2003) in studying a simple batch service problem 

compared linear and non-linear function forms for approximation, and found out that non-

linear approximation only works better after a number of iterations, suggesting that linear 

approximation is more cost-effective for problem of large state space.  

3.5.3 Summary 

Perturbation learning adjusts parameters of an approximation function by perturbing 

system state with a partial increment. The adjustment of each parameter is obtained by 

numerically calculating the partial gradient corresponding to the partial increment. It offers an 

alternative in establishing unsupervised learning for the purpose of improving approximation.  

3.6  Discussion  

In Chapter 3 we introduced approximate dynamic programming (ADP) as the theoretical 

framework for developing a new adaptive traffic signal controller. The ADP concept is a 

practical and evolutionary substitution to classic backward dynamic programming (DP). The 

DP solution, although being the only exact solution for optimisation over time, usually 

becomes intractable under high dimensionality, and impractical for real-time implementation. 

ADP seeks to reduce dimensionality and computation requirement by replacing a look-up 

table of exact J values with an approximation function. The ADP concept is general, and 
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accommodates different forms of approximation function, including linear and non-linear 

forms. These approximations can be united under the general definition of artificial neural 

networks, and in particular, the ability of non-linear neural works in functional approximation 

is supported by the universal approximation theorem (Theorem 3.1). The general method for 

training neural networks is back-propagation, which by implication propagates the error 

signal backwards in a layer-by-layer manner to update network parameters (or synaptic 

weights in neuron terms). Back-propagation can be seen as a generalised least-mean-square 

(LMS) method, which is of particular interest to online operation, as it updates functional 

parameters incrementally.  

The training of neural networks requires machine-learning techniques. Supervised 

learning and unsupervised learning are the major learning paradigms. The latter is of 

particular interest to real-time control, as it does not require a source of exact output for the 

neural networks to match. Reinforcement learning is an important concept in the paradigm of 

unsupervised learning. It uses the mathematical formalism of dynamic programming and 

learns from its own interaction with environment. A reinforcement learning technique that 

tracks the difference between its own estimations and new observations of state transition 

pertains to the temporal difference (TD) method. We have shown in this chapter that under a 

few assumptions, linear approximation function trained by TD converges with probability 

of 1. Apart from the TD method, we introduced perturbation learning as an alternative method 

to establish unsupervised learning. This approach calculates partial gradient of a linear 

approximation function by perturbing system state with an artificial increment. This approach 

is motivated by the monotonicity property of the J function. 

Before leaving this chapter, we reiterate here the discussion on the two concerns related 

to the TD method that were identified in Section 3.4.4. The first concern is about the 

diminishing stepsize and the second about the Markov process. From Theorem 3.2, we notice 

that a diminishing stepsize is essential for the convergence of TD. However, in practice, we 

may not know the optimal stepsize easily (Chapter 6, Powell, 2007), and furthermore, if 

stepsize approaches zero too rapidly, the learning process stops prematurely. On the other 
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hand, if we start with a large initial stepsize, the neural networks may overshoot in learning. 

Because the focus of this study is to develop a system that constantly adapts to changes in 

prevailing traffic and optimises performance over time, we may be satisfied with a functional 

approximation that has acceptable error bound instead of convergence. It can be shown that 

the error of linear function approximations trained by TD is indeed bounded (Lemma 3.A.6, 

Appendix 3.A), and is not conditional on particular stepsize property. In fact, if prevailing 

traffic varies over time, there is little to be achieved by seeking immediate convergence. This 

motivates us to adopt a constant but cautious stepsize for TD method.  

The second concern is that if state is not sampled in a frequency natural to Markov 

process, convergence will not be achieved. To eliminate the possibility of divergence, any 

arbitrary policies that determine state transition should be avoided. In this study, we only 

discuss control policies that are greedy with respect to the value function.  

In the next Chapter, we introduce system dynamics for both isolated and network traffic 

signal control. ADP algorithms will be established for both cases.   
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Appendix 3.A Convergence of TD(λ) with Linear Function Approximation 

 
We start proving Theorem 3.2 with the fundamental lemma on Markov chains. Here, for 

i ∈ X, we use L2(X, D) to denote the set of vectors  

{ }n

D
J J J DJ′∈ = < ∞ℝ , 

where D is the diagonal matrix with diagonal entries π (i), i = 1,…, n, and π (i) is the steady-

state probability of being state i.  

Lemma 3.A.1 Under Assumption 3-3(a), for any ( )2 ,J L X D∈ , we have  

D D
PJ J≤ . 

Proof: The proof involves Jensen’s inequality and Tonelli’s theorem: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

1 1

2

1 1

2

1 1

2

1

2

1

2

         

         

         

         

         

         

D

n n

ij

i j

n n

ij

i j

n n

ij

j i

n

ij

i

n

i

D

PJ J P DPJ

i p J j

i p J j

i p J j

i p J j

i J j

J

π

π

π

π

π

= =

= =

= =

=

=

′ ′=

 
=  

 

≤

=

=

=

=

∑ ∑

∑ ∑

∑∑

∑

∑

 

Lemma 3.A.2 Under Assumption 3-4 (a) and (b), J(i) is well-defined and finite, i X∀ ∈ . 

Furthermore, J is in L2(X, D), and  

( )
0

t

t

J P gα
∞

=

=∑ . 

Proof: If the Markov chain starts in steady state, it remains in steady-state, and therefore 

( ) ( )2 2
0 1 0 1

0

1
, ,

1
t

t t t t

t

E g i i E g i iα
α

∞

+ +
=

   = < ∞   − 
∑ , 

Because |g(it, it+1)| ≤ 1+g
2(it, it+1), it follows that  
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( ) ( ) ( )1 0 0 1
0 0

, ,t t

t t t t

i X t t

i E g i i i i E g i iπ α α
∞ ∞

+ +
∈ = =

   
= = < ∞   

   
∑ ∑ ∑ . 

Because π (i) > 0 for all i, the expectation defining J (i) is well-defined and finite.  

Using Fubini’s Theorem to switch the order of expectation and summation in the 

definition of J, we obtain 

( ) ( )

( )

( )

1 0
0

1 0
0

0
0

: ,

        ,

        ,

t

t t

t

t

t t

t

t

t

t

J i E g i i i i

E g i i i i

E g i i i

α

α

α

∞

+
=

∞

+
=

∞

=

 
= = 

 

 = = 

 = = 

∑

∑

∑

 

and it follows that  

( )
0

t

t

J P gα
∞

=

=∑ . 

To show that J is in L2(X, D), we have 

( )
0

0

       

       ,
1

t

D
t D

t

t D

D

J P g

g

g

α

α

α

∞

=

∞

=

≤

≤

=
−

∑

∑  

where the second inequality follows from Lemma 3.A.1. Furthermore, by Assumption 3.3 (b), 

we have 

( ) ( )

( ) ( )

( )

2

2

2

2
0 1

,

       ,

       ,

       .

ijD
i X j X

ij

i X j X

t t t

g i p g i j

i p g i j

E g i i i i

π

π

∈ ∈

∈ ∈

+

 
=  

 

≤

 = = 
< ∞

∑ ∑

∑ ∑  

Therefore, J is in L2(X, D). q.e.d.  

Lemma 3.A.3: Under Assumption 3-3, for any ( ),J B S D∈ and [ ]0,1λ∈ , T
(λ)

J is in L2(X, D), 

and we have  
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( ) ( ) ( ) ( ) 1

0 0

1
m

t mm

m t

T J P g P J
λ λ λ α α

∞
+

= =

 
= − + 

 
∑ ∑ . 

Proof: We have 

( )( )( ) ( ) ( ) ( )

( ) ( )[ ] ( )[ ]

1
1 1 0

0 0

1
0 1 0

0 0

1 , |

                 1 | .

m
m t m

t t t m

m t

m
m t m

t m

m t

T J i E a g i i J i i i

a E g i i i E J i i i

∞
λ +

+ +
= =

∞
+

+
= =

 
= − λ λ + α = 

 

 
= − λ λ = + α = 

 

∑ ∑

∑ ∑
 

Because in Lemma 3.A.2 we have shown that 
2

D
g < ∞ , then, for λ < 1, we use Lemma 3.A.1 

to obtain 

( ) ( ) ( )
0 0 0 0

1 1
m m

tm m t

D

m t m tD

P g g
∞ ∞

= = = =

− λ λ α ≤ − λ λ α < ∞∑ ∑ ∑ ∑ . 

Similarly,  

( ) ( ) ( )1 1

0 0

1 1

                                          ,

mm m m

D

m mD

D

P J J

J

∞ ∞
+ +

= =

− λ λ α ≤ − λ λ α

≤ α

∑ ∑  

for any ( )2 ,J L X D∈ . q.e.d. 

Lemma 3.A.4 Under Assumption 3-3(a), for any α ∈ [0,1), ( ) [ ]2, ,   0,1J J L S D and λ∈ ∈ , 

we have 

( ) ( ) ( )1

1 D DD
T J T J J J J J

λ λ α λ
α

αλ
−

− ≤ − ≤ −
−

. 

Proof: The case of λ = 1 is trivial. For λ < 1, by Lemma 3.A.1 and 3.A.3, we have  

( ) ( ) ( ) ( ) ( )

( )

( )

1

0

1

0

1

                          1

1
                          =

1

                         .

mm

D
m D

m m

D
m

D

D

T J T J P J J

J J

J J

J J

λ λ λ λ α

λ λ α

α λ
αλ

α

∞
+

=

∞
+

=

− = − −

≤ − −

−
−

−

≤ −

∑

∑
 

q.e.d. 
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Lemma 3.A.5 Under Assumption 3-3, for any [ ]0,1λ∈ , the exact J function uniquely solves 

the system of equations given by 
( )

J T J
λ= . 

Proof: If λ = 1, the result follows directly from the definition of operator T 
(λ). For [ )0,1λ∈ , 

by Lemma 3.A.2 and 3.A.3, using Fubini’s theorem, we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

1

0 0

1

0 0 0

0 0

0

1

        1

        1

        1 .

m
t mm

m t

m
t m tm

m t t

tm

m t

m

m

T J P g P J

P g P P g

P g

J

∞
+λ

= =

∞ ∞
+

= = =

∞ ∞

= =

∞

=

 
= − λ λ α + α 

 

 
= − λ λ α + α α 

 

 
= − λ λ α 

 

= − λ λ

∑ ∑

∑ ∑ ∑

∑ ∑

∑

 

The contraction property by Lemma 3.A.4 implies that J is the unique fixed point of T 
(λ). 

q.e.d.  

Lemma 3.A.6 Under Assumptions 3-3, and 3-4, ∏T 
(λ)(·) is a contraction and has a unique 

fixed point which is of the form Φr
* for a unique choice of r

*
. Furthermore, r

* satisfies the 

following bound: 

( )1

1 DD
r J J J

λα
α

∗ −
Φ − ≤ ∏ −

−
. 

Proof: Lemma 3.A.4 ensures that T 
(λ)

 is a contraction on L2(X, D), and Lemma 3.A.5 ensures 

that J is the fixed point of the contraction. Note that for ( )2 ,J L X D∈ we have 

2 2 2

D D D
J J J J= ∏ + −∏ , 

since ( )DJ J J∏ ⊥ −∏ . It follows that projection ∏ is non-expansive, and thus the 

composition ∏ T 
(λ) (·) is a contraction. Therefore, ∏ T 

(λ) (·) has a unique fixed point of the 

form Φr
*, for some r

*. Because basis functions φj(·) are assumed linearly independent, it 

follows that the choice of r* is unique.  

Using the fact that J is in L2(X, D) by Lemma 3.A.2 and is the fixed point of T 
(λ) by 

Lemma 3.A.5, we establish the desired bound. In particular, we have 
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( ) ( )
( ) ( )
( )

                 

                 

1
                 ,

1

DD D

DD

DD

DD

r J r J J J

T r J J J

T r J J J

r J J J

λ

λ

α λ

αλ

∗ ∗

∗

∗

∗

Φ − ≤ Φ −∏ + ∏ −

= ∏ Φ −∏ + ∏ −

≤ Φ − + ∏ −

−
≤ Φ − + ∏ −

−

 

and it follows that  

( )
1

1 1 (1 ) 1
D

DD

J J
r J J J

αλ
α λ αλ α

∗ ∏ − −
Φ − ≤ = ∏ −

− − − −
. 

q.e.d. 

The following lemmas are to characterize the expected behaviour of the steps taken by 

the TD(λ) algorithm in “steady-state.” A convenient representation of TD(λ) can be obtained 

by defining a sequence of eligibility vectors zt by  

( ) ( )

( ) ( )

0

0

,

   .

t
t k

t r k k

k

t
t k

k

k

z J i r

i

αλ

αλ φ

−

=

−

=

= ∇

=

∑

∑

ɶ

 

Using the eligibility vector z we further construct a process Yt = (it, it+1, zt). Since it is a 

Markov process, it is easy to see that Yt is a Markov process too. At each time t, the random 

vector Yt, together with the current parameter vector rt, provides all necessary information for 

computing rt. In this regard, we define a function s with  

( ) ( ) ( ) ( ), , , , ,   ,s r Y g i j J j r J i r z i j Xα = + − ∀ ∈ 
ɶ ɶ , 

where Y= (i,  j, z). Thus, we can rewrite the TD(λ) algorithm as  

( )1 ,t t t t tr r s r Yη+ = + . 

Of particular interest to us is the behaviour of s in steady state, i.e. E0[s(r,Yt)] for any given r, 

as s determines the correction to r. Prior to studying E0[s(r,Yt)], we establish a few 

preliminary relations in the next lemma.  
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Lemma 3.A.7 Under Assumption 3-3, and 3-4, the following relations hold: 

(a) ( ) ( )0 ,  0,m

t t mE i i DP for mφ φ +′ ′  = Φ Φ ≥   

(b) there exists a finite constant G such that ( ) ( )0 t t mE i i Gφ φ +′  ≤  , for all m ≥ 0, 

(c) ( ) ( )0
0

m m

t t

m

E z i DPφ αλ
∞

=

′ ′  = Φ Φ  ∑ , 

(d) ( ) ( ) 1
0 1

0

m m

t t

m

E z i DPφ αλ
∞

+
+

=

′ ′  = Φ Φ  ∑ , 

(e) ( ) ( ) 1
0 1

0

,
m m

t t t

m

E z g i i DP gαλ
∞

+
+

=

′  = Φ  ∑ . 

Further more, each of the above expressions is well defined and finite. 

Proof: For any ( )2, ,J J L X D∈ , we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 Pr

                                          

                                          .

t t m t m t

i X j X

m

i X

m

E J i J i i i j i i J i J j

i J i P J i

J DP J

π

π

+ +
∈ ∈

∈

  = = = 

 =  

′=

∑ ∑

∑  

By Lemma 3.A.1 and using the Cauchy-Schwarz inequality, mJ DP J′ is finite. Because 

J r= Φ and J r= Φ , we obtain 

( ) ( )0
m

t t mE r i i r r DP rφ φ +′ ′ ′ ′  = Φ Φ  , 

which is equivalent to  

( ) ( )0
m

t t mE i i DPφ φ +′ ′  = Φ Φ  . 

We then place a bound on the Euclidean norm || Φ'DP
mΦ || as follows: 

( )

2

,

1 1
2 2 2

,

2

,

22

2 2
0

max

                  max

                  max

                  max

                  max .

m m

k j
k j

m

k j
k j

m

k jD Dk j

k Dk

k
k

DP K DP

K D D P

K P

K

K E i

φ φ

φ φ

φ φ

φ

φ

′′Φ Φ ≤

′=

′≤

≤

 =  
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The result ( )2 2
0max k

k
K E iφ   is a finite constant G, by Assumption 3-4(b). This far, we have 

verified parts (a) and (b) of Lemma 3.A.7.  

We now begin with the analysis for part (c). Because E0[z0φ'(it)] is the same for all t, it 

suffices to prove the result for the case t = 0. We have 

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 0 0 0 0

0

0 0                           ,

E z i E i i

E i i

τ
τ

τ

τ
τ

τ

φ αλ φ φ

αλ φ φ

−

=−∞

−

=−∞

 ′ ′  =   
 

′=   

∑

∑
 

where the interchange of summation and expectation is justified by the dominated 

convergence theorem. By part (a), we establish part (c) with the result. The proofs for (d) and 

(e) contain entirely similar arguments, and hence omitted. q.e.d. 

The next lemma characterises E0[s(r, Y(t))].  

Lemma 3.A.8 Under Assumption 3-3 and 3-4, we have 

( ) ( ) ( )( )0 , ,tE s r Y D T r r
λ′  = Φ Φ −Φ   

which is well defined and finite for any finite r.  

Proof: By applying Lemma 3.A.7, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 1 1

0

, ,

                        .

t t t t t

m

m

E s r Y E z t g i i z t i r z t i r

D P g P r r

α φ φ

αλ α

+ +

∞

=

′ ′  =  + −    

′= Φ + Φ −Φ∑
 

For λ = 1, it follows that  

( ) ( )0 , tE s r Y D J r′  = Φ −Φ  . 

For [ )0,1λ∈ and any ( )2 ,J L X D∈ , we have 

( ) ( ) ( )
0 0 0

1
m tm

m m t

P J P Jαλ λ λ α
∞ ∞ ∞

= = =

= −∑ ∑ ∑ . 

and therefore by Lemma 3.A.3, we have 

( ) ( ) ( ) ( ) ( )

( ) ( )( )

1

0
0 0 0

, 1 1

                        .

t mm m

t

m t m

E s r Y D P g P I r

D T r r
λ

λ λ α λ λ α
∞ ∞ ∞

+

= = =

  ′  = Φ − + − − Φ   
  

′= Φ Φ −Φ

∑ ∑ ∑
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Each expression is finite and well defined by Lemma 3.A.7. q.e.d. 

The next lemma shows that the steps taken by TD(λ) tend to move rt towards r*.  

Lemma 3.A.9 Under Assumption 3-3 and 3-4, we have 

( ) ( )0 , 0,   tr r E s r Y r r∗ ∗′−   < ∀ ≠  . 

Proof: Using Lemma 3.A.8 we have 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )                                                  ,

r r D T r r r r D I T r T r r

r r D T r r

λ λ λ

λ

∗ ∗

∗

′ ′′ ′− Φ Φ −Φ = − Φ −∏ Φ + ∏ Φ −Φ

′= Φ −Φ ∏ Φ −Φ
 

where the last equality follows because Φ'D∏ = Φ'D, since projection ∏ can be expressed as 

( ) 1
D D

−′ ′ ′∏ = Φ Φ Φ Φ . 

As shown in the proof of Lemma 3.A.5, ∏T(λ) is a contraction with fixed point Φr
*, and the 

contraction factor is no larger than α. Hence,  

( ) ( )
DD

T r r r r
λ α∗ ∗∏ Φ −Φ ≤ Φ −Φ , 

and using the Cauchy-Schwartz inequality, we have 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )

2

2

                                                  

                                                  1 .

D DD

D

r r D T r r r r D T r r r r

r r T r r r r

r r

λ λ

λ

α

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

′ ′′− Φ Φ −Φ = Φ −Φ ∏ Φ −Φ + Φ −Φ

≤ Φ −Φ ⋅ ∏ Φ −Φ + Φ −Φ

≤ − Φ −Φ

 

Since α < 1, the result follows. q.e.d. 

We now state without proof a result concerning stochastic approximation, which will be 

used in the proof of Theorem 3.2. This is a special case of very general result on stochastic 

approximation algorithm (Theorem 17, pp. 239, Benveniste et al., 1990).  

Theorem 3.A.1 Consider an iterative algorithm of the form 

( ) ( )( )1t t t t t tr r A Y r c Yη+ = + +  

where: 

(a) The learning rate, (or stepsize), ηt satisfies Assumption 3-6(a). 
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(b) Yt is a Markov process with a steady-state distribution, and there exists a mapping h from 

the states of the Markov process to the positive real numbers, satisfying the remaining 

conditions. Let E0[·] stands for expectation with respect to this steady-state distribution.  

(c) A(·) and c(·) are matrix and vector valued functions in respect, for which A= E0[A(Yt)] and 

c = E0[c(Yt)] are well defined and finite.  

(d) The matrix A is negative definite. 

(e) There exist constants C and β such that, for all Y, 

( ) ( )( )0
0

1 ,t

t

E A Y Y Y A C h Yβ
∞

=

 = − ≤ + ∑  

and 

( ) ( )( )0
0

1t

t

E c Y Y Y c C h Yβ
∞

=

 = − ≤ + ∑ . 

(f) For any β > 1 there exists a constant θβ such that for all Y, t,  

( ) ( )( )0 1tE h Y Y Y h Yβ β
βθ = ≤ +  . 

Then, rt converges to r*
, with probability 1, where r

*
is the unique vector that satisfies  

0Ar c∗ + = . 

Finally we come to the proof of Theorem 3.2. 

Proof of Theorem 3.2:  

Function s(rt, Yt) for updating rt is 

( )1 ,t t t t tr r s r Yη+ = +  

where 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 1

, , , ,

                     , .

t t t t t t t t t t

t t t t t t t

s r Y z g i i z J i r J i r

z g i i z i i r

α

αφ φ

+ +

+ +

= + −

′ ′= + −

ɶ ɶ
 

This function can be rewritten with A and c in the form 

( ) ( ) ( ),t t t t ts r Y A Y r c Y= + . 

where 

( ) ( ) ( )( )1t t t tA Y z i iαφ φ+′ ′= − , 
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and 

( ) ( )1,t t t tc Y z g i i += . 

By Lemma 3.A.7, we have 

( )

( ) ( )( )

( ) ( )

( ) ( )

0

0 1

1

0 0

0

:

   

   

   ,

t

t t t

m mm m

m m

m

m

A E A Y

E z i i

DP DP

D P I P

αφ φ

αλ αλ

αλ

+

∞ ∞
+

= =

∞

=

=   

 ′ ′= − 

′ ′= Φ Φ − Φ Φ

′= Φ − Φ

∑ ∑

∑

 

and similarly  

( )
0

:
m

m

c D P gαλ
∞

=

′= Φ ∑ . 

Matrix A and vector c are both well defined and finite.  

By Lemma 3.A.6, we have ∏T
(λ)(Φr

*) = Φr
*. From Lemma 3.A.9, we have Φ'D∏ = Φ'D, 

and therefore, Φ'D T(λ)(Φr
*) = Φ'D Φr

*. Using the formula of E0[s(r*, Yt)], as given by Lemma 

3.A.8, we can conclude that E0[s(r*, Yt)] = 0. Hence, 

( ) ( ) ( )
( )

0 0

0

, ,

               , .

t t

t

A r r E s r Y E s r Y

E s r Y

∗ ∗ − =   −   

=   
 

It follows from Lemma 3.A.9 that  

( ) ( ) 0,   r r A r r r r∗ ∗ ∗′− − < ∀ ≠ , 

and thus A is negative definite.  

Theorem 3.A.1 is used here to show that rt converges. The analysis so far ensures that all 

conditions except for (e) and (f) are met. In the following analysis, we show that Assumption 

3-5 is sufficient to ensure validity for these two conditions.  

We begin by binding the summations involved in condition (e). Using the formula for zt, 

we have 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

0 0 1

0
0

0
0

                                               

                                               .

t

t t t t t

t
m

t m t

m

m

t m t

m

E z i Y E z i E z i

E i i Y

E i i

φ φ αλ φ

αλ φ φ

αλ φ φ

+

−

−
=

∞

−
=

 ′ ′  −   =    

′ +  

′−   

∑

∑

 

Using the triangle inequality, we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

0 0 1 0
0 0

0 0
0 0

                                                      

                                            

t

t t t t t

t t

t
m

t m t t m t

t m

E z i Y E z i E z i Y

E i i Y E i i

φ φ αλ φ

αλ φ φ φ φ

∞ ∞
+

−
= =

∞

− −
= =

′ ′ ′   −   ≤    

′ ′ + −    

∑ ∑

∑∑

( ) ( ) ( )0
0 1

           + .
m

t m t

t m t

E i iαλ φ φ
∞ ∞

−
= = +

′  ∑ ∑

 

We will individually bind the magnitude of each summation in the right hand side. First, we 

have 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 0 1 0
0 0

1

0 0 0
0

1
                                           ,

t t

t t

t t

t

t

t

E z i Y z E i Y

z i E i Y

αλ φ αλ φ

φ αλ φ
αλ

∞ ∞
+ +

− −
= =

∞
+

=

′   =   

 = −  

∑ ∑

∑
 

where the second inequality follows from the fact that  

( ) ( )0 1 0z z iαλ φ−= + . 

Assumption 3-5(a) implies that  

( ) ( ) ( )( )0 0 11 ,tE i Y C f i f i
β

φ  ≤ + +   

for some constant C and β and any t ≥ 0. It follows that  

( ) ( ) ( ) ( )( )1

1 0 0 0 1
0

1
t

t

t

E z i Y C z f i f i
β

αλ φ
∞

+

−
=

′  ≤ + + + ∑ . 

Next, we deal with the second summation. Letting ∆(t-m, t) be defined as  

( ) ( ) ( ) ( ) ( )0 0, t m t t m tt m t E i i Y E i iφ φ φ φ− −′ ′ ∆ − = −     , 

we have 

( ) ( ) ( ) ( ) ( )

( ) ( )( )
0 0 0 1

0 1

, 0, ,

                                     ,

t
m m

t m m t m

t m t m t m t

C f i f i

αλ αλ
∞ ∞ ∞

= = = = +

 
∆ − = ∆ + ∆ − 

 

≤ +

∑∑ ∑ ∑
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where the inequality follows from Assumption 3-5(a).  

Finally, from Lemma 3.A.7, we know that ( ) ( )0 t m tE i i Gφ φ− ′  ≤  , for some constant G. 

And we have 

( ) ( ) ( ) ( )

( )

0
0 1 0 1

1

0

                                                     
1

                                                     .

m m

t m t

t m t t m t

t

t

E i i G

G

αλ φ φ αλ

αλ
αλ

∞ ∞ ∞ ∞

−
= = + = = +

+∞

=

′  ≤ 

=
−

< ∞

∑ ∑ ∑ ∑

∑  

Given these bounds, it follows that there exist positive constants C and β such that 

( ) ( ) ( ) ( )( )0 0 0 0 1
0

1t t t t

t

E z i Y E z i C z f i f i
β

φ φ
∞

=

′ ′  −   ≤ + + +  ∑ . 

It can be seen that the summation above is bounded by a polynomial function on the right 

hand side. An identical argument can be produced for the terms αztφ'(it+1), and ztg(it, it+1), 

which is omitted here. Using these arguments, we place bounds that are polynomial in ||z0||, 

f(i0), and f(i1), on the summation in Condition (e) of Theorem 3.A.1. We can thus satisfy the 

condition with a function h(Y) that is polynomial in ||z0||, f(i0), and f(i1). Following Assumption 

3-5(b), such a function h(Y) satisfies Condition (f) in Theorem 3.A.1.  

We now have all the conditions satisfied to apply Theorem 3.A.1. It follows that rt 

converges to r
*, which solves Ar

*+c = 0. Since Ar
*+c = E0[s(r*, Yt)], Lemma 3.A.8 implies 

that  

( ) ( )( ) 0D T r r
λ ∗ ∗′Φ Φ −Φ = . 

Using Lemma 3.A.6, and under Assumption 3-5, r* uniquely satisfies this equation and is the 

unique fixed point of ∏T
(λ), with a bounded error. This completes the proof of Theorem 3.2.  
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CHAPTER 4 ADP ALGORITHMS FOR ADAPTIVE TRAFFIC 

SIGNAL CONTROL 

 
In the preceding chapter, we introduced the fundamentals of approximate dynamic 

programming (ADP) for real-time control. In this chapter we present the development of ADP 

algorithm for adaptive traffic signal operation.  

We begin discussion with a few general assumptions of traffic signal operation in 

Section 4.1. The general assumptions reflect the conditions common to traffic engineering. 

The methods for generating random traffic in computer simulation are discussed in Section 

4.2. State definition and dynamics of state transition are discussed in Section 4.3. Based on 

the formalism of state transition, we introduce dynamic programming (DP) formulae in 

Section 4.4. Structural properties of the value function in DP are discussed in Section 4.5. The 

structural properties of J function are helpful in determining the structure of approximation 

functions, which is discussed in Section 4.6. General control policy is discussed in Section 4.7, 

and traffic models in Section 4.8. The ADP algorithms are shown in Section 4.9. A summary 

is provided in Section 4.10.  

4.1  General Assumptions 

The general assumptions frame the scope of this study so that the features key to our 

interest are highlighted, and those less significant simplified or neglected.  

The first two assumptions concern traffic signals and their indication durations: 

Assumption 4-1 Signal phases are represented by effective greens and effective reds only, 

thus excluding the effects of amber intervals.  

Assumption 4-2 There are no constraints on the maximum duration of a green period. A 

signal switch is immediately followed by inter-green and minimum green.  

We consider discrete time controllers only in this study. To investigate the impact of 

different discrete temporal resolutions, we consider three cases: 5s, 2s and 0.5s per temporal 

increment. The following two assumptions apply to all of the three resolutions. 
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Assumption 4-3 Queue lengths are calculated at the end of each temporal interval, 

neglecting the detail of vehicle behaviour during the interval. Signals may only be switched at 

the boundary between intervals.  

Assumption 4-4 The saturation flow on all lanes is 2 vehicles per 5 seconds.  

This rate is equivalent to 1440 vehicles per hour, which is close to the saturation flow 

rate of a single traffic lane.  

The next assumption concerns about lost time in traffic control. The term lost time in 

traffic engineering pertains to the time (in seconds) during which vehicles receiving green 

signal are unable to pass through an intersection. The total lost time is the sum of Start-up lost 

time and Clearance lost time. If no specific observations were made for the lost times, the two 

elements of total lost time may be assumed to be 2.0s (Roes et al., 2004). In this study, lost 

time is not modelled for the purpose of preserving simplicity.  

Assumption 4-5 There is no lost time for vehicles receiving green signal. 

To reflect the norm of real-time traffic signal control, we consider traffic sensors that 

detect incoming vehicles. We further assume that  

Assumption 4-6 Upstream roadside sensors provide information of arriving traffic of the 

next 10 seconds.  

4.2 Traffic Generation 

This section discusses random traffic generation in computer simulation. At 5s resolution, 

traffic arrivals during each time interval take integer value of 0, 1, or 2 vehicles only; at 2s 

and 0.5s resolutions, traffic arrival per temporal interval is a binary variable taking the value 

of either 0 or 1.  

Random traffic arrivals at 5s and 2s resolutions are generated by binomial distribution. 

The maximum rate of 2 vehicles per time interval is set for the 5s resolution so that the arrival 

rate could not exceed the capacity. Letting Q be the arriving rate, we denote the cumulative 

distribution function by  

( ) { }F Q P q Q= ≤  
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and probability of q = m, is  

{ } ( )1 ,  0,1,..., .
n mm

n
P q m p p m n

m

− 
= = − = 

 
 

where n = 2 at 5s resolution, and n = 1 at 2s resolution.  

Simulation of the random arrival process is then generated by using Inverse 

Transformation Method (Devroye, 1986), which first generates a uniform random number z 

between 0 and 1, and then sets F(Q)=z and solve for Q to produce the desired random 

observation from the probability distribution.  

In order to generate traffic at 0.5s resolution, a shifted Bernoulli process is used to ensure 

that an appropriate minimum inter-arrival time is respected. With probability P, an arrival is 

generated and the trial has duration Tp=nb∆t; with probability (1-P), no arrival is generated 

and the trial has duration Tp=∆t. The mean number of vehicles generated in a single trial is 

E(N) = P, and the mean duration of the trial is E(Tp) = [Pnb+ (1-P)] ∆t. The mean rate of 

traffic generation is given by: 

{ }
{ } ( )1 1bp

E N P
q

P n tE T
= =

 + − ∆ 
.    (4-1) 

The probability required to generate a certain mean arrival rate can be deduced by inversing 

the expression: 

.
1 ( 1)b

Q t
P

n Q t

∆
=

− − ∆
     (4-2) 

The rest of the process for generating random traffic at the 0.5s resolution is identical to 

that of the other two resolutions. Because Assumption 4-3 stipulates that queue lengths are 

calculated at the end of each interval, vehicle delays measured under the different resolution 

are not directly comparable. In particular, in the case of 5s resolution, no delay is attributed to 

either vehicle in a time increment during which two depart, whilst under 2s and 0.5s 

resolutions, one of the vehicles will be delayed for the whole of the departure time of the 

other. To facilitate performance comparison at different resolutions, we record the decision 

series of the coarse case and implement them in the fine case to calculate delay. The 
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performance measures thus obtained are then comparable. Specifications for generating traffic 

data at different resolutions are summarised in Table 4-1. 

Table 4-1 Random Traffic Generation by ITM 

Resolution 
(in seconds) 

Traffic Rate Random Process 

5.0  0, 1, or 2 Binomial 

2.0  0 or 1 Binomial 

0.5 0 or 1 Shifted Bernoulli 

 

4.3  State Transition 

The state of traffic intersection has two primary components: the queue state of 

individual traffic link and the controller state that describes the signal indication to individual 

link. We denote the queue state by the column vector l and controller state by the column 

vector s. For an intersection of N traffic links, the vectors l and s can be expressed as: 

( )

( )

1l

l

l N

 
 =  
  

⋮ , 

( )

( )

1s

s

s N

 
 =  
  

⋮ , 

where l(n) denotes the actual number of vehicles queuing in link n, and each element of s is a 

binary variable depending on traffic signal indication such that 

( )
0   if the signal for link  is green

1   if the signal for link  is red    

n
s n

n


= 


 

We denote decision vector u as: 

( )

( )

1u

u

u N

 
 =  
  

⋮ ,       

where the decision variable takes 

( )
1 if signal  is switched at time 

0 unchanged.                               t

n t
u n


= 


  (4-3) 
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In particular, Assumption 4-3 requires that traffic signal may only be switched at the 

boundary between intervals. From this point, we further assume that 

Assumption 4-7 For any ( ) { }0,1u n ∈ , n = 1, 2, …, N, decision u (n) takes effects at the 

beginning of the temporal increment from t to t+1. 

To facilitate further discussion on system dynamics, we introduce the post-decision 

vector su,t where 

( )

( )

,

,

,

1u t

u t

u t

s

s

s N

 
 =  
  

⋮ , 

which describes the state of signals after implementing decision ut. The transition from st to 

su,t can be expressed as 

( ) ( ) ( )( ), 2modu t t ts n s n u n= + ,    (4-4) 

At fine resolutions (2.0s and 0.5s), state i includes additional dimensions. This is because 

that minimum green and inter-green may be greater than temporal increment at the fine 

resolutions. Minimum green and inter-green are mandatory intervals during which no signal 

switch is admissible. To enforce the mandatory regulations, we introduce a constraint 

variable mc. Let ∆t denote temporal increment (in seconds), Tmin the minimum green, Tinter the 

inter-green, and Mc the total number of temporal intervals that correspond to mandatory inter-

green and minimum green, we have the following relationship 

( )min inter 1cM T T t= + ∆ − .    (4-5) 

When signal switch is made, we set constraint variable: 

c c
m M= .     (4-6) 

For each time increment after the signal switch, the constraint variable is recursively 

calculated as 

{ }max 0, 1c cm m= − .     (4-7) 
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Signal switch is admissible only at times when mc = 0. In this way, we guarantee that 

mandatory timings are enforced, i.e. successive signal switches only occur after inter-green 

and minimum green periods have been satisfied.  

At the 0.5s resolution, in accordance to the traffic generation rules specified in Eq. (4-1) 

and (4-2), we introduce vector md (n) for each traffic link to deterministically ensure that no 

more than one departure within the duration (Md + 1)∆t, where in our case  

( ) 1

dM Ceil y t
−∗ = ∆  

,     (4-8) 

where function Ceil (x) returns the least integer that is greater than x, and y* is the saturation 

departure rate. This relationship guarantees that saturation departure rate is 2 vehicles per 5.0s.  

Upon each vehicle departure  

( )d dm n M= .     (4-9) 

For each time increment after the precedent departure, we have 

( ) ( ){ }max 0, 1d dm n m n= − .    (4-10) 

where the column vector md can be expressed as 

( )

( )

1d

d

d

m

m

m N

 
 =  
  

⋮  

for an intersection of total N traffic links.  

A general form of state i for all resolutions can be written as  

[ ], , ,c di l s m m= ,    (4-11) 

where i (n) = [ l (n), s (n), mc, md (n) ].  

Random arriving traffic detected by the roadside sensors is denoted by column vector w, 

where 

( )

( )

1w

w

w N

 
 =  
  

⋮ , 

and 
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( )
{ }
{ }
0,1,2 5s resolution

0,1 2s and 0.5s resolution.
w n


∈


  (4-12) 

The departing traffic is denoted by column vector y. For the N-link intersection, vector y 

can be expressed as 

( )

( )

1y

y

y n

 
 =  
  

⋮ , 

where at 5s resolution, we have  

( )
( ) ( ){ } ( )

( )
min , if 0

0                                if 1,

u

u

y l n w n s n
y n

s n

∗ + =
= 

=
   (4-13) 

and at 2s and 0.5s resolutions, we have 

( )
( ) ( ){ } ( ) ( )min , if 0 and =0

0                                otherwise.                        

u dy l n w n s n m n
y n

∗ + =
= 


  (4-14) 

Finally, the transition of system state during time increment t obeys the following rules:  

Signal vector s, 

( ) ( )1 ,t u ts n s n+ = .    (4-15) 

where su,t is transformed by Eq. (4-4). For the queue vector l, we have 

( ) ( ) ( ) ( )1t t t tl n l n y n w n+ = − + ,    (4-16) 

Overall, we can define a transition function f (·) such that  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ), , , , ,t t c d t t t tf l n s n m m n w n u n l n y n≡ − ,   (4-17) 

and rewrite Eq. (4-16) as  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 , , , , ,t t t c d t t tl n f l n s n m m n w n u n w n+ = + ,  (4-18) 

which, by using vector forms, can be further simplified as 

( )1 , ,t t t t tl f i w u w+ = + .     (4-19) 

We now investigate into the structural properties of the value function in dynamic 

programming.  
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4.4  Dynamic Programming Formulae 

Given the definitions of state variables in Section 4.3, we define the one-step cost 

function for an isolated intersection of N links as:  

( ) ( ) ( ) ( )
1

, ,
N

n

g i w u l n y n w n t
=

=  − + ∆ ∑ .   (4-20) 

This means that the one-step cost is the sum of vehicle-seconds occurred during a temporal 

interval of ∆t seconds. Recalling equations (3-1) and (3-2), the dynamic programming is then 

to solve: 

( ) 0
0

min , ,
t

t

t t t
u U W

t

E g i w u i iα
∞

∈
=

 
= 

 
∑ , 

and the value function is hence defined as 

( ) ( ) ( ){ }1min , ,
t t

t t t t i t
u U w

J i E g i w u J i iα +=
= + . 

This dynamic programming problem can be solved in theory using iteration algorithms 

discussed in Section 3.3.4. However, the computational requirement to compute J (i) for all 

i ∈X in each stage can easily make the problem intractable. Approximation to dynamic 

programming reduces dimensionality and makes the problem computationally tractable. 

Appropriate approximation requires the reservation of fundamental properties of the value 

function. We discuss a couple of fundamental properties of the value function in the following 

section.  

4.5  Properties of the Value Function 

In this section, we prove some important structural properties of the value function in 

dynamic programming. The first property is the monotonicity of the value function in queue 

length. The second property is the monotonicity of the value function in controller state. The 

structural properties are essential for the development of approximation architectures.  
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4.5.1  Non-decreasing monotonicity in queue length 

We now prove that the sufficient conditions (a), (b) and (c) of Theorem 3.3 are satisfied 

in the case of traffic signal control. We first look at the monotonicity of transition function f (·) 

defined by Eq. (4-17). We define that 

, , ,c di l s m m+ + ≡   , and , , ,c di l s m m− − ≡   ,   (4-21) 

so that 

l l i i+ − + −⇔≻ ≻ .    (4-22) 

Because that f (·) is a dependent on departure vector y, we prove the following property of y. 

Lemma 4.1 For all { }0,1u∈ , and for all ,i i X+ − ∈ such that i i+ −≻ we have 

( ) ( )y l y l l l+ − + −− −≺ . 

Proof: if su(n) = 0, from Eq. (4-13), (4-14) and (4-22), we have  

( )( ) ( )( )
( ) ( )

0

                       .

y l n y l n

l n l n

+ −

+ −

− =

≤ −
 

if su(n) = 1, at 5s resolution, by Eq. (4-13) we have 

( )( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

 if + <                                            

if +   and + <

0                  if + > .                                          

l n l n l n w n y n

y l n y l n l n l n l n w n y n l n w n y n

l n w n y n

+ − + ∗

+ − + − + ∗ − ∗

− ∗

= −


− < − ≥
=

 

Conditions at 2s and 0.5s resolutions can be proved similarly, except using Eq. (4-14) in place 

of (4-13), hence omitted. q.e.d. 

The next lemma says that function f (·) is monopolistically non-decreasing in state i.  

Lemma 4.2 For all { }0,1u∈ , and for all ,i i X+ − ∈ such that i i+ −≻ we have 

( ) ( ), , , ,f i w u f i w u+ −≻ .    (4-23) 

Proof: Given s, mc, and md, for all u ∈{0,1}, using Eq. (4-19), by Lemma 4.1 we have  

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

, , , ,

                                      

                                      .

f i w u f i w u l y l l y l

l l y l y l

+ − + + − −

+ − + −

− = − − −

= − − −

0≻
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q.e.d. 

Next, we show that the one-step cost function g is partially non-decreasing in state i.   

Lemma 4.3 The one-step cost g (i, w, u) is partially non-decreasing in , i X w∈ ∀ , 

∀ u ∈{0,1}, and ∀ t = 0, 1, …, T − 1.  

Proof: Let ,i i X+ − ∈  such that i i+ −≻ , from Lemma 4.2, and using Eq. (4-20), we have that  

( ) ( ) ( )( ) ( )( )
( ) ( )

1

, , , ,

                                     , , , ,

                                     0.

N

n

n

g i w u g i w u l y l l y l t

f i w u f i w u t

+ − + + − −

=

+ −

 − = − − − ∆ 

 = − ∆ 

≥

∑

∑  

q.e.d. 

We further assume that the terminal cost function h (im) is partially non-decreasing in i, 

thus all of the conditions for Theorem 3.3 (Section 3.5) are satisfied. From this, we have the 

following results: 

Theorem 4.1 The value function Jt for the traffic signal control problem is partially 

non-decreasing in vehicle queue length for all t = 0, 1, …, T.  

Theorem 4.1 suggests that a linear function with non-negative functional parameters may 

work well in approximating the exact value function of traffic signal control.  

4.5.2  Non-decreasing monotonicity in controller state 

An intuitive reflection of traffic signal control is that vehicles queuing in the traffic link 

of red signal experience more delays than those in the link of green signal. In other words, 

value function Jt is partially non-decreasing if the signal vector su is partially switched from 

green to red. To facilitate further discussion, we define that 

( )
( )

 red signal    

 green signal.
u

u

s n

s n

+

−





    (4-24) 

The following theorem states sufficient conditions for non-decreasing monotonicity of 

the Jt function in controller state.   

Theorem 4.2 Suppose the following conditions hold: 
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(a) For ( ) ( )1,  and 0u us n s n+ −≡ ≡  we have ( )( )( ) ( )( )( ), , , , ,  u uf i s n w u f i s n w u u U+ − ∀ ∈≻ . 

(b) The one-step cost function gt (·) satisfies ( )( )( ) ( )( )( ), , , ,u ug i s n w u g i s n w u+ −≥ , for i X∈ , 

and u U∀ ∈ , t = 0, 1, …, m − 1.  

(c) The terminal cost h(im) satisfies ( )( )( ) ( )( )( )m u m uh i s n h i s n+ −≥  in i X∈ . 

Then value function Jt satisfies ( )( )( ) ( )( )( )t u t uJ i s n J i s n+ −≥ in i X∈ , for t = 0, 1, …, m − 1. 

The proof of Theorem 4.2 is entirely similar to the proof of Theorem 3.3 (Section 3.5.1), 

hence omitted. We begin to show that this theorem holds in traffic signal control with the 

following lemmas.  

The first lemma shows that less vehicle may possibly depart in red signal than in green.  

Lemma 4.4 For all i X∈ , 1,2,...,n N= , for ( )us n+ and ( )us n−  defined by Eq.4-24, we have 

( )( ) ( )( )u uy s n y s n+ −≤ . 

Proof: As defined by Eq. (4-13) and (4-14). q.e.d. 

The next lemma says that red signal causes greater (or no less) transition cost than green 

signal.  

Lemma 4.5 For all i X∈ , 1,2,...,n N= , for ( )us n+ and ( )us n−  defined by Eq.4-24, u U∀ ∈ , 

we have 

( )( )( ) ( )( )( ), , , ,u uf i s n w u f i s n w u+ −≥ . 

Proof: Given s, mc, and md, , 1,2,...,u U n N∀ ∈ = , using Eq. (4-19), by Lemma 4.4 we 

have  

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( )( )

, , , ,

                                                            

                                                            0.

u u u u

u u

f i s n w u f i s n w u l y s n l y s n

y s n y s n

+ − + −

− +

− = − − −

= −

≥

 

q.e.d. 

The next lemma says that red signal gives greater (or no less) one-step cost than green 

signal.  
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Lemma 4.6 For all i X∈ , 1,2,...,n N= , for ( )us n+ and ( )us n−  defined by Eq.4-24, u U∀ ∈ , 

we have 

( )( )( ) ( )( )( ), , , ,u ug i s n w u g i s n w u+ −≥ . 

Proof: From Lemma 4.5, and using Eq. (4-20), for any { }1,2,...,n N∈ , we have 

( )( )( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( )

( )( )( ) ( )( )( )
1

1

, , , ,

                                                           , , , ,

                                                          

N

u u u u

n

N

u u

n

g i s n w u g i s n w u l n y s n l n y s n t

f i s n w u f i s n w u t

+ − + −

=

+ +

=

 − = − − − ∆ 

 = − ∆ 

∑

∑
 0.≥

 

q.e.d. 

Lemma 4.4 and 4.5 satisfy condition (a) of Theorem 4.2, Lemma 4.6 satisfies condition 

(b), and let condition (c) hold, we have met all of the conditions of Theorem 4.2. Therefore, 

we have:  

Theorem 4.3 The value function of traffic signal control problem formulated in dynamic 

programming is partially non-decreasing in controller state su such that  

( )( )( ) ( )( )( )t u t uJ i s n J i s n+ −≥ . 

4.6  Approximation to the Value Function 

Theorem 4.3 suggests differentiation of controller status in the approximation function. 

Regarding this, we employ a feature-extraction function φ (i) such that,  

( )
( )( )

( )( )

1i

i

i N

φ

φ
φ

 
 

=  
 
  

⋮ ,     (4-25) 

where 

( )( )

( )

( )

( )

( )

if 0
0

0
if 1

l n
s n

i n

s n
l n

φ

 
= 

 
= 

  = 
 

    (4-26) 
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From Theorem 4.1, which postulates that value function in non-decreasing in traffic state, we 

propose a linear approximation function as described by the followings: 

( ) ( )( ) ( )
1

,
N

n

J i r i n r nφ
=

′=∑ɶ ,    (4-27) 

where 

( ) ( )
( )

r n
r n

r n

−

+

 
=  

 
.     (4-28) 

By doing so, we assign r- to queue length variable l (n) if link n receives green signal, or r+ if 

otherwise.  

The linear form of the approximation function allows the employment of many 

well-studied unsupervised learning techniques, such as temporal-difference learning (TD) and 

perturbation learning. In the next section, we discuss the general control policy for traffic 

signals. 

4.7 Control Policies 

A key fact underlying all dynamic programming methods is that the only policies that 

are greedy with respect to their own evaluation function are optimal policies (Barto et al., 

1995). Regarding this, we employ a greedy control policy to minimise vehicle delays at 

individual intersection. Because we only consider distributed control for traffic networks, the 

control policy for isolated intersection also applies for network operation. In this section, we 

limit our discussion on the general terms. The specific control policies are discussed 

specifically in Chapter 5 for each test case.  

4.7.1 General control policy 

The general control policy is to find decision ut that minimises the sum of one-step 

costs for the planning horizon plus the future cost. Our immediate concern here is the length 

of planning horizon. Ideally, we would prefer to plan as much into the future as possible. 

However, real-time data from detectors are limited. In this study we assume that detectors 

provide 10s data of future vehicle arrivals (Assumption 4-6). For the horizon beyond the 
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coverage of detected data, we seek to predict by using traffic models. Nevertheless, the 

further into the future, the less accurate the prediction would be. Robertson and Bretherton 

(1974) using backward DP showed that the optimal policy was not particularly sensitive to 

variations in the traffic arrivals of the next 10 to 20 seconds. Heydecker and Boardman 

(1999) further investigated a discrete time signal controller (at resolution 0.5s) in backward 

DP. The result showed that the optimal control sequences converge within a finite period of 

time, regardless of the initial states. These findings suggest keeping the planning horizon 

between 10s to 20s for real-time control. The actual length of horizon will be decided case-

by-case in numerical studies.  

4.7.2  Structure of the planning horizon   

The part of the planning horizon with real-time data from detectors is regarded as the 

‘head’ of the horizon, whilst the part with predicted data being the ‘tail’. There are a variety 

of approaches to supply predicted data for the tail of the horizon. Gartner (1983a) proposed 

four types of tail models, which are variable tail, fixed tail, static tail and dynamic tail.  

In the variable tail model, we project upstream arrivals for the head period as well as for 

the tail period, i.e., we assume to have accurate information on arrivals for the entire horizon. 

This model will be modified and used for the test on network operation in this study.  

In the fixed tail model, we predict the future arrivals by running a smoothing process on 

the arrival data. Consequently, the tail values will slowly vary with the moving average of 

the flow rate. While it causes some degradation in performance when compared with the 

variable tail, this model is suitable for on-line implementation since it only requires data that 

are readily available from detectors. In this study, the fixed tail model will be used for the 

test on isolated intersection.  

Static tail and dynamic tail models deal with cyclic patterns of arrivals for the entire 

data set. The two models are more appropriate for theoretical investigations, as they require 

the projection of arrivals for the entire length of the control period, and have strong cyclic 

pattern assumption, which is less relevant to the interest of our study.  
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Fig. 4-1 The rolling horizon approach and the emergence of detected data of future traffic arrivals 
 

4.7.3  Rolling horizon 

Under Assumption 3-1 and 4-6, we have new data of ∆t at the beginning of each time 

interval. This process is illustrated in Fig. 4-1. To utilise the newly available data, we first 

calculate a detailed signal plan for the planning horizon, which includes both the head and 

tail parts, and then only the first ∆t of each such plan is implemented: the rest is revised in 

the arrival of new detected data. This is a rolling horizon approach, which we have described 

concisely in Section 2.2.3. Using the rolling horizon, the smaller the time increment ∆t is, 

the more frequent the signal plan is revised. For example, at the 0.5s resolution, the signal 

plan is revised 10 times more often than at the 5.0s resolution. We expect that a fine 

resolution would bring additional reduction in vehicle delays because of the greater 

flexibility in revising plans to accommodate dynamics in traffic.  

4.7.4  The M-step iteration 

In general, we can assume that there are M temporal steps in total during the horizon. 

The value of M may vary according to the actual length of the horizon and the resolution of 

the discrete system. Recalling the M-transition Bellman’s equation introduced in Section 

3.4.5, we have  

 

Time: 
Head Tail 

Planning Period 

∆t 

Detected data: 

Increment: 

New data becoming available at t + ∆t 
 

Now t 
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( ) ( ) ( )
1

1 0
0

, ,  
M

t M

t t M

t

J i E g i i J i i i i Xα α
−

+
=

 
= + = ∈ 

 
∑ . 

Using Eq. (4-20) to substitute the more general term g (it, it+1), we have 

( ) ( ) ( )
1

0
0

, , ,  
M

t M

t t t M

t

J i E g i w u J i i i i Xα α
−

=

 
= + = ∈ 

 
∑ .             (4-29) 

The value iteration method corresponding to this modified form is 

( ) ( ) ( )
1

1 1 0, , ,  
t M

t M

t k k k t t M

k t

J i E g i w u J i i i i Xα α
+ −

− + −
=

 
= + = ∈ 

 
∑ .  (4-30) 

Substituting exact Jt with the approximate function tJɶ defined by Eq. (4-27), the greedy 

control policy is to find 

( ) ( )
1

1 1 1arg min , , , ,  
t

t M
t M

t k k k t t M t
u U

k t

E g i w u J i r i Xα α
+ −

∗
− + − −∈

=

 
= + ∈ 

 
∑u ɶ ,  (4-31) 

where t

∗u is a N M× vector whose kth column is equal to uk; that is 

 

( )

( )
1

| | 1

| |

k

t t t M

k

u

u u

u N

∗
+ −

− − 
  = =   
   − −   

u ⋯ ⋮ ,   (4-32) 

where N is the total number of links of the traffic intersection.  

The decision space of the control policy includes: 

(a) The signals are not changed; 

(b) The signals change immediately to the signal stage that gives least total delay. 

The control process using the M-step iteration method and under Assumption 4-6 and 4-7 

can be expressed as:  

{ }0 0 1 1 0 1 1 2 1 2 1 1 1 1, , ,..., , ; , , ,..., , ; ,...; , , ,..., , ;M M m m m m M m mi w w w u i w w w u i i w w w u i∗ ∗ ∗
− − − + − −F = . 

Implementing option (b) may be further subject to specific terms, and the terms may vary 

from isolated intersection to networks. We will discuss the specific terms together with the 

numerical tests in Chapter 5.  
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Fig. 4-2 The general control policy and a rolling horizon approach; A planning horizon consists “head” 
and “tail” parts, only the first ∆t part of the signal plan is implemented. 

 

According to the rolling horizon concept, only the first ∆t part of the signal plan is 

actually implemented. The system then rolls forwards into the next temporal interval. This 

process is illustrated in Fig. 4-2.   

4.7.5  Summary 

The general control policy aims to minimise the sum of immediate vehicular delays in a 

specified planning horizon and the future delays. The horizon can be divided into head part 

and tail part. The head part is supplied with real-time data from detectors, and the tail part 

supplied with predicted data from traffic models. Signal plans, however, are only 

implemented for the first ∆t of the planning period. The system then rolls forward and revises 

plan as new data emerge. The finer the resolution of ∆t, the more frequent the signal plan is 

revised.  

4.8 Traffic Models 

Traffic models serve for two purposes in our study:  

Time: 
Now t t + 10s 

Detected Predicted 

Head Tail 

M-step cost 
Evaluation: 

Implementation
: 

Data: 

Plan: 

t + M∆t 

Approximated cost  

1t M
J + −
ɶ  

∆t 
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1) It simulates traffic dynamics at signalised traffic intersections and in the links of 

traffic networks 

2) It assists to evaluate control decisions. 

We begin our discussion with the fundamentals of modelling traffic.  

4.8.1  Fundamentals 

Traffic models in general are concerned with finding relationships between the three 

fundamental variables of traffic: flow q, speed V 
1 and density K. The three characteristic 

variables describe the average behaviour of traffic flow over different locations and different 

observation periods. The fundamental relationship between these three variables is established 

by Lighthill and Whitham (1955), and independently by Richards (1956), and is described as 

q VK= ,     (4-33) 

which frequently referred as the LWR model. From this model, a number of fundamental 

traffic flow theories, such as the propagation of shockwaves, are derived.  

The LWR model is a macroscopic approach, in which the behaviour of individual 

vehicles cannot be distinguished. Lighthill and Whitham further assumed that q and K are 

related in a fashion described by what come to be known as the “Fundamental Diagram”, as 

shown in Fig. 4-3. Supported by the empirical evidence, the LWR model is arguablely one of 

the most widely accepted models of traffic flow at macro level. It forms the premise for both 

advanced analytical studies and practical approximations.   

Modelling traffic is an established field in transport studies. A good guide to traffic flow 

theories and traffic modelling is available in Gartner et al. (1997). In this section, we only 

discuss models conforming to our discrete, acyclic, and distributive control system. 

Discussions are divided into isolated intersection and traffic networks.  

                                                 
1 We use upper case V here to denote flow speed rather than the more conventional lower case v 
because that the latter is used in Section 3.4.1 for denoting the induced local field of a neuron model.   
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Fig. 4-3 The Fundamental Diagram of the LWR model 

4.8.2 Isolated intersection   

In this case traffic model is limited only to describe the traffic dynamics of the 

intersection itself, regardless of the upstream and down stream effects. The key variables are 

queue length l, the arriving vehicles w, and the departing vehicles y. Their relationship is 

regulated by Eq. (4-16). We further assume that the arriving vehicles are travelling at 

homogenous speed from the upstream detector line to stop-line, where vehicles join a queue 

vertically. The physical length of the queue is neglected in the model; therefore the queue 

does not spill back to the upstream. Once vehicles are held in a vertical queue, the departure 

time of the first vehicle is assumed to coincide with the start of effective green. Since in our 

study we neglect lost time (Assumption 4-5), the start of effective green is equivalent to the 

start of green signal. The following vehicles are assumed to depart from the stop-line at equal 

headways (saturation departure time) until queues are dissipated, as it is regulated by 

Eq. (4-13) and (4-14). This dynamic system automatically forms a vertical queuing model, 

variations of which are widely adopted in traffic signal optimization tools, such as DYPIC 

OPAC and TRANSYT. The vertical queuing model is simple in comparison with other traffic 

Flow 

qmax 

Density 

 

Kj 

V 

Kj is the jam density, 
qmax is the maximum 
flow rate. 
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models, as it assumes that all queuing vehicles move with the same speed, and stop 

instantaneously.  

Let q denote the traffic flow rate in a selected link, y*
 the saturation departure rate, Tr the 

period of red signal, and Tg the period of green signal, we can plot the queue formulation and 

dissipation in vertical queuing model against time, as shown in Fig. 4-4. The queue length 

accumulated in Tr is obtained by  

r
l qT= , 

and the green time to dissipate the queue length by 

( )
r

g

qT
T

y q∗
=

−
. 

Examples of the actual queue formulation and dissipation in simulation are presented in 

Fig. 4-5 (a) under 5s resolution and in Fig. 4-5 (b) under 0.5s resolution. The vertex of the 

triangles in Fig. 4-5s is right-shifted in comparison with the position in Fig. 4-4, which shows 

that the rate of dissipation is greater than the rate of arrival. It is worth noting that in Fig. 4-5 

(b) the dissipation rate in green period can temporarily become positive. This is because that 

under the resolution of 0.5s, during the headway of the last departure, an additional vehicle 

joins the queue. This does not apply to the 5s resolutions, as regulated by Eq. (4-13).  

 
Fig. 4-4 Queue formation and dissipation in the vertical queuing model; Tr is the red signal period, Tg 

the green signal period, q the traffic flow rate, and s the saturation departure rate 
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Fig. 4-5 Actual formulation and dissipation of queue in the vertical queuing model in simulations (x-
axis: time interval; y-axis: queue length); (a) shows queue formation at 5.0s resolution, and (b) at 0.5s. 
 

The vertical queuing model, however, is not the only traffic model that can be possibly 

applied in discrete control system. Ahn (2004) investigated a microscopic car-following 

model in the context of a discrete dynamic signal controller. His work on dynamic controller 

shares similarity with ours, despite the fact that his work assumes a fixed stage sequence, and 

the controller is constrained by the maximum green time. Ahn concluded that, although the 

microscopic is more precise in modelling vehicle motion and in calculating vehicle delays, 

the vertical queuing model is nearly as good as the microscopic car-following model when 

used for signal timing optimisation. This conclusion suggests keeping the model simple. We 

therefore adopt the vertical queuing model in our study on isolated intersections.  

4.8.3  Traffic network 

In a traffic network, traffic dynamics in adjacent intersections are inter-correlated. The 

outflow of traffic from the upstream intersection influences the formulation and dissipation of 

queue in the downstream intersection. Similarly, queues of downstream may influence the 

outflow traffic of the upstream. For example, in a short traffic link, queues of downstream 

may spill back to the stopline of the upstream, blocking the vehicles that would have been 

departing. Therefore, it requires a traffic model for the entire network to describe the inter-

correlated flow dynamics. We review platoon-dispersion model and cell transmission model 

in the following discussion.  
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4.8.3.1  Platoon dispersion model 

A direct extension of the vertical queuing model to network study is the platoon 

dispersion model (Robertson, 1969) used in TRANSYT. This model is developed under the 

assumptions that the signal timings are fixed and cyclic, and thus the flows along the links are 

cyclic. This model calculates the behaviour of traffic by manipulating the following three 

types of cyclic flow profiles:  

1. IN profile: the arrival profile at the down stream stopline, if the traffic were not 

impeded by the signal at the stopline. 

2. GO profile: the profile of traffic that would leave the stopline, if there was enough 

traffic to saturate the green.  

3. OUT profile: the departure profile of traffic actually leaving the stop-line; it is 

actually equal to the GO profile as long as there is a queue; after the queue has 

discharged, it is equal to the IN profile for the duration of the effective green time.  

To model platoon dispersion (and therefore for all calculations of the flow patterns), the 

common cycle plan of the network is divided into K number of intervals. Profiles are then 

calculated as step functions with a stepsize of one interval. The number of intervals is often 

taken as the number of seconds in the cycle, so that an interval has duration of 1 second.  

Let qk and 
k

q′  be the amount of traffic in interval k in the upstream and downstream 

In-profiles respectively, then qk+K = qk for all k, and similarly for 
k

q′  in terms of various qk . 

The platoon dispersion model assumes that each qk contributes F(1 − F)n
qk to each 

( )(mod  )k t n Kq + +′  for n = 0, 1, 2, …, where t is an integer determined by the travel time along the 

link and F is a proportion. It follows that 

( )( )(mod  ) ( 1)(mod  )F 1 F ,  1,2,...,k t n K k k t Kq q q k K+ + + −′ ′= + − = .  (4-34) 

Traffic is conserved because ( )
0

1 F 1/ F
t

t

∞

=

− =∑ . 

Although the platoon dispersion model is one of the frequently used tools for signal 

optimisation, its assumption of cyclic flow pattern and the specified relationship of Eq. (4-34) 
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do not hold in acyclic control. This is because the local controller may not return to the same 

signal stage after K intervals, nor follow the same stage sequence. Consequently, there is no 

guarantee of a cyclic flow pattern after all. Furthermore, the platoon dispersion model is 

designed for a centralised network control strategy, in which a common cyclic time applies to 

all local intersections, except for the settings of offset and specific start/end of green phases.  

Since our interest lies in distributed control strategy with acyclic signal timings, we look 

into traffic models that describe link flow independent of the assumption of cyclic profiles 

and common cycle plans.  

4.8.3.2  Cell transmission model 

In discrete systems, we only need to consider the distribution of vehicles in a traffic link 

at successive temporal intervals. To make the model at macro level, the distribution of 

vehicles in the link may be only at state of ‘free flows’ or a ‘queue’ during a temporal interval. 

The traffic link can be segmented into an array of ‘blocks’, as shown in Fig. 4-6, and the 

distribution of vehicle is either travelling at free flow speed from one block to the next, or, 

joining a queue and remains in the current block. Therefore, once a vehicle depart from 

upstream intersection and enters into the rear block of the link leading to downstream, its 

distribution will be processed among the blocks successively, until departing from the 

downstream stopline.  

 
Fig. 4-6 A graphical presentation of segmented traffic link 
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Fig. 4-7 Flow-density relationship for the generalised cell-transmission model 

 

These basic ideas were explored in specific ways by Gartner (1983a) in developing 

OPAC and by Henry et al. (1983) in developing PRODYN. These ideas are generalised in 

Daganzo (1994), who introduced a macro traffic flow model called Cell Transmission Model 

(CTM).  

The CTM model is a discrete approximation of the LWR model. It assumes its 

fundamental diagram to take a triangular or trapezoidal form as shown in Fig. 4-7. This 

relationship assumes a constant free-flow speed, V1, for lower densities and a constant 

negative wave speed, −V2 (always lower than free-flow speed) at higher densities.  

In the cell transmission model, a traffic link is represented by a collection of equal-length 

cells. The length of each cell is equal to the distance that a single vehicle travels during one 

temporal interval at the free-flow speed. If there is no congestion, it is expected that a vehicle 

would move from one cell to another during the interval. For a given time interval t, each cell 

k has xt (k) number of vehicles and yt (k) vehicles ready to enter. The outflow from each cell k 

(or the inflow into its downstream cell k − 1) during the time interval t to t + ∆t is governed 

by  

Flow 
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Kj is the jam density, 
qmax is the maximum 
flow rate. 
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( ) ( ) ( ) ( ) ( )2

1

1 min , 1 , 1 1t t t

V
y k x k Q k C k x k

V

 
− = −  − − −   

 
  (4-35) 

where  

Q (k) is the maximum number of vehicles that can enter cell k in a single time interval; 

C (k) is the spatial capacity of cell k; 

( ) ( )1 1tC k x k − − −   is the available space in cell k −1; and 

2

1

V

V
is the ratio of shockwave speed to free-flow speed.  

Eq. (4-35) models both the congested and uncongested regions through the fundamental 

diagram. After the outflows are determined for each cell for a specified time interval, the 

traffic conditions in the network at the next time interval, t + 1, are updated using the 

following conservation equation: 

( ) ( ) ( ) ( )1 1t t t tx k x k y k y k+ = − − + .   (4-36) 

The CTM model is embedded in Lo’s (1999, 2001) integer programming solution to 

network traffic signal control, in which the exit flow capacity of a signal cell is defined and 

controlled by the signal settings. The signal controller exhaustively searches the duration of 

green phases between the boundaries of maximum and minimum time constraints to optimise 

performance index. Its implication limits to cyclic signal plans. Lo et al. (2001) used CTM 

model to support a dynamic signal optimisation heuristic based on genetic algorithm. The 

heuristic was tested in real sites in Hong Kong and was proven competitive in performance in 

comparison with TRANSYT plans. The cyclic signal plans are generated randomly for all the 

intersections of the network, and then are evaluated and regenerated by the genetic algorithm. 

The disadvantage of this approach is that the understanding of the heuristic is largely kept at 

black-box level because of the genetic algorithm. Wong et al. (2007) employed the CTM 

model to study the reserve capacity of signalised traffic network. They formulated the control 

problem using a binary-mix-integer-program, which was then solved by a standard branch-
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and-bound technique. The signal timings are acyclic, although the signals of the example 

junction are optimised together rather than distributedly. 

Given the maturity and conformity of the CTM model to discrete and dynamic signal 

control problem, we use this model to describe the traffic dynamics in our test on network 

control.   

4.8.4  Summary 

In this section we examined a few traffic models for their compatibility and conformity 

to our study. We found that the vertical queuing model is simple and sufficient for modelling 

traffic at isolated intersection and the CTM model for traffic network. Both models are mature 

and widely adopted in signal optimisation studies. The purposes of traffic models are to 

simulate traffic dynamics in numerical experiment and assist evaluation of control decisions. 

4.9  The ADP Algorithms for Traffic Signal Control 

In the preceding sections of this chapter, we have introduced in sequential order the 

random generation of traffic demand for numerical experiment, the dynamics of state 

transition, the key properties of the value function, the general control policy and the traffic 

models. Together with the ADP formulae and learning techniques introduced in Chapter 3, we 

are now able to develop ADP algorithms for adaptive traffic signal control. Discussions in 

this section is divided into isolated intersection and traffic networks.  

4.9.1  ADP algorithm for isolated intersection 

In Chapter 3 we discussed two alternative learning techniques for updating the linear 

approximation function. One is the temporal-difference (TD) method, and the other is the 

perturbation learning (PL) method that numerically calculates partial gradients. In the rest of 

the thesis, we denote the former method as the ADP_TD option, and the latter as the ADP_PL 

option. Since the primary difference of the two optional techniques lies in the mechanism in 

generating learning signals and the routine in updating functional parameters, we propose a 
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single ADP algorithm, while highlighting the two optional techniques in the process of 

updating functional parameters.  

We further define that the isolated intersection has multiple signal stages and has N 

traffic links in total. The control algorithm is applicable to all resolutions in concern. The 

ADP algorithm is described as follows. 

Step 0: Initialisation 

0.1 Choose an initial system state i0 ; 

0.2 a) ADP_TD option, initialise neural network settings and neural weight vector r0; 

b) ADP_PL option, choose initials values for functional parameter vector r0; 

0.3 Initialise learning rate (or stepsize) η0; 

0.4 Set time index t = 0. 

Step 1: Receiving new information 

1.1 Set time index t = t + 1; 

1.2 Receive information wt for the head part of the planning horizon; 

1.3 Predict the information 
t

w′ for the tail part of the planning horizon, if applicable. 

Step 2: Evaluate control decisions 

2.1 If switch constraint mc > 0, signal change is not admissible, and u*
t = 0,    

set { }max 0, 1c cm m= − ; 

2.2 If switch constraint mc = 0, for the planning horizon of M-steps, find the optimal decision 

u
*
t using Eq. (4-31), i.e. 

( ) ( )
1

1 1arg min , , ,  
t M

t M

t k k k t t M

k t

E g i w u J i i Xα α
+ −

∗
− + −

=

 
= + ∈ 

 
∑u ɶ . 

if the optimal decision is to switch signal, then set
c c

m M= , where 

( ) min inter1cM t T T+ ∆ = + ; 

if the optimal decision is to remain current signal indication, set { }max 0, 1c cm m= − . 

Step 3: Update approximation function 

a) ADP_TD option:  
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3.a.1 Using u*
t and Eq. (4-30), calculate new observation ( )ˆ

t tJ i , i.e. 

( ) ( ) ( )
1

1 1
ˆ , , ,  

t M
k M

t t k k k t t M

k t

J i E g i w u J i i Xα α
+ −

∗
− + −

=

 
= + ∈ 

 
∑ ɶ ; 

3.a.2 Calculate current approximation ( )1 1,t t tJ i r− −
ɶ by using Eq. (4-27), i.e. 

( ) ( )( ) ( )1 1 1
1

,
N

t t t t t

n

J i r i n r nφ− − −
=

′=∑ɶ , n = 1, 2, …, N; 

3.a.3 Calculate M-step temporal difference 

( ) ( ) ( )
1

1 1 1
ˆ, ,

t M
k t

k k k t t t t t

k t

d i i J i J i rα
+ −

−
+ − −

=

= −∑ ɶ ; 

3.a.4 Update functional parameter vector rt-1 using Eq. (3-74), i.e. 

( ) ( )
1

1 1,
t M

k t

t t t t k k k

k t

r r i d i iη φ α
+ −

−
− +

=

= + ∑ . 

b) ADP_PL option: 

3.b.1 Numerically calculate partial gradient for n = 1, 2, …, N by perturbing queue lt (n) of 

state it by ∆l,  

if s(n) = 0 (green signal in link n), using Eq. (3-81), 

( )
( ) ( )( )( ) ( )

( )
( )

ˆ ˆ
,

0;

t t t t t

t

t

J i l n l n J i
r n

l n

r n

−

+

+ ∆ −
∆ =

∆

∆ =

 

if s(n) = 1 (red signal in link n), using Eq. (3-81), 

( )
( ) ( )( )( ) ( )

( )
( )

ˆ ˆ
,

0;

t t t t t

t

t

J i l n l n J i
r n

l n

r n

+

−

+ ∆ −
∆ =

∆

∆ =

 

where  

( ) ( ) ( )
1

1 1
ˆ , , ,  

t M
k M

t t k k k t t M

k t

J i E g i w u J i i Xα α
+ −

∗
− + −

=

 
= + ∈ 

 
∑ ɶ , 

and 

( ) ( )( ) ( )1 1 1
1

,
N

t t t t t

n

J i r i n r nφ− − −
=

′=∑ɶ ,  
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3.b.2 Update functional parameter vector rt-1 using Eq. (3-82), and for n = 1, 2, …, N¸  

if s(n) = 0 (green signal in link n) 

( ) ( )( ) ( ) ( ) ( )
( ) ( )

1

1

1

,

t k t k t

t t

r n n r n n r n

r n r n

η η− − − − −
−

+ +
−

= − + ∆

=
 

if s(n) = 1 (red signal in link n) 

( ) ( )( ) ( ) ( ) ( )
( ) ( )

1

1

1

,

t k t k t

t t

r n n r n n r n

r n r n

η η+ + + + +
−

− −
−

= − + ∆

=
 

where ( )k nη −  and ( )k nη + are the stepsizes for ( )tr n−  and ( )tr n+  respectively, and k denotes 

the number of times the parameter has been updated.   

Step 4: Implement optimal decision u*
t for the first ∆t of the planning period 

4.1 Transfer signal status using Eq. (4-4) and (4-15); 

4.2 Transfer queue status using Eq. (4-16); 

4.3 Record switch constraint mc and departure constraint md.  

4.4 Complete the state transition from it to it+1.  

Step 5: Stopping Criteria 

5.1 If t < T, then goes back to Step 1; Otherwise, stop.  

Using ADP_TD, from Theorem 3.2 (Section 3.4.4, Chapter 3) we know that if the 

assumptions hold, the parameter vector of the linear approximation function converges with 

probability of 1. Theorem 4.1, 4.2, and 4.3 guarantee that ADP_PL preserves the structural 

properties of the value function.  

4.9.2  ADP algorithm for traffic network 

In traffic network, a control decision at local intersection influences the traffic in 

connected traffic links and at adjacent intersections. Using CTM model we are able to 

evaluate the influence of local decision to adjacent intersections at macro level. The concept 

of distributed control requires signals be optimised locally, without centralised or collective 

optimisation. This means that microprocessors embedded in local controllers calculate in 

parallel rather than following preset sequential order. Moreover, communications may be 
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established among adjacent controllers to exchange the information of the current local 

system state, including queuing state and controller state. 

Existing network control systems usually limit the functionality of a local controller. 

OPAC decomposes a network into sub-networks, and at each time instant selects a critical 

intersection in the sub-network to optimise signal timing, while preserving current timing 

plans in the rest intersections of the sub-network. Sub-networks may overlap, but 

optimisations in selected intersections are parallel. PRODYN adds one supervisory layer on 

top of the local intersections in the network topology. Local decisions are submitted to the 

supervisory layer for review and receive dispatched sensitivity variables in return for further 

optimisation. This process carries on until no better combination of local decisions is found.  

In this study, optimisations at intersections are completely parallel and independent. 

Each local ADP controller requires an individual approximation function. When the local 

controller is evaluating control decisions, the controller state of other intersections is assumed 

unchanged. The traffic states are interpreted from the CTM model. The control algorithm for 

each local controller is the same as described in Section 4.9.1.  

4.9.3 Summary  

In this section, we introduced the ADP control algorithms for isolated intersection and 

traffic network respectively. The algorithms adopt a general framework that accommodates 

both temporal-difference learning and perturbation learning. The control of traffic networks is 

fully distributed, and control algorithm at each local intersection is the same as for isolated 

intersection control.  

4.10  Discussion  

This chapter describes the development of the ADP algorithm for adaptive traffic signal 

control. After introducing a few general assumptions for the traffic signal control problem, we 

introduced the formulae that describe the fundamental relationships between queue, signal, 

arriving vehicle and control decisions. The state transition formulae are the basis for proving 
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theorem 4.1, 4.2, and 4.3 that identify structural properties of the value function. Based on 

these properties, a linear approximation function using feature-extraction function is proposed. 

We proposed in this chapter a general control policy that is greedy in respect to the 

evaluation function. There is no assumption of pre-set cyclic plans or stage sequence. The 

planning horizon is divided into the head part and the tail part. The former is supplied with 

detected information, and the latter with predicted information. The optional decisions are 

evaluated by using traffic models that simulate the system ahead. We identified that vertical 

queuing model is sufficient for modelling traffic dynamics at an isolated intersection, and the 

Cell Transmission Model (CTM) model for modelling traffic network. Using the rolling 

horizon approach, only the first ∆t part of the signal plans is implemented. The system then 

rolls forward one step.  

 The ADP algorithm here developed is applicable for both isolated intersection and 

traffic networks. The differences are that, in traffic network, local decisions influence the 

downstream traffic, and CTM model is used to model dynamics in traffic links as well as at 

the stoplines. The coordination between intersections is implicit in the distributed control 

method. Influence of local decision to downstream is processed by traffic models, and state of 

local control system is interpreted from the traffic models.  

The design of the algorithm reflects the practical control condition. The assumption of 

10s information of future vehicle arrivals is realistic in contemporary traffic engineering. 

Modern signalised intersection, such as those controlled by MOVA, uses inductive loops 

installed upstream to provide information of several seconds’ future arrivals. A vehicle 

passing over the loop generates impulse to the detector, which then interpret the impulse as 

“1” or “0”. This is fairly similar to the definition of demand vector wt in this study. By using 

the rolling horizon approach, the signal timing plans calculated at the preceding time interval 

are revised at the frequency determined by the resolution. OPAC and PRODYN work at the 

resolution of 5s, and MOVA at 0.5s. The design of the ADP algorithm accommodates a range 

of resolution from 5s to 0.5s. The computational advantages of ADP algorithms raise the 

prospect of working at even finer resolutions. Above all, the ADP algorithm operates with 
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minimum human intervention, as the controller uses learning mechanisms to adapt to 

changing traffic environment. The ADP algorithms do not require significant upgrade of 

existing computing hardware and communication facilities.    

However, necessary simplifications are made to facilitate investigations. The modelling 

of traffic dynamics is primarily at macro level. Consequently, the individual vehicle 

behaviours during a temporal interval are neglected. Even though we may adopt a rather fine 

resolution for the discrete time system, the description of vehicle behaviour is limited to either 

travelling at free-flow speed or remaining in a queue. In contrast, a microscopic traffic model, 

such as car-following model, is capable of modelling de/accelerations of individual vehicles, 

or even vehicle taking-over and lane changing. Implications of using microscopic traffic 

model into ADP controller are left for further studies.  

Furthermore, traffics are assumed as homogenous. The models in use do not differentiate 

vehicles by their physical characters, speed or utility. More sophisticated models, together 

with further development in control algorithm, are required to address issues like bus priority 

or other specific control schemes.    

In addition, this study neglects amber stage of a traffic signal and the lost time of green 

phase. Pedestrian phases are not considered. Those simplifications allow us to focus on 

addressing the primary concerns of traffic signal control in the development of ADP 

algorithm, i.e. minimising road user delays. We may extend the ADP algorithm to more 

complex environment on the condition that it performances well in relatively simple cases.  

In the next chapter, we present numerical experiments in using ADP method for traffic 

signal control.  
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CHAPTER 5  NUMERICAL EXPERIMENTS 

This chapter presents a systematic investigation into the performance of the ADP 

controllers through simulation-based experiments. The scope of these experiments 

encompasses both isolated intersection and small-scale traffic networks. The objectives of the 

experiments are explained in Section 5.1. Experiments on controlling isolated intersections 

are presented in Section 5.2, and those on traffic network operations in Section 5.3. 

Conclusions drawn from experiment results are presented in Section 5.4.   

5.1  Objectives 

Objectives of conducting numerical experiments are to: 

1) Test performance of ADP controllers against benchmarks; 

2) Test performance of ADP controller at different temporal resolutions of the discrete 

time process; 

3) Investigate evolution of the approximation; 

4) Evaluate effects of reinforcement learning on control performance.  

The starting case for the numerical experiments is a two-arm, two-stage road intersection. 

This simple layout has been frequently employed as test-bed for various control methods, thus 

offering good background for performance comparison.  

In the second stage of experiment, we extend the geometric layout to intersections with 

multiple signal stage control. Considering multi-stage intersection facilitates, we compare 

between acyclic and cyclic controllers. Furthermore, in order to investigate effects of different 

temporal resolutions on controller performance, we compare performance between coarse and 

fine temporal resolutions.  

In the final stage of experiment, we implement ADP controllers for operation in a small-

scale traffic network. Signal operation in the network is distributed, with each intersection 

governed by a local ADP controller. Without preset rules for signal coordination, we 

investigate whether this distributed control strategy can yield competitive results. The cell 
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transmission model (CTM, Daganzo, 1994) is used for modelling traffic dynamics in the 

network.    

5.2  Isolated Intersection 

Experiments at isolated intersection encompass two cases: a two-arm and two-stage case, 

and a three-arm and three-stage case. In both cases, each arm has a single link, and each link 

has a single traffic lane. The general assumptions introduced in Section 4.1 apply in both 

cases. Random traffic is generated according to the algorithms and rules introduced in Section 

4.2. System dynamics and ADP algorithms are as described in corresponding sections of 

Chapter 4, except for wherever specified in the experiment.  

5.2.1  Two-stage intersection 

Numerical results in controlling a two-stage intersection with ADP_PL system were first 

presented in Cai (2007). The intersection layout is shown in Fig. 5-1 (a). It has a major traffic 

flow from east to west on Link A, and a minor flow from north to south on Link B. Stage 

sequence for fixed-time planning is shown in Fig. 5-1 (b). In Stage 1, Link A receives green 

signal, while Link B receives red signal; signal indications are reversed in Stage 2. Resolution 

of the discrete time system is set at 5s per time increment. By using rolling horizon approach, 

the controller revises the signal plan every 5s.  

The controller is tested under a range of traffic inflows that are summarised in Table 5-1. 

The combination of inflows represents typical urban traffic demand. Each run of experiment 

simulates 600 seconds, equivalent to 120 time intervals at 5s resolution. 

 

Table 5-1 Traffic flows (vehicles per hour) combinations for the two-stage intersection 

 

Link B Link A 

240 

432 

252 396 600 678 
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Only the ADP_PL mode is employed in this experiment. This early study on ADP_PL 

controller differs from the later cases in that we use a simpler approximation structure. In this 

case we define the feature-extraction function as  

( )
  if 1 

  if 1,
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A

B

B

B
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l
s

l
i

l
s

l

φ
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,     (5-2) 

 

1
B

L
A
N
E
 1

A
R
M
 2
 - N
o
rth

1A LANE 1

ARM 1 - East  

5-1 (a) Geometric layout of the two-stage intersection 
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5-1 (b) Signal stage sequence of the two-stage intersection 

Source: OSCADY PRO v1.1 

Fig. 5-1 A two-stage traffic intersection and the movement of traffic in signal stages 
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The approximation function using (5-1) and (5-2) takes the form of  

( ) ( ),J r r iφ′⋅ =ɶ .     (5-3) 

This indicates that parameter r- is assigned to link in green signal and r+ to link in red signal. 

The two parameters are updated simultaneously by using Eq. (3-81) and (3-82), except that 

updates are suspended during inter-green periods. Other specifications of the ADP_PL mode 

remain the same as described in Section 4.9.1. Overall, this approach is a simplification of the 

general formulae presented in Section 4.9.1.  

We specify the control policy for the two-stage intersection in the next section.  

5.2.1.1  Control policy 

At 5s resolution, according to Assumption 4-2, the inter-green and minimum-green take 

one temporal interval each. According to Assumption 4-3, details of vehicle behaviour within 

the interval are neglected. According to Assumption 4-6, data of 10s future vehicle arrivals 

becomes available at the beginning of the interval.  

We further set the planning period as 10s only, which means that there is no ‘tail’ part 

(explained in Section 4.7.2) in this case. This also means that there are only two opportunities 

for action during the planning horizon, one at the current time t and one at time t + ∆t, where 

∆t = 5s. Since those settings and assumptions are identical to DYPIC (Robertson and 

Bretherton, 1974), we adopt the near optimum control policy proposed in their study. The 

near optimum policy has the following action space  

(c) The signals are not changed, or 

(d) The signals change immediately, or 

(e) The signals are planned to change in 5s time. 

The signals are changed only if decision (b) gives less total delay than both decision (a) 

and (c).  

An example of making decision ut of changing signals from green in Link B to green in 

Link A is  
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0 1

1 0t

 
=   

u , 

where in order to maintain an inter-green after the end of green, the signal of Link B is 

immediate switched to red, whilst the red signal in Link A remains until the inter-green 

expires. Similarly, in order to implement option (a), we have  

0 0

0 0t

 
=   

u . 

Using the rolling horizon approach, only the first part of ut is implemented, and then the 

system rolls forward. However, implentation of (b) means that the controller has to wait for 

two time increments before the next action becomes admissible. This is because of the 

mandatory inter-green and minimum green periods.   

5.2.1.2  Stepsize rule and discount rate 

Using ADP_PL system, the parameters of the approximation function are updated 

through Eq. (3-82): 

( )1 1t t t t tr r rη η+ = − + ∆ , 

where the stepsize ηt scales the new estimation to correct the current estimation. In the 

two-stage case, we use a deterministic stepsize rule 

1
k

k
η = ,      (5-4) 

where k denotes the number of updates up to the current moment. It is easy to show that (5-4) 

produces an estimate rt that is an average of all previous observations, i.e.,  

1

1 k

t m

m

r r
k =

= ∆∑ .     (5-5) 

In general as k → ∞, parameter rt converges to the mean value. Powell (2007, Section 6.5.1) 

shows that this stepsize rule is optimal when ∆rm is a sequence of unbiased estimations, the 

underlying data is stationary and we have no priory information of the sample mean. 

Although this deterministic stepsize rule fits well with adaptive estimation and is easy to 

implement, a general concern is that the stepsize declines to zero so fast that the estimate may 
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not converge to the true mean. A typical situation in experiment is that the system experiences 

a transient state in the early stage of simulation, during which the estimate ∆rm is biased, for 

that ∆rm is dependent on ( ),J r⋅ɶ . Using the 1/k rule, the system assigns the higher weights to 

estimations in transiant state where accuracy is poor. Notwithstanding this, we use this 

stepsize rule here for its simplicity.  

The value for discount factor α of the ADP algorithm has to be decided manually. Let the 

discount factor α be defined as  

( )expt tα θ= − ,     (5-6) 

where t = k∆t, k =1, 2, …, K. We find the optimal θ for the ADP_PL algorithm through pilot 

experiments. At ∆t = 5s, we found that θ = 0.05 per time increment was the favourable value. 

This is equivalent to say that future vehicle delay is discounted at 1% per second.  

5.2.1.3  Control strategies for benchmarks 

The DYPIC method is a backward dynamic programming (BDP) approach to solve a 

simple case of traffic signal control. In this study we also use the results from the BDP 

approach as the benchmark on the higher bound (global optimum). It is worth recalling that 

for adopting BDP solution approach, the complete information for the entire operation period 

is required, and the calculations are costly. Robertson and Bretherton also found that their 

near optimum policy of planning 10s ahead and roling forward 5s causes about one second 

more delay per vehicle than DYPIC in a range of random and cyclic traffic flows. As 

discussed in Chapter 2, this near optimum policy is an early attempt of employing the 

principle of ADP. We use this near optimum policy as a method for comparison, and denote it 

as the RB method.  

The third method for comparison is Gartner’s (1982) optimum sequential constrained 

algorithm (OSCO), which is used for OPAC. This approach is not derived from dynamic 

programming but from exhaustive search algorithm.  
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Fixed-time strategy is not included here. This is because all the methods for comparison 

quoted above performed significantly better than the optimal fixed-time timings in various 

experiments, including both computer simulation and field test. We are more interested here 

the performance of ADP in respect to BDP, RB and OSCO.  

5.2.1.4  Performance 

Results of included control strategies are grouped into Table 5-2 and Table 5-3. The 

former table summarises the averaged performance of a single simulation run of 120 temporal 

increments (∆t =5s), whilst the latter summarises the averaged performance over 7200 

temporal increments. The performance of ADP in the short-run, in comparison with other 

methods, varies among experiments. When traffic flows are light, as shown in the left 

columns of Table 5-2, ADP performed better than RB and OSCO in general. With higher 

traffic flows, the performance of ADP fluctuates around that of RB, but is consistently better 

than OSCO. Two factors may contribute to this occurrence: first, the initial values of r ; 

second, the effects of transition state.  

Table 5-3 shows that the performance of ADP_PL in the long-run is as good as RB, and 

consistently better than OSCO. Another noticeable feature of ADP_PL is that it can operate 

with both under-saturated and over-saturated traffic, whilst the RB approach is applicable 

only for under-saturation.   

Table 5-2 Averaged vehicle delay (vehicle seconds per second) of simulations of 120 temporal 
increments; two-stage intersection at 5s resolution 

 

         Link A 
Link B 

Method 
252 
V/h 

396 
V/h 

600 
V/h 

678 
V/h 

BDP 0.52 0.73 1.34 1.67 
RB 0.75 1.24 1.63 2.09 

OSCO 0.71 0.91 2.31 2.51 
240 
V/h 

ADP 0.70 0.93 2.08 2.40 
BDP 1.02 1.72 3.48 4.05 
RB 1.31 2.05 4.01 4.51 

OSCO 1.42 2.33 4.14 5.38 
432 
V/h 

ADP 1.30 1.96 3.88 4.53 
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Table 5-3 Averaged vehicle delay (vehicle seconds per seconds) of simulations time period of 7200 
temporal increments, two-stage intersection at 5s resolution 

 

         Link A 
Link B 

Method 
252 
V/h 

396 
V/h 

600 
V/h 

678 
V/h 

BDP 0.51 0.88 1.52 1.86 
RB 0.60 1.02 1.78 2.16 

OSCO 0.65 1.14 1.90 2.31 
240 
V/h 

ADP 0.54 0.94 1.81 2.27 
BDP 0.99 1.73 3.36 4.38 
RB 1.19 1.97 3.51 4.46 

OSCO 1.21 2.10 3.78 4.91 
432 
V/h 

ADP 1.13 1.97 3.52 4.46 

 
Considering that the RB method uses a second order polynomial approximation function, 

the performance of ADP_PL with linear approximation function shows that provided the 

monotonicity of the value function is preserved, and the approximation updated properly, 

there is no significant difference in performance between linear and non-linear approximation. 

Given the simplicity of linear functions, and the online learning techniques available for 

adjusting their parameters, the result encourages us to use linear function for further 

investigations for more complex case studies.  

BDP is used here to benchmark the lower bound in vehicle delays. Since BDP solution 

requires the complete knowledge of exogenous vehicle arriving process for the entire 

simulated time, we generated the complete vehicle arrivals for 7200 temporal increments and 

stored them in information profiles. The BDP calculation started from the last time interval, 

and used the information profiles for each iteration of computing. However, such availability 

of information is unrealistic in real-time control.  

The performance gap between ADP and BDP reduces in the long-run, and the short-run 

results may well be influenced by the transient state of computer simulation. In Fig.5-2 we 

compare the performance of the two strategies by plotting inflow and outflow profiles and the 

evolution of queues on Link A. This comparison consists of two parts. The first compares the 

performances in the first 10 minutes, thus including the transition state. The second part 

compares the performance in the last 10 minutes, which includes the steady-state.  
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In both cases, ADP and BDP produced the same number of cycles so the difference in 

performance is due to the green splits and variations in the cycle lengths. When queues are 

long in the system and traffic is heavy, e.g. during the time period between intervals 40 and 

80, and then between 1120 and 1160, the two methods produced similar or even identical 

signal plans. This can be explained by that, when the intersection is congested, the optimal 

solution is to dissipate queues on green link until it is empty, or as much as possible. Vehicle 

arriving in the future becomes less influential to decision-making. On the other hand, when 

queues are rare and traffic is light, BDP performs better than ADP. This is because under such 

condition, a quick response to future arrivals is essential to reduce delay. However, the BDP 

approach requires complete information to achieve the global optimum, while the ADP 

approach uses arrival information for next 10 seconds. Furthermore, the BDP takes about 10 

minutes to complete a single simulation run of 7200 time increments, whilst the ADP takes 

about 5 seconds, which is about 100 times faster to compute. 

5.2.1.5  Parameters of the approximation function 

The values of functional parameters appear to have stabilised in simulation. Shown in 

Table 5-4, values of r+ and r- (of Link A) are proportionate to the degree of saturation, which 

means that the higher the degree of saturation, the more additional delay per vehicle. In each 

case, the values of r
+ are greater than those of r

-, indicating that vehicles in red link 

experience more delay than vehicles in green link do. Those tables show the monotonicity of 

the value function with respect to degree of saturation.  

Table 5-4 Terminal values of r+ and r-, two-stage traffic intersection at 5s resolution 
 

         Link A 
Link B 

Coefficient 
252 
V/h 

396 
V/h 

600 
V/h 

678 
V/h 

r
- 0.814 1.468 2.416 2.818 

r
+ 2.628 3.602 5.046 5.648 

240 
V/h 

| r- - r+| 1.814 2.134 2.63 2.83 
r

- 1.629 2.578 4.626 5.713 
r

+ 3.82 5.104 7.526 8.528 
432 
V/h 

| r- - r+| 2.191 2.526 2.9 2.815 
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We take two examples from the experiments to illustrate graphically the evolution of the 

parameters. The first example is shown in Fig. 5-3 (a), with 396 v/h in Link A and 240 v/h in 

Link B. This is a relatively light flow condition. Shown in Fig. 5-3 (b), the second example 

represents a heavier flow condition, with 678 v/h in Link A and 432 v/h in Link B. The values 

appear to have converged after t = 1000 in the lighter flow condition. In the heavier flow 

condition, however, the indications of convergence are weak.  
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5-3 (a) Evolutions of r+ and r- (396 v/h in Link A and 240 v/h in Link B), two-stage intersection controlled by 
ADP_PL 
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5-3 (b) Evolutions of r+ and r- (678 v/h in Link A and 432 v/h in Link B), two-stage intersection controlled by 
ADP_PL 

 
Fig. 5-3 Evolutions of parameters of the approximation function in the case of two-stage isolated 

intersection 
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These results show that the ADP_PL controller is sufficient for real-time operation at a 

simple isolated intersection. In the following experiment, we investigate the performance of 

the ADP controller in the cases of multiple-stage intersection.  

5.2.2  Three-stage intersection at 5s resolution  

Numerical results from experiment on a three-stage intersection with ADP controller 

were first presented in Heydecker et al (2007). The discussion is expanded in this section.  
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5-4 (a) Geometric layout of the three-stage traffic intersection 
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5-4 (b) Signal stage sequence of the three-stage traffic intersection 
Source: OSCADY PRO v1.1 

Fig. 5-4 Signal stage sequence and traffic movements for the three-stage traffic intersection 
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The layout of the three-stage intersection is shown in Fig. 5-4 (a). Traffic links A, B, C 

have green during stages 1, 2, 3 respectively, and each link has one approach lane. Traffic in 

Link A travels straight ahead from east to west, and traffic in Link B from north to south. 

Traffic in Link C turns right from south to east. The sequence of signal stages in the fixed-

time plans is shown in Fig. 5-4 (b). With this configuration, we are able to demonstrate the 

acyclic signal timings of the ADP controller to compare the results with optimised cyclic 

signal timings. 

Both 5s and 0.5s resolutions are investigated in this case. We begin the experiment on 

ADP_PL at 5s resolution, which is a direct extension of the two-stage case, and compare the 

results with the optimised fixed-time plans. In the three-stage case, we do not consider other 

benchmarking strategies, such as OSCO and RB. This is because most of the literature on 

adaptive traffic signal control only describes the formulae concerning two signal stages. 

Extending the formulae to multi-stage case may require inventions that deviate from true 

intention of related control methods.  

Since this case is broadly an extension of the experiment on the two-stage case, all of the 

assumptions and traffic regulations are kept the same as for the two-stage case, except for the 

additional traffic link and signal stage. The total traffic demand at the intersection is 1116 v/h, 

with the junction capacity at 1440 v/h. The distribution of traffic demand among each 

approach link is shown in Table 5-5, together with the degrees of saturation for each signal 

stage and the intersection. We introduce the following notations 2  for the calculation of 

degrees of saturation: 

q mean arrival rate 

s  saturation departure rate (or saturation flow) 

y  flow ratio:  y = q / s 

λ  green proportion 

x  degree of saturation:  x = y / λ = qc / gs 

                                                 
2 The notations are conventional in transport study and only apply for the case presented in Table 5-5.  
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Table 5-5 Traffic demand and degrees of saturation for the three-stage intersection obtained from 
Webster’s method: fixed-cycle length c = 125s, total lost time L = 15s and equal saturations among 

signal stages 
 

Traffic 
links 

Arrival 
qi (v/h) 

Saturation 
flow 

si  (v/h) 

Flow Ratio 
yi = qi/si 

Green proportion 
λi = yi (c-L)/c∑yi 

Degree of 
saturation 
xi = qi/λi si 

Link A 432 1440 0.30 0.34 0.88 
Link B 252 1440 0.18 0.20 0.88 
Link C 432 1440 0.30 0.34  0.88 

Sum 1116 - 0.78 0.88 - 

 

For adaptive control, cycle length and green proportion are variables, and calculating 

mean cycle length is complicated for a multi-stage adaptive problem. To provide a basic 

estimation of x, we obtain optimised fixed-time cycle length using Webster’s formula (1957): 

1.5 5

1 i

i

L
c

y

+
=

−∑
 

Assuming that L = 15s (3×5s inter-green) and si  = 1440 v/h for link i, we have c = 125s. 

Effective green split λi is calculated from  

( )i

i

i

i

y c L

c y
λ

−
=

∑
. 

As shown in Table 5-5, the degrees of saturation reach 88% of the capacity, indicating a 

heave but still under-saturated traffic situation.  

Again, the degrees of saturation shown in the table are for reference only. In adaptive 

control, degrees of saturation are time-variant as cycle length and green splits are adaptive in 

response to changes in traffic demand.  

5.2.2.1  Control policy 

The control policy is extended from the two-stage case to include the decision sets below 

(a) The signals are not changed 

(b) The signals change immediately to the signal stage that gives least total delay 

(c) The signals change after ∆t to the signal stage that gives least total delay. 
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The signals are changed only if decision (b) gives less total delay than both decision (a) 

and (c). We only consider a planning horizon of 10s. Consequently, the planning horizon only 

has the head part, which is supplied with detected data. Using rolling horizon approach, only 

the first 5 seconds of the signal plan is implemented, and then the system rolls forward.  

5.2.2.2  Performance and comparison 

For the ADP_PL algorithm, we continue to use the 1/k stepsize rule. The initial values 

for the approximation function parameters are set as r- = 1 and r+ = 2 for all links. The initial 

system state is queue-free, with green signal for Link A. 

Before conducting a full-scale experiment, we use pilot experiments to find a favourable 

value for discount factor θ. The results of the pilot experiments are shown in Table 5-6. Each 

pilot test has a simulated time of 3 hours and 20 minutes. All the pilot experiments use 

identical simulation input. Shown in Table 5-6, the optimal value for θ is 0.8% per second.   

 

Table 5-6 Discount rate θ and performance in pilot tests 

    

Discount rate θ (per second) 
Performance (v.s/s) 

with 1/k stepsize 
0.2% 8.31 
0.4% 8.31 
0.6% 8.34 
0.8% 8.23 

1.0% 9.16 

Table 5-7 Optimised fixed-time plan for three-stage intersection 

 
Stage Sequence (left to right) of a signal cycle 

Inter-green Stage 2 Inter-green Stage 3 Inter-green Stage 1 

Cycle 
length 

5s 25s 5s 40s 5s 40s 120s 

Table 5-8 Averaged delays (v.s/s) and standard deviations of 20 runs, three-stage intersection at 5s 
resolution 

 ADP_PL Fixed-time 
Average (v.s/s) 8.64 16.62 

% of Fixed-time 52% 100% 

Standard deviation between runs (v.s/s) 0.58 1.10 
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Fig. 5-5 Signal stage sequence and queue evolutions, ADP_PL at 5s resolution; X-axis indicates time 
units, Y-axis indicates queue length in vehicle units 

 

 Stage sequence and green splits of the optimised fixed-time plan are shown in Table 5-7. 

The optimised fixed-time plan is found by exhaustive search in computer simulation rather 

than using analytical methodologies. The maximum cycle time is set at 120 seconds, a 

common constraint in signal practice in the U.K (DoT, 1981). We then conduct 20 

independent simulations, with each of 2400 time increments. The averaged results of 

ADP_PL and fixed-time plans are summarised in Table 5-8. The ADP_PL controller reduces 

48% vehicle delays from the best fixed-time plans.  

5.2.2.3  Stage sequence and green splits 

One of the advantages of the ADP controller comes from the ability to adjust signal 

timings according to the dynamics of the traffic without referring to preset control plans. An 

example of such acyclic sequence and variable green splits produced by ADP_PL controller 

is shown in Fig. 5-5. During the period between t = 1599 to t = 1699 (∆t = 5s), the 
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predominant stage sequence is A-C-B-A. However, between t = 1624 to t = 1649, the 

controller skipped Stage 2 once, and generated a sequence A-C-A-C-B-A. This sequence 

coincided with the queuing dynamics that resulted from the absence of arrivals on Link B 

between t = 1624 to t = 1649. When the queue in Link C was cleared, the controller switched 

green signal to Link A, whose queue and arriving traffic are greater than those of Link B. A 

distinct feature demonstrated by Fig. 5-5 is that the controller normally switches signal 

indication when the queue in the current green link is either empty or nearly dissipated.  

5.2.2.4 Parameters of the approximation function 

The evolution of the parameters are shown in Fig. 5-6, together with moving average of 

the vehicle arrival rates and vehicle delays.  

The cumulative moving average of vehicle arrivals shown in Fig. 5-6 (a) demonstrates 

two distinct states in computer simulation: the time period up to t = 2400 which is regarded as 

transient-state, and the time period afterwards which is regarded as steady-state. It is worth 

noting that there are more systematic ways to determine the actual boundary between the 

transient-state (or the warm-up period) and steady-state in computer simulation, such as the 

Welch method (1981, 1983). The Welch method, which smoothes out high-frequency 

oscillations in estimation by averaging corresponding observations over several replications, 

still relies on graphical procedures to estimate the boundary beyond which estimation appears 

to have converged. Given the apparent patterns in our graphical display in Fig. 5-6 (a), we 

consider that the system enters steady-state after t =2400.  

During the transient-state, the vehicle arriving rate steadily rises to the designated 

statistical mean at 1116 v/h (see Fig. 5-6(a)), despite the random fluctuation. The cumulative 

moving average for mean rate of delay also rises steadily throughout the same period, as 

shown in Fig. 5-6 (b). The vehicle arriving rate broadly stabilises with the actually value rises 

slightly from 1116 v/s to 1130 v/s. Consequently there is also a slight increase in mean rate of 

delay from 8.87 v.s/s to 9.19 v.s/s.  
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The parameters of the approximation function rise rapidly in the transient-state and then 

become stable in steady-state. Parameters r
+ are consistently greater than r

-, and the 

differences between them are broadly constant across different links in steady-state. Although 

the designated traffic flow in Link B is only 58% of Link A and Link C, the terminal values 

of r+ (10.98) and r- (7.96) are greater than their counterparts of Link A and C. This indicates 

that vehicles approaching on Link C experience more individual delays than those on other 

links. This effect balances the degree of saturations among the approaching links. Although 

we used the stepsize rule of 1/k, whose value rapidly decreases toward zero, parameters are 

not converged after 7200 increments.  

In the next section, we investigate performance of ADP controllers at 0.5s resolution.  

5.2.3  Three-stage intersection at 0.5s resolution 

Studies on multiple-stage intersection control using ADP at fine resolution were first 

presented in Cai et al. (2009). At the 0.5s resolution, traffic arrivals are generated by the 

shifted Bernoulli process described by Eq. (4-1) and (4-2), which prevent vehicles from 

arriving in quick succession. We recall that the performance measured under this fine 

resolution is not directly comparable with performance measured at coarser resolutions. As 

we have described in Section 4.2, in the coarser case (5s), no delay is attributed to either 

vehicle in a time increment during which two depart, whilst in the finer case, delay would 

occur to one of the vehicles for the whole of the departure time of the other. We can only 

compare the control performance by transferring the signal plans from the coarse resolution to 

the fine. 

All assumptions and regulations remain the same as in the coarser case, unless wherever 

specified. Both ADP_PL and ADP_TD algorithms are investigated in this case. As we have 

discussed in Section 4.9.1, the two algorithms differ only in the learning technique that is 

adopted. The ADP_PL algorithm has demonstrated stability in previous cases and produced 

competitive results. Introducing ADP_TD in this case extends our investigation in ADP, and 

offer comparisons between optional learning techniques.  
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We establish two scenarios for investigations in this case. The first scenario uses a 

stationary traffic inflow the same as specified in Table 5-5. The second scenario uses a traffic 

inflow profile consisting of pre-peak, peak and post-peak arrival rates. We are especially 

interested in the evolution of function parameters in a non-stationary traffic environment.  

The control policy is modified to consider the higher frequency of revising signal plans.  

5.2.3.1  Control Policy 

In this case, the ADP controller considers the following possible decisions: 

(a) The signals are not changed 

(b) The signals change immediately to the signal stage that gives least total delay 

(c) The signals change after k∆t seconds, for k = 1, 2, …,  Th −1, to the signal stage that 

gives least total delay, where Th is the total number of temporal increments in the 

head part of the planning period. 

The signals are changed only if decision (b) gives less total delay than both decision (a) 

and (c). Using the rolling horizon approach, only the first ∆t, i.e. the first half second, is 

implemented.  

The evaluation of optional decision (c) requires a tail part of planning period. This is 

because we want the planning period to be long enough to avoid ending horizon in inter-green, 

where all signals are red. For example, in evaluating option (c), the decision of signal change 

after time k =Th−1 is followed by a mandatory inter-green of 5s. This means that if the total 

number of steps M = Th (planning horizon equals to head period), the terminal signal state at 

k =Th will be all-red, as the inter-green state defines. Given a planning period of M-step, the 

possibility of terminating at all-red state will make option (c) unfavourable because all other 

options terminate in states with one traffic stage in green.  

With regard to the duration of the tail part of the planning horizon, we prefer to keep it at 

10s or less. The reasons for this are that, first, we have shown in the preceding tests that 

planning for 10s at coarse resolution is efficient and effective; second, a longer tail part may 

shift the weight from head to tail, thus from detected information to predicted information. 
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With the tail part being 10s, we have a horizon of 20 seconds, equivalent to 40 temporal 

increments at the finer resolution.   

An example of making decision ut of immediate change from green in Link A to green in 

Link C is shown as the following: 

Inter-green Minimum-green

40 steps

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

t

 
 
 
 =  
 
 
  

u

	

�

� 	

�

�
⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯








�







�

. 

The prediction of the traffic information for the tail part is generated by Monte Carlo 

simulation. Using detected information, the controller records a moving average of traffic rate 

for each traffic link, which is then used as input to Eq. (4-2). The reminder of the process uses 

the inverse transformation method (ITM) as described in Section 4.2. This approach conforms 

to the definition of fixed tail (Section 4.7.2), which is suitable for online implementation since 

it only requires data that are readily available from detectors. 

5.2.3.2  Stationary Traffic 

Our primary objectives in this scenario are to investigate:  

1) benefits from operating at finer resolution;  

2) whether the parameters of the approximation function evolve differently if 

updated by different learning techniques;  

3) whether the different learning techniques result in difference in performance;  

4) gap from the global optimum (BDP result) in performance measure. 

For the ADP_PL approach, the parameters of the approximation function are updated 

every 0.5s. To avoid “apparent convergence,” which means that the solution is far from the 

best that can be obtained, we use generalised harmonic stepsizes (George and Powell, 2006; 

Powell, 2007):  

1k

a

a k
η =

+ −
.     (5-7) 
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This rule satisfies Assumption 3-6 (a), and produces larger stepsizes for a > 1 than the 

1/k rule. Increasing a slows the rate at which the stepsize approaches to zero. Using results 

from pilot tests, we set a = 40 for ADP_PL.  

The value of the parameter θ for discount function Eq. (5-6) is also determined through 

pilot tests, results from which are summarised in Table 5-9. We choose θ = 24 % per second 

for further investigations in this test scenario, as this value gives good performance for both 

learning techniques. Using such a substantial discount rate means that future cost after some 

time becomes irrelevant (or almost so) to current decision-making, thus making the problem 

solving more myopic. This myopic feature becomes favourable in systems of fine resolution 

because what matters almost of all is the current state and the state of immediate future (as 

obtained from Bellman's equation), and there are plenty of opportunities to revise the decision 

to accommodate future state. In similar logic of reasoning, for systems of coarse resolution, 

the controller has fewer opportunities to adjust to changes in state, e.g. revising at every 5s 

instead of 0.5s. It makes sense for the controller to plan longer ahead to compensate the 

rigidity in revising plans.  

Additionally, from Table 5-9, we found that increasing discount rate from 10% per 

second to 24% per second only reduced vehicle delays by 0.1 v.s/s on average, and too 

myopic a system reverses the gains in performance. This implies that at the fine level of 

resolution, the rapid revision of signal plans itself matters most in providing the good 

performance. In a similar manner, we found a favourable learning rate η = 0.001 which 

applies to Eq. (3-74) and (3-82) for updating parameters of the approximation function.  

Table 5-9 Pilot tests on parameter θ and performance (v.s/s), three-stage intersection at 0.5s resolution 

Performance Parameter 
θ (per second) ADP_TD (v.s/s) ADP_PL (v.s/s) 

10 % 4.49 4.40 

20 % 4.48 4.37 

22 % 4.48 4.43 

24 % 4.38 4.36 

26 % 4.38 4.43 

28 % 4.46 4.43 

30 % 4.33 4.42 

40 % 4.42 4.50 
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5.2.3.2.1  Performance and comparisons 

We obtained results from 10 independent runs of simulations for ADP_PL and ADP_TD, 

the results of which are summarised in Table 5-10. In light of the similarity in results, we set a 

hypothesis of equal mean, and used paired-t test to test the hypothesis. We found that 

| t | = 1.496, which is less than the one-tail critical value at 95% degree of significance 

t = 1.833, hence accepting the hypothesis of equal mean. This shows that at the finer 

resolution, and by discounting future cost at 24% per second, the two learning techniques are 

similar in performance.  

In order to compare results from different resolution, signals plans of ADP_PL at coarser 

resolution were recorded and implemented in the finer case, so that they could be evaluated 

on a comparable basis. As shown in Table 5-10, operating at the finer resolution reduces 

vehicle delays by 42% from the coarser case. Advantages of operating at finer resolution 

come from the ability to revise and adjust signal timings more frequently according to the 

detected information. We depict a sample comparison in Fig. 5-7, in which signal sequences 

and queuing dynamics between t = 6300 and t = 6800 are plotted for each of the finer case 

and the coarser case. With identical traffic arrivals, the controller made 12 signal switches 

during the 250-second period in the finer case, producing a signal sequence as the following: 

Table 5-10 Performance comparisons between ADP_TD and ADP_PL for the case of three-stage 
intersection 

 
 ADP_TD ADP_PL ADP_PL 

Run 0.5s 0.5s 5.0s 

1 4.38 4.36 7.51 

2 4.69 4.67 9.10 

3 5.03 5.09 8.62 

4 4.27 4.34 7.40 

5 4.63 4.74 7.81 

6 5.15 5.20 8.83 

7 4.05 4.02 6.68 

8 4.45 4.35 7.32 

9 5.11 5.19 8.36 

10 4.46 4.61 7.83 

Mean 4.62 4.66 7.94 

SD 0.37 0.40 0.76 
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B – C – A – B – A – C – A – C – B – A – C – B – A, 

On the other hand, the controller made 9 switches in the coarser case and produced the 

following signal sequence: 

C – A – C – B – A – C – A – B – C – A. 

Comparison shows that in the finer case vehicles in each link waited less and experienced less 

delay than they did in the coarser case. The ADP_PL controller produced acyclic signal 

sequence in both cases. 

 
 

Fig. 5-7  Comparisons in signal sequences and queue evolutions produced by ADP_PL controller  
at 5.0s and 0.5s resolutions, three-stage traffic intersection; X-axis indicates time units, Y-axis indicates 

queue length in vehicle units 
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Table 5-11 Green time allocation (time increments) in a single simulation of 7200 time increments 

Controller ADP_TD ADP_PL ADP_PL 

Resolution 0.5s 0.5s 5.0s 

Link A 1899 1892 2120 
Link B 1070 1132 1260 
Link C 1941 1916 2130 
Total 4910 4940 5510 

% of T 0.68 0.69 0.77 

No. switches 229 226 169 

From another perspective, we compare green time allocation to links in Table 5-11. 

Green time allocations are broadly proportionate to traffic demand. Because the controllers 

made 57~60 more signal switches in the finer case, green time accounts for about 68~69 % of 

total time, comparing with 77% in the coarser case. This suggests that the ADP controllers in 

the finer case reduces about 42% of vehicle delay while using about 11% less green time than 

they do in the coarser case. What matters, therefore, it is the effectiveness of using capacity. 

The upper bound performance (global optimum) is produced by BDP. In the finer case, 

the BDP approach is costly in computation. A single run of 720 time increments, equivalent 

to 6 minutes only, takes about 12 hours in a PC equipped with Pentium® Dual Core 3.60GHz 

and 3.50GB of RAM. For an operation period of 7200 time increments, the vehicle delay is 

4.27 v·s/s from BDP approach in a single run, comparing to 4.62 v·s/s from ADP_TD and 

4.66 v·s/s from ADP_PL over 10 runs.  

4.27

4.62

7.94

13.95

0 4 8 12 16

BDP fine

ADP fine

ADP coarse

TRANSYT fine

Vehicle delays (v.s/s)

Fig. 5-8 Averaged control performance over 1 hour simulation for the case of three-stage intersection. 
TRANSYT, ADP and BDP are compared 
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Table 5-12 The optimised fixed-time plan from TRANSYT 12.0 for the case of three-stage intersection. 
The timings listed in the table are the corresponding starting time of the signal stage in a cycle, for 

example Stage 1 starts from the 55th second of a cycle of 120 seconds 
 

Starting time 
Number of Stages 

Stage 1 Stage 2 Stage 3 
Cycle time 

3 55 101 9 120 seconds 

 
Table 5-13 Performance Comparison for the case of three-stage intersection. The decision sequences in 

coarse resolution are transferred to the fine resolution in order ensure consistence in comparison 
 

 DP ADP_TD ADP_PL ADP_PL TRANSYT 

Resolution  
(seconds per increment) 

0.5 0.5 0.5 5.0 0.5 

Simulation Time 
(minutes) 

6 60 60 60 60 

Run Time (minutes) 720 5.5 12 0.3 1/6 

Discount Rate θ  

(per second) 
24% 24% 24% 0.8% – 

Averaged Performance 
(v.s/s) 

4.27 4.62 4.66 7.94 13.95 

 
The lower bound of control performance is obtained from TRANSYT (Vincent et al., 

1980) version 12.0, the signal timings of which is summarised in Table 5-12. The optimised 

fixed-time plan resulted in 13.95 v.s/s at the 0.5s resolution. A full comparison in control 

performance of the aforementioned control methods is tabulated in Table 5-13. A graphical 

display of the differences in performance is shown in Fig. 5-8.  

5.2.3.2.2  Parameters of the approximation function 

The evolution of parameters under ADP_PL in a single run is plotted in Fig. 5-9, 

together with the cumulative moving averages of the arriving traffic rate and vehicle delays. 

The corresponding results of ADP_TD are plotted in Fig. 5-10.  

Table 5-14 Mean and standard deviation of functional parameter in steady-state, ADP_PL at 0.5s 
resolution 

 
 Link A Link B Link C 

 r
- 

r
+ 

r
- 

r
+ 

r
- 

r
+ 

Initial value 1 2 1 2 1 2 

Steady-state (2400 ≤  t < 7200) 
Mean 2.73 3.92 2.51 3.92 2.82 3.92 

SD 0.38 0.00 0.47 0.00 0.34 0.00 
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Table 5-15 The convergence of functional parameters under ADP_TD 

 
 Link A Link B Link C 

 r
- 

r
+ 

r
- 

r
+ 

r
- 

r
+ 

Transient-state (0 ≤ t < 2400) 

Mean 1.66 4.04 1.89 3.69 2.23 4.23 
SD 0.30 0.47 0.23 0.45 0.34 0.53 

Steady-state (2400 ≤  t < 7200) 
Mean 2.36 4.06 2.18 3.95 2.15 3.99 

SD 0.20 0.19 0.15 0.14 0.16 0.14 

Fig. 5-10 (a) and 5-10 (b) show that the system under ADP_TD entered steady-state after 

t = 2400 as well. From Fig. 5-10 (c), (d) and (e), we find that the values of functional 

parameter show bounded fluctuation, which may result from the constant stepsize ηt = 0.001. 

We tabulate the mean value and standard deviation for each parameter in Table 5-15, and 

compare the statistics between transient-state and steady-state. The standard deviation of each 

parameter reduces substantially from transient-state to steady-state. Values of r
+ under 

ADP_TD are similar to those under ADP_PL, despite the different learning techniques and 

stepsize rules in use; parameters r
- under ADP_TD have smaller standard deviation than 

under ADP_PL in steady-state.  

5.2.3.3  Non-stationary traffic 

Our interest in this case is to investigate the response of the ADP controllers to changes 

in prevailing traffic, and the evolution of function parameters. The configuration of the traffic 

flow profile for each link is listed in Table 5-16. It consists of a pre-peak period, a peak 

period and a post-peak period. The transitions between these different traffic periods are 

smoothed, as shown in Fig. 5-11, with peak of traffic flow ocurrs at the middle point.  

Table 5-16 Configuration of traffic flow profile 

 Link A (v/h) Link B (v/h) Link C (v/h) Total (v/h) 

Pre-Peak 250 150 250 650 

Peak 500 250 500 1250 

Post-Peak 300 200 300 800 
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Fig. 5-11 A traffic flow profile for links A and C, containing pre-peak, peak, and post-peak periods; 

traffic rate in vehicles per hour 
 

Both ADP_PL and ADP_TD are investigated in this case. The stepsize rules and 

discount rates are kept the same as in the stationary scenario. To allocate sufficient time for 

the system to develop to the steady-state, we simulated 28800 time increments at 0.5s 

resolution, equivalent to 4-hours of simulated time. Results of ADP_PL are plotted in 

Fig. 5-12, and those of ADP_TD in Fig. 5-13. 

Shown in Fig. 5-12 (a) and 5-13 (a), the cumulative moving average of traffic flow rate 

experiences a pre-peak period, where the rate is broadly stable at 660 v/h (except for the 

transient-state), a peak at time t = 14400, where the slope of increase in traffic is the steepest, 

and a post-peak period, where the rate begins to decline. Consequently, as shown in 5-12 (b) 

and 5-13 (b), the cumulative moving average of vehicle delays reflects the same pattern as 

traffic flow rate. There is no discernible difference in performance between ADP_PL and 

ADP_TD.  

The evolution of approximaiton function parameters exhibits similar patterns across links 

and between the two learning techniques. Shown in Fig. 5-12 (c), (d) and (e), values of r
+ 

under ADP_PL are insensive to the changes in traffic, whilst r- is more reactive to changes in 
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traffic. Using ADP_TD, and shown in Fig. 5-13 (c), (d) and (e), values of r+ show in peak 

period a higher degree of variation, and are less stable than those under ADP_PL in general. 

Values of r- rise sharptly with substantial variation in peak period.  
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5.2.3.4  Influence of learning 

We can investigate the effect of learning on performance by suspending the learning 

process (either temporal-difference learning or perturbation learning), thus only use the initial 

values of function parameters. The results thus obtained are then compared with the results 

from learning.  

At 5.0s resolution, without learning, the averaged performance of ADP_PL over 20 runs 

is 10.78 v·s/s. Comparing to the result with learning (Table 5-7), which is 8.64 v·s/s, using the 

learning process produces about 8% reduction in vehicle delays. 

At 0.5s resolution, with stationary traffic, the averaged performance over 10 runs is 4.64 

v·s/s without learning. Using paired t-test, we found no significant difference between resutls 

obtained with learnings (Table 5-10) and without learning. With non-stationary traffic, the 

result is 3.07 v·s/s without learning, comparing to 3.10 v·s/s with ADP_TD and 3.11 v·s/s 

with ADP_PL. This suggests that at finer resolution, with a 20s planning horizon and a 

substantial discount rate, the influence of learning is insignificant to the ADP controller 

performs. Given the horizon of 20s and the discount rate of 24% per second, using Eq. (5-6), 

we have 

20 0.24 20 0.008eα − ×= = . 

which means that only 0.8% of the output value of the approximation function is taken 

account. This is because in the value iteration of the approximate dynamic programming, we 

use Eq. (4-31) to compute:  

( ) ( )
1

1 1arg min , , ,  
t M

t M

t k k k t t M

k t

E g i w u J i i Xα α
+ −

∗
− + −

=

 
= + ∈ 

 
∑u ɶ .  

Since the learning techniques are used to update the approximation, their influences are 

substantially discounted too.  
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5.2.4 Summary 

In this section, we presented a series of experiments that use ADP controllers for 

controlling isolated intersections. In the case of two-stage intersection, we found that 

ADP_PL controller using linear approximation function performs as well as the best of 

existing control strategies, except for BDP. In particular, the results suggested that using a 

linear function is equally effective as using some kinds of non-linear function to approximate 

the value function. In the case of three-stage intersection, we compared the coarse resolution 

at 5s per temporal increment with the fine resolution at 0.5s. At the coarser resolution, the 

ADP_PL controller produced acyclic signal sequences to accommodate variation in the 

random arrivals and this reduced vehicle delays by 48% on average from the best fixed-time 

signal plans. The parameters of the approximation function were updated progressively 

through perturbation learning. The learning process explained about 8% of the benefits 

achieved in the case of constant inflows. At the finer resolution, with stationary traffic, the 

ADP controllers reduced 42% delay from the coarser resolution. Despite the different method 

for machine learning, ADP_PL and ADP_TD were similar in performance.  

With non-stationary traffic, the ADP controllers demonstrated their ability to 

adapt to changes in prevailing traffic. Regardless of the learning techniques, 

parameters r
- are more responsive to the changes in traffic, whilst r

+ is relatively 

stable. However, the learning process contributed little to gains in performance in the 

case of fine resolution.  

5.3 Traffic Network 

In this part of the research, we investigate controlling a small-scale distributed network. 

Key to our interest is whether the ADP controllers could implicitly achieve signal 

coordination between upstream and downstream, while ensuring good performance at local 

intersection.  
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5.3.1  Geometric layout of the network system 

The sample traffic network is adopted from the study of Wong et al. (2007). The 

network system is formulated using the cell transmission model (Daganzo, 1994) with a 

temporal increment of 2s. The outline of the network is shown in Fig. 5-14. The network 

system contains 8 road links, in which slinks L3 and L8 are short links. Traffic signals are 

installed at the end of links L1, L2, L3, L6, L7, and L8 to control the conflicting movements 

involved; the two exit links L4 and L5 are excluded. The arrows represent the lane markings 

that show the directions that are permitted from different road links. Links L1, L2, L6, and L7 

are input (source) links on which traffic demands are generated and enter into the signalized 

CTM system.  

The design of this network presents a challenging problem. The short links L3 and L8 

are the bottlenecks of the system, and each of them belongs to upstream and downstream 

intersections. Regarding this, coordination among signals is critical to reduce vehicle delays. 

Inappropriate signal timings may result in queue spilling-back in L8 and L3, and blocking the 

outflow from L6 and L1.     

 

Fig. 5-14 A small-scale traffic network of two intersections 

n n -1 

 

Fig. 5-15 Cell representation of road link n in the cell transmission model 
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Table 5-17 Modelling details of the traffic links in the example network 

Intersection Link 
Total no. 
of Cells 

Signal Signal stage 
Signal in 
Cell no. 

Remarks 

L1 5 S1 A1 5 Input link 

L2 5 S2 A2 5 Input link 

L5 3 - - - Exit link 
A 

L8 1 S6 A1 1 Short link 

L3 1 S3 B1 1 Short link 

L4 3 - - - Exit link 

L6 5 S4 B1 5 Input link 
B 

L7 5 S5 B2 5 Input link 

 
Table 5-18 Traffic inputs to the network system 

 

Link L1 L2 L6 L7 

Flow rate 
(vehicles per hour) 

350 382 440 382 

Downstream L3 L3 L5 L8 L4 L8 

Turning ratio 100% 25% 75% 100% 25% 75% 

 

Using CTM, each road link is segmented and represented by a series of homogenous 

cells, as shown in Fig.5-15. Vehicles that are scheduled to enter a road link are stored in the 

first cell (Cell 1) of that link. During each temporal interval, those vehicles that are already in 

the upstream cell can move to the next cell downstream. The amount of traffic that can 

proceed forward depends on the downstream spatial availability and the link saturation flow. 

Instead of moving forward to next downstream cells, vehicles must hold up and stay in the 

current cell if there is insufficient space available downstream. Upstream traffic will even be 

blocked and held up simultaneously. A physical vehicle queue will then develop to realise the 

congestion effects. Mathematical representation of the CTM model is given by Eq. (4-35) and 

(4-36) in Section 4.8.3.2.  

The modeling details of the road links are given in Table 5-17. There are five cells used 

to model each input links (L1, L2, L6, and L7). Three cells are given for each exit links (L4 

and L5). Road links L3 and L8 are defined as short links that contain only a single cell. Each 



 

 

160 

160 

cell has a holding capacity of 4 vehicles, except for the last cell in exit links, which has no 

limit to its holding capacity.  

Links L1, L2, L5, and L8 constitute intersection A, while links L3, L4, L6, and L7 

constitutes intersection B. Consequently, signals S1, S2, and S6 belong to intersection A, and 

signals S3, S4, and S5 belong to intersection B. There are two signal stages at intersection A, 

with S1 and S6 belonging to stage A1, and S2 to A2; and two signal stages at intersection B, 

with S3 and S4 belonging to stage B1, and S5 to B2. Each traffic intersection is governed by a 

local ADP controller. The operation of the local controllers follows the general assumptions 

and principles stated in Chapter 4. The mandatory inter-green and minimum green are set at 

6.0s each (as we are using 2s temporal increment) in this case.  

5.3.2  Input assumptions  

In this experiment we only use stationary traffic arrival rate. The traffic flows in input 

links are generated using the inverse transformation method discussed in Section 4.2. The 

flow inputs and their downstream distributions are given in Table 5-18. Fixed proportions of 

75% and 25% of input flow from L2 turn into downstream links L3 and L5 respectively. 

Similarly, 75% and 25% of input flow from L7 turn into downstream links L4 and L8 

respectively. We also assume that links L2 and L7 contain a single shared lane for both left- 

and right- turn traffic and thus all turning flows will be blocked if either one of the associated 

downstream cells is fully occupied. With the configuration of the input and distribution 

pattern, the direction of west-to-east through links L6 to L8 and to L5 becomes the major 

channel of traffic, which accounts for 1013 vehicles per hour (100% of L6 plus 75% of L2 

and L7).  

5.3.3  Definition of queue in CTM 

Although the CTM processes the distribution of traffic along links, the model itself does 

not estimate queue length in a link. Meanwhile, the feature-extraction function (Eq. 4-25 and 

4-26), which is used as the basis function for the linear approximation function, takes queues 
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of each link as input and differentiates them according to signal status. This requires a set of 

rules to define queue in the CTM.  

Regarding the geometric layout of the sample network and the characteristics of the 

CTM model, we define queues according to the following rules: 

1. For links L3 and L8, at the end of each increment, 

Let l (n) = x (k), where l (n) is the queue length and x (k) the number of 

vehicles in cell k; 

2. For each link of L1, L2, L6 and L7, at the end of each discrete time interval, 

2.a Set k = Kn, where Kn is the total number of cells in link n. 

2.b Let queue l (n) = x (k).  

2.c For k = Kn – 1, …, 1,  

If x (k + 1) = C (k), where C (k) is the holding capacity of cell k; or if x 

(k) > 1; or if x (k) + x (k + 1) > C (k), let l (n) = l (n) + x (k) ; 

Else, iteration terminates.  

The resulting queue status is then processed by the feature-extraction function.   

5.3.4  Control policy 

Because the network system is modelled at 2s per temporal increment, the ADP 

controller consequently revises its plans at the same frequency. The local ADP controller 

considers the following possible decisions: 

(d) The signals are not changed; 

(e) The signals change immediately to the signal stage that gives least total delay; 

(f) The signals change in k∆t seconds, for k = 1, 2, …, Th −1, to the signal stage that 

gives least total delay, where Th is the total number of time increments in the head 

part of the planning period. 

The signals are changed only if decision (b) gives less total delay than both decision (a) 

and (c). Using the rolling horizon approach, only the first ∆t, i.e. the first two seconds, is 
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implemented. The optimal planning horizon for network control, however, is to be found in 

pilot tests. In this test, we only investigate ADP_TD method.  

5.3.5  Performance 

In pilot tests, we found that a horizon of 16s resolution is a favourable choice in general. 

We also found that θ = 20% per second is the favourable value for discounting future delays.  

We first obtain results from 10 independent simulation runs, each of 7200 temporal 

increments, equivalent to 4-hour simulated time. The results are shown in Table 5-19. The 

performance on average is 9.00 v·s/s with a standard diviation of 0.38 v.s/s. The 

competitiveness of this result is evidenced by the descriptive statistics of queues in Table 5-20. 

With the majority of traffic moves from west to east and a short link L8 of capacity 4 vehicles 

only, there were no substantial delays in links L6 (mean queue length 1.35) and L7 (mean 

queue length 2.32). This implies that any temporary long queue in L6 (max 11) and L7 (max 

12) was quickly dissipated through coordinations between upstream and downstream signals, 

which belong to different cotnrollers.  

The key to coordination is signal S6 that controls link L8. The ADP controller of 

intersection A proved effective in alternating S6 (S1) and S2 to accommodate upstream 

demand, while leaving no significant queues in local links L1 (mean 0.78) and L2 (mean 

1.76). Similaly, the controller of intersection B is equally effective.  

Table 5-19 Performance of using ADP_TD for distributed traffic network; each run contains 7200 
temporal increments at ∆t = 2s 

 
Run Performance (v.s/s) 

1 8.99 
2 8.67 
3 9.49 
4 9.41 
5 8.76 
6 8.81 
7 8.71 
8 8.90 
9 8.58 

10 9.66 

Mean 9.00 
SD 0.38 
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Table 5-20 Queuing statistics of a single simulation run of 4-hour simulated time,  
ADP_TD for network control 

 

A sample visualisations of signal coordination among S4, S5 and S6 is shown in 

Fig. 5-16,  and in Fig. 5-17 for S1, S2, and S3. 

 

Fig. 5-16 Coordination between upstream signals S4, S5, and downstream signal S6; X-axis indicates 
time units, Y-axis indicates queue length in vehicle units 

 

 Intersection A Intersection B 

Link L1 L2 L8 L3 L6 L7 

Mean 0.78 1.76 1.93 0.84 1.35 2.32 

SE 0.01 0.02 0.02 0.01 0.02 0.03 

Median 0 1 2 0.75 1 2 

Mode 0 1 3 0 0 0 

Maximum 7 11 4 4 11 12 
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Fig. 5-17 Coordination between upstream signals S1,S2, and downstream signal S3; X-axis indicates 
time units, Y-axis indicates queue length in vehicle units 

A typical case of coordination demonstrated in Fig. 5-16 is that controller at intersection 

A uses the holding capacity of L8 to accommodate the first few arrivals from upstream until 

fully occupied (e.g. t = 4551 to 4561), and then switch S6 to green to dissipate queues at 

saturation flow rate (1 v/2s) until flow rate drops (e.g. t = 4562 to 4578). This shows that the 

controller at intersection A maximises flow until upstream queues are cleared, at which point 

the incoming flow rate to L8 converges to arriving rate. In the mean time, using the holding 

capacity of L8 to accommodate the first few arriving vehicles gives the controlller 

opportunites to clear local queues in L2 (t = 4551 to 4558, and t = 4581 to 4592). The 
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controller at intersection B coordinates flows from links L1 and L2 in a similar manner, 

despite the lower demand from east to west.  

5.3.6  Parameters of approximation function 

Each intersection is operated by an independent ADP controller. The learning rate for 

ADP_TD is set at η = 0.001 (for using Eq. 3-74) to update parameter estimation), which is the 

same as for the case presented in Secition 5.2.3.2. The evolution of approximation function 

parameters is plotted in Fig. 5-18.  

 

Fig. 5-18 Approximation function parameters in traffic network control using the CTM model; X-axis 
indicates time units, Y-axis indicates values of parameters 
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Under stationary traffic, parameters of Intersection A are relatively stable in the steady-

state. The parameters of Intersection B, however, show greater variation than those of 

Intersection A. The mean values of r+ of all links are similar to each other in the steady-state, 

except for that of link L1. Link L1 has the least traffic demand but longer green times (S1 and 

S6 share stage A1), and therefore vehicles in this link experience least delays in general, thus 

explaining the lower value of r+. The values of parameter r- seem less regular, and seem more 

related to the combined effects of local traffic demand and downstream condition. For 

example, L3 has moderate traffic demand but without downstream constraint, thus having 

lowest r
- of all. On the other hand, link L6 has the highest demand, and a short-link L8 

downstream, thus having the greatest r
-, which means that vehicles queued in green in L6 

spent more time on average to leave the intersection.  

5.3.7  CTM in simulation 

The CTM model allows physical queues to be modelled in simulation. The direct 

implication is that queues in L3 and L8 cannot exceed 4 vehicles, and queues may spill back 

to the upstream stoplines if they are poorly coordinated, or if the network is over-saturated. 

The experiment with ADP controllers shows that spilling-back of queue is broadly avoided in 

heavily traffic situation (but still less than full saturation). As shown in Fig. 5-16, if queue in 

L8 reaches 4 vehicles and S6 is not switched to green, the upstream controller normally 

switches green signal to other links that allows queue to dissipate; and the downstream 

controller normally switches S6 to green shortly after the maximum queue is reached in L8. 

This kind of coordination broadly avoids blocking vehicles leaving from upstream at green 

signal.  

A sample of the propagations of vehicle in the CTM is shown in Fig. 5-19. Vehicles 

travel at free flow speed in low density area (L6 and L5), but are held in high density area (L8) 

until free flow speed propagation can be resumed. This pattern conforms to the definition of 

CTM, under which CTM is a discrete approximation of the LWR model.  
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 Link 6 Link 8 Link 5 
Time Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 1 Cell 1 Cell 2 Cell 3 
4594 1 0 0 0 1 4 0 0 2589.25 
4595 1 1 0 0 1 4 0 0 2589.25 
4596 1 1 1 0 1 3 1 0 2589.25 
4597 0 1 1 1 0 3 1 1 2589.25 

4598 0 0 1 1 1 2 1 1 2590.25 
4599 0 0 0 1 1 2 1 1 2591.25 
4600 0 0 0 0 1 2 1 1 2592.25 
4601 0 0 0 0 0 2 1 1 2593.25 
4602 0 0 0 0 0 1 1 1 2594.25 
4603 0 0 0 0 0 0 1 1 2595.25 
4604 1 0 0 0 0 0 0 1 2596.25 

 

T
im

e 

Space 

Green period 
for L8 

Green period 
for L6 

 

Fig. 5-19 A sample presentation of traffic propagations along the path from L6 to L5 via short link L8 
in the CTM model, dark lines in the table represents vehicle trajectories. 

5.3.8 TRANSYT plans 

To compare with existing control strategies in network control, we use TRANSYT 12.0 

to produce optimised fixed-time plans. The traffic network presented in Fig. 5-14 was 

reconstructed in TRANSYT with identical conditions, except for omitting links L4 and L5, 

which are exit-links. The data set for TRANSYT and the corresponding results are shown in 

Appendix 5.A.  

By setting cycle time at 120s, and 2s per step, the optimised plans obtained from 

TRANSYT are shown in Table 5-21. The timings in the table correspond to the starting times 

of the stages in a cycle. Because of using double-cycle strategy, there are two green-time slots 

for each stage in a cycle. In response to the major flow from link L6 to L5 via L8, stage A1 

and B1 share two common green periods in a cycle: 33 seconds in the first half of the cycle, 

and 24 seconds in the second half of the cycle, totaling at 57 seconds, 45 seconds of which are 

effective green. However, the common green shared between stage B2 and A1 is only 24 

seconds in total, 12 seconds of which are effective green, despite that 75% of link L7’s traffic 

turns to L5 via L8.   
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Table 5-21 The optimal fixed-time signal plans from TRANSTY 12.0 for the traffic network 

 

Intersections 
Number of 

Stages 
Stage 1 Stage 2 Stage 3 Stage 4 Cycle time 

A 4 119 (A1) 49 (A2) 73 (A1) 107 (A2) 
120 

seconds 

B 4 2 (B1) 35 (B2) 67 (B1) 97 (B2) 
120 

seconds 
 

Table 5-22 The performance of the TRANSYT plans in the CTM model 
 

 

We implemented the fixed-time plans from TRANSTY to the CTM model, and the 

resulting performance measures are shown in Table 5-22. The main indicator of the 

performance is the mean queue length in each traffic link. The sum of mean queue length of 

all links is the average rate of vehicle delay (v·s/s). Although the TRANSYT plans maintain 

the queues in link L1 and L6 at low levels similar to the results from the ADP controller, the 

queues on L2 and L7 are simply enormous: vehicle delay in L2 is about 40 times greater than 

that from the ADP controllers, and delay in L7 is about 15 times greater than results obtained 

by the ADP controllers.  

This comparison suggests that the signal plans calculated in TRANSYT using 

deterministic plantoon dispersion model, which assumes cyclic traffic profile, may not 

perform satisfactorily when link traffic dynamics are stochastic and heavily affected by the 

existence of capacity bottlenecks. In contrast, the ADP controller offers a competitive 

solution for operating signals in such environments.   

 

 Intersection A Intersection B 

Link L1 L2 L8 L3 L6 L7 

Mean queue 0.86 70.14 2.26 0.81 2.05 34.36 

SE 0.01 0.42 0.02 0.01 0.02 0.27 

Median 0 67 3 0.25 1.25 27.67 

Mode 0 66 4 0 0 21 

Maximum 7 132 4 4 11 81.67 
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5.3.9 Influence of learning  

The influcence of learning can be assessed by suspending learning process in operations, 

and use only initial values of the parameters of the approximation functions. We obtained 10 

performance results without learning and compared corresponding results obtained with 

learning in Table 5-23.  

This paired comparison shows that the contribution of learning to performance is not 

significant, as in paired-t test we accept the null hypothesis of equal mean. The reasons for 

this are the same as we discussed for the influence of learning in Section 5.2.3.4.  

Table 5-23 Performance of ADP_TD controllers in distributive network control, and comparisons with 
ADP_TD without learning  

 

Run ADP_TD (vs./s) 
ADP_TD without learning 

(vs./s) 

1 8.99 8.95 
2 8.67 8.66 
3 9.49 9.54 
4 9.42 8.87 
5 8.76 8.62 
6 8.81 8.79 
7 8.71 8.62 
8 8.90 9.12 
9 8.58 8.27 

10 9.66 9.33 

mean 9.00 8.88 
SD 0.38 0.37 

 

5.3.10  Summary 

In this section we presented numerical experiments in applying the ADP controller to 

distributed network control. The sample network consists of two traffic intersections with two 

short links of limited holding capacity connecting the upstream and the downstream, and each 

intersection is controlled by an independent ADP controller. Traffic dynamics in the network 

are modelled by the cell transmission model (CTM). Despite the high degree of saturation and 

uneven flow pattern, delays expereienced by vehicles were kept low in the traffic system 

operated by the ADP controllers. There was no persistence of queue in any link during the 

simulation. By implementing the optimised fixed-time plans from TRANSYT, we found that 
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the signal plans optimised under the assumption of cyclic traffic profile does not perform well 

in stochastic environment. This further strengthens the advantage of the ADP controller, 

which operates signals dynamically to accommodate stochastic arrivals. The influence of 

learning to performance was found insignificant.  

Without explicit coordination rules, the good performance of the distributed ADP 

controllers suggests that link traffic dynamics convey sufficient information for distributed 

control. Monitoring and accurate modelling of link flows are important for effective control.  

5.4  Discussion 

This chapter presents a systematic assessment of the performance of ADP controllers in 

a range of numerical experiments. Simulations were designed to represent real-time traffic 

control. Performance results were obtained in a potofolio of test scenarios, including a two-

stage isolated intersection, a three-stage isolated intersection at each of coarse resolution (5s) 

and fine resolution (0.5s), and a two-intersection traffic network. In the two-stage case, the 

ADP algorithm using a linear approximation function is as good in performance as a heuristic 

solution using non-linear approximation function (Robertson and Bretherton, 1974). In the 

three-stage case at the coarse resolution, the ADP controller achieved 48% reduction in delay 

from optimised fixed-time plans. The controller’s performance was further improved by 42% 

to just 33% of the original rate of delay (from optimised fixed-time) at the fine resolution. In 

the case of the small-scale traffic network with ADP controllers operating distributedly, the 

controllers consistently outperformed optimised fixed-time plans produced by TRANSYT 

12.0.  

Most of the benefits from ADP controllers are attributed to the features of improved 

awareness of traffic state, real-time sequential decision-making, and evolutionary 

approximation to value function. On the other hand, fixed-time plans are calculated under the 

rigid principle of equal degrees of saturation for all signal stages, and the assumption of 

stationary traffic or cyclic platoon arriving profiles. This explains broadly why fixed-time 
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plans worked poorly in simulations of random arrivals, whereas ADP controller performed 

well.   

In all cases, we used linear approximation function, and the learning techniques used for 

updating function parameters are relatively simple and straightforward in computation. In 

most cases, function parameters stabilised with bounded fluctuation after the system entered 

steady-state. The time the controller takes to complete one iteration of the ADP algorithm is 

trivial, suggesting that the ADP controller could be implemented for real-time operation 

without significant upgrade of hardware in signal controller.   

Serveral interesting findings emerged from the experiments. The first is that a planning 

horizon of 10 − 20s is sufficient for good performance. This reaffirms conclusions drawn in 

previous studies (Robertson and Bretherton, 1974; Gartner, 1982; Bell et al., 1990). Traffic 

information for the horizon can be supplied adequately by existing detection technologies, 

providing that the detectors are installed sufficiently upstream of the stopline. In cases where 

detected information fall short of demand, traffic models can be used to supplement the 

reminder of the planning horizon. However, in this study, we did not model the situation of 

queue spilling back over upstream detectors, in which case direct detection of arriving traffic 

is no longer possible. Predicting end of queue as queue spills beyond detectors is a case of 

significant pratical interest and demands further investigation.   

Second, we found that, as resolution improves and horizon increases, the ADP 

controllers favour larger discount rate. In the cases of 5s resolution where horizon is set at 10s, 

discounting future delays at 0.8% per second works best, whilst in the cases of fine resolution 

where horizons are set between 16.0 − 20.0 seconds, discount rates between 20 − 24% per 

second work best. This highlights the importance of accurate monitoring and modelling traffic 

dynamics at present and in the immediate future. It suggests that improving detection 

technologies and better estimation of queue status are more cost-effective than exploring 

advanced approximation methods for the value function, whose outcome becomes 

insignificant if being discounted substaintially over time.    
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Third, in the cases of fine resolution with substaintial discount, controller performance 

are indifferent to learning techniques. This can be explained by the followings arguments: 

given that learning processes exercise influence on control through the approximation 

function, and because control performance is not sensitive to approximation outcome in case 

of substaintial discount, performance is broadly unaffected by the learning process.  

Fourth, in the case of network control, the ADP controllers proved better equipped for 

operating at stochastic environment than optmised fixed-time plans, which are calculated 

from deterministic models under the assumption of cyclic traffic profiles. The resutls also 

showed that coordinations among distributed controllers can be achieved inplicitly by using 

appropriate traffic models that convey traffic information in the network. A moderate length 

of horizon, such as 16s, and a rapid revision of signal plans ensure that coordination is 

established effectively. 
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Appendix 5.A TRANSYT 12.0 Outputs for the Traffic Network Control 
 
 

TRANSYT 12.0 
 

Chen's Network 
  
  
  
  PARAMETERS CONTROLLING DIMENSIONS OF PROBLEM : 
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
  NUMBER OF NODES                    =    2 
  NUMBER OF LINKS                     =    6 
  NUMBER OF OPTIMISED NODES            =    2 
  MAXIMUM NUMBER OF GRAPHIC PLOTS    =    0 
  NUMBER OF STEPS IN CYCLE            =   60 
  MAXIMUM NUMBER OF SHARED STOPLINES  =    0 
  MAXIMUM NUMBER OF TIMING POINTS     =    4 
  MAXIMUM LINKS AT ANY NODE           =    3 
  
  
 CORE REQUESTED =   5167 WORDS 
 CORE AVAILABLE =  72000 WORDS 
  
 DATA INPUT :- 
           ~~~~ ~~~~~ 
 CARD   CARD 
  NO.   TYPE 
 (  1)= TITLE:- Chen's Network 
 CARD   CARD   CYCLE  NO. OF   TIME EFFECTIVE-GREEN  EQUISAT 0=UNEQUAL FLOW   CRUISE-SPEEDS   OPTIMISE  EXTRA  HILL-   DELAY   STOP 
  NO.   TYPE   TIME    STEPS  PERIOD DISPLACEMENTS  SETTINGS  CYCLE   SCALE   SCALE  CARD32   0=NONE   COPIES  CLIMB   VALUE   VALUE 
                        PER   1-1200  START    END     0=NO  1=EQUAL  10-200  50-200 0=TIMES  1=O/SET   FINAL  OUTPUT  P PER   P PER 
               (SEC)   CYCLE   MINS.  (SEC)   (SEC)    1=YES  CYCLE      %       %   1=SPEEDS 2=FULL   OUTPUT  1=FULL  PCU-H    100 
   2)=   1     120      60     240       1       1       1       0       0       0       0       2       0       0    1420     260 
 CARD   CARD                                      LIST  OF  NODES  TO  BE  OPTIMISED 
  NO.   TYPE 
   3)=   2       1       2       0       0       0       0       0       0       0       0       0       0       0       0       0 
  
                                  NODE CARDS:  MINIMUM STAGE TIMES (WORKING) 
 CARD   CARD   NODE             S1      S2      S3      S4      S5      S6      S7      S8      S9     S10 
  NO.   TYPE    NO. 
   4)=  10       1               6       6       6       6 
   5)=  10       2               6       6       6       6 
  
                                  NODE CARDS:  PRECEDING INTERSTAGE TIMES (WORKING) 
 CARD   CARD   NODE             S1      S2      S3      S4      S5      S6      S7      S8      S9     S10 
  NO.   TYPE    NO. 
   6)=  11       1               6       6       6       6 
   7)=  11       2               6       6       6       6 
  
                                  NODE CARDS:  STAGE CHANGE TIMES (WORKING) 
 CARD   CARD   NODE   Sgl/Dbl   S1      S2      S3      S4      S5      S6      S7      S8      S9     S10 
  NO.   TYPE    NO.   Cycled 
   8)=  12       1       1       0      49      75     105 
   9)=  12       2       1       0      35      65      95 
  
                                                     LINK  CARDS:   FIXED  DATA 
                                        FIRST   GREEN                   SECOND  GREEN 
 CARD   CARD   LINK     EXIT        START            END            START            END       LINK    STOP     SAT   DELAY   DISPSN 
  NO.   TYPE    NO.     NODE    STAGE    LAG    STAGE    LAG    STAGE    LAG    STAGE    LAG  LENGTH  WT.X100  FLOW  WT.X100    X100 
  10)=  31       1       1       1       0       2       0       3       0       4       0     120       0    1440       0       0 
  11)=  31       2       1       2       0       3       0       4       0       1       0     120       0    1440       0       0 
  12)=  31       3       2       1       0       2       0       3       0       4       0      24        0    1440       0       0 
  13)=  31       6       2       1       0       2       0       3       0       4       0     120       0    1440       0       0 
  14)=  31       7       2       2       0       3       0       4       0       1       0     120       0    1440       0       0 
  15)=  31       8       1       1       0       2       0       3       0       4       0      24        0    1440      10       0 
  
                                                     LINK CARDS:    FLOW DATA 
                                       ENTRY 1 ............    ENTRY 2 ............    ENTRY 3 ............    ENTRY 4 ............ 
 CARD   CARD   LINK   TOTAL  UNIFORM   LINK          CRUISE    LINK          CRUISE    LINK          CRUISE    LINK          CRUISE 
  NO.   TYPE    NO.    FLOW    FLOW     NO.    FLOW    TIME     NO.    FLOW    TIME     NO.    FLOW    TIME     NO.    FLOW    TIME 
  16)=  32       1     350       0       0       0      10       0       0       0       0       0       0       0       0       0 
  17)=  32       2     382       0       0       0      10       0       0       0       0       0       0       0       0       0 
  18)=  32       3     450       0       1     350     2       2      95       2       0       0       0       0       0       0 
  19)=  32       6     440       0       0       0      10       0       0       0       0       0       0       0       0       0 
  20)=  32       7     382       0       0       0      10       0       0       0       0       0       0       0       0       0 
  21)=  32       8     730       0       6     440    2       7     287       2       0       0       0       0       0       0 
  
                                                  LINK DATA:  QUEUE CONSTRAINTS 
 CARD   CARD   LINK    LIMIT   QUEUE   LINK    LIMIT   QUEUE   LINK    LIMIT   QUEUE   LINK    LIMIT   QUEUE   LINK    LIMIT   QUEUE 
  NO.   TYPE    NO.    QUEUE  WEIGHT    NO.    QUEUE  WEIGHT    NO.    QUEUE  WEIGHT    NO.    QUEUE  WEIGHT    NO.    QUEUE  WEIGHT 
  22)=  38       3       4      20       8       4   10000       0       0       0       0       0       0       0       0       0 
  
 *****END OF SUBROUTINE TINPUT***** 
    120 SECOND CYCLE  60 STEPS 
  
 FINAL SETTINGS OBTAINED WITH INCREMENTS :-   18  48  -1  18  48   1  -1   1 
  - (SECONDS) 
  
   NODE   NUMBER   STAGE   STAGE   STAGE   STAGE   STAGE  STAGE   STAGE   STAGE   STAGE   STAGE 
    NO   OF STAGES   1       2       3       4       5       6       7       8       9      10 
  
     1       4     119      49      73     107 
     2       4       2      35      67      97 
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 LINK    FLOW   SAT   DEGREE  MEAN TIMES  -------DELAY--------   ----STOPS----   ----QUEUE----  PERFORMANCE   EXIT   GREEN TIMES 
 NUMBER   INTO   FLOW    OF     PER PCU    UNIFORM RANDOM+ COST    MEAN   COST    MEAN             INDEX.      NODE   START  START 
          LINK          SAT    CRUISE              OVERSAT  OF    STOPS    OF     MAX.  AVERAGE  WEIGHTED SUM            END     END 
                                    DELAY  (U+R+O=MEAN Q) DELAY    /PCU   STOPS          EXCESS  OF ( ) VALUES         1ST     2ND 
        (PCU/H) (PCU/H)  (%)  (SEC) (SEC)    (PCU-H/H)    ($/H)    (%)    ($/H)    (PCU)  (PCU)     ($/H)               (SECONDS) 
  
     1     350   1440     35  10.5   7.2    0.4 +  0.3  (  9.3)     36  (  3.3)       3                       12.5             1     119  49  73   107 
     2     382   1440     88  10.5  56.4    2.2 +  3.7  ( 84.2)    138  ( 13.6)  11                      97.8             1     49    73  107 119 
     3     450   1440     60   2.5  14.3    1.0 +  0.7  ( 24.5)     63  (  7.3)       7  ( 0.2)*         31.9             2      2     35  67    97 
     6     440   1440     58  10.5  16.1    1.2 +  0.7  ( 27.0)     69  (  7.8)       6                    34.9              2      2     35  67    97 
     7     382   1440     56  10.5  17.8    1.2 +  0.6  ( 26.0)     73  (  7.2)       5                    33.2              2     35    67  97    2 
     8     730   1440     72   2.5  11.0    0.8 +  1.3  ( 30.2)*    49  (  9.2)      10  ( 0.7)*      81.7               1    119  49  73    107 
  
   TOTAL          TOTAL       MEAN         TOTAL    TOTAL    TOTAL       TOTAL        PENALTY       TOTAL 
  DISTANCE         TIME    JOURNEY       UNIFORM   RANDOM+    COST        COST          FOR       PERFORMANCE 
 TRAVELLED        SPENT      SPEED         DELAY   OVERSAT     OF          OF          EXCESS       INDEX 
                                                    DELAY    DELAY       STOPS         QUEUES 
 (PCU-KM/H)     (PCU-H/H)    (KM/H)     (PCU-H/H)(PCU-H/H)   ($/H)       ($/H)         ($/H)        ($/H) 
  
    214.8          19.1       11.2          6.8      7.3    ( 174.0) + (   48.5)  +  (  69.5)   =     292.0      TOTALS 
 ----------------------------------------------------------------------------------------------------------------------- 
                                                                                                                 ROUTE 
  
  
 ************************************************************************************************************************************ 
                                   CRUISE               DELAY               STOPS              TOTALS 
                               LITRES PER HOUR     LITRES PER HOUR     LITRES PER HOUR     LITRES PER HOUR 
  
 FUEL CONSUMPTION PREDICTIONS        11.5         +      16.3         +      22.1         =      49.9 
  
 NO. OF ENTRIES TO SUBPT  =    5 
 NO. OF LINKS RECALCULATED=   24 
  
 PROGRAM TRANSYT FINISHED 
============================================= end of file ===============================================
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CHAPTER 6  CONCLUSIONS 

This chapter includes four sections. A concise summary of this doctoral study is provided 

in Section 6.1. Contributions of this study to methodological development and practice in 

traffic engineering are highlighted in Section 6.2. Main criticisms arising from this study are 

discussed in Section 6.3. Suggestions for further research on related topics are provided in 

Section 6.4.  

6.1 Summary of Study 

This study investigates approximate dynamic programming (ADP) for traffic signal 

control, aiming to develop a self-sufficient adaptive controller for real-time operation. The 

key feature of the proposed ADP approach is to replace the exact value function of dynamic 

programming (DP) with a linear approximation function. The approximation function is 

progressively updated by using machine-learning techniques. We have shown in numerical 

examples that at the resolution of 5s per temporal increment, the ADP controller reduced 

vehicle delays by 43% from the optimised fixed-time plans produced by TRANSYT 12.0. At 

the resolution of 0.5s per temporal increment, the ADP controller achieved a 67% reduction in 

vehicle delays from TRANSYT, and 42% better than the results at 5s resolution. We used the 

DP to produce the absolute higher bound in performance measure, and the ADP controller 

only caused 8% more delays. Additionally, the time the ADP controller takes to compute an 

hour’s simulation is only about 0.08% of the time the DP approach takes to compute 6 

minutes’ simulation. The ADP controllers only assume 10s information of future arriving 

traffic, whereas the DP controller is provided with the complete information.  

These results suggest that the ADP controller can achieve a large proportion of the 

benefits of DP, while being efficient in computation and practical for implementation.  

In the case of the small-scale traffic network, we found that the distributed ADP 

controllers maintained delays low in all links. Active coordination between the upstream and 

downstream controllers was observed. Apart from the benefits achieved the ADP controllers, 
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the cell transmission model (CTM) proved better for modelling traffic dynamics in network. 

Using the optimised TRANSYT plans to control the CTM based network caused 10 times 

more delays than the distributed ADP controllers.  

The ADP algorithm requires machine-learning techniques to update approximation 

function progressively. Temporal-difference (TD) reinforcement learning and perturbation 

learning are investigated in this study. The TD method constantly tracks the different between 

current estimation and actual observation, and propagates the difference back to the 

parameters of the approximation function. The approximation is consequently improved. 

Perturbation learning directly calculates the gradients of the approximate function by 

perturbing the system state. Despite of the different learning methods, the learning effects 

were broadly similar and no statistical difference in performance was found in numerical 

experiments. The ADP controller with either of the two learning techniques produced the best 

performance by discounting future delay at about 24% per second at the 0.5s resolution. The 

substantial discount suggests output of the approximation function is insignificant to influence 

decision-making, thus the influence of learning is limited. Additionally, given the good 

performance at this discount rate, it suggests that a simple linear approximation is sufficient 

for real-time control. Exploring more complex approximations may not prove cost-effective.  

6.2 Contributions 

 
This study presents the first systematic investigation in applying ADP to traffic signal 

control. The ADP concept offers a general solution to sequential-decision making in complex 

processes, where the sizes of the state space, information space and action space restrict direct 

application of classic dynamic programming. This study has developed ADP from its general 

concept to address adaptive traffic signal control as a specific case. For such a case, we 

systematically established the definitions for system state, dynamics of state transition and the 

structure of cost functions. The definitions are applicable for typical road intersections in both 

urban and rural area. 
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Several important structural properties of the value function have been identified for the 

development of ADP solutions. The non-decreasing monotonicity of the value function in 

queue length and signal state, as stated in Theorem 4.1, 4.2 and 4.3, have been proved and 

presented for transport studies for the first time. Based on the identified structural properties, 

we use linear approximation function and the feature-extraction function to differentiate 

signal status. The structural properties of the value function can be the basis for further 

investigation in function approximation, policy improvement and development in machine 

learning techniques for adaptive traffic signal control.  

Several machine-learning techniques have been studied and employed to update 

parameters of the approximation function. In real-time control, function parameters are 

usually not known a priori. This makes the investigation in appropriate machine learning 

techniques, especially unsupervised learning, important for developing adaptive controllers. 

As the traffic environment evolves, the adaptive controller adjusts parameters accordingly. 

This study considered two learning techniques: the temporal-difference (TD) learning and 

perturbation learning. Theorem 3.2 (Section 3.4.4) guarantees that, using TD learning, 

estimates of the parameters of a linear approximation function converge with probability of 1. 

Alternatively, the linear separable structure of the function allows numerical calculation of 

gradients by perturbing system state. Both techniques update function parameters 

incrementally and are appropriate for real-time implementation. The formulae of the ADP 

algorithm allow a variety of learning techniques to be considered for further studies. 

This study has direct and important implications for traffic engineering. The ADP 

algorithm has been purposely developed to address practical issues in traffic engineering. 

Usual control constraints, such as inter-green and minimum green, are built into the state 

transition functions. The ADP controllers are in compliance with a range of discrete systems 

of resolutions from 0.5s to 5s per temporal increment. There is no difficulty in principle to 

refine the resolution further to, say 0.1s, because the issues that arise when the time increment 

is shorter than control steps such as minimum green and clearance times have already been 

addressed in implementation of the present fine resolution. By using a feature-extraction 
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interface, the controller is able to work with different traffic models, such as the vertical 

queuing model and cell transmission model. Traffic arrivals of the next 10s are assumed 

available from upstream detectors, which is a fair representation of the state-of-the-art in 

traffic control. Even if this reasonable assumption is not satisfied, the controller can easily use 

Monte Carlo simulation to support decision-making. The ability of the ADP control algorithm 

to address practical issues underscores its readiness for implementation.   

In this study, the control objective is to minimise vehicle delays. The framework of ADP 

algorithm proposed here is capable of including vehicle stops and exhaust emission into 

objective function. Weighting factor can be applied to vehicle stops and emission rates so that 

traffic engineers can assign priority to specific control objectives.  

We have proposed a fully distributed control system for traffic network operation. We 

showed in numerical examples that the ADP controller managed stochastic traffic arrivals 

substantially better than the fixed-time plans produced by TRANSYT 12.0. This highlights 

the potential benefits of using distributed adaptive controller in place of existing systems.  

Overall, this study has developed an appropriate solution for practical application in 

traffic engineering based on approximate dynamic programming and machine-learning 

techniques. The presented ADP method, when implemented with fine temporal resolution, 

can achieve the majority of the benefits in control performance that are possible as assessed 

by full solution of a dynamic optimisation using BDP methods. The potential benefits of this 

approach are evidenced by its competitiveness in performance, efficiency in computation and 

readiness for practical implementation.  

6.3 Critique 

In machine-learning process, the stepsize (or the learning rate) scales new estimates of 

parameters to correct existing estimates. The convergence of using temporal-difference (TD) 

learning to adjust parameters of a linear approximation function, by Theorem 3.2 (Section 

3.4.4), requires a diminishing stepsize satisfying Assumption 3-6 (Section 3.4.4). Considering 

the evolving traffic environment, and in concern of “over-shooting” in learning, we used a 
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constant and cautious stepsize for the TD learning in this study. For perturbation learning, we 

used deterministic and diminishing stepsizes. In Chapter 5, we showed that in a static traffic 

environment, the parameters trained by TD learning with constant stepsize exhibited bounded 

variations in steady-state. In the same context, despite the diminishing stepsize, parameters 

for green signal status exhibited greater variation when using perturbation learning other than 

TD learning. In an evolving traffic environment, the parameter values exhibited similarity in 

evolution, despite the difference in learning techniques and stepsize rules. Adaptive stepsize is 

not considered in this study. Future studies may consider convergence of approximation with 

adaptive stepsizes.  

An interesting discovery from the numerical experiments is that the ADP controllers 

favoured a substantial discount rate (20% ~ 24% per second) for future delays at fine 

resolutions. This has two implications: first, the impact of the cost-to-completion represented 

by the approximation function is limited on decision-making; second, given the limited 

impact of terminal cost, the difference in learning techniques does not have a substantial 

influence on performance. The second statement is evidenced by a comparison between TD 

learning and perturbation learning. This suggesets that using more sophiscated approximation 

structures and learning techniques may not prove cost-effective.  

In Chapter 4, we proved a few key structural properties of the value function, and 

pointed out that the linear function defined by (4-25) to (4-28) provides a good approximation 

to the exact value function. However, because a traffic link can only have one of the two 

signal statuses, the parameters r
+ (assigned to red status) and r

- (assigned to green status) 

cannot be updated simultaneously. Additionally, the time spent in red and green status will 

not generally be equal. The frequency of update will therefore generally differ, and so is the 

impact on the evolution of parameters. This has been evidenced by the different degrees of 

variation in r+ and r- in numerical examples. 

The traffic models adopted for this study are macroscopic and do not model the 

behaviour of individual vehicles. The traffic is assumed to be homogenous, and pedestrians 

are not considered. The objective function takes account of vehicle delays only, though it 
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would not be difficult to incorporate pedestrian delays and vehicle stops as additional factors. 

The study on network control is relatively simple, with only a pair of intersections connected 

by two short-links, although this does highlight the issue of coordination because of the risk 

of queue blocking-back. Hierarchical structure of network control is not considered.  

In this study we assumed perfect detector information, i.e. no error in detecting vehicles. 

In reality, because of specific characteristics of vehicles, there might be false alarms from 

detector or miss-detection, which may result in inaccurate representation of traffic state. 

Sensitivity of ADP controller to imperfect detector information is not investigated in this 

work. Knowledge from previous studies (Webster, 1957) suggests that signal control 

performance is more sensitive to underestimation of queue length than overestimation of 

queue length.  

6.4  Future Works 

The doctoral study identifies several areas that seem promising for further research. We 

discuss some of them here.  

Approximate dynamic programming is a general concept that can incorporate a variety of 

approximation and machine-learning techniques. The continuous function approximation 

using reinforcement learning is one of many possibilities. We identify three areas for future 

investigation in approximation methods.  

The first is the issue of dimensionality. By using linear approximation functions, we 

reduce the dimension of the control problem to a few functional parameters. Another common 

way of reducing dimensionality is state aggregation, for example representing queuing state 

as “low”, “medium” and “high”, traffic flows as “light” and “heavy”. By classifying the 

aggregated states, we may use specific methods, such as Q-learning (Watkins, 1989) to 

update the state-to-action mapping.  

The second area is the architectures of approximation function. In Chapter 3 we 

introduced the concept of neural-dynamic programming, in which the neural network 

provides the learning capacity. By Theorem 3.1 (Section 3.4.1), the non-linear neural network, 
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or the multi-layer perceptron (MLP), is a universal approximator to any function. This 

suggests that we may use MLP to approximate the value function in traffic signal control. The 

MLP is a feed-forward network trained by backward propagation. A step further from this is 

recurrent neural network (RNN), where connections between neurons form directed cycle. 

RNN can be trained by back-propagation through time (Werbos, 1990). The extension to 

MLP and RNN expand the choices of approximation structures and learning techniques. 

However, there is no proof so far that non-linear approximations produce convergence in 

functional parameters.   

The third area is the stepsize. In this study we used constant stepsize for TD learning and 

deterministic stepsizes for perturbation learning. Ideally, we would expect the stepsize to be 

adaptive to the noise in the environment, i.e. the greater the noise the smaller the stepsize. A 

notable study in adaptive stepsize in approximate dynamic programming is by Powell 

(Section 6.3, pp.190, 2007).   

For the exercise in traffic engineering, it will be worthwhile to compare the ADP 

controller with other contemporary adaptive signal controllers using independent micro-

simulation software, such as Paramics and VISSIM (PTV Planning Transport Verkehr AG., 

2004). The MOVA system will be a good candidate for benchmarking. Further from this point, 

a field test can be organised. The state transition function and the control algorithm may need 

further modification to accommodate the local environment, and further constraints may be 

introduced, such as constrains on the maximum green/red time and the stage/phase sequence. 

The implementation of the ADP controller may also require pedestrian phases, which have 

not been included in this study.  

 The preliminary study on distributed traffic network control reveals the potential of the 

ADP controller for larger scale operation. Further studies in this may extend the scale of the 

network to the size of a central urban area, and test the behaviour of the controllers with 

specific traffic scenarios, including not only peak periods but also priority schemes.  
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6.5  Final Remark 

Adaptive traffic signal control is a challenging area that synthesises of control theories, 

queuing theories, traffic theories, and machine-learning methods. Notwithstanding its 

significance in theoretical development, traffic signal control is after all a practical issue that 

relates to daily life in urban areas as well as in remote locations. Although previous studies 

have shown that dynamic programming is a method to calculate the optimal solution, it has 

several practical limitations. This gives the issue of the extent to which a more practical but 

sub-optimal methodology such as ADP can approach to the optimum. Bearing in mind the 

practical interest, the sub-optimal solutions should be easy to implement, efficient in 

computation, and cost-effective to operate. In this study we have shown that approximate 

dynamic programming provides a realistic approach to address the issues of interest. 
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