
 

 1 

 

 

 

 

 

 

 

 

 

 

 

 

Quantum Logic Circuits for Solid-State Quantum 

Information Processing 

 

 

 
Andrea Del Duce 

 

 

 

 

 

A thesis submitted to University College London for the degree of Doctor 

of Philosophy (Ph.D) 

 

 

 

 

 

 

 

 

 

 
Department of Electronic and Electrical Engineering 

 

University College London 

 

October 2009 

UCL DEPARTMENT OF ELECTRONIC 

AND ELECTRICAL ENGINEERING 

 



 

 2 

 
 
 
 
I, Andrea Del Duce, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated 

in the thesis. 

 



 

 3 

Abstract 

This thesis describes research on the design of quantum logic circuits suitable for the 

experimental demonstration of a three-qubit quantum computation prototype. The 

design is based on a proposal for optically controlled, solid-state quantum logic gates. 

In this proposal, typically referred to as SFG model, the qubits are stored in the electron 

spin of donors in a solid-state substrate while the interactions between them are 

mediated through the optical excitation of control particles placed in their proximity. 

  

After a brief introduction to the area of quantum information processing, the basics of 

quantum information theory required for the understanding of the thesis work are 

introduced. Then, the literature on existing quantum computation proposals and 

experimental implementations of quantum computational systems is analysed to 

identify the main challenges of experimental quantum computation and typical system 

parameters of quantum computation prototypes. The details of the SFG model are 

subsequently described and the entangling characteristics of SFG two-qubit quantum 

gates are analysed by means of a geometrical approach, in order to understand what 

entangling gates would be available when designing circuits based on this proposal. 

Two numerical tools have been developed in the course of the research.  These are a 

quantum logic simulator and an automated quantum circuit design algorithm based on a 

genetic programming approach.  Both of these are used to design quantum logic circuits 

compatible with the SFG model for a three-qubit Deutsch-Jozsa algorithm. One of the 

design aims is to realise the shortest possible circuits in order to reduce the possibility 

of errors accumulating during computation, and different design procedures which have 

been tested are presented. The tolerance to perturbations of one of the designed circuits 

is then analysed by evaluating its performance under increasing fluctuations on some of 

the parameters relevant in the dynamics of SFG gates. Because interactions in SFG two-

qubit quantum gates are mediated by the optical excitation of the control particles, the 

solutions for the generation of the optical control signal required for the proposed 

quantum circuits are discussed. Finally, the conclusions of this work are presented and 

areas for further research are identified. 
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Chapter 1 Introduction 
A quantum computer is a computational system based on the interaction of two-level 

quantum mechanical systems called quantum bits or, as first introduced in [Sch95], 

qubits. It is potentially very powerful due to the combination of the three following 

features [Nie03]. Firstly, thanks to the superposition of quantum states, a quantum 

register comprising N qubits can simultaneously be loaded with 2
N
 different values 

which can then be processed in parallel. Thus, a quantum computer naturally 

implements parallel computation. Secondly, the values stored in a quantum register can 

be made to interfere, a technique which can be used to extract out of all superimposed 

values the correct solution of an algorithm. Thirdly, in a quantum computer it is 

possible to introduce a special correlation, called entanglement, between the qubits 

which allows one to influence the state of one qubit by operating on another, a 

phenomenon that has no equivalent in classical computation. 

 

There are different approaches by which the idea of a computational system based on 

quantum mechanics was developed. Feynman, for example, observed that simulating 

large quantum mechanical systems on classical computers was computationally a 

difficult problem to solve due to the considerable resources it requires  and argued that 

these difficulties may be circumvented if the computational machine was itself based on 

quantum mechanics[Fey82]. Others suggested the need for new computational models 

analysing Moore‟s law which states that computational power doubles for constant cost 

roughly once every two years. It has been observed, that approximately around the year 

2020 the increase in computational power described by Moore will come to an end 

when miniaturisation will reach levels in which quantum effects will interfere with the 

functioning of electronic devices and that the solution to this problem could come from 

switching to quantum computational models [Nie03]. However, it was probably the 

theoretical framework set by Deutsch in his studies on the potentials of quantum 

computers[Deu85] which mostly shaped the modern concept of quantum 

computation[Nie03]. Nevertheless, although these first studies suggested that quantum 

computers could lead to increased computational power compared to classical systems, 

no groundbreaking application could be found until 1994 when Shor demonstrated in 

[Sho94] that a quantum computer would have been able to factorize large integers 

exponentially faster than a classical machine thereby posing a serious threat to a widely 
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used cryptographic system termed RSA (which takes its name from the first letters of 

the surnames of its inventors Rivest, Shamir and Adleman). The relation between 

Shor‟s quantum factoring algorithm and the RSA cryptographic system is the following: 

As reviewed, for example, in [Nie03], the fastest classical factorisation algorithms 

require a number of operations which grows exponentially with the size of the problem. 

The factorization problem is therefore considered to be intractable on a classical 

computer since, for sufficiently long integers, the computation time becomes 

excessively long. In 1994, for example, it took 8 months to factor a 129 digit integer 

and while today a shorter time would be necessary for a similar number, computational 

times are still inaccessible for integers larger than 600 digits [Ger05]. This difficulty in 

calculating the factors of large integers is exploited for obtaining encryption keys in the 

RSA encryption system. However, Shor‟s quantum factorization algorithm only 

requires a number of operations which grows polynomially with the size of the 

problem[Nie03,Ger05] thereby showing that if it were possible to build a quantum 

computer able to process integers in the order of hundreds of digits then the RSA 

system would no longer be safe [Sho94]. Figure 1-1 shows the number of operations 

required for factorizing large integers for increasing size of the number to be factored, 

comparing the classical factorization algorithm (exponential growth) to the quantum 

case (polynomial growth)[Nie03,Ger05]. 

 

Figure 1-1: Number of operations necessary for factorizing integers with a classical factorization 

algorithm compared to the quantum case. The red line shows the exponential growth of the 

classical factorization algorithm as opposed to the polynomial growth of the quantum algorithm for 

increasing size of the number of bits corresponding to the integer to be factored[Nie03,Ger05]. 
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The implications of Shor‟s discovery on communication security really triggered the 

interest and research in the area of quantum computation on a large scale, leading, over 

the years, to substantial theoretical and experimental breakthroughs. After Shor‟s 

factoring algorithm, other quantum algorithms were discovered which are able to solve 

some specific problems more efficiently than classical computers. Amongst these, the 

quantum search algorithm demonstrated by Grover[Gro97] attracted great interest. 

Whilst the  search for a specific object in an unsorted space of L elements through a 

classical approach requires a number of steps proportional to L, Grover showed that the 

same problem could be solved in a number of steps proportional to 



L  using a 

quantum computer. Although this speed-up is less impressive compared to the one 

obtained in Shor‟s factorization algorithm, there are a wide range of classical algorithms 

which rely on search strategies which would benefit from the quantum 

approach[Nie03]. Finally, also Feynman‟s idea of efficiently modelling quantum 

mechanical systems through quantum computers rather than classical machines was 

further developed[Llo96] in the light of the new achievements.  

 

Other theoretical studies focused on how to correctly implement a quantum 

computational system despite the unavoidable presence of errors deriving from, both, 

the unwanted coupling of the environment with the qubits (a phenomenon called 

decoherence[Chu95a] which leads to a loss of the stored quantum information) and the 

non-optimal control of the devices used during computation. It was shown, that these 

errors could be compensated through quantum error correction codes[Sho95,Ste96]. 

Further, it was also demonstrated that these errors could be compensated through so 

called fault-tolerant quantum computation schemes[Sho96] even if the devices used in 

the quantum computational system are themselves object of errors, provided that each 

quantum gate (i.e. the quantum equivalent of the logic gates used in classical 

electronics) has an error level below a certain threshold. As reviewed, for example, in 

[Nie03], many different bounds for this threshold have been demonstrated which differ 

on the assumptions made in the derivation, with typically reported values ranging 

around 10
-4

 to 10
-6

. 

 

In parallel to these studies, the other question which was persistently addressed after 

Shor‟s discovery was which physical systems would have been suitable for 
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implementing a quantum computer and a large number of proposals have since then 

been presented. Some of the first systems to be proposed were systems in which the 

information is memorized and processed through the interactions of photons[Chu95b], 

quantum computers exploiting cavity quantum electrodynamics[Tur95] or ion-traps 

[Cir95] and quantum computers based on nuclear magnetic resonance (NMR) 

[Cor97,Ger97]. Soon, these proposals were followed by the first experimental 

implementations of small quantum computational systems such as, for example, a two-

qubit experiment based on the ion-trap proposal[Mon95] and two two-qubit 

experiments based on NMR[Chu98,Jon98]. However, despite the efforts, it became 

clear that even connecting just more than a few qubits, not to mention building a large-

scale quantum computer able to factorise large integers, posed exceptional 

technological challenges which have not been solved yet [Nie03, Zol05]. To date, one 

of the most important demonstrations of quantum computational systems is probably 

still represented by the 7-qubit factorization algorithm implemented on an NMR 

quantum computer which factorized the number 15[Van01]. Considering that today‟s 

encryption keys are based on integers with more than 600 digits[Ger05] (corresponding 

to 2048 bits necessary for its digital codification), it is possible to see that quantum 

computation is still far away from implementing a computational system able to pose a 

threat to cryptographic systems. There are other applications, however, which would 

benefit from a quantum computer of smaller dimensions. A quantum computer of 

around 50 qubits would be able to simulate quantum mechanical systems intractable on 

a classical computer due to the exponential amount of information which needs to be 

stored and processed when describing such systems with classical bits[Spi06,Nie03]. 

Nevertheless, although some quantum computational systems larger than the 7-qubits 

experiment have been demonstrated (e.g. 12 qubits on an NMR quantum 

computer[Neg06]), scalable quantum computation has not been achieved yet, as will be 

discussed in more detail in Chapter 3, and it is not clear which physical implementation 

might prove best[Zol05]. 

 

One implementation technology which is believed to have the potential for high 

scalability is that of solid-state quantum computers in which qubits are stored in some 

form of spin system embedded in a semiconductor substrate since these proposals may 

benefit from the expertise and knowledge acquired through classical 

microelectronics[Cer05,Das05,Hog03]. These ideas were launched almost 
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simultaneously through two different proposals, the one of qubits implemented in the 

spin of electrons trapped in quantum dots[Los98] and the one of qubits stored in the 

nuclear spin of phosphorus atoms embedded in a silicon substrate[Kan98], and have 

since then attracted much interest in the quantum computation research community, 

leading to a number of further proposals being presented (see [Vrj00,Wra01, Lad02], 

for example). The potential of some of these proposals has been also confirmed by 

measurements on their tolerance towards decoherence which have shown promising 

results[Bal09,Mor08, Tyr03]. However, to date, experimental implementations of these 

proposals have not managed to demonstrate systems larger than a few 

qubits[Pet05,Jel04] to the best of our knowledge. The difficulties in implementing 

larger systems are of different types and will be discussed in more detail in Chapter 3. 

In many cases, although single qubits may show promising features, one of the difficult 

problems to solve is how to introduce the interactions between qubits which are 

necessary for implementing a given quantum algorithm. In the pioneering proposal by 

Kane based on phosphorus atoms embedded in silicon[Kan98], for example, one of the 

problems seems to lie in the high-precision fabrication techniques required for the 

placement of control electrodes used to mediate the interactions between the 

qubits[Das05]. Similarly, qubits embedded in the electron spin of nitrogen-vacancies in 

diamond[Wra01] have demonstrated exceptional tolerance towards decoherence even at 

room temperature[Bal09] (whereas other implementations typically require operation 

temperatures below 10K[Pet05,Kan98,Tyr03]), indicating the potential for high-

temperature quantum information processing. However, a scalable interaction 

mechanism between the qubits stored in the nitrogen-vacancy is not straightforward to 

implement. 

 

In this context, a new model of quantum computer has been recently proposed which is 

based on the optically controlled, solid-state quantum gates proposed by Stoneham, 

Fisher and Greenland in [Sto03]. Throughout this thesis, following the terminology 

used in [Ker07], these gates will be referred to as SFG gates or, more generally, as to 

the SFG model. In the proposal, qubits are stored in the electron spin of a donor in a 

solid-state, possibly silicon, substrate. Interactions between two qubits are mediated 

through a control particle placed in their proximity. The distances between the particles 

are such that their wavefunctions are sufficiently separated to have negligible 

interaction. If, however, the control particle is excited by an optical pulse, its 
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wavefunction will spread and overlap with those of the qubits leading to an effective 

interaction between them. The interaction is stopped when a second, de-exciting pulse 

is transmitted on the quantum register, bringing the control particle back to its ground 

state. In the ensemble of pulse interleave times T between exciting and de-exciting 

pulses, only a discrete subset generates entangling gates which leave the control particle 

unentangled from the qubits, avoiding loss of quantum information from the qubits to 

the controls. The potential of this implementation lies in the exploitation of the 

promising tolerance towards decoherence demonstrated by donor electron spin 

qubits[Tyr03] in conjunction with their optically mediated interaction mechanism 

obtained through the control defect. This interaction mechanism allows one to avoid the 

requirement of high-precision fabrication to ensure the exact placement of control 

electrodes necessary, for example, in Kane‟s proposal[Kan98]. Also, this model may be 

compatible with the above mentioned quantum computation proposal based on 

diamond, using a control defect as the interaction link between the qubits implemented 

in the nitrogen-vacancy and could therefore operate above cryogenic 

temperatures[Sto09]. While it is expected that patches of up to 20 qubits may be 

controlled in a system based on SFG gates, larger quantum computers may then be built 

by the interconnection of different patches[Sto08]. 

 

The SFG model has been studied intensively, both theoretically and experimentally, in a 

project entitled “Putting the quantum into information technology” supported through 

the EPSRC Basic Technology program.  This project was carried out at University 

College London, in collaboration between the Department of Physics and Astronomy 

and the Department of Electronic and Electrical Engineering, and the London Centre for 

Nanotechnology. As a result of the work conducted within the project, the details on the 

dynamics of the SFG quantum gate were presented in [Rod04], which also compared 

how accurately this model is able to produce two-qubit gates typically used in literature, 

such as, for example, the controlled-phase (or controlled-Z) gate[Nie03]. In [Ker07], 

these studies were further developed with the aim of identifying gate parameters able to 

produce both high-accuracy and fast two-qubit entangling gates.  Experimentally, 

measurements on the life-times of excited states of phosphorus atoms in silicon have 

been recently performed which yielded important information on their behaviour as 

control particles[Vin08]. These results represent essential steps towards the 

implementation of an SFG quantum computer and lead the way to an experimental 
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demonstration of a complete few-qubit quantum computation prototype, a fundamental 

test-bed for assessing the potential of this proposal. 

 

The research work presented in this thesis was part of this project and focused on the 

problem of identifying quantum logic circuits suitable for the experimental 

demonstration of a small-scale quantum computational system based on the SFG model. 

Specifically, the overall aim of the research was to design quantum logic circuits 

assuming that a few-qubit quantum computational system had been realised and 

required verification. 

 

To achieve this aim, the first step required the understanding of the main challenges of 

experimental quantum computation, as well as the identification of the algorithms used 

for testing prototypes of quantum computers and the typical system sizes, such as the 

number of qubits or the length and complexity of quantum circuits for the systems 

demonstrated to date. This study is described in Chapter 3. The analysis focused on 

some of the most studied implementations such as those based on NMR[Cor97,Ger97], 

ion-traps[Cir95] and Josephson junctions[Shn97], as well as proposals based on spin 

qubits in solid-state systems: quantum dots[Los98], donor spin qubits as in the Kane 

proposal[Kan98], the nitrogen-vacancy in diamond[Wra01] and silicon NMR[Lad02]. 

The review of the experiments conducted on these systems, identified the Deutsch-

Jozsa algorithm[Deu92], and its refined version presented by Collins et al.[Col98], as a 

convenient mathematical problem often used for the experimental demonstration of 

few-qubit quantum computers (see [Chu98,Jon98,Kim00a,Fah08], for example). Even 

when performed on small quantum registers, this algorithm allows one to implement 

parallelism, interference and entanglement, the latter only if the algorithm, in its refined 

version, is performed on a quantum register of at least three qubits[Col98]. Aiming at 

identifying a test-problem which would prove that the analysed system effectively 

operates as a quantum computer while considering system parameters which would not 

lead, potentially, to insurmountable technological challenges, the three-qubit version of 

the refined Deutsch-Jozsa algorithm was chosen as the algorithm to develop in the 

research project here presented. 

 

As previously mentioned, in [Rod04] it had been shown that quantum gates defined in 

the literature can be obtained through the SFG model and specific examples of SFG 
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gates approximating quantum gates such as the controlled-phase gate had been reported. 

However, at the start of this work, a more general analysis of the ensemble of 

entangling gates which could be implemented within this proposal had not been 

performed yet. More specifically, with a view of designing quantum circuits based on 

SFG gates, it was not clear which alternatives were offered by this model in the choice 

of the gates to be used for the design of circuits. Whether, for example, it would have 

been more convenient to use the SFG model for obtaining gates which approximate the 

ones typically used in literature as shown in [Rod04] or whether there were other 

entangling SFG gates produced within this proposal which would have been worth 

considering. Hence, the next step of the research required to analyse the SFG model and 

to study the entangling characteristics of SFG gates, in order to identify which quantum 

gates would be available for the design of circuits based on this scheme. 

 

After that, the issue of the design of quantum logic circuits was addressed. Similarly to 

classical circuit design, developing a quantum logic circuit requires one to find a 

sequence of quantum logic gates which implements the quantum computation one 

wishes to perform. These sequences typically comprise quantum gates which introduce 

interactions between qubits and operations on single qubits[DiV00]. Further, they are 

not unique and also depend on the type of quantum gates which the technology, or the 

physical system used to implement the quantum computer, can produce. Finally, in 

order to reduce the chances of errors accumulating along the computational path, the 

quantum circuits should be as short as possible[Bec96]. However, to develop quantum 

logic circuits it is also necessary to have convenient tools to analyse their performance. 

Specifically, one needs to be able to assess how well a given circuit implements the 

function it has been designed for. Also, even if a circuit implements a given function 

correctly, it is important to estimate how the circuit performance may change under 

non-ideal conditions such as, for example, fluctuations on the parameters relevant in the 

gate dynamics, which may manifest themselves in an experimental scenario. 

Algorithms for implementing numerical tools which simulate the behaviour of quantum 

logic circuits have been described, for example, in [Obe99,Sch00]. Given the input state 

of a computation register of qubits, these algorithms study the performance of a 

quantum logic circuit by analysing the impact of the quantum gates comprised in the 

circuit on the state of the qubits. However, in the SFG model, the interactions between 

qubits are mediated by control particles. As will be described in more detail in Chapters 



Chapter 1 - Introduction 

 21 

4 and 5, the quantum gates implemented within this proposal also depend on the state of 

the control particle and its evolution must be considered in order to obtain a more 

complete picture when analysing the performance of circuits based on SFG gates. 

Hence, starting from the models presented, for example, in [Obe99,Sch00], it became 

clear that these protocols had to be further developed into a quantum logic simulator 

which would, firstly, follow the evolution of the control particles and, secondly, be 

based on the specific two-qubit quantum gates characteristic of the SFG proposal. This 

task required to identify how to incorporate the states of the control particles in the data 

to be processed by the simulator in order to have a numerical tool specifically tailored 

for circuits based on the SFG model and which could, therefore, be used for the study of 

how the SFG gate dynamics influences the result of the computation. The main 

characteristics of this quantum logic simulator are described in the first part of Chapter 

5. 

 

Further, what was also unknown at the start of the project was which techniques may 

have been used for deriving quantum circuits for a three-qubit refined Deutsch-Jozsa 

algorithm based on SFG gates. Quantum circuits implementing this algorithm for an 

NMR system had been reported, for example, in [Kim00a]. Hence, one possibility for 

obtaining circuits compatible with the SFG model would have been to adapt the circuits 

presented in [Kim00a] to SFG computation by approximating them through SFG gates. 

Nevertheless, it would also have been important to verify whether circuits with 

improved performance (e.g. circuits implementing the desired function with a higher 

precision or circuits characterised by a shorter computational time) could be obtained 

when deriving them directly for SFG gates, rather than adapting existing solutions 

developed for other implementations, and convenient methods for addressing this 

problem needed to be identified. In [Kim00a], for example, the circuits had been 

derived using the generator expansion technique[Kim00b] which addresses the design 

problem from the Hamiltonian describing the qubit interactions and the computation 

one wants to implement. However, because of the presence of the control particle in the 

description of the SFG dynamics, these methods cannot straightforwardly be applied to 

the SFG case. Also, a method like the generator expansion technique requires the 

quantum gate termed controlled-not (C-NOT)[Bar95] or the controlled-phase gate to be 

always part of the quantum gates library used during the design procedure. While these 

gates are widely used in literature, they are not the only entangling gates available. 
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Hence, in order to study how circuit topologies may change depending on the choice of 

the two-qubit entangling gates used during the design process, a technique which does 

not put any constraints on the quantum gate library was required. One technique which 

has this flexibility is the automated quantum circuit design process based on a genetic 

programming approach which was proposed by Williams and Gray[Wil99]. This 

technique has been successfully exploited for finding quantum circuits for one- and 

two-qubit Deutsch-Jozsa algorithms[Spe04,Sta06]. However, these circuits were oracle-

based, i.e. the core of the algorithm was treated as a black box. Instead, when 

considering using the refined Deutsch-Jozsa algorithm for the experimental 

demonstration of a physical quantum computer, its complete decomposition into a 

sequence of gates comprising the one- and two-qubit operations realizable by the 

chosen technology is necessary. Hence, aiming at designing quantum circuits 

specifically tailored for SFG gates while testing how the choice of the gates used may 

influence the final topology of the resulting circuits, it became clear that these problems 

could have been addressed by implementing the automated quantum circuit design 

algorithm proposed by Williams and Gray for SFG computation, which led to the 

development of a second numerical tool described in the second part of Chapter 5. 

 

The last part of the work described in this thesis addressed they key goal of the design 

of quantum circuits implementing a three-qubit refined version of the Deutsch-Jozsa 

algorithm[Col98] and suitable for the experimental demonstration of an SFG quantum 

computation prototype. The results of this study are presented in Chapter 6. Considering 

the exceptional technological challenges inherent in such an experimental 

demonstration, the aim was set on identifying strategies for obtaining the shortest 

possible circuits in order to minimise the possibilities of errors accumulating during 

computation and a number of different options for solving this task were identified. As 

mentioned above, one possibility would have been to adapt the circuits proposed in 

[Kim00a] to SFG computation. However, other solutions could be obtained by deriving 

circuits directly for SFG gates using the automated quantum circuit approach proposed 

by Williams and Gray. Nevertheless, for this strategy, it was not clear which SFG gates, 

out of the ensemble of gates which can be produced within this proposal, would have 

lead to convenient quantum circuits. Specifically, it was unknown whether it would 

have been best to use SFG gates approximating, for example, controlled-phase gates as 

shown in [Rod04] or whether improved circuits could have been derived using arbitrary 
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entangling gates (meaning gates which do not have to resemble the ones typically used 

in literature such as, for example, the controlled-phase gate or the C-NOT gate) 

characterised by a shorter gate computation time compared to approximations of 

controlled-phase gates. Also, the choice of using the SFG model for approximating 

controlled-phase gates still leaves a number of options open regarding the precision of 

the approximation or the gate computation time of the corresponding SFG gates. Hence, 

it became clear that different design strategies (different also in the SFG gates used in 

the design procedure) had to be tested and compared. Further, considering that these 

circuits were derived in the perspective of an experimental implementation, the next 

step of the research addressed the problem of analysing the performance of the best 

performing solution under increasing fluctuations of the parameters relevant in the SFG 

gate dynamics. 

 

Finally, in an SFG-based quantum computer, the two-qubit interactions would be 

triggered through sequences of optical pulses. Examples of recently proposed control 

particle systems[Sto08] are the double donor Se
+
 in silicon and phosphorus particles in 

diamond which would both require excitation wavelengths around 2.2-2.3m 

[Ber89,Laz08]. Moreover, as described in [Rod04], pulsewidths necessary for correctly 

implementing the SFG protocol are of the order of a picosecond. Thus, to implement 

quantum circuits based on the SFG model for the two control particle systems 

mentioned above would require the generation of a sequence of picosecond pulses in a 

wavelength range around 2.2-2.3m. At the start of the work, convenient optical 

systems for implementing such a signal had not been analysed yet and the final part of 

the work on the quantum circuit design problem was therefore dedicated to exploring 

systems able to produce the control signal necessary for the implementation of the 

presented circuits.  

 

1.1 Outline of the thesis 

The rest of the thesis is arranged as follows: Chapter 2 gives a brief introduction to 

some aspects of quantum computation and quantum information processing while 

Chapter 3 reviews physical implementations of quantum computers. In Chapter 4, the 

SFG gate is described and its entangling characteristics analysed. Chapter 5 describes 

the two numerical tools which have been developed throughout the project. The 
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developed quantum circuits are presented in Chapter 6 as well as the optical systems 

which may implement them through the appropriate optical pulse sequences. Finally, 

the main results of this research as well as possibilities for future developments are 

summarised in Chapter 7. 

 

1.2 Original contributions of the thesis 

The following original contributions were made in the course of the research here 

presented: 

 Development of a quantum logic simulator, specifically designed for the SFG 

model, which, a part from modelling the evolution of qubits during a quantum 

computation, also takes into account the state of the control particles. 

 Visualisation of the entangling characteristic of SFG gates[1] and study of the 

quantum gates which can be produced within the SFG model. This analysis laid 

the foundations for the choice of the gates subsequently used in [2]-[4]. 

 Development of quantum logic circuits implementing a three-qubit refined 

Deutsch-Jozsa algorithm specifically tailored for a quantum computation system 

based on the SFG model[2]-[4]. 

 Assessment of the tolerance towards fluctuations in the SFG gate parameters of 

one of the circuits solving the refined Deutsch-Jozsa algorithm[3]. 

 Initial design for an optical system able to produce the control signal necessary 

for implementing the proposed quantum circuits[3]. 

 

1.3 Publications and conference presentations arising from the work 

presented in this thesis 

[1] A.Del Duce, S.Savory, P.Bayvel: “Design and optimisation of quantum 

logic circuits for a three-qubit Deutsch-Jozsa algorithm implemented 

with optically-controlled, solid-state quantum logic gates”, 

arXiv:0910.1673v1 [quant-ph] 

[2] A. Del Duce, S.Savory, P.Bayvel: “Implementation of a three-qubit 

refined Deutsch-Jozsa algorithm using SFG quantum logic gates”, 

Journal of Physics: Condensed Matter, vol.18, S795-S805, (2006) 

[3] A. Del Duce, P.Bayvel: “Quantum logic circuits and optical signal 

generation for a three-qubit, optically-controlled, solid-state quantum 
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computer”, accepted for publication in the IEEE Journal of Selected 

Topics in Quantum Electronics, issue on Quantum Communications and 

Information Science. 

[4] A. Del Duce, P.Bayvel: “Design of quantum logic circuits for a three-

qubit refined Deutsch-Jozsa algorithm with optically controlled, solid-

state quantum logic gates”, Proceedings of the London Communication 

Symposium 2009:   

     http://www.ee.ucl.ac.uk/lcs/previous/LCS2009/LCS/lcs09_17.pdf, (2009) 

[5] A.Del Duce, P.Bayvel: “Design of quantum logic circuits and optical 

signal generation for a refined Deutsch-Jozsa algorithm with optically 

controlled, solid-state quantum gates”, presentation at the IoP Young 

Researchers in Optics Meeting, Imperial College, London, 16
th

 

September, (2009) 
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Chapter 2 Theoretical and experimental aspects of quantum 

computation 
This chapter introduces the basic theory of quantum information processing on which 

the remainder of the thesis is built. First, the main characteristics of quantum 

computation will be described. Then, some experimental aspects of quantum 

computation are introduced in Section 2.2. Finally, the concept of quantum logic circuit 

design is discussed in Section 2.3. 

2.1 Introduction to quantum computation 

The elementary unit of classical digital information processing is the bit[Sha48], the 

binary unit of information, which can be either in the state 0 or 1.  Considering a 

register of N classical bits, in which each bit bi can be either in the state 0 or 1 and in 

which the first bit is associated to the value b0·2
0
, the second one to b1·2

1
 and so on up 

to bN-1·2
N-1

, this system can be used to store or process one out of 2
N
 values: 

… b0b1bN-2bN-1

bN-1·2
N-1 +bN-2·2

N-2  .   .   .   b1·2
1 +b0·2

0

Binary register

Corresponding mathematical

value

… b0b1bN-2bN-1

bN-1·2
N-1 +bN-2·2

N-2  .   .   .   b1·2
1 +b0·2

0

Binary register

Corresponding mathematical

value
 

Figure 2-1:Classical binary information register 

 

The term classical computer will be used when referring to a computational system 

based on the information register described above. At any time in such a system we can 

measure the state of any bit bi of the register, invert its value by applying a NOT gate 

which transforms the value 1 in 0 and vice versa, or apply mathematical functions 

between bits through logical gates such as the NAND gate (see, for example, [Nie03]). 

A characteristic of classical computation and information processing is that most of the 

systems are organised on a sequential base. This means that, given a function fN(x) 

which has to be applied to a group of input elements xi, the same function must be 

applied to each element of the input data:  The first element of the input data set is 

stored into a computation register, the function fN(x) is applied through a sequence of 

logic gates, the final result is stored in a further output register and the same procedure 

is repeated to each element of the input data set. Finally, the output data can be 

compared to extrapolate the desired information. 
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In quantum information processing the elementary unit of information is a two-level 

quantum mechanical system called quantum bit or qubit, a term first introduced in 

[Sch95]. The information „0‟ is associated with one of the two states, which is then 

labelled 



0 , while the other one is labelled 



1 . It will be discussed later how qubits can 

be implemented in physical systems. In the meantime it is important to note that, 

independently of the physical system which implements it, a qubit is a two-level 

quantum mechanical system and it can, therefore, not only exist in either the state 



0  or 



1 , but also in a superposition 

 



q  0 1  

of its two states, where  and  are two complex coefficients which satisfy[Deu85]: 

 




2
 

2
1 

Firstly, equation (2.1) shows that a qubit can simultaneously store the information 0 and 

1. Also, from equation (2.2) it can be seen that these coefficients define a continuum of 

states in which the qubit can be between the states 



0  and 



1 . To visualise the space 

defined by a qubit it is useful to use the Bloch Sphere representation[Nie03]. Using 

equation (2.2), equation (2.1) can be rewritten as: 

 



q  ei cos


2









0  ei sin



2









1









 

Neglecting the common phase factor which does not carry any information on the 

relative position of the state 



0  with respect to the state 



1 , equation (2.3) allows one to 

describe the state of a qubit through the two angles    and    which describe the three 

dimensional sphere with a unit radius, termed the Bloch sphere, shown in Figure 2-2.  

 

Figure 2-2: Qubit representation in the Bloch Sphere 

(2.1) 

(2.2) 

(2.3) 



Chapter 2 – Theoretical and experimental aspects of quantum computation 

 34 

It can be seen that a qubit may occupy any point on the surface of the sphere. Hence, as 

will be seen later, to change the state of a qubit corresponds to a rotation of its state on 

the Bloch sphere. 

 

In terms of notation, it can also be seen that the state of the qubit is completely defined 

by the vector: 

 











 

Hence, a qubit defines a complex vector space of two dimensions. 

 

Considering now two qubits, each in an equal superposition, i.e. with =  = 1/√2, of 



0  and 



1 , their combined state can be described as: 

 



q1 q0 
1

2
0 

1

2
1











1

2
0 

1

2
1












1

2
00  01  10  11 

 

Using the same notation used in Figure 2-1 for each of the four words 



qb1qb0  in the 

last line of expression (2.5), one gets: 

 



q1 q0  q1q2 
1

2
0  1  2  3  

Equation (2.6) shows that two qubits in an equal superposition of the states 



0  and 



1  

can be used to store simultaneously four values. Using the vector notation introduced in 

expression (2.4), a new vector can be created using the Kronecker product to describe 

the combined state expressed in (2.6)[Nie03]: 

 
























































3

2

1

0

01

01

01

01

0

0

1

1

c

c

c

c
















 

The vector space defined by two qubits is then a four dimensional complex vector 

space. 

 

Generalising the above presented discussion, a quantum register comprising N qubits, 

with each qubit in an equal superposition of 



0  and 



1 , is described by the state: 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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

q(N1)q(N2)...q1q0 
1

2N
 11...11  11...10  ...

                               00...01  00...00 
 

Thanks to the superposition of each qubit, this register can be used to store 

simultaneously 2
N
 values. Even more, without worrying for the moment about how this 

can be practically done, if we apply to such a register a quantum function qfN(x), then 

this function is automatically applied to all values stored in the quantum register. There 

is no need to repeat any procedure 2
N
 times, as would be necessary in the classical case. 

Hence, quantum information processing naturally implements parallel computation.  

 

Using again the Kronecker product for all N qubits: 

 







































































12

22

1

0

0

0

1

1

2

2

1

1
...

N

N

c

c

c

c

N

N

N

N 















 

it can be seen that such a register defines a complex vector space of dimension 2
N
. The 

term quantum computer will be used to define a computational system in which the 

information is stored or processed using quantum registers as the one described above. 

 

Although it is possible to store a vast amount of information in a quantum register, it 

cannot be accessed straightforwardly. As summarised in [Nie03], when measured, the 

superposition of a qubit collapses into one of the two states 



0  or 



1  with probability 




2
 and 




2
, respectively.  Considering a quantum register of N qubits which after a 

computation is in some superposition of its storable numbers, then the act of 

measurement of the register and the collapse of the superposition of each qubit will 

result in obtaining one out of all the values which were stored prior to the measurement. 

This means that a quantum computer is a probabilistic computer which typically 

exploits repetition of the computation to enhance the probability of success [Deu92]. 

 

In classical computation, one wants to apply a mathematical function to a set of input 

data stored in a register. The implementation of the function is achieved by 

decomposing it into a sequence of operations on the single bits and by applying logic 

gates between bits. Similar processes apply to quantum computation. To perform a 

(2.8) 

(2.9) 
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quantum computation means to apply some mathematical function to a quantum register 

and this function is implemented through a sequence of quantum transformations on the 

single qubits and by controlling interactions between them typically through two-qubit 

quantum logic gates [DiV95,DiV00].  

 

The dynamics of these transformations on the state 



  of a quantum register are 

governed by the Schrödinger equation[Nie03]: 

 



i
 t 
t

HHam t   

where the Hamiltonian HHam contains the information on the action which is taken on 

the qubits and 



 is Planck‟s constant. For simplicity, 



1 will be used in the reminder 

of the discussion. In many cases HHam can be described through a time-independent 

operator and equation (2.10) has solution: 

 



 t1  eiHHam t1t0  t0  U t0  ;    where   UeiHHam t1t0  

Hence, given the initial state 



 t0   of a quantum register at a time interval t0, using 

equation (2.11) it is possible to evaluate the state of the register 



 t1   at a time interval 

t1 after an interaction corresponding to a specific quantum transformation. The operator 

U is a unitary operator, i.e. such that U
†
U=I, where „†‟ indicates the complex conjugate 

of the transpose of a matrix and I is the identity matrix: 

 

























1000

01

0

0010

0001











I  

For the case of single- and two-qubit quantum logic gates, U operators are, respectively, 

described by 2x2 and 4x4 matrices. 

 

A quantum computation is typically described by a well defined sequence of single- and 

two-qubit operations which, once applied to the quantum register initialized to the state 

input , implement the desired algorithm [DiV00]: 



output UmUm1..........U2U1input   

(2.12) 

(2.13) 

(2.10) 

(2.11) 
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where output  is the output state of the quantum register at the end of the computation 

and  Um is a unitary matrix describing either a single- or a two-qubit transformation. 

 

As will be described later, these transformations correspond from the experimental 

point of view to physical actions applied to the quantum mechanical systems used to 

store the qubits in order to change their states. 

2.1.1 Single-qubit operations 

Single qubit operations are the equivalent of the NOT gate in classical electronics which 

transforms a bit of value “1” in “0” and vice versa. However, while the inversion of the 

value is the only possible action which can be taken on a bit, as this one can only be in 

the state 0 or 1, in quantum computation, because the qubit can exist in a continuum of 

states, a continuum of single qubit operations is available. This can be seen considering 

the single qubit operation X, a unitary operator described mathematically by: 

 









01

10
X  

When applying it to a single qubit starting in the state 



0  one obtains: 

 1
1

0

0

1

01

10

0

1
    ;

0

1
0 














































 X




 

The X gate performs a similar inversion to the one implemented by the NOT gate in the 

classical case. By looking at Figure 2-2, it can be seen that the X gate takes the 



0 -state, 

which is located on the north pole of the sphere, and transforms it into the 



1 -state 

which lies on the opposite pole. More generally, when used on an arbitrary state 











, 

the X gate switches the two parameters giving the new state 











. By using expression 

(2.3), and considering that sin(x)=cos(/2-x) and cos(x)=sin(/2-x), it can be seen that 

this transformation corresponds to: 

(2.14) 

(2.15) 
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X

 

which is equivalent in the Bloch Sphere representation to rotating the qubit state around 

the x-axis of an angle 



 . Because single qubit operations rotate the state of a qubit on 

the Bloch Sphere, they are often referred to as single qubit rotations[Nie03]. As will be 

described in more detail in Section 2.2.1 the X rotation can be implemented on a qubit 

through an Hamiltonian of the form: 

 



HHam
x

2
X  

which corresponds to the unitary transformation: 

 



Rx   e
i
xt

2
X

 e
i


2
X

 

Without getting into the details of how this interaction can be initiated (which will be 

described in Section 2.2.1), for an interaction time such that 



xt  , expression (2.18) 

returns 



Rx   X . More generally, for a different interaction time t, any rotation 

around the x-axis in the Bloch sphere representation can be achieved. Moreover, 

changing the amount of rotation and the rotation axis, an infinite number of single qubit 

operations can be defined. A very important single qubit gate is the Hadamard gate H: 

 











11

11

2

1
H  

When applied, to the states 



0  or 



1 , this gate transforms the single state in an equal 

superposition: 

 

 

 10
2

1

1

1

2

1

1

0

11

11

2

1
1

10
2

1

1

1

2

1

0

1

11

11

2

1
0





























































H

H

 

Such gates are present at the beginning of most quantum algorithms and are used to 

bring all the qubits of the quantum register, which are typically initialised to the sate 



0  

(2.16) 

(2.19) 

(2.20) 

(2.17) 

(2.18) 
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or 



1 , to an equal superposition of their states in order to load the register with all 

possible 2
N 

values. 

 

The Hadamard gate is also important, because it demonstrates the feature of 

interference in quantum computation. Considering a qubit in an equal superposition of 

its states 



0  and 



1 , when applying a Hadamard gate one obtains: 

 



H
1

2
0  1 

1

2
H 0 H 1 


1

2

1

2
0  1 

1

2
0  1 









 0

 

From expression (2.21) it can be seen how the 



1 -components with opposite sign cancel 

each other out and vanish. This interference phenomenon is another of the powerful 

features of quantum computation as it can be used during computation to filter out 

erroneous solutions from the computation register[Cle98]. 

2.1.2 Two-qubit gates and universality 

To perform mathematical functions on a quantum register one needs not only to control 

the state of a single qubit, but also to implement interactions between qubits similar to 

the logic gates used in classical electronics[Deu89]. Moreover, in order to be able to 

implement an arbitrary quantum computation, one needs a universal set of gates, i.e. a 

set of gates able to produce any unitary transformation[Nie03]. An important two-qubit 

gate in quantum computation is the controlled-not gate (C-NOT). Given two qubits q0 

and q1, the C-NOT gate produces the transformation 



q1,q0 CNOT  q1,q1q0  

(where 



 is addition modulo 2), which is the quantum generalization of the classical 

XOR gate[Nie03,DiV00]. In [Bar95], it was shown that the C-NOT gate together with 

single-qubit operations forms a universal set of gates and since then it is often used as a 

reference gate in the demonstration of experimental quantum computational systems or 

for the description of quantum logic circuits (see, for example, [Sch03,Nie03]). 

Nevertheless, as for the case of single-qubit operations, there are a number of other two-

qubit gates and almost contemporarily to the demonstration of the universality of the C-

NOT gate it was also shown that almost any two-qubit gate together with single-qubit 

operations forms a universal set of gates[Deu95,DiV95]. This result is extremely 

valuable since not all physical systems may directly implement a C-NOT gate but can 

nevertheless achieve the full power of quantum computation[Div00]. While other 

(2.21) 



Chapter 2 – Theoretical and experimental aspects of quantum computation 

 40 

quantum gates are discussed in the reminder of this thesis, the C-NOT gate will now be 

described in more detail in order to familiarise with the main features of two-qubit 

quantum gates.   

 

The unitary matrix describing the C-NOT gate is shown in expression (2.22): 

 





















0100

1000

0010

0001

NOTC  

From expression (2.22), it can be seen that the C-NOT gate takes following actions on 

the states of a two-qubit quantum register: 

 



00  00

01  01

10  11

11  10

 

When labelling the states in expression (2.23) 



qb1 qb0 , it is possible to see that the first 

two states remain untouched and are characterised by having qubit qb1 in state 0. The 

last two states, however, are characterised by having qb1 in state 



1  and are subject to 

the inversion of the value stored by qb0. Hence, in a C-NOT gate, the state of a target 

qubit (in this case qb0) is inverted only if the control qubit (in this case qb1) is in state 



1 . 

 

Figure 2-3 shows a C-NOT gate in the quantum circuit representation typically used in 

quantum computation. The circuit is read from left to right and describes the sequence 

of gates (in this case only the C-NOT gate) which is applied to the quantum register 

q0q1. The evolution of the circuit can be analysed following the wires (horizontal lines) 

and the quantum gates encountered along them. Single-qubit operations are usually 

represented by a box on the wire with a label identifying the specific type of gate while 

in two-qubit interactions, as shown in Figure 2-3, a symbol connects the wires 

corresponding to the qubits which are made to interact by the quantum gate. In the case 

of the C-NOT gate, for example, a circular symbol indicates the target qubit of the 

quantum gate while a connection through a vertical wire describes the corresponding 

control qubit. 

(2.22) 

(2.23) 
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q0
Target

Control

C-NOT

q1

q0
Target

Control

C-NOT

q1

 

Figure 2-3: Quantum circuit representation of a C-NOT gate 

2.1.3 Entanglement 

Entanglement is, next to parallelism and interference, one of the special features of 

quantum computation. It can be understood by analysing following circuit: 

 

Figure 2-4: Entangling circuit 

Supposing that the input state is: 

 



in  00  

after the Hadamard gate on qubit qb0 one obtains: 

 



1  0
1

2
0  1 

1

2
00  01  

Applying the C-NOT gate gives: 

 



out 
1

2
00  11  

This state is an entangled one since, as described, for example, in [Nie03, DiV00], 

mathematically, it is not possible to express 



out  as some form of a product state 

 



 0 1  0 1  

of its two qubits. Computationally, this has following implications: if one measures the 

state of qubit qb1, for example, expression (2.26) says that there is 50% probability that 

the superposition may collapse to the 



0  state and 50% that it will collapse to the state 



1 . Supposing that the superposition after measuring the state of qubit qb1 collapses to 

the state 



0 , the two-qubit register ends up in the state: 

 



out  00  

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Hence, the measurement of qubit qb1 has also influenced the state of qubit qb0, which is 

a strong correlation of the qubits in a quantum register, a characteristic of quantum 

systems, which does not exist in the classical world. 

 

2.2 Introduction to some experimental aspects of quantum 

computation 

In the following sections, some mathematical notation describing the physics of 

quantum computational systems will be given. First, the qubit, and specifically spin-

qubits, will be described in more detail. Then, decoherence, i.e. the unwanted 

interference of the environment with the quantum computational system [Nie03], will 

be discussed. Finally, the 5 criteria defined by DiVincenzo [DiV00], which any 

experimental quantum computational systems should satisfy will be described. 

 

2.2.1 The spin-qubit 

There are many different quantum physical systems, which can be used to store qubits 

for a quantum register and some of these will be reviewed in Chapter 3. However, 

because most of these systems are based on different types of well defined spin states, 

e.g. systems based on nuclear magnetic resonance [Chu98] or spin systems embedded 

in solid-state systems [Kan98, Los98], or on systems which can be easily described 

through similar tools, e.g. Josephson junction qubits [Mak01], a closer look at their 

mathematical description will be taken here. Further, because in the SFG quantum 

computation proposal qubits are carried by the spins of electrons, the discussion will be 

based on an electron spin-qubit, although very similar results hold for other spin 

systems. 

 

Let us consider an electron placed in a static magnetic field Bz aligned in the z direction. 

The spin of the electron is then quantized along z [Bra03] and the parallel and anti-

parallel orientation of the spin with respect to Bz can be used as a two-level quantum 

mechanical state for the storage of a qubit, for example, defining the parallel orientation 

as the 0 -state and the anti-parallel as the 1 -state. 

 

The dynamics of such a system can by analysed solving the Schrödinger equation 

shown in expression (2.10) and reported here again with 



1: 
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

i
 t 
t

HHam t    

Supposing that the qubit starts in the state 0  (spin-up, aligned with the static magnetic 

field) its state can be changed using electron spin resonance (ESR) by applying a.c. 

electromagnetic pulses [Bra03] orthogonal to the static magnetic field Bz whose 

interaction with the two-level quantum mechanical systems is described by the 

Hamiltonian: 



HHamB  

where 


 is the magnetic dipole moment of the electron and B


 typically has the form: 

 txBzBB xz cos


  

with Bx the magnitude of the orthogonal a.c. field, usually several order of magnitudes 

smaller than Bz, and  its frequency. For simplicity, it is assumed that the only 

contribution to the electron‟s angular momentum comes from its spin 

component[Bra03]: 



S 
1

2
 

where 



 is a vector whose components are the Pauli spin matrices: 











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





 











10

01
    ;

0

0
    ;

01

10
Z

i

i
YX  

Under these assumptions, the Hamiltonian of this system can be expressed as: 



HHam
gB

2
BzZBx cost X  

where g is the Landé factor and B the Bohr magneton. Defining 0=gBBz and 

A=gBBx, expression (2.34) becomes: 

 



HHam
0

2
Z

A

2
cost X  

Inserting this Hamiltonian in the Schrödinger equation yields: 

 



i


t

0

2
Z

A

2
cost X







  

An analytical solution to this equation can be derived by shifting into a rotating frame 

through the substitution[Zha05]: 



1  e
i
0

2
Z

  

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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which allows to eliminate the terms in 



0

2
Z on the right hand side of expression . The 

resulting expression can be shown to depend on oscillating terms of the form 



ei 0 t  

and 



ei 0 t . However, for ~0 the slow oscillating terms in -0 will lead to a 

stronger contribution in the solution of the Schrödinger equation. Hence, an 

approximate solution can be obtained by neglecting the fast oscillating terms in +0, 

through the so-called rotating wave approximation which returns: 



i


t
 

A

4
X 

0

2
Z







  

In the rotating frame picture, expression (2.38) has solution[Zha05]: 



 t   e
i

A

4
X 

0

2
Z









t

 0   

where  0  is the state of the qubit prior to the application of the a.c. electromagnetic 

field.  

 

In expression (2.39), when <<0 or in the absence of the a.c. electromagnetic, the Z-

term is dominant and the transformation reduces to: 

 
Zti

eU 2

0

  

which describes, in the Bloch sphere representation, a rotation of the spin state by an 

angle t0   around the z-axis. Hence, when the static magnetic field is dominant, the 

spin precesses around the z-axis with frequency 0. When approaches , the spin‟s 

precession frequency around the z-axis is reduced to . At resonance, i.e. , the 

static magnetic term becomes stationary and it is the a.c. electromagnetic field which 

dominates the interaction and rotates the spin around the x-axis with frequency A/2. 

Hence, by alternating periods of free evolution of the spin in the static magnetic field Bz 

(corresponding to rotations of the spin around the z-axis) with spin rotations around the 

x-axis induced by a.c. electromagnetic pulses centred on the resonance frequency , 

any point on the Bloch sphere can be reached. Computationally, this means that any 

single-qubit operation can be implemented by combining a static magnetic field with an 

a.c. electromagnetic signal with variable frequency and phase. ESR (and similarly 

nuclear magnetic resonance (NMR) for qubits stored in the nuclear spin of atoms 

[Nie03,Chu98,Cor97]) is, therefore, a commonly used technique for implementing 

single-qubit operations in quantum computational systems based on spin-qubits. 

(2.39) 

(2.40) 

(2.38) 
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2.2.2 Decoherence 

Ideally, one wants the qubits to be completely isolated from the environment or to be 

under the effect of some specific engineered interactions, such as the interaction with 

electromagnetic fields applied to change the state of the qubits in order to implement a 

desired quantum logic gate. However, in every experimental implementation of a 

quantum register there will be unwanted coupling mechanisms of the environment with 

the qubits – a phenomenon described as decoherence[Chu95,Unr95]. These unwanted 

interactions of the environment with the qubits can change their state in an 

unpredictable way and, hence, introduce errors in the computation. The specific 

decoherence mechanism which affects a quantum computation depends on the 

experimental set-up of the quantum computer, i.e. on the quantum mechanical system 

used to memorize the qubits and on the environment which surrounds the quantum 

register. It varies, therefore, from physical implementation to physical implementation. 

A useful parameter for the analysis of the impact of decoherence on a specific 

implementation of a quantum computer is the ratio nop of the decoherence time Q, i.e. 

the amount of time after which the impact of decoherence cannot be neglected anymore, 

and the gate operation time op, i.e. the total amount of time necessary to apply a single 

quantum logic gate to the quantum register[Nie03]: 

 
op

Q

opn



  

The ratio nop gives a rough estimate of the total number of quantum gates which one is 

able to apply to the quantum register before decoherence interferes with the qubits and 

should, therefore, be large enough to allow to implement the desired quantum 

computation[DiV00]. This leads to two possibilities. For short quantum algorithms, it 

may be sufficient that the total computation time is much shorter than the decoherence 

time, as shown, for example, in the experiment presented in [Chu98]. However, for 

more complex algorithms in which the computation time is expected to be longer than 

the decoherence time, errors introduced by decoherence (or by other mechanisms such 

as, for example, the non-optimal control of the quantum gates) may successfully be 

compensated through quantum error-correction codes and fault-tolerant quantum 

computation schemes[Sho95,Ste96,Sho96]. 

 

(2.41) 
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As mentioned before, decoherence mechanisms vary from implementation to 

implementation. However, in quantum systems which exploit spins for the qubits, the 

decoherence time Q can be studied by analysing the transverse relaxation rate T2, i.e. 

the rate with which the spin components transversal to an external magnetic field decay, 

and the longitudinal relaxation rate T1, i.e. the rate with which a spin system placed in a 

magnetic field returns to thermal equilibrium once it has been displaced from it [Nie03, 

Hak87]. Computationally, T2 describes the time-scale with which the relative phase 

difference of superpositions of words stored in a quantum register are perturbed by 

decoherence, while T1 describes the time-scale over which an exchange of energy from 

the quantum register to the environment may take place which can lead to the unwanted 

relaxation of the excited states used for storing information in a qubit (e.g. 



1  0 )[Nie03]. In Chapter 3, values of decoherence times for different physical 

implementations of quantum computers will be discussed and compared. 

 

2.2.3 The 5 DiVincenzo criteria 

A variety of physical systems have been proposed for implementing quantum 

computation and all these systems differ in the way, for example, they store or 

manipulate the qubits or on how the qubits are made to interact. DiVincenzo[DiV00] 

defined a set of 5 criteria which any physical system proposed for quantum computation 

must satisfy for correct operation, some of which were at least partly already addressed 

above. These criteria have defined an important reference for understanding whether or 

not a proposed system is adequate for quantum computation, they help one to 

understand the main features of each implementation despite the different physical 

systems and to compare different implementations more easily. 

 

The 5 criteria, or requirements, for quantum computation defined by DiVincenzo are 

the following [DiV00]: 

1) A scalable physical system with well characterised qubits: 

Any quantum computational system has as its main building block a collection of 

qubits, i.e. a collection of well characterised two-level quantum mechanical systems, 

used to store and process quantum information. As reviewed above, such a collection of 

N qubits can be used, thanks to superposition, to store simultaneously up to 2
N
 values, 

while entanglement provides strong correlation between the states of the qubits. 
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2) The ability to initialise the state of the qubits to a simple fiducial state: 

Generally, to perform a mathematical computation, one needs to know the initial value 

of the information register. The same applies to quantum computation where, typically, 

this is achieved by initialising the quantum register to a known state. A state to which 

quantum registers are often initialised is the 00.....00 -state, as most of the times this 

corresponds to having all the qubits in their ground state. The initialisation can then be 

performed by letting the qubits relax to their ground state or by measuring the qubits 

and rotating them to the 0 -state in case the output of the measurement is 1 . Once, 

the register is in a well defined state, for example 00.....00 , the computation can begin 

by loading a desired value on the register by rotating the corresponding qubits to the 

1 -state, or by loading superpositions of states by applying Hadamard gates H to the 

qubits. 

 

3) Long relevant decoherence times, much longer than the gate operation time: 

From above, decoherence times give a measure of the unwanted coupling of the 

environment to the qubits.  They describe the order of magnitude of time after which 

the influence of the environment on the quantum information stored in the quantum 

register cannot be neglected anymore and unpredictable errors are likely to occur. 

Again, while for short algorithms it is sufficient that the total computational time is 

shorter than the decoherence time, for the case of longer algorithms, in which the total 

computational time is longer than the decoherence time, the limits are defined by the 

necessity of implementing fault-tolerant quantum error correction codes and translate 

into having a decoherence times which allow one to operate with gate errors around 10
-4 

-10
-6

. 

 

4) A universal set of quantum gates: 

As reviewed above, universality is the ability to compute any mathematical function 

with a computational system and translates in quantum computation to the ability of 

implementing arbitrary single-qubit rotations on all qubits and entangling gates between 

the qubits [Deu95,Div95,Nie03]. Experimentally, this means that any proposed physical 
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system needs to comprise ways of manipulating the states of the two-level quantum 

mechanical systems used as qubits and the entangling interactions between them. 

 

5) A qubit-specific measurement capability 

Once all the operations which implement a desired mathematical function have been 

applied, it is necessary to read-out the result stored in the qubits. This means that one 

has to be able to perform a measurement on any of the two-level quantum mechanical 

systems implementing the qubits in the quantum register. 

 

As will be discussed in more detail in the next chapter, many implementations have 

been proposed and each of them approaches the five requirements in a different way. 

However, to date, few of the proposed implementations have managed to fulfil all 5 

requirements experimentally, and none of these have proved to be scalable, i.e. able to 

connect and control any needed number of qubits. The most important example of an 

experimental quantum computation is probably still brought by the 7-qubit NMR 

factoring experiment presented in [Van01], while most of the remaining demonstrated 

approaches only managed to control quantum registers of few qubits. The question of 

which physical system will perform best in the long run and, especially, which one will 

prove scalable, is still open and is object of extensive research [Zol05]. 

 

2.3 Design of quantum logic circuits 

A quantum computation is typically performed by applying a well-defined sequence of 

single- and two-qubit gates to the qubits of the quantum register[DiV00]. Hence, to 

design a quantum logic circuit means to find the sequence of single- and two-qubit 

gates which implements the desired computation. One way to approach this problem is 

by restating it in mathematical terms. A quantum algorithm can be described by a 

unitary matrix Ucomp which, when applied to the state vector describing the quantum 

register, brings it into the desired final state. The matrix Ucomp is an abstract object 

which does not define which single- and two-qubit gates to apply to the qubits, it only 

describes the transformation which the quantum register as a whole must undergo 

during computation. On the other hand, as mentioned above, each single- and two-qubit 

gate is itself described by a unitary matrix Uk. Hence, mathematically, given a unitary 

matrix Ucomp describing a specific quantum algorithm and given a set of single- and 
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two-qubit gates each described by a unitary matrix Uk (corresponding to the quantum 

transformations which a chosen technology is able to produce) the problem of designing 

the quantum logic circuit which implements the given algorithm corresponds to finding 

a decomposition of the matrix Ucomp through the gates Uk. Or, in other words, to find a 

sequence of matrices Uk which, once multiplied together, will give Ucomp. For example, 

consider a three-qubit quantum register. Further, suppose that the quantum computer 

one is using is able to produce three two-qubit gates U1, U2 and U3 respectively between 

qubits 1 and 2, 2 and 3 and 1 and 3 and the single-qubit operations U4, U5 and U6, 

respectively, on qubits 1, 2 and 3. Given a quantum algorithm described by the matrix 

Ucomp, then a sequence of gates, for example, [U4 U1 U3 U6 U2 U6] is a quantum circuit 

which implements the given algorithm if: 

 



UcompU4 U1 U3 U6 U2 U6 

Or, using the wire-diagram representation described above: 

 

Figure 2-5: Quantum circuit design corresponds to decomposing the matrix Ucomp into the product 

of matrices  Uk which describe the available single- and two-qubit gates 

 

Such decomposition, and therefore the quantum logic circuit which solves a given 

algorithm, is not unique. Firstly, different physical implementations of a quantum 

computer generate different sets of gates Uk available for the decomposition. A 

quantum logic circuit obtained for a given algorithm and for one type of quantum 

computer may differ from the one obtained for a quantum computer exploiting a 

different technology. Also, the design process may have to consider some physical 

constraints. Typically, the most important one is related to the impact of decoherence 

and requires, as described above, that this impairment is controlled either through 

quantum circuits which have computation time much shorter than the decoherence time 

or using quantum error correction codes and fault-tolerant computation schemes. 

 

(2.42) 
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The main aim of the work presented in this thesis was to design quantum logic circuits 

suitable for the experimental demonstration of a small quantum computation prototype 

based on the SFG model. Hence, following constraints for this specific quantum circuit 

design problem were identified at the beginning of the project: Firstly, in order to test 

the behaviour of SFG gates in an experiment while keeping the technological 

challenges to the simplest possible level, the goal was set on developing compact 

quantum circuits with computation time shorter than the decoherence time. Secondly, 

the quantum gates available for the design of the circuits would only have been those 

which can be produced within the SFG model. This, however, still left a number of 

options open since, as will be shown in Chapter 4, there are different quantum gates 

which can be produced through the SFG model. It was not clear whether it would have 

been more convenient to use the SFG model for approximating gates commonly used in 

the literature such as the C-NOT gate, the controlled-phase gate or the 



SWAP gate 

(see, for example, [Pet05,Rod04]) or if more compact circuits may have been obtained 

using other gates which can be produced within the SFG technology.    

 

The quantum circuits which are proposed in this thesis for the experimental 

demonstration of a small prototype quantum computer based on SFG gates will be 

presented in Chapter 6, while Chapters 3, 4 and 5 describe the work which helped 

identifying a number of systems parameters (e.g. the size of the quantum register, the 

quantum algorithm to be implemented by the circuits and the gates which can be 

produced within the SFG model) and the design techniques and tools used for deriving 

the circuits. 

 

2.4 Summary 

Quantum computers exploit two-level quantum mechanical systems, typically called 

qubits, as the basic elements for information storage and processing. These 

computational systems are characterised by 3 particular features: the superposition 

effects of quantum mechanical states (which is responsible for the implementation of 

parallel computation), the strong correlations between computational states introduced 

by entanglement and the phenomenon of interference of the information stored in the 

quantum register. As well summarised by DiVincenzo‟s 5 criteria, any physical 

implementation proposed for quantum computation has to comprise: 
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1) A set of well defined qubits for storing quantum information  

2) A known state to which the quantum register can be initialised at the 

beginning of the computation 

3) Decoherence times of the qubits much longer than the total computational 

time or, when using quantum error correction codes and fault-tolerant quantum 

computation schemes, long enough to produce quantum gates with error rates 

around 10
-4

-10
-6

.  

4) A universal set of quantum gates to implement the desired functions 

5) A measurement mechanism for extracting the result of the computation from 

the quantum register 

 

To implement a desired quantum computation one needs to design the corresponding 

quantum logic circuit which ultimately means finding the sequence of single- and two-

qubit gates which brings the qubits of the quantum register to the desired final state. 

Such a sequence is typically not unique and the design process may often be bound by 

some physical constraints, often the most important one being the tolerance towards 

decoherence. 

 

In the next chapter, the main characteristics of some of the most important quantum 

computation implementations will be reviewed, with the last section dedicated to solid-

state implementations of spin-qubits since it is believed that, thanks to the knowledge 

and expertise acquired through classical electronics, these systems may have the 

potential for achieving large scalability. 
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Chapter 3 Physical implementations of quantum computers 
As described in the Introduction, although the concept of quantum computational 

systems was developed more than 20 years ago, it was the discovery made by Shor in 

1994 of a quantum factoring algorithm and its potential for breaking the widely used 

cryptographic system RSA[Sho94], that really drew the broad interest from the 

scientific research community to the area of quantum computation. Since then, much 

effort has been invested in finding quantum-mechanical systems able to store qubits and 

ways of making these qubits interact in order to perform quantum computations. Or, in 

other words and remembering the requirements defined by DiVincenzo[DiV00] 

reviewed in the previous chapter, the rush to find the most convenient physical system 

able to initialise, store, process and read-out quantum information was triggered by 

Shor‟s discovery. Hence, as previously mentioned, there are many different 

implementations of quantum computers which have been proposed and even, at least 

partly, demonstrated experimentally. Nevertheless, large-scale quantum computation 

has not been achieved yet and it is not clear which system might prove best[Zol05].  

 

As will be described in Chapter 4, the SFG proposal is based on optically controlled, 

solid-state quantum logic gates. It aims at achieving scalability exploiting the 

knowledge and expertise of solid-state systems acquired from classical electronics, their 

promising resilience towards decoherence and the optical control of the two-qubit 

interactions which will allow one to avoid high-precision fabrication techniques for the 

placement of control electrodes used, for example, in Kane‟s proposal[Kan98]. One 

important step for testing the potential of these gates is to analyse their behaviour in a 

small-scale experiment and proposing suitable quantum circuits for such an experiment 

was the main goal of the work presented in this thesis. Hence, the first step of this work 

required to review the status of experimental quantum computation in order to 

understand what it means to prepare the experimental demonstration of a prototype 

system and to identify system parameters such as, for example, convenient quantum 

algorithms or the typical size of quantum registers. 

 

The main results of this review are given in this chapter. It starts with an historical 

analysis aimed at understanding the main challenges and objectives of experimental 

quantum computation focusing on NMR, ion-traps and Josephson-junction qubit 
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systems. The final part deals with implementations based on spin-qubits in solid-state 

systems because of their promising features for the development of scalable quantum 

computational systems and focuses on quantum dots, spin-qubits bound to donors in 

silicon, diamond systems and NMR in silicon.  

 

3.1 First steps in experimental quantum computation 

3.1.1 Nuclear magnetic resonance 

The first experimental demonstrations of a complete quantum algorithm have been 

performed on quantum computational systems based on NMR[Cor97,Ger97]. In an 

NMR quantum computer, the quantum register consists of qubits stored in the nuclear 

spins of atoms within the same molecule. Single-qubit operations are performed by 

applying selective radiofrequency electromagnetic pulses which change the spin state of 

a chosen nucleus whereas two-qubit operations can be implemented, as will be 

described further, thanks to coupling mechanisms between the nuclei of the 

molecule[Ger97]. 

 

Exploiting this system, the experimental demonstration of quantum algorithms was 

started through two two-qubit versions of Deutsch‟s problem[Deu85,Deu92,Cle98] 

which were presented by Chuang et al. and Jones et al., respectively, in [Chu98] and 

[Jon98]. In [Kim00] a revised Deutsch-Jozsa algorithm[Col98] on 3 qubits was 

demonstrated. Then, an experimental demonstration of an order-finding algorithm was 

implemented[Van00] which finally led to the implementation of Shor‟s factoring 

algorithm[Sho94] on a 7-qubit NMR quantum computer[Van01], one of the milestones 

of experimental quantum computation. 

 

To date, a large number of experiments have been performed on NMR based quantum 

computers. Only recently, for example, two new experiments implementing three-qubit 

Deutsch-Jozsa algorithms have been presented[Fah08,Gop08]. While there are 

examples of experimentally demonstrated quantum registers comprising more than 10 

qubits, e.g. 12 in [Neg06], most of the reported experiments have demonstrated systems 

of 2 to 4 qubits. 
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3.1.1.1 Description of the NMR experimental setup 

Figure 3-1 shows a typical experimental setup needed for an NMR quantum 

computation[Nie03]. A molecule used for NMR quantum computation usually contains 

a number n of atoms with spin ½ nuclei which store the qubits. Each nucleus represents 

an independent qubit of the quantum register with, for example, the information „0‟ 

coded to the spin of the nucleus being aligned parallel to a static magnetic field B0 and 

the information „1‟ to the spin being anti-parallel to the static magnetic field. The first 

state is defined as the 0 -state and the latter as the 1 -state. Moreover, each nucleus is 

characterised by a different Larmor frequency 0i [Van04] (i.e. the frequency with 

which a spin precesses around the z-axis defined by the static magnetic field B0) in 

order, as will be described in more detail below, to be able to selectively address the 

qubits and for measuring their state. Because of the small magnitude of the nuclear 

magnetic moment of a single spin, a large number of molecules (~10
18

 in [Chu98], for 

example) must be present in order to be able to read-out the result of the computation. 

Each molecule then represents a single and independent quantum computer. The 

molecules are dissolved in a solvent in order to make inter-molecular interactions 

negligible. The final system works as an ensemble of quantum computers with an 

output signal being the average of all the signals of the different molecules. 

 

Figure 3-1: Schematic of an NMR quantum computer experimental setup[Nie03] 

As shown in Figure 3-1 the sample tube containing the solution is placed in the bore of 

the static ẑ -oriented magnetic field B0 which, as mentioned above, sets a reference 

direction for the spins. Radiofrequency (RF) coils are placed around the sample tube 

and allow one to apply RF pulses in the x̂  and ŷ directions for manipulating the spin 

states of the qubits and, hence, to perform a computation. The same coils are used 
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during the read-out phase for measuring the result of the computation and all operations 

are coordinated by a classical computer. 

 

As described in Section 2.2.1 of Chapter 2, a single qubit rotation is applied to a spin-

qubit by transmitting an RF pulse centred on the resonance frequency 0i of the 

corresponding nuclear spin[Nie03]. Depending on the length of the RF pulses and on 

the orientation ( x̂  and ŷ , for example) of the magnetic field vector, rotations to any 

point of the Bloch sphere can be obtained using this technique.  Molecules used in 

NMR quantum computers with more than one qubit are built in such a way that each 

nucleus has a different resonance frequency 0i in order to be able to selectively address 

the single qubits. Typical resonance frequencies of molecules used in NMR quantum 

computation experiments are in the range of ~100s of MHz[Chu98].  

 

Two-qubit gates are implemented in NMR quantum computation by exploiting an 

interaction between adjacent nuclear spins mediated by the electrons shared in a 

chemical bond. As mentioned in Section 2.2.1, the precession frequency 0i of a spin is 

proportional to the strength of the magnetic field it is immersed in. In the setup 

described in Figure 3-1, the magnetic field experienced by a nuclear spin will not only 

be influenced by the static magnetic field B0, but also by the state of the electronic cloud 

of the nucleus. When this electronic cloud overlaps with the electronic cloud of another 

nucleus, an interaction of the two nuclei mediated by the two electronic clouds is 

established which can lead to a perturbation of the local magnetic field of one nucleus 

dependant on the state of the other one[Nie03]. The local perturbation of the magnetic 

field experienced by the nucleus causes a shift in its Larmor frequency. Hence, the 

effect of this interaction is a shift in the Larmor frequency of one nucleus conditional to 

the state of the other nucleus it is interacting with. The strength of this interaction is 

described by the parameter J which quantifies the resulting frequency shift[Van04]: 

 
 

2

2
00

J
iiJ





  

 „-„ for spin j in state „up‟ 

 „+‟ for spin j in state „down‟ 

where 0iJ is the shifted Larmor frequency. This shift in the precession frequency of a 

nucleus dependent on the state of another nucleus can be used, for example, to 

(3.1) 
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implement a C-NOT gate between the two adjacent qubits i and j by transmitting a 

narrowband pulse centred on frequency 



 0i 
2   J

2
 [Ste01]. As can be seen from 

expression (3.1), spin i will be flipped by this pulse only if pulse j is in the  „down‟ (i.e. 



1 ) state, which is equivalent to a C-NOT gate. 

 

Typical values of J can be in the range of about 1 to hundreds of Hz[Nie03,Van01]. J 

also gives an estimate on the duration of the two-qubit gate. As described above, a C-

NOT gate can be implemented by transmitting a narrowband pulse. To select the 

desired frequency, for example 



 0i 
2   J

2
, without exciting the transition 

resonant to 



0i 
2   J

2
, the transmitted pulse must be characterised by a bandwidth of 

the order of J which corresponds to pulse widths of the order of 1/J. From this point of 

view large values of J give short gate operation times op and help to keep the total 

computation time short. 

 

Finally, the result of the computation can be obtained by measuring the Larmor 

frequencies of the nuclei since, as described above, these are subject to a shift which 

depends on the state of their neighbours. Hence, by knowing the Larmor frequency of 

each nucleus it is possible to reconstruct the value stored by each qubit. This can be 

achieved by transmitting an RF reference signal on the sample and by sweeping the 

magnetic field B0. By changing the magnetic field B0, the energy splittings of the nuclei 

are changed and, therefore, their Larmor frequencies. Whenever B0 reaches a value 

which changes the energy of one of the nuclei such that its Larmor frequency coincides 

with the reference RF signal, the system is brought to resonance and the RF signal is 

absorbed by the sample. Hence, by analysing the absorption of the reference RF signal 

as a function of the value of B0, it is possible to evaluate the Larmor frequencies of the 

nuclei and, therefore, the values stored by each qubit. 

 

3.1.1.2 Limitations in NMR quantum computation 

NMR quantum computation is an ensemble computation, i.e. the measurement of the 

final signal gives the average of all the results coming from each molecule of the 

solution, each of which acts as an independent quantum computer. Hence, the average 
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of the results coming from an ensemble of quantum computers may be a number which 

is uncorrelated with the correct solution of the problem. However, as is the case, for 

example, of the factoring algorithm, this problem can be solved by means of some 

classical post-processing performed directly on the quantum register which is always 

possible since quantum computation subsumes classical information processing[Nie03].  

 

In terms of decoherence, typical T2 rates reported in NMR quantum computation 

experiments are of the order of ~ s [Van01,Van00]. Although relatively long, this has to 

be compared with J values between 1 and 100s of Hz which correspond to two-qubit 

gate operation times between 1ms to 1s, which makes the implementation of algorithms 

requiring more than a few tens of two-qubit gates difficult. 

 

Another important limitation of NMR quantum computation comes from the 

computation being applied to an ensemble of quantum computers. As described before, 

in an NMR quantum computation experiment a large number of molecules is necessary 

in order to obtain a measurable signal. Each molecule represents an independent 

quantum computer. At the beginning of the experiment, which usually is performed at 

room temperature, the solution will be in the thermal equilibrium state, meaning that, in 

first approximation, each nucleus (qubit) of each molecule (quantum computer) can be 

considered as having 50% of probability of being in the „up‟ „or‟ down‟ state. This 

means that the solution containing all the quantum computers will comprise some 

registers starting in the 00...00  state, others in the 01...00 , and so on, with an almost 

equal distribution of population between those states. The quantum system is then said 

to be in a mixture of the pure states 00...00 , 01...00 …. 11...11 , while in reality one 

wants the quantum register to be in a well defined state, typically the 00...00  state 

[DiV00]. Although there are techniques for extracting a so called effective pure state 

this happens at the expense of extra overhead required for the computation. An n-qubit 

initial state 00...00
 
can be obtained from a quantum register of q>n qubits, for 

example [Nie03]. The problem of these techniques is that the final signal decays 

exponentially with the number n of qubits distilled into effective pure states[Nie03], 

limiting the scalability of such a quantum computation system. NMR quantum 

computation systems are believed to be scalable to some tens of qubits[Ste01]. 
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Because of these limitations, NMR quantum computation is unlikely to be one of the 

candidates which will implement large-scale quantum computation. Nevertheless, it is 

the implementation which has allowed to make the initial steps and define the main 

problems in experimental quantum computation. 

 

3.1.2 Ion Traps 

Quantum computation with ion traps was first proposed by Cirac and Zoller in [Cir95], 

where it was suggested that trapped ions could be sufficiently well isolated from the 

environment to create quantum systems with long decoherence times which would be 

suitable for quantum computation. 

 

As described in [Cir95], the idea is to store a qubit in two internal states of an ion. A 

quantum register of N qubits is created by trapping N ions combining the effect of an 

electromagnetic field and the repulsive Coulomb force of the ions. The trap is designed 

such that the ions form a linear string. Interactions between the qubits are induced 

through the collective motion of the string of ions in the trap and are controlled through 

optical pulses.  From the computational point of view, the collective motion (or 

motional state) of the string of ions can be seen as a further qubit which interacts with 

all the ion-qubits of the string. The first experimental implementation of a C-NOT gate 

in an ion trap was demonstrated in [Mon95] using one 
9
Be

+
 ion. The C-NOT gate was 

applied to the qubit memorized in the two internal states of the ion and the qubit 

represented by the motional state of the ion in the trap. Then, a Deutsch-Jozsa algorithm 

on two qubits and a C-NOT gate on two ions were demonstrated experimentally, 

respectively, in [Gul03] and [Sch03a]. In [Sch03a] the qubit represented by the 

motional state of the two ions was used as an information “bus” between the two qubits 

encoded in the internal states of the ions. Also, other studies have concentrated on the 

investigation of new entangling techniques[Sør00,Lei03] and to novel ion trap designs 

oriented at enhancing the scalability of the system [Kie02]. While quantum registers of 

up to 6 qubits have been reported in literature[Lei05], typical system sizes of recent 

experiments comprise quantum registers of 2 and 3 qubits[Ben08,Mon09]. 
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3.1.2.1 Description of the ion-trap experimental setup 

As summarized in [Nie03] and schematized in Figure 3-2 the ions are trapped by an 

electromagnetic field (comprising both a static and an oscillating part) applied through 

four cylindrical electrodes. Together with the Coulomb repulsion of the ions this system 

can be seen as an harmonic oscillator in which the ions oscillate at frequencies x,y 

andz along the axes. Further, the trap is designed in such a way that x,y>>z in 

order to have the possibility to bias the system such that the ions only lie and oscillate 

along the z-axis. If the trap is sufficiently well isolated from the environment then the 

motion of the electromagnetically confined ions becomes quantized. The number of 

normal modes on which the chain of ions can oscillate is proportional to the number of 

ions in the trap and, for the one-dimensional case, it is equal to N[Hug98].  In this 

regime, the eigenstates of this harmonic oscillator represent motional states of the entire 

string of ions moving together as one system. The first energy levels of this harmonic 

oscillator are spaced in units of z  and each quantum of motional energy z  is 

called a phonon. A specific normal mode can be populated with any number of phonons 

since these are bosons which obey a Bose-Einstein statistics[Bra03]. For a given 

motional mode, its phonon state will here be labelled as ....2,1,0n  where n stands for 

the number of phonons. As mentioned before, in ion-trap quantum computation the 

motional states of the string of ions are used to induce interactions between the ion-

qubits. The motional levels which are typically exploited for computation are the 

motional ground state, i.e. 0n  in which each ion rests around its equilibrium 

position, and the centre-of-mass (COM) mode with 1n  in which the entire chain of 

ions oscillates like a single body along the z-axis[Cir95]. These two motional levels can 

be treated computationally as a qubit linked to all the ion-qubits of the string and can 

therefore be used to process and exchange information between them[Sch03a]. 

Quantum gates are applied to the quantum register of ion-qubits through optical pulses 

while photodetectors are used, as will be described later, during read-out. 
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Figure 3-2: Schematic of an ion trap[Nie03] 

 

To understand the main features of ion-trap quantum computation it is useful to analyse 

the energy levels of an ion-trap qubit. The qubit is implemented in some internal atomic 

states of the ions in the trap. Each ion memorizes a different qubit. Generally, the 0  

state is encoded in the ground state of the ion whereas the 1 state is encoded in some 

excited state which can be accessed optically. Because, as described before, the ions are 

linked by their motional state, it is important also to keep track of the number of 

phonons characterising the states. Hence, the state of a single ion-qubit in the trap will 

be labelled through two pairs of integers: 



0,1;n 0,1,2,.. . The first one indicates the 

logical value memorised by the qubit, the actual quantum information, while the second 

describes the amount of phonons in the trap. Figure 3-3 describes the energy states of a 

single ion-qubit in the trap[Chi00]. The ground state is the 



0;n 0  00  state. The 

system can be cooled down to this state by means of optical cooling techniques in 

which states with many phonons 



0;n  are optically excited to the 



1;n1  state which 

has a high probability of relaxing to the state 



0;n , 



0;n1  or 



0;n2 . Hence, by 

repeating this cycle a sufficient amount of times, the system will end-up in the ground 

state 



00 [Nie03]. 
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Figure 3-3: Energy levels and possible transitions for one ion[Chi00]  

A single qubit operation on an ion can be implemented by transmitting an optical pulse 

centred on frequency 0. Depending on the length of the pulse, a qubit starting from the 

logical 0 state can be excited to the 



1  state or to any superposition of the two 

[Chi00,Gul03].  

 

In terms of two-qubit gates, many different proposals have been developed since Cirac 

and Zoller‟s first idea[Cir95]. However, we will focus on one of the earlier 

developments which led to the first successful demonstration of a two-qubit gate 

applied between two ion-qubits in a trap [Sch03a]. From Figure 3-3, it can be seen that 

the logical states of an ion trap qubit (



0  and 



1 ) can interact with the motional state 

(



n 0  and 



n 1 ) of the entire string of ions if it is excited with an optical signal 

centred on 0±Z. If, for example, the string of ions is in the motional ground state 



n 0  and one of the ions is in the logical state 



0  (hence globally being in the state 



0,n 0 ), then it is possible to bring the ion to the logical state 



1  and set the entire 

string in motion by bringing it to the state 



n 1  by exciting the ion through an optical 

pulse centred on 0+Z. Computationally, this mechanism can be used to transfer the 

information stored in the ion-qubit to the motional state. Once the information has been 

transferred to the motional state, because the entire string of qubits is affected by the 

motional state, it can be made to interact with any other qubit in the register exploiting, 

again, the transitions centred on  0±Z. Hence, to apply a two-qubit gate between ion-

qubits A and B, first, the information of qubit A is transferred to the motional state of 

the string of ions, then, an interaction between qubit B and the motional state is 
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implemented. The protocol ends by transferring the information stored in the motional 

state back to ion A. Using this scheme, the first C-NOT gate between two ion-qubits 

was demonstrated[Sch03a].  

 

Read-out of the information stored in ion trap qubits is achieved exploiting an auxiliary 

level outreadaux   which couples efficiently only with one of the two internal states, for 

example state 0  as shown schematically in Figure 3-4, where, for simplicity, the 

motional energy levels have been omitted. When a laser tuned on the transition between 

the 0  and the  outreadaux   state is shone on one of the ions, then fluorescence light is 

collected through photodetectors only if the ion was in the 0  state. 

 

This method is very powerful because one measurement can be performed inducing 

thousands of transition cycles between the 0  and the outreadaux  state allowing one to 

accumulate good statistics. 

 

Figure 3-4: Auxiliary level exploited for read-out. The out-read aux  radiation only couples with the 

0  state. If this state is populated, fluorescence will be collected by the photodetectors of the 

system 

 

3.1.2.2 Limitations in ion-trap quantum computation 

To date, one factor which seems to be limiting the precision of ion-trap quantum gates 

is the non-optimal control over experimental parameters (such as fluctuations in the 

optical sources, for example), although it is expected that these problems should be 

addressable in the future[Bla08]. 
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In terms of decoherence times, as described in [Haf08], values typically reported in ion-

trap quantum computation experiments are in the order of ~ms with gate operation 

times in the area of hundreds of s, although longer decoherence times may be 

achievable. 

 

Focusing on the issue of scalability, it seems difficult to trap more than some tens of 

ions[Kie02,Wei03], since the addition of each ion adds three motional modes in the 

trap, making it difficult to spectrally isolate the desired motional states. Alternative 

architectures have been presented in which the quantum computer is composed by a set 

of linked ion traps with a small number of ions. Ions from different sub-traps are then 

“shuttled” into an interaction region in which multi-qubit operations are performed. 

This architecture is called “quantum charge-coupled device” architecture and was 

presented in [Kie02]. 

 

3.1.2.3 Neutral atom traps 

As described above, ions can be tightly confined in ion traps and their manipulation has 

been demonstrated experimentally although exploiting the trapping potential in 

conjunction with the Coulomb repulsion limits the number of ions which can be 

precisely controlled in a trap. Also, because ions are charged, they tend to couple with 

noisy electromagnetic fields of the environment. Because of these drawbacks, it became 

clear, that some of these problems could be solved if the ions were replaced by neutral 

atoms trapped through intersecting laser beams[Bre99]. However, while neutral atoms 

experience a lower coupling with the surrounding environment, they also tend not to 

couple between themselves, making the introduction of two-qubit interactions the 

critical element of neutral atom quantum computation[Jes04]. To date, single qubit 

manipulation of trapped neutral atoms has been demonstrated experimentally, as 

reported, for example, in [Sch04]. While quantum operations on arrays of neutral atoms 

qubits have been demonstrated, it is the issue of implementing two-qubit gates on 

selected qubits within an array which still has to be solved[And07]. 
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3.1.3 Josephson junction qubits 

Josephson junctions are superconducting devices which have been proposed, for 

example in [Shn97], as viable systems for storing qubits and implementing single- and 

multi-qubit quantum gates. The first physical implementation of a Josephson junction 

qubit was demonstrated in [Nak99], which led then to the development of experimental 

two-qubit gates as shown, for example, in [Yam03] and, more recently, in [Pla07]. One 

of the strengths of this proposal is believed to lie in the fact that Josephson junction 

qubits can be fabricated by established lithographic methods, which might enhance the 

scalability of such systems. 

 

3.1.3.1 Description of the setup 

As shown in [Mak01], there are different proposals for quantum registers based on 

Josephson junctions which differ in the way single qubits are implemented, in how 

qubits are coupled together and they are expected, in general, to have different 

tolerances towards decoherence. Here, the model presented in Figure 

3-5[Mak99,Mak01] has been chosen to describe Josephson Junction quantum 

computation because it describes well its main features and characteristics. 

 

Figure 3-5: Experimental set-up for a Josephson Junction quantum register[Mak99,Mak01] 

 

Each qubit is implemented in one of the subsystems consisting of the two 

superconductive islands which form a ring only separated by the two Josephson 

junctions represented by the capacitive junctions Cj, forming a device called 

superconductive quantum interference device (SQUID). The SQUID is coupled through 

a gate capacitor Cgi to a voltage source Vgi and with the magnetic flux i passing 

through it. In the superconductive regime electrons pair up in so-called Cooper pairs 

[Buc04], which can tunnel through the Josephson junction from one superconductive 
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island to the other. Through the gate voltage Vgi and the magnetic flux i it is then 

possible to control the number 



n i of excess Cooper pairs in the lower superconducting 

island, forming a system typically called a Cooper pair box[Mak01]. By adjusting these 

two parameters it is also possible to bias each Josephson junction qubit to an idle state 

in which the qubit does not “see” the rest of the circuit and does therefore not interact 

with it. The qubit is formed by taking the 



ni 0  state of the Cooper pair box as the 

quantum logical state 



0  whereas the 



ni 1  state corresponds to the state 



1 . Single 

qubit operations are applied by controlling these states through the tunnelling in and out 

of the superconducting island of a Cooper pair. As described in [Mak01], this model is 

equivalent to a spin-qubit when associating the spin-up state to the sate 



ni 0  and the 



ni 1  state to spin-down. In this picture, the gate voltage Vgi and the flux component 

i have, respectively, an effect equivalent to two time-varying magnetic fields aligned 

along z and x and can therefore be used, as in NMR quantum computation, to bring the 

Josephson Junction qubit to any superposition of its states 



ni 0  and the 



ni 1 . 

 

By observing Figure 3-5, it can be seen that the capacitive parts of the quantum register 

and the inductance L form a common LC circuit. This is exploited to apply two-qubit 

operations. Firstly, suppose that all qubits are set to the idle state. Then, the two qubits 

which have to interact are biased out of the idle state. As described in [Mak01], the 

common LC circuit introduces coupling between the two qubits which leads to 

interactions equivalent to the ones seen in the previous implementations and can 

therefore be used to obtain the same two-qubit gates. Once the desired two-qubit gate 

has been implemented, the two qubits are brought back to the idle state where they stop 

interacting with each other. 

 

The state of each qubit can be read-out by measuring the amount of charge inside each 

Cooper-pair box. Experimentally, this has been demonstrated in [Nak99,Yam03] and is 

shown schematically in Figure 3-6. Each Cooper-pair box is connected to a probe 

junction which is biased through a voltage source Vb in such a way, that the excited 

state



ni 1 , will decay to the ground state 



ni 0  with two tunnelling events through 

the probe-junction[Nak99]. Hence, the state of the qubit can be determined by 

measuring the current through the probe junction. If a current is measured, the state of 

the qubit was 



1 , otherwise it was 



0 . The drawback of this method is that the junction 
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is always connected to the Cooper-pair box representing a constant source of 

decoherence which, in [Nak99], was recognized as being the dominant decohering 

effect. 

 

Figure 3-6: Probe junction for read-out 

Hence, a new measurement mechanism has been proposed which aims at coupling the 

measurement device to the qubit only during the actual measuring phase, while it is 

biased to a state less decohering for the qubit during quantum manipulations. As 

reviewed, for example in [Mak01], this can be achieved by connecting the gate of a 

single-electron transistor (SET) to the Cooper pair box forming the qubit, introducing 

on the current flowing through the SET a dependence on the charge state of the qubit. 

However, when a measurement is not needed, it is possible to bias the SET to a state in 

which it mainly changes the capacitance in the system, reducing its decohering impact 

on the qubit. 

 

3.1.3.2 Limitations in Josephson junction quantum computation 

Josephson junction qubits have been extensively studied during the last years and are 

believed to be a very promising system for quantum computation. However, as 

summarised in [Wen07], improvements in, both, decoherence times and scalability, will 

be necessary if these devices are to be used in quantum computation processors. As 

reviewed in [Cla08], decoherence times have been brought from the ~ns range of the 

first experiments up to ~s in more recent demonstrations. In terms of scalability, to the 

best of our knowledge, only quantum manipulations between two qubits have been 

demonstrated experimentally as shown, for example in [Pla07,Yam03], making the 

implementation of  quantum gates on registers of at least 3 qubits one of the important 
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short-term goals for the development of quantum computation with Josephson junction 

qubits[Wen07]. 

 

  

3.2 Spin-qubits in solid state systems 

We have analyzed some of the implementations of quantum computers which started 

the experimental research in this area in order to understand its main features and 

problems. While NMR and ion-trap quantum computers have allowed to collect 

precious experimental evidence of the fundamentals of quantum computation it has 

been shown that that they are not scalable to more than a few tens of qubits 

[Ste01,Kie02,Wei03], although, for the case of ion-traps, alternative trap architectures 

may lead to scalable systems. As reviewed in [Cla08], quantum computers based on 

Josephson junction qubits seem to be a promising candidate and many studies are 

dedicated to this research area although more work still needs to be done to assess their 

potential for large scale computation. Table 3-1 summarises some of the main 

experimental parameters for the quantum computational systems reviewed in this first 

part of the chapter. 

Table 3-1: Typical experimental parameters for NMR, ion trap and Josephson junction quantum 

computational systems 

 Typical system 

size 

Decoherence Typical gate 

operation time 

Potential for scalability 

NMR 2-4 qubits ~s ~10-100ms No 

Ion traps 2-3 ~ms ~100s Possible, with novel trap 

structures 

Josephson 

junctions 

2 ~s ~10ns Possible 

 

As reviewed previously, although quantum registers of, respectively, 12 and 6 qubits 

have been demonstrated for NMR and ion-trap quantum computers, many of the 

presented experiments still focus on system comprising 2-4 qubits. For NMR systems, 

for example, two of the most recently presented experiments demonstrated three-qubit 

versions of the Deutsch-Jozsa algorithm[Gop08,Fah08], while, for the case of ion-traps, 

a three-qubit Toffoli gate represents one of the latest demonstrations[Mon09]. Further, 

decoherence times longer than the gate operation times have been demonstrated, 
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although only some tens to hundreds of operations are typically feasible to date during 

the decoherence time. 

 

Hence, due to the exceptional technological challenges involved in experimental 

quantum computation (which concern the impact of decoherence as well as the precise 

control of the instrumentation used for manipulating the qubits), the road towards 

building a scalable system is still long[Zol05]. This is also reflected in the many 

different proposals for quantum computers which have been developed during the last 

years. Particularly, a lot of interest is being given to qubits implemented in spin-states 

of solid-state systems as the expertise and fabrication techniques acquired through 

classical electronics may prove helpful for achieving greater scalability[Cer05, Das05]. 

Also, measurement of the decoherence times of some spin-qubits have shown to be very 

promising[Tyr03]. The following sections will focus on quantum dots[Los98], on 

Kane‟s proposal[Kan98] and on some alternative schemes of nuclear and electron spin 

qubits in solid-state systems[Cha01,Lad02,Sto03]. 

 

3.2.1 Quantum dots 

Quantum dots are semiconductor devices based on heterostructures in which it is 

possible to control the number of confined electrons down to a single one[Ash96].  As 

in atoms, the energy levels of the confined electrons in quantum dots are quantised, 

making them systems in which it is possible to study and control quantum 

phenomena[Kou98]. Quantum dots were brought to the attention of the quantum 

information processing community when Loss and DiVincenzo published a proposal for 

a quantum computer based on coupled quantum dots[Los98]. This proposal triggered 

extensive research in the area of quantum computation which finally led to the 

experimental demonstration of electrically controlled single- and two-qubit 

operations[Kop06,Pet05], read-out and initialisation[Elz04]. These studies also showed 

that ensemble decoherence times T2* of around ~10ns could be expected while spin-

echo analysis indicated that T2 decoherence times of ~1s can be obtained[Pet05]. Also, 

proposals for optically controlled quantum dots are being developed, as demonstrated, 

for example, in [Pre08], which can operate faster compared to electrically controlled 

quantum dots, and much work is being invested in assessing their potential[Cer05].  
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3.2.1.1 Description of the set-up 

Figure 3-7 shows a schematic of a quantum dot three-qubit register[Gol02].  

 

 

Figure 3-7: Schematic of a quantum dot qubit register. The heterostructure creates a 2DEG 

parallel to the chip surface. By charging the control electrodes negatively it is possible to deplete 

the 2DEG until a single electron is trapped between the gates. 

 

The heterostructure creates strong confinement for electrons along the z-direction in 

Figure 3-7, but allows them to move freely in the plane perpendicular to z. Such a 

system is called a 2 dimensional electron gas (2DEG). By charging the control 

electrodes negatively it is possible to deplete the 2DEG until a single electron remains 

confined between them. Figure 3-7 represents schematically a quantum register with 

three quantum dots and one electron confined in each dot. The static magnetic field 



Bz stat sets the reference direction for the spins, while the RF magnetic field Bac is used 

for single qubit operations. The electrodes on the chip are also used for controlling the 

interaction between adjacent dots and for reading-out the spin state of the electrons. 

 

The quantum dot qubit is implemented in the electron trapped by the potential minimum 

created by the negatively charged electrodes. As schematically described in Figure 

3-8(a)[Elz04], the undepleted area close to the dot acts as an electron reservoir from 

which electrons can tunnel into the dot or from the dot into the reservoir depending on 

the bias of the control electrodes on the chip. Because of the tight confinement of the 

electron in the dot, the energy levels of such a system are quantized. In order to reduce 

the impact of decoherence due to thermal energy, quantum dots have to be kept at very 

low temperatures (~100mK [Pet05]). The spin-up and spin-down states of the energy 
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ground-state of the confined electron are then the two chosen levels for the quantum dot 

qubit as schematized in Figure 3-8(b):  

Reservoir

             

(a)                                                          (b) 

Figure 3-8:(a) Schematic representation of a quantum dot and its reservoir. Electrons can be made 

to tunnel into or out of the dot from the reservoir by proper tuning of the control electrodes[Elz04]. 

(b) Schematic representation of the quantum dot spin-qubit and its energy levels. The electron is 

trapped in the potential minimum. An external magnetic field along z sets the reference for the 

qubit states.  

As reviewed in the second chapter, transitions between the spin-up and spin-down state, 

and, hence, single qubit operations, can be induced by transmitting RF magnetic pulses 

Bac resonant with the electron-spin precession frequency in the static magnetic field 

Bzstat and orthogonal to it. Such a scheme has been demonstrated experimentally in 

[Kop06]. 

 

Interactions between adjacent quantum dot qubits are mediated by controlling the 

potential barriers generated by the electrodes on the chip. A schematic for the two-qubit 

case is shown in Figure 3-9: 

 

Figure 3-9: Interaction between two adjacent quantum dot qubits. For high barriers, the two 

electrons are isolated from each other. If the barrier is lowered it is possible to introduce enough 

overlap between the electrons’ wavefunction to have interaction between the two. 
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Through the control electrodes it is possible to keep the potential barrier between the 

dots so high, that tunnelling between the two dots is inhibited and the two electrons are 

isolated from each other. However, if by changing the bias voltage on the chip 

electrodes, the potential barrier is lowered such that tunnelling of the electrons between 

the dots is allowed, then overlap between the electrons‟ wavefunction can be obtained 

which corresponds to an effective interaction between the qubits[Cer05]. Using this 

scheme, interaction between two electrons in two quantum dots and a square-root of 

swap gate have been demonstrated experimentally in [Pet05]. 

 

Read-out of the spin-state of an electron in a quantum dot can be performed by a spin-

to-charge conversion and has been demonstrated experimentally by Elzermann et 

al.[Elz04]. The electron in the dot is coupled electrostatically to its environment and 

influences therefore the currents which flow in proximity of the dot[Kou06]. By 

monitoring such currents through a dedicated electrode system (typically termed 

quantum point contact (QPC) [Pet05]), it is possible to establish whether or not an 

electron is inside the quantum dot. Hence, to exploit the QPC for reading-out a quantum 

dot qubit, it is necessary to bind during the measurement procedure the presence of the 

electron inside the dot to its spin state which can be achieved using following protocol: 

 

A) During the computation, the electrodes are biased such that the electron is trapped 

inside the dot. 

 

B) The measurement starts by lowering the barrier (Figure 3-8(b)) of the dot such that 

only the spin-down state will tunnel into the reservoir while the spin-up state will be 

kept trapped inside the dot. 

 

C) By monitoring the current through the QPC, which depends on the presence of the 

electron inside the dot, it is possible to reconstruct the state of the electron at the 

beginning of the measurement. The spin state of the electron is therefore determined by 

a measurement of the charge state of the dot.  
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As demonstrated by Elzerman et al.[Elz04], initialisation of a quantum dot qubit 

register can be obtained by filling each dot with a randomly polarised electron and 

waiting for relaxation of all spin-down states to the spin-up state.  

 

3.2.1.2 Decoherence and scalability 

In terms of decoherence, experimental measurements have returned values around 10-

20ns[Pet05,Kop06]. This seems problematic considering that the length-scale of the 

single-qubit manipulations demonstrated in [Kop06] was of the same order of 

magnitude, although in [Pet05] this decoherence value was extended to ~1s using 

spin-echo techniques. In both experiments, the main contribution to decoherence was 

recognized as being introduced by a fluctuating magnetic field generated by the nuclei 

of the atoms in the bulk which perturbs the quantum states of the qubits. 

 

In terms of scalability, to the best of our knowledge, only quantum manipulations in 

quantum registers comprising two quantum dots have been demonstrated to 

date[Pet05,Kop06]. The creation and generation of entangled states between two or 

more spins is one of the topics this research area will shift to during the next 

years[Han08]. 

3.2.2 The Kane proposal 

In 1998, B.E. Kane developed the proposal for a quantum computer with qubits carried 

by the nuclear spin states of phosphorus atoms embedded in a silicon substrate[Kan98]. 

Together with the Loss-DiVincenzo proposal for quantum dot quantum computation, 

this proposal shared the idea of exploiting decades of expertise in semiconductor 

technology for implementing a scalable quantum computer. The strength of these ideas, 

the potential for long coherence times of donor spin states and the theoretical and 

experimental know-how in the area of semiconductors deriving from the classic 

microelectronics field, rapidly attracted huge interest in the quantum computation 

community.  New proposals were developed based on electron spin rather than nuclear 

spin qubits as reviewed in [Hog03], experiments were performed which showed that 

diamond is an interesting alternative to silicon substrates for spin-based quantum 

computation [Cha01] and a new quantum computer model which combined the 

successes of NMR quantum computation with an all-silicon quantum computer was 
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proposed[Lad02]. Also, it has been demonstrated experimentally that the electron spin 

decoherence times for phosphorus-doped silicon are well in excess of ~1ms [Tyr03]. 

 

3.2.2.1 Description of the set-up 

A schematic of Kane‟s proposal is shown in Figure 3-10[Kan98]. The qubits are 

implemented in the nuclear spin state of phosphorus atoms embedded in the silicon 

chip. Convenient separations between the phosphorus atoms are estimated to lie around 

10-20nm while the system is kept at a temperature of ~100mK. 
31

P is used as it has 

nuclear spin I=1/2 and because, being a shallow donor, its electron wavefunction can 

spread from tens to hundreds of Ångstroms from the nucleus. As will be described later, 

this feature is exploited for obtaining two-qubit interactions.  Further, the electrons 

highlighted in Figure 3-10 also play an important role when implementing single-qubit 

operations and during the read-out procedure. 

 

Figure 3-10: Schematic of the quantum register in the Kane proposal[Kan98]. 

 

A static magnetic field Bz sets the reference for the spin states while the a.c. magnetic 

field Bac is used to flip the nuclear spins of the donors. Typically, the nuclear spin state 

parallel to the static magnetic field is chosen as the 



0  state for the qubit, while the 

anti-parallel one for 



1 . There are two types of electrodes on the chip. The ones termed 

“A-Gates” are used to control the single-qubit operations. These are placed over the 

donor sites and allow, through appropriate bias as schematised in Figure 3-11, to move 

the wavefunction of the electron away from the nucleus. The state of the nucleus, and 

with that its resonance frequency, is influenced by the state of the electronic 

wavefunction and by moving the electron away from the nucleus, the strength of this 

interaction is reduced and, through that, the resonance frequency of the nuclear spin. To 

apply a one-qubit gate to a chosen qubit, the A-Gate electrode placed over the 

corresponding donor is biased such that the resonance frequency of the nuclear spin 
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coincides with the frequency of the a.c. magnetic field Bac, bringing the nuclear spin 

into resonance. 

 

(a)                                  (b) 

Figure 3-11: By tuning the A-gate over the desired donor it is possible to control the strength of the 

interaction between nucleus and the corresponding electron and, with that, the resonance 

frequency of the nuclear spin. In (a), for VA=0, the wavefunction is distributed around the nucleus. 

(b) For VA>0 the wavefunction is pushed towards the barrier and away from the nucleus, reducing 

the strength of the interaction. 

 

Conversely, the “J-Gates” are used for introducing interactions between adjacent qubits. 

Again, the nucleus is influenced by the state of the electronic wavefunction. Further, 

two adjacent electrons can interact with each other through the overlap of their 

wavefunction. Two nuclei can therefore “feel” each other through the overlap of their 

electrons. In the Kane proposal, this electron-mediated interaction can be controlled 

with an appropriate bias of the J-gate electrode placed between the nuclei since this 

electrode influences the overlap of the electron wavefunctions, as shown schematically 

in  Figure 3-12. 

 

(a)                                                                                 (b) 

Figure 3-12: Two-qubit interaction mechanism. In (a), for VJ=0, the two electron wavefunctions are 

concentrated in proximity of the corresponding P donors. There is no overlap of the electron’s 

wavefunction with the adjacent nucleus. The two nuclei do not interact. In (b), the positively 

charged J-Gate spreads the wavefunctions. The two nuclei “feel” each other through the overlap of 

their corresponding electron wavefunction 
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The read-out mechanism is based on two steps. First, the information stored by the 

nuclear spin of the qubit to be measured is transferred to the electron spin, then it is 

extracted through current measurements which depend on the state of the electrons. 

This is achieved with the help of an auxiliary qubit. As described in [Kan98], during 

computation the system is biased through the J-gate potential such that the information 

carried by two adjacent nuclear spins, i.e. 11,10,01,00 , is coupled to the   

state (parallel to the static magnetic field) of the shared electron pair. Instead, assuming 

the second qubit now to be the auxiliary qubit used for reading out the first one, for 

large J the system can be biased such that the 1  state of the qubit to be measured stays 

coupled to the   state of the electrons while the state 0  couples to the state 

  independently from the state of the auxiliary qubit. Since only two electrons 

in the   state will bind to the same phosphorus atom, an electron transfer 

between the two qubits can be induced, and the corresponding current be measured, if 

their electrons are in the  -state and, therefore, the qubit to be measured is in 

the state 0 . Hence, the measurement is performed by coupling an auxiliary qubit to 

the one to be measured and by controlling whether or not an electron transfer between 

the two qubits can be induced. 

 

Finally, initialisation can be achieved by cooling the system down to its operation 

temperature of ~100mK and by waiting for it to relax to its lowest energy level which 

corresponds to the quantum register being in the 00...00  state. 

 

3.2.2.2 Decoherence and scalability 

Recent experiments with phosphorus-doped silicon crystals have demonstrated that 

decoherence times are in the range of tens of ms (with single-qubit gate operation times 

around ~20s)[Mor08], confirming the potentials of qubits carried by the nuclear spin 

of phosphorus atoms embedded in silicon. 

 

However, much work still needs to be done to implement the quantum computation 

system envisaged by Kane. To the best of our knowledge, no selectively controllable 

single- or two-qubit quantum register (including its read-out scheme) has been 
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experimentally demonstrated to date. One of the problems seems to be the high 

precision required in the fabrication process of the quantum register due to the variation 

in the strength of the interaction of the donors which strongly depends on their 

positioning[Das05]. Nevertheless, very important results, such as, for example, the 

incorporation of phosphorus atoms in silicon with atomic-scale precision[Sch03b], have 

been achieved during the last years.  

 

3.2.3 Developments and alternatives in solid-state quantum computation 

Although, as reviewed above, many of the key features of Kane‟s proposal still have to 

be demonstrated experimentally, his proposal triggered great interest[Hog03] and new 

systems, inspired by his ideas, have been developed. 

 

3.2.3.1 Electrons vs nuclear spins 

Soon after Kane‟ s proposal, Vrijen et al. proposed an evolution of his idea in which the 

qubits were carried by the electron spin (rather than the nuclear spin) of a phosphorus 

atom embedded in a silicon substrate[Vri00], thereby avoiding the transfer of 

information from the nuclear to the electron spin required in Kane‟s model. Except for 

the medium carrying the qubit, the main principles of the proposal developed by Vrijen 

et al. are very similar to Kane‟s: single- and two-qubit interactions are controlled by 

influencing the state of the electron‟s wavefunction. Although, to the best of our 

knowledge, no fully operating few-qubit quantum register has been demonstrated to 

date, there is great interest for donor electron spin qubits, interest which was also 

enhanced by the measurements of decoherence times of several ms reported by 

Tyryshkin et al[Tyr03]. 

 

3.2.3.2 Nitrogen-vacancy centre in diamond systems 

Quantum computation based on nitrogen-vacancy centres in diamond has attracted 

much interest during the last years through some very promising experimental 

demonstrations. In [Jel04a], for example, a qubit structure was demonstrated which 

exhibited decoherence times of ~1μs. But while this figure is of the same order of 

magnitude of the dephasing times demonstrated for quantum dots [Pet05], it was 

measured at room temperature, whereas quantum dots or the Kane proposal require 

temperatures down to fractions of Kelvin [Kan98,Pet05]. 
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The main building block for such systems is the nitrogen-vacancy centre in a diamond 

crystal, i.e. a nitrogen atom substituting for a carbon atom in proximity of a vacancy as 

schematized in Figure 3-13(a)[Wra06]. The blue particles represent the carbon atoms, 

the red one is nitrogen while the grey one denotes the vacancy. Typically, a qubit is 

carried by the ground state of the two unpaired electrons of the nitrogen vacancy which 

form a spin triplet[Niz05], and are therefore characterised by S=1, where S is the 

quantum number associated with the magnitude of the total spin[Bra03]. The lowest 

energy level is formed by the triplet state with ms=0 (where ms is the quantum number 

associated to the z-component of the spin operator) which is usually chosen as the 



0  

state while the 



1  state is stored in the two remaining states with 



ms 1 which are 

degenerate and separated from the ms=0 state by ~2.88GHz, as schematized in the 

energy level scheme in Figure 3-13(b)[Wra01,Niz05].  

 

N

V

C

 

                          (a)                                                  (b) 

Figure 3-13:(a) NV structure[Wra06]. (b) Energy levels for single qubit operations, initialisation 

and read out[Wra01,Niz05]. 

 

One of the strengths of the nitrogen-vacancy proposal lies in the fact that, thanks to its 

energy level scheme, it allows to conveniently implement qubit manipulation, 

initialisation and read-out. As can be seen from Figure 3-13, the 0  and 1  states are 

separated by roughly 2.88GHz and can, therefore, be manipulated through microwave 

signals, while the separation between the ground and first excited state corresponds to 

637nm which can be accessed optically and used, as described below, for read-out and 

initialisation of the qubits.  
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From Figure 3-13(b) it can be seen that, when stimulated optically, the 0  state tends to 

oscillate up and down between the ground and excited state, a behaviour which can be 

detected through its fluorescence signal. The 1  state, instead, once excited, may also 

relax down to the ground state via a third state 
1
A. This mechanism can be used for 

read-out since a strong fluorescence signal will only be measured if the qubit starts in 

the 0  state[Cha01,Jel02]. A fluorescence signal will also be measured when the qubit 

starts in the 1  state, but the system will eventually relax to the 
1
A and the fluorescence 

signal will stop. Further, this behaviour can also be exploited to initialise the qubit to 

the 0  state. If the qubit is in the 0  state and it is optically pumped then it will return 

with high probability to its starting state. On the contrary, once excited, the 1  will 

relax via the 
1
A state, either to the 0  state (and with that it will have completed 

initialisation) or to the 



1  state, in which case the procedure must be repeated. Hence, 

by pumping this system optically long enough, the qubit will end in the 0  state with a 

high probability[Cha01]. Single-qubit manipulation, initialisation and read-out have 

already been demonstrated experimentally (as shown, for example, in [Cha01,Jel02, 

Jel04a]). In [Jel04a], typical single-qubit gate operation times were around some tens of 

ns. 

 

In terms of two-qubit gates, interactions between the qubit described above and qubits 

carried by the nuclear spin of atoms placed in proximity of the nitrogen-vacancy centre 

have been demonstrated already, for example, in [Jel04b]. However, to the best of our 

knowledge, no interactions between qubits belonging to different nitrogen-vacancy 

centres have been demonstrated experimentally yet, which is key for system scalability.  

 

Nevertheless, the great potential of this implementation has been recently further 

highlighted by room-temperature measurements which have demonstrated decoherence 

times in the order of ~ms[Bal09] (obtained using diamonds purified from unwanted 

carbon isotopes with non-zero nuclear spin which may perturb the coherence of the 

electron-spin qubit) and much attention is currently being given to this 

technology[Pra08, Han09]. 
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3.2.3.3 NMR in silicon 

In [Lad02], Ladd et al. proposed an all-silicon quantum computational system which 

combines solid-state quantum computation with traditional NMR. The basic building 

block of this implementation is shown in Figure 3-14[Ito05]: 

 

Figure 3-14: Basic building block of the silicon NMR quantum computer. Qubits are carried by the 

nuclear spin state of 
29

Si while the substrate is made out of 
28

Si atoms which have 0 nuclear 

spin[Ito05]. 

 

In the all-silicon NMR quantum computer, qubits are carried by the nuclear spin states 

of 
29

Si atoms which have nuclear spin ½ while the substrate comprises purified silicon 

which mainly contains 
28

Si atoms. These have nuclear spin 0 and, therefore, do not 

contribute to fluctuations of the local magnetic field around the qubits which would 

reduce the coherence time of the system[Lad02]. Quantum logic operations are 

controlled, as in standard NMR quantum computation, through RF pulses transmitted 

on the chip[Itoh05]. Selectivity of the single qubits is guaranteed by the static magnet 

placed at one end of the quantum register. This generates a variable magnetic field 

along the register which changes the precession frequency of each qubit and, hence, the 

RF frequency to which they react. Despite encouraging room-temperature decoherence 

times of the 
29

Si qubits of the order of ~25s[Itoh05], no recent advances on the 

experimental development of such systems have been reported in literature to the best 

of our knowledge.  
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3.3 Summary 

Some of the most important experimental implementations of quantum computation 

have been reviewed in this chapter. The aim of this review was to understand the state 

of the art of experimental quantum computation in order to comprehend the main 

challenges and the typical features of an experimental demonstration of a prototype 

quantum computational system. There are many quantum computation proposals which 

have been presented over the years and have not been described here (e.g. quantum 

computation based on the interaction of photons[Chu95] or on cavity quantum 

electrodynamics[Tur95]), since taking into account all of them would have been outside 

the scope of this work. Here, in the first part of the analysis, the focus has been set on 

NMR, ion-traps and Josephson-junction qubits because, when the research project 

presented in this thesis started, these were some of the technologies for which 

substantial results on the realization or development of a small-scale quantum 

computation systems had been obtained[Van01,Sch03a,Yam03].   

 

In terms of system parameters demonstrated with these implementations, while registers 

of up to 12 qubits have been demonstrated, more frequent sizes of quantum registers are 

in the range of 2 to 4 qubits. In terms of algorithms, although the implementation of 

Shor‟s factoring algorithm is often cited as one of the long-term aims of quantum 

computation (and has been implemented experimentally on a 7-qubit quantum register), 

a popular algorithm for the experimental demonstration of prototype quantum 

computational systems is the Deutsch-Jozsa algorithm. Its popularity is probably given 

by the fact that, despite its simplicity, it allows one to demonstrate the main features of 

quantum computation (i.e. parallelism, entanglement and interference) as long as the 

quantum register on which it is implemented is of at least 3 qubits[Col98,Nie03]. 

 

While it has been shown that NMR quantum computer are not scalable to more than a 

few tens of qubits, scalable systems may still be achieved using architectures based on 

ion-traps or Josephson-junctions and much work is being carried out in this area[Zol05].  

   

The second part of the review focused on solid-state spin-qubit implementations 

because of their potential for high scalability[Cer05,Hog03].  Quantum dots[Los98] and 

the Kane proposal[Kan98] of qubits carried by the nuclear spin of phosphorus atoms 
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embedded in silicon have been described and some alternative schemes which further 

developed Kane‟s idea (qubits implemented in the electron spin rather than the nuclear 

spin of phosphorus atoms[Vri00, Tyr03], nitrogen-vacancy systems in 

diamond[Cha01,Wra01] and all silicon NMR quantum computation[Lad02]) have been 

addressed. To date, some of these implementations have achieved the control of few-

qubits quantum registers, although in most cases the focus of experiments is still on 

demonstrating specific tasks of the DiVincenzo check list rather than a complete 

demonstration through the implementation of proper algorithms. It is useful to have a 

look at the number of operations nop which may be performed during the decoherence 

time of qubits implemented with different technologies. Rough estimates of this figure 

can be obtained by the ratio of the decoherence time T2 with the gate operation time op 

of a given physical implementation[Nie03]: 

op

op

T
n


2~  

Table 3-2 summarises estimates of nop for the set-ups discussed in this review, both, for 

single-qubit operations (SQO) and two-qubit operations (TQO), as well as typically 

reported operational temperatures. 

Table 3-2: Estimates of the number of operations which can be implemented during the coherence 

time. 

 nop (SQO) nop (TQO) Operational temperature 

 

Diamond 
 

~4.5·10
4
 

[Jel04a,Pra08,Bal09] 

(1/nop~2.2·10
-5

) 

 

10
3 
[Jel04b] 

(1/nop~10
-3

) 

Many experiments 

performed at room 

temperature (e.g. 

[Jel04a,Bal09]) 

Quantum Dots ~1-20 [Pet05,Kop06] 

(1/nop~0.05-1) 

7000 [Pet05] 

(1/nop~1.4·10
-4

) 

~100mK [Pet05] 

 

Silicon NMR 
 

10
6 
[Ito05] 

(1/nop~10
-6

) 

 

10
4 
[Ito05] (estimated, not yet 

experimentally proven) 

(1/nop~10
-4

) 

 

~5K [Ito05] 

 

Phosphorus/Silicon 

(nuclear spin qubit) 

 

~10
5
 [Kan98,Mor08] 

(1/nop~10
-5

) 

 

~10
5
 [Kan98,Mor08] (estimated, 

not yet experimentally proven) 

(1/nop~10
-5

) 

 

~100mK [Kan98] 

 

Phosphorus/Silicon 

(electron spin qubits) 

 

~5·10
4
 [Tyr03] 

(1/nop~2·10
-5

) 

 

~5·10
7
 [Tyr03, Das05], (estimated, 

not yet experimentally proven) 

(1/nop~2·10
-8

) 

 

Decoherence 

measurements performed 

at T~7K [Tyr03] 

(3.2) 
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In terms of temperature of operation it should be noticed that most of the listed 

implementations require temperatures around a few K, sometimes down to fractions of 

K. The exception is the diamond nitrogen-vacancy system, which may have the 

potential for room-temperature quantum information processing[Bal09]. 

 

In terms of nop, the values given in Table 3-2 should really only be considered as rough 

estimates, particularly the column concerning two-qubit operations; firstly, because in 

some cases (when specified), these estimates have been derived also on the basis of 

theoretical analysis with the experimental demonstration of the two-qubit interactions 

having yet to be implemented. Secondly, as seen in the review, none of the described 

systems has yet proved scalable and it may well be that their further developments may 

rely on different interaction mechanisms with different gate operation times. 

Nevertheless, Table 3-2 is useful to give the general idea of what the various 

implementations may achieve. For example, to crack a modern RSA cryptographic 

system with Shor‟s factoring algorithm[Sho94] one would need about 6000 qubits and 

10
8
 operations [Ger05].  It becomes clear looking at Table 3-2 that none of the listed 

physical systems is close to implementing such a large-scale computation. To harness 

such complex and time-consuming algorithms, fault-tolerant quantum error-correction, 

seems to be a necessary ingredient towards scalable quantum computation and its 

physical and scalable implementation is one of the main challenges research in the area 

of quantum information processing will have to face[Zol05]. In this context, one of the 

challenges is to produce quantum gates with acceptable error rate for fault-tolerant 

quantum computation. A typical reference value used as acceptable error rate is ~10
-4

 

(see [Bla08,Cla08,Han09], for example) and a very rough estimate of the error rate 

produced by a certain technology can be obtained through the value 



1

nop

, assuming that 

one will perform nop operations before an error will occur because of decoherence. 

From Table 3-2 it can be seen that various of the listed of implementations show values 

of 



1

nop

 which (at least in theory) are compatible with an error rate of ~10
-4

 and it will be 

important to see which of these implementations will be able to implement a scalable 

quantum register while maintaining acceptable error rates. However, to date, the road 

towards large-scale quantum computation seems still long and, although as can be seen 
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from Table 3-2 some implementations seem more promising than others, the question of 

which system will finally prove best is still unanswered[Zol05]. 

 

However, there are applications which do not require the demanding resources of the 

factoring algorithm but would nevertheless accomplish very useful tasks. As mentioned 

in Chapter 1, one of these is quantum simulations, i.e. the modelling of quantum 

physical systems by a quantum computer[Lly96]. Using quantum registers of some tens 

of qubits would already allow to simulate systems intractable on a classical 

computer[Zol05,Nie03]. Thanks to this less demanding resources, quantum simulations 

could be one of the applications which may ultimately drive research, and possibly 

industry, in the near future [Spi06]. Hence, the implementation of quantum registers 

comprising a few tens of qubits represents a very important goal for exploiting the 

increased computational power of quantum computers. 

 

In the next chapter, the SFG proposal will be described. As seen in the review here 

presented, although there are various systems suitable for storing qubits, one of the big 

challenges of quantum computation is finding interaction mechanisms for the qubits 

which do not limit the scalability of the system. Both, in Kane‟s and in the diamond 

proposal, for example, the qubits show promising decoherence times, but it is the 

interaction between the qubits which is proving difficult. The SFG proposal addresses 

this problem mediating the interaction of two adjacent donor electron spin qubits 

through a control particle placed in their proximity. The interaction mechanism between 

the qubits depends on the optical excitation of the control particle and can therefore be 

implemented without control electrodes, avoiding the high-precision fabrication 

techniques required in Kane‟s proposal. Further, the SFG model may also be 

compatible with the diamond scheme and could represent a way for introducing 

interactions between qubits stored in the nitrogen-vacancy centres[Sto09]. 
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Chapter 4 The SFG quantum logic gate 
As seen in the previous chapter, although a number of different implementations of 

quantum computational systems have been proposed (and even tested experimentally), 

large-scale quantum computation is still far from the implementation stage and it is not 

yet clear which physical system might prove best[Zol05]. Further, while solid-state 

implementations are believed to have the potential for achieving a high degree of 

scalability due to the knowledge and expertise acquired through classical electronics, a 

problem common to some of these proposals seems to lie in the implementation of 

interactions between the qubits in a quantum register. In this chapter, the SFG 

model[Sto03] is described which proposes to solve this problem mediating the 

interaction between adjacent qubits through the optical excitation of a control particle 

placed in their proximity. This proposal aims at achieving scalability by exploiting the 

promising decoherence times of donor electron spin qubits in semiconductors[Tyr03] in 

conjunction with the optical control, which allows one to avoid control electrodes 

placed on the computation chip (used, for example, in Kane‟s proposal[Kan98]) with its 

high-precision fabrication techniques[Sto03]. This model may be able to control patches 

of about 20 qubits while larger quantum registers could be built by connecting different 

patches together[Sto08].  The remainder of this thesis focuses on the design of quantum 

logic circuits exploiting two-qubit SFG quantum logic gates. 

 

4.1 The SFG model 

In a quantum computer based on SFG quantum logic gates, the qubits are carried by the 

spin of an electron from a donor in a semiconductor substrate located in a magnetic 

field. The latter defines the reference direction for the qubits‟ spin alignment. The 

interactions between two qubits are mediated by a control particle positioned in their 

proximity. The control electron starts in a known state, for example, spin-up or spin-

down. In their ground states, the wavefunctions of this three-particle system are 

separated and no interaction between them occurs. If, however, the electron of the 

control particle is brought to an excited state through an optical pulse, its wavefunction 

overlaps with the wavefunctions of the qubits, leading to an effective interaction 

between them. Following [Sto03,Rod04], assuming to have two qubits A and B and a 

control particle C, the interaction between the qubits and the control particle in its 
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excited state can be modelled as an effective Heisenberg interaction through the 

Hamiltonian: 



HHam JAA C  JBB C BAAzBBBzBCCz  

where JA and JB describe, respectively, the strength of the exchange interaction between 

qubit A and the control particle and qubit B and the control particle, Bi=-iB with i 

(i=A,B,C) the magnetic moment for the three particles and B the static magnetic field 

on the computation register. The i terms are vectors of the Pauli X,Y and Z matrices for 

the three particles and iz is the Pauli Z matrix. 

 

The interaction between the qubits and the control particle is terminated by a second 

(de-exciting) pulse, which returns the electron of the control atom to its ground state 

after a time T. In order to have negligible interaction between the qubits and the control 

when the latter is in its ground state and sufficient interaction between the three 

particles when the control is brought to the excited state, distances between the control 

and the qubits are expected to be in the order of 10-20nm[Rod04,Sto08]. 

 

As described in [Ker07], the unitary transformation U which describes the impact on 

the qubits and control particle of the Hamiltonian shown in (4.1) during the pulse-

interleave time T between exciting and de-exciting pulse can be described, in general 

terms, by the expression given in (4.2). This expression has been obtained assuming the 

state 



0  to be associated with the spin-up state of a particle and 



1  with spin-down. 

Further, the matrix is built assuming the particles to be ordered as 



C QA QB  and the 

corresponding states sorted in ascending order. This choices lead to the following 

representation of the unitary matrix U of this transformation: 















UC

CU
eU

M

MTiHHam

2

1
 

U+ and U- describe two 4x4 matrices which operate on the qubits‟ states, without 

leading to changes in the state of the controls. U+ refers to the control electron being 

spin-up, while U- to it being spin-down. Conversely, the two matrices CM1 and CM2 are 

4x4 matrices which lead to an interaction between the states of the qubits and of the 

controls. In order to avoid entanglement of the control particle with the qubits and 

consequent loss of quantum information from the qubits to the controls, solutions for 

CM1 and CM2 with all coefficients equal to 0 are envisaged for the SFG protocol. As 

(4.1) 

(4.2) 
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described in [Sto03], of all possible pulse-interleave times T between exciting and de-

exciting pulses, only a discrete set defined by two integers M and N, produces 

entangling gates which satisfy this condition. Further, these solutions also return the 

control particle back to the state it was prior to the beginning of the interaction. As 

demonstrated in [Rod04], assuming the qubits to be symmetrically distributed with 

respect to the control particle, the transformation produced by the SFG protocol is then 

described by following expressions: 
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with: 



f 
B

J


M2 N2

M2 N2


M2 N2

M2 N2











2

9  

JT 
M

f 1 
2
 8


N

f 1 
2
 8

BT 
M

1
1

f











2


8

f 2


N

1
1

f











2


8

f 2

 

where, for the symmetric case, J=JA=JB and B=BA=BB. 

 

Again, U+(M,N) operates on the qubits when the control electron starts in the spin-up 

state, while the transformation U-(M,N) is applied if the control electron is in the spin-

down state. As will be discussed in more detail in Section 4.2, from expressions (4.3a) it 

can be understood that different two-qubit gates can be implemented with the SFG 

scheme by changing the parameters given in expressions (4.4). 

(4.3a) 

(4.3b) 

(4.4) 
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For example, in [Rod04] it was shown that, assuming the control atom to start in the 

spin-up state, for M=1584 and N=2177 one obtains f=4.5, JT=1105.84 and expression 

(4.3a) returns the controlled-phase (or controlled-Z) gate[Nie03]: 

 























1000

0100

0010

0001

CP  

In reality, the controlled-phase gate obtained with M=1584 and N=2177 is not ideal, but 

an accurate approximation with an error of the order of 10
-6

[Rod04], thus showing that 

SFG two-qubit gates can approximate gates typically used in literature with high 

precision. 

 

When considering a quantum register of many qubits, the SFG model exploits 

randomness in the spatial distribution of the particles in order to be able to selectively 

address a specific control particle with its corresponding qubits. The main contribution 

to the value of the excitation frequency of a control particle will come from the choice 

of the host material and the dopants. Specifically, the excitation frequency will depend 

on the energy levels of the control particle in a given substrate. However, in a random 

distribution, particles will have different environments leading to slightly different 

energy levels and guaranteeing thereby the individual selectivity of each two-qubit gate 

[Sto03]. The selection of an individual control atom-qubit system (and, therefore, of a 

specific quantum gate) is shown schematically in Figure 4-1 for a 3-qubit quantum 

register. 

 

In terms of signal parameters, in order to be sure that the excited control electron 

correctly couples with all information-carrying electron-spin states of the qubits, the 

excitation pulses need to have a sufficiently broad spectrum which typically translates 

into pulsewidths of the order of picoseconds[Rod04]. As will be discussed at the end of 

this section and in Chapter 6, values of the excitation frequencies of systems currently 

under study range from the far-infrared to the mid-infrared part of the spectrum. 

(4.5) 
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Figure 4-1: Schematic of the excitation of two SFG gates during computation. (a) An optical pulse 

centred on frequency 1 is incident on the computation chip. (b) The optical pulse excites control 

atom C0 and triggers the interaction between qubits Q0 and Q1. (c)A second optical pulse centred 

on 1 de-excites the control atom, interrupting the interaction of the qubits. (d)To activate the 

second SFG gate, a pulse centred on 2  is transmitted on the chip.(e)The optical pulse excites 

control atom C1 triggering the interaction between Q1 and Q2. (f)A second pulse centred on 2 de-

excites C1 terminating the interaction of the qubits. 

 

Summarising, in the SFG scheme interactions between two qubits are introduced by 

transmitting pairs of optical pulses centred on specific frequencies i and spaced by 

pulse-interleave times T. Further, single-qubit operations can be implemented, as in the 

other implementations based on electron spin qubits seen in Chapter 3, by transmitting 

microwave pulses centred on the resonance frequencies of the electron spin qubits. 

Hence, experimentally, a quantum computation exploiting the SFG model corresponds 

to the transmission on the quantum register of a well-defined sequence of multi-

wavelength, picosecond optical pulses for controlling the two-qubit interactions and of 

microwave pulses for single-qubit operations. 

 

Read-out, too, could be performed optically, with a technique similar to the one used in 

ion-trap computation, and reviewed in the previous chapter. The read-out protocol 

requires an auxiliary qubit and control particle which will be referred to, respectively, as 

Q-1 and C-10, both starting in a known state, for example, 0  (spin-up), as shown 

schematically in Figure 4-2 for a three-qubit example. 
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Figure 4-2:  Auxiliary qubit and control particle used for read-out in a three-qubit quantum 

register example 

The value of qubit Q0 can be determined by analysing its state in conjunction with qubit 

Q-1 and control C-10. At the beginning of the read-out procedure this sub-system can be 

described as being in the state 



C10Q1Q0 g
 00Q0 g

 where the subscript “g” refers to 

the control electron being in its ground state. If a narrow-band optical pulse, tuned to 

the transition 



000
g
↔



000
e
 (where “e” refers to the control electron being in the 

excited state) is transmitted on the chip, excitation of the control electron to the state 



000
e
 will occur only if the qubit Q0 is in the state 0 . In this case, a long pulse will 

provide repeated excitation and de-excitation of the control electron with a consequent 

release of a photon after each de-excitation event. These scattered photons can be 

collected by photodetectors. If, however, Q0 is in 1 , the three-particle system is not 

resonant with the 



000
g
↔



000
e
 transition, no photons would be emitted and, 

therefore, no signal would be produced by the photodetectors. Hence, the state of Q0 

can be determined by tuning the emission frequency of a laser to the 



000
g
↔



000
e
 

transition and by understanding whether or not the control electron couples to this 

transition by measuring the presence of scattered photons[Sto03]. Once the state of Q0 

is known (and remembering that in the SFG protocol the state of the control particles is 

known), the same concept can be applied using Q0 and C01  for determining the state of 

Q1. Hence, one after the other, the state of all the qubits in the quantum register can be 

identified. 

 

To date, different materials have been investigated for building a quantum computer 

based on SFG gates[Sto08]. Key factors are the decoherence times of, both, the qubits 
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and the control particles, as well as the ease with which the optical frequencies needed 

for the excitation can be generated. One possibility, which is currently under study, is 

the use of phosphorus as control-particles in a silicon substrate. However, while 

experiments on this system have generated valuable information on the experimental 

gate dynamics[Vin08], its excitation frequencies are in a far-infrared range (~36m) in 

which compact and integrated laser sources have not been developed yet. Other 

possibilities are being considered (the double donor selenium in silicon or phosphorus 

particles in diamond, for example,[Sto08]) for which excitation frequencies fall in the 

mid-infrared part of the spectrum (~2.2-2.3m, [Ber89,Laz08]) where, as will be 

discussed in Chapter 6, more convenient laser sources than for the case of phosphorus 

control particles in silicon are available.  

4.2 Entangling characteristics of the SFG gate 

From the equations given in expressions (4.3a) it can be seen that different entangling 

gates can be produced by the SFG model by changing the parameters in (4.4). Since the 

aim of the work presented in this thesis was to develop quantum logic circuits suitable 

for the experimental implementation of a quantum computation prototype based on SFG 

technology, it was important to study which quantum gates can be produced within this 

model in order to know what operations would have been available when designing 

circuits based on this model. This has been done here applying the geometrical method 

proposed by Zhang et al.[Zha03] (which is based on the study of the entangling 

characteristics of two-qubit gates through their visualization in a 3-dimensional space) 

to SFG gates. This method is based on the observation, demonstrated in [Zha03] by the 

authors, that any two-qubit gate U can be described mathematically by the expression: 

 

21
213212211 kekU ZZcYYcXXc   

 

where k1 and k2 are operators which only act on single qubits, and, therefore, do not 

influence the entangling characteristics of the gate, while all the information on the  

entanglement power of the operator is stored in the exponential containing the three 

parameters c1, c2 and c3 and the Pauli matrices Xi, Yi and Zi. The subscript in each Pauli 

matrix refers to which of the two qubits the matrix is applied. Given a number of 

different gates, by calculating the c1, c2 and c3 parameters for each gate and by 

identifying the corresponding point (c1, c2, c3) in a 3-dimenasional space which contains 

(4.6) 



Chapter 4 – The SFG quantum logic gate 

 101 

all the entangling gates (called the a
+
 Weyl chamber[Zha03]), this method allows one to 

determine graphically, for example:  

-Whether two apparently different two-qubit gates (i.e. different in terms of the unitary 

matrix U which describes them) actually implement an equivalent two-qubit gate (i.e. 

characterised by the same c1, c2 and c3 parameters). 

-Whether or not a two-qubit gate actually introduces any entanglement between two 

qubits. 

-Whether a given two-qubit gate is a perfect entangler (i.e. a single application of the 

gate can bring an unentangled state of the qubits into a maximally entangled 

one[Zha03]).  

 

These coefficients can be evaluated with the help of the G1 and G2 parameters defined 

by Makhlin in [Mak02] which, similarly to c1, c2 and c3, have been derived for 

assessing the entangling characteristics of two-qubit gates. Given a matrix M describing 

a two-qubit operation, the G1 and G2 parameters for matrix M can be calculated by, 

first, expressing M in the Bell basis through the transformation M → MB=Q
†
 M Q with: 



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
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and then by evaluating the matrix m=MB
†
MB. As demonstrated by Makhlin, the 

eignevalues of m are not changed by single-qubit operations applied to M and can 

therefore be used to analyse the entanglement produced by a given two-qubit 

transformation. Further, the spectrum of m is completely characterised by the two 

parameters: 



G1 
tr m  

2

16detM

G2 
tr m  

2
 tr m2 

4detM

 

where tr is the trace operator of a matrix det its determinant.  

 

Hence, G1 and G2 well describe the entangling characteristics of a two-qubit gate M.  

 

(4.7) 

(4.8) 
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As described by Zhang et al. in [Zha03], the c1, c2 and c3 parameters are related to G1 

and G2 by the expressions: 



G1  cos2 c1 cos2 c2 cos2 c3  sin2 c1 sin2 c2 sin2 c3 

                 +
i

4
sin 2c1 sin 2c2 sin 2c3 

G2  4cos2 c1 cos2 c2 cos2 c3  4sin2 c1 sin2 c2 sin2 c3 

                 - cos 2c1 cos 2c2 cos 2c3 

 

The system given in (4.9) can be solved for the case of SFG gates by taking the 

expressions of G1 and G2 for the SFG model (which have been derived in [Rod04] by 

evaluating equations (4.8) for the SFG two-qubit transformation shown in (4.3a), i.e. 

assuming the control electron to start in the spin-up state in a computation): 



G1 M,N 
1 

M N 
eJT  1 

N
eiJT cos1 f JT 

2

4

G2 M,N  1 
M N 

cos 2JT  2 1 
N

cos 1 f JT 
 

and noticing that expressions (4.9) and (4.10) and can be respectively rearranged as: 

       
       

     3212

3211

32121

2cos2cos2cos

2sin2sin2sin4

2cos2cos2cos4

cccG

cccG

cccGG







 

and 



4 G1 M,N  G2 M,N  1 
M N 

cos 2JT cos2 JT 1 f  

4 G1 M,N   1 
M N 

sin 2JT sin2 JT 1 f  

G2 M,N  1 
M N 

cos 2JT  2 1 
M

cos2 JT 1 f  

 

The c1, c2 and c3 parameters for SFG gates can then be evaluated by inspection of 

equations (4.11)-(4.12) obtaining: 

 

 

 

 fJTMc

fJTMc

JTNMc
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2
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






 

To plot the c1, c2 and c3 parameters given above in the a
+
 chamber other considerations 

must be taken into account. The characteristic of the a
+
 chamber is that each point 

represents an ensemble of gates said to be locally equivalent. Two gates U1 and U2 are 

said to be locally equivalent if there exist some single-qubit operations BA  and 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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DC  such that DCUBAU  21  (i.e. the two transformations are equivalent up 

to some single-qubit operations). Given two locally equivalent SFG gates, the equations 

in expression (4.13) may, nevertheless, return different values of c1, c2 and c3. Hence, 

the triplets returned by expression (4.13) need to be further reduced such that locally 

equivalent gates return the same ci values. Also, to be inside the a
+
 chamber, the triplets 

[c1,c2,c3] have to satisfy the conditions: 

 




21

1230

cc

ccc
 

As described in [Zha03], any triplet [c1, c2, c3] can be reduced to the a
+
 chamber 

observing that taking each ci coefficient modulo π, permuting the three coefficients or 

applying any transformation of the type [ci, cj , ck], will not change the local 

equivalence of a triplet corresponding to a two-qubit gate. Hence, given a [c1, c2, c3] 

triplet obtained, for example, through the equations given in (4.13), the corresponding 

point in the a
+
 chamber can be found by, first, taking the triplet modulo π and by then 

trying any possible permutation or transformation of the type described above until the 

conditions given by expressions (4.14) are met. 

 

Figure 4-3(a) shows the a
+
 chamber and the c1, c2 and c3 points evaluated for SFG gates 

with M and N values between 1 and 500. Each point represents a different entangling 

gate. As can also be seen from the inset in Figure 4-3(a), in which the upper points have 

been removed in order to look inside the chamber, the points cover the entire surface of 

the a
+
 chamber (with the exception of the bottom face of this tetrahedron), showing that 

the SFG model can implement a variety of different entangling gates. 

 

                            (a)                                                                (b) 

Figure 4-3:(a) c1, c2 and c3 coefficients in the a
+
 chamber for SFG gates having M and N between 1 

and 500. (b) Perfectly entangling SFG gates in the a+ chamber. 

(4.14) 
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Further, the method proposed by Zhang et al. also allows one to visualise perfect 

entanglers, which, as mentioned above, are operators able to produce a maximally 

entangled state from a non-entangled one. In the a
+
 chamber, perfect entanglers are 

represented by operators having ci coefficients which satisfy one of the following two 

conditions[Zha03]: 

 





2
 ci  ck  ci  c j 



2


3

2
 ci  ck  ci  c j 



2
 2

 

where i,j,k are permutations of 1,2,3. The space defined by these equations and the 

corresponding SFG gates are shown in Figure 4-3(b). The ratio of the total number of 

entangling gates evaluated for large sets of M and N with the total number of perfect 

entanglers produced out of this set tends to 0.25. This is also the ratio of the total area 

uniformly covered by the SFG distribution with the area corresponding to perfectly 

entangling SFG gates, thus showing that about ¼ of the two-qubit gates which can be 

produced within the SFG model are perfect entanglers. 

 

In the context of designing quantum circuits based on SFG gates these results are 

important for two reasons:  

1) Firstly, they show that it should be possible to find convenient solutions of SFG gates 

approximating standard gates typically used in the literature. For example, the 

controlled-phase gate (or the C-NOT gate, since the C-NOT and the controlled-phase 

gate are locally equivalent[Zha03]) is characterised by the ci triplet [] which 

satisfies expressions (4.15) for perfect entanglement. Its location in the a
+
 chamber is 

shown in Figure 4-3(b). From the relatively dense distribution of SFG gates on the 

surface of the a
+
 chamber, it can be expected that a number of solutions close to the 

point corresponding to the controlled-phase gate will be available. These solutions 

represent different approximations of the controlled-phase gate which will differ in the 

degree of precision of the approximation and in the SFG gate parameters. This suggests 

that some flexibility in the choice of the SFG gate parameters will be available when 

approximating controlled-phase gates, which may allow one to balance, for example, 

precision with shortness of gate operation time, when choosing SFG gates for designing 

a quantum circuit. 

 

(4.15) 
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2) At the same time, the fact that the whole surface of the a
+
 chamber is covered by 

points describing SFG gates suggests that there might be other entangling gates 

produced within this model, which may be convenient for designing circuits, for 

example, because of shorter gate operation times than those which can be achieved 

through SFG gates approximating controlled-phase gates. 

 

These two considerations have been used in the work presented in Chapter 6 for testing 

different sets of SFG gates in the design of quantum circuits in order to explore 

strategies for developing circuits characterised by short computational times. 

Specifically, two sets of SFG gates approximating controlled-phase gates have been 

tested, which differed in the precision of approximation and in their gate computation 

time. Also, alternative entangling gates have been analysed which had gate computation 

times shorter than any of the previously considered approximations of controlled-phase 

gates. 

 

4.3 Summary 

The main characteristics of a quantum computational system based on SFG gates have 

been reviewed. SFG gates are solid-state two-qubit quantum logic gates which exploit 

the optical excitation of control particles placed in proximity of the qubits for mediating 

their interaction. Using a geometrical visualisation method, the two-qubit gates which 

can be produced within the SFG model have been analysed. 

 

It is now possible to address in more detail the problem of quantum circuit design with 

SFG gates. As reviewed in the first chapters, mathematically, quantum logic gates can 

be described through matrices. Hence, to analyse quantum circuits and their design it is 

convenient to develop numerical tools which facilitate the generation and manipulation 

of matrices corresponding to specific quantum transformations. The next chapter 

describes the details of a quantum logic simulator and also of an automated quantum 

circuit design tool based on genetic programming, developed in the course of this work. 
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Chapter 5 Numerical tools for the analysis and design of 

quantum logic circuits 
This chapter describes two numerical tools which have been developed in the course of 

the work described in this thesis. The first one is a quantum logic simulator which 

analyses the performance of a quantum circuits. The simulator has been developed 

specifically for quantum circuits based on SFG gates, described in Chapter 4, as it not 

only analyses the evolution of qubits but also how control particles are affected by the 

computation. The second tool implements a quantum circuit design algorithm based on 

a genetic programming approach. Both tools have been realised in Matlab and have 

been used to obtain the results presented in the next chapter. 

 

5.1 The quantum logic simulator 

When focusing on the design of quantum logic circuits, it is important to have tools for 

assessing how well a given circuit implements a desired transformation, for comparing 

how different circuits implement a given function or to model how the performance of a 

circuit may decay in case of non-ideal behaviour of the gates comprised in the circuit. 

Algorithms and protocols for simulating the behaviour of quantum logic circuits have 

been described, for example, in [Obe99,Sch00]. Starting from a given input state of a 

set of qubits in a quantum register, quantum logic simulators typically model the 

evolution of the quantum logical states of the qubits under the influence of quantum 

logic gates, measurements for the read-out and the effects of errors introduced by the 

non-ideal control of the devices used during computation, which may lead to the 

imperfect implementation of quantum gates (operational errors), or decoherence. 

However, as described in the previous chapter and as will be described in more detail 

below, in SFG quantum computation, the transformations applied to qubits also depend 

on the state of the control particles. Hence, in order to obtain a quantum logic simulator 

which could be used in this project for analysing the performance of quantum circuits 

based on the SFG proposal, models such as the ones described in [Obe99,Sch00] have 

been modified so as to consider the specific dynamics of SFG gates and the evolution of 

the states of the control particles. 

 

This resulted in the implementation of a numerical tool specifically designed for 

analysing the performance of circuits based on SFG gates and its structure was kept as 
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flexible as possible in order to allow the gate libraries or error models to be easily 

updated in the course of the work and subsequently. In the previous chapter the main 

features and entangling characteristics of an SFG gate have been studied as a single 

unit. Instead, the quantum logic simulator was used to analyse the performance of SFG 

gates when part of a complete quantum circuit. 

 

As described in Chapter 2, a quantum computation is typically performed by applying a 

well-defined sequence of single- and two–qubit gates, i.e. the quantum circuit, to a 

quantum register. Mathematically, starting from the initial state of the register, given 

through the probability amplitudes cini
 of the input state vector in : 



in 

cin1

cin2

.

.

.

cin
2n

























;     normalised such that     cini

2

1

2n

 1 

a computation can be studied by analysing how the state of the quantum register is 

affected by the unitary transformation Utot corresponding to the quantum circuit. 

Further, the unitary transformation Utot can be obtained by multiplying together all the 

unitary transformations corresponding to the sequence of single- and two-qubit gates 

implemented by the quantum circuit: 

1221 ....... UUUUUU mmmtot   

The output state out|  of the quantum register prior to any measurement can then be 

evaluated by multiplying the input state with the ordered sequence of unitary 

operators[Nie03]: 

 


















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


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


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










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

































 

nnn in

in

in

mmm

in

in

in

totintot

out

out

out

out

c

c

c

UUUUU

c

c

c

UU

c

c

c

2

2

1

2

2

1

2

2

1

.

.

.
.......

.

.

.

.

.

.
1221  

 

(5.1)  

(5.2) 

(5.3) 
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Table 5-1 and Table 5-2 show, respectively, the unitary matrices corresponding to some 

useful unitary transformations commonly used in many publications [Nie03, 

Sch03,Pet05,Jon98,Eke96,Bar95,Kim00a] and which have been included in the 

quantum logic simulator as part of the quantum gates library. The subscripts x,y,z refer 

to the Bloch sphere representation used in [Nie03] and reviewed in Chapter 2. Rx(θ) 

describes, for example, a rotation of the qubit state by  an angle θ about the x-axis of the 

Bloch-sphere. 

Table 5-1: Single-qubit gates implemented in the quantum logic simulator 

Name Matrix representation 

Rotation operators 

































































































































2

2

0

0)(

2
cos

2
sin

2
sin

2
cos

)(

2
cos

2
sin

2
sin

2
cos

)(



















i

i

z

y

x

e

eR

R

i

i

R

 

Hadamard gate 













11

11

2

1
H  

Phase gate 










i
S

0

01
 

Pauli matrices 




















 












10

01

0

0

01

10

Z

i

i
Y

X

 

/8 
































4
8

8
8

0

01

0

0 





i
i

i
i

ee

eeT  

Constant phase shift    ieP   
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Table 5-2: Two-qubit gates implemented in the quantum logic simulator
 

Name Matrix representation 

Controlled-Not gate 



CNOT

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















 

Controlled-Phase gate 



CP 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















  

Root-swap gate 



SWAP 

1 0 0 0

0
1 i

2


1 i

2
0

0 
1 i

2

1 i

2
0

0 0 0 1





















  

SFG gate Equations and details given in Chapter 4 

JNMR (two-qubit gate in nuclear magnetic 

resonance)[Nie03,Kim00a] 

 



JNMR  e


i

2
ZZ

 

 

 

5.1.1 Changing the states of the input register 

As can be seen from Table 5-1 and Table 5-2 all given transformations can be expressed 

in terms of 2x2 and 4x4 matrices. However, even a simple single-qubit operation 

changes all the coefficients of the 2
n 

long state vector (e.g. out|  in equation (5.3)) 

used for describing the state of an n-qubit quantum register during a computation. The 

most straightforward way to compute an output state vector given an input state vector 

and a unitary operation on a subset of qubits from the quantum register is to build 2
n
x2

n
 

matrices using the Kronecker product 



, which, on two matrices A and B, 

returns[Nie03]: 






































2222212222212121

1222112212211121

2212211222112111

1212111212111111

2221

1211

2221

1211

babababa

babababa

babababa

babababa

bb

bb

aa

aa
BA

 

(5.4) 
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For example, given a single-qubit operation (described by a 2x2 operator U2x2 ) to be 

applied on the k
th

 qubit, the corresponding 2
n
x2

n 
 matrix can be built by multiplying left 

the U2x2  operator with n-(k+1) 2x2 identity matrices through the Kronecker product and 

multiplying it on the right side with k 2x2 identity matrices, again, via a Kronecker 

product: 

0112212122
.............. IIIUIIIU kxknnx nn    

Once the 2
n
x2

n 
matrix has been computed through expression (5.5), the evolution of the 

quantum state vector can be computed by applying equation (5.3). The drawback of this 

method is that, even with single-qubit operations, it is still necessary to perform the 

whole multiplication of the corresponding 2
n
x2

n
 matrix (expression (5.5)) with the 2

n
 

state vector describing the register. A more efficient way, especially when dealing with 

unitary transformations on a small number of qubits compared to the size of the 

quantum register, is described in [Sch00]. The method is based on following idea:  

 

Given a quantum register in the state: 

 



  c0 00..00 c1 00..01 ...

         ci an1an2..a1a0  ... c
2n1

11..11

ai  0,1 

 

and 

 









2221

1211

22
uu

uu
U x  

as the operator which has to be applied to the k
th

 qubit, using expressions (5.3)-(5.5), it 

is possible to see that, after having applied the nn x
U

22
 transformation corresponding to 

22xU , the probability amplitude: 

 



ci 

corresponding to the state 

 011121 ...0... aaaaaa kknn   

will be transformed into:  

 



ci new  u11ci  u12 ci2k  

whereas the coefficient: 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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

c
i2k  

which corresponds to the state  

 011121 ...1... aaaaaa kknn   

will be transformed into: 

 



c
i2k new

 u21ci  u22 ci2k  

This can be expressed in the compact form: 

 



ci new

c
i2k new









U2x2

ci

c
i2k









 

It is therefore possible, instead of evaluating all coefficients ci simultaneously using a 

2
n
x2

n
 matrix (i.e. expression (5.5) followed by expression (5.3)), to evaluate expression 

(5.14), for all the 2
n
/2 pairs of coefficients ci and ci+2k which form the state vector. This 

method is implemented by evaluating expression (5.14) for c0 and c0+2k and by copying 

the obtained values into, respectively, position 1 and 1+2
k
 of the new state vector. Then, 

evaluating expression (5.14) for c1 and c1+2k and copying the new values in position 2 

and 2+2
k
 of the new state vector, and so on until the whole state vector has been 

processed. While the multiplication of the complete state vector with the 2
n
x2

n
 matrix 

shown in expression (5.5) has a complexity of O(2
2n+1

), the algorithm described in 

[Sch00] reduces the complexity to O(2
n+1

) and has therefore been implemented in the 

quantum logic simulator here presented.  

 

This algorithm can also be generalized for the case of l-qubit quantum gates: 

 

























lll

l

ll

uu

uu

U
x

2,21,2

2,11,1

22

.........

..

..

..

.........

 

Considering a set of l ordered indices  describing the positions of the qubits in 

the quantum register to which the gate has to be applied, the algorithm here requires to 

extract from the state vector the coefficients ci, ci+2 ….. ci+2 +2 , ci+2+2+…+2  to 

perform the transformation: 

 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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
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As in the single qubit case, the new values are then copied in the updated state vector 

and the algorithm proceeds with the set of coefficients corresponding to ci+1, continuing 

until the whole state vector has been processed. In this case, the complexity is O(2
n-

l
2

2l+1
) and has been implemented in the quantum logic simulator for the case of two-

qubit gates. 

 

To analyse a specific quantum circuit, its corresponding ordered gate sequence is given 

as input to the quantum logic simulator in the form of a text file. Each quantum gate of 

Table 5-1 and Table 5-2 is associated with a gate identifier. The structure of the 

simulation algorithm is as follows: 

 

Figure 5-1: Structure of the simulator 

5.1.2 Simulating a quantum circuit based on SFG gates 

As described in the previous chapter, in an SFG gate the interaction between two qubits 

A and B is mediated by a control atom C. It is started by the excitation of an electron 

(5.16) 
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from the control atom through an optical pulse and stops after the transmission of a de-

exciting pulse after a pulse-interleave time T.  The impact of this transformation can be 

described by the matrix: 

 













UC

CU
eU

M

MTiHe

2

1
 

where He is the Hamiltonian of the three-particle interaction in the excited state, U+ and 

U- are matrices which only change the state of the qubits, while CM1 and CM2 also 

change the state of the controls. In order to avoid entanglement between the qubits and 

controls at the end of the gate protocol, solutions with CM1=CM2=0 are exploited which, 

as demonstrated in [Rod04], depend on two integers M and N and can be summarised 

as: 

 
 

 












NMU

NMU
U

,0

0,
 

Equation (5.18) can be interpreted as follows. The excitation of the control atom is 

equivalent to a unitary transformation being applied to the qubits. The nature of this 

transformation depends on the spin state of the control electron. If the control electron is 

in the spin-up state then U+ is the transformation which will affect the qubits, otherwise 

it will be U-. In an ideal case each qubit-control atom-qubit system will start with the 

control electron in a well defined state, spin-up or spin-down, so that it is known which 

of the transformations will be implemented, and will return after the excitation back to 

its starting state. It is possible to assume, therefore, that only U+ or U- will be applied to 

the quantum register. However, as will be discussed below, there might be situations in 

which the imperfect control over the system may lead to perturbations in the SFG gate 

protocol such that, instead of having an ideal transformation as the one shown in 

expression (5.18), a transformation with some non-zero elements in the CM1 and CM2 

matrices shown in (5.17) may be obtained. Non-zero elements in CM1 and CM2 influence 

the state of the control particle and may bring it to a superposition of the spin-up and 

spin-down state. In this case, the unitary transformation applied through this control 

particle would not be U+ or U- but a superposition of the two, leading to an error in the 

computation. This suggests that it is useful not only to follow the evolution of the states 

of the qubits, but also the evolution of the spin states of the control electrons. The 

quantum logic simulator works, therefore, with a state vector containing information on 

(5.17) 

(5.18) 
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the states of the qubits as well as the state of the control electrons. The actual physical 

position of the particles (qubits and controls) on the computation chip is not taken into 

account in the simulator. It is rather assumed, that the physical position of the particles 

reflects itself in the relevant two-qubit gate parameters (e.g., in the case of SFG gates, 

equations (4.3) in Chapter 4) used in the analysed circuits as these depend, for example, 

on the distance between qubits and control particles[Rod04]. However, only to 

understand conceptually how the simulator works, it will be here assumed to operate 

with a chip as the one shown in Figure 5-2. It is assumed that the quantum register will 

be built out of a set of qubits which, except for qubit Qn-1 and Q0 whose interaction will 

be described later in the paragraph, always interact with two neighbours and that there 

will be one control atom for each neighbouring pair of qubits. As shown in Figure 5-2, 

the quantum states of the register can then be defined in the following way: a given 

quantum state is described by a string of 0s and 1s. The bits in the odd positions, 

starting from the least significant bit, describe the state of the qubits, whilst the ones in 

the even positions describe the states of the control electrons. Figure 5-2 describes the 

case in which there is no interaction between qubit n-1 and qubit 0. This could 

correspond to a situation in which these two qubits are located too far away from each 

other on the chip. In this case the total number of control atoms is equal to the number 

of qubits -1. This configuration will be referred to as the “linear” configuration.  

Qn-1

Qn-2 Q0

Cn-2
Cn-3

C0

Qi qubit i               Ci control electron i

aq(n-1)ac(n-2) aq(n-2)ac(n-3)……………….........         ac0 aq0   >

……

Qn-1

Qn-2 Q0

Cn-2
Cn-3

C0

Qi qubit i               Ci control electron i

aq(n-1)ac(n-2) aq(n-2)ac(n-3)……………….........         ac0 aq0   >

……

 

Figure 5-2: Definition of the sate of the quantum register when evolution of the states of the control 

electrons is included in the system 

In other cases, for example when considering the case of 3 qubits placed on the vertices 

of a triangle as shown in Figure 5-3, there can be an interaction between qubit 2 and 

qubit 0. In this case, which will be referred to as the “circular” configuration, the total 
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number of control atoms is equal to the number of qubits. The configuration (linear or 

circular) of the qubits is specified at the beginning of the text file describing the 

quantum circuit. 

Q2

Q0

Q1

C0

C1

C2

 

Figure 5-3: Example of circular configuration of qubits. Qubits are placed in such a way, that 

interaction between qubit 0 and qubit n-1 is possible 

If, instead of only considering qubit-qubit systems, control atoms are also considered, 

each 2-qubit unitary transformation is then described by a 2
3
x2

3
 matrix, since the state 

of the control electron has to be taken into account, as seen, for example, from 

equations (5.17) and (5.18). This does not affect the main traits of the algorithms 

described in Section 5.1.1 for changing the state of the quantum register. Without 

getting into the details of the required modifications, it should only be noticed that, in 

terms of single-qubit operations, the same method can substantially be used. For two-

qubit operations, however, instead of only extracting from the state vector the ci 

coefficients corresponding to the two qubits to which the transformation has to be 

applied, it is now necessary to extract the coefficients which contain the information on 

the state of the qubits and of the corresponding control particle. These are then copied 

in the vector of ci coefficients shown in expression (5.16) after having been rearranged 

such that their order is consistent with the 2
3
x2

3
 matrix which describes SFG two-qubit 

gates. Subsequently, the desired transformation is applied and the new ci coefficients 

are copied back into the state vector, as required by the original protocol. The choice of 

including the control particles in the analysis of the evolution of the quantum register 

will increase the amount of data which will have to be dealt with since, if n qubits and 

nc controls are present on the chip, a state vector of length 



2nnc  will have to be 

processed instead of 



2n  when only qubits are taken into account. On the other hand, it 

will give a tool which will be able to assess the penalties introduced by unwanted 
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changes in the spin states of the control electrons which may be caused, for example, by 

fluctuations of the gate parameters shown in equations (4.3) of Chapter 4. As will be 

discussed below, it is unlikely that during an experiment these gate parameters will be 

obtained with perfect precision and it is therefore important to be able to model the 

impact of non-optimal control of the circuit. 

  

5.1.3 Measurements 

As described in Chapter 2, the act of a measurement causes the superposition of states 

in the quantum register to collapse randomly into one of the states building the 

superposition. Given a quantum register in the state: 

 



  c0 00..00 c1 00..01 ...

         ci an1an2..a1a0  ... c
2n1

11..11
 

 

the probability of measuring the state 



an1an2...a1a0  is given by |ci|
2
[Nie03]. This 

mechanism has been modelled using a uniformly distributed random number generator, 

with values between 0 and 1. When a measurement is to be simulated, first, a random 

number r is picked. If: 

 



r  c0

2
 

then:  

 000..00out  

is defined as the output of the measurement. Else, if: 

 



r  c0

2
 c1

2
 

then: 

 001..00out  

is defined as the output of the measurement. Else, this procedure continues until: 

 

2

1


k

icr  

and the corresponding state 



an1an2...a1a0  is defined as the result of the measurement.  

  

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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5.1.4 Sources of errors 

5.1.4.1 Operational Errors 

The matrix representations given in Table 5-1 and Table 5-2 describe the behaviour of 

quantum logical gates in an ideal case. But, in a practical implementation, it is unlikely 

that it will be possible to perform exactly the desired transformations, hence a 

perturbation will be introduced into the system. This problem is best viewed in the case 

of one-qubit gates. If the state of a qubit is described by means of the Bloch-sphere 

representation [Nie03] then one-qubit gates represent rotations of the state of the qubit 

on the surface of the Bloch-sphere. In the case of the Rx(θ) gate, for example, the initial 

state of the qubit is rotated by an angle θ around the x-axis of the Bloch sphere. 

However, in an experiment, one can expect that, due to technological reasons such as, 

for example, noise affecting the signals controlling the quantum computational system, 

a single-qubit rotation with a slightly different angle than the one expected will be 

implemented. Mathematically, this can be modelled by adding a random quantity ε, a 

perturbation, to the input angle of the gate[Sch00]: 

 

 


























 







 









 








 



2
cos

2
sin

2
sin

2
cos

)(






i

i

R errorx  

All single-qubit gates can be interpreted as rotations and can be decomposed with the 

help of the Rx(θ), Ry(θ) and Rz(θ) matrices and a phase shift e
i

 [Nie03]. The Hadamard 

gate H, for example, can be expressed as:  

 )
2

()(
11

11

2

1
2






yx

i

RReH 









  

An operational error on a Hadamard gate can then be modelled by: 

 



Herr  e
i


2
1











Rx  2 Ry



2
3









 

Such decompositions can be used with any single-qubit operation to introduce 

perturbations. Similarly, any gate which requires a variable input parameter can be 

perturbed by adding random fluctuations. The transformation corresponding to SFG 

gates depends, as reviewed previously, on physical parameters such as the magnetic 

field B, the strength of the interaction between qubits and controls described by J and 

the pulse-interleave time T. These parameters could have an offset from the desired 

(5.25) 

(5.26) 

(5.27) 
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value caused, for example, by erroneous characterisation of components used in the 

computation system or by unpredictable fluctuations in the devices used for the 

generation of the optical signal which could lead to timing-jitter on the excitation and 

de-excitation pulses. In our simulator, these fluctuations have been modelled through 

Gaussian distributions[Obe99] with standard deviation specified as an input parameter 

in the text file describing the quantum circuit under analysis. 

 

5.1.4.2 Decoherence 

As explained in Chapter 2, decoherence is the unwanted interaction of the environment 

with the quantum register. It can introduce unpredictable changes in the state of the 

qubits which corresponds to a loss of the stored quantum information. Computationally, 

this is equivalent to errors being introduced in the system. 

 

The quantum logic simulator developed in the course of this work, currently does not 

include algorithms for the modelling of the impact of decoherence. The primary aim of 

the research was to develop compact quantum circuits suitable for the experimental 

demonstration of a quantum computation prototype and to study, as discussed in 

Chapter 6, how to best implement them within the SFG model. However, the impact of 

decoherence on qubits can also be modelled in a quantum logic simulator through the 

algorithms used, for example, by Miquel et al.[Miq96] and Devitt et al.[Dev06]. 

 

Miquel‟s algorithm focuses on modelling the impact of decoherence phenomena 

involving a transfer of energy from the qubits to the environment. The environment is 

modelled through so called “environmental qubits” which perturb the computational 

system interacting with the qubits of the quantum register. At chosen time intervals ti, a 

randomly selected qubit qi from the register interacts with an environmental qubit. The 

latter one always starts in the ground state 



0
ei

. Defining p1 as the probability for a 

qubit in the excited state 
iq

1  to remain in the excited state and p2 =1- p1 as the 

probability for the qubit qi to decay to the ground state 
iq

0 , the algorithm performs 

following transformation on the state of qubit qi and the environmental qubit: 

iiii

iiiiii

eqeq

eqeqeq
pp

0000

100101 21




 (5.28) 
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Expression (5.28) can be interpreted as follows: If the qubit qi is in its excited state, then 

it may remain in the excited state without interacting with the environmental qubit or it 

may decay to the ground state transferring its energy to the environmental qubit. 

Instead, if the qubit qi is in its ground state, then there is no energy which can be 

transferred to the environment and no transformation is applied. The environmental 

qubit is discarded once these operations have been performed and the state vector is 

renormalized. From expression (5.28) it can be seen how the decoherence process 

perturbs the qubit state 
iq

1  leading to the generation of new and unwanted states.  

 

Devitt‟s model simulates processes associated to T2 with their loss of information on the 

relative phase difference between qubits by introducing random phase flips between 

them. A phase-flip probability pflip is defined and, after each operational step and for 

each qubit, a random number rnflip is picked. If rnflip<pflip, a phase-flip is applied to the 

qubit-state 10    by operating with a Pauli-Z matrix on it: 






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


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
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























10

01
qubitZqubit

flip
 

bringing it to the state 10   . 

 

Combining Miquel‟s and Devitt‟s models, allows one to consider, both, processes 

associated to T1 and to T2 which may perturb the computation register.  

 

When modelling decoherence phenomena in SFG quantum computation it will be 

important to distinguish between decoherence affecting the qubits as opposed to 

decoherence perturbing the control particles. 

 

In terms of qubits, studies have shown that, in various quantum computation proposals 

based on electron spin qubits in solid-state systems, i.e. with features similar to the SFG 

model, the decoherence effects which occur on the shortest time-scale (and which are 

therefore going to be the main responsible for a decrease in system performance) are T2 

processes[Tyr03]. The main cause of this perturbation arises as a result of fluctuations 

of the local magnetic field experienced by a qubit. This leads to fluctuations in the 

Larmor frequencies with which qubits evolve with respect to each other and, 

(5.29) 
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consequently, to uncertainties on their relative phases. One of the major sources of 

fluctuations in the local magnetic field comes from the non-zero nuclear spin of atoms 

in the substrate. In systems based on qubits carried by the electron spin of phosphorus 

atoms in silicon or by NV centres in diamond, this effect has been strongly reduced by 

exploiting purified substrates with a very high percentage of atoms with 0 nuclear spin 

achieving, for both systems, decoherence times in the order of ~ms[Tyr03,Bal09]. 

Hence, because the SFG model envisages qubit structures similar to the ones analysed 

in [Tyr03] or may be compatible with the diamond NV proposal, the dominant 

decoherence effect perturbing the qubits is likely to be dephasing of the qubits which 

can be simulated with the phase-flip model described, for example, by Devitt et al.. 

  

In terms of control particles, the main effect which will perturb the SFG scheme will be 

the unwanted relaxation to the ground state of the excited state of the control particle 

while it mediates an interaction between two qubits. In theory, as discussed in the 

previous chapter, the SFG proposal requires that, for a desired quantum gate to be 

applied between two qubits, its corresponding control particle remains in an excited 

state for a specific time Tideal. If, however, the control particle relaxes to the ground 

state after a time Terr shorter that Tideal, then the two qubits interact for a time shorter 

than the desired one and are therefore subject to an incomplete transformation. In a 

recent study on the lifetime of the excited state of phosphorus atoms in silicon it was 

shown that one of the main contributions to the decoherence of the excited state is 

decay by emission of a phonon[Vin08]. This mechanism is a T1 process which involves 

an exchange of energy between the computation register and the substrate and can be 

simulated with a model similar to the one proposed by Miquel et al.. More specifically, 

a phenomenological model for simulating relaxation of the control particle could be the 

following: Firstly, a probability distribution pT1 for the perturbed pulse interleave time 

Terr has to be defined. This probability distribution will be used, in conjunction with a 

random number generator, to obtain a perturbed pulse interleave time Terr whenever a 

relaxation event has to be modelled. The values returned by pT1 should reflect as close 

as possible the time-scales characterising this relaxation phenomenon and should 

therefore be also function of the specific T1 value for a given experiment. Hence, for 

Tideal<T1, pT1 should return with a higher probability Terr values larger than Tideal, while 

for Tideal>T1, values of Terr<Tideal should be returned with higher probability. The exact 

shape of pT1 will depend on the specific materials used as control particles and 
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substrates (since these will determine the physical processes responsible for the 

relaxation event). In general terms, it should be noticed that an exponential behaviour in 

time characterised by the decoherence time T1 is often associated to decoherence 

phenomena[Nie03] and may therefore be a convenient starting point for defining pT1. 

Once this distribution has been defined and a possible decoherence event has to be 

modelled for a given two-qubit gate described through a pulse interleave time Tideal, a 

random number is picked in order to determine, through pT1, the perturbed interaction 

time Terr. If the resulting Terr is longer than Tideal then it is assumed that the decoherence 

event would take place after the transmission of the de-exciting pulse which returns the 

control particle to the ground state, meaning that the ideal transformation can be 

implemented before decoherence perturbs gate operation. Hence, the ideal two-qubit 

gate is applied to the qubits in this case. If, however, Terr is shorter than Tideal it is 

assumed that the control particle relaxes back to the ground state before the arrival of 

the de-exciting pulse and the unitary transformations describing the interaction between 

qubits and controls are evaluated using Terr in the relevant equations instead of Tideal. 

Moreover, this model should also take into account that, in case an unwanted relaxation 

event of the control electron takes place prior to the transmission of the de-exciting 

pulse, then, since the de-exciting pulse will nevertheless be transmitted on the chip, this 

will actually lead to the renewed excitation of the control electron and, consequently, to 

the unwanted interaction of the qubits until the control electron relaxes back to its 

ground state. This further perturbation can be modelled as a second (un-scheduled) SFG 

interaction with interaction time Terr2  evaluated again using pT1 and a random number 

generator. 

 

Although the implementation of these protocols fell outside the scope of the work 

described in the thesis, a detailed analysis on how decoherence may perturb the 

performance of the circuits presented in Chapter 6 is important for obtaining a more 

complete picture on the potential of the SFG model. Hence, the integration of the 

quantum logic simulator with algorithms for simulating the impact of decoherence is 

important in future work. 
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5.1.5 Output data 

The main output data of the simulator is the state vector out|  prior to the final 

measurement which would give the desired result of the computation. This vector can 

be used: 

1) To evaluate the probability distribution of the output states taking the squared 

modulus of the probability amplitudes 

2) To compare different output vectors through the computation of the fidelity 

[Obe99,Sch00] which, given two output vectors 1| out  and 2| out , is defined as: 

 
2

21  outoutFidelity   

The fidelity is equal to 1 if the two output state vectors are equivalent (parallel) and 0 if 

the two vectors are orthogonal. It can be used, for example, to evaluate the impact of 

impairments on a given circuit implementation for increasing amount of perturbation. 

Alternatively, given a set of different quantum circuits which solve the same quantum 

algorithm, the fidelity can be used to compare the tolerance of the various circuits 

towards a specific impairment. 

 

5.1.6 Using the simulator: an example 

An example of the simulator operation is given here to show how a text file is written.  

The simulated circuit is a C-NOT gate between two qubits of a 3-qubit quantum register 

q2, q1, q0. The C-NOT gate is not implemented directly, but through the equivalent 

circuit shown in Figure 5-4 which exploits two Hadamard gates H and a controlled-

phase gate CP. 

 

Figure 5-4: Equivalence circuit for the C-NOT and the controlled-phase gate 

As shown in Chapter 4, a controlled phase gate can be approximated using an SFG gate 

with M=1584 and N=2177.  The quantum register is initialised so that all particles, both, 

qubits and control atoms, are in the spin-up state, mathematically equivalent to them 

being in the 0 -state and qubits are considered to be in the circular configuration, as in 

(5.30) 
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Figure 5-3. First, a single qubit rotation is applied to qubit q2 in order to bring it to the 

1 -state. Then, the equivalent C-NOT circuit shown in Figure 5-4 is applied with qubit 

q2 as the control qubit and q0 as the target qubit. Since, after the rotation, q2 is in the 

1 -state and q0 in the 0 -state, the C-NOT gate will bring qubit q0 to 1 . Figure 5-5 

shows the corresponding complete circuit. 

 

 

Figure 5-5: Circuit simulated for the demonstration of a C-NOT gate implemented using an SFG 

gate 

The text file for the simulator describing the circuit shown in Figure 5-5 is: 

 

The input (red) and output (blue) probability distribution of the quantum register, are 

shown in Figure 5-6, taking into consideration only the state of the qubits and not of the 

control atoms.  
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Figure 5-6: Input and output probability distribution for the C-NOT equivalent circuit 

Since all qubits of the quantum register are initialized to the 0 -state at the beginning, 

only the state 000  has a finite probability of being measured in the input distribution. 

Conversely, with q2 being brought to the 1 -state by the rotation and q0 brought to 1  

by the C-NOT gate, the only state which has a non-zero probability of being measured 

in the output state is 101 . 

 

Summarising, the main features of a quantum logic simulator developed during the 

project have been described. This tool was specifically designed for analysing circuits 

based on SFG gates since it not only simulates the evolution of the qubits, but also 

models the state of the control particles. This feature is important for the analysis of 

circuits based on the SFG model, since an unwanted change in the state of a control 

particle can subsequently lead to perturbations in the corresponding SFG gates. The 

quantum logic simulator has been used to analyse the performance of circuits suitable 

for the experimental demonstration of an SFG quantum computation prototype and the 

results obtained through this analysis are presented in Chapter 6. 

 

However, to analyse a quantum logic circuit, one first needs to design it. Partly, this 

task has been solved in this work by means of an automated quantum circuit design 

algorithm based on a genetic programming approach which is described below.  
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5.2 A genetic programming algorithm for quantum circuit design 

As described in the Chapter 2, designing the quantum circuit which implements a 

desired quantum computation, requires to find a corresponding well-defined sequence 

of single- and two-qubit gates (out of the set of quantum gates allowed by the chosen 

technology), which implements the unitary operator Ucomp describing the computation. 

The final quantum circuit depends, therefore, on the set of available gates. Physical 

constraints, typically the most important being the impact of decoherence, may 

influence the design process. Often this translates into the search for the circuit with the 

least number of gates. 

 

Mathematically, the quantum circuit design problem can be restated in terms of a matrix 

decomposition. Given the unitary transformation Ucomp describing a quantum 

computation and given a set of matrices 



U1,U2,U3...  describing the available gates, 

designing a quantum circuit is equivalent to finding a decomposition of Ucomp 

comprising only gates Ui out of the available set. For example: 

 



U4 U1 U3 U6 U2 U6 Ucomp 

In the work described in this thesis, the aim was to derive circuits compatible with SFG 

technology for a three-qubit refined Deutsch-Jozsa algorithm[Col98]. Analytical 

methods have been previously proposed for solving this problem with other quantum 

computational systems. In [Kim00b], for example, an algorithm based on generator 

expansion was proposed which was then used to implement a three-qubit refined 

Deutsch-Jozsa algorithm on a quantum computer based on NMR[Kim00a]. However, 

the generator expansion technique addresses the quantum circuit design problem by 

analysing the Hamiltonian which describes the interactions between the qubits and the 

computation one wishes to perform. In the SFG proposal the situation is complicated by 

the presence of the control atoms which make it difficult to apply the generator 

expansion technique to this model. Also, the generator expansion algorithm exploits C-

NOT gates to reduce interactions between more than two qubits to operations based on 

two-qubit gates only, as shown in Figure 5-7[Kim00b]. 

(5.31) 
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Figure 5-7: Reduction of three-qubit interactions to two-qubit interactions[Kim00b] 

This places a constraint on the design procedure: the C-NOT gate, or an equivalent gate 

such as the controlled-phase gate, must be part of the quantum gate library used for the 

decomposition process. As mentioned in Chapter 4, it is possible to produce SFG gates 

which approximate controlled-phase gates and these approximations differ in their level 

of precision and in their gate operation times. However, as will be discussed in the next 

chapter, there are other entangling SFG gates which have gate computation times 

shorter than those of the approximated controlled-phase gates. Hence, in order to 

investigate strategies for designing efficient quantum logic circuits with SFG gates and 

to compare how circuit topologies may change depending on the entangling gates used 

during the decomposition process, a more flexible design procedure compared to the 

generator expansion algorithm, one which does not impose a priori a specific set of 

gates, may be more desirable and useful. A numerical method which incorporates this 

flexibility is the genetic programming algorithm adapted to quantum circuit design 

proposed by Williams and Gray[Wil99]. Their model is based on following idea: 

suppose one has a unitary transformation Ucomp which describes a quantum computation 

one wishes to perform on a quantum register. Further, suppose one has a specific set of 

one- and two-qubit gates, described mathematically by U1, U2, U3, U4…Ui, which one is 

able to apply to the quantum register. Williams and Gray start their design process by 

arbitrarily creating an initial population of circuits. Each circuit Ucirc comprises a 

random sequence of one- and two-qubit gates out of the available set: 

 

 



Ucirc Uk Um Uk Ul Un  ......Un    {k,l,m,n}{1,2...i} 

 

A fitness parameter ffit which quantifies how well a circuit implements the desired 

transformation Ucomp, is then evaluated for each element of the population. After that, 

the circuits are sorted according to their fitness value. Once the initial population has 

been built, following protocol is implemented: 

(5.32) 
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1) Parents which will breed the circuits of the next generation are selected from the 

population. The selection procedure is random, although circuits with a higher value of 

fitness have a higher probability of being picked. 

2) The next generation is created by crossover and mutation of the selected parents. In 

crossover, a new circuit is built by connecting two random fractions of circuits of two 

parents as shown in Figure 5-8. 

 

Figure 5-8: Generation of a new circuit through crossover 

Conversely, mutation perturbs the circuit represented by a parent by typically inserting 

a random gate, deleting a random gate or perturbing an existing gate as will be 

described later in more detail. 

3) Once a new generation is formed, the fitness of each circuit is assessed and the 

population is sorted according to the fitness value of its circuits. 

4) If at least one circuit in the new population has a fitness value which reaches a 

desired threshold or, in order to avoid excessive computation time, if a maximal number 

of iterations has been reached, the algorithm terminates, otherwise the procedure returns 

to point 1). 

 

The idea behind genetic programming is that, by randomly composing or mutating 

circuits (giving a stronger weight to ones with a high fitness), generations of better-

performing circuits might subsequently be built. 

 

Using genetic programming, Williams and Gray developed circuits for the teleportation 

problem[Wil99]. As reviewed in [Spe04], this method was applied to other problems 

including the one-qubit Deutsch-Jozsa algorithm. Other studies have analysed the 

impact on the search efficiency of different strategies for integrating fitness and cost 

functions when assessing the quality of a circuit [Luk03] or the influence of alternative 
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selection strategies [Lei04]. While Williams and Gray‟s original work was based on 

finding deterministic circuits, other researchers have obtained important results limiting 

the search to probabilistic circuits, i.e. circuits which would yield the correct result with 

a probability of success p>0.5, as shown, for example, in [Spe04,Mas04]. In most of 

these studies, the quantum logic gates used for the design process were ideal and 

technology-independent. However, in the work here presented, the genetic 

programming algorithm was specifically developed to operate with SFG gates, in order, 

as will be further discussed in the next chapter, to design quantum logic circuits suitable 

for the experimental demonstration of a prototype based on this technology. 

5.2.1 Implementation of the genetic programming algorithm 

The design tool presented here was built specifically for designing circuits for a 

potential three-qubit quantum computation experiment. The qubits were assumed to 

have a physical distribution such that each of the three can interact with the others as 

shown in Figure 5-9. 

 

Figure 5-9: Three-qubit scheme assumed for the simulations 

The set of gates used in the quantum circuit design algorithm comprises three two-qubit 

entangling gates TQ1, TQ2 and TQ3 representing, respectively, a two-qubit gate 

between qubit q0 and q1, q1 and q2, q0 and q2 (Figure 5-9). These entangling gates could, 

for example, be any of the gates commonly used in literature such as the controlled-

phase gate or the C-NOT gate, or SFG gates. In terms of single-qubit gates, the Rz() 

and Rx() rotation operators and a phase shift operator Phi()[Nie03]: 
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were taken into account as these, together with two-qubit entangling gates, form a 

universal set of quantum logic gates [Nie03,Deu95]. A circuit of L quantum gates is 

(5.33) 
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specified through a 2xL matrix in which the first row memorises the type of gate and on 

which qubit(s) it operates while the second row stores the angles of single-qubit 

rotations. The following codification has been used with respect to the gate labels used 

in the first row of the matrix: 

- 1,2 and 3 respectively describe the entangling gates TQ1, TQ2 and TQ3 shown in 

Figure 5-9. The matrices describing the entangling gates TQ1, TQ2 and TQ3 are given 

as input to the algorithm. 

- 4,5, or 6 describe an Rz rotation on qubits 0,1 or 2. 

-7,8 or 9 an Rx rotation on qubits 0,1, or 2. 

-10,11 or 12 a phase shift on qubits 0,1 or 2. 

The gates are stored in the 2xL matrix sequentially. Figure 5-10 shows an example of a 

2xL circuit matrix used in the algorithm and the corresponding circuit. 

 

Figure 5-10: Example of 2xL matrix representation used in the genetic programming algorithm 

and the corresponding circuit. 

 

 

5.2.2 Fitness evaluation 

The average fidelity AF of the transformation Ucirc produced by a given circuit, with 

respect to the ideal desired transformation Ucomp is used as the fitness 

parameter[Nie02,For02,Rod04]: 

 AF=|Tr(U
†

compUcirc)/2
Nq

|
2
 

where Nq is the number of qubits in the system. AF is equal to 1 when Ucirc implements 

Ucomp exactly (up to an irrelevant phase difference), while lower values are returned in 

case of imperfect implementation. The average fidelity has been already used to 

evaluate the fitness of a circuit, see, for example, [Din08,Rei05], although in these 

cases, AF was only one factor in a multi-parameter fitness function. Here, it was 

preferred to implement a fitness function only based on the average fidelity in order to 

(5.34) 
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avoid having too many parameters biasing the search process and, possibly, not 

understanding how the various parameters influence the convergence of the algorithm.  

5.2.3 Generation of the initial population 

The dimension of the population in a design process is defined at the beginning and 

labelled PopL. To create the initial population of circuits, PopL random sequences of 

gates are generated. The length of the circuits is not fixed. However, in order to avoid 

solutions corresponding to excessively long quantum circuits becoming dominant in a 

generation, a maximum allowed number of two-qubit gates per circuit (TQmax) has 

been introduced in this work. All functions in the algorithm are designed such that 

evolutions of circuits never exceed TQmax. Also, “cleaning” functions are exploited 

which condense repetitions of adjacent single-qubit gates of the same type into a single 

gate by adding up their rotation angles. Once the pool of circuits has been generated, the 

fitness of all circuits is assessed and the population is sorted according to the fitness 

value.  

 

5.2.4 Mutation and crossover functions 

Mutation of a circuit requires the quantum gate sequence to be altered. Four different 

mutation functions have been implemented in this work: removal of a random gate from 

the gate sequence, insertion of a random gate in the gate sequence, exchange of a 

random gate in the circuit with a random gate from the available set and perturbation of 

a random gate in the circuit. In the latter case, in case of two-qubit gates, the qubits on 

which the selected gate is operating are randomly changed while in case of single-qubit 

operations a new angle  for the rotation is picked. When mutation is applied to a 

circuit, one out of the four possible functions is randomly selected with equal selection 

probability and implemented on the gate sequence. 

 

As shown in Figure 5-8, given two parents, crossover is implemented by connecting 

two random fractions of the parents to form a new circuit. Supposing that Parent1 has 

length L1 and Parent2 length L2, the fraction forming the initial part of the circuit is 

obtained by selecting a random number k1 in the range between 1 and L1, and taking the 

first k1 gates of Parent1. The fraction forming the final part of the circuit is obtained 

picking a random number k2 between 1 and L2 and taking the gates from gate k2 to gate 

L2 of Parent2. 
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5.2.5 Selection mechanism 

Given a population, parents for, both, mutation and crossover have to be selected at 

each round to breed the circuits of the next generation. The selection mechanism has to 

be random, with a higher probability of being selected given to circuits with a higher 

fitness value. In the genetic programming tool presented here stochastic universal 

sampling has been used which is a sampling method commonly used in genetic 

programming (see, for example, [Luk03]). An example of this sampling method is 

shown schematically in Figure 5-11 for a population of 8 elements out of which N 

elements must be selected. The population is sorted according to the fitness value and 

the structure shown in Figure 5-11 is formed in which, for each element, a slot 

proportional to its fitness value is associated. Then, a vector of N pointers equally 

spaced by 
N

FTOT  (with FTOT being the sum of all fitness values) is generated. Finally, a 

random number 
N

FTOT  between 0 and 
N

FTOT  is picked. This number randomly shifts 

the vector of pointers and how it is superimposed over the slots representing the 

population elements.  In the example shown in Figure 5-11, for instance, using 

stochastic universal sampling with N=9 leads to element 1 being selected 3 times as a 

parent, element 2 twice and elements 3,4,5 and 7 once.  

 

Figure 5-11: Schematic representation of the SUS scheme 

In each round, the number of parents needed for mutation and crossover is fixed and 

known. These quantities are defined through two parameters, CrossProb and MutProb, 

given as input at the beginning of the design process, which represent, respectively, the 

fraction of population which will be bred through crossover and mutation. At the 

beginning of each round 2  CrossProb·PopL circuits are selected as parents for 
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crossover (two parents are needed for each new circuit) while MutProb·PopL circuits 

are selected for mutation. Finally, in order to avoid the loss of the best solutions 

obtained during an algorithm cycle, moderate elitism, meaning the direct transfer of the 

fittest elements in the population to the next generation without applying crossover or 

mutation [Step08], is exploited in the design process. Defining the parameter ElitProb, 

elitism is implemented selecting the best ElitProb·PopL circuits in the population and 

transferring them to the next generation. In the work here presented, CrossProb 

typically spanned between 0.2 and 0.5, MutProb between 0.5 and 0.8 while ElitProb 

assumed values around 0.01. In most of the design processes PopL=5000 was used. The 

quantum circuits obtained with this design algorithm for a three-qubit quantum 

computation register based on the SFG model will be presented in the next chapter. 

 

5.3 Summary 

The main features of two numerical tools developed throughout the project have been 

described: a quantum logic simulator and an automated quantum circuit design 

algorithm based on genetic programming.   

 

The quantum logic simulator takes as input the initial state of a quantum register and 

applies a sequence of unitary operators corresponding to a quantum circuit one wants to 

analyse in order to compute the output state of the computation. It also allows one to 

model the non-ideal behaviour of the quantum logic gates in a circuit. This numerical 

tool can be used to test whether or not a circuit correctly solves a given algorithm or to 

compare the performance of different circuits which solve the same problem in order to 

understand which topology might be more resistant to a certain class of errors. The 

quantum gate library of the simulator can be easily updated and contains a variety of 

different gates: from abstract, non-implementation dependent gates such as the C-NOT, 

to models of physical gates such as the SFG gate or the two qubit gate describing 

interactions in NMR quantum computation. 

 

The second numerical tool addresses the issue of quantum circuit design. Given a 

unitary matrix Ucomp, describing the quantum computation one wants to implement, to 

actually perform that computation with a physical quantum computer requires to find a 

sequence of single- and two-qubit gates (out of the set of gates which can be produced 
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within the chosen technology) which generates Ucomp. The automated quantum circuit 

design algorithm discussed above solves this problem by means of a genetic 

programming approach. This algorithm has been chosen because of its flexibility in 

terms of the two-qubit quantum gates which can be used in the decomposition process 

and has been specifically tailored for the case of a three-qubit quantum computational 

system based on SFG gates. 

 

In the next chapter, the results of how these tools have been used for the design and 

analysis of quantum logic circuits suitable for the experimental demonstration of a 

three-qubit quantum computer prototype based on SFG gates are described.  
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Chapter 6 Design of quantum circuits based on SFG 

technology 
This chapter analyses the design of quantum circuits suitable for the experimental 

demonstration of a three-qubit quantum computation prototype based on the SFG model 

described in Chapter 4. The algorithm used for this study is a refined version of the 

Deutsch-Jozsa algorithm[Deu92,Cle98,Col98], an algorithm commonly used for the 

experimental demonstration of small-scale quantum computation prototypes (see 

[Chu98, Jon98, Kim00a], for example). 

 

The aim of the work was to find circuits with a short computational time in order to 

reduce the probability of errors accumulating along the computational path. To achieve 

this, various design steps have been implemented. A first circuit implementing the 

refined Deutsch-Jozsa algorithm has been obtained adapting a circuit developed for an 

NMR quantum computational system in [Kim00a] to one compatible with controlled-

phase gates implemented with the SFG model, while the remaining circuits presented in 

this chapter have been obtained by means of the automated quantum circuit design 

algorithm based on the genetic programming approach which was presented in Chapter 

5. This tool has been used here to, first, derive quantum logic circuits based on ideal 

controlled-phase gates, comparing the obtained solutions to the ones presented by Kim 

et al.[Km00a]. Then, the automated quantum circuit design approach was used to 

analyse how the performance of the circuits solving the refined Deutsch-Jozsa 

algorithm varied when the ideal controlled-phase gates were substituted by SFG gates, 

focusing on exploiting SFG gates with decreasing gate computation time. Specifically, 

three different sets of SFG gates were tested. The first two sets implemented 

approximations of controlled-phase gates. As will be described in more detail below, 

the first set approximated controlled-phase gates with very high accuracy at the expense 

of long gate computation times, while the second set exploited gates with gate 

computation times around 30 times faster than those of the first set, although 

approximating the controlled-phase gates with less precision. Remembering, as seen in 

Chapter 4, that a variety of different entangling gates can be obtained within the SFG 

model, the third set comprised SFG gates which produce arbitrary entangling gates 

(meaning gates different from the ones typically used in literature such as, for example, 
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controlled-phase gates, C-NOT gates or SWAP  gates) with gate computation times 

shorter than those of the other two sets. 

 

All the circuit presented in this chapter have been derived assuming perfect control over 

the quantum gates parameters. However, during an experiment, this is not going to be 

the case and it is important to understand how the performance of the circuits may 

change because of non-optimal control of the quantum gates. Hence, focusing on one of 

the presented solutions, the change in circuit‟s performance due to fluctuations of some 

specific gate parameters is also discussed. 

 

Finally, because SFG quantum logic gates are implemented by exciting control particles 

through optical pulses (which means that the implementation of a quantum logic circuit 

requires to produce sequences of optical pulses which are then transmitted on the 

quantum computation chip) the last part of this chapter is dedicated to a discussion on 

optical systems which may be suitable for generating the optical signals necessary to 

implement the presented quantum circuits. 

 

6.1 Deutsch’s problem and the refined Deutsch-Jozsa algorithm 

Suppose an oracle implements an n-bit function fn(x) which can be either constant, i.e. 

always returns either 1 or 0 for any input value x, or balanced, i.e. returns 1 for exactly 

half of all possible input values and 0 for the remaining ones. Deutsch‟s problem asks 

how many queries to the oracle are necessary to determine whether the given function is 

constant or balanced[Cle98]. With a classical approach one needs, in the worst case, 2
n-

1
+1 (half of all possible input values plus one) queries since, if the first 2

n-1
 values 

return the same output, say 1, one still needs one more query to define the nature of the 

function[Deu92]. If the function implemented by the oracle is constant the next returned 

value will be again 1 whereas it will be 0 in the case of a balanced one. However, as 

described in [Nie03], Deutsch showed that using a quantum computational approach, 

exploiting the parallelism naturally implemented by such systems, only one query to the 

oracle is necessary. Further, developing a refined version of the algorithm, Collins et al. 

showed that the circuit shown in Figure 6-1 correctly solves the problem [Col98]: 
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Figure 6-1: Quantum circuit solving the refined Deutsch-Jozsa algorithm 

 

where the Hadamard gate H is: 

 











11

11
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1
H  

and Uf is an operator which implements the function defined by the oracle. The circuit 

starts with an input state 



in  with all n qubits in the 



0 -state. Then, the Hadamard 

gates load the qubits with an equal superposition of all possible 2
n
 values which such a 

quantum register can represent. The operator Uf is then applied to the 2
n
 input values 

while the final set of Hadamard gates makes these values interfere. A measurement of 

the output-state 



out  will then find all the qubits in the 



0 -state if the implemented 

function was constant or return at least one qubit in the 



1 -state for the case of a 

balanced function. Hence, thanks to the parallelism naturally implemented in quantum 

registers and the interference introduced by the Hadamard gates, only one query, 

implemented through the operator Uf, is necessary. 

 

The analysis presented by Collins et al. highlighted another important aspect of the 

refined Deutsch-Jozsa algorithm. From Figure 6-1, it can be seen that the core of the 

algorithm lies in the operator Uf which has the form: 

 



U f 

1 
f 0 

0 0 0

0 1 
f 1 

0 0

0 0 ... 0

0 0 0 1 
f 2n1 





















 

However, expression (6.2) describes Uf in an abstract form, which does not say how to 

implement this operator, for example, during a proper computation on a quantum 

computer. To do that, it would first be necessary to find a decomposition of Uf into the, 

typically, one- and two-qubit gates implementable by the chosen technology. In this 

(6.1) 

(6.2) 
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context, Collins et al. showed that only when implementing the refined Deutsch-Jozsa 

algorithm for, at least, the three-qubit case, two-qubit gates would be necessary to solve 

it and that entanglement would be introduced in the quantum register. Moreover, even 

when implementing this algorithm for n≥3, not all balanced functions would require 

two-qubit interactions. Hence, when exploiting the refined Deutsch-Jozsa algorithm to 

show experimentally that a physical system correctly operates as a quantum computer, 

firstly, at least the three-qubit case would have to be considered. Secondly, out of all 

possible balanced functions fn(x), only those that require two-qubit interactions should 

be selected. These facts give important guidelines for the choice of the system to be 

analysed. The aim of the work here presented is to produce circuits suitable for the 

experimental implementation of a quantum computer based on the SFG model. 

However, as seen in Chapter 3, experimental quantum computation imposes exceptional 

technological challenges which result in systems of a few qubits (typically 2-4, with 

some exceptions) being implemented for experimental demonstrations. It was therefore 

decided to develop circuits for the 3-qubit case of the refined Deutsch-Jozsa algorithm 

in order to exploit it in its full complexity while keeping the technological challenges to 

the simplest possible level. 

 

6.2 Designing circuits for a three-qubit refined Deutsch-Jozsa 

algorithm implemented in SFG technology 

In the following sections, different implementations of circuits solving the refined 

Deutsch-Jozsa algorithm will be presented. As described in Chapters 2 and 5, finding a 

circuit for a quantum computation is equivalent to finding sequences of quantum gates 

which, once the corresponding gates‟ unitary operators are multiplied together, return 

the unitary operator describing the quantum computation one wants to implement. As 

can be seen from Figure 6-1, in the case of the refined Deutsch-Jozsa algorithm, the 

operator which needs to be decomposed into a quantum circuit is Uf, the unitary matrix 

describing the function implemented by the oracle. 

 

In terms of the information stored in the system, one of the qubits is labelled q2, the 

second q1 and the third one q0 with the state of the quantum register defined as 



q2q1q0 . 

The three qubits are assumed to be located such that each of them can interact with the 

others. Finally, the function chosen for many of the examples here reported is f17, where 
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the function coding is the same used by Kim et al in [Kim00a] which labels each 

function with the hexadecimal value represented by its binary output string. As shown 

in (6.3), this function is associated to the binary string [0 0 0 1 0 1 1 1], which, on a 

decimal scale corresponds to 23 and to the hexadecimal value of 17. Expressions (6.3) 

also show the unitary operator U17 implementing this function. 

       

 

 

 

 

 

This function is known to require 3 two-qubits gates for its implementation, see 

[Kim00a] for example, and represents, therefore, one of the functions with the 

maximum complexity. Below, the circuits which have been derived in the study here 

presented are reported. 

 

6.2.1 Circuits obtained from an NMR experiment and adapted through 

local equivalence 

The first circuit was obtained starting from a solution given in [Kim00a] for an NMR 

experiment and adapting it to the SFG case exploiting local equivalence. The circuit 

proposed by Kim et al. for the function f17 is the following: 



U17  R1z  J01



2
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

2
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


 

where 



R1z   represents a rotation of qubit 1 around the z-axis in the Bloch sphere 

notation while 



Jij   is a two-qubit interaction between qubit i and j in an NMR 

system, described mathematically by: 



Jij   e
i


2
Z i Z j

 

The final circuit is then obtained by inserting the gate sequence given in equation (6.4) 

in the circuit shown in Figure 6-1. The output state of this circuit can be evaluated by 

feeding the total gate sequence into the quantum logic simulator described in the 

previous chapter, obtaining: 
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
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The circuit given in expression (6.4) is transformed into one compatible with SFG 

technology by observing two things: First, the gates 



Jij 


2









 are locally equivalent to 

the controlled-phase gate through the transformation[Nie03]: 
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where 



P  ei  is a constant phase shift while CPij is a controlled-phase gate 

between qubit i and j. Secondly,  and as shown, for example, in [Rod04], the controlled-

phase gate can be obtained via the SFG model. Hence, by replacing the 



Jij 


2









 gates 

with controlled phase gates as shown in expression (6.7) and then by finding SFG gates 

which approximate controlled-phase gates, it is possible to implement the circuit given 

in (6.4) with an SFG-compatible approach. 

 

The entangling space of the SFG gate was therefore searched for good approximations 

of controlled-phase gates considering values of M and N between 1 and 2500. Out of a 

set of about 25 equivalent candidates, the following three gates were selected due to the 

variability in their f-value (equation (4.3), Chapter 4) in order to mimic the variation in 

gate parameters which would be present in an experimental implementation of an SFG 

quantum computer because of the random distribution of qubits and control particles: 

 

-SFG gate 1: M=1595, N=2137, f=5.348 

-SFG gate 2: M=1584, N=2177, f=4.5 

-SFG gate 3: M=815, N=904, f=18.89 

 

(6.6) 

(6.7) 

(6.8) 
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All three gates approximate the controlled-phase gate with an average fidelity AF 

(equation (5.34), Chapter 5) >0.999 and were chosen as the entangling gates to be used 

for implementing the circuit given in (6.4). As shown schematically in Figure 6-2, SFG 

gate 1 was assumed to act between qubit 0 and 1, SFG gate 2 between qubit 1 and 2, 

SFG gate 3 on qubits 0 and 2.  

 

 

Figure 6-2: Distribution of SFG gates on a three-qubit SFG chip 

 

In the first experimental implementations of an SFG chip such as the one schematised 

in Figure 6-2, it will be unlikely to have such a convenient distribution of the entangling 

gates. It has here been assumed that the f-values of the entangling gates can be imposed 

on the circuit. In reality, these values will be the outcome of a chip characterisation 

procedure[Sto08] after the random distribution of qubits and control particles and 

should, therefore, be considered as given data which might not correspond to the 

optimum value necessary to implement, for example, the above listed controlled-phase 

gates. Nevertheless, the ideal circuits produced through this assumption are a 

fundamental step which enable the comparison of different design strategies, as will be 

shown in Sections 6.2.2.2-6.2.2.4. 

 

Hence, the operator U17 implemented with SFG technology has then been obtained by 

combining the gates presented in (6.8) with expressions (6.7) and (6.4). The 

corresponding complete circuit implementing the whole refined Deutsch-Jozsa 

algorithm is shown in Figure 6-3. 
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Figure 6-3: Total circuit for a three-qubit refined Deutsch-Jozsa algorithm with SFG gates 

accurately modelling controlled-phase gates 

 

Simulating the circuit given in Figure 6-3 with the quantum logic simulator returns the 

final output state: 

 



out SFG 
1

8

0.01 i0.01

1 i

1 i0.99

0.01 i0.01

0.99 i1.01

0.02 i0.02

0

 1 i 































 

This output state can be compared with the ideal one obtained with the equivalent NMR 

circuit using the output-state fidelity (expression (5.30), Chapter 5): 

 



fidelity idealerr

2
 

where, in this case, 



ideal  is the output evaluated with the NMR circuit while 



err  is 

the one approximated through the SFG circuit. Using expression (6.10) on output states 

(6.9) and (6.6) returns: 

 



outidealoutSFG

2
0.9998 

 

6.2.2 Circuits obtained through automated quantum circuit design based 

on a genetic programming approach 

The circuit presented in the previous paragraphs has been obtained from a solution 

derived for an NMR quantum computer [Kim00a]. In that case, the gate sequence had 

been obtained using a generator expansion technique [Kim00b]. Instead, for the reasons 

given in the previous chapter, the automated quantum circuit design algorithm based on 

(6.9) 

(6.10) 

(6.11) 
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a genetic programming approach proposed by Williams and Gray[Wil99] was used for 

deriving the remaining circuits presented in this thesis. 

  

The analysis starts with decompositions found for the case of circuits comprising ideal, 

technology-independent controlled-phase gates. Then, focusing again on the operator 

U17, circuits for different configurations of SFG gates are presented. 

 

6.2.2.1 Circuits comprising ideal and technology independent controlled-phase 

gates 

The genetic programming algorithm has been run for all 35 possible balanced functions 

of the refined Deutsch-Jozsa algorithm. Since from the analysis of the results of Kim et 

al. in [Kim00a], the angles of the single-qubit rotations were expected to be multiples of 

a fraction of , all angles in this part of the design process were limited to the ensemble 

{-,-7/8,...,+7/8,+}. For all functions, an exact solution, i.e. one characterised by 

AF=1, was obtained after few iterations of the genetic programming algorithm. The 

results are reported using the same hexadecimal codification of the functions and 

sorting according to the number of two-qubit gates in the circuit used by Kim et 

al.[Kim00a]. Table 6-1 summarises the circuits found with the genetic programming 

tool.  

Table 6-1: Quantum circuits for all 35 balanced functions obtained through genetic programming 

Function Circuit 

0 Two-qubit gates 

f0F R2z() 

f33 R1z() 

f3C R1z()R2z() 

f55 R0z() 

f5A R0z()R2z() 

f66 R0z()R1z() 

f69 R0z()R1z()R2z() 

1 Two-qubit gate 

f1E R2z()CP01 

f2D R0z(-)CP01R2z() 

f36 CP02R1z() 

f39 CP02R1z(-)R2z(-) 

f4B CP01R0z()R2z(-) 

f56 CP12R0z(-) 

f59 R2z()CP12R0z(-) 

f63 CP02R0z()R1z() 

f65 R0z()R1z(-)CP12 
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f6A R0z(-)R1z()R2z(-)CP12 

f6C R1z(-)CP12R0z(-)R2z() 

f78 R1z(-)R2z()CP12R1z(-) 

2 Two-qubit gates 

f1B CP01 CP02R2z() 

f1D R2z()CP01 CP12 

f27 CP01 CP02 R1z(-) 

f2E R1z(-)R2z(-)CP12 CP01 

f35 R1z()CP02 CP12 

f3A CP12 R2z() CP02 R1z() 

f47 CP02 R1z()CP12 

f4E R2z()CP01 CP02 R0z(-) 

f53 CP02 R0z()CP12 

f5C CP12 R0z(-) CP02 R2z(-) 

f72 R1z(-)CP01 R0z(-)CP02 

f74 R1z(-)CP01 CP12 R0z() 

3 Two-qubit gates 

f17 CP01 CP02 CP12 

f2B CP12 CP02 CP01 R1z(-)R2z() 

f4D CP02 R2z()CP01CP12R0z() 

f71 CP12 R1z(-)CP01CP02R0z() 

 

Comparing Table 6-1 and the results presented in [Kim00a], it can be seen that the 

circuits obtained with the two different methods require the same number of two-qubit 

gates. In terms of single-qubit gates, the same length of circuits has been found for all 

functions belonging to the group requiring 0 two-qubit gates. For the remaining 

functions, it was found that 2D, 39, 63, 59, 65, D8, AC, CA, 27, 47, 53, 1D, 35,17 

designed with the genetic programming algorithm required 1 single-qubit gate fewer, 

functions 36 and 56 two fewer, while function 4D required one single-qubit gate more. 

However, these differences might not be caused by the different methods used for the 

decomposition, they could also have been induced by the different entangling gates 

used. The gates used by Kim et al. are based on NMR technology and are locally 

equivalent to the controlled-phase gate, but not identical to it. 

 

It is also important to compare the circuit obtained with the genetic programming 

algorithm and ideal controlled-phase gates for the case of function f17 (Table 6-1) with 

the first solution presented in this chapter in Figure 6-3. In that case, the circuit had 

been obtained using the local equivalence of the controlled-phase gate with the gates 

available from the NMR implementation used by Kim et al.[Kim00a]. Specifically, 

controlled-phase gates and single qubit operations were used to replicate each of the 
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two-qubit gates used in the circuit presented by Kim et al. Instead, using the genetic 

programming approach, we were able to decompose the circuit directly with controlled-

phase gates, without using these to replicate other two-qubit gates and avoiding, 

therefore, the use of extra single-qubit gates. 

 

6.2.2.2 Circuits exploiting SFG gates approximating controlled-phase gates 

Aiming at investigating the resources needed for the demonstration of a quantum 

computer based on SFG gates, the next step was to understand how the circuits 

presented above may change when the controlled-phase gates used in the decomposition 

process were not ideal, but approximated via the SFG model. The operator U17 was 

chosen again for the decomposition process. Since at this stage the controlled-phase 

gates were not ideal but approximated, the angles in the single-qubit rotations were 

allowed to vary continuously between – and + assuming that fixed multiples of /8 

may not be optimal anymore. Using the same gates given in expression (6.8), the 

following circuit was obtained: 

        2 019.0 011.0 3 008.0 1 001.0 2100117 SFGRRSFGRSFGRU zzzzapp   

U17app1 given in expression (6.12) approximates the ideal transformation U17 with an 

average fidelity AF=0.999978. The design algorithm was stopped after about 300 

rounds when no appreciable increase of the average fidelity could be observed. In terms 

of output-state fidelity (expression (6.10)), the new circuit obtained a fidelity value of 

0.99998 compared to the 0.9998 of the circuit shown in Figure 6-3. Hence, the three 

extra Rz rotations present in equation (6.12) compared to the shorter circuit shown in 

Table 6-1 partly compensate for the non-ideal controlled-phase gates generated by the 

SFG two-qubit interaction. 

 

6.2.2.3 Circuits exploiting SFG gates implementing fast controlled-phase gates 

Although the circuit given in expression (6.12) simulates the U17 operator with very 

high precision, it is also important to analyse the corresponding computation time. 

Using the expressions given in (4.3) of Chapter 4 and assuming the same magnetic field 

term used in some recent studies of the SFG gate dynamics of 0.136meV[Ker07], yields 

values of the gate operation times Ti between, approximately, 80ns and 160ns for the 

SFG gates used in Sections 6.2.1 and 6.2.2.2. The aim is to reduce these gate operation 

times, and, therefore, the total computational time, so that the chances for impairments 

such as decoherence, deteriorating the state of the qubits, are minimized.  To achieve 

(6.12) 
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this, the entangling space of SFG gates was searched for fast gates modelling 

controlled-phase gates whilst accepting a lower precision compared to the set presented 

in (6.8). 

 

For a static magnetic field term of 0.136meV, following SFG gates which approximate 

controlled-phase gates with AF>0.99 and a gate operation time Ti<10ns, were found: 

 

-SFG1=SFG(124,142), J=51.93GHz, T1=2.63ns 

-SFG2=SFG(137,156), J=54.37GHz, T2=2.77ns 

-SFG3=SFG(143,162), J=56.77GHz, T3=2.77ns 

 

With this set of gates, the use of the genetic programming tool helped identifying the 

circuit: 

       183.0 3 059.0 1 038.0 2 201217 zzzapp RSFGRSFGRSFGU   

which approximates the U17 operator with an average fidelity of AF=0.9888 and the 

final output-state of the total refined Deutsch-Jozsa algorithm circuit with a fidelity of 

0.987. Again, compared to the shortest possible circuit which can be obtained with ideal 

controlled-phase gates, the circuit described in expression (6.14) uses three more single-

qubit rotations. Without these, the average fidelity of the circuit implementing U17 is 

0.979, confirming that through the genetic programming tool it is possible to find 

single-qubit rotations which compensate, in part, the non-ideal approximation of 

controlled-phase gates obtained via the SFG gates. 

 

Summarising, at the expense of a lower average fidelity, the solution given in (6.14) 

approximates U17 with SFG gates more than ~30 times faster compared to those used in 

(6.12). Specifically, the reduction of a factor 30 in the gate operation time comes at the 

expenses of a loss of only ~1.3% in the output state fidelity.  

 

6.2.2.4 Circuits exploiting fast SFG gates 

In the results presented up to this point, the focus has been set on circuits based on 

controlled-phase gates and how they could be efficiently implemented through SFG 

gates. However, as shown in Chapter 4, there is a variety of entangling gates different 

from the controlled-phase gate which can be produced within the SFG model. Any of 

these entangling gates, together with single-qubit operations, forms a universal set of 

(6.13) 

(6.14) 
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gates and is therefore sufficient for designing any unitary operator. Hence, in this 

section, it is explored whether it is possible to design faster circuits than those presented 

above by exploiting arbitrary entangling gates with the shortest possible gate operation 

time instead of approximations of controlled-phase gates. It is assumed to have a three-

qubit system with three random values of J, one for each gate. Physically, this is 

equivalent to the situation of a semiconductor substrate hosting a random distribution of 

qubits and control atoms with their corresponding J values given, for example, by a 

characterisation process[Sto08]. Assuming a static magnetic field term B equal to 

0.136meV, the value of f=B/J is calculated for each J and a procedure based on a 

continued fraction algorithm[Sav06,Ker07] is used for finding the fastest possible SFG 

gates which can be obtained with these parameters. The procedure used in [Ker07] aims 

at finding fast entangling gates typically used in literature, such as the C-NOT gate, for 

example, at the expense of having some residual entanglement between the control 

particle and the qubits at the end of the gate protocol. Here, the focus is on ideal SFG 

gates, in which qubits and control atoms are left unentangled at the end of a two-qubit 

operation, at the expense of having slower gates compared to the ones presented in 

[Ker07]. Similar parameters to those in [Ker07] are used, assuming for the first gate 

J1=61.175GHz. J2 and J3 were then arbitrarily chosen at, respectively, 5GHz and 

10GHz distance from J1. The continued fraction algorithm returned following gate 

parameters: 

-SFG1=SFG(73,82), J1=61.175GHz, T1=1.308ns, c1=1.22, c2=1.22, c3=0.094 

-SFG2=SFG(79,88), J2=66.175GHz, T2=1.3055ns, c1=1.311, c2=1.311, c3=0.0003 

-SFG3=SFG(85,94), J3=71.175GHz, T3=1.3031ns, c1=1.754, c2=1.387, c3=0.0071 

 

where the ci parameters are the ones defined by Zhang et al. in [Zha03], and discussed 

in Chapter 4, which describe the location of the gates in the a
+
 chamber. By analysing 

the ci parameters given in expression (6.15), it can be seen that the three entangling 

gates are different from each other and from the controlled-phase gate which has ci 

parameters [/2,0,0][Zha03]. The genetic programming tool was run with these gates 

for different maximal allowed lengths of the circuit TQmax. However, in a compromise 

between precision of the circuit and length, TQmax=20 was the maximum length 

considered, obtaining as best result the complete circuit shown in Figure 6-4 which also 

includes the 3 Hadamard gates (represented through the compact notation 



H3) used at 

(6.15) 
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the beginning and end of the Deutsch-Jozsa algorithm. In Figure 6-4, some two-qubit 

gates are characterised by having a gate operation time T=Nrep·Ti. This notation is used 

to describe sequences in which the genetic programming tool returned Nrep repetitions 

of the same two-qubit gate. Remembering that SFG gates are applied through the 

transmission of an exciting pulse and of a de-exciting pulse after a time Ti, Nrep 

repetitions of such a gate are equivalent to separating the exciting and de-exciting pulse 

by a time Nrep ·Ti and experimentally correspond to the application of a single two-qubit 

gate. Hence, in the circuit given in Figure 6-4, the implementation of U17 requires 9 

effective two-qubit gates and 14 single-qubit operations, achieving an average fidelity 

AF=0.9343, while the output state of the total circuit approximates the ideal one with a 

fidelity equal to 0.9677. 

 

Figure 6-4: Refined Deutsch-Jozsa algorithm circuit obtained with arbitrary entangling gates 

Comparing the circuit given in Figure 6-4 to the ones obtained using approximations of 

controlled-phase gates it can be seen that, when using arbitrary entangling gates, it was 

only possible to obtain a circuit which used more than three times the number of gates 

required when using SFG based controlled-phase gates. In terms of computational time, 

the circuit given in Figure 6-4 requires approximately 20Ti of time dedicated to two-

qubit interactions (the sum of all the gate operation times for two-qubit gates) whereas 

the circuits exploiting controlled-phase gates only required approximately 3Ti. Hence, 

despite the shorter computational time of the arbitrary entangling gates, the final circuit 

obtained using these gates had a longer total computational time and, moreover, 

achieved a lower average fidelity. The reason for this could be the following. As shown 



Chapter 6 – Design of quantum circuits based on SFG technology 

 153 

in [Col98] and reviewed at the beginning of the chapter, all operators implementing 

balanced functions for a refined Deutsch-Jozsa algorithm are diagonal, with the 

diagonal comprising a balanced distribution of „1s‟ and „-1s‟. The controlled-phase gate 

and the Rzi() rotation (which was the only single-qubit operation appearing in the 

circuits based on controlled-phase gates, i.e. Sections 6.2.2.1-6.2.2.3) are also diagonal 

operators and their multiplication returns a diagonal operator. Hence, when using 

controlled-phase gates to implement another diagonal operator, the genetic 

programming tool simply needs to identify the sequence of controlled-phase gates and 

Rzi() rotations which produces the required balanced distribution of „1s‟ and „-1s‟ 

corresponding to the chosen function. Conversely, as can be seen from expressions (4.2) 

in Chapter 4, an arbitrary SFG gate has two off-diagonal elements which, once 

multiplied with single-qubit operators, fill off-diagonal terms of the total function 

operator. The design process, when using arbitrary entangling gates, has to introduce 

the desired sequence of „1s‟ and„-1s‟ on the diagonal and, at the same time, cancel out 

off-diagonal terms. Hence, although arbitrary entangling SFG gates and single-qubit 

operations form a universal set of gates, their structure may make the implementation of 

diagonal operators less efficient compared to using gates such as the controlled-phase 

gate. When implementing a three-qubit refined Deutsch-Jozsa algorithm, it appears, 

therefore, more efficient to choose the SFG parameters such that the corresponding 

entangling gates approximate controlled-phase gates, which can be done with the 

methods demonstrated by Kerridge et al [Ker07]. 

 

Between all the presented circuits, accepting a compromise between precision of the 

final circuit and computational time, the circuit given in expression (6.14) which 

implements the refined Deutsch-Jozsa algorithm with an output-state fidelity of 0.987 

through SFG gates approximating controlled-phase gates with ~2.7ns gate operation 

time, appears to be the most suitable solution for the experimental implementation of a 

quantum computational system based on the SFG model. 

 

6.2.3 Potential system errors 

All the presented circuits have been derived under the assumption of perfect control of 

the quantum computational system. During an experiment, this is not going to be the 

case and it is therefore important to analyze how the performance of a circuit may 
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change due to perturbations affecting the system. Here, the problem is addressed 

focusing on the circuit given in expression (6.14). 

 

One source of errors in the above described circuit will come from the presence of 

decoherence. As mentioned in Section 5.1.4.2, it is important to distinguish the impact 

which decoherence will have on the qubits as opposed to the one which will be 

experienced by the control particles. In terms of decoherence on the qubits, studies have 

shown that for systems similar to the ones envisaged by the SFG model of qubits 

carried by the electron spin of donors in a solid-state substrate, the dominant effect is a 

T2 process which leads to a loss of the phase coherence of the qubits and that it is 

reasonable to expect dephasing times in excess of milliseconds[Tyr03]. Considering the 

compactness of the circuit and its short gate operation times, this should not prevent the 

implementation of the algorithm. In terms of the control particles, perturbations will be 

introduced by the unwanted decay of the excited state of the controls through a 

relaxation event. This would lead to shorter interaction times between the qubits 

compared to the desired ones and, therefore, to the implementation of perturbed two-

qubit gates as well as leakage of quantum information from the qubits to the controls. 

Unfortunately, there are few results which have been presented in literature on the 

lifetimes of the excited states of defect-substrate systems which may be compatible with 

the control particle scheme proposed within the SFG model. To date, to the best of our 

knowledge, the most important results for the SFG proposal are represented by the 

measurement of the lifetimes of the excited state of phosphorus atoms in a silicon 

substrate which have been presented in [Vin08] with reported lifetimes of the order of 

~200ps. This lifetime is shorter than the gate operation times of the two-qubit gates 

used in the circuit shown in (6.14), which means that the use of phosphorus atoms as 

control particles in a silicon substrate would not be a convenient solution for 

implementing the presented circuit. However, other possibilities are being analysed 

such as, for example, double donors like Se
+
 and Mg

+
 in silicon or phosphorus atoms in 

a diamond crystal[Sto08], and it will be important to study whether longer lifetimes 

may be achieved through these systems. 

 

 There are three other causes of perturbation which can be identified in the analyzed 

systems and which may manifest themselves in an experimental scenario. In the above 

presented analysis, perfect knowledge and control over the parameters which regulate 
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the SFG gate dynamics, i.e. Ti, J and B, has been assumed. In an experiment, none of 

these parameters would be known with such precision and, as can be seen from 

expressions (4.3a) in Chapter 4, their value directly influences the two-qubit quantum 

gates produced within the SFG model. Perturbations of these values will therefore 

reflect on the final outcome of the computation. The problem is best illustrated by 

analyzing the impact of timing-jitter which may affect the pulse interleave time Ti. Due 

to, for example, noise in the circuits used for the generation of the optical pulses or, as 

will be discussed in the next section, imperfections in the devices used for signal 

generation, the actual value of the pulse interleave time generated by such a system, 

may be perturbed to a value Tierr=Ti+Ttj, where Ttj represents an uncontrollable 

timing-jitter component. The impact of this perturbation is twofold. Firstly, as 

mentioned above, the perturbed pulse interleave time Tierr will produce a perturbed 

quantum transformation and, therefore, deteriorate the quantum information processed 

in the computation. Secondly, as demonstrated in [Rod04], SFG gates generated 

through parameters obtained using the equations given in (4.4) in Chapter 4 have 

negligible residual entanglement between qubits and control particles and avoid, 

therefore, the leakage of quantum information from the quantum register to the controls. 

Hence, the perturbed pulse-interleave time Tierr will not only deteriorate the processed 

quantum information through a perturbed quantum transformation but also cause a loss 

of the quantum information stored in the qubits. Similar arguments hold for fluctuations 

on J and B. In case of J, uncertainties in the knowledge of its value may derive from the 

precision of the chip characterization procedure used to measure its value[Sto08]. For 

B, perturbations may be introduced by the inhomogeneity of the magnetic field along 

the quantum register. To quantify the impact of these uncertainties on the final outcome 

of the computation, the performance of the circuit given in (6.14) was evaluated under 

the influence of increasing perturbation. The focus has been here set on Ti and J since, 

from the equations given in (4.4), Chapter 4, it can be expected that perturbations 

introduced by B will be of the same order of magnitude of the ones introduced by J due 

to their proportionality relation through f. A Gaussian distribution was assumed for both 

the fluctuations[Obe99,Niw02]: on Ttj (fluctuations on Ti) and J (fluctuations on J), 

with zero mean and standard deviation T and J, respectively. The output state fidelity 

of the circuit shown in (6.14) has then been evaluated when perturbing every SFG gate 

in the circuit with different random values of fluctuations and gradually increasing the 
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standard deviation of the perturbation. For each value of standard deviation, the results 

were averaged over 1000 perturbed circuits[Niw02]. The results of the output state 

fidelity, averaged over the 1000 runs, are shown in Figure 6-5(a) and (b) for standard 

deviations T and J, respectively, between 0 and 1.2ps for fluctuations on Ti and 

between 0 and 27MHz for fluctuations on J. As reported in Section 6.2.2.3, the circuit 

described by expression (6.14) achieved an output state fidelity of 0.987 with 

unperturbed gate parameters. In the presence of perturbations (Figure 6-5) the 

degradation in the average output state fidelity is below 1% if the fluctuations on Ti and 

on J have standard deviations of less than, respectively, ~0.3ps and ~7.7MHz while a 

degradation larger than 10% could be observed for standard deviations larger than, 

respectively, ~1ps and ~25.1MHz. 

 

                                      (a)                                                             (b)  

Figure 6-5: Output state fidelity degradation as a function of the standard deviation of the 

perturbation for:(a) Ti and  (b) J. 

6.3 The optical control signal and its generation 

As discussed above, a convenient circuit for the experimental demonstration of a 

quantum computational system based on the SFG model is the one shown in expression 

(6.14) which requires three different SFG gates, one for each pair of qubits, to be 

applied to the quantum register. In an SFG quantum computer this corresponds to the 

excitation and de-excitation of the corresponding control particle for each qubit pair. 

Supposing that 1, 2 and 3 are, respectively, the excitation frequencies of the control 

particles corresponding to SFG1, SFG2 and SFG3 in (6.14), to implement that circuit 

one would have to transmit, first, two optical pulses centred on 3 and separated by a 

pulse interleave time T3, then transmit the two pulses separated by T1 and centred on 1 

and, finally, the last pair of pulses separated by T2 and centred on 2. Also, some buffer 
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space Ti between each pair of pulses will be necessary in order to leave time for 

single-qubit operations to be applied to the chip. Figure 6-6 shows schematically the 

optical signal necessary to control the two-qubit interactions when implementing the 

circuit given in expression (6.14).  

 

 

Figure 6-6: Schematic representation of the optical control signal necessary to implement the 

circuit given in expression (6.14). 

Also, when implementing a two-qubit interaction with an SFG two-qubit gate it is 

necessary that the excited control electron couples with all qubit spin-states carrying the 

information. As described in [Rod04], this is achieved by exploiting exciting and de-

exciting pulses with sufficiently broad spectrum which translates to pulsewidths of the 

order of the picosecond. Hence, the optical control signal of the two-qubit interactions 

in an SFG quantum computer is a multi-wavelength sequence of picosecond pulses. 

6.3.1 Generating the optical signal 

The excitation frequency of control particles in SFG two-qubit gates mainly depends on 

the materials used in the system. Recently, for example, the lifetime of the excited state 

of phosphorus control particles in silicon has been measured experimentally [Vinh08]. 

In that case, the excitation energy was 34.1meV, corresponding to a wavelength of 

36.36m, a part of the optical spectrum in which convenient lasers are not available. 

However, systems are currently being investigated in which excitation frequencies fall 

in a more accessible wavelength range. Examples are double donors like Se
+
 as control 

particles in silicon or phosphorus impurities in diamond[Sto08], both of which are 

characterised by excitation wavelengths around 2.2-2.3m[Ber89,Laz08]. 

 

To date, there are a number of different solutions for generating picosecond pulses in 

that range of wavelengths. Both Kivisto et al. [Kiv07] and Chan et al.[Cha08], for 

example, have recently demonstrated systems based on the Raman-induced soliton self-
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frequency-shift able to produce pulses with a pulsewidth ~0.1ps at a wavelength of 

~2.15m. While such systems would be extremely convenient in terms of compactness 

and simplicity, they do not seem able yet to fully cover the wavelength requirements of 

Se
+
 in silicon and phosphorus in diamond. 

 

The systems which seem most flexible in terms of wavelength range and signal 

characteristics are those based on optical parametric conversion, where the second-order 

nonlinearity of a crystal is used to transform a high-energy pump radiation into two 

lower frequency signals, called signal and idler (see, for example, [Lau74]). As 

reviewed, for example, in [Pet01], the frequency of signal and idler is typically tuned by 

changing the propagation angle of the fields inside the crystal or by exploiting a tunable 

pump signal as well as, in periodically poled crystals (i.e. ferroelectric crystals with a 

periodic reversal of the domains), by changing their temperature or their modulation 

period. 

 

A large number of systems based on optical parametric conversion and able to cover the 

2.2-2.3m wavelength range have been demonstrated experimentally, with a wide 

variety in the output signal characteristics, such as the degree of tunability, the output 

pulsewidths and pulse energies, reported from set-up to set-up. Examples range from 

one of the early systems demonstrated by Lauberau et al. [Lau74], which reported the 

generation of picosecond pulses tunable between 1.4-4m with a pulse energy of up to 

10 J, to the one presented by Butterworth et al.[But96], which generated pulses with a 

pulse width of around 2.6ps, tunable between 1.67-2.806m and pulse energies in the 

order of 1nJ, up to the recent experiment by Brida et al.[Bri08], which demonstrated 

femtosecond pulses, tunable between 2-5m with an output energy of up to 2J. 

Systems with compatible signal output characteristics are also commercially available. 

The Spectra-Physics OPA-800CP [Spe09], for example, is a system based on an optical 

parametric amplifier (OPA), pumped by a Ti:sapphire system, which produces 

picosecond pulses at a repetition rate of 1 kHz, tunable between 1.1-3m and output 

pulse energies of up to tens of J. Considering that, to the best of our knowledge, there 

is no OPA system able to tune the frequency quickly enough to produce the signal 

required by the SFG protocol, three different OPAs would be necessary to generate a 

signal similar to the one shown in Figure 6-6. However, observing that in the 
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experiments presented by Vinh et al. in [Vin08] pulse energies of up to 16.7nJ were 

typically exploited which only represent a fraction of the power which can be obtained 

from a system like the OPA-800CP, a single pump system would be sufficient to feed 

three different OPAs. The optical control signal for a three-qubit refined Deutsch-Jozsa 

algorithm performed on an SFG quantum computer may, therefore, be generated with a 

system schematically shown in Figure 6-7. 

 

Figure 6-7: Three-wavelength OPA system for generating picosecond optical pulses in the 2.2-

2.3m wavelength range. 

 

In Figure 6-7, a pulse leaving the pump system is split into three identical pulses which 

are subsequently transmitted into the three OPA systems. Each OPA is tuned on the 

required frequency i.  Inside the OPAs, the three pump pulses are then transformed 

into three synchronised pulses respectively centred at frequency 1,2 and 3. A first 

set of optical delay lines is used to introduce the delay Ti between the different 

frequencies (i.e. between the different two-qubit gates) and is also responsible for 

introducing buffer space for implementing single-qubit operations when necessary. 

Typically reported values of single-qubit gate operation times in experiments 

concerning donor electron spin qubits are in the range of some tens of 

nanoseconds[Kop06,Mor08], corresponding to, approximately, a few meters of fibre.   

Then, splitters and a second set of optical delay lines are used for generating, at each 

frequency, the excitation and de-excitation pulses with the correct pulse interleave time 

Ti. Here, the delay is expected to be around 2.7ns (expressions (6.13)), corresponding to 

less than 1m of fibre. In terms of precision, remembering from the error analysis 
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presented in Section 6.2.3 that the standard deviation of timing jitter should be kept 

below 0.3ps for achieving a decay in the average fidelity below 1%, commercially 

available optical delay line kits (for example, the Optical Delay Line Kit produced by 

Newport [New09]) specify delay sensitivities below 10fs and can, therefore, be used to 

fine-tune the pulse interleave times Ti without introducing excessive timing jitter. The 

three signals are finally recombined and transmitted to the chip. Summarising, a system 

as the one shown in Figure 6-7 should be able to produce the sequence of 

multiwavelength picosecond pulses, tunable between 2.2-2.3m necessary for the 

experimental demonstration of a three-qubit refined Deutsch-Jozsa algorithm on an 

SFG quantum computation system. 

 

However, OPA systems as the ones described above are bulky. While such a solution 

would provide an important tool for testing the main features of SFG quantum 

computation on few-qubit systems, it would be impractical in terms of system 

integration and scalability to larger set-ups. Considering as well that other possible 

double donors which could be used as control particles in a silicon system may require 

longer excitation wavelengths than the ones discussed above (e.g. ~m for Mg
+
[Sto08, 

Thi94]), suggests that the development of more compact and integrable optical systems 

for the generation of picosecond pulses at wavelengths larger than 2.2m would be 

extremely beneficial for an optically controlled quantum computation system such as 

the one proposed within the SFG model. 

 

In this context, although to date, to the best of our knowledge, no system conveniently 

matching the signal characteristic described above has been reported, quantum cascade 

lasers[Fai94] could represent a valuable resource for increasing the scalability of the 

SFG quantum computation proposal. As described, for example, in [Cap02], quantum 

cascade lasers are compact sources able to produce optical radiation in the mid-infrared 

part of the spectrum and for which picosecond pulse generation has been 

achieved[Pai00]. Being based on semiconductor technology, they may be effectively 

integrable in a solid-state quantum register as the one analyzed in this thesis. 

6.4 Summary 

The design of optically-controlled quantum logic circuits suitable for the experimental 

demonstration of a three-qubit quantum computer based on SFG gates has been 
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analysed. The algorithm chosen for this study is the refined Deutsch-Jozsa algorithm 

because, even on few-qubit quantum registers, it allows one to demonstrate the three 

main features of quantum computation: parallelism, interference and entanglement. The 

aim of this analysis was to identify strategies for the design of the shortest possible 

circuits in order to reduce the probability of errors accumulating along the computation 

path. This led to a set of four different design procedures. While the first one was based 

on adapting to the SFG technology a circuit developed for an NMR quantum computer, 

the remaining three were based on a genetic programming approach for quantum circuit 

design and differed in the two-qubit entangling gates used during the design process. 

Out of the 4 solutions, an optimal one was identified as a result of trade-off between 

circuit precision and computation time. This circuit was obtained using the genetic 

programming approach in conjunction with SFG gates approximating fast controlled-

phase gates. The tolerance of this circuit towards perturbations was then tested by 

analysing the decrease in output state fidelity for increasing fluctuations of some two-

qubit gate parameters. It was found that, for fluctuations on Ti and J characterised by 

standard deviations of up to, respectively, 0.3ps and 7.7MHz, the resulting decrease in 

output state fidelity was below 1%.  

 

Finally, observing that in an SFG quantum computer ultimately quantum logic circuits 

are implemented through the transmission of optical pulses, possible approaches to the 

generation of the optical control signal were addressed. Focusing on some potential 

control particle candidates, an initial design of a system based on optical parametric 

amplification was proposed which could generate the multiwavelength, picosecond 

pulse sequences centred around the 2.2m wavelength range, required to control the 

quantum logic circuits proposed. It was also observed, however, that the development 

of more compact and integrable picosecond optical systems in the near mid-infrared and 

mid-infrared part of the spectrum would be highly desirable for SFG based quantum 

computation. 
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Chapter 7 Conclusions and future work 

7.1 Conclusions 

This thesis described research carried out which aimed to investigate and propose 

quantum logic circuits suitable for the experimental demonstration of a few-qubit 

quantum computational system based on SFG two-qubit gates. Specifically, the focus 

was set on identifying quantum circuits which, in an experimental demonstration of a 

few-qubit SFG quantum computation prototype, would prove that the prototype under 

analysis correctly implements the main features of quantum computation, i.e. 

entanglement, interference and parallelism.  During the research the following questions 

were addressed. Firstly, it was necessary to analyse typical system parameters of state-

of-the-art experimental quantum computation to identify the possibilities and limitations 

of a prototype quantum computer experimental demonstration. In particular, it was 

necessary to quantify the number of qubits and types of test-algorithms commonly used 

for such experiments. Then, the quantum gates feasible within the SFG model had to be 

identified in order to establish which entangling gates can be used for the design of 

quantum logic circuits based on this proposal. Another unknown was the quantum 

circuit design strategy for the derivation and implementation of circuits using SFG two-

qubit gates. A requirement of these strategies was the design of short quantum circuits 

to minimise the probability of errors accumulating during computation. Finally, because 

SFG quantum logic gates are controlled optically, optical systems for the generation of 

the required control signal for the SFG-based circuits had to be proposed. 

 

Part of these questions were initially addressed in the context of numerous existing 

proposals and experimental demonstrations which helped highlight the main challenges 

of quantum computation and the main results of this analysis are reported in Chapter 3. 

Through this review it emerged that, to date, although one of the most sensational 

experimental demonstrations of quantum computation was a factorization algorithm 

with seven qubits, experiments on smaller registers (e.g. 2 to 4 qubits, with few 

exceptions of larger systems) are commonly reported. In terms of algorithms, the 

Deutsch-Jozsa algorithm, and particularly its refined version, is often used in the 

experimental demonstration of quantum computational systems because it allows one to 

implement parallelism, interference and entanglement, as long as it is performed on a 

quantum register of at least three qubits. Hence, with the aim of the development of 
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quantum circuits which would prove that an SFG quantum computation prototype 

effectively operates as a quantum computer, whilst minimising the technological 

challenges, the three-qubit refined Deutsch-Jozsa algorithm was selected in this work as 

the test problem to be developed.  

 

The subsequent steps of the research focused therefore on the design of quantum logic 

circuits implementing a three-qubit refined Deutsch-Jozsa algorithm compatible with 

the SFG model. To do that, first, the SFG two-qubit entangling gate was analysed. 

Moreover, because only a discrete ensemble of pulse interleave times T leaves the 

control particle unentangled from the qubits at the end of the SFG gate protocol, it was 

important to study which entangling gates can be produced out of this ensemble. This 

analysis was performed using a geometrical method which allows one to visualise 

entangling gates in a three dimensional space called Weyl chamber and the results of 

this study are reported in Chapter 4. It was shown that the SFG model generates a 

variety of entangling gates which uniformly covers the surface of the Weyl chamber. 

Solutions of SFG gates close to points indicating specific quantum gates typically used 

in the literature correspond to approximations of these gates obtained through the SFG 

model. The analysis of the entangling gates produced through SFG gates led to two 

observations:  

1) The distribution of SFG gates on the Weyl chamber suggests that, when using the 

SFG model to approximate, for example, the controlled-phase gate, a certain flexibility 

in the choice of the gate parameters is available. Given the requirement for circuits with 

the shortest computational time, this flexibility can then be exploited in the choice of 

the gates used in the design process to trade-off their approximation accuracy against 

the gate operation time.  

2) The uniform distribution of solutions of SFG gates over the Weyl chamber also 

suggests that two-qubit gates different from the controlled-phase gate can be considered 

when designing circuits for the experimental demonstration of an SFG quantum 

computation system. 

The significance of these two observations was in establishing the guidelines used to 

select the SFG-based quantum gates for the design of the quantum circuits. 

 

Two numerical tools were developed in the course of the work aimed at solving the 

quantum circuit design problem. These tools are presented in Chapter 5. The first one 
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addresses the issue of the analysis of quantum logic circuits based on SFG gates. In the 

literature, algorithms for analyzing the performance of quantum logic circuits had been 

proposed and these can be used for studying, for example, how the performance of a 

quantum circuit may decay under the influence of perturbations or to compare how well 

different circuits implement the same function. However, these algorithms focus on the 

state of the qubits by studying their evolution under the effect of the quantum gates 

comprised in the circuit to be analysed. In SFG quantum computation, the 

transformation which is applied to the qubits also depends on the state of the control 

particles. Unwanted and unpredictable changes in the state of a control particle lead to 

perturbations in the corresponding SFG gates and, therefore, to errors in the 

computation. Hence, in the analysis of a quantum circuit based on SFG gates, it is 

necessary to follow the evolution of the qubits as well as that of the control particles to 

get a more complete description of the computation. Existing algorithms for the analysis 

of quantum logic circuits were, therefore, further developed in order to obtain a 

quantum logic simulator specifically tailored for the SFG model. This was achieved by 

including the states of the control particles in the state vector used for analysing the 

evolution of the computation as well as introducing, a part from the gates commonly 

used in the literature such as the controlled-phase or the C-NOT gate, the 

transformations corresponding to SFG gates in the library of the simulator. The 

significance of this work was is in generating a numerical tool for the study of how the 

specific dynamics of SFG gates can influence the result of a quantum computation. 

 

The second numerical tool addressed, rather than the issue of the analysis of quantum 

logic circuits, the actual problem of their design. Previously demonstrated quantum 

circuit design techniques used for deriving circuits for three-qubit refined Deutsch-

Jozsa algorithms were difficult to adapt to the case of SFG computation due to the 

presence of the control particle in the dynamics of the gate. Also, these techniques 

typically require the C-NOT gate or the controlled-phase gate to always be part of the 

quantum gates library used in the design process. However, the analysis of the 

entangling characteristic of SFG gates had revealed that, apart from approximations of 

controlled-phase gates, other entangling gates were available. A design technique which 

would not put any constraints on the quantum gates library was therefore required, in 

order to analyze whether circuits with improved performance may have been obtained 

using gates different from approximations of controlled-phase gates. This flexibility 
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was found in the automated quantum circuit design algorithm based on a genetic 

programming approach proposed by Williams and Gray
1
 which was therefore 

implemented for SFG gates. In the perspective of deriving quantum circuits suitable for 

the experimental demonstration of an SFG quantum computation prototype, the 

development of this second numerical tool provided a fundamental instrument for 

studying how the topology of circuits may change depending on the choice of the SFG 

gates used in the design process and, therefore, allowed the testing of different 

strategies for obtaining convenient circuits. 

 

Quantum circuits implementing a three-qubit refined Deutsch-Jozsa algorithm with 

SFG gates were considered in Chapter 6. Different design routes were tested and 

compared with the aim of identifying efficient circuits characterised by short 

computational times in order to reduce the chances of errors accumulating during 

computation. The first circuit was obtained adapting to SFG technology a circuit 

designed for an NMR quantum computer exploiting the local equivalence of entangling 

gates produced in NMR with the controlled-phase gate and identifying SFG gates which 

produced controlled-phase gates with an average fidelity >0.999. The resulting circuit 

generated an output state fidelity of 0.9998. The remaining circuits were designed using 

the genetic programming approach described in Chapter 5, testing different sets of gates 

and analysing the impact on the circuits‟ performance of the type of SFG gates used. 

The first circuit obtained with the genetic programming approach used the same SFG 

gates as the solution obtained from the NMR circuit. However, despite being based on 

the same SFG gates, a more compact and improved circuit (output state fidelity 

~0.99998) was obtained. The increase in the output state fidelity is the result of 

optimised single qubit operations, identified through the genetic programming 

approach, which compensate for part of the non-ideal approximation of the controlled-

phase gates of the SFG model. Unfortunately, the SFG gates used in this circuit 

modelled high-accuracy controlled-phase gates at the price of long gate operation times, 

in excess of 80ns. Hence, a new circuit was developed, using the genetic programming 

algorithm, which exploited SFG gates with gate computation times T<10ns 

approximating controlled-phase gates with an average fidelity >0.99, instead of 0.999. 

The resulting circuit performed less well, with an output state fidelity of 0.987 (which 

                                                 
1
 Quantum Computing and Quantum Communications, Book Series: Lecture Notes in 

Computer Science, vol. 1509, pp.113-125, (1999) 
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corresponds to a reduction of only ~1.3% compared to the previous solution) with the 

advantage, however, of using quantum gates with gate operation time T~2.7ns, i.e. more 

than a factor of 30 faster. Finally, the last circuit discussed exploited a different 

approach in terms of the choice of the entangling gates. Remembering that any set of 

gates comprising entangling gates and single qubit operations is universal for quantum 

computation, the last solution was obtained, still using the genetic programming 

approach, exploiting arbitrary entangling gates, meaning gates which do not resemble 

the ones typically used in literature such as the controlled-phase, the C-NOT or the 



SWAP gate, as long as they were characterised by gate operation times shorter than 

~2.7 ns (i.e. less than the gates used in earlier examples). However, despite the shorter 

gate operation time, the circuit obtained with these gates only achieved an output state 

fidelity of 0.9677 requiring a time dedicated to two-qubit interactions longer, 

approximately, by a factor 3 compared to the solution comprising gates with T~2.7ns. 

The reason for this is probably linked to the different structure of the arbitrary 

entangling gates. The core operator of the Deutch-Jozsa algorithm is diagonal. So are 

the controlled-phase gate and the Rz() rotation, which was the single qubit operation 

required for implementing the core operator of the Deutsch-Jozsa algorithm. 

Combinations of controlled-phase gates and Rz() rotations lead to operators which are, 

again, diagonal. Hence, when using these gates, the genetic programming algorithm 

only needs to find the correct sequence of gates which generates the desired 

combination of „1s‟ and „-1s‟ on the diagonal of the core operator corresponding to the 

function one wants to implement. Instead, arbitrary entangling SFG gates have two off-

diagonal elements which require the genetic programming algorithm to find the 

sequence of desired „1s‟ and „-1s‟ on the diagonal while at the same time cancelling out 

off-diagonal elements. Although arbitrary entangling SFG gates together with single-

qubit operations form a universal set of quantum gates, their non-diagonal structure 

makes the design procedure for a diagonal operator such as the core transformation of 

the refined Deutsch-Jozsa algorithm less efficient. Conversely, it is more convenient to 

implement the refined Deutsch-Jozsa algorithm by forcing the SFG gates to 

approximate controlled-phase gates which can be done through the methods 

demonstrated by Kerridge et al.
2
. Out of all the presented circuits, accepting a 

compromise between precision of the final circuit and computational time, the circuit 

                                                 
2
 Journal of Physics: Condensed Matter, vol.19, article number 282201, Jul.2007 
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implementing the refined Deutsch-Jozsa algorithm with an output-state fidelity of 0.987 

through SFG gates approximating controlled-phase gates with ~2.7ns gate operation 

time was chosen as the optimal solution for the experimental implementation of a 

quantum computational system based on the SFG model. The tolerance towards 

perturbations of this circuit was, therefore, assessed by evaluating its performance under 

increasing fluctuations of the SFG gates parameters. It was shown, that, if the optical 

control signal used for implementing the two qubit SFG gates is affected by timing-

jitter with standard deviation <0.3ps then the decay in performance of the quantum 

circuit is <1%. A similar reduction can be expected if the values of the J parameters 

describing the strength of the interaction between qubits and controls in SFG gates 

(which, in an experimental implementation of an SFG quantum computer, would be 

obtained through a chip characterisation procedure) are known up to an off-set 

characterised by standard deviation of <7.7MHz. 

 

Finally, optical systems able to produce the necessary control signal for the analysed 

quantum circuits are described and discussed in the last part of Chapter 6. Particularly, 

the initial design of a system developed with the assumption of two potential control 

particle schemes, i.e. the double-donor selenium in silicon and phosphorus in diamond, 

which both require excitation wavelengths between 2.2-2.3m, is presented. This 

system is based on three independent, singly pumped optical parametric amplifiers and 

would be able to produce the three-wavelength, picosecond pulse sequences required 

for the implementation of a three-qubit refined Deutsch-Jozsa algorithm with SFG two-

qubit gates. However, while such a system based on optical parametric amplification 

represents a valid tool for performing an experimental demonstration of a small 

prototype of SFG quantum computer, more compact and integrable sources would be 

necessary in the long-term for realizing scalable systems. 

 

The quantum logic circuits and results presented in this thesis provide important 

guidelines for enabling the future experimental demonstration of a quantum 

computation system based on SFG gates. Firstly, the topology of the SFG-based circuits 

solving the three-qubit Deutsch-Jozsa algorithm allows one to define timescales with 

respect to the tolerance towards decoherence of the qubits and control particles. As 

summarised above, the fastest circuit exploited SFG gates with gate computation time 
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of ~2.7ns. Hence, control particles used for implementing the given circuit need to be 

characterised by relaxation times of the excited state larger than 2.7ns. Similarly, 

considering that single qubit operations with electron spin qubits are typically 

characterised by gate computation times of some tens of nanoseconds, it is reasonable 

to assume that the implementation of the whole circuit will require ~100ns, which 

defines a lower bound on the tolerance towards decoherence of the qubits. In addition, 

the studies on the impact of fluctuations of the SFG gate parameters on the performance 

of the circuit help to quantify the precision required for the optical signal generation and 

the chip characterisation procedure or the order of magnitude of the decay in system 

performance which can be expected in case this precision cannot be met. Finally, the 

analysis of which optical systems could generate the optical signal necessary for the 

implementation of the proposed circuit identifies how this problem can be solved in the 

near future as well as describing its limitations in the context of systems comprising a 

larger number of qubits. 

 

7.2 Future work 

7.2.1 Quantum logic circuits based on fast SFG gates with residual 

entanglement between qubits and control particles 

As discussed above, the refined Deutsch-Jozsa algorithm can be implemented more 

efficiently with SFG gates approximating controlled-phase gates as opposed to arbitrary 

entangling SFG gates. This result was here derived on an assumption of a convenient 

distribution of qubits and control particles, implying a flexible choice of the gate 

parameters when implementing controlled-phase gates. However, in an experimental 

scenario, the value of J would typically be a result of a measurement procedure for 

characterising SFG gates after the random distribution of the qubits and control 

particles. Hence, the values of J for different SFG gates will depend on the random 

distribution of the particles rather than being a parameter which can be flexibly imposed 

on a given system. Given a specific value of J, obtained from a characterisation 

procedure of a random distribution of particles on the computation chip, it will often not 

be possible to directly implement a controlled-phase gate through the integers M and N 

and the equations given in (4.3), Chapter 4. However, the techniques demonstrated by 

Kerridge et al. (reference given in footnote 2 on page 165) allow one to identify gate 

parameters able to produce accurate approximations of gates equivalent to controlled-
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phase gates with short gate computational time, at the expense of some finite but small 

residual entanglement present between qubits and control atoms at the end of the gate 

protocol. These gates can be produced without imposing the value of J on the system. 

Hence, the next step in this work would be to repeat the design procedures for the three-

qubit refined Deutsch-Jozsa algorithm again considering approximations of controlled-

phase gates this time obtained through the methods presented by Kerridge et al.. In this 

case, it will be important to analyse the impact of the residual entanglement between 

qubits and controls on the final output state of the computation. 

 

7.2.2 Estimating the impact of decoherence 

All the circuits presented in this work have been derived and analysed without 

considering the effect of decoherence. In reality, although decoherence on the qubits 

should not prevent the implementation of the presented circuits due to their 

compactness and the promising tolerance towards decoherence demonstrated by donor 

electron spin qubits in the solid-state, it will, nevertheless, affect their performance and 

it is important to quantify this perturbation. Further, because SFG gates make use of a 

control particle for mediating the interaction between two qubits, it will be important to 

assess the effect on the computation of decoherence affecting not only the qubits, but 

also the control atoms.  

 

More specifically, the two impairments which are more likely to perturb computation 

are dephasing of the qubits and the unpredicted relaxation of a control particle from its 

excited states while it is mediating the interaction between two qubits. The first 

impairment leads to a gradual perturbation of the stored quantum information while the 

second leads to the implementation of an erroneous two-qubit interaction since the 

qubits interact for a shorter time compared to the ideal case. In order to assess the 

tolerance of the SFG model towards decoherence it will be important to simulate the 

performance of the presented circuits when affected by these two impairments.  

 

This analysis could be performed as follows. First, the performance of the circuit 

solving the Deutsch-Jozsa algorithm is analysed assuming that the system is only 

affected by a dephasing mechanism perturbing the qubits. Starting from the ideal case, 

the performance of the circuit should be simulated for increasing amount of dephasing, 
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i.e. running a series of simulations each characterised by a smaller T2 value for the 

qubits. By evaluating the fidelity of the computation for each value of T2 it will be 

possible to study how rapidly the performance of the circuit decreases when the qubits 

are perturbed by increasing decoherence. This study will allow to find an estimate of the 

minimum value T2min which leads to an acceptable performance of the circuit and, 

consequently, to identify defects which, having a T2 value larger than T2min for a given 

substrate, would be suitable for implementing the proposed circuit in an experimental 

demonstration.  

 

A similar analysis should then be implemented for analyzing the impact of relaxation 

affecting the control particles. In this case, the relevant parameter is the relaxation rate 

T1. Again, by monitoring how quickly the performance of the circuit decreases for 

decreasing values of T1, it will be possible to estimate a threshold value T1min. This 

value could then be used to identify suitable control-particle candidates by studying 

which defects, in a given substrate, are characterised by a T1 value larger than T1min. The 

analysis on the impact of decoherence on the qubits and on the controls should be 

performed separately in order to understand how strongly each impairment perturbs the 

performance of the circuit. However, the estimates of T2min and T1min, could then be 

refined by analysing how the performance of the circuit changes under the combined 

effect of the two decoherence mechanisms. 
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Appendix      List of acronyms 
CP  Controlled-phase 

C-NOT Controlled-NOT 

NMR  Nuclear magnetic resonance 

OPA  Optical parametric amplifier 

QPC  Quantum point contact 

SWAP  Root swap 

SFG  Stoneham, Fisher, Greenland proposal for quantum computation 

SQUID Superconductive quantum interference device 

 

 


