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ABSTRACT

This thesis centres on the development of arterial spin labelling (ASL) MRI, a non-

invasive technique to image cerebral perfusion. In the first chapter I explain the

principles of cerebral blood flow (CBF) quantification using ASL beginning with the

original implementation through to the most recent advances. I proceed to describe the

established theory behind the key additional MRI contrast mechanisms and techniques

that underpin the novel experiments described in this thesis (T2 and T1 relaxation,

diffusion imaging and half-Fourier acquisition and reconstruction).

In Chapter 2 I describe work undertaken to sample the transverse relaxation of the ASL

perfusion-weighted and control images acquired with and without vascular crusher

gradients at a range of post-labelling delay times and tagging durations, to estimate the

intra-vascular, intra-cellular and extra-cellular distribution of labelled water in the rat

cortex. The results provide evidence for rapid exchange of labelled water into the intra-

cellular space relative to the transit-time through the vascular bed, and provide a more

solid foundation for CBF quantification using ASL techniques.

In Chapter 3 the performance of image de-noising techniques for reducing errors in

ASL CBF and arterial transit time estimates is investigated. I show that noise reduction

methods can suppress random and systematic errors, improving both the precision and

accuracy of CBF measurements and the precision of transit time maps.

In Chapter 4 I present the first in-vivo demonstration of Hadamard-encoded continuous

ASL (H-CASL); an efficient method of imaging small volumes of labelled blood water

in the brain at multiple post labelling delay times. I present evidence that H-CASL is

viable for in-vivo application and can improve the precision of δa estimation in 2/3 of

the imaging time required for standard multi post labelling delay continuous ASL.
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CHAPTER 1: INTRODUCTION TO ARTERIAL SPIN

LABELLING, DIFFUSION IMAGING AND RELAXATION IN

MRI

1.1 INTRODUCTION AND AIMS

Over the last 17 years magnetic resonance imaging (MRI) scientists have conceived and

developed a quantitative cerebral perfusion measurement technique that harnesses blood

water as an endogenous contrast agent and thus, uniquely, is totally non-invasive. This

approach is known as Arterial Spin Labelling (ASL) MRI [Detre et al., 1992]. Perfusion

is the rate of delivery of blood to the capillary bed. This nutritive supply is essential to

maintain healthy tissue and is an important indicator of viability and function; accurate

measurement is of great utility in the study and diagnosis of acute and chronic brain

disorder.

In comparison to more established radionucleotide methods such as positron emission

tomography (PET), ASL has been shown to have improved spatial and temporal

resolution and is non-ionising [Petersen et al, 2006]. Furthermore ASL offers an

alternative to Dynamic Susceptibility Contrast (DSC) MRI in times of repeated warning

by the US Food and Drug Association (FDA) regarding the usage of gadolinium based

contrast agents in patients with kidney failures [Golay et al., 2007].

However, ASL suffers from intrinsically low SNR and can struggle to produce robust,

reliable estimates of perfusion given the complexity of cerebral anatomy and the

multifaceted nature of neuropathology. The aim of my thesis is to investigate and help

solve some of the issues that have been holding back ASL’s progression into a MRI

modality that is more widely used for the diagnosis and research of brain disorders.
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1.2 ORGANISATION OF PH.D THESIS

This Ph.D thesis is comprised of five chapters. Chapter 1 begins with a detailed

summary of Detre and Williams seminal work where the principles of ASL were first

proposed [Detre et al., 1992]. It continues to explain the key developments leading to

the present state of the field and the main challenges that remain in robust and accurate

perfusion quantification using ASL. It concludes with an overview of the theory

underlying the key additional MRI methods used in my investigations (diffusion

weighted imaging, transverse and longitudinal relaxation and half-Fourier acquisition

and reconstruction) and a description of the MRI equipment used in this study.

Chapter 2 reports experiments designed to characterise the origin of the ASL signal in

the brain using a multi-echo acquisition approach.

In Chapter 3, I demonstrate that the precision and accuracy of quantitative ASL cerebral

perfusion maps can be significantly improved using post-acquisition image de-noising

methods.

Chapter 4 describes the first successful in-vivo implementation of Hadamard encoded

continuous ASL (H-CASL), a novel approach to cerebral perfusion and transit time

quantification.

This thesis concludes with Chapter 5: a final discussion of the experimental results

described in the previous chapters.
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1.3 THE BASIC PRINCIPLES OF ASL

1.3.1 Introduction

Arterial Spin Labelling was first proposed by Detre et al. and in 1992 they reported the

first results using this new approach to measure cerebral perfusion [Detre et al., 1992]. I

will now summarise this work (the basic principles of ASL) before proceeding to

describe the notable developments leading to the current state of the field and the main

challenges that remain in efficient and robust non-invasive cerebral blood flow (CBF1)

quantification.

1.3.2 “Perfusion Imaging”. The First ASL Experiment

1.3.2.1 METHODS

The first ASL experiments were performed using a spin echo sequence to acquire single

slice coronal images of the rat brain [Detre et al., 1992]. Saturation pulses were

continuously applied to a plane in the neck during the 2 second relaxation period (TR).

This served to magnetically “label” blood water as it flowed through the feeding arteries

that supply the brain. If perfect saturation is achieved, the longitudinal magnetisation of

the labelled blood is zero immediately after labelling (see 1.9 T1: The Longitudinal

Relaxation Constant).

Upon image acquisition the measured signal intensity within a given pixel was

attenuated according to the number of labelled spins that have travelled to that pixel

within the observation slice (ignoring all longitudinal relaxation of the tagged blood

water following saturation) since the labelled blood water acts to reduce the net

longitudinal magnetisation before initial excitation prior to image readout. This CBF-

weighted acquisition is known as the “labelled” image.

1 The term “Cerebral blood flow” is often used as a replacement for perfusion, particularly by
physiologists and clinicians. For those not familiar with the field, the concept of CBF is more
recognisable and easier to grasp, though it should not be confused with the flow velocity (in m/s). As is
common in the ASL literature, the terms CBF and perfusion are used interchangeably in this thesis.
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The continuous saturation pulses induced magnetization transfer (MT) effects within the

imaging plane (see below). The labelled image was hence CBF and MT weighted. To

differentiate the two effects and extract the CBF related signal, it was necessary to

acquire an image with identical MT effects but with no perfusion weighting. This is

known as the control acquisition. Hence the saturation pulse was applied outside the

head so that the imaging slice was equidistant between the tagging and control planes.

Assuming the saturation planes (symmetrical about the imaging plane) induce identical

MT effects in the observation slice, a simple subtraction of the labelled and control

acquisitions yields a perfusion-weighted (ΔM) image. Although this approach to MT

cancellation was shown to be effective, it did not permit multi-slice acquisitions.

1.3.2.1.1 Magnetisation Transfer (MT)

Magnetisation transfer is an ever-present consideration in ASL. With naive application,

MT can significantly influence the measured ΔM signal and confound CBF

quantification. Mobile protons have sufficiently long T2 relaxation times to ensure that

the transverse signal has not completely decayed in the time between excitation and

acquisition (TE), where spatial encoding takes place (see 1.8 T2: Transverse

Relaxation). Protons associated with macromolecules and membranes posses a very

short T2 (less than 1ms) and therefore do not directly contribute to the measured signal

at typical echo times. However exchange of magnetisation between the mobile and

macromolecular protons will influence the spin state of the mobile or liquid protons,

affecting the measured signal. In the majority of ASL experiments an off-resonance

labelling/control pulse is applied that preferentially saturates macromolecular spins due

to their broad absorption line-shapes. Therefore the off-resonance labelling/control

pulse will indirectly affect the magnetisation of the mobile protons which can

significantly reduce the measured signal. Consequently MT is an important factor in

ASL; due care must be taken to avoid errors in CBF quantification from a MT mismatch

between the labelled and control acquisitions.

1.3.2.2 CBF QUANTIFICATION

Detre et al., reasoned that the perfusion weighted, subtracted, images could be

converted into quantitative cerebral perfusion maps with the additional measurement of

certain parameters combined with sensible assumptions regarding the state of the
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cerebral anatomy [Detre et al., 1992]. They built these measurements and assertions into

an ASL CBF quantification model based on the Bloch equations.

Blood flow was quantified by first modifying the Bloch equation to include flow

effects:

ba
b

o
bb M

f
fM

T

MM

dt

dM







1

[1.1]

where f = blood flow in ml g-1 s-1 ; λ = blood:brain partition coefficient, defined as 

(quantity of tracer/gm brain)/(quantity of tracer/ml blood); T1 = relaxation time of brain

water in the absence of flow or exchange between blood and brain water; Mb = Z

magnetization of brain water in arbitrary intensity units/g brain; Mb
o = fully relaxed

value of Mb; Ma = Z magnetization of blood water in arbitrary intensity units/ml blood.

In order to estimate quantitative CBF, Detre makes several important assumptions, i)

the labelled spins instantaneously exchange with the tissue; ii) the number of protons

leaving the brain through the veins, fMv, is equal to the amount f Mb/ λ. It is then 

assumed that iii) directly after the labelling pulse (t = 0), there is efficient saturation (i.e.

the labelled blood has no longitudinal magnetisation, Ma = 0) and that iv) negligible MT

effects are introduced in the imaging volume by the labelling pulse (not the case in

practice in their in-vivo data). Given these assumptions, equation [1.1] can be solved to

give:
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Thus Mb will be a function of the blood flow and the T1 of the brain water. Following

saturation, the brain magnetisation decreases with an apparent time constant given by:



f

TT app


11

11
[1.3]
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Detre then makes another key assumption v) the tissue is in a steady state such that the

increase in perfusion weighted signal due to the arrival of labelled blood water to the

tissue is balanced by T1 decay and the removal through the veins. In this case, Mb tends

to Mb
ss which can be calculated by setting t = ∞ in equation 1.2:


1

0

1

1
fTM

M

b

ss
b


 [1.4]

Equations [1.3] and [1.4] can then be rearranged to show that blood flow can be

calculated by measuring Mb
ss, Mb

o and T1app:











0
1

1
b

ss
b

app M

M

T
f


[1.5]

To measure the apparent relaxation constant the repetition time (T1app) was varied from

0.5 to 4s. The control magnetisation as a function of TR was then fitted to a simple T1

recovery model (see section 1.9 T1: The Longitudinal Relaxation Time). The paper

continues to describe the results of the first experiments using these methods to measure

blood flow in the rat brain.

1.3.2.3 RESULTS

The mean signal intensity in the subtracted images was reduced by an average of 3.1%

of the control signal. This signal change would be expected given a cerebral perfusion

of 100ml min-1 100g-1, a T1 of rat brain at 4.7 T of 1.7s and a blood:brain partition

coefficient of 0.9 ml/g.

In the dead rat the subtracted, perfusion-weighted, image was uniform with a mean

intensity difference of 1%. Theoretically, with no flow, the difference image should be

made up of noise with a mean value of zero. Such imperfect subtractions point to issues

within the imaging protocol which are detrimental to the accuracy of ASL

measurements. The finding was attributed to spectrometer instability.
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The authors acknowledge that a significant proportion of the labelled spins may reside

in the macro-vasculature during image acquisition. These spins, which have not

exchanged into the tissue, can cause an overestimation in the estimated CBF since they

may flow through the tissue of interest. Therefore to suppress the contribution from

arterial spins, spoiler gradients were used in the imaging sequence around the 180o

pulse in both labelled and control acquisitions.

The theory presented assumes that there is no longitudinal relaxation of the tagged spins

en route to the cerebral tissue and that relaxation occurs once the labelled protons

exchange with tissue water. This may result in an underestimation in the measured

blood flow. However (according to [Detre et al., 1992]) the proximity of the tagging

plane to the observation slice means the saturated water takes a maximum of 425ms to

exchange with the tissue water (although there is no reference to support this remark).

Indeed, the authors claim most of the saturated blood water will have exchanged in a

significantly shorter time. Hence, they argue, this assumption results in only a small

underestimation of flow.

The average CBF over the whole brain was calculated to be 106 ml 100g-1 min-1, in

agreement with values previously reported in the literature. In hindsight it is likely that

a) dismissing the T1 decay of the endogenous tracer in transit and b) imperfect

suppression of labelled arterial spins served to counteract one another to produce

apparently accurate CBF measurements. Further validation of the technique was

achieved by the measurement of significantly increased flow during hypercapnia.

1.3.2.4 EVALUATION

In the closing remarks, Detre describes sensible proposals within the imaging protocol

to improve the efficiency of this new technique. In this initial work, the labelling pulse

acts to saturate rather then invert the arterial blood. The author concedes an inversion

would clearly act to increase the SNR of the measurements. Detre also points to

interleaved, rapid imaging methods such as echo planar imaging and surface coil

detection. His sensible conclusions have been implemented in many subsequent ASL

imaging studies. Indeed, all the ASL experiments conducted for this thesis have adopted

these adaptations.
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Soon after the introduction of this technique, ASL divided into two main categories;

Continuous and Pulsed ASL.

1.3.3 Continuous Arterial Spin Labelling (CASL): Principles

A few months later, the same group [Williams et al., 1992] used adiabatic fast passage

to invert, rather than saturate, the arterial blood water by a process known as flow

induced adiabatic inversion (see below), with improved results. In this work the term

continuous ASL was defined (CASL) due to the relatively long duration of the labelling

pulse (2s) (see Figure 1.1). The CASL method was further validated during cold

injuries [Williams et al., 1992] and amphetamine stimulation in rats [Silva et al., 1995].

Figure 1.1
A schematic representation of CASL. In the tagging phase (a), arterial spins are
inverted as they flow through the labelling plane by flow induced adiabatic inversion.
The signal in the observation slice will then be attenuated depending on the
concentration and position of the labelled spins upon acquisition and the extent of
longitudinal relaxation in transit. In the control phase(c), the off-resonance pulse is
applied outside the head to induce identical MT effects as the labelling pulse, whilst
leaving the magnetization of blood in the feeding vessels unaltered.

The implementation of CASL to humans was challenging due to the specialist hardware

requirements necessary to facilitate labelling over a few seconds as well as the specific

absorption rate (SAR) restrictions. Consequently, the continuous labelling pulse was

replaced by a brief inversion extended over a larger slab proximal to the imaging plane.

This approach is term pulsed arterial spin labelling (PASL). It was the introduction of

PASL that helped first make it possible to apply ASL in human studies.
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(a) Labelling Pulse (b) Labelled
Acquisition

(c) Control Pulse (d) Control
Acquisition
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1.3.3.1 FLOW INDUCED ADIABATIC INVERSION

In CASL, inversion of blood water in the feeding arterials is accomplished using flow

induced adiabatic inversion. This technique harnesses the movement of the blood itself

to label arterial spins. The motion of spins along a gradient sweeps the frequency of the

spins from far above resonance to far below the resonant frequency of the applied RF

pulse. So from the blood water spins’ frame of reference, when the blood is far from the

labelling plane, the RF frequency it “sees” is far off resonance. As it flows towards the

brain it sweeps through the labelling plane and is on resonance. As it passes beyond the

tagging plane the RF frequency (in its frame of reference) becomes more off resonance.

As the frequency of the spins is swept toward and through resonance, the effective field

(Beff) rotates and eventually becomes inverted. In the rotating frame, the effective field

can be described as the vector sum of the field of the applied RF pulse (B1) and an

additional field proportional to Δω/γ where Δω is the frequency offset between the

resonant frequency of the spins and that of the labelling pulse and γ is the gyromagnetic

ratio. However, the arterial spins must obey the adiabatic condition in order to achieve

inversion. This states that the rate of the change of the effective field must be

considerably greater than T1 and T2 relaxation but must be less than the rate of

precession of the magnetisation. In the case of velocity-driven adiabatic inversion

schemes used in continuous ASL, the frequency sweep is determined by the velocity of

the arterial blood water spins along the direction of the gradient, and the adiabatic

condition can be expressed accordingly:
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Where G is the strength of the labelling gradient and v is the spin velocity.
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1.3.4 Pulsed Arterial Spin Labelling (PASL): Principles

1.3.4.1 EPISTAR

In 1994, Robert R. Edelman introduced a technique known as EPISTAR (echo-planar

imaging and signal targeting with alternating radio frequency pulses) [Edelman et al.,

1994]. The short duration of the tagging pulse (23ms) meant this method was later to be

categorised as a Pulsed Arterial Spin Labelling (PASL) approach (see Figure 1.2).

This novel sequence was applied to Functional Magnetic Resonance Imaging (fMRI) in

humans. Blood Oxygen Level Dependence (BOLD) imaging is the most common

approach to fMRI [Ogawa et al., 1990]. However, Edelman argued that it is sensitive to

shifts in venous oxygen saturation and therefore sensory activation changes may be

detected downstream, somewhat removed from the specific area of heightened

metabolic rate within the brain tissue. Edelman argued increases in blood flow as

detected by the EPISTAR sequence were better localised to the active region. The

paper reports the results using this new method to measure qualitative changes in CBF

due to sensory activation.

A 23 msec inversion pulse was applied to a slab inferior to the slice of interest. After a

delay to allow inflow of the tagged blood, an EPI image was then acquired. MT effects

were accounted for using an identical approach to [Detre et al., 1992]. However in

these experiments, the proximity of the tagging plane to the observation slice meant that

the control inversion slab also intersected the brain. As a result, signal arising from the

veins was apparent upon subtraction of the labelled and control images due to the

inadvertent tagging of venous spins by the control inversion. This was unrelated to

perfusion and introduced some uncertainty into the measurements.

The EPISTAR sequence differs in several respects in comparison to Detre and

Williams’ initial work. The inclusion of EPI dramatically increases the efficiency of the

measurements and allows interleaved tagged and control acquisitions, reducing the

extent of mis-registration and scanner instability and allowing good time resolution

(necessary for fMRI experiments). In addition, MT effects are moderate due to the
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reduced duration of the tagging pulse. MT acts to reduce the T1 of the labelled water

(that has exchanged into the tissue) and hence the tagged spins will have relaxed to a

lesser extent upon image acquisition, providing superior contrast per labelled spin. The

reduction in SAR was also a considerable advantage.

Figure 1.2
A schematic representation of EPISTAR. The labelling pulse (a) is designed to invert
spins over a large area proximal to the observation slice after brief application. In
EPISTAR’s original design, the control pulse (c) is identical but situated symmetrically
above the observation slice, the same approach used in CASL.

1.3.4.2 FAIR

In 1992 Kwong et al., performed slice-selective inversion recovery imaging

experiments during a sensory activation paradigm in humans [Kwong et al., 1992].

Qualitative CBF changes between activation and rest were then estimated by accounting

for the inflow of fully relaxed blood into the imaging slice during the inversion time

(TI). Kwong et al., later adapted the imaging protocol and interpreted the

measurements to quantify CBF [Kwong et al.,1995]. This technique was later termed

flow-sensitive alternating inversion recovery (FAIR) by Kim [Kim., 1995]. In this

sequence, alternate images were acquired, first after a slice selective inversion and then

after a global inversion, using EPI (see Figure 1.3). During the slice selective inversion

time, the inflowing intra-vascular spins were fully relaxed. During the global inversion

time, the inflowing spins were relaxing back to M0 according to T1. Static tissue within

both images should have relaxed to the same extent and subtract to zero to give a flow
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weighted image. To estimate quantitative CBF, it was necessary to measure the T1 of

the brain tissue in order to calculate the effect of the inflowing spins on the apparent T1

relaxation constant (T1app) following the slice selective inversion. The symmetric nature

of this sequence automatically compensates for MT-effects. In both FAIR and

EPISTAR, the imperfect RF profile of the preparation pulses meant that there was

always a minimum transit time for the labelled spins to reach the imaging slice, though

this is reduced in comparison to CASL (where labelling takes place in the larger feeding

arteries).

Figure 1.3
A schematic representation of FAIR. A global inversion (a) is applied before the first
acquisition (b). This can be thought of as the labelled phase. The control is achieved by
using a slice-selective inversion (c) before the second acquisition (d).

1.4 THE DEVELOPMENT OF ASL

1.4.1 CASL Techniques and Development

The prolonged labelling time means, in their basic forms, CASL has a theoretical signal

advantage of roughly 2.7 times that of PASL [Wong et al., 1998]. However the

increased extent of MT may cause the results to be confounded if the MT effects are

asymmetrical and may reduce the SNR of the measurements due to the associated

reduction of the T1 of the labelled spins that have exchanged into the tissue during

labelling.

The conventional (see Figure 1.1, 1.2) approach to MT cancellation only allows single

slice acquisitions. To overcome the single-slice limitation, Alsop and Detre proposed a

Neck

Head

(a) Global Inversion (b) Labelled
Acquisition

(c) Slice-Selective
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(d) Control
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sinusoidal modulation of the RF labelling waveform during the control phase while

keeping the frequency offset the same as for the labelling phase [Alsop et al., 1998].

The application of such an RF pulse together with a gradient will continuously invert

two planes at the same time, theoretically leaving the net magnetization of the arterial

blood unaltered. The power of the amplitude modulated control is configured to produce

an identical MT profile in the brain during the tag and control imaging stages,

permitting multi-slice acquisitions. However, perfect control is difficult to achieve thus

reducing the effective labelling efficiency (i.e. the longitudinal magnetisation of blood

in feeding vessels during tagging – the longitudinal magnetisation of blood in feeding

vessels during control). They estimated the effective efficiency to be around 70%.

Talagala et al introduced an alternative pulse sequence aimed to overcome MT

asymmetry by distributing the control RF power evenly on both sides of the acquisition

volume [Talagala et al., 1998]. Although this approach successfully allowed multi-slice

CASL acquisitions, it resulted in substantial RF deposition which may have limited its

application in humans, particularly at high field (~ 3T).

An effective way to reduce MT is to use a separate labelling coil positioned on the neck.

[Silva et al.,1995, Zhang et al.,1995(a)]. The spatial extent of the off-resonance RF is

thus limited to the tagging region, inducing negligible MT in the imaging slab,

significantly reducing SAR and allowing multi-slice acquisitions. This also enabled

vessel selective labelling of the left or right carotid artery [Zaharchuk et al., 1999,

Mildner et al., 2003]. Vessel selective labelling is an exciting new development within

ASL and enables the assessment of the supply of blood to the brain from individual

arteries. Selective labelling of the ventral arteries and feeding arteries proximal to the

middle cerebral artery (MCA) has been achieved using conventional MRI hardware

without a separate labelling coil [Davies and Jezzard, 2003; Guenther, 2006(a);

Kansagra and Wong, 2008]. In addition, a recent study has provided evidence that

territorial ASL methods in combination with MR angiography yielded results that were

in good agreement with digital subtraction angiography measurements (the “Gold

Standard” approach) in the assessment of collateral circulation (which plays a vital role

in patients with steno-occlusive disease, in particular for predicting stroke outcome

[Chng et al., 2008]). There is likely to be a good deal of interest in vessel selective ASL

in the near future.
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As previously discussed, RF deposition is an important issue within CASL and can limit

its efficiency in human studies. Reducing this was a motivation behind pseudo-

continuous ASL [Garcia et al., 2005(a), Wu et al., 2007(a)]. This relatively new

approach to flow driven adiabatic inversion employed repeated rather than continuous

RF pulses to reduce SAR and MT. This was a welcome modification and is more

compatible with standard MRI RF hardware in comparison to CASL. Many recent ASL

experiments have used this labelling scheme to good effect [e.g. Wong et al., 2006,

Fernandez-Seara et al., 2008] and it represents a promising approach to spin tagging for

future studies.

1.4.2 PASL Techniques and Development

1.4.2.1 FAIR SEQUENCE DEVELOPMENT

Uninverted flow-sensitive alternating inversion recovery (UNFAIR) modified the

original FAIR sequence to include an additional inversion to the imaging slice just after

the first so that theoretically the static tissue signal is fully relaxed [Tanabe et al., 1999].

Consequently the imaging conditions are identical for the control and labelled

acquisitions (apart from the changing width of the hyperbolic secant pulse). The authors

claim that this serves to avoid artefacts such as eddy currents, though in the light of

recent developments which demonstrate the benefit of suppressing the static tissue

signal to improve the SNR of ASL images [Garcia et al., 2005(b)], this approach may

have limited value. A similar strategy was also developed by Berr et al., [Berr et al.,

1999].

The Acronym “FAIRER” was used to describe two different adaptations to the original

FAIR technique. “FAIR excluding radiation damping” includes an additional gradient

during TI to reduce radiation damping effects which may be problematic at high field

strength [Zhou et al., 1998, Zhou et al., 1999]. In contrast, “FAIR with an extra

radiofrequency pulse” consists of the standard FAIR sequence followed by an additional

saturation pulse to null the signal from the static tissue [Mai and Berr, 1999]. This was

developed with intended application to the lung in combination with cardiac gating.

Unprepared BAsis and SElective inversion (BASE) was introduced in 1998 with its

initial application in fMRI [Schwarzbauer and Heink., 1998]. This approach does not
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require a global inversion and therefore can be used with smaller transmit coils. In

addition it is robust against a mismatch of inversion and slice selective profiles though it

is only able to measure CBF changes rather than absolute values. In 1999, Pell et al.

increased the time resolution of FAIR by reducing the TR of the sequence [Pell et al.,

1999]. This was achieved using a global saturation pulse just prior to the FAIR

sequence. Furthermore, “FAIR exempting separate T1 measurement” incorporates an

additional saturation recovery acquisition interleaved within the standard FAIR protocol

for the combined measurement of both perfusion and BOLD contrast at a cost of about

15% greater imaging time [Lai et al., 2001].

1.4.2.2 EPISTAR SEQUENCE DEVELOPMENT

Three years after its first application, Edelman and Chen published work addressing the

problem of inadvertent venous tagging in EPISTAR [Edelman and Chen, 1998]. They

replaced the conventional control inversion with a 360o pulse situated at the site of

labelling. Hence MT effects could be accounted for without the introduction of spurious

venous signal. This adaptation also enabled multi-slice acquisitions. By this time, it had

also been shown that the half-Fourier single shot turbo spin-echo (HASTE) imaging

sequence in combination with an EPISTAR spin preparation could overcome some of

the artefacts associated with EPI and produce better quality perfusion images [Chen et

al., 1997].

Wong et al. introduced a simple adaptation termed PICORE or Proximal Inversion with

Control for Off Resonance Effects [Wong et al., 1997]. In this approach the slice

gradient is turned off in the control phase, controlling for MT whilst avoiding

unintended tagging of the veins distal to the imaging slice. However the different

tagging and control gradients meant eddy currents can be problematic [Jahng et al.,

2003]. Better MT and eddy current cancellation was the main motivation behind the

recently conceived “Double Inversion with Proximal Labelling of Both Tagged and

Control Images (DIPLOMA)” [Jahng et al., 2003]. In this sequence, tagging is achieved

using an off resonance pulse followed by a slab selective inversion. The control is

achieved using two consecutive slab selective inversions in a similar way to the

Edelman’s modification [Edelman and Chen, 1998]. Overall the MT and eddy current
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compensation worked as intended to produce superior perfusion weighted images in

comparison to PICORE and EPISTAR.

1.5 ISSUES IN ACCURATE, EFFICIENT AND ROBUST ASL CBF
QUANTIFICATION

1.5.1 Transit time

1.5.1.1 INTRODUCTION

In 1994, Walsh et al. performed important validation experiments comparing the new

ASL methods with the well established radioactive microsphere approach in the healthy

and partially occluded rat brain [Walsh et al., 1994]. Although the baseline results were

in good agreement, they observed a consistent underestimation of flow by the MRI

measurement for the successful occlusions. This discrepancy was attributed to long

transit times through the middle cerebral artery (MCA) in the occluded state. The rapid

decay, according to T1, during this transitional period severely reduces the perfusion

weighted signal. Transit time effects have since become accepted as an important

possible confounder in the interpretation of ASL perfusion weighted images and still

represent a major obstacle in robust and accurate CBF quantification.

1.5.1.2 INTRODUCING A POST-LABELLING DELAY TIME

In 1996 Alsop and Detre published a theoretical framework with experimental methods

to more accurately account for transit effects within ASL [Alsop and Detre, 1996]. They

state that although in rats the transit time is negligible, it is significant in human studies

where it can vary considerably across the brain, even in healthy patients. For the most

accurate quantification it should be determined by measurement of the perfusion

weighted signal at a range of delay times [Buxton et al., 1998]. However this would

reduce the sensitivity and temporal resolution of the method. Alsop reasoned that the

inclusion of a post labelling delay (PLD) between the end of the tagging pulse and

image acquisition would markedly reduce the sensitivity of the CBF estimates to

variable transit time providing the delay is greater than the arterial transit time (δa). The

arterial transit time is the time taken for the blood water to travel from the labelling

plane to the imaging region. Therefore in healthy volunteers the PLD should be chosen

to be around 1s, and extended for patients with cerebrovascular disease. This relies on
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the similarity of the T1 of arterial blood and grey matter which only differ by around

10% at 1.5 Tesla. Although an extended PLD will result in a decrease in the perfusion

weighted signal due to increased T1 relaxation of the labelled spins, it will also render

the CBF estimates relatively insensitive to transit time variations provided it is greater

then δa.

However the T1 of white matter is considerably shorter then in grey matter and therefore

the proposed delay has a limited effect at reducing transit time sensitivity in this case.

Alsop adapted Detre’s original model [see 1.3.2.2 CBF Quantification] to include

several new parameters: the arterial transit time (δa); the tissue transit time (δ) (which

represents the time taken for blood water that has been labelled to exchange into the

tissue); the T1 relaxation constant of labelled water in the blood (T1a); the T1 relaxation

constant of labelled water in the tissue during application of the off resonance labelling

or control pulse (T1s); the T1 relaxation constant of labelled water in the tissue

following application of the off resonance labelling or control pulse (T1n). These

parameters were incorporated into the model to better account for longitudinal

relaxation effects in order to more accurately quantify CBF. According to the model,

precise knowledge of these parameters will account for the longitudinal relaxation of

labelled blood in transit to and within the tissue of interest. T1n can be estimated by

fitting the control signal to a simple T1 recovery model (see section 1.9 T1:

The Longitudinal Relaxation Constant). T1s can be calculated using the T1n and Mo

measurements [Alsop and Detre, 1996]. The arterial and tissue transit time can be

calculated by acquiring ASL images at a range of PLD times and fitting the data to the

model described in their work [Alsop and Detre, 1996] (N.B w is standard notation used

in the literature for the PLD time):
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The way in which changes in CBF, δ and δa affect the modelled ASL signal acquired

over a range of PLD times is shown in Figure 1.4. In their model CBF (the principle

parameter of interest for the majority of ASL applications) is directly proportional to the

measured ΔM signal. The arterial transit time determines the point of inflection of the

inflow curve; the shape of the inflow curve displays marked sensitivity to this

parameter. The tissue transit time affects the PLD dependant ΔM signal in a way that is

more difficult to distinguish from CBF changes. Therefore given the low SNR of the

ΔM signal, in practice it is difficult to estimate δ from the bolus inflow curve as a small

degree of noise can introduce marked imprecision into the δ and CBF estimates. For this

reason δ is often a fixed parameter or is measured using diffusion sensitised ASL

measurements [Wang et al., 2003, Petersen et al., 2005]:
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[a]

[b]

[c]

Figure 1.4
Figure 1.4 [a] shows the perfusion weighted signal at variable δa (0.3s blue line, 0.6s
green line and 0.9s red line) and fixed CBF and δ. Figure 1.4 [b] shows the perfusion
weighted signal at variable CBF (400 blue line, 300 green line and 200ml/min/100g red
line) and fixed δa and δ. Figure 1.4 [c] shows the perfusion weighted signal at variable
δ (0.3s blue line, 0.6s green line and 0.9s red line) and fixed CBF and δa.
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The problem with measuring the ASL signal at a range of inflow times instead of a

single PLD value is that it reduces the temporal resolution of the method. In their work

the authors showed that the single extended PLD acquisition could produce reliable

perfusion estimates in patients with cerebrovascuar disease (with the associated

heightened range of transit times within the brain) and is still arguably the most

practical and robust approach to avoiding confounding transit time effects in ASL

[Alsop and Detre, 1996]. The model in this publication is considered to be the standard

approach for ASL CBF quantification. For this reason I have generally used this (and a

later version that incorporates variable tagging duration [Wang et al., 2002]) for CBF

estimation in this thesis.

1.5.1.3 THE LOOK-LOCKER READOUT

In 2001 Matthias Gunther et al. implemented a Look-Locker readout in combination

with spin tagging to measure the progression of the tagged bolus at multiple delay times

in a single excitation, thus allowing simultaneous measurement of CBF and arterial

transit time in a single shot [Guenther et al., 2001]. The magnetisation was sampled

using a low flip angle excitation as the tagged bolus progressed through the cerebral

vasculature following pulsed labelling. For a given imaging time, this approach was

shown to produce results with an SNR advantage of 1.2 over separate acquisitions at

each delay time, making perfusion measurements at multiple PLD times more practical.

However image quality can be hampered by artefacts due to stimulated echoes and this

perhaps explains the questionable quality of the perfusion weighted images presented in

this work. However it seems such problems have been ironed out as this image read-out

technique was used as part of a promising semi-automated ASL CBF and transit time

quantification protocol for Philips MRI systems. This has recently been shown to

produce reproducible CBF and transit time maps between scans and between sites

[Petersen et al., 2008]. A new model has recently been developed to describe the

progression of the look-locker ASL signal in greater detail [Francis et al., 2008]. Their

findings highlighted the importance of accounting for the transit time of labelled blood

water through the arteriolar compartment for accurate perfusion quantification in the

Look-Locker FAIR acquisitions.
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1.5.1.4 DEFINING THE WIDTH OF THE BOLUS: QUIPSS

Wong et al. devised an adaptation to PASL using additional saturation pulses to

improve the definition of the tagged bolus [Wong et al., 1998]. This attempted to

address two main issues: i) to minimise errors in the quantification of perfusion due to

spatially varying transit times and ii) to reduce the errors associated with vascular

artefacts (see 1.5.2 Vascular Artefacts). This technique was termed Quantitative

Imaging of Perfusion using a Single Subtraction and exists in two main forms, QUIPSS

I and QUIPSS II. Unlike CASL where the site of labelling is narrow and the duration of

the tagged bolus is known, the tagged slab in PASL will possess spatially variable

transit delays for a given imaging region and the tagged bolus has unknown duration.

After an inflow time (TI1) a saturation pulse is applied to the imaging slab (in QUIPSS

I) or to the labelling slab (QUIPSS II). The authors claim that in principle and with

careful selection of image parameters, CBF measurements can be made transit time

insensitive. However the authors concede that tagged blood water en route to an

alternate location within the imaging slice and the changing T1 properties of the labelled

spins as they perfuse are important possible confounders. Signal that appeared to be

from large vessels was apparent in the subtracted QUIPSS I images. In contrast

QUIPSS II measures a bolus of tagged blood that leaves the tagging area relatively early

and has more time to flow into the capillaries and exchange into the tissue. However

because the signal derives mainly from the tissue compartment in QUIPSS II,

knowledge of δ (a parameter that is not accounted for in their model) is more crucial for

accurate CBF quantification in comparison to QUIPSS I. They state that there is still

much work to do in the characterization of these known sources of error. QUIPPS II is

analogous to the approach by Alsop and Detre described above [Alsop and Detre, 1996]

in that both methods aim to measure the signal from a defined bolus of labelled blood

that has had sufficient time to reach the microvasculature. By saturating the adjacent

plane, the idea is to remove the signal from blood that would otherwise be present in the

arterial vessels during image acquisition (i.e. blood that was labelled further

downstream from the imaging plane and in effect has a longer transit time).

A modification termed Q2TIPS [Luh et al., 1999] was proposed with a train of thin-

slice saturation pulses applied to the distal end of the tagged region. This improved the
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accuracy of the QUIPSS II measurements by improving the definition of the labelled

bolus and reducing intravascular contamination of the imaging volume.

1.5.1.5 VELOCITY SELECTIVE LABELLING

A recent idea uses velocity, rather than spatially, selective labelling pulses with the

intention of saturating flowing spins situated in feeding vessels very close to the tissue

of interest [Wong et al., 2006(a)]. The global nature of these velocity selective pulses

means intravascular spins are tagged in and around the imaging slice. Thus in theory the

transit time is minimised. The labelling pulse saturates spins flowing above a certain

velocity. The subsequent acquisition is sensitive to the tagged spins which flow below a

certain velocity. Thus the sequence is designed to be sensitive to blood as it decelerates

during entry to the micro-vessels and in this way is sensitive to perfusion. The control

acquisition includes identical RF pulses with low velocity encoding gradients.

This technique has been shown to produce sensible CBF values in normal volunteers

and in patients with cerebrovascular disease [Wong et al., 2006(a)]. However CBF

quantification may be confounded by irregular vascular distribution to the tissue of

interest and errors may be introduced if the velocity selective tagging is applied off the

direction of blood supply [Wu et al., 2007(b)]. Indeed it seems that more work needs to

be done to validate the accuracy of this new technique and compare the accuracy and

precision of VS-ASL with a range of optimised spatially selective ASL approaches.

However thus far the SNR of this technique has been constrained as labelled blood

could only be saturated rather than inverted. Wong et al., have reported preliminary

results using a sequence of RF pulses to invert, rather than saturate, blood flowing in a

certain velocity range [Wong et al., 2009].

1.5.2 Vascular Artefacts

1.5.2.1 INTRODUCTION

As previously described, the first ASL experiments [Detre et al., 1992] incorporated

spoiler gradients around the refocusing pulse to attenuate signal from flowing spins in

the vasculature to avoid overestimating CBF. For accurate quantification it is necessary

to distinguish regions of heightened perfusion from regions where signal increases come
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from blood that is simply in transit to its eventual location for oxygen and nutrient

delivery and exchange.

1.5.2.2 WHEN PERFUSION MEETS DIFFUSION

Ye et al. found that, in humans, spoiler gradients (of small duration, separation and

amplitude) around the refocusing pulse (the approach implemented in the first ASL

experiment [Detre et al., 1992]) were not sufficient to crush all the arterial signal and

therefore proposed the inclusion of bipolar crusher gradients, with a relatively high b-

value [YE et al., 1997]. The b-value is the standard unit defining the extent of diffusion

weighting due to the gradients in a sequence and is given in s/mm2 (see 1.10 Principles

of Diffusion MRI). They measured a decrease in the perfusion weighted signal (∆M) of

approximately 50% in humans with the inclusion of the bipolar vascular crushers. The

signal intensity of the base images, the majority (~95%) of which arises from the tissue,

was reduced by 3%. This led them to conclude that when the ASL signal was sampled,

∆M arises almost equally from arterial water and extra-vascular water, whereas in the

presence of bipolar crushers, ∆M arises predominantly from extra-vascular water.

However it is perhaps not surprising that the diffusion gradients reduced the signal to

such an extent given that there was no PLD prior to image acquisition. With negligible

PLD it is likely that a significant proportion of the labelled water will reside in the

vascular compartment during image acquisition. There has subsequently been a good

deal of interest in investigating and interpreting the dual weighted ASL perfusion and

diffusion signal.

Silva et al. measured ∆M with diffusion gradients at a range of b-values in the rat brain.

The results were interpreted to estimate the fraction of the labelled blood in the vascular

compartment relative to that which has exchanged into the cerebral tissue [Silva et al.,

1997(a)]. They argued that these values were equivalent to the first pass extraction

fraction (EF) and investigated the possible correlation of this parameter with CBF. The

results provided evidence for a strong correlation between the EF of labelled blood

water and CBF. This was an important finding and suggested ASL was susceptible to

overestimating cerebral perfusion at high CBF unless EF was taken into account. The

same group exploited the different susceptibility of the vascular and tissue

compartments to MT to measure EF in the rat brain [Silva et al., 1997(b)]. The
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longitudinal magnetisation of the arterial spins is less severely attenuated by MT from

an off-resonance pulse in comparison to the tissue spins. The reported relationship

between CBF and EF was in good agreement with their previous results.

The recent advances in ASL and in MRI hardware (pseudo continuous labelling, EPI,

background suppression, higher field magnets) helped the combined diffusion and

perfusion experiment at multiple b-values to be repeated in humans [Wang et al., 2007].

This provided further evidence, concordant with previous work, [e.g. Parkes and Tofts,

2002] for the limited exchange of cerebral blood water in humans. However the authors

reported marked variance in the estimated pseudo-ADC values assigned to the vascular

and tissue compartments, limiting the extent of interpretation of their results.

Overall, these experiments provide a convincing argument for the inclusion of vascular

crusher gradients within single-PLD ASL experiments for more accurate CBF

quantification in both animal and human studies.

1.5.3 CBF Quantification Models

Detre’s original quantification model [Detre et al., 1992] assumes the brain tissue to be

a single compartment with instantaneous exchange of the labelled spins from the

vessels. However CBF quantification may be confounded given the cumulating

evidence for the restricted exchange of blood water and the dependence of EF on CBF

[Silva et al., 1997a, Ewing et al., 2001, Zaharchuk et al., 1998].

In order to account for this, more complex multi-compartment models have been

proposed [Li et al., 2005, Parkes and Tofts, 2002, Zhou et al., 2001, St Lawrence et al.,

2000, St Lawrence and Wang, 2005]. In general these models have shown the effect of

limited exchange on measured CBF to be minimal in human studies provided the

relaxation rates in tissue and blood are similar. However they may benefit CBF

quantification in white matter which has marked difference in T1 relaxation properties

in comparison to blood [Calamante et al., 1996; Parkes and Tofts, 2002; Li et al., 2005;

St Lawrence et al., 2000; St Lawrence and Wang, 2005].
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As a general point, at present many of those applying ASL in experimental and clinical

applications may argue that it does not have the SNR to support many additional

complexities in the CBF quantification model due to the possible associated reduction

in precision.

Recently an investigation was performed to model the affects of blood dispersion and

pulsatility in pulsed ASL experiments. The established models assume plug flow from

the tagging to the imaging plane. A new model was proposed that assumes parabolic

flow (a more realistic assumption) in the larger feeding arteries and accounts for cardiac

pulsatility. It was found that fitting the acquired ΔM data to this new model yielded

greater CBF estimates. However the precision of the calculated CBF was reduced due to

the model’s added complexity. They found that when no cardiac-gating was used the

mean curve over several cardiac cycles was predicted to closely match the curve which

assumes constant flow [Gallichan and Jezzard, 2008].

A model-free approach to perfusion quantification [Petersen et al., 2005] has been

proposed. A sequence which combined interleaved vascular crushers with a Look-

Locker readout was implemented. CBF is quantified using a deconvolution with an

arterial input function in a similar way to dynamic susceptibility contrast imaging

[Ostergaard, 2005]. Simulations demonstrated that this approach improved the precision

of CBF estimation in comparison to standard parametric modelling. Furthermore these

measurements (with and without vascular crusher gradients) can also be used to

estimate the arterial blood volume and the mean transit time. This protocol was used in

a semi-automated ASL sequence for Philips MRI systems, recently shown to produce

reproducible CBF and transit time maps between scans and between sites [Petersen et

al., 2008].

1.5.4 Measuring CBF in White Matter

Accurate CBF quantification in white matter using ASL is challenging for 3 main

reasons: i) Perfusion tends to be substantially lower in comparison to grey matter,

reducing the SNR of the measurements; ii) In general, the transit time of white matter is

considerably greater than grey matter and consequently there is more longitudinal

relaxation of the tagged spins en route to the tissue; iii) although the T1 of blood and
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grey matter is similar, it is significantly reduced in white matter and therefore

knowledge of the tissue transit time of blood is more crucial for accurate CBF

quantification in this case. For these reasons the SNRpwi in deep white matter perfusion

territories has recently been measured to be less than 1 using FAIR [van Gelderen et al.,

2008]. Indeed a recent comparison of ASL with perfusion computed tomography has

shown that ASL can yield inaccurate white matter CBF estimates [Koziak et al., 2008].

The recent multi scan, multi centre MRI ASL study measured good reproducibility in

white matter in healthy volunteers [Petersen et al., 2008]. However this was after

spatially averaging over all the white matter pixels in the brain. Detecting more focal

changes in white matter perfusion is likely to be significantly more challenging and

represents a major disadvantage of ASL over PET.

1.6 GENERAL ASL OPTIMISATION AND DEVELOPMENT

There is some controversy within MR as to the optimal field strength for many

applications. However the introduction of high field (~3T) scanners has generally been

welcomed by ASL users due to the increase in signal together with the increase in T1

(less relaxation in transit). The growing trend for high field magnets is likely to greatly

enhance ASL’s appeal.

The low SNR of the ASL measurements is arguably most responsible for its relatively

limited use. In humans the difference in signal intensity between the labelled and

control image is of the order of 1% of the base signal; scanner stability is crucial for

reliable measurements. This makes rapid single-shot interleaved tagged and control

imaging methods such as EPI [Edelman et al., 1994, Kwong et al., 1995] or spiral

imaging [Yang et al., 1998] highly advantageous. However, these can be accompanied

by severe susceptibility artefacts. Therefore alternative readout methods based on single

line [Zhang et al., 1995(b), Branch et al., 1999], fast-spin echo [Chen et al., 1997;

Crelier et al., 1999; Liu et al., 2001] or snapshot FLASH (fast low angle shot)

[Calamante et al, 1999] methods have been suggested as viable alternatives. These

have important applications in imaging outside the brain. A single shot 3D sequence has

recently been designed that was shown to increase the SNR of the perfusion weighted

images by a factor of 2.8 in comparison to 2D EPI at the same nominal resolution. This
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sequence is known as 3D GRASE [Gunther et al., 2005] and is becoming increasingly

popular in ASL applications.

Background suppression was proposed for better cancellation of the static tissue through

the reduction of physiological noise [Ye et al., 2000, Garcia et al., 2005(b)]. An

inversion pulse is applied during TR and the image is subsequently acquired at the null

point of the tissue (IE when the longitudinal magnetisation of the tissue is zero). Two

spin populations (e.g. Grey and CSF) with different T1 values may be both nulled using

two inversion pulses with appropriate sequence timing. Indeed, up to three saturation

pulses were applied (one before the inversion pulse) in the original implementation of

this technique [Ye et al., 2000]. However background suppression must be implemented

with caution to ensure that bias is not introduced to the perfusion measurements due to

noise rectification. Recent studies have used this in combination with the

aforementioned pseudo-continuous labelling and 3D GRASE readout with encouraging

results [e.g. Fernandez-Seara et al., 2007].

1.7 APPLICATIONS

1.7.1 Cerebrovascular Disease

Acute and marked reduction of perfusion is the cause of stroke and ischemic attacks;

ASL has considerable potential in the study and diagnosis of cerebrovascular disease.

For example there is evidence that ASL CBF maps can provide identification of

salvageable brain tissue (the “penumbra”) following an ischemic attack [Chalela et al.,

2000]. Previous studies have attempted to provide some identification of these regions

by measuring the so-called perfusion-diffusion mismatch in the brain– where the region

of reduced perfusion is mismatched to the region of tissue changes as identified by

diffusion weighted imaging. There is evidence that CASL is able to map regions of

hypoperfusion during acute stroke [Chalela et al., 1998], chronic cerebrovascular

disease [Detre et al., 1998] and in response to perfusion changes induced by

pharmacological stimuli [Detre et al., 1998].

A comparison of FAIR ASL and DCS was performed by Hunsche et al., in both patients

with ischemic stroke and normal volunteers [Hunsche et al., 2002]. They found a good

correlation between the measured CBF as well as a modest correlation between cerebral

blood volume and transit time estimates using the two techniques. Yoneda et al.,
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compared relative perfusion measurements (the “diseased” side in comparison to the

“healthy” side) generated using FAIR (at two different inversion times (TI =800ms and

1600ms)) and DSC MRI [Yoneda et al., 2003]. By studying 11 stroke patients they

found that the relative perfusion measurements at a TI of 1600 correlated best with the

transit time measurements from the DCS method. The correlations were not so strong

with the CBF and blood volume estimates generated using the gadolinium technique”

“To try to account for extended transit time effects, Hendrikse et al., implemented

single-slice, pulsed ASL to acquire perfusion weighted images over a range of inflow

times (200 to 1600 msec) in nine patients with carotid artery occlusion [Hendrikse et al.,

2004]. Apart from at the longest and shortest inversion times, the perfusion-weighted

signal in gray matter was less in the hemisphere containing the occlusion in comparison

to the contralateral hemisphere or with control values. Quantitative CBF estimates were

also found to be significantly different between the affected hemisphere and the healthy

side or the control values”

“Kimura et al., implemented CASL and CO2 PET to assess regional CBF and transit

times in patients with unilateral occlusive disease [Kimura et al., 2005]. ASL CBF was

correlated with PET CBF across 48 ROIs for each subject (11 in total). The mean

correlation over all subjects was 0.71. However, the ASL CBF estimates were found to

be significantly reduced in comparison to PET CBF within gray matter ROIs on the

diseased side. The transit times were subsequently found to be significantly greater in

the affected hemisphere suggesting that the underestimation of CBF by ASL in the

affected hemisphere appears to be due to longer transit times to this region. However,

their results do show fairly good agreement between CBF estimated using ASL and

PET for patients with unilateral occlusions”

“ASL has recently been employed to characterise alterations in CBF in paediatric

patients with arterial ischemic stroke [Chen et al., 2009]. This was the first study to

demonstrates the clinical utility of ASL in the diagnosis of this patient group. They

found the inter-hemisphere perfusion deficit (a similar measure to the relative perfusion

estimates taken by Yoneda et al [Yoneda et al., 2003]) to correlate with the degree of

stenosis, diffusion lesion, and follow-up infarct volumes. Furthermore they claim that

brain regions presenting delayed arterial transit effects (as measured using ASL) were
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(to a limited extent) associated with positive outcome. Pollock et al recently attempted

to use ASL to characterize the perfusion patterns encountered after anoxic injury to the

brain [Pollock et al., 2008]. They found that global GM CBF was significantly higher

in anoxic injury subjects in age-matched control groups and concluded that their study

provided evidence that pulsed ASL can quantify the severity of the cerebral hyper-

perfusion after a global anoxic injury.

1.7.2 Functional MRI

ASL has several benefits over BOLD measurements (the standard approach to

functional MRI (fMRI)). Perhaps the greatest advantage is the absolute quantification

that ASL can provide. This allows more rigorous inter- and intra-subject comparisons

and can remove the necessity for task related paradigms inside the MRI scanner, which

may particularly benefit studies focussing on certain patient groups. For example the

possible correlation of resting perfusion to task performance outside the MRI scanner in

Alzheimer’s patients has previously been investigated. (e.g. Grossman et al., 2001).

Secondly, standard functional studies are performed using gradient echo based imaging

sequences that are sensitive to the BOLD effect. Thus in regions of high static

susceptibility such as the orbital- frontal cortex, the measured signal may be severely

reduced. ASL does not require such T2* weighted acquisitions and therefore such

“image drop out” of the imaging region can be reduced using spin-echo based image-

readout techniques, for example. In addition, there is evidence to suggest that perfusion

changes have superior spatial specificity and closer temporal fidelity to the neuronal

activation in comparison to BOLD changes during a typical fMRI paradigm [Silva et

al., 2000; Duong et al., 2001]; as previously mentioned, BOLD is sensitive to shifts in

venous oxygen saturation and therefore sensory activation changes may be detected

downstream, somewhat removed from the specific area of heightened metabolic rate

within the brain tissue. Changes in perfusion as detected by ASL are better localised to

the active region in the brain. However it is widely accepted that the SNR of the ASL

measurements is considerably lower than the BOLD measurements and therefore ASL

may require longer scan times for many fMRI studies in comparison to BOLD imaging

experiments.
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1.8 T2: THE TRANSVERSE RELAXATION TIME

1.8.1 Introduction

Chapter 2 describes experiments designed to estimate the transverse relaxation decay

constant (T2) of the ASL signal in order to understand more about the origin of labelled

blood in the brain. In this section I will describe the principles behind transverse

relaxation and explain why it can yield information about the cerebral-vascular location

of the measured ASL signal. In order to understand the processes behind transverse

relaxation, I will first present a brief overview of the mechanisms underlying the NMR

phenomenon.

1.8.2 NMR Phenomena: How we Generate a Signal

The nucleus of a hydrogen atom consists of a single proton which possesses the

quantum mechanical property known as spin. In combination with its positive charge,

the spin of the proton generates a magnetic moment. When the proton experiences a

strong magnetic field, it exerts a turning force (or torque) that causes the proton to

precess around the applied field (see Figure 1.5). The frequency of this precession is

given by the Larmor equation:

00 B  [1.9]

where γ is the gyromagnetic ratio (42.MHzT-1 for hydrogen);ω0 is the frequency of

precession and B0 is the strength of the applied magnetic field

Figure 1.5

A proton rotates around the main magnetic field (B0) at the Larmor frequency.

B0
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The axis parallel to the main magnetic field is known as the longitudinal or z-axis. In

quantum mechanical terms, the protons precess in one of two states – parallel (or up)

and anti-parallel (or down) to the applied magnetic field (see Figure 1.6). The anti-

parallel direction requires fractionally more energy and so overall there are slightly

more protons parallel to the magnetic field. The distribution of the two states can be

quantified using Boltzman statistics. The probability pi that a system is in quantum state

ψi is equal to the number of quantum states associated with ψi divided by the total

number of states (Z) as given by:

Z

e
p

Tk

E

i

B

i


 [1.10]

Where Ei is the energy of the system, kB is the Boltzmann constant and T is the

temperature of the system. The energy of the parallel and anti-parallel states are given

by:

Eup = -1/2 γhB0 and Edown = +1/2 γhB0. [1.11]

Therefore the relative population of the two spin states can be given by:
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Equation 1.12 shows that the extent of the difference is directly proportional to the

strength of the magnetic field which explains why it is desirable to image using a high

field MRI scanner: there is more signal.
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Figure 1.6
Protons are aligned parallel or anti-parallel to the applied magnetic field. Slightly more
protons are aligned in parallel to the main magnetic field as this state is of lower
energy.
When a subject is at rest in an MRI scanner, there is no consistency between the

transverse magnetisation of their protons i.e the component perpendicular to the

longitudinal axis. As a result the net magnetisation (M0 - the vector sum of all the

magnetic moments) is aligned with the magnetic field and has no transverse component

(see Figure 1.7).

Anti-parallelParallel

B0

Transverse Direction (y)

B0
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Figure 1.7
When a subject is at rest in the scanner, protons are fully relaxed and are out of phase.
As a result the net magnetisation (red arrow) is aligned with B0 and possesses no
transverse component.

To generate the measured signal, radio frequency (RF) pulses are used to tip M0 into the

transverse plane. The time varying magnetisation vector is now represented by M. The

RF pulse oscillates at the Larmor frequency. M moves away from B0 during the

application of the pulse. In the laboratory frame of reference this is a spiral motion as M

precesses about B0. In the rotating frame (at the Larmor frequency), the net

magnetisation moves monotonically towards the transverse plane. If the applied B1 field

acts to bring M into the transverse plane then a 90o RF pulse has been applied. This is

also known as an excitation pulse. For a simple constant-amplitude RF pulse the flip

angle (α) can be expressed as:

α = γB1tp [1.12]

where tp is the pulse duration and B1 is its RF magnetic field strength.

Figure 1.8
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The effect of a radio-frequency excitation pulse on the net magnetisation vector in the
rotating frame. The application of a radio-frequency excitation pulse with magnetic
field B1 applied along the x axis acts to tilt M0 toward the transverse axis.

The application of a 90o pulse acts to bring the spins into phase coherence so M

possesses a large amplitude in the transverse plane. Thus a signal can be detected as the

transverse rotation induces voltage in a receiver coil (see Figure 1.9).

Figure 1.9
The net magnetisation in the rotating frame directly after a 90o excitation RF pulse in
the rotating frame. The application of a 90o RF pulse acts to bring M into phase
coherence in the transverse plane.

1.8.3 Spin-Spin Relaxation and the Spin Echo Acquisition

M decays rapidly in milliseconds following excitation due to the dephasing of the

protons, known as the free induction decay (FID). However in MRI, this signal is not

generally measured to generate an image. We use magnetic gradients to generate a

gradient echo or an additional RF “refocusing” pulse to generate a spin echo (see Figure

1.10).
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90

180

Echo

TE/2 TE/2

Figure 1.10
The basic spin echo acquisition. A 900 RF pulse is applied before a 1800 or refocusing
pulse to generate an echo which is measured using a receiver coil. The total time for
transverse de-phasing is the echo time (TE = TE/2+TE/2).

In a spin echo sequence, spins de-phase following the excitation pulse resulting in a

reduction in the net transverse magnetisation. This is because each of the spins

experiences a different magnetic field following the 90o pulse due to inhomogeneities in

the main field. In the rotating frame depicted in Figure 1.11, spins which experience a

strong magnetic field relative to the average magnetic field of the sample move

clockwise, spins which experience a weak magnetic field relative to the average

magnetic field move anticlockwise.
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Figure 1.11
The de-phasing of the signal following excitation into the transverse plane (rotating
frame). Directly after the 900 RF pulse, the spins are in phase and the transverse
component of M0 (blue arrow) has relatively large amplitude. The excited spins within
the imaging volume experience different local magnetic fields. As a result, some precess
slightly slower and some precess slightly faster than the Larmor frequency. This causes
the transverse magnetisation of the spins to fan out thus reducing the magnitude of M0.

After a half echo time (TE/2) a 180o pulse is applied. This acts to flip the spins 180o

about the y’-axis and reverses their phase. The different field strengths that the spins

experience now act to re-phase the net magnetisation (see Figure 1.12).
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Figure 1.12
The action of the 1800 refocusing pulse (applied along the y-axis) to the spins in the
transverse plane (rotating frame). The 180o RF pulse acts to invert the “fan” of
transverse magnetisation 180o about the y-axis. As a result, spins that were rotating
faster than ω0 now move clockwise towards M (blue arrow), spins that were precessing
slower than ω0 move towards M.

However at the time of the echo, the spins are not perfectly refocused. This is a result of

spin-spin or transverse relaxation. If each of the spins just experienced a single

resonance frequency (ωo) the magnetisation would precess coherently about the z axis

with frequency ωo. However if there is a range of different frequencies (Δωo) nuclei will

precess at different frequencies and in the rotating frame will disperse resulting in the

decay of Mxy (the magnetisation in the transverse plane). Spin-spin relaxation involves

phenomenon that cause an inherent broadening of the resonant linewidths. This is

caused by two processes. First of all, the nuclear spins have a finite lifetime in a given

energy state due to spin-lattice relaxation processes (see section1.9. T1: The

Longitudinal Relaxation Constant). Consequently there is an inherent uncertainty in the

resonance frequency resulting in a ‘lifetime’ broadening of the resonant frequencies by

the amount Δωo ≈ 1/T1. Thus the processes that contribute to spin-lattice relaxation also

influence transverse relaxation. However in in-vivo MRI, ‘lifetime’ broadening plays a

more minor role in the T2 of different tissue types in comparison to the relaxation

processes described below:
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If one imagines a collection of excited spins in a perfect magnetic field, ignoring

longitudinal relaxation (see T1: The Longitudinal Relaxation Constant), if the spins

were stationary they would all precess at the Larmor frequency and would remain in

phase.

However the spins in biological tissue posses considerable kinetic energy and thus

frequently collide. If two protons come together then each of them will experience a

slightly higher or lower magnetic field, as the magnetic moment of the other proton

adds or subtracts from the main field (see Figure 1.13). This causes the processional

frequencies of the protons to change and thus the bulk magnetisation becomes de-

phased. When the protons are again separated, they return to the Larmor frequency but

each has acquired a different phase. Over a few ms this interaction will occur many

thousands of times for each proton and the vector sum in the transverse direction (that

gives the measured signal) gradually decays to zero. No energy is lost from the system

of spins during this process, only phase coherence. The decay is an exponential process,

the speed of which is characterised by the transverse decay or T2 constant:

S = S0(exp(-TE/T2)) [1.13]

Where S is the measured signal; S0 is the measured signal when there is no spin-spin

relaxation and TE is the echo time.

Figure 1.13

B0 + δB
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Protons collide with other protons and as a result experience a slightly different
magnetic field (δB). Thus their rate of precession deviates slightly from the Larmor
frequency by the amount ωδB.

The molecular interactions that cause spin-spin relaxation were investigated by

Bloembergen, Purcell and Pound, commonly known as the BBP theory of relaxation

[Bloembergen et al., 1948]. They devised the theory based on the principle that every

atom or molecule is in constant motion; rotating, vibrating and translating in random

directions. Molecules exist in each state of motion for approximately 10-12 seconds

before colliding with another molecule thus changing its state of motion. This time is

known as the correlation time (τc). τc is short in gasses where molecules have relatively

high levels of kinetic energy and posses relatively high mean velocity whereas τc tends

to be longer in solids where molecules move relatively slowly. τc is also sensitive to

temperature as higher temperatures give molecules more kinetic energy and shorter τc.

When spins are tumbling very rapidly (short τc) then a particular spin will experience a

local magnetic field with a high frequency that effectively averages out over a few

milliseconds. This behaviour is termed “motional averaging” and results in a relatively

homogenous local field. In this instance de-phasing occurs relatively slowly (high T2

constant). In contrast, a slowly tumbling molecule will see a relatively low frequency

magnetic field inhomogeneity and will become rapidly de-phased following excitation.

Different types of biological tissue possess a marked difference in the speed of

molecular tumbling and as a result have different transverse relaxation times. For

example, in arterial blood or CSF protons are frequently colliding and therefore the

spin-spin magnetic field inhomogeneities are generally high frequency, yielding

relatively slow transverse relaxation. Conversely, protons that are “bound” to larger

macromolecules (e.g. in myelin) undergo rapid spin-spin relaxation as their motion is

restricted by their molecular environment (very short T2 constant). Consequently, such

structure is often invisible to MRI as the signal will have almost totally de-phased by

the time an echo is detected. In brain tissue, water molecules are in a mixed state of

bound and free and the rate of transverse de-phasing (T2 constant) will be intermediate.

Most biological tissues possess a mixture of free and bound protons and behave in this

way. Therefore by estimating the T2 of a voxel we can gain information as to the type

of tissue that we are imaging. For example, if a voxel contains mostly grey matter the

T2 will be approximately 60-70ms whereas if we measure the T2 of a voxel that
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represents blood in an artery we would expect a marked increase (200ms) at the same

field strength (Stanitz et al., 2005). In practice, voxels in MRI exhibit partial volume

effects and contain more than one tissue type with more than one associated T2 value. If

the sampled protons are in fast exchange (relative to the experimental echo times) then

the relaxation behaviour will be mono-exponential, representing a weighted average of

the tissues present. If there is slow or restricted exchange then bi-exponential transverse

decay (if there are two tissue types in slow exchange) may be observable.

In chapter 2 we measure the ASL, perfusion weighted signal at several different echo

times. Using equation 1.13, we can use these measurements to estimate the T2 of this

signal. The T2 will be determined by the distribution of labelled blood water in different

molecular environments during image acquisition. In this way we can estimate the

cerebral vascular location of labelled blood water that has flowed into the brain.

1.9 T1: THE LONGITUDINAL RELAXATION CONSTANT

Following excitation by a RF pulse, the spins will gradually relax back to equilibrium,

parallel to the longitudinal axis. This process is known as longitudinal or spin-lattice

relaxation, the rate of which is characterised by relaxation constant T1. Typically the

rate of this decay will be significantly less than the rate of spin-spin (T2) relaxation.

Unlike transverse relaxation, a loss of energy occurs in this process. This is to be

expected given that energy (from the RF excitation pulse) is required to bring the spins

into the transverse plane. The T1 constant can be described as the rate at which this

energy to transferred to the lattice

In normal tissues, T1 values are related to macromolecular concentration, water binding

and water content. For a detailed description of the mechanisms involved in T1

relaxation, see [Gadian, 1995].Spin-lattice relaxation is a particularly important

consideration in ASL as differences in the longitudinal magnetisation gives the flow

related contrast that we measure. Longitudinal relaxation of labelled blood water occurs

after labelling. Like T2 decay, the rate of longitudinal relaxation is dependent on the

molecular environment of the labelled blood water. For example the rate of T1 decay

will be relatively slow in the blood but will increase when the labelled blood water

exchanges into the tissue. Thus longitudinal relaxation of labelled spins not only acts to
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reduce to magnitude of the ASL signal, decreasing the SNR of the measurements but

must also be carefully accounted for to avoid errors in CBF quantification.

1.10 PRINCIPLES OF DIFFUSION MRI

The measured NMR signal can be made sensitive to the extent of diffusion (random

molecular motion) of the sampled protons. The effect of diffusion on the measured

signal can be understood from a simple pulsed gradient spin echo (or Stejskal and

Tanner) method. This consists of a standard spin echo acquisition with identical

gradients placed on either side of the 180o pulse (see Figure 1.14).

Figure 1.14

The Stejskal Tanner experiment. Gradients of equal duration and amplitude are placed
either side of the 1800 re-focussing pulse in a spin echo acquisition. In this example, for
conceptual clarity, the gradient separation (Δ) is considered to be considerably greater
than the gradient duration (δ).

The first gradient pulse induces a phase shift φ1 of the spin traverse magnetisation,

which depends on the spin position. If the first gradient (amplitude G1) is applied along

the slice select (z) axis, then the phase shift is equal to the following:
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where δ is the gradient duration; ΔM is the gradient separation; γ is the gyromagntic 

ratio; z1 is the spin position during the first gradient and for conceptual simplicity is

considered to be constant as δ is relatively short. After the 180o refocusing pulse, the

second gradient (amplitude G2) will result in a phase shift φ2:









 2222 zGdtzG [1.15]

where z2 is the spin position during the second gradient (G2). The overall phase shift

µ(φ) can therefore be expressed as:

µ(φ) = φ2 - φ1 = γGµ(z1 – z2) [1.16]

So static spins (where z1 = z2) will not experience any dephasing as φ1 = φ2. However

moving spins (where z1 ≠ z2) will accumulate a net phase shift (φ1 -φ2). When we

measure the echo, we sample the total magnetisation of the volume of tissue that has

been excited. This can be thought of as the vector sum of the magnetic moments of the

individual nuclei whose magnetic moments will depend on the extent of their motion

during time interval Δ. The measured signal (M) relative to the signal with no diffusion 

weighting (M0) can then be expressed as:
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This equation can be resolved with knowledge of the net phase distribution. Firstly,

assuming free diffusion in a uniform medium the probability of finding a spin at

position z1 is constant. If we then define P(z2|z1,Δ)dz2 as the conditional probability of

finding a spin at z1 during gradient G1 and then between z2 and dz2 after Δ, the measured 

signal can be defined as follows:
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For free diffusion in one direction the conditional probability is given by [Le Bihan,

1995]:
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where D is the diffusion coefficient, representing to the extent of diffusion in the

medium. We can then combine equations 1.18 and 1.19 to obtain:
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Or by taking the logarithm,
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Equation 1.21 equates the measured signal attenuation to the diffusivity and is the basis

for diffusion measurement using MRI. However equation 1.21 only gives an

approximation as to the measured signal attenuation, since the duration (δ) of each

diffusion gradient (G1 & G2) may not be negligible in comparison to Δ (as we have

assumed so far). Therefore a more precise solution can be found when taking δ into

account:
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The quantity (Δ-δ/3) is known as the diffusion time τ and is related to molecular motion

through the Einstein equation:

Dr 62  [1.23]

where (r2) is the mean displacement of a collection of molecules. The b-value is the

established term to describe the extent of diffusion weighting in the sequence.
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In biological tissue there are many complicated processes that render the “free

diffusion” model an oversimplification. Therefore D is referred to as the “apparent”

diffusion coefficient (ADC). An established approach to estimating the ADC of a

sample is to measure the signal over a range of b-values using the sequence shown in

Figure 1.14. According to equation 1.25, the measured signal will have a linear

dependence on the applied b -value, assuming free diffusion in a homogenous medium.

The ADC can then be estimated by calculating the gradient of this plot (see Figure

1.15).
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Figure 1.15
In-vivo results showing the measured signal from a ROI in the cortex of the rat brain.
The slope is equal to the ADC (estimated to be approximately 0.11 x 10-3 mm2/sec).

In chapter 4 we implement diffusion gradients as illustrated in Figure 1.14 with the

intention of selectively suppressing the signal from the intra-vascular compartment. The

brain capillary vasculature may be described as a network of randomly oriented

segments where direction of flow changes frequently. Blood flowing in the micro-

vasculature and capillaries can be thought of as possessing a fast pseudo-coefficient [Le

Bihan, 1995]. This pseudo-ADC is around 10 times greater than that of the tissue. This

effect can be seen in Figure 1.16. Figure 1.16 shows the mean cortical perfusion-

weighted signal (×10) generated using ASL as a function of b-value in addition to the

tissue signal reported in Figure 1.15. The tissue signal was taken from the control

acquisitions (used to generate the perfusion-weighted images) and so the tissue and

perfusion-weighted signal can be thought of as effectively being acquired

simultaneously. These in-vivo data are shown here to aid the clarity of this explanation.

By fitting a simple linear model to the data, the ADC of the labelled blood in the cortex

is calculated to be approximately 8 times that of the static tissue. This result reflects the

fact that labelled blood in the microvasculature makes up a significant proportion of the
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ASL signal [Silva et al., 1997(a)] whereas if we consider the entire tissue, the blood

volume is around 3% in the rat brain [Shockley and LaManna, 1998]]. Therefore this

fast-pseudo coefficient is more dominant in the ASL signal and as a result the estimated

ADC of the perfusion-weighted signal (over the b-values used in the experiment) is

considerably greater than the control.

Figure 1.16
In-vivo results showing the measured perfusion weighted (labelled blood water- black
squares) and control (static tissue – black dots) signal from a ROI in the cortex of the
rat brain. The amplitude of the perfusion weighted signal has been multiplied by 10 so it
is of the order of the control signal for clarity of display. The solid lines represent the
linear fits to the data. The gradient of the fits represents the calculated ADC.
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1.11 HALF-FOURIER ACQUISITIONS AND THE POCS
RECONSTRUCTION

In chapter 2 we implement half-Fourier acquisitions. In this approach we do not sample

the whole of k-space but rather, just over half. We then used a constrained

reconstruction technique to generate the images from the acquired data. Our motivation

was to reduce the minimum echo time of the acquisitions to improve the range of

coverage of the transverse decay. In addition we aimed to keep each acquisition short so

that we could acquire several images during the decay. Half-Fourier imaging takes

advantage of the conjugate symmetry of k-space. Specifically, if the frequency

representation S(k) of a real-valued function I(x) is known for k ≥ 0 then S(-k) can (in

theory) be generated based on the Hermitian symmetry:

S(-k) = S*(k) [1.26]

Therefore, in theory it is only necessary to acquire one half of k-space. In practice

subject motion and magnetic field inhomogeneities introduce a non-zero phase into the

image function. However this can be adequately overcome by acquiring a few

additional lines of encoding across the centre of k space as illustrated in Figure 1.17.
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Figure 1.17
A typical sampling regime used for half-Fourier acquisitions. represents points
in k-space that are sampled and represents points that are not sampled [Liang and
Lauterbur, 2000].

In Chapter 4 we acquire half of k-space (32 lines) plus 4 additional lines in the phase

encoding direction. The half-Fourier reconstruction problem can be formally described

as follows:

Given:

NnndxexInS kxni  



 0

2)(][  [1.27]

Determine: I(x)

where no is much smaller than N. In chapter 4 we use the projection onto convex sets

(POCS) algorithm to reconstruct the images [Liang et al., 1992]. This is an automated

iterative approach where a phase correction is first estimated and then combined with

the measured data to compute the final reconstruction.
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First of all S(k) is zero filled to generate a 64 by 64 data set. The first image estimate is

performed using:

))(()( 1
1 kSFxI 

Then the phase estimate (eiφ(x), generated from the central, symmetric k-space data) is

combined with the magnitude of the estimated image:

)(
1

~

1 )()( xiexIxI 

Then the data is Fourier transformed to create a new data set:
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~
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^
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Snew(k) is then formed by merging S^
1 where the lines of k-space were not acquired in

S(k). The process is then repeated until no significant change occurs.

1.12 MRI APPARATUS

All the MRI experiments described in this thesis were performed by myself using a

2.35T horizontal magnet (see Figure 1.18) with a 120mm bore (Oxford Instruments

Eynsham, UK), interfaced to a Surrey Medical Imaging Systems (SMIS, UK) console.

The operating system for the console was Windows 3.1.

Figure 1.18 The Experimental MRI scanner used in the imaging studies described in
this thesis. The scanner was installed on the fourth floor of the UCL Institute of Child
Health in 1984.
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An Alderman-Grant volume coil (60mm length) was used for RF transmission, and

signal was received using a passively decoupled, single loop surface coil of 1cm

diameter (see Figure 1.19).

In all the experiments, anaesthesia was induced using 3% halothane in 100% O2 and

was maintained via a nose cone at 2% halothane in 100% O2 whilst the animal was

placed on a custom designed Perspex probe (see Figure 1.19). The rodent’s head was

secured using ear bars to minimise motion during the data acquisition. Once the probe

was fixed in the scanner, halothane concentration was reduced to 1.25% in 60% N2O

and 40% O2. Body core temperature was measured throughout using a rectal

thermometer and maintained at 36.5 ± 0.5oC using a heated blanket during preparation

and warm air flow into the magnet throughout the data acquisition period.

Figure 1.19
The probe used to transport and hold the rodent in position inside the magnet. The
surface coil (diameter 1cm) used for MR signal detection is also shown. This coil was
smaller than those used by other users of the scanner. As a result the SNR in the brain
regions proximal to the coil (e.g. cortex) was relatively high. Conversely, marked
sensitivity “drop off” means that the SNR decreases rapidly with the distance from the
coil and brain regions far from the coil possess relatively low SNR.

All experiments were performed in accordance with the UK Home Office animals act

(1986).
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1.13 CONCLUSION AND CLOSING REMARKS

In this chapter I have explained the principles of CBF quantification using ASL

techniques beginning with the original implementation [Detre et al., 1992] through to

the most recent advances. I have also explained the potential difficulties that may

confound accurate, efficient and robust ASL CBF quantification, all of which require

careful consideration during ASL application. In addition I have described the

established theory behind the key additional MRI contrast mechanisms and techniques

that underpin the experiments detailed in Chapter 2 (T2 and T1 relaxation, diffusion

imaging and half-Fourier acquisition and reconstruction). Now I continue to Chapter 2

which describes experiments designed to characterise the origin of the ASL signal in the

rat brain using Multi-Echo acquisitions.

1.14 REFERENCES

Alsop DC, Detre JA.(1996). Reduced transit-time sensitivity in noninvasive magnetic resonance imaging
of human cerebral blood flow. Journal of Cerebral Blood Flow And Metabolism 16, 1236-1249.

Alsop DC, Detre JA.(1998). Multisection cerebral blood flow MR imaging with continuous arterial spin
labelling. Radiology 208, 410-416

Berr SS, Mai VM.(1999) Extraslice Spin Tagging (EST) magnetic resonance imaging for the
determination of perfusion. Journal of Magnetic Resonance Imaging 9,146-150.

Bloembergen N, Purcell EM, Pound RV. (1948) Relaxation effects in nuclear magnetic resonance
absorption. Physical Review 73, 679-712.

Branch CA, Hernandez L, Yongbi MN, Huang NC, Helpern JA.(1999) Rapid and continuous monitoring
of cerebral perfusion by magnetic resonance line scan assessment with arterial spin tagging. NMR In
Biomedicine 12, 15-25.

Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR.(1998). A general kinetic model for
quantitative perfusion imaging with arterial spin labelling. Magnetic Resonance in Medicine 40, 383-396.

Calamante F, Williams SR, van Bruggen N, Kwong KK, Turner R.(1996) A model for quantification of
perfusion in pulsed labelling techniques. NMR Biomed. 9:79-83. Erratum in: NMR Biomed 1996 9:277.

Calamante F, Lythgoe MF, Pell GS, Thomas DL, King MD, Busza AL, Sotak CH, Williams SR, Ordidge
RJ, Gadian. (1999). Early changes in water diffusion, perfusion, T1 and T2 during focal cerebral ischemia
in the rat studied at 8.5T. Magnetic Resonance in Medicine 41, 479-485.

Carr JP, Buckley DL, Tessier J, Parker GJ.(2007). What levels of precision are achievable for
quantification of perfusion and capillary permeability surface area product using ASL? Magnetic
Resonance in Medicine 58(2), 281-9.

Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA.(2002). Magnetic
resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labelling. Stroke,
31:680-687



62

Chen Q, Siewert B, Bly BM, Warach S, Edelman RR.(1997). STAR-HASTE: perfusion imaging without
magnetic susceptibility artefact. Magnetic Resonance in Medicine 38, 404-8.

Chen J, Licht DJ, Smith SE, Agner SC, Mason S, Wang S, Silvestre DW, Detre JA, Zimmerman RA,
Ichord RN, Wang J.(2009). Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke:
initial experiences. Journal of Magnetic Resonance Imaging. 29:282-90.

Chng SM, Petersen ET, Zimine I, Sitoh YY, Lim CC, Golay X.(2008) Territorial arterial spin labelling in
the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 39,3248-
54.

Davies NP, Jezzard P.(2003). Selective arterial spin labelling (SASL): perfusion territory mapping of
selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magnetic Resonance In
Medicine 49,1133-1142.

Detre JA, Leigh JS, Williams DS, Koretsky AP.(1992). Perfusion imaging. Magnetic Resonance in
Medicine 23,37-45.

Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC,(1998). Noninvasive MRI evaluation
of cerebral blood flow in cerebrovascular disease. Neurology 50, 633-641.

Duang TQ, Kim DK, Ugurbil K, Kim SG.(2001). Localised cerebral blood flow response at submilimeter
columnar resolution. Proceeding of the national academy of sciences 98, 10904-10909.

Eastwood JD, Holder CA, Hudgins PA, Song AW.(2002). Magnetic resonance imaging with lateralized
arterial spin labelling. Magnetic Resonance Imaging 20, 583-586.

Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM.(1994). Qualitative mapping
of cerebral blood-flow and functional localization with echo-planar mr-imaging and signal targeting with
alternating radio-frequency. Radiology 192,513-520.

Edelman RR, Chen Q.(1998). EPISTAR MRI: multislice mapping of cerebral blood flow. Magnetic
Resonance in Medicine 40, 800-805.

Ewing JR, Cao Y, Fenstermacher JD.(2001).Single-coil arterial spin tagging for estimating cerebral blood
flow as viewed from the capillary: relative contributions of intra- and extravascular signal. Magnetic
Resonance in Medicine 46,465-475.

Fernandez-Serra MA, Edlow BA, Hoang A, Wang J, Detre JA.(2007). Snap-Shot ASL Presented at the
15th ISMRM, Berlin.

Fernandez-Seara MA, Edlow BL, Hoang A, Wang J, Feinberg DA.(2008). Minimizing acquisition time of
arterial spin labelling at 3T. Magnetic Resonance in Medicine 59,1467-71.

Francis ST, Bowtell R, Gowland PA (2008) Modeling and optimization of Look-Locker spin labeling for
measuring perfusion and transit time changes in activation studies taking into account arterial blood
volume. Magnetic Resonance in Medicine 59 316-25

Gadian DG. NMR and its applications to living systems (1995, second edition). Chapter 6.3
Relaxation.Oxford Science Publications.

Gallichan D, Jezzard P.(2008). Modelling the effects of dispersion and pulsatility of blood flow in pulsed
arterial spin labelling. Magnetic Resonance in Medicine 60, 53-63.

Garcia DM, Duhamel G, Alsop DC.(2005). Efficiency of inversion pulses for background suppressed
arterial spin labelling. Magnetic Resonance in Medicine 54,366-372.

Golay X, Petersen ET, Zimine I.(2007). Novel Developments in Arterial Spin Labelling based Perfusion
Imaging. MRI Perfusion and Diffusion Workshop, Brazil.



63

Grossman M, Alsop D, Detre JA.(2001). Perfusion fMRI using arterial spin labelling in Alzheimer’s
disease and frontal temporal dementia: correlations with language. Brain Language 79, 94-95.

Guenther M, Bock, Schad LR.(2001). Arterial spin labelling in combination with a look-locker sampling
strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magnetic Resonance in Medicine. 46, 974-84.

Guenther M, Oshio K, Feinberg. (2005). Single-Shot 3D Imaging Techniques Improve Arterial Spin
Labelling Perfusion Measurements. Magnetic Resonance in Medicine, 54, 491-498.

Guenther M. (2006(a)). Rapid Imaging of Multiple Vascular Territories Using Cycled Arterial Spin
Labelling with Independent Component Analyses. Presented at the 15th ISMRM , Seattle.

Guenther M.(2006(b)). Highly Efficient Accelerated Acquisition of Perfusion Inflow Series by Cycled
Arterial Spin Labelling. Presented at the 15th ISMRM ,Seattle.

Hendrikse J, van Osch MJ, Rutgers DR, Bakker CJ, Kappelle LJ, Golay X, van der Grond J. (2004).
Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at
multiple delay times. Radiology.233(3):899-904.

Hunsche S, Sauner D, Schreiber WG, Oelkers P, Stoeter P. (2002). FAIR and dynamic susceptibility
contrast-enhanced perfusion imaging in healthy subjects and stroke patients. Journal of Magnetic
Resonance Imaging.16:137-46.

Jahng G-H, Zhu X-P, Matson GB, Weiner MW, Schuff N.(2003). Improved perfusion-weighted MRI by
a novel double inversion with proximal labelling of both tagged and control images. Magnetic Resonance
in Medicine 49, 307-314.

Kansagra AP, Wong EC.(2008). Mapping of Vertebral Artery Perfusion Territories using Arterial Spin
Labelling MRI. Journal of Magnetic Resonance Imaging 28, 762- 766.

Kim SG. (1995). Quantification of Regional Cerebral Blood Flow Change by Flow Sensitive Alternating
Inversion Recovery (FAIR). Application to functional mapping. Magn Reson Med 34, 293-301.

Kimura H, Kado H, Koshimoto Y, Tsuchida T, Yonekura Y, Itoh H. (2005). Multislice continuous
arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a
correlative study with CO2 PET validation. Journal of Magnetic Resonance Imaging 22(2):189-98.

Koziac AM, Winter J, Lee TY, Thompson RT, St Lawrence. (2008). Magnetic Resonance Imaging 26,
543-53.

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel
BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. (1992). Dynamic magnetic resonance
imaging of human brain activity during primary sensory activation. Proceedings of the National
Academy of Sciences 89, 5675-5679.

Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L.(1995). MR perfusion
studies with T1-weighted echo-planar imaging. Magnetic Resonance in Medicine 34,878-887.

Lai S, Wang J , Jahng GH.(2001).FAIR exempting separate T(1) measurements (FAIREST): a novel
technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR in Biomedicine 14,
507-516.

Li KL, Zhu X, Hylton N, Jahng GH, Weiner MW, Schuff N. (2005). Four-phase single-capillary stepwise
model for kinetics in arterial spin labeling MRI. Magnetic Resonance in Medicine 53,511-518.

Z.-P. Liang, F. B. Boada, R. T. Constable, E. M. Haacke, P. C. Lauterbur, and M. Smith. (1992)
Constrained reconstruction methods in MR imaging. Reviews of Magnetic Resonance in Medicine, vol. 4,
no. 2, pp. 67–185, 1992.



64

Liu HL, Kochunov P, Hou J, Pu Y, Mahankali S, Feng CM, Yee SH, Wan YL, Fox PT, Gao JH. (2001).
Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE:
comparison with H(2)(15)O PET measurements. Magnetic Resonance in Medicine 45, 431-435.

Luh WM, Wong EC, Bandettini PA, Hyde JS.(1999).QUIPSS II with thin-slice TI1 periodic saturation: a
method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labelling.
Magnetic Resonance in Medicine 41, 1246-1254.

Mai VM, Berr SS.(1999). MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin
labelling techniques: FAIRER and FAIR. Journal of Magnetic Resonance Imaging 9, 483-487.

Mildner T, Trampel R, Möller HE, Schäfer A, Wiggins CJ, Norris DG.(2003). Functional perfusion
imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3T. Magnetic
Resonance in Medicine 49, 791-795.

Ogawa S, Lee TM, Kay AR, Tank DW.(1990). Brain magnetic resonance imaging with contrast
dependant on blood oxygenation. Proceedings of the national academy of sciences U S A. 87(24):9868-
72.

Ostergaard L. (2005). Principles of cerebral perfusion imaging by bolus trackin. Journal of Magnetic
Resonance Imaging 22, 710-7.

Parkes LM, Tofts PS.(2002). Improved accuracy of human cerebral blood perfusion measurements using
arterial spin labeling: accounting for capillary water permeability. Magnetic Resonance in Medicine 48,
27-41.

Pell GS, Thomas DL, Lythgoe MF, Calamante F, Howseman AM, Williams SR.(1999) .Implementation
of quantitative FAIR perfusion imaging with a short repetition time in time course studies. Magnetic
Resonance in Medicine 41, 829-840.

Petersen ET, Zimine I, Ho YC, Golay X.(2006). Non-invasive measurement of perfusion: a critical
review of arterial spin labelling techniques. British Journal of Radiology.79, 688-701.

Petersen ET, Lim T, Golay X.(2006). Model-free arterial spin labelling quantification approach for
perfusion MRI. Magnetic Resonance in Medicine 55, 219-32.

Petersen ET, Golay X Is Arterial Spin Labelling Ready for the Prime time? (2008). Prilimary Results
from the QUASAR Reproducibility Study. Proceedings of the 16th Annual Meeting of ISMRM, Toronto,
Cananda, 2008 (Abstract 191)

Pollock JM, Whitlow CT, Deibler AR, Tan H, Burdette JH, Kraft RA, Maldjian JA (2008). Anoxic
injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. American
Journal of Neural Radiology. 29:1302-7.

Quirk JD, Bretthorst GL, Duong TQ, Snyder AZ, Springer Jr CS, Ackerman JH, Neil JJ.(2003).
Equilibrium Water Echange Between the Intra- and Extracellular Spaces of Mammalian Brain. Magnetic
Resonance in Medicine 50, 493-499.

Schwarzbauer C, Heinke W.(1998). BASE imaging: a new spin labelling technique for measuring
absolute perfusion changes. Magnetic Resonance in Medicine. 39, 717- 722.

Shockley RP, LaManna JC (1998). Determination of rat cerebral cortical blood volume changes by
capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Research
28;454; 170-178.

Silva AC, Zhang WG, Williams DS, Koretsky AP.(1995). Multi-slice MRI of rat brain perfusion during
amphetamine stimulation using arterial spin labeling. Magnetic Resonance in Medicine 33, 209-214.



65

Silva AC, Williams DS, Koretsky AP.(1997a). Evidence for the exchange of arterial spin labeled water
with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magnetic Resonance
in Medicine 38, 232-237.

Silva AC, Zhang WG, Williams DS, Koretsky AP.(1997). Estimation of water extraction fractions in rat
brain using magnetic resonance measurement of perfusion with arterial spin labelling. Magnetic
Resonance in Medicine 37, 58-68.

Silva AC, Lee SP, Iadecola C, Kim SG. (2000). Early temporal characteristics of cerebral blood flow and
deoxyhaemaglobin changes during somatosensory stimulation. Journal of Cerebral Blood Flow and
Metabolism 20, 201-206.

Stanitz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005). T1, T2
relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine 54, 507-12.

St.Lawrence KS, Frank JA, Mclaughlin AC. (2000). Effect of restricted water exchange on cerebral blood
flow values calculated with arterial spin tagging: a theoretical investigation. Magnetic Resonance in
Medicine 44, 440-449.

St.Lawrence KS, Wang J.(2005). Effects of the apparent transverse relaxation time on cerebral blood flow
measurements obtained by arterial spin labelling. Magnetic Resonance in Medicine 53, 425-433.

Talagala SL, Barbier EL, Williams DS, Silva AC, Koretsky AP. (1998). Multi-slice perfusion MRI using
continuous arterial water labelling controlling for MT effects with simultaneous proximal and distil RF
irradiation. Proceedings of the 6th Annual Meeting of ISMRM, Sydney.

Tanabe JL, Yongbi MN, Branch CA, Hrabe J, Johnson G, Helpern JA.(1999). MR perfusion imaging in
human brain using the UNFAIR technique. Journal of Magnetic Resonance Imaging 9, 761-767.

Van Gelderen P, de Zwart JA, Duyn JH.(2008). Pittfalls of MRI Measurement of White Matter Perfusion
Based on Arterial Spin Labelling. Magnetic Resonance in Medicine 59,788-795.

Yang YH, Frank JA, Hou L, Ye FQ, Mclaughlin AC, Duyn JH.(1998). Multislice imaging of quantitative
cerebral perfusion with pulsed arterial spin labeling. Magnetic Resonance in Medicine 39, 825-832.

Ye FQ, Pekar JJ, Jezzard P, Duyn T, Frank JA, Mclaughlin AC.(1996). Perfusion imaging of the human
brain at 1.5T using a single-shot EPI spin tagging approach. Magnetic Resonance in Medicine 36, 219-
224.

Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. (1997). Correction for
vascular artefacts in cerebral blood flow values measured by using arterial spin tagging techniques.
Magnetic Resonance in Medicine. 37, 226-235.

Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. (2000). Noise reduction in 3D perfusion imaging by
attenuating the static signal in arterial spin labelling (ASSIST). Magnetic Resonance in Medicine 44, 92-
100.
Yoneda K, Harada M, Morita N, Nishitani H, Uno M, Matsuda T. (2003). Comparison of FAIR technique
with different inversion times and post contrast dynamic perfusion MRI in chronic occlusive
cerebrovascular disease. Magnetic Resonance Imaging. 21:701-5.Walsh EG, Minematsu K, Leppo J,
Moore SC.(1994). Radioactive microsphere validation of a volume localised continuous saturation
perfusion measurement. Magnetic Resonance in Medicine 31,147-153.

Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. (2003). Arterial transit time
imaging with flow encoded arterial spin tagging (FEAST). Magnetic Resonance in Medicine 50;599-607;

Wang J, Fernandez-Serra MA, Wang S, St. Lawrence KS.(2007). When perfusion meets diffusion: in
vivo measurements of water permeability in human brain. Journal of Cerebral Blood Flow & Metabolism
27, 839-49.



66

Williams DS, Detre JA, Leigh JS, Koretsky AP.(1992). Magnetic resonance imaging of perfusion using
spin inversion of arterial water. Proceedings of the National Academy of Sciences 89, 212-216.

Wong EC, Frank LR, Buxton RB.(1997). Implementation of quantitative perfusion imaging techniques
for functional brain mapping using pulsed arterial spin labelling. NMR in Biomedicine 10, 237-49.

Wong EC, Buxton RB, Frank LR.(1998). A theoretical and Experimental Comparison of Continuous and
Pulsed Arterial Spin Labelling Techniques for Quantitative Perfusion Imaging. Magnetic Resonance in
Medicine 40, 348-355.

Wong EC, Buxton RB, Frank LR.(1998).Quantitative imaging of perfusion using a single subtraction
(QUIPSS and QUIPSS II). Magnetic Resonance in Medicine 39, 702-708.

Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT.(2006(a)). Velocity Selective Arterial Spin
Labelling. Magnetic Resonance in Medicine 55, 1334-41.

Wong EC.(2006(b)). Vessel Encoded Arterial Spin Labelling Using Pseudo Continuous Tagging.
Presented at the 14th ISMRM , Seattle.

Wong E, Guo J. Velocity Selective Inversion Pulse Trains for Velocity Selective Arterial Spin Labelling.
Presented at the 17th ISMRM , Hawaii.

Wu WC, Wong EC.(2007(a)). Feasibility of velocity selective arterial spin labelling in functional MRI.
Journal of Cerebral Blood Flow and Metabolism 27(4), 831-8.

Wu WC, Fernandes-Seara F, Wehrli JA, Detre JA, Wang J.(2007(b)). A Theoretical and Experimental
Investigation of the Tagging Efficiency of Pseudo-Continuous Arterial Spin Labelling. Presented at the
15th ISMRM, Berlin.

Zaharchuk G, Bogdanov Jr. AA, Marota JJA, Shimizu-Sasamata M, Weisskoff RM, Kwong KK.(1998).
Continuous Assessment of Perfusion by Tagging Including Volume and water Extraction (CAPTIVE): a
steady-state contrast agent technique for measuring blood flow, relative blood volume fraction and the
water extraction fraction. Magnetic Resonance in Medicine 40, 666-678.

Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL.(1999). Multislice perfusion and
perfusion territory imaging in humans with separate label and image coils. Magnetic Resonance in
Medicine 41,1093-1098

Zhang W, Silva AC, Williams DS, Koretsky AP.(1995). NMR measurement of perfusion using arterial
spin labelling without saturation of macromolecular spins. Magnetic Resonance in Medicine 33, 370-376.

Zhang W.(1995(b)) A quantitative analysis of alternated line scanning in k-space and its application in
MRI of regional tissue perfusion by arterial spin labeling. Journal of Magnetic Resonance Series B 107,
165-171.

Zhou J, Mori S, van Zijl PCM.(1998). FAIR excluding radiation damping (FAIRER). Magnetic
Resonance in Medicine 40, 712-719.

Zhou J, Mori S, van Zijl PCM.(1999). Perfusion Imaging using FAIR with a short pre-delay. Magnetic
Resonance in Medicine 41, 1099-1107.

Zhou JY, Wilson DA, Ulatowski JA, Trajstman RJ, van Zijl PCM.(2001). Two-compartment exchange
model for perfusion quantification using arterial spin tagging. Journal of Cerebral Blood Flow and
Metabolism 21(4), 440-455.



67

CHAPTER 2: CHARACTERISING THE ORIGIN OF THE

ARTERIAL SPIN LABELLING SIGNAL IN MRI USING A

MULTI-ECHO ACQUISITION APPROACH

2.1 ABSTRACT

Arterial spin labelling can non-invasively isolate the MR signal from arterial blood

water that has flowed into the brain. In grey matter, the labelled bolus is dispersed

within three main compartments during image acquisition: the intra-vascular

compartment; intra-cellular tissue space; and the extra-cellular tissue space. Changes in

the relative volumes of the extra-cellular and intra-cellular tissue space are thought to

occur in many pathological conditions such as stroke and brain tumours. Accurate

measurement of the distribution of the ASL signal within these three compartments will

yield better understanding of the time-course of blood delivery and exchange, and may

have particular application in animal models of disease to investigate the relationship

between the source of the ASL signal and pathology. In this study we sample the

transverse relaxation of the ASL perfusion-weighted and control images acquired with

and without vascular crusher gradients at a range of post-labelling delays and tagging

durations, to estimate the tri-compartmental distribution of labelled water in the rat

cortex. Our final results provide evidence for rapid exchange of labelled blood water

into the intra-cellular space relative to the transit-time through the vascular bed, and

provide a more solid foundation for CBF quantification using ASL techniques.

2.2 INTRODUCTION

As discussed in chapter 1, arterial spin labelling MRI [Detre et al., 1992] is increasingly

being used to measure cerebral perfusion non-invasively with good spatial and temporal

resolution. In ASL, a bolus of arterial blood is magnetically labelled in the feeding

arteries and then imaged in the brain. Though such measurements are most commonly

used to estimate the rate of delivery of blood to the capillaries, the labelled bolus of

arterial blood water becomes distributed between several cerebral-vascular

compartments prior to image acquisition. In grey matter, these can be broadly separated

into three main compartments: i) the intra-vascular (IV – arterioles, capillaries, venules)

compartment; ii) the extra-vascular, intra-cellular (IC) tissue space; iii) the extra-
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vascular, extra-cellular (EC) tissue space. Changes in the relative volume of the extra-

and intra-cellular tissue space (EC relative to IC) are thought to occur in many common

pathological conditions such as stroke [Moseley et al., 1990] and brain tumours [Bakey,

1970]. Non-invasive estimation of this parameter using MRI may lead to a better

understanding of disease processes. Previous studies have observed multi-exponential

transverse (T2) decay in skeletal muscle, attributing the slow relaxation component to

the extra-cellular space [Belton et al., 1972; Hazlewood et al., 1974; Gambarota et al,

2001]. Further studies provide evidence that the transverse decay of extra-vascular rat

brain tissue is bi-exponential due to a marked difference between the T2 of the IC (fast

transverse relaxation) and EC (slow transverse relaxation) compartments [Haida et al.,

1987; Matsumae et al., 2003; Lascialfari et al., 2005]. Another study observed slow

exchange between the IC and EC space in the in-vivo rat brain relative to the timescale

of T2 measurement [Quirk et al., 2003]. In [Matsumae et al., 2003], the volume of the

extracellular space, as estimated from the T2 relaxation curve, was found to be in good

agreement with electron microscopy imaging experiments. In this chapter, we measure

the transverse decay of the ASL perfusion-weighted signal to estimate the origin (EC

relative to IC) of nutritive blood flow-related signal that has exchanged into the tissue.

Such measurements could lead to better understanding of the time-course of blood

delivery and exchange and may have particular application in animal models of disease

to investigate the relationship between the IC/EC origin of the ASL signal and

pathology.

The distribution of ASL labelled water within the three compartments during image

acquisition will also have direct implications for cerebral perfusion quantification. For

example, perfusion may be overestimated by standard quantification methods if a

significant proportion of the tagged spins reside in the intra-vascular compartment, as

this blood may still be in transit to its eventual location for oxygen and nutrient delivery

and exchange [Silva et al., 1997(a)]. Several studies have attempted to address this

uncertainty by estimating the proportions of labelled spins in the vascular space relative

to the tissue space (IV relative to (EC +IC)) using a variety of methods which take

advantage of differences in apparent diffusion, the effect of contrast agents, or

magnetisation transfer in the two compartments [Silva et al., 1997(a), Silva et al.,

1997(b), Wang et al., 2003, Wang et al., 2007, Zaharchuk et al., 1998].See section

1.5.2 (Vascular Artefacts) for further details. Recently, initial data has been presented
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investigating the potential use of T2 differences to observe compartmentation of the

ASL signal in the human brain using a FAIR-CPMG approach [He & Yablonskiy,

2007].

A common approach to ASL CBF measurement is to acquire multiple images at a range

of inflow times and fit the dynamic time-course data to a model for cerebral parameter

quantification. An assumption of this approach is that the T2 of the labelled water is

constant and is independent of the PLD [Buxton et al., 1998, Petersen et al., 2006,

Petersen et al., 2008, Francis et al., 2008]. Marked sensitivity of the T2 of the tagged

bolus to the PLD will influence the accuracy of the estimates. Indeed, a recent study

cited T2 as an explanation for CBF quantification errors [Kober et al., 2008] but, unlike

T2* effects [St.Lawrence et al., 2005], this potential source of error has not been

previously examined.

In this chapter we present a novel technique to estimate non-invasively the proportion

of the ASL perfusion-weighted signal originating from the three distinct cerebral-

vascular compartments (IV, EC and IC). We sample the transverse relaxation of the

perfusion-weighted and control images acquired with a range of post labelling delays

(PLDs) and labelling durations (τ) with and without vascular crusher gradients (VCGs)

in the rat brain. It is known that the T2 of arterial blood is significantly greater than that

of the cerebral parenchymal tissue [Stanitz et al., 2005]. Previously, my colleagues

have used this T2 difference to estimate the cerebral blood volume using a double echo

pulsed ASL approach [Thomas et al., 2002]. In this work, I extend this concept using a

multi-echo CASL sequence to examine the possibility that the T2 of the ASL signal is a

sensitive indicator of the intra-vascular (IV) to extra-vascular (IC and EC) ratio when

compared to the more established diffusion-sensitised ASL measurements. [Silva et al.,

1997(a)]. Furthermore multi-echo ASL data (with VCGs to eliminate any intra-vascular

contribution) was acquired to estimate the proportion of the perfusion-weighted signal

originating from the intra- and extra-cellular tissue space. The measurements are also

used to estimate the T2 of labelled blood in the vessels which may provide a surrogate

index of the intra-vascular blood oxygen saturation [Turner et al., 1998; Golay et al.,

2001]. By acquiring images at a range of PLDs and τ we can follow the dynamic

changes in these parameters as the labelled bolus is delivered to the brain. In this way,

we provide further insight into the time-course of blood delivery and exchange within
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cerebral tissue, and demonstrate the proof of principle of this method for possible future

application in brain pathology. Finally, by investigating the dependence of the T2 of the

ASL and control signal on τ and PLD we examine the possible implications on the

accuracy of standard CBF quantification methods [e.g. Buxton et al., 1998].

In this chapter I begin by describing experiments undertaken to investigate potential

confounding factors that may have otherwise influenced the reliability of the results

described in the optimised implementation of the methods (referred to as the “final

experiments”, see section 2.8 Characterising the Origin of the Arterial Spin Labelling

Signal in MRI using a Multi-Echo Acquisition Approach: Final Experiments). I then go

on to describe two pilot studies that preceded the final experiments. Although these

pilot studies were intended to fulfil the aims of the investigation, subsequent analyses

revealed significant limitations in the imaging protocol. However, they are described in

this chapter as they nonetheless provided useful information that influenced the design

of the optimised imaging protocol. This chapter concludes with a full description and

discussion of the final experiments. The chapter is presented in this way in order to

demonstrate the methodological development that led to the methods adopted in the

final experiments.

2.3 DEPENDENCE OF THE POWER OF THE SPIN ECHO
IMAGING PULSES ON THE DELAY BETWEEN THE END OF
LABELLING AND IMAGE ACQUISITION

It was important to establish that the measured T2 of a phantom was independent of the

post-labelling delay time, since we aimed to estimate T2 over a range of PLD times to

investigate possible changes in this parameter as the bolus of labelled blood progresses

through the vascular tree. In a pilot study, ASL images of the rat brain were acquired at

a range of post-labelling delays and echo times using a standard spin-echo EPI

acquisition. The T2app of the mean cortical signal in the control images appeared to

display marked dependence on the post-labelling delay time; rising with increasing

PLD. This may have been a consequence of the different susceptibility of cerebral

compartments with different T2 constants to magnetisation transfer from the off-

resonance labelling/control pulse [Harrison et al., 1995]. However previous work has
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shown that the short T2 component of tissue is more susceptible to MT [Harrison et al.,

1995]. Therefore we may expect the T2app of the control signal to decrease with

increasing PLD (as the extent of MT within the tissue is reduced), in direct

contradiction to our findings. We hypothesised that the prolonged power demand of the

3second labelling pulse was affecting the subsequent output of the RF amplifier which

would in turn affect the flip angles of the 90o and 180o imaging pulses. This would

likely result in a systematic PLD-dependence of the power of the 90o and 1800 pulses in

the spin-echo EPI acquisitions as the RF amplifier has a greater time to “recover” after

the labelling pulse at longer PLD. It was important to investigate whether the demand

on the RF hardware from the 3 second continuous labelling pulse was influencing the

accuracy of the 90o and/or the 1800 RF pulses in the spin-echo EPI acquisitions.

Imaging experiments on a copper sulphate phantom and direct RF amplitude

observation (using a high sampling frequency oscilloscope) were performed to

investigate this potentially confounding factor.

A copper sulphate solution was prepared with a concentration of 2mmol/dm3 to give a

T2 of approximately 50-100ms (to match brain tissue, based on previous measurements

taken by other users of the MRI scanner). A simple copper sulphate solution is not

susceptible to magnetisation transfer effects. Therefore theoretically, the measured

signal intensity of the phantom image should be independent of the time between the

end of the 3 second off-resonance labelling/control pulse and the spin-echo EPI image

acquisition (the PLD). The solution was transferred into a small test tube, taking care to

minimise any bubbles that may cause susceptibility artefacts. The phantom was placed

flat on the probe. MRI studies were performed using the 2.35T scanner. Single slice

“coronal” EPI images were then acquired after a 3 second labelling pulse at 5 different

post-labelling delay times (50, 300, 500, 1000 and 1500ms) at echo times of 37, 51, 71

and 99ms. In order to confirm any systematic dependence of the RF excitation pulse

power as a function of PLD, an oscilloscope was later connected to the input of the

volume coil. The amplitude of the 90o spin-echo EPI excitation pulse RF envelope was

then directly observed at short (50ms) and extended (500ms) PLD.

Figure 2.1 shows the mean signal within a large ROI in the control images at different

PLD times from separate acquisitions at increasing echo times (a-d). Visual assessment
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reveals a trend of increasing signal with the duration of the PLD and provides evidence

that the measured signal intensity was correlated to the PLD; the likely explanation

being a PLD dependence of the power of the 90o and/or 180o spin-echo excitation and

re-focusing pulses following the 3 second tagging/control phase. It is possible that the

demand for a long RF pulse may cause marked changes in the temperature of the coil

which may alter its quality factor, thus affecting the power output. Figure 2.2 shows the

estimated T2 (calculated by fitting the measured signal to a simple mono-exponential

model) at each post-labelling delay from the multiple echo- time data reported in Figure

2.1.

Following the imaging experiments, myself and two of my colleagues observed a

consistent increase in the amplitude of the 90o RF envelope as the PLD increased from

50ms to 500ms using the oscilloscope to directly measure the input to the volume coil

(data not shown ).

An electrical inspection of the volume coil was performed by my colleague. A faulty

capacitor was detected and replaced. Subsequent direct observation of the envelope of

the 90 and 180 RF excitation pulses indicated that this intervention had fixed the

problem; the amplitude was constant and independent of the PLD. This highlights the

importance of thoroughly checking the performance of the system before carrying out

highly sensitive experiments to measure small variations in quantitative MR parameters.

We proceeded to conduct further experiments, keeping a careful eye on the estimated

T2 of the control signal as a function of PLD as this was likely to be an indication of the

possible re-occurrence of this fault.
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Figure 2.1
The mean signal of the control images of the copper sulphate phantom as a function of
echo time. Each plot shows data acquired at different PLD times.
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Figure 2.2
The estimated T2app of the copper sulphate phantom at increasing post-labelling delay
time. The error bars reflect the upper and lower confidence intervals (95%) of the TE
dependant fit of the data to a mono-exponential model.

2.4 REMOVAL OF IMAGE ARTEFACTS USING SPOILER
GRADIENTS AND PHASE CYCLING

The experiments described above in section 2.3 were performed using a standard single

slice CASL sequence with a single shot EPI readout at a single TE. From this point

forward we made the decision to use a half-Fourier multi-echo EPI CASL sequence (see

Figure 2.3) to improve the efficiency of data acquisition at multiple echo times for

increased precision of T2 estimation in a given imaging time. The sequence was

designed to acquire images at four different echo times following a single excitation.

Therefore it can be considered to be four times more efficient then the single echo

equivalent in this, single slice, application. In addition the half-Fourier image readout

reduces the minimum echo time of the first acquisition and the echo times of the

subsequent 3 acquisitions in the echo-train. This ensures that the sequence is able to

sample a greater dynamic range of the transverse decay for more accurate T2 estimation

in comparison to the standard EPI readout.

Figure 2.3
The half-Fourier multi-echo EPI CASL sequence. Spolier gradients are arranged on the
slice select axis as recommended in [Poon and Henkleman, 1992].
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The first in-vivo implementation of the half-Fourier multi-echo EPI CASL sequence

revealed noticeable artefacts in the reconstructed images (see Figure 2.4). RF pulse

imperfections in a multi-echo sequence can generate spurious echo signal that can cause

such artefacts. Importantly these pulse imperfections may cause magnetisation to be

stored on the longitudinal axis during TE. Consequently the multi-echo relaxation curve

will exhibit some T1 dependence, confounding accurate T2 quantification. Previous

work has suggested that spoiler gradients are the only practical and accurate technique

for suppression of spurious echo signal in quantitative T2 studies [Poon and

Henkleman, 1992]. The authors go on to recommend an optimal configuration of spoiler

gradients for effective artefact removal. However preliminary experiments showed

artefacts were still present with this “optimal” configuration, using a spoiler gradient

duration of 1ms (data not shown). Ideally we did not want to extend the duration of the

spoiler gradients beyond the minimum that could produce artefact-free images. This

would increase the minimum TE, thus reducing the range of coverage of the transverse

decay of the measured signal. Therefore calibration experiments were performed to

investigate the optimal spoiler gradient configuration (with a fixed duration of 1ms) to

remove these artefacts.

TE 23 ms 62 ms 101 ms 140 ms

Figure 2.4
The control base images acquired using the multi-echo sequence without any spoiler
gradients or phase cycling. The images at TE =62, 101 and 140ms are corrupted with
artefacts (as highlighted by an arrow) most likely as a result of imperfect RF pulses.
The artefacts can be more clearly identified by visual comparison to Figure 2.5 where
they have been significantly reduced. Such artefacts may have a particularly
detrimental effect on the reliability of the perfusion weighted measurements where we
expect differences in the tagged and control signal due to spin tagging to be on the
order of 5% of base signal intensity.
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One male Sprague Dawley rat was used. The animal preparation and MRI hardware

was identical to that detailed in section 1.12. Balanced spoiler gradients of 1ms duration

were inserted directly before and after each of the 180o refocusing pulses on all three

axis (see Figure 2.3). The amplitude of the spoiler gradients was systematically varied

and after each iteration, the multi-echo sequence was implemented to acquire four

images at echo times of 23, 62,101 and 140ms. The images were rapidly reconstructed

and the extent of artefacts was assessed by visual inspection.

The optimal crusher gradient configuration for removal of image artefacts as determined

from visual inspection was 1000, 1400, 1950 and -2000 DAC. DAC is the unit of

gradient amplitude on the SMIS console and ranges from -2048 to +2048. The strength

of each of the three orthogonal gradients was different on the 2.35T scanner. 1 DAC

represented 0.077 mT/m, 0.019 mT/m, and 0.021 mT/m on the X, Y and Z axis

respectively. The images showed a marked improvement with this sequence of crusher

gradients (see Figure 2.5).

TE 23 ms 62 ms 101 ms 140 ms

Figure 2.5
The control base images acquired with crusher gradients each of duration 1ms, on all
three axis, having been optimised through visual inspection. The crusher gradients were
1000, 1400, 1950 and -2000 DAC around the four 180o refocusing pulses respectively.

This crusher gradient configuration was used in pilot study 1. However the estimated

T2app
ΔM(VCGs-on) at τ = 500ms and PLD =50ms (see 2.6 Pilot Studies; Figure 2.11

[a]) led us to conclude that perhaps the complex spoiler gradient arrangement was

influencing the accuracy of the T2app estimates. At this time we concluded that simply

configuring the spoiler gradients based on visual inspection of the images was perhaps a

naive approach that raised some uncertainty regarding the accuracy of our T2 estimates.
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Therefore, in pilot study 2 and in the final experiments the spoiler gradients were

configured based on a sound theoretical basis [Poon and Henkleman, 1992] and were

positioned on a single axis rather than all three. By extending the duration of the spoiler

gradients to 2ms and introducing phase cycling, the artefacts appeared to have been

removed (see Figure 2.6). Therefore phase cycling and spoiler gradients configured as

+2000, -2000, +1000, 1000 DAC on the slice select (z) axis were used in pilot study 2

and in the final experiments.

TE 29 ms 68 ms 107 ms 146 ms

Figure 2.6
The control base images acquired with crusher gradients each of duration 2ms, on the
slice select axis. This crusher gradient configuration was implemented in the final
experiments. The crusher gradients were 2000, -2000, 1000 and -1000 DAC around the
four 180o refocusing pulses respectively. Phase cycling was also used in these
acquisitions.

2. 5 INVESTIGATING THE POSSIBLE DIFFUSION WEIGHTING
INTRODUCED TO THE MEASURED SIGNAL BY THE IMAGING
GRADIENTS IN THE MULTI-ECHO ACQUISITIONS

The half Fourier multi echo EPI CASL sequence includes four sets of switching EPI

imaging gradients preceded by a spin echo preparation (see Figure 2.3). It was

important to determine the extent of any possible diffusion weighting introduced to the

acquired signal at echo numbers 2, 3 and 4 by the preceeding imaging gradients. If the

signal from echo numbers 2, 3 and 4 were diffusion weighted we would not be

estimating the true T2 but rather an unknown mixture of diffusion and T2 weighted

effects. This would confound the results with one clear difficulty being that signal from

the vascular compartment (high apparent ADC [le Bihan, pg 270-271]) would be

considerably attenuated at the later echo times and the estimated T2 of the ASL signal

originating from the IV compartment (T2IV) would be systematically underestimated. I

conducted experiments to examine the extent of this potentially confounding factor.
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Phantom and in-vivo experiments were performed. A small test tube filled with copper

sulphate solution was secured to the Perspex probe. The phantom has a relatively high

ADC (see section 1.10 Principles of Diffusion MRI) and is therefore sensitive to any

diffusion weighting within the sequence. The half-Fourier multi-echo EPI CASL

sequence was implemented with a 3s labelling duration and a 50ms post labelling delay.

There were no vascular crusher gradients. The sequence was implemented with all the

imaging gradients present to acquire 4 images with echo times of 25, 64, 103 and

142ms. After an inter-experimental delay of 6 seconds the respective control scan was

then acquired. The protocol was repeated but now without the imaging gradients for the

first acquisition in the echo train. The corresponding control was then acquired. The

same procedure was repeated but in this case without the first two imaging gradients in

the pulse train and then finally with only the last imaging gradients (see Figure 2.7).

Images were acquired with phase cycling and spoiler gradients arranged as

recommended in [Poon and Henkleman, 1992]. The interleaved acquisitions were

repeated for a total of 6 repeats for each sequence configuration (i.e. number from 1-4

of EPI imaging gradients present in the sequence – see Figure 2.7). The mean signal

was taken within a large ROI in the homogenous phantom. Figure 2.8 shows the mean

signal as a function of echo time for all the acquisitions. The T2 estimated from all 4

image readouts, 3 image readouts and 2 image readouts was 69 (46, 137), 75(40, 558)

and 56ms . The confidence intervals of the 2 TE fit cannot be estimated.
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Figure 2.7
A schematic representation of the data acquisition protocol to investigate the possible
diffusion weighting of the imaging gradients. The measured Y gradient amplitude
(phase) following the 180o refocusing pulse is shown, with all the imaging gradients
present (a) followed by successive reduction in the number of switching EPI imaging
gradients present in the sequence (b-d). The gradient waveform data was captured
using Micro1401 data acquisition unit made by Cambridge Electronic Design Ltd
(www.ced.co.uk), connected to a PC running the Spike 2 software package (also
provided by CED) to directly measure the output of the y(phase) gradient amplifier
during the phantom experiment.

[a] All 4 Image Readouts

[b] 3 Image Readouts

[c] 2 Image Readouts

[d] 1 Image Readout
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[a]

z

[b]

Figure 2.8
The mean measured signal (± 1 SEM) from a large ROI within a copper sulphate
phantom as a function of echo time acquired with all four imaging gradients present in
the echo train (solid black line), then three (red dashed line), then two (green solid line)
and finally just the last (blue dashed line). The data reported is for the tagged (a) and
control (b) acquisitions. Error bars represent the standard error across the 6 repeats at
each TE.
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The results indicate that the measured signal at echo times of 64, 103 and 142ms is

dependent on the application of the previous imaging gradients in the echo train. The

measured signal appears to display a small deviation from mono-exponential decay that

is dependent on the application of the proceeding imaging gradients in the echo train.

This is possibly a result of residual gradient moments affecting the position of the echo

in k-space. However this small deviation appears to add and subtract to the “true” signal

sequentially and has negligible influence on the rate of transverse decay. Although the

phantom imaging experiments provided some evidence that the extent of diffusion

weighting introduced to the measured signal by the imaging gradients was relatively

small, it was important to examine the effect on the ASL, perfusion- weighted, signal.

This signal will be more susceptible to any possible diffusion weighting introduced by

the imaging gradients given that a large proportion (relative to the control) of the

labelled spins are flowing in the vasculature during image acquisition.

One male Sprague Dawly rat was used. The animal preparation and MRI hardware was

identical to that described in section 1.12 with τ = 3000ms and PLD = 50ms and number

of averages = 30.
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Figure 2.9
The mean in-vivo cortical signal (±1 SEM) as a function of echo time acquired with all
four imaging gradients in the echo trains (solid black line), then three (red dashed line
line), then two (green solid line) and finally just the last (blue marker). The data
reported is for the tagged (a) control (b) and subtracted (ΔM) images (c). Error bars
represent the standard error across the 6 repeats at each TE

The echo train possesses the even-odd echo behaviour associated with multi-echo

acquisitions [Pell et al., 2006; Poon and Henkleman 1992]. The odd/even behaviour of

the echo train is due to the phase cycling present in the sequence (see McRobie et al,

page 149-150 for a detailed explanation). However, as one can see from visual

inspection of Figures 2.8 and 2. 9, no systematic underestimation occurs at the greatest

echo time when all 4 echoes are acquired in comparison to when the acquired image at

this echo time is not preceded by any EPI gradients. Indeed at the final echo time, the

measured signal is very similar irrespective of the “history” of the extent of the EPI

imaging gradients. Any such effects are likely to be apparent in a copper sulphate

phantom which has a high ADC and in particular in the in-vivo perfusion weighted

signal (where at τ = 3000ms and PLD = 50ms a considerable proportion of the labelled

spins are likely to reside in the vascular compartment). The T2 of the control signal,

estimated from all 4 image readouts, 3 image readouts and 2 image readouts was 59 (40,

108), 64(37, 211) and 49ms.The T2 of the ASL signal, estimated from all 4 image

readouts, 3 image readouts and 2 image readouts was 59 (40, 108), 64(37, 211) and

49ms.The confidence intervals of the 2 TE fit cannot be estimated.

Figure 2.9 provides convincing evidence that the extent of signal attenuation at echo

numbers 2, 3 and 4, due to the proceeding imaging gradients, is negligible. This applies

to the control (Figure 2.9[a]), tagged (Figure 2.9[b]) and most importantly the

perfusion weighted (Figure 2.9 [c]) signal.

These experiments provide reassurance that the estimated T2 of the control and ASL

signal will be negligibly affected by the diffusion weighting of the imaging gradients.
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2.6 CHARACTERISING THE ORIGIN OF THE ARTERIAL SPIN
LABELLING SIGNAL IN MRI USING A MULTI-ECHO ACQUISITION
APPROACH: PILOT STUDIES

The following experiments were undertaken with the intention that they would fulfil the

aims of the investigation (described in the introduction to this chapter). However

subsequent analyses revealed oversights within the imaging protocol, limiting the extent

of interpretation of these results. However the experiments are described here as they

provided information which was useful in optimising the protocol used in the final

experiments (see section 2.8 Characterising the Origin of the Arterial Spin Labelling

Sequence in MRI using a Multi Echo Acquisition Approach: Final Experiments). These

investigations are referred to as pilot study 1 and pilot study 2.

The animal preparation and MRI hardware was identical to that detailed in section

1.12.In pilot study 1, 10 male Sprague Dawley rats were used, in pilot study 2 there

were 9. The half-Fourier multi-echo EPI CASL sequence was implemented to acquire

images. In order to monitor the progression of labelled water within the cerebral vessels

and tissue, the tagging pulse duration was varied over the range of values: 500, 750,

1000, 1500 and 3000ms with additional acquisitions at PLD = 50ms, 300ms and 500ms

after the 3s labelling pulse. After the PLD, single slice coronal images were then

acquired 0.3mm caudal to the bregma using a multi-echo spin echo half-Fourier EPI

sequence to produce 4 images in a single shot. Previous work has found evidence to

support the use of acquisitions at multiple echo times for more accurate and precise T2

estimates in comparison to multiple average data at a smaller number of echo times

[Poon and Henkleman]. The multi-echo EPI sequence can acquire images at 4 TEs in a

single shot. To increase the number of echo times, the sequence timing was altered in

order to acquire images at 4 different TEs. The sequence timing was again altered for a

total of 12 echo times (3 different sequence timings, each able to acquire images at 4

different echo times). . The echo times in pilot study 1 were (23, 35, 47, 62.2, 74.2,

86.2, 101.4, 113.4, 125.4, 140.6, 150.6, and 164.6ms), and in pilot study 2 were (25, 37,

49, 64.2, 76.2, 88.2, 103.4, 115.4, 127.4, 142.6, 152.6, and 166.6ms), due to the increase

in the duration of the spoiler gradients in pilot study 2 from 1ms to 2ms. In these pilot

studies, 36 averages were acquired.. Mono-polar diffusion gradients were arranged on

the read, slice select and phase axis to increase the magnitude of the net diffusion



85

gradient (see Figure 2.10). The b-value of the mono-polar diffusion gradients was

20s/mm2.

Figure 2.10
The initial stages of the half-Fourier multi-echo EPI CASL sequence showing the
arrangement of the vascular crusher gradients in pilot studies 1 and 2.

In addition to the echo times, the only other discernable difference between pilot study 1

and pilot study 2 was the arrangement of the spoiler gradients (see 3.4 Spoiler

Gradients).

Figure 2.11(a) shows the mean T2app of the ASL and control signal across the 10

experiments from pilot study 1. The T2app is calculated by fitting the TE dependant

signal to a simple mono-exponential model. The mean T2app
ΔM(VCGs-on) estimates at

τ =500 was less than T2app
Ctrl(VCGs-on) at τ =500ms. Assuming that the vascular

crusher gradients were effectively suppressing the vascular signal, then T2app
ΔM(VCGs-

on) reflects the transverse decay of labelled blood water that has exchanged into the

tissue. This result was particularly difficult to interpret physiologically: given that

(intuitively) the ASL signal at short τ and with VCGs should be weighted toward the

extracellular compartment (high T2) in comparison to the intracellular compartment

(low T2) it was surprising that T2app
ΔM was less then T2app

ctrl (which represents the T2 of

the static tissue) at these imaging parameters. We reasoned that this curious result may

be a consequence of the crusher gradient configuration. Previous work has shown the
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arrangement of the crusher gradients in multi-echo acquisitions to have a marked effect

on the transverse decay of images acquired in the echo train [Poon and Henkleman,

1992]. For this reason we proceeded to pilot study 2 having introduced phase cycling

and an established spoiler gradient arrangement to the sequence (see section 2.4 Spoiler

Gradients). Figure 2.11(b) shows the mean T2 of the ASL and control signal across the

9 experiments from pilot study 2.
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Figure 2.11
The mean T2app

ΔM (VCGs–on) (red line), T2app
ΔM (VCGs–off) (blue line), T2app

Ctrl

(VCGs–on) (green line) and T2app
Ctrl (VCGs–on) (black line) at different PLD and τ

times from pilot study 1 [a] and pilot study 2 [b]. Error bars represent the standard
error across the experiments (9 in pilot study 1, 10 in pilot study 2). The T2app is
estimated by fitting the data acquired at 12 echo times to a mono-exponential model.
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Subsequent analysis revealed limitations in the design of the acquisition protocol. The

first issue lies in how the echo times at which the signal was sampled using the multi-

echo acquisition were changed. This was achieved by increasing the delay between the

90o excitation pulse and the first 180o RF pulse (the half echo-time) and the first 180o

and the echo at the centre of k-space. However in the pilot studies, the delay was

inserted between the mono-polar diffusion gradients thus increasing the diffusion time

(see Figure 2.12).

Figure 2.12
The initial stages of the half-Fourier multi-echo EPI CASL sequence. The red arrow
shows the separation of the mono-polar diffusion gradients, which determines their b-
value (see 1.10 Principles of Diffusion MRI). The green arrow shows the echo time of
the first acquisition in the echo train. In pilot studies 1 and 2, I increased the echo time
(green arrow) by increasing the separation of the diffusion gradients (red arrow). In
doing this I unintentionally increased the b-value of the sequence in addition to the echo
time.

Therefore the b-value of the sequence was increasing with the echo time of the first

image in each of the three echo trains. Consequently Figure 2.11 does not reflect the

true T2app of the ASL and control signal acquired with VCGs. The T2app estimates are

confounded by the TE dependant variation in the b-value of the applied diffusion

gradients. The b-value of the diffusion gradients was approximately 20, 30 and 40

s/mm2, as the first echo time in the echo train increases from 25, 37 and 49ms in pilot
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study 2 and 18, 28, 38 s/mm2 as the first echo time in the echo train increases from 23,

35 and 47ms in pilot study 1. Therefore the measured signal as a function of TE does

not just reflect the transverse decay but an unknown mixture of T2 and diffusion effects.

This explains why the mean T2app
ΔM(VCGs-on) estimate at τ =500 in pilot study 1 was

less than the T2app
Ctrl(VCGs-on) at the same imaging parameters, a result that was

previously difficult to explain. The signal acquired from echo trains at long TEs will be

more attenuated by the diffusion gradients than the signal acquired from echo trains at

short TEs. This will act to decrease T2app. At the time of analysis I was not aware of this

problem and therefore this appeared as an increased rate of transverse decay,

particularly at short tagging durations where the proportion of ASL signal in the

vascular compartment was relatively high. In addition, subsequent analysis (see section

2.7 Calibration of Vascular Crusher Gradients) revealed that the mono-polar diffusion

gradients (VCGs), when applied on all three axes as in pilot 1 and 2, were affecting the

measured signal in a way that contradicted established diffusion MRI theory (see 1.10

Principles of Diffusion MRI). The properties of the VCGs and the extent of vascular

suppression were not rigorously addressed prior to pilot studies 1 and 2. The next

section (2.7 Calibration of Vascular Crusher Gradients) describes experiments

designed to investigate the properties of the vascular crusher gradients.

To summarise, the results from pilot studies 1 and 2 were unreliable due to systematic

errors in the imaging protocol. Consequently it was necessary to repeat the experiments

(see section 2.8 Charactersing the Origin of the Arterial Spin Labelling Signal in MRI

using a Multi-echo Acquisition Approach: Final Experiments) whilst ensuring that the

methodological limitations of the pilot studies were accounted for. In the final

experiments, the TE of the echo trains was changed without increasing the separation of

the mono-polar diffusion gradients. In addition the properties of the vascular crusher

gradients were investigated prior to the final experiments to ensure that they did not

introduce systematic errors due to eddy currents (see section 2.7 Calibration of

Vascular Crusher Gradients). Furthermore because of the similarity of the T2app

estimates at τ = 3000ms and changing PLD in pilot studies 1 and 2 (see Figure 2.13),

we extended the PLD to 700 and 1200ms in the final experiments to investigate the

origin of the ASL signal at greater inflow times as we may expect a greater range of

estimated T2app
ΔM at these imaging parameters. The experience of the many imaging

experiments also led me to the observation that slightly heavier rats allowed the surface
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coil to be positioned closer to the head of the animal resulting in improved SNRpwi.

Consequently the weight of the rats in the final experiments increased to (182-242g)

from (164 -222g) yielding improved SNRpwi. Finally the acquisitions were “more

interleaved” in the final experiments in comparison to the pilot studies; image files

corresponding to 2 averages were saved rather than 6 averages. For example, in pilot

studies 1 and 2 data was acquired with VCGs-on for 6 averages and then with VCGs-off

for 6 averages. In the final experiments data was acquired over 2 averages with VCGs

and then 2 averages without VCGs. This should reduce the influence of scanner

instability or physiological drift on any apparent differences in the measured signal with

and without VCGs.

2.7 CALIBRATION OF VASCULAR CRUSHER GRADIENTS

The final experiments were intended to acquire images with and without the signal from

labelled water in the cerebral vasculature. To achieve this, I implemented the half-

Fourier multi-echo CASL sequence with and without diffusion gradients (referred to as

“Vascular Crusher Gradients”). It was important to ensure that the diffusion gradients

were indeed achieving effective vascular suppression. The experiments described below

were performed following pilot studies 1 and 2 and are divided into two parts: Firstly I

present results that demonstrate that the diffusion gradients used in pilot studies 1 and 2

were introducing eddy current that confounded the interpretation of the measured signal.

I will then describe experiments undertaken to circumnavigate this problem and

investigate the necessary b-value of the adapted diffusion gradients to effectively

suppress the vascular signal.

In pilot studies 1 and 2, mono-polar diffusion gradients were applied simultaneously on

all three axis (see Figure 2.13). This was to increase the net amplitude of the gradients

to maximise the b-value of the sequence for a given duration and separation (see 1.10

Principles of Diffusion MRI).
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Figure 2.13
The initial stages of the half-Fourier multi-echo EPI sequence. Mono-polar diffusion
gradients were applied simultaneously on all three axis in pilot studies 1 and 2.

Figure 2.14 [a] shows the difference images generated by subtracting the control base

images acquired with VCGs from the control base images acquired without VCGs at τ =

500ms and PLD =50ms for all 9 experiments in pilot study 2. The Figure is windowed

so that any pixels that have greater signal intensity without VCGs than with VCGs are

black. The VCGs have no affect on the background signal intensity and therefore in this

region, the difference images display noise; approximately half of the pixels are black.

In the brain, we would expect the difference images to be black as the VCGs should act

to reduce the measured signal from the brain. However, Figure 2.14 clearly

demonstrates that the difference images display marked structure in the cortex (the

tissue of interest in our study). This demonstrated that eddy currents caused by the

application of the diffusion gradients resulted in a distortion of the images (acquired in

pilot studies 1 and 2) along the PE direction. In pilot studies 1 and 2, the ROI was

manually adjusted to try to account for the apparent shift of the brain within the FOV

due to the application of the VCGs; however this was not ideal and assumes the eddy

currents were causing a rigid translation of the brain within the FOV which is unlikely

to have been the case.
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Figure 2.14
The difference images of the base images acquired with VCGs – the base images
acquired without VCGs at τ =500ms and PLD = 50ms for all 9 experiments in pilot
study 2 [a] and in the final experiments [b]. The difference images are scaled
(“windowed”) so that any pixels that have a greater signal intensity than without VCGs

=
Ctrl (VCGs –on) Ctrl(VCGs – off)

1

Arbitrary
units

0

-
Control Images (VCGs –on) –
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than with VCGs are black. Each of the 9 difference images (1 for each experiment) are
separated by a white border.

Phantom studies were subsequently performed to check the calibration of the mono-

polar diffusion gradients. An oil phantom was used as this is known to possess a very

low ADC. Therefore the amplitude of the diffusion gradients should have no noticeable

effect on the measured signal. Any systematic change in the measured signal intensity

from the oil phantom as a function of diffusion gradient strength suggests that unwanted

eddy current effects are influencing the measured signal. Such potential eddy current

problems associated with mono-polar diffusion gradients can often be negated by the

use of bi-polar diffusion gradients where the diffusion gradients are of the same

amplitude but of opposite direction. However as we see from Eq. 1.24, the b-value of

diffusion gradients is approximately proportional to their separation. Diffusion gradients

should be applied between the initial excitation pulse and the image readout. Therefore

their separation will affect the echo time of the acquisition. Mono-polar diffusion

gradients have a considerable advantage in this application as they can be implemented

before and after the first 180o refocusing pulse. Consequently for a given time delay

between the 90o and 180o pulses (the half echo time) mono-polar diffusion gradients can

generate a significantly greater b-value (see 1.10 Principles of Diffusion MRI) which

may be necessary to effectively remove the vascular signal.

All images were acquired using the half–Fourier multi-echo EPI CASL sequence.

Mono-polar diffusion gradients, arranged either side of the first 180o refocusing pulse,

were implemented on each separate axis at a range of b values (0, 20, 40) - (see Figure

2.13). Twelve images (6 labels and 6 controls) were acquired at each different b-value

with diffusion gradients applied separately on each axis. The images at the first echo

time (25ms) were analysed. Figure 2.15 shows the measured signal as a function of b-

value when the mono-polar diffusion gradients are positioned on each axis. The results

demonstrated that diffusion gradients positioned on the y-axis considerably increased

the measured signal. This suggested that the mono-polar diffusion gradients on the

phase axis were introducing eddy currents which acted to transform the image within

the field of view thus changing the measured signal as the amplitude of the gradients is

increased. This finding introduces doubt as to the reliability of the measurements

acquired with the inclusion of vascular crusher gradients in pilot studies 1 and 2.
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Figure 2.15
The mean signal from a large ROI within the oil phantom at increasing b value. Data is
reported with mono-polar diffusion gradients applied on the read axis (x-axis – blue
line); phase (y-axis – red line) and slice select (z-axis – green line). Error bars
represent the standard error of the mean signal across the 12 images at each b-value.

Figure 2.15 also suggests that the measured signal displays some sensitivity to the b-

value of the mono-polar diffusion gradients arranged on the slice select axis. However

these results were not conclusive. We performed further experiments to investigate

whether this was indeed the case. Images were acquired of an oil phantom with

diffusion gradients applied on the z-axis over a greater number of b-values (0, 10, 20,

30, 40 and 70 mm2/s). Six images (3 tag and 3 control) were acquired at each b-value.

The mean signal within a ROI in the oil phantom was taken. Figure 2.16 shows the

results and confirms that the measured signal was influenced by the b-value of the z-

axis diffusion gradients. Therefore the z-axis diffusion gradients were causing

additional eddy currents, introducing systematic errors to the signal acquired with

vascular crusher gradients in pilot studies 1 and 2.
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Figure 2.16
The measured signal from q large ROI within the oil phantom with increasing b value
from diffusion gradients positioned on the slice select axis. Error bars represent the
standard error of the mean signal across the 6 images at each b-value

I then performed the same experiment but in this case the direction of the mono-polar

diffusion gradients on the z axis was reversed (see Figure 2.17). The results are shown

in Figure 2.18. In this case the measured signal did not possess any such monotonic

dependence on the b-value of the crusher gradients. This suggested that diffusion

gradients applied on the slice-select axis in this way did not introduce significant eddy

currents and would not confound future experiments. Given that the principle direction

of flow in the rat brain positioned in our scanner was parallel to the z-axis, it seemed

sensible to proceed to the final experiments with the diffusion gradients arranged in this

way on the slice-select axis, the same approach used in [Wang et al., 2007; Petersen et

al., 2006; Wang et al., 2003]. Figure 2.14 [b] shows the equivalent images (with the

same windowing) to Figure 2.14 [a] for the final experiments with the new diffusion

gradient calibration. The lack of noticeable coherent signal in these images provides

some evidence that eddy current effects are minimal in these acquisitions.
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Figure 2.17
The initial stages of the half-Fourier Multi-Echo EPI CASL sequence. In the final
experiments the mono-polar diffusion gradients were arranged on the z (slice-select)
axis with a 4ms duration (δ) and 16ms separation (Δ). 

[a]

Figure 2.18
The measured signal from a large ROI within an oil phantom with increasing b value
from diffusion gradients situation on the z-axis (of opposite sign to those reported in
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Figure 2.16). Error bars represent the standard error of the mean signal across the 6
images at each b-value.

2.7.1 Diffusion Gradient Calibration for Vascular Suppression

Given that we were now satisfied that the mono-polar diffusion gradients arranged in

this way on the z-axis were not introducing spurious signal due to eddy currents into the

images, we proceeded to investigate the b-value necessary for suppression of the

vascular signal. We performed three separate experiments on two male Sprague Dawley

rats. One rat was recovered and then re-scanned the next day. The multi-echo half-

Fourier CASL sequence was used with a labelling duration of 3s and PLD of 50ms. The

3s tagging duration ensured that the ΔM signal would be relatively high and the short

50ms PLD should maximise the proportion of tagged blood residing in the vascular

compartment [Silver et al., 1997 (a)]. Silva et al., concluded that diffusion gradients

applied on the read axis with a b value of 20 s/mm2 are sufficient to remove signal from

the vascular compartment [Silva et al., 1997(a)]. However the extent of vascular

suppression is likely to depend on the time delay between the gradients (Δ).  This 

should be of sufficient duration to allow blood water molecules to flow parallel to the

direction of the applied diffusion gradient for a time. If the direction of flow is totally

perpendicular to the direction of the diffusion gradients then minimal vascular crushing

will occur. In their work Δ was 33ms. However having a long Δ requires a long TE (see 

1.10 Principles of Diffusion MRI). It was important to keep the minimum TE of our

experiments short relative to the expected T2app of our sample to ensure greater

coverage of the transverse decay curve to improve the accuracy of T2app estimation. To

this end it was important to minimise the diffusion time whilst ensuring that the

vascular signal was effectively suppressed. Previous work has demonstrated that mono-

polar diffusion gradients, applied in one direction, with 19ms separation and a b-value

of approximately 90s/mm2 suppressed the signal from labelled blood water in the

vascular compartment [Silva et al., 1997(b)]. An alternative study found that vascular

suppression could be achieved using mono-polar diffusion gradients of 20ms separation

and b-value of approximately 20s/mm2 [Neil et al., 1991]. In these experiments, we

implement diffusion gradients with a similar separation (16ms) giving a minimum echo

time of 29ms. Images were acquired at b-values of 0 (no diffusion gradients), 10, 40 and

60 using mono-polar diffusion gradients positioned on the slice select axis. The protocol

was repeated a total of 6 times. Figure 2.19 shows the logarithm of the measured
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perfusion weighted and control signal as a function of b-value. The gradient of this plot

is equal to the apparent diffusion coefficient (ADC). Previous work has shown the

dependence of the perfusion weighted signal on the b-value of the applied diffusion

gradients to be bi-exponential due to a high pseudo-ADC from labelled spins in the

vasculature and a low ADC from labelled blood that has exchanged into the tissue

[Silva et al., 1997(a); Neil et al., 1991]. Visual inspection of Figure 2.19 suggests that

the portion of the signal with a fast pseudo-ADC is attenuated at a b- value of 40s/mm2.

This provides evidence that the vascular component of the ASL signal has been

effectively attenuated at a b-value of 40s/mm2. Therefore we chose a b-value of 40

s/mm2 for the vascular crusher gradients in the final experiments. I now continue to

describe the final experiments undertaken to fulfil the aims of the investigation.
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[c]

Figure 2.19
The mean perfusion weighted signal within a cortical ROI as a function of the b-value
of the applied mono-polar diffusion gradients for the 3 experiments (a – c). Error bars
represent the standard deviation of the mean across the 6 repeats.

2.8 CHARACTERISING THE ORIGIN OF THE ARTERIAL SPIN
LABELLING SIGNAL IN MRI USING A MULTI-ECHO ACQUISITION
APPROACH: FINAL EXPERIMENTS

2.8.1 Introduction

These experiments were performed following the stages of methodological

development described above. The experiments below were performed with an

optimised spoiler gradient and vascular crusher gradient configuration. Images were

also acquired over a wide range of τ and PLD combinations relative to the pilot studies.

The acquisitions also benefitted from reduced random and systematic errors in

comparison to the pilot studies due to my accumulated experience in experimental

imaging using the 2.35T scanner.
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2.8.2 METHODS

2.8.2.1 Animal Preparation

9 male Sprague Dawley rats (182-242g) were used in this study. The animal

preparation and MRI hardware was identical to that detailed in section 1.12. N2O and

halothane have been previously shown to increase CBF from baseline [Austin et al.,

2005].

2.8.2.2 Continuous Arterial Spin Labelling

A continuous arterial spin labelling (CASL) sequence [Alsop et al., 1996] was

implemented with an alternating adiabatic spin tagging pulse to minimise eddy current

effects. The offset frequency of the labelling pulse oscillated in accordance with the

slice select gradient to maintain a constant tagging plane (see Figure 2.17). The

switched gradient scheme was implemented to suppress eddy currents that found to be

causing systematic errors as a function of delay time. The switched gradient scheme

consisted of 2 positive and 2 negative lobes giving single lobe duration of 0.75 for a 3s

tagging duration. The control images were acquired by reversing the offset frequency

of the tagging pulse. The labelling pulse was applied 2mm caudal to the cerebellum,

perpendicular to the carotid and vertebral arteries, to ensure efficient spin tagging.

In order to monitor the progression of labelled water within the cerebral vessels and

tissue, the tagging pulse duration was varied over the range of values: 500, 750, 1000

and 3000ms. After a PLD, single slice coronal images were then acquired 0.3mm

caudal to the bregma using a multi-echo spin echo half-Fourier EPI sequence to

produce 4 images in a single shot. This was twice repeated, with different sequence

timings to achieve a total of 12 echo times (29, 41, 53, 68.2, 80.2, 92.2, 107.4, 119.4,

131.4, 146.6, 158.6, and 170.6ms). A slice selective 90-180 pulse combination was

used to generate the first spin echo and subsequent echoes were generated using non-

selective adiabatic BIR-4 pulses, to ensure efficient spin refocusing and accurate T2

measurements. The PLD was 50 ms, and was also extended for additional acquisitions

at 300, 700 and 1200 ms after the 3 second labelling pulse to investigate the provenance

of the ASL signal further downstream, an approach commonly used to negate possible



102

confounding transit time effects [Alsop et al., 1996]. The protocol was then repeated

with the addition of mono-polar diffusion gradients (or vascular crusher gradients

(VCGs)) around the first 180 refocusing pulse in the slice select direction. The time

delay between diffusion gradients was 16ms, resulting in a b-value of 40 s/mm2. As

previously discussed, diffusion-weighting is frequently used to attenuate signal from

the labelled spins in the vasculature to avoid overestimating perfusion and previous

work has shown diffusion gradients of similar separation and b-value to achieve

effective vascular suppression in the rat brain [Silva et al., 1997(b]; Neil et al., 1991].

The entire set of acquisitions was repeated for a total of 30 averages at each echo time,

τ /PLD combination, with VCGs on and off. Other acquisition parameters were: inter-

experiment delay time = 4s; half-Fourier matrix size =36x64; FOV = 32 x 32mm; slice

thickness = 2mm.

Phase cycling and spoiler gradients applied along the slice select axis (modulated as a

function of echo number using the scheme recommended in [Poon and Henkelman,

1992]) were implemented for all the acquisitions, as described in section 2.8.This is

designed to remove spurious magnetisation pathways arising from a succession of

imperfect RF pulses.

2.8.2.3 Image Analyses

Images were first averaged in k-space and then reconstructed to 64 x 64 using the

POCS algorithm [Liang and Lauterbur, 2000; Liang et al. 1992].The images were

masked and independent component analysis (ICA) was applied to the subtracted

images to reduce random errors (See Chapter 3). The mean signal of the ASL

difference image (ΔM) within a cortical ROI was taken (see Figure 2.21) and the data

were fitted to a mono-exponential model. A mono-exponential model was used to yield

a single apparent T2 estimate (T2app
ΔM) reflecting the contribution to the total ASL

signal from the different cerebral compartments, each with their associated T2

constants. T2app
ΔM provides a simple summary measure i.e. the apparent T2 of the ASL

signal with minimal interpretation. Mono-exponential fits were also applied to the

multi-echo ASL control images (giving T2app
Ctrl) to investigate differences in T2app

between the ASL ΔM signal and the control images (which represent the mean T2 of all 

the tissue in the ROI). A balanced one-way ANOVA with correction for multiple
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comparisons was performed to determine the probability that the means of the T2app

values with the different sequence parameters (τ, PLD, VCGs-on, VCGs-off, ∆M, ASL 

control image) were significantly different. For visualisation of spatial variations in

T2app
ΔM, maps were also generated. Following ICA de-noising, T2app

ΔM was calculated

on a pixel-by-pixel basis by fitting to a simple mono-exponential model.

The fraction of the ASL signal from the intra-vascular compartment (ΦIV
ΔM) was

estimated for each animal at each τ and PLD using:

ΦIV
ΔM= 1 – (ΔMVCGs-on / ΔMVCGs-off) [2.1]

from the perfusion-weighted images acquired at the earliest echo time (29ms) and

assuming the VCGs crushed the entire vascular signal [Silva et al., 1997(a)]. Appendix

B highlights the difficulties encountered when trying to estimate T2IC and T2EC from

our data. Therefore we use values from previous studies that were designed to measure

these parameters with reasonable precision. As previously discussed, there is

convincing evidence that extravascular tissue has multiple T2 components in slow

exchange (relative to the timescale of the T2 measurement) that can be attributed to

intra- and extra-cellular space [Matsumae et al.,2003; Haida et al.,1987; Lascialfari et

al., 2005; Belton et al., 1972; Hazlewood et al., 1974; Gambarota et al, 2001]. However

to our knowledge there are few studies that have estimated T2IC and T2EC in the rat

brain. Indeed although these parameters were recently measured in-vivo at 4.7T, the

authors reported marked variance in their estimates (T2EC = 184 ±50ms, T2IC =64

±10ms) [Lascialfari et al., 2005].Therefore in recognition of this possible source of

uncertainty, we present results using T2EC and T2IC values from two alternative studies

we found to have estimated these parameters . Firstly, we assume T2 values of the intra-

and extra-cellular compartments to be 57ms and 174ms respectively from previous

measurements of the 8 week old rat brain cortex at the same field strength as the present

study [Haida et al., 1987]. Secondly, we assume T2 values of the intra- and extra-

cellular compartments to be 53ms and 133ms respectively from previous measurements

of the 6 week old rat mid-brain at 4.7T [Matsumae et al., 2003] The proportion of intra-

to extra-cellular ASL signal is then estimated by fitting the ΔMVCGs-on observations to a

bi-exponential model:
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where ECΔM is the proportion of the ΔMVCGs-on signal deriving from the extra-cellular

compartment with transverse decay constant T2EC (174ms or 133ms), ICΔM is the

proportion of the ΔMVCGs-on signal originating from the intra-cellular compartment with

transverse decay constant T2IC (57ms or 53ms) and ΔM0
VCGs-on is the ΔMVCGs-on signal

at TE = 0ms. These estimates were then multiplied by the ΔMVCGs-on/ ΔMVCGs-off

measurements (1-ΦIV
ΔM) to calculate the overall fraction of the total ASL signal

(ΔMVCGs-off) from labelled water in the extra- and intra-cellular tissue space at a range of

PLD and τ for each of the nine experiments (ΦEC
ΔM and ΦIC

ΔM respectively). The same

analyses were performed on the control images to give the equivalent fractional

contributions to these images (i.e ΦIV
Ctrl, ΦEC

Ctrl and ΦIC
Ctrl). Since a three compartment

model was assumed, the following equalities apply: ΦIV
ΔM + ΦEC

ΔM + ΦIC
ΔM = 1; ΦIV

Ctrl

+ ΦEC
Ctrl + ΦIC

Ctrl = 1.

To estimate the T2 of the vascular compartment (T2IV) we fitted the perfusion-weighted

signal acquired without VCGs (ΔMVCGs-off) to a tri-exponential model assuming labelled

blood water is in slow exchange between each of the vascular and the intra- and extra-

cellular compartments in the tissue [Quirk et al., 2002, Eichling et al., 1974]:
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For this fit, T2EC and T2IC were assumed to be 174ms and 57ms respectively, and the

values of ΦEC
ΔM, ΦIC

ΔM and ΦIV
ΔM calculated above were used. The fit therefore

estimated two parameters: T2IV and ΔM0
VCGs-off. The choice of T2EC and T2IC has

negligible effect on the estimated T2IV.

In summary, the calculations used to estimate the tri-compartmental origin of the ASL

and control signal (and T2IV) were as follows:

1. Calculate the proportion of intra-vascular signal using data acquired with and

without VCGs at the earliest echo time [Eq. 2.1]



105

2. Estimate ECΔM and ICΔM by fitting data acquired with VCGs to a bi-exponential

model [Eq. 2.2] using assumed values for T2 of the two compartments

3. Calculate ΦEC
ΔM and ΦIC

ΔM by multiplying the ECΔM and ICΔM estimates by 1-

ΦIV
ΔM

.

4. Estimate T2IV using the ΦIV
ΔM, ΦEC

ΔM and ΦIC
ΔM measurements and fitting the

data acquired without VCGs to a tri-exponential model [Eq. 2.3]:

The mean cortical signal in the perfusion-weighted images acquired with VCGs at τ =

3000ms and PLD = 700ms were used to estimate CBF for each experiment based on

[Alsop and Detre, 1996].

2.8.3 RESULTS

[a]

[b]

[c]

[d]

500 750 1000 3000 300 700 1200

Figure 2.20
Typical perfusion-weighted images (number of averages=30) acquired at the shortest
TE (29ms) and the PLD/ τ combinations shown below the respective images without [a]
and with [b] VCGs. Calculated T2app

ΔM maps without [c] and with [d] VCGs are also
shown. At PLD=50ms and τ=500-750ms, there are regions of significantly reduced
signal intensity in comparison to later τ due to longer transit times to these brain
regions. As a result, the pixel by pixel T2app

ΔM fits are essentially fitting noise which can
return erroneously high values. At later τ and PLD, the acquired perfusion weighted
signal in these regions increases and therefore the T2 fits return more sensible values.

120
ms

40
ms

40
ms

120
ms

τ (ms; PLD = 50ms) PLD (ms; τ = 3000ms)
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τ = 500ms, PLD = 50ms

τ = 750ms, PLD = 50ms

τ = 1000ms, PLD = 50ms

τ = 3000ms, PLD = 50ms

τ = 3000ms, PLD = 300ms

τ = 3000ms, PLD = 700ms

τ = 3000ms, PLD = 1200ms

This was one of the reasons a ROI in the cortex was chosen for our analyses; the
transit times in this region are relatively homogenous.

The mean CBF across the 9 experiments (±1 SEM) was 233 ± 12 ml/min/100g, in good

agreement with previous ASL measurements in rat cortex made in our laboratory using

a similar approach [Thomas et al., 2006]. Figure 2.20 shows typical perfusion-weighted

images acquired over a range of τ and PLD, with and without the application of VCGs,

together with calculated T2app
ΔM maps. The SNR of the base images at the maximum

TE (176.6ms) was considerably greater than 3 in all of the experiments. Therefore

random noise in the cortex was assumed to be Gaussian [Gudbjartsson and Patz, 1994],

with negligible noise rectification within the ROI of the subtracted images. Figure 2.21

shows the mean cortical transverse decay of the ASL signal from the same experiment.

Figure 2.21
The mean perfusion-weighted signal within the cortical ROI (shown in [a]) for each set
of PLD and τ combinations without [b] and with [c] VCGs against TE for the same
subject as shown in Figure 2.20.
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Figure 2.22
The mean of the measured ΔMVCGs-on / ΔMVCGs-off (i.e. 1 - ΦIV

ΔM) at the different τ and
PLD combinations. Error bars denote the standard error across the 9 subjects.

Figure 2.22 shows measured ΔMVCGs-on / ΔMVCGs-off (i.e. 1 - ΦIV
ΔM) at fixed PLD

(50ms) and increasing τ and then at fixed τ (3000ms) and increasing PLD. The

monotonic increase, as is apparent from visual inspection, reflects the apparent shift of

the source of the ASL signal from the vascular to the tissue compartment as τ and PLD

increase. This is likely to be due to exchange of vascular water into the tissue combined

with outflow of labelled blood from the observation slice that does not exchange.

Figure 2.23 shows the mean apparent T2 of the ASL and control signal (T2app
ΔM and

T2app
Ctrl) over the range of τ and PLDs across the 9 experiments. As previously

discussed, T2app was estimated using a mono-exponential fit to provide a simple

summary measure of the apparent T2 of the labelled water in the different

compartments. T2app
ΔM(VCGs-on) and T2app

ΔM(VCGs-off) measured at τ = 500ms and

PLD = 50ms were significantly greater than the equivalent estimates acquired at τ =

3000ms and PLD = 1200ms providing evidence that the T2app
ΔM is decreasing with

increasing τ and PLD, as inferred through visual inspection of Figure 2.23. The

decrease in T2app
ΔM(VCGs-on) may reflect the shift of the perfusion-weighted signal

500 750 1000 3000 300 700 1200

τ (ms; PLD = 50ms) PLD (ms; τ = 3000ms)

(Δ
M

V
C

G
s-

o
n
 /

 Δ
M

V
C

G
s-

o
ff
)



108

from the EC to the IC tissue space with increasing τ and PLD (see below). Each of the

T2app
ΔM (VCGs-on) estimates are significantly greater than the T2app

Ctrl (VCGs-on)

observations acquired at the same τ and PLD, which provides evidence that the balance

between the IC and EC signal contributions is more weighted towards the EC tissue

space in the ΔM images compared to the controls (see below). There was no significant 

difference between T2app
ΔM acquired with and without VCGs at the same τ and PLD.

The T2app estimates from the individual 9 experiments are shown in Figures 2.24 and

2.25.

Figure 2.23
The mean T2 of the subtracted signal with VCGs (T2app

ΔM(VCGs-on) - red line) and
without VCGs (T2app

ΔM(VCGs-off) - blue line) and of the control data with crushers
(T2app

Ctrl(VCGs-on) - green line) and without (T2app
Ctrl(VCGs-off) - black line) at

different PLD and τ times across all 9 experiments. Error bars represent the standard
error across the 9 subjects.
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Figure 2.24
The T2app

ΔM(VCGs-off) and T2app
Ctrl(VCGs-off)-5 for each of the 9 experiments

(represented by different colour lines). I emphasise that the T2 of the control signal -
5ms is reported here for clarity.
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τ (ms; PLD = 50ms) PLD (ms; τ = 3000ms)
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Figure 2.25
The T2app

ΔM(VCGs-on) and T2app
Ctrl(VCGs-on)-5 for each of the 9 experiments

(represented by different colour lines). I emphasise that the T2 of the control signal -
5ms is reported here for clarity.

500 750 1000 3000 300 700 1200

τ (ms; PLD = 50ms) PLD (ms; τ = 3000ms)
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Figure 2.26
The median T2 of the vascular compartment (T2IV) at increasing τ and PLD. Error bars
(dashed lines) denote the standard error of the median across the 9 subjects.

Figure 2.26 shows the estimated T2 of the ASL signal located in the vascular

compartment (T2IV). ΔMVCGs-on/ ΔMVCGs-off observations that are very close to 1 can

result in fairly extreme T2IV estimates, due to the small intra-vascular component of

these measurements. In this case, if there is a marked difference between

T2app
ΔM(VCGs-on) and T2app

ΔM(VCGs-off) then T2IV will converge on a very high or

very low value. For this reason, results from one of the nine experiments at four of the

seven different τ and PLD combinations are not included in the analysis (criteria for

exclusion was: T2IV > 500ms). Furthermore for this reason, the median T2 across the

remaining experiments is reported. At τ = 3000ms and PLD = 1200ms, ΦIV
ΔM is

approximately 2.5 % of the total ASL signal, severely limiting the precision of T2IV

estimation in this case. As a result the marked variance of the T2IV estimates across the

9 experiments restricts the interpretation of T2IV at these imaging parameters and is

therefore not reported in Figure 2.26 (criteria for exclusion was: mean ΦIV
ΔM < 0.05).

At short τ (0.5-1s) and PLD (50ms) we may have expected the T2IV observations to be

larger based on previous ex-vivo estimates of the T2 of arterial blood [Stanisz et al.,

2005]. This finding is likely to reflect the oxygen saturation of blood in the vessels that

500 750 1000 3000 300 700

τ (ms; PLD = 50ms) PLD (ms;τ = 3000ms)
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contain the labelled water, given the sensitivity of blood T2 to this parameter [Zhao et

al., 2007]. .The median T2IV estimates at τ = 3000ms are lower than those at shorter τ.

This may reflect the shift of the labelled blood that remains in the vessels from the

arterial to the venous side of the vasculature (see 2.5 Discussion).

Figure 2.27 reports the proportion of the ASL and control signal in the vascular space

and in the extra- and intra-cellular tissue space at increasing τ and PLD. The results are

shown for T2EC and T2IC values of 174 and 57ms [a] and 133 and 53ms [b]. The VCGs

will have a very small effect on the tissue compartment given the relatively low b value

of 40s/mm2. Any signal attenuation caused by the VCGs is likely to be similar between

the intra- and extra-cellular tissue spaces [Duong et al., 2001].
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Figure 2.27
The proportion of ASL signal originating from the intra-vascular compartment (ΦIV

ΔM -
black line) and in the intra-cellular (ΦIC

ΔM - red line) and extra-cellular (ΦEC
ΔM - green

line) tissue space at the various τ and PLD combinations. The proportion of the control
signal in the 3 different compartments is represented by a dotted line. Results are
reported for T2EC and T2IC values of 174 and 57ms [a] and 133 and 53ms [b]. For
clarity the scale of the y axis has been adjusted and is non linear. Error bars denote the
standard error across the 9 experiments.

2.8.4 DISCUSSION

These are the first results to report the T2 of the ASL signal over a range of labelling

durations and inflow times with and without the application of vascular crusher

gradients. We have estimated the dynamic distribution of the ASL signal originating

from the intra-vascular space and within the intra- and extra-cellular tissue space. This

provides a novel insight into the destination of arterial blood water that has flowed into

the brain as well as proof of principle of this non-invasive approach for possible future

applications in humans and in animal models of disease where changes in the

distribution of water within the intra- and extra-cellular tissue space are notoriously

difficult to investigate.

Figure 2.27 indicates that the source of the ASL signal shifts further into the intra-

cellular compartment from the intra-vascular and extra-cellular spaces as τ increases

from 500 to 1000ms. The subsequent constancy of the ΦIC
ΔM and ΦEC

ΔM estimates at τ =

1s and τ =3s suggests that a dynamic equilibrium is established between labelled water

in the intra-and extra-cellular tissue space by τ = 1s. This is perhaps not surprising given

the previously measured mean residence time of spins in the extra-cellular space of

~120ms [Quirk et al, 2003]. Figure 2.27 also shows that the ΔM signal is weighted 

towards the extra-cellular space, relative to the control signal, even when τ=3s and with

extended PLD. The short mean residence time (120ms) of the extra-cellular spins

relative to the τ and PLD timescale, as well as the aforementioned evidence for

establishment of a dynamic equilibrium, suggests this may be due to gradual exchange

of labelled blood from the vascular compartment to the tissue at increasing PLD as

implied from Figure 2.27. Indeed Figure 2.27 suggests that as the PLD increases at τ

=3000ms the ASL signal from the intra-vascular compartment seems to effectively shift

into the intra-cellular space while the signal from the extra-cellular space appears
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relatively stable, perhaps acting as a “buffer” for the movement of labelled blood

between the two compartments.

It was hypothesised that the heightened T2 of the arterial blood in comparison to the

tissue would render the T2app
ΔM(VCGs-off) estimates sensitive to the fraction of labelled

blood in the vascular compartment. However, Figure 2.23 demonstrates that the

T2app
ΔM(VCGs-off) estimates are similar to the equivalent observations with vascular

suppression gradients applied (T2app
ΔM(VCGs-on)) at brief tagging durations (τ = 500 to

1000ms) and PLD (50ms) where the majority of labelled blood in the vascular

compartment is expected to be arterial. T2IV at these imaging parameters was calculated

to be approximately 60-80ms (see Figure 2.26). As τ increases to 3000ms, the mean

T2app
ΔM(VCGs-off) is less than the meanT2app

ΔM(VCGs-on). This suggests that upon

image acquisition the portion of tagged blood in the vascular compartment has a

reduced T2 relative to the labelled spins that have exchanged into the tissue. Indeed,

T2IV at these imaging parameters was estimated to be 30-50ms (see Figure 2.26).

Previous work has estimated the arterial and venous oxygen saturation in the rat brain to

be 0.9 and 0.6 respectively [Lin et al., 1998]. Zhou et al., measured the T2 of blood in-

vitro at 3 Tesla and 37oC [Zhou et al., 2001]. They found the T2 of blood with an

oxygen saturation of 0.9 and a hematocrit fraction of 0.44 to be approximately 74ms.

The T2 of blood with an oxygen saturation of 0.6 was approximately 31ms. These

measurements are of the order of those reported in Figure 2.26 and suggests that the

source of the vascular portion of the ASL signal becomes increasingly weighted to the

venous side of the vascular bed as τ increases from 1 to 3s. This observation may reflect

the time taken by labelled blood that does not exchange (due to the limited permeability

of the blood:brain barrier [Parkes and Tofts, 2002, Zhou et al., 2001]) to traverse the

capillary bed.

In equation 2.3, slow exchange (relative to the timescale of T2 measurement) is

assumed between in the intra- and extra-vascular space in order to estimate T2IV from

our data. However Figure 2.22 indicates that labelled blood water rapidly exchanges

into the tissue. This casts doubt as to the validity of applying the model described in

equation 2.3 to our data. However, Figure 2.24 provides some evidence that there is a

difference between T2app
ΔM(VCGs-on) and T2app

ΔM(VCGs-off) at τ = 3000ms. This

suggests that the rate of exchange between labelled blood water in the intra- and extra-
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vascular space is indeed limited over the timescale of T2 measurement. This supports

the validity of the model represented in equation 2.3. This apparent contradiction may

reflect the heterogonous distribution of blood vessels. The dominant contribution to the

measured ΦIV
ΔM may be from blood water in the larger arteries and veins rather than the

capillaries (where the blood water may be in fast exchange)”

In this study we estimate the proportion of ASL signal from the vascular compartment

(ΦIV
ΔM) by calculating ΔMCVCGs-on/ ΔMVCGs-off, assuming the vascular crusher gradients

(b = 40 s/mm2) achieve complete vascular suppression [Silva et al., 1997(a)] (see

section 2.7 Calibration of Vascular Suppression). Our ΦIV
ΔM estimates at τ = 3s and

PLD = 50ms are in good agreement with previous Sprague Dawley rat ASL studies

using similar anaesthetic regimes and very similar imaging parameters (τ and PLD).

This provides some evidence that the crusher gradients are working as intended to

severely attenuate the vascular signal. In [Silva et al., 1997(a)], ΦIV
ΔM was estimated by

differentiating the vascular and tissue portion of the ASL signal based on their diffusion

characteristics (the same approach used in this work). They studied rats under halothane

anaesthesia and found that the contribution of vascular water to the measured perfusion

can be efficiently eliminated with b- values of approximately 20 s/mm2. With τ = 3.5s

and negligible PLD they calculated ΦIV
ΔM to be about 0.9 at normal CBF, in excellent

agreement with our results (see Figure 2.22). In [Silva et al., 1998(b)] EF was estimated

by exploiting the different susceptibility of blood and tissue to magnetisation transfer

(MT) effects. In their work the extent of MT in the volume of interest was manipulated

without affecting tagging efficiency by using a separate labelling coil for spin tagging.

The estimated EF after labelling for 2 seconds with negligible PLD was around 0.9 in

agreement with our findings. In [Zaharchuk et al,1998] a long half-life intra-vascular

magnetopharmaceutical with a high tissue;blood susceptibility difference was used in

combination with ASL for the continuous measurement of blood flow and blood

volume. In this study ΦIV
ΔM was calculated to be about 0.8 at τ = 3.7s and PLD =0.2s at

a blood flow of 200ml/100g/min. However they report a large spread in the ΦIV
ΔM

estimates acquired over a relatively narrow range of blood flows (1.1 to 0.6 over 100 -

200 ml/min/100g). Therefore the estimated ΦIV
ΔM in the present work is likely to fall

within the confidence intervals of this previous study. Nonetheless, this may introduce

some uncertainty as to the extent of vascular suppression in our experiments. Previous

work has measured a persistent microvascular signal despite the presence of large
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crusher gradients [Henkelman et al., 1994]. This may be due the variability in

microvascular flow during the application of the diffusion-weighting gradients in the

sequence [Villringer et al., 1994]. This could additionally explain the ΔMVCGs-on/

ΔMVCGs-off reported in the present work at brief tagging durations (Figure 2.22, τ =500

and 750ms): given that the transit time from the labelling to the imaging plane [Thomas

et al., 2006] in the CASL experiments has been reproducibly measured to be about 0.2s,

intuitively one may expect the vascular proportion occupied by the labelled blood to be

greater than 0.2. However, this result may simply indicate rapid exchange of labelled

water into the tissue after entering the capillary bed. In humans, a greater proportion of

labelled water resides in the intra-vascular compartment during image acquisition

[Wang et al., 2007]. This discordance principally reflects the marked difference in CBF

(~50 ml/min/100g) and transit time (1s) in the human brain in comparison to the rat

brain (where CBF ~200 ml/min/100g and transit time ~ 0.2s).

Although visual inspection of Figure 2.23 suggests T2app
ΔM(VCGs-on) is increased in

comparison to T2app
ΔM(VCGs-off) at τ =3000ms, we found no significant difference

between the T2app
ΔM estimates acquired at the same τ and PLD with and without VCGs.

This finding provides some indication that the sensitivity of T2app
ΔM to ΦIV

ΔM is limited

and suggests that diffusion sensitised measurements (ΔMVCGs-on/ ΔMVCGs-off) are a much

more efficient way of calculating the proportions of vascular and tissue signal in the rat

brain.

In general, the relatively narrow range of measured T2 estimates (see Figure 2.23)

suggests this approach has limited sensitivity to the vascular origin of the labelled

blood, even over a wide range of CASL sequence timings (i.e. τ, PLD; see Figure 2.23).

Alternatively, this finding does provide some reassurance that T2app
ΔM is unlikely to be

a confounding factor for CBF estimation using a range of tagging pulse lengths and/or

PLDs, particularly if TE is relatively short. However the significantly increased T2app

(VCGs-on) of the perfusion-weighted signal in comparison to the control may result in a

small overestimation in CBF using standard quantification methods [e.g. Alsop and

Detre, 1996, Buxton et al., 1998] as the equilibrium magnetisation of the tissue (M0) is

assumed to decay with the same T2 as the labelled ASL signal in the brain.
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The volume of extra-cellular space in the static tissue as estimated from our control data

is around 5% based on assigning T2 values of 57 and 174ms to the intra- and extra-

cellular compartments [Haida et al., 1987]. Although this is in broad agreement with a

number of previous studies, it is rather small in comparison to others [Rall and Zubrod,

1962]. This may suggest that T2EC and T2IC values of 133ms and 53.4ms respectively

are more accurate as this yields EC volume estimate of approximately 12% (see Figure

2.27) This lies within the range of previously reported values in the rat cortex: 9.3%

[Reulen et al.,1970]; 16.1% [Rees et al.,1982], 14.5% [Woodwood et al., 1967], 14-

22% [Davson H and Spaziani E, 1959] and 7-14% [Rall et al., 1962].

In this chapter we use a bi-exponential model to estimate the proportion of the ASL

signal originating from the intra-and extra-cellular tissue space (see equation 2.2). As

demonstrated by the simulations described in Appendix B, our data is not able to

provide evidence as the viability of the bi-exponential model. For example, the fit to the

data displayed in figure B1 has an R-square of 0.997 but provides no evidence as to

whether a mono-exponential or bi-exponential fit is more appropriate for the data (as

indicated from the confidence intervals of the fitted parameters). Therefore we have

used values from previous studies designed to precisely estimate T2IC and T2EC.

However the reliance on published T2EC and T2IC values is a limitation of this work. In

future studies it would be ideal to fit the control data acquired with VCGs to a bi-

exponential model to simultaneously estimate the relative distribution of the intra- and

extra-cellular signal of the static tissue in addition to the T2 constants of the two

compartments. However, this would require a greater number and range of echo times

than used in the present work (e.g. see [Matsumae et al., 2003] for a typical acquisition

protocol used for this purpose). See Chapter 5 and Appendix B for further discussion of

this issue.

It is important to note that the experiments were performed on rats anaesthetised on

N2O and halothane. These substances have been previously shown to increase CBF

from baseline [Austin et al., 2005]. This is likely to affect the tri-compartmental

distribution of the ASL signal at the different τ and PLD times. However the increased

CBF will have improved the SNR of the ΔM measurements which in turn improved the

precision of T2 estimation.
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2.8.5 SUMMARY

In summary, ASL can non-invasively isolate the MR signal from arterial blood water

that has flowed into the brain. We have shown that it is possible to measure the

transverse decay of this signal over a range of bolus durations and delivery times to

estimate the dynamic origin of nutritive flow-related signal in the intra- and extra-

cellular tissue space, accepting that the accuracy of ΦIC
ΔM and ΦEC

ΔM estimation is

restricted by the limited validation of T2IC and T2EC. Furthermore, by taking

measurements with and without vascular crusher gradients we have calculated the

proportion of the perfusion-weighted signal originating from the cerebral vasculature,

together with the associated T2 constant of this compartment (which may represent a

surrogate index of blood oxygen saturation). We hope that this technique may be useful

for future application in animal models of disease to better understand the relationship

between the time-course for blood delivery and exchange and pathology.

2.7 REFERENCES

Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging
of human cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism 16, 1236-1249

Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, Sibson NR (2005). Confounding
effects of functional activation in rodent brain: a study of halothane and alpha-chlorose anaesthesia.
Neuroimage 24, 92-100.

Bakay L (1970). The extracellular space in brain tumours. I. Morphological considerations. Brain 93,
693-698

Belton PS, Jackson RR, Packer J (1972). Transverse nuclear relaxation and spin effects. Biochimica
Biophysica ACTA 286 16-25

Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for
quantitative perfusion imaging with arterial spin labelling. Magnetic Resonance in Medicine 40:383-396

Davson H, Spaziani E (1959). The blood-brain barrier and the extracellular space of brain. Journal of
physiology. 149; 135-143.14-22%.

Detre JA, Leigh JS, Williams DS, Koretsky AP. (1992). Perfusion imaging. Magnetic Resonance in
Medicine 23:37-45

Duong TG, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJH, Neil JJ. (2001) .Extracellular Apparent
Diffusion in Rat Brain. Magnetic Resonance in Medicine 45:801-810

Eichling J, Raichle M, Grubb R, Ter-Pogossian M. (1974). Evidence of the limitations of water as a freely
diffusible tracer. Circulation Research 35, 358-364



120

Francis ST, Bowtell R, Gowland PA (2008) Modeling and optimization of Look-Locker spin labeling for
measuring perfusion and transit time changes in activation studies taking into account arterial blood
volume. Magnetic Resonance in Medicine 59 316-25

Gambarota G, Cairns BE, Berde CB, Mulkern RV (2001). Osmotic effects on the T2 relaxation decay of
in vivo muscle. Magnetic Resonance in Medicine 26, 592-599

Golay X, Silvennoinen MJ, Zhou J, Clingman CS, Kauppinen RA, Pekar JJ, Van Zijl PC (2001).
Measurement of tissue oxygenation extraction rations from venous blood T(2): Increased precision and
validation of principle. Magnetic Resonance in Medicine 46, 282-91

Gudbjartsson H, Patz P (1994). The rician distribution of noisy MRI data. Magnetic Resonance in
Medicine 34, 910-914

Haida M, Yamamoto M, Matsumura H, Shinohara Y, Fukuzaki M. (1987). Intracellular and extracellular
spaces of normal adult rat brain determined from the proton nuclear magnetic resonance relaxation times.
Journal of Cerebral Blood Flow and Metabolism 7:552-556

Harrison R, Bronskill MJ, Henkleman M. (1995). Magnetization Transfer and T2 Relaxation Components in Tissue.
Magnetic Resonance in Medicine 33, 490 – 496.

Hazlewood CF, Chang DC, Nichols BL, Woessner DE (1974). Nuclear magnetic resonance relaxation
times of water protons in skeletal muscle. Biophysics Journal 14:583-606

He, Yablonskiy. Transverse relaxation of the perfusion MRI signal. ISMRM Perfusion Workshop 2007,
Brazil.

Henkelman RM, Neil JJ, Xiang QS (1994) A quantitative interpretation of IVIM measurements of
vascular perfusion in the rat brain. Magnetic Resonance in Medicine 32:464-469

Kober F, Duhamel G, Cozzone PJ (2008) Experimental comparison of four FAIR arterial spin labelling
techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR in Biomedicine 21, 781-792

Lascialfari A, Zucca I, Asdente M, Cimino M, Guerrini U, Paoletti R, Tremoli E, Lorusso V, Sironi L
(2005). Multiexponential T2-relaxation analysis in cerebrally damaged rats in the absence and presence of
a gadolinium contrast agent. Magnetic Resonance in Medicine 53, 1326-1332.

Le Bihan D. Diffusion and Perfusion Magnetic Resonance Imaging. Applications to functional MRI.
Raven Press 1995.

Liang Z-P, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. (1992). Constrained
Reconstruction Methods in MR Imaging. Reviews in Magnetic Resonance Imaging 4, 67-185.

Liang Z and Lauterbur PC (2000) Principles of Magnetic Resonance Imaging; A Signal Processing
Perspective. IEEE press.

Lin W,Paczynski RP, Celik A, Karthikeyan K, Hsu CY, Powers WJ. (1998). Experimental Hypoxia:
Changes in R2* of Brain Parenchyma Accurately Reflect the Combined Effects of Changes in Arterial
and Cerebral Venous Oxygen Saturation. Magnetic Resonance in Medicine 39,374-481.

Matsumae M,Oli S, Watanabe H, Okamoto K, Y Suzuji, Sato K, Atsumi H, Goto T, Tsugane R (2003)
Distribution of intracellular and extracellular water molecules in developing rat’s midbrain: comparison
with fraction of multicomponent T2 relaxation time and morphological findings from electron
microscopic imaging. Childs Nervous System 19, 91-5

McRobie DW, Moore EA, Graves MJ, Prince MR. NMR MRI: From picture to proton. (first edition).
Cambridge university press.



121

Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein
PR. (1990). Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-
weighted MRI and spectroscopy. Magnetic Resonance in Medicine 14, 330-346

Neil JJ, Scherrer LA, Ackerman JJH. (1991). An approach to Solving the Dynamic Range Problem in
Measurement of the Pseudodiffusion Coefficient in Vivo with Spin Echoes. Journal of Magnetic
Resonance 95,607-614

Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using
arterial spin labelling: accounting for capillary water. Magnetic Resonance in Medicine 48, 27-41

Pell GS, Briellmann RS, Waites AB, Abbott DF, Lewis DP, Jackson GD.(2006). Optimized clinical T2
relaxometry with a standard CPMG sequence. Journal of Magnetic Resonance Imaging 23, 248-52.

Petersen ET, Lim T, Golay X. (2006). Model-free arterial spin labelling quantification approach for
perfusion MRI. Magnetic Resonance in Medicine 55, 219-32

Petersen ET, Golay X. (2008). Is Arterial Spin Labelling Ready for the Prime time? Prilimary Results
from the QUASAR Reproducibility Study Presented at the 16th ISMRM , Berlin. (Abstract 191)

Poon CS, Henkelman RM.(1992). Practical T2 Quantification for Clinical Applications. Journal of
Magnetic Resonance 2, 541-553

Quirk JD, Bretthorst GL, Duong TQ, Snyder AZ, Springer Jr CS, Ackerman JH, Neil JJ (2003)
Equilibrium Water Exchange Between the Intra- and Extracellular Spaces of Mammalian Brain. Magnetic
Resonance in Medicine 50:493-499

Rall DP, CG Zubrod (1962) Mechanisms of Blood Absorption and Excretion :Passage of Drugs in and
out of the central nervous system. Annual Review of Pharmacology of Toxicology 2, 109-128

Rall DP, Oppelt WW, Patlak CS (1962). Extracellular space of brain as determined by diffusion of inulin
from the ventricular system. Life Sciences 2;43-44;7-14%.

Reulen. H.J,, U. Hase. A. Fenske. M. Samii and K. Schiirmann (1970) Extrazellul/irraum und
lonenverteilung in grauer und weisser Substanz des Hundehirns, Aeta Neuroehir. (Wien). 22:305 325.
9.3% in the cortex

Rees S, Cragg I, Everitt AV (1982). Comparison of extracellular space in the mature and ageing rat brain
using a new technique. Journal of the Neurological Sciences 53(2):347-57. 16.1%

Silva AC, Williams DS, Koretsky AP. (1997(a)). Evidence for the exchange of arterial spin labeled water
with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magnetic Resonance
in Medicine 38:232-237

Silva AC, Zhang WG, Williams DS, Koretsky AP. (1997(b)). Estimation of water extraction fractions in
rat brain using magnetic resonance measurement of perfusion with arterial spin labeling. Magnetic
Resonance in Medicine 37: 58-68

Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. (2005). T1,
T2 relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine 54:507-12.

St Lawrence KS, Wang J. (2005). Effects of the apparent transverse relaxation time on cerebral blood
flow measurements obtained by arterial spin labelling. Magnetic Resonance in Medicine 53:425-33.

Thomas DL, Lythgoe MF, Calamante F, Gadian DG, Ordidge RJ. (2001). Simultaneous non-invasive
measurement of CBF and CBV using double-echo FAIR (DEFAIR). Magnetic Resonance in Medicine
45, 853-63



122

Thomas DL, Lythgoe MF, van de Weerd L, Ordidge RJ, Gadian DG. (2006). Regional variation of
cerebral blood flow and arterial transit time in normal and hyperfused rat brain measured using
continuous arterial spin labelling MRI. Journal for Cerebral Blood Flow and Metabolism. 26, 274-82

Turner R, Howseman A, Rees GE, Josephs O, Friston K. (1998). Functional magnetic resonance imaging
of the human brain: data acquisition and analysis. Experimental Brain Research. 123, 5-12

Villringer A, Them A, Lindauer U, Einhaaupl K, Dirangl U. (1994). Capillary perfusion of the rat brain
cortex: an in vitro confocal microscopy study. Circulation Research 75,55-62

Wang J, Fernandez-Serra MA, Wang S, St. Lawrence KS. (2007). When perfusion meets diffusion: in
vivo measurements of water permeability in human brain. Journal of Cerebral Blood Flow and
Metabolism 27, 839-49

Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. (2003). Arterial transit time
imaging with flow encoding arterial spin tagging (FEAST). Magnetic Resonance in Medicine 50, 599-607

Woodwood DL, Reed DJ, Woodbury DM (1967). Extracellular space of rat cerebral cortex. American
Journal of Physiology 212(2):367-70.14.5%.

Zaharchuk G, Bogdanov Jr. AA, Marota JJA, Shimizu-Sasamata M, Weisskoff RM, Kwong KK, Jenkins
BG, Weissleder R, Rosen BR .(1998). Continuous Assessment of Perfusion by Tagging Including
Volume and water Extraction (CAPTIVE): a steady-state contrast agent technique for measuring blood
flow, relative blood volume fraction and the water extraction fraction. Magnetic Resonance in Medicine.
40, 666-678

Zhou JY, Wilson DA, Ulatowski JA, Trajstman RJ, van Zijl PCM. (2001). Two-compartment exchange
model for perfusion quantification using arterial spin tagging. Journal of Cerebral Blood Flow and
Metabolism 21, 440-455

Zhao JM, Clingman CS, Narvainen MJ, Kauppinen RA, van Zijl PCM. (2007). Oxygenation and
Hematocrit Dependence of Transverse Relaxation Rates of Blood at 3T. Magnetic Resonance in Medicine
58, 592-596

CHAPTER 3: REDUCTION OF ERRORS IN ASL CEREBRAL

PERFUSION AND ARTERIAL TRANSIT TIME MAPS USING

IMAGE DE-NOISING

3.1 ABSTRACT

In this chapter, the performance of image de-noising techniques for reducing errors in

arterial spin labelling (ASL) cerebral blood flow (CBF) and arterial transit time

estimates is investigated. Simulations were used to show that the established ASL CBF

quantification method exhibits the bias behaviour common to non-linear model

estimates and as a result, the reduction of random errors using image de-noising can

improve accuracy. To assess the effect on precision, multiple ASL data-sets acquired

from the rat brain were processed using a variety of common de-noising methods

(Wiener filter, anisotropic diffusion filter, Gaussian filter, wavelet decomposition and
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independent component analyses). The various de-noising schemes were also applied to

human ASL data to assess the possible extent of structure degradation, due to excessive

spatial smoothing. The animal experiments and simulated data show that noise

reduction methods can suppress both random and systematic errors, improving both the

precision and accuracy of CBF measurements and the precision of transit time maps. A

number of these methods (and particularly independent component analysis) were

shown to achieve this aim without compromising image contrast.

3.2 INTRODUCTION

As previously discussed, arterial spin labelling (ASL) [Detre et al., 1992] is a non-

invasive magnetic resonance imaging (MRI) technique to measure cerebral blood flow

(CBF), an important physiological parameter of interest in many research and clinical

applications [Calamante et al., 1999]. Arterial transit time (δa) measurements provide

complementary information, can indicate possible pathology and may reflect the status

of the arterial vasculature [Thomas et al., 2000, Thomas et al., 2006(a)]. The relatively

low cerebral blood volume and rapid decay of the endogenous tracer means ASL

measurements suffer from low signal-to-noise ratio (SNR). Achieving an adequate

SNR at a suitable spatial resolution usually requires considerable data averaging, which

can be problematic given the practical acquisition time restrictions for clinical MR

scanning. Despite its current relatively limited use, ASL is likely to become more

prevalent in clinical and research applications given the continued progression of

modern scanner hardware and the associated SNR increases [Petersen et al., 2006].

Image de-noising techniques are intended to remove noise whilst retaining the “true”

signal. Spatial filters are commonly used to reduce noise in images. These filters

usually smooth the data to reduce the high frequency noise but in the process can also

blur the data. The idea is that you smooth pixels to suppress the noise whilst

maintaining the important structure within the image. An example of such a smoothing

method is the Gaussian filter which is frequently applied in fMRI data analyses.

Another example is the Wiener filter which smoothes adaptively depending on the

distribution of pixel values within each kernel and an estimate of the noise present in the

image. In recent years new methods have been devised that seek to spatially smooth
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within homogenous regions while preserving edges in the data. An example used in this

work is the anisotropic diffusion filter, an iterative approach that is intended to smooth

within and not between important structures.

A different class of methods performs decomposition of the images into wavelet basis

functions and shrinks the high frequency wavelet coefficients in order to de-noise the

data. Advocates of this de-noising technique argue that it can better distinguish signal

from noise in comparison to a simple Fourier transform. Wavelet decomposition

concentrates the majority of a smooth signal in a few wavelet coefficients and in this

way small coefficients that represent the noise can be thresholded, while the large ones

that contain the signal’s important features should be maintained.

Independent component analysis (ICA) is not a spatial filter but rather a method for

extracting mixed signals into subcomponents assuming the statistical independence of

the non-Gaussian source signals. An intuitive description is the “cocktail party

problem”. In this scenario several people are talking at the same time and there are a

number of microphones at different positions in the room recording the many

conversations. The aim of ICA is to take the many recordings and extract the individual

voices. In this work we aim to use ICA to remove the background noise whilst

preserving the source signal. Unlike the spatial de-noising methods described above, our

implementation of ICA operates on 3D data (a time course of 2D images).

Post-acquisition de-noising methods have been exploited in many MRI modalities. For

example, the anisotropic diffusion (AD) filter has been shown to have the potential to

decrease the scan time of diffusion-weighted imaging (DWI) acquisitions [Parker et al.,

2000] and to improve the reliability of CBF measurements using dynamic susceptibility

contrast (DSC) MRI [Murase et al., 2001]. Wavelet filtering can be highly beneficial in

conjunction with fMRI analyses [Wink et al., 2004], DWI data [Wirestam et al., 2006],

and DSC-MRI data [Wirestam et al., 2005]. The Wiener filter can aid 3D structural

MRI processing [Martin-Fernandez et al., 2006], and independent component analysis

(ICA) has been shown to improve functional MRI [Thomas et al., 2002], DWI

[Arfanakis et al., 2002] and DSC-MRI [Calamante et al., 2004]. Despite these useful

applications, the use of noise reduction algorithms in ASL has so far been mainly

restricted to fMRI modelling [Restom et al.,2006; Behzadi et al.,2008]. Given the poor
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SNR typically obtained in ASL, image de-noising could form an essential pre-

processing step to make ASL more robust and more efficient, benefiting both its

clinical and research applications.

In this chapter we investigate the performance of a number of common image de-

noising techniques in reducing errors of ASL CBF and arterial transit time (δa)

estimates. The study is divided into three main strands focussing on the effect of de-

noising methods on accuracy, precision and structural degradation. Firstly, using

simulations (where the true cerebral parameter estimates are known) we demonstrate

that fitting to the established ASL CBF quantification method [Alsop and Detre.,1996]

exhibits the bias behaviour common to non-linear model estimates and that the

reduction of random errors using de-noising can enhance the accuracy of quantitative

cerebral perfusion estimates. Secondly, ASL data acquired from the rat brain with

several repeated measurements were used principally to assess the performance of the

de-noising methods on the precision of CBF and δa measurements. Finally the various

de-noising schemes are also applied to typical human ASL data to illustrate their

potential use in clinical studies and, in particular, to assess the possible extent of

structure degradation, due to excessive spatial smoothing, in the perfusion-weighted

images.

3.3 MATERIALS AND METHODS

3.3.1 Computer Simulations

Two different sets of simulations were performed. In the first set we investigated the

bias of the CBF estimates using the standard quantification model over a range of

SNRpwi. The second set mirrors the in-vivo protocol; simulated images of the rat brain

were generated and then de-noised using ICA to investigate the possible introduction of

bias using this de-noising technique. The two different approaches are referred to as

simulated data 1 and simulated data 2.

3.3.2 Simulated Data 1

In a preliminary analysis of the animal data, we have observed the mean and median

CBF (as calculated by fitting to an established quantification model [Alsop and Detre,

1996]) within homogenous brain regions to increase in accordance with the noise level.



126

With Gaussian noise, the introduction of bias to maximum likelihood non-linear model

estimates is widely recognised within the statistics literature [Box. 1971]. Therefore,

the presence of Gaussian noise introduces both random and systematic errors to the

CBF estimates. To the best of our knowledge, however, this is an issue that has not yet

been raised in the context of the ASL CBF and δa estimation model [Alsop and Detre,

1996]. We therefore performed simulations to investigate and characterise this effect.

Continuous arterial spin labelling (CASL) data with a CBF of 250ml/min/100g and δa

of 0.3s (corresponding to typical values in the rat brain) were simulated for 12 post-

labelling delay (PLD) times (w = 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5 and 2s;

NB. These values correspond to those used in the experimental studies (see below)).

The ASL data were generated using the established CBF quantification model [Alsop

and Detre, 1996]. Zero mean Gaussian noise was added to the simulated time-course

data to generate images with a mean SNRPWI of 40, 30, 20, 10, 5, 4, 3, 2, 1.5, where

SNRPWI is the mean SNR of the perfusion-weighted images across all the PLD times.

CBF and δa were then estimated by fitting the same model. The process was repeated

1000 times at each SNR.

3.3.2 Simulated data 2

An additional set of simulations was also performed. The purpose of this analysis was

to investigate whether ICA introduces bias to the CBF estimates. Unlike the spatial

filters, ICA uses the “time dimension” (or different PLD times) to de-noise the data. In

the animal experiments, ICA is applied to the high SNR base images (control and

tagged). The differences between the tagged and control acquisitions (that are

proportional to CBF) are small relative to the changes in the base image signal intensity

as a function of PLD due to MT effects (See Figure 3.1).
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Figure 3.1
The mean cortical signal intensity of the base images across all the “5 average” in-
vivo acquisitions for one of the three experiments. There are 6 repeats each consisting
of 24 acquisitions (tag and control acquisitions at 12 PLDs). The “low frequency”
changes in the measured signal are due the PLD dependant changes of the extent of MT
effects in the tissue. The “high frequency” changes are due to blood flow.
Conceptually, there is a risk that de-noising methods that act in the time domain may
“smooth” the “high frequency” component of the time-course. This would
underestimate the calculated CBF.

Therefore in the time-course of ASL image acquisitions (see Figure 3.1), the changes in

signal intensity between the tagged and control acquisition can be considered to be high

frequency and low amplitude relative to the changes in signal intensity due the PLD

dependence of MT recovery. It was therefore important to ensure that ICA preserved

these high frequency, low amplitude signal differences (that yield ΔM) and do not bias 

the resultant CBF estimates. This potential confounder is unique to ICA in this study as

the other filters work on an image-by-image basis and do not incorporate the time

dimension. To investigate this possible source of error we conducted further

simulations, referred to as simulated data 2.
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Simulated data were constructed to mirror the experimental in vivo data set with images

generated at 12 post-labelling delay times. The time course of the pixels in the

simulated images was calculated by using the established CBF quantification model

[Alsop and Detre, 1996]. The majority of the brain pixels represented grey matter with

a CBF of 250ml/min/100g and δa of 0.3s with a large region in the striatum of flow

150ml/min/100g and δa of 0.3s. There was no flow present in a thin strip that

represents CSF within the ventricles. The signal intensity of the images decreased

ventrally in accordance with the surface coil sensitivity (see Figure 3.2).

Complex Gaussian noise (mean value = 0) was added to the raw images to generate 6

‘noisy’ data sets with a mean SNR of 31.9 to match the in vivo data (see Figure 3.2).

The absolute signal intensities were taken to produce magnitude images. The images

were then de-noised using ICA (see 3.3.6.5 Independent component analyses) and

processed to generate CBF and δa maps before and after de-noising in an identical

manner to the in vivo data (see 3.3.5 CBF and δa quantification).

A further set of simulations were performed to investigate the possible introduction of

bias into CBF estimates when ICA is used to de-noise a sequence of images where

perfusion is changing. An example of where this would be expected to occur is in fMRI

experiments where blood flow changes may take place during a specified paradigm. In

this application ASL images at a single PLD time are acquired due to the demand for

good time resolution. Accordingly, simulated tagged and control images were generated

as described in section 3.32 at a single delay time of 0.5s. “High CBF” maps were

interleaved with “low CBF maps”. The CBF oscillated from 250ml/min/100g to

200ml/min/100g between each tagged image. 200 images (tagged and control) were

generated to give 100 CBF maps (50 images at each “high” or “low” CBF value). The

(b)a (a)

Figure 3.2
Simulated ASL control
image before (a) and after
(b) the addition of zero
mean Gaussian noise.
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SNR in the control images was 30 in agreement with the in-vivo data. The controlled

and tagged images were then de-noised using ICA (see 3.3.6.5 Independent component

analyses) and processed to generate CBF maps. The mean CBF within a cortical ROI

was taken across all 50 CBF maps for each CBF value (200 and 250ml/min/100g).

3.3.3 Animal Preparation

The in-vivo experimental protocol was designed to facilitate multiple repeated

acquisitions to enable the assessment of the variability of the CBF and δa

measurements to estimate their precision before and after de-noising. Errors due to

subject motion and time-dependent variation in perfusion caused by changes in

physiology were minimised by performing measurements on the anaesthetised rat brain,

allowing a scan time of 1 hour and rigid motion prevention.

Three male Sprague Dawley rats (168-184g) were used in this study. Anaesthesia was

induced and maintained as described in section 1.12.

3.3.4 Animal MRI: Continuous ASL

MRI animal studies were performed using a 2.35T horizontal magnet as described in

section 1.12.

A CASL sequence was implemented with an alternating adiabatic spin tagging pulse

(total duration 3 seconds) to minimise eddy current effects. The offset frequency of the

labelling pulse oscillated in accordance with the slice select gradient to maintain a

constant tagging plane. The labelling pulse was applied 2mm caudal to the cerebellum,

perpendicular to the carotid and vertebral arteries, to ensure efficient spin tagging.

Single slice coronal images, 0.3mm caudal to the bregma, were then acquired using

spin echo EPI after a PLD time. For robust and accurate quantification, it is necessary

to measure the perfusion-weighted signal over the time course of the delivery of the

tagged bolus. This reduces the number of physiological assumptions and allows the

simultaneous measurement of CBF and δa. Consequently 12 PLD times (w = 0.15, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5 and 2s) were employed for each tag/control pair.

Other acquisition parameters were: slice thickness = 2mm; image matrix size = 12864;

field of view = 4020mm2; TE = 36ms; inter-experiment delay = 2s. Data were
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acquired with 5 averages at each w, giving a measurement time of 10 minutes. This

process was repeated 6 times, resulting in a total scan time of 60 minutes.

For the remainder of this chapter, the 6 sets of tagged and control images acquired with

12 PLDs are referred to as the original ‘noisy’ images. The de-noising methods listed

below were then applied to these 6 groups of ASL images. Application of the de-

noising methods prior to CBF quantification suppresses the noise in the raw images and

thus reduces the magnitude of propagated noise-based errors in CBF calculations.

Preliminary analysis revealed the difference in the effect of de-noising the base images

(i.e. control and labelled images) and subtraction images (control minus labelled

images) to be negligible in this context because of the similar contrast present in the

perfusion-weighted and base images. Therefore the base images were de-noised so that

the fit of the control image signal intensity as a function of post-labelling delay time (a

procedure required for CBF and δa quantification) could also benefit from reduced

random errors. In addition, the raw data before subtraction were averaged across the

entire experiment (all 6 repeats) for each w to produce a high SNR data set. These data

were treated as the ‘‘Gold Standard’’. However, the extent of interpretation of these

findings is limited as the “Gold Standard” only represents an approximation to the true

CBF value (see SNR dependency of PWI signal, Figure 3.3 below). Therefore the

simulations described above were used to investigate the possible implications of

random errors on the accuracy of CBF quantification.

3.3.5 Human MRI: 3D GRASE ASL

Given the relatively small amount of white matter tissue in the rat brain, CBF maps in

the rat tend to have few boundaries between areas with very marked perfusion

difference (especially at the typical spatial resolution used for ASL). In contrast, the

large amount of white matter in the human brain leads to many interfaces between areas

with markedly different perfusion values (e.g. grey and white matter regions). Human

ASL data are therefore ideal for assessing the effect of the various de-noising methods

on structure degradation (i.e. spatial smoothing).

MRI human studies were performed on a single healthy subject using a 3T clinical

whole-body MRI scanner (Magnetom Trio, Siemens Erlangen, Germany) with a
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standard 12-channel receive-only head coil. A 3D GRASE pseudo-CASL sequence was

used with background suppression [Fernandez-Seara et al., 2005]. The following

imaging parameters were used: Inflow time = 600ms; TE/TR = 57.7/3750ms; slice

thickness = 4mm; image matrix size = 645648; field of view = 250219192 mm3.

Sixty four pairs of label-control images were acquired on a healthy adult volunteer. In

contrast to the experimental acquisitions, multi-PLD data were not acquired due to

practical limitations on the scan time.

The 64 acquisitions were averaged over sets of 8 repeats to create 8 labelled and control

images to increase the SNRPWI. A data set was also generated by averaging all 64

tagged and control acquisitions, which was used as a reference or “Gold Standard”

dataset for the purposes of this study. The images were masked to remove tissue

outside the brain. The subtraction of the labelled and control acquisitions in the human

data revealed many sharp boundaries between regions of contrasting CBF (e.g. between

white and grey matter), which were not apparent in the base images for the pseudo-

CASL sequence parameters used. This limits the benefit of edge-preserving filters (e.g.

AD filter) when applied to the base images. Consequently in this case the 8 ‘noisy’ and

‘Gold Standard’ control and labelled images were pair-wise subtracted and then de-

noised. This approach must be employed with caution as in some instances the

perfusion-weighted images may be so noisy as to impair the effectiveness of the de-

noising strategies [Parker et al., 2000]. In order to quantify the potential structural

degradation effect of image de-noising, the contrast (i.e. the mean PWI signal

difference) and the contrast-to-noise ratio (CNR = SNRPWI(ROI1)–SNRPWI(ROI2))

across a structural boundary was calculated before and after de-noising. Any

significant changes in the 8 CNR estimates following de-noising were investigated

using a paired t-test.

3.3.6 Noise Reduction Methods

In this work we chose to implement established threshold selection algorithms for each

of the noise reduction techniques, rather than using an empirical optimisation by visual

inspection (apart from the simple Gaussian filter, where a fixed level of smoothing was

chosen). In this way, the spatial extent of the filter and/or degree of smoothing is

determined based on an estimate of the level of noise within the image. Hence the level
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of smoothing changes according to the image parameters and data quality. The adaptive

nature of this approach should make the findings of this investigation relevant to future

studies with alternate imaging parameters (number of averages, number of post-tagging

delay times, etc.). This is the most straightforward and objective approach, requiring the

least amount of user input, while providing a suitable optimisation of filter parameters

given the underlying quality of the data. In future studies the extent of smoothing should

be judged subjectively by the experimenter with knowledge of the application and the

experimental protocol used. However in taking our approach we examine the possibility

that image de-noising within ASL can be beneficial even with minimal subjective

optimisation.

3.3.6.1 WIENER FILTER

An adaptive 2D Wiener method was applied, optimised based on statistics estimated

from the local neighbourhood of each pixel. First estimates of the mean, μ, and

variance, σ2, were calculated within a 33 kernel centred on each pixel (pixel signal

intensity = C). The data were then filtered on a pixel by pixel basis according to:
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where v2 is the noise variance and b is the filtered pixel [Lim and Jae., 1990].

3.3.6.2 ANISOTROPIC DIFFUSION (AD) FILTER

For this work the method is similar to that used by Parker et al. [Parker et al., 2000],

but with the constant K (also known as the conduction coefficient or scale parameter)

optimised as in reference [Murase et al., 2001]:

 IMADK  4826.1 [3.2]

where MAD denotes the median absolute deviation, and I the image intensity gradient

(a small blur with a Gaussian kernel with standard deviation equal to 0.8 in-plane voxel

units was used to stabilise the local derivative gradient calculation [Parker et al.,

2000]). The number of iterations was set to 5 based on a preliminary analysis (data not

shown). The AD filtering was performed using the MatLab and Octave Functions for

Computer Vision and Image Processing (P.D. Kovesi, School of Computer Science &
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Software Engineering, The University of Western Australia.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/).

3.3.6.3 GAUSSIAN FILTER

The standard deviation of the 2D Gaussian filter was fixed at 0.5 voxels and the kernel

size to 33; these relatively small values were chosen to limit the degree of structural

degradation.

3.3.6.4 WAVELET ANALYSES

For this work the Harr wavelet was employed, as it has been shown to be effective at

preserving fine details within the MR image [Nowak et al., 1999]. Wavelet processing

was implemented using the MatLab wavelet toolbox (The Mathworks inc). An optimal

global threshold was selected based on

vythr  )log(2 [3.3]

where v = standard deviation of the noise and y is the number of pixels in the image

[Donoho and Johnson., 1993]. The standard deviation of the noise is estimated using:

Std = 1.3826∙MAD(), where  is the finest scale wavelet coefficients. This threshold

has been shown to effectively attenuate noise over a range of SNR conditions [Wink et

al., 1993]. In this work we implemented both the soft and hard thresholding schemes

[Donoho. 1995].

3.3.6.5 INDEPENDENT COMPONENT ANALYSIS (ICA)
ICA is a set of methods designed to extract separate signals from measurements

comprised of a mixture of statistically independent observations [Mckeown et al.,

2003]. Our aim was to use these techniques to distinguish and extract random noise

from the ASL data. More formally, the signal, C(x,t), was assumed to be a linear

combination of the source signal components:

  
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where aj(x) are the spatially independent source and Sj(t) denotes the mixing

coefficients that quantify the contribution of signal sources j at time t. The number of

sources M was set to 7 empirically, based on a preliminary analysis. The results of the

in vivo data (animal and human) included in this study were found to be relatively

insensitive to the exact choice of this value (e.g. similar results were obtained with

M=6-10); however, de-noising of data with a large range of transit times across the

imaging volume may require a larger M value. The ICA Matlab code used is based on

the software available from the web site http://isp.imm.dtu.dk/toolbox [T. Kolenda et

al, DTU:Toolbox, ISP Group, Informatics and Mathematical Modelling, Tehcnical

University of Denmark, 2002].

ICA was applied to the experimental animal data in two ways: first, to all 6 ‘noisy’ data

sets simultaneously in a single analysis (labelled ICAall), and second to each of the 6

groups separately (labelled ICAeach). In both cases, all the data to be analysed (i.e. the 6

sets of 12 delay-times for ICAall, and 1 set of 12 delay-times for ICAeach) were treated

as a pseudo-temporal time series. ICA was applied to these series, thus de-noising each

individual image. For ICAall, the resultant images are then separated back into the 6

groups, each containing 12 tag and control images at different w. This approach would

apply when a large series of images was continuously acquired to monitor the

progression of CBF estimates with good temporal resolution, as is often required in

fMRI experiments for example. For ICAeach, each of the 12 delay-times is de-noised as

a separate time series. This approach would be applicable when a single multi-w data-

set was acquired to efficiently capture a single CBF and δa map in a short scan time.

For the human data, since data from a single inflow time was acquired, ICAeach would

correspond to de-noising of a single image. Therefore, only ICAall (de-noising of all the

64 perfusion-weighted images) was performed.

3.3.7 CBF and δa Quantification

CBF quantification of the in vivo animal data was performed according to the model

proposed by Alsop and Detre [Alsop and Detre. 1996] that is described in section

1.5.1.2 of this thesis. The images were first pair-wise subtracted to form the ∆M 

perfusion-weighted images. The images were then masked to remove tissue outside the

brain. From the recovery of the control magnetization as a function of w, the fully
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relaxed magnetisation (M0), the steady state magnetization during labelling (Mss), the

brain tissue longitudinal relaxation constant during the post-labelling delay (T1n) and

the brain tissue longitudinal relaxation constant during labelling (T1s) were calculated

[Alsop and Detre. 1996]. CBF and δa maps were then generated for the “Gold

Standard’’ data set and for each of the 6 ‘noisy’ sets of images before and after de-

noising by fitting the model to the ∆M(w) data. The efficiency of the tagging pulse has

been estimated to be 0.7 [Utting et al., 2003]. The blood:brain partition coefficient for

water (λ) was assumed to be 0.9 [Herscovitch and Raichle. 1985] . The tissue transit

time (δ) was assumed to be 0.5s based on previous measurements (data not shown).

The T1 of the blood (T1a) was assumed to be 1.5s based on previous measurements

[Thomas et al., 2006(b)]. The trust-region non-linear least squares fitting algorithm was

used to fit the model to the data [Branch et al., 1999]. If the least-squares fit to the data

returns a δa that is less than the minimum PLD (PLDmin), the precision of this estimate

is restricted by the choice of experimental PLD times: for δa < PLDmin, the δa term

drops out of the objective function (see Eq. 9 in (Alsop et al., 1996)) and cannot be

estimated with defined precision. All that remains is the evidence that δa lies in the

interval 0 to PLDmin. It should be noted however that this limitation does not affect

CBF, the principal parameter of interest in this work: the CBF estimates will be

unaffected as the measured perfusion-weighted signal is proportional to flow and any

variation in δa within this region (0 ≤ δa ≤ PLDmin) will not influence the fitted CBF

value. However, for future studies for which the measurement of short δa is a priority, a

very short PLD should be chosen. For more information see Appendix A. PLDmin was

0.15s in the current study as we hypothesised that a shorter PLD following the 3 second

labelling pulse may cause the gradient amplifier to malfunction given the experience of

previous users of the MRI system.

Given the relatively small number of ‘noisy’ data sets available and non-Gaussian

distribution of the δa estimates (see Appendix A2) the precision of the parameter was

quantified by the range of the measurements (i.e. the difference between the maximum

and minimum measurements) for both δa and CBF. Maps of the range across 6 CBF

and δa maps were computed to enable the assessment of any improvements in the

precision of the data post-de-noising. Any significant reduction in the 3 median range

estimates (1 for each animal) within a cortical ROI following de-noising (see Figure

3.8) were determined using a paired t-test.
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To assess the accuracy of the in vivo animal data, the CBF values of the “Gold

Standard” maps were treated as true values (θ). Inaccuracy was equated to the absolute

difference between the estimates and the “Gold Standard” using:

 
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where χijk is the CBF estimate in the kth pixel of the jth map in the ith animal

experiment (i = 1,2,3; j = 1,2,….6; k = 1,2,…ni; where ni is the number of pixels within

a cortical ROI of relatively homogenous CBF values). Eij
cbf is the resulting CBF error in

the estimate given by the jth map and ith animal experiment. A test based on Mantel-

Haenszel statistics and modified ridit scores was used to assess the observed differences

between filters, adjusting for the difference between rats and the within-rat occasion

effect. To clarify, this test was chosen to account for the variability between the 6

repeats for each rat and between the 3 rats. This analysis was performed using SAS

(SAS Institute, Cary, USA). We emphasise that this test does not constitute a

hypothesis test because no comparisons were planned in advance. On the contrary,

comparisons were decided after visual inspection of the data.

3.4 RESULTS

3.4.1 Simulated data 1

Figure 3.3 shows the mean CBF estimate (± 1 SEM) as a function of the SNRPWI of the

simulated perfusion weighted signal (N.B. CBFtrue = 250ml/100g/min). The bias of the

CBF estimates increases with the degree of Gaussian noise and becomes particularly

noticeable at SNRPWI < 5. Figure 3.3 confirms the tendency of biased CBF estimates

with the level of Gaussian noise and provides evidence that the reduction of random

errors (e.g. with image de-noising) will result in more accurate CBF estimates (i.e.

reduced bias). Since some of the fitted δa estimates were less than the minimum PLD,

the corresponding graph for δa has not been calculated, given the limitations described

above and in appendix A4.
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Figure 3.3
Mean simulated CBF estimates (± 1 SEM) at a variety of SNRPWI. The simulated data
correspond to CBFtrue = 250ml/100g/min.

3.4.2 Simulated data 2

Figure 3.4 shows the simulated CBF and δa maps before and after de-noising using

ICA. Figure 3.5 shows the mean CBF within a ROI in the CBF maps. ICAeach acts to

reduce random errors and thus reducing the extent of the bias in the mean CBF

estimate. Figure 3.5 suggests that ICAall suppresses the noise to such an extent to

remove nearly all the bias from the mean CBF estimates. For the simulated data with

changing perfusion values, the mean cortical CBF before de-noising across all 50 CBF

maps was 199.5 ± 1.2 for the “low CBF” acquisitions and 250.3 ±1.5 for the “high

CBF” acquisitions. After de-noising with ICA the mean cortical CBF was 199.5 ± 0.8

for the “low CBF” acquisitions and 249.4 ± 0.884 for the “high CBF” acquisitions.

These results provide evidence that using ICA in this way does not itself introduce

marked bias into CBF quantification.
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Figure 3.4

The simulated CBF (top row) and δa (bottom row) maps before (original) and after the
application of ICA. The true CBF and δa maps are also shown.

Original ICAeach ICAall True Map

Original ICAeach ICAall

[a]
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Figure 3.5

The mean CBF of the pixels within a ROI in the cortex [a] and in the striatum [b] of the
CBF maps generated using the simulated data before (original) and after the
application of ICA. The true CBF values are denoted by a dashed line.

3.4.3 In Vivo Animal Data

Figure 3.6 shows typical ‘noisy’ CBF and δa maps before and after image de-noising.

Clearly the different approaches influence the appearance of the final result and

introduce different degrees of spatial smoothing. Visual inspection of Figure 3.6

suggests ICAall, having been applied to the entire data set, is the most proficient at noise

removal in the CBF maps while retaining the features of the “Gold Standard’’ image

with no substantial loss of spatial resolution. When ICAeach is applied to individual data

sets the improvement, though less than the ICAall method is clearly evident. As

expected, the effectiveness of ICA is determined by the number of images acquired

within an experiment. Figure 3.6 suggests the technique has great potential if serial data

are collected with the intention of monitoring CBF variations with good time

Original ICAeach ICAall

[b]
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resolution, since in this case data from the whole time course is used to de-noise each

individual measurement.

(a) Original (b) Gaussian (c) Wavelet (soft) (d) Wavelet (hard) (e) ICAeach (f) AD (g) Wiener (h) ICAall (i) Gold-standard

Figure 3.6
Typical CBF (top row) and δa (bottom row) maps generated from ‘noisy’, 5-average in
vivo animal data, before (a) and after image de-noising (b-h). The label ‘all’ refers to a
simultaneous ICA treatment of the entire set of images, while ‘each’ refers to a
procedure in which separate ICA analyses are performed on each of the 6 individual
sets. See Methods for additional information. The “Gold Standard” CBF and δa maps
(i) are also shown.

Figure 3.7 shows the range (i.e. a measure of precision) of CBF and δa values obtained

across the 6 maps generated from the ‘noisy’ data sets before and after application of

the de-noising schemes for one of the animal experiments. As expected, in each case,

the range increases inferiorly as the surface coil sensitivity and hence SNR decrease.

Visual inspection of this figure suggests that the de-noising methods improve the

precision of the measurement (Note that the maps are displayed on a common scale,

and darker intensity therefore represents increased precision). Once again, ICAall

appears to be the most proficient at improving precision. In order to quantify the results

of Figure 3.7, Figure 3.8 shows the median parameter range (calculated across the 6

repeats) of pixels within a cortical ROI for all three experiments. The ROI was drawn

to encompass a region of relatively homogenous CBF values within the cortex on the

“Gold Standard” CBF map. The median range of the CBF estimates in the three

experiments decreases following application of each of the de-noising methods

(p<0.05), denoting increased precision. The application of the AD filter, the Wiener

filter, or ICAall significantly reduces the range of the δa estimates (p<0.05).

400
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(a) Original (b) Gaussian (c) Wavelet (soft) (d) Wavelet (hard) (e) ICAeach (f) AD (g) Wiener (h) ICAall (i) Anatomical ref

Figure 3.7
Maps of the range (i.e. a measure of precision) across the 6 CBF (top row) and δa
(bottom row) maps of a typical animal data set before (a) and after (b-h) de-noising. An
anatomical reference is also provided (i).
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Figure 3.8
The median range across the 6 repeats (estimate of precision) of the CBF (a) and δa (b)
observations of the pixels within a cortical ROI before (original’) and after application
of the de-noising methods. Error bars denote the inter-quartile range of the range
estimates within the ROI. Data are reported for all three experiments (solid line, dashed
line, dotted line).

Figure 3.9 shows the mean difference (as a measure of bias) between the CBF estimates

and the “Gold Standard” within a cortical ROI (the same ROI used for the analysis in

Figure 3.8) for the CBF maps pre- (referred to as ‘original’ data) and post-de-noising

(each line represents a different experimental animal). The mean SNR of the perfusion-

weighted signal within the cortical ROI was 2.0, 2.3 and 1.6 in the three animal

experiments. ICAall, wavelets (with soft and hard thresholding) and the Wiener and AD

filters provide significantly more accurate CBF estimates (as determined by the “Gold

Standard” values) in comparison to the original noisy data (p < 0.05), consistent with

the results from the simulations. Visual inspection of Figure 3.9 suggests that other de-

noising schemes also act to reduce the bias of the estimates as most of the mean

difference estimates tend to the “Gold Standard” in comparison to the original data. The

mean SNRPWI within the cortical ROI of the “Gold Standard” data was 5, 5.6, and 3.7

for each of the animal experiments, providing a considerably more accurate estimate of

the CBF in comparison to the ‘noisy’ data (see Figure 3.3). However, due to the

relatively low SNRPWI the “Gold Standard” will still possess some bias (see

Simulations results in Figure 3.3) and is not expected to be more accurate than

processed images that possess similar SNRPWI values, such as those processed using the

Wiener filter, the AD filter, or using ICAall. The corresponding δa results are not shown

because at low SNR some fitted values are less than the minimum PLD and cannot be

precisely defined, as previously described (see also Appendix A4).
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Figure 3.9
The mean difference between CBF estimates and the “Gold Standard” within a cortical
ROI. The x-axis labels the pre- (original) and post-de-noising cases. The results from
each rat are represented by a different line and error bars denote the standard error
across the 6 repeats.

3.4.4 Human Data

(a) Original (b) Gaussian (c) Wavelet (soft) (d) Wavelet (hard) (e) AD (f) Wiener (g) ICAall (h) Gold-standard

Figure 3.10
Human perfusion weighted images generated from 8 average data before (a) and after (b-
g) image de-noising. The ‘Gold Standard’ (64 average) perfusion-weighted image is also
shown (h). The two ROIs used in the CNR measurements in Figure 3.11 are shown in (h).
The ROI containing pixels of greater signal intensity was used to calculate the SNRPWI of
the images.

Original Gaussian Wavelet(s) Wavelet(h) ICAeach AD Wiener ICAall
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Figure 3.11
The contrast to noise ratio (solid line) across a structural boundary in the human
perfusion weighted images, as indicated by the two regions shown in Figure 3.10. The
contrast (mean signal region 1 – mean signal region 2) is also reported (dashed line).
The “Gold Standard” contrast is also shown. Error bars represent the standard error
across the 8 contrast and 8 CNR measurements respectively.

The effect of applying the various de-noising methods to the calculated ASL data is

shown in Figures 3.10. The SNRPWI of the human brain data with 8 averages within the

ROI shown in Figure 3.10 was 2.6. In order to quantify the structural degradation

introduced by the de-noising methods, Figure 3.11 shows the contrast and CNR across

the structural boundary highlighted in Figure 3.10(h). The CNR is significantly greater

following application of each of the de-noising techniques (p<0.05). The animal studies

have shown the Wiener filter to perform marked noise suppression yielding more

precise CBF estimates (see Figures 3.7 and 3.8). It is apparent from Figure 3.10(f) and

visual inspection of the contrast reported in Figure 3.11 that the 2D Wiener filter can

also introduce marked spatial smoothing (NB. This was apparent from the animal

results in Figure 3.6, but became more apparent with the increased contrast observed in

human data), though there is no significant change in the contrast following each of the

Original Gaussian Wavelet(s) Wavelet (h) AD Wiener ICAall “Gold Standard”
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de-noising methods. Thus one must employ caution with this approach or risk losing

distinction between regions of different CBF. In these measurements, 64 control and

labelled images were acquired at a single inversion time, limiting the effectiveness of

ICA in this case. However, Figures 3.10 and 3.11 provides further evidence that ICA

introduces no loss of structure and the images bear a closer likeness to the ‘‘Gold

Standard’’ in comparison to the original. Indeed of all the de-noising methods, ICAall

returns the greatest contrast and CNR in this data set.

3.5 DISCUSSION

The intrinsically low SNR of the perfusion-weighted measurements is inherently

responsible for holding back the progression of ASL to an MRI modality that is more

widely used for the research and diagnosis of brain pathology. The results of this study

demonstrate the potential benefits of pre-processing de-noising algorithms in ASL

applications. It is important to determine whether a de-noising method increases

precision at the expense of introducing bias. This study shows that noise reduction

methods can improve both the precision of the CBF and δa maps and the accuracy of

CBF measurements, as the bias (common to non-linear model estimates [Box. 1987)]

with non-zero residual variance) is reduced. Therefore in principle, ASL data with low

SNR can be used with an appropriate filter to obtain cerebral haemodynamic estimates

of acceptable accuracy and precision. These benefits may translate into improved

spatial or temporal resolution or shorter scan times (of particular benefit to the clinical

setting). Furthermore suitable pre-processing may make mapping of arterial transit

time more feasible in practical acquisition times.

The results show ICA, given a sufficient amount of data (i.e. ICAall), is particularly

effective at improving the precision of the CBF and δa measurements. On the other

hand, if limited data are available the application of the AD or Wiener filters, which can

be applied on an image-by-image basis, enhance precision as well as improving the

accuracy of the calculated CBF estimates due to the associated reduction of bias (see

Figures 3.8 and 3.9). The simulation results from Figure 3.3 suggest that the effect of

the de-noising methods to reduce bias is particularly important for low SNRPWI values;
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for high SNRPWI data (SNRPWI > 10-15) the improvement associated with de-noising

will be more limited.

It is not only important to assess the effect on precision and bias for a given de-noising

method, but also to ensure it does not introduce unacceptable levels of spatial blurring.

Since different de-noising schemes introduce different degrees of spatial smoothing,

this important characteristic must be carefully considered during filter selection. The

optimal filter is highly dependent on the SNR of the images. For example, although the

Wiener filter performs marked noise reduction in the animal data (low SNR, relatively

little contrast), the degree of spatial smoothing incurred may be too severe for certain

applications (e.g. higher SNR, marked contrast human data). In contrast, ICA, for

example, maintains boundaries between certain structures in the perfusion-weighted

images of the human brain.

We emphasise that in this chapter we chose to implement, as far as possible, automatic

criteria for the optimisation of filter parameters associated with each noise reduction

technique, to investigate the possibility that image de-noising within ASL can be

beneficial even with minimal subjective optimisation. This chapter was not intended to

present an exhaustive assessment of all the de-noising methods available and indeed

there is certainly scope for improved optimisation of filter parameters. This chapter

included some of the most commonly used methods, from very simple methods (e.g.

Gaussian filter), edge-preserving filters (e.g. the AD filter), to filters that work in the

spatial-temporal domain (e.g. ICA). Many other filters are available, and even

alternative implementations of the filters used (e.g. see references [Wirestam et

al.,2006;,Wirestam et al., 2005; Donoho. 1994; Goldstein et al.,2006] for variations on

wavelets). Nevertheless, the results shown in this study demonstrate that de-noising

methods can play an important role in ASL, and in particular ICA was efficient at

improving precision and reducing bias, without compromising image contrast. A

comprehensive assessment of de-noising methods is however beyond the scope of this

thesis chapter.

In this work, ICA reduces random noise with minimal structural degradation, though its

application is dependent on the collection of a series of images. ICA exploits the
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information of all the available data. Multi-delay time ASL (e.g. based on a Look-

Locker acquisition [Guenther et al., 2001]) is being increasingly used as an efficient

and robust approach to CBF quantification [Petersen et al., 2008]. Consequently, the

potential role of ICA in ASL is likely to become increasingly important and the results

from this study suggest it should be an essential pre-processing tool in future ASL

studies. ICA has been used in a variety of MRI applications [e.g. Thomas et al.,2002;

Arfanakis et al., 2002; Calamante et al.,2004;Carroll et al.,2002,Kiviniemi et al.,2006],

often to identify and remove systematic sources of error in a way that is user-

dependent. For this reason, its reproducibility has been criticised. Since we are using

ICA purely to remove random noise from the images, minimal subjective input is

required and the de-noising protocol should be easily reproducible. ICA takes

approximately 30s to de-noise a single time-series of images using a dual core 2.16GHz

PC with 3GB of RAM. Currently, each time-series of images must be loaded in

individually by the user.

The observed bias in non-linear parameter estimates may be exacerbated by the

discontinuities that describe the different stages of the delivery of labelled blood to the

tissue within the CBF quantification model. These discontinuities or switching points

are present in many of the established ASL CBF quantification models (e.g. [Alsop and

Detre. 1996;, Buxton et al.,1998]). An example within the model used in this work is

the min([δa–PLD],0) term (see Eq.[9] in [Alsop and Detre. 1996]). When this

complicated function is fitted to particularly noisy data (SNRPWI <5), the δa estimates

will often converge on the PLD at which the perfusion-weighted signal was sampled.

Because the CBF is correlated with the δa (when the δa estimate is greater than PLDmin)

this will influence the distribution of CBF estimates which may contribute to the bias

that we have observed with the addition of Gaussian noise. For more information see

Appendix A.

Although in the current study ICAall appears to perform particularly well, in general the

best filter will depend on the particular ASL dataset (e.g. high or low SNR and number

of post-labelling delays acquired) and application (e.g. measuring low CBF or high

CBF), which will determine the degree of spatial filtering that can be tolerated. It

should be noted that the findings of this study should be directly extendable to studies
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with other ASL sequences or acquired under different experimental conditions, as

illustrated by the similar qualitative findings from the experimental animal and human

studies (carried out with different ASL sequences on different scanners). The use of

de-noising pre-processing may also make the use of more complex ASL models (e.g.

two-compartment models [Parkes et al., 2002]) more feasible, since they are currently

limited in part by the low SNR in the data.

3.6 SUMMARY

In summary, the results reported in this chapter support the use of image de-noising

(and especially ICA) as a pre-processing step to improve the precision of ASL CBF and

arterial transit time estimates whilst maintaining the structure of the cerebral parameter

maps in both human and animal data. Importantly, the improved precision does not

come at the expense of accuracy: as shown in this study, the reduction of random errors

also leads to reduced CBF bias. I now continue to chapter 4 where I describe the first

successful in-vivo application of H-CASL; an efficient method of imaging small-boli of

labelled blood in the brain that may have value as a pre-scan for optimisation of ASL

imaging parameters.
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CHAPTER 4: IN-VIVO HADAMARD ENCODED CONTINUOUS

ARTERIAL SPIN LABELLING (H-CASL)

4.1 ABSTRACT

Continuous arterial spin labelling (CASL) measurements over a range of post-labelling

delay (PLD) times can be interpreted to estimate cerebral blood flow (CBF) and arterial

transit time (δa) with good spatial and temporal resolution. In this work we present an

in-vivo demonstration of Hadamard-encoded continuous arterial spin labelling (H-

CASL); an efficient method of imaging small volumes of labelled blood water in the

brain at multiple PLD times. We present evidence that H-CASL is viable for in-vivo

application and can improve the precision of δa estimation in 2/3 of the imaging time

required for standard multi-PLD CASL. Based on these findings we propose that H-
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CASL may have application as an efficient pre-scan for optimisation of ASL imaging

parameters.

4.2 INTRODUCTION

As previously discussed, arterial spin labelling (ASL) MRI can acquire cerebral blood

flow (CBF) weighted images non-invasively with good spatial and temporal resolution

[Detre et al., 1992]. However, ASL generally requires long scan times and careful

interpretation due to the low signal to noise ratio (SNR) of the measurements and the

complexity of accurate CBF quantification. A confounding factor for quantifying CBF

with ASL is the transit time of blood water: the time it takes to travel from where it is

labelled to where it enters the cerebral tissue. For example, CBF may be underestimated

if the bolus of labelled arterial blood has not (or has only partially) arrived in the tissue

of interest upon image acquisition. In order to eliminate this problem, ASL

measurements with a range of post labelling delays (PLDs) between the end of the

labelling pulse and image readout can be performed at the cost of a significantly

increased total scan time [Buxton et al., 1998]. This also enables estimation of the

arterial transit time (δa), a possible biomarker of cerebral vascular disease [Thomas et

al., 2006(a)]. Previous work has demonstrated that the choice of PLD values can be

optimised according to the transit times within the tissue of interest to improve the

precision of CBF and transit time estimation [Xie et al., 2008]. Furthermore, it has been

suggested that a multi-PLD pre-scan with low-resolution image acquisition for rapid δa

estimation is valuable to guide parameter selection in the main ASL imaging protocol

[Dai et al., 2009]. Recently, Hadamard-encoding techniques have been applied to the

continuous ASL (CASL) labelling pulse to increase the efficiency of this approach by

encoding the signal from small volumes of arterial blood water over a range of PLDs

[Gunther, 2007]. However to our knowledge this work has not yet been extended

beyond phantom validation. In this study we provide evidence that this new approach is

viable in-vivo and can be used for accurate CBF and δa estimation. We compare the

precision of in-vivo CBF and δa estimates derived from multi-PLD CASL to those

generated using the Hadamard-encoding method and demonstrate that this novel

technique can improve the precision of transit time estimation in 2/3 of the imaging

time required for the standard approach. Based on these findings, we propose that
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Hadamard encoded CASL (H-CASL) may have application as an efficient pre-scan for

optimisation of ASL imaging parameters.

4.2.1 H-CASL Theory

In continuous ASL a spin-labelling pulse is applied to the feeding arteries in the neck

(typically for a few seconds) to invert arterial blood water prior to acquisition of a

“tagged” image of the brain. A “control” image of the brain is then acquired with no

flow-weighting. A simple subtraction of the “tagged” and “control” scans yields a CBF-

weighted difference image (ΔM). In H-CASL, the labelling pulse oscillates between the

tagging and control phase before each acquisition. The idea is to divide the large tagged

bolus into several small sub-boli, each with different effective PLDs (PLDeff). In the

case of H-CASL, PLD is replaced with PLDeff as the labelling/control pulse is applied

during this period.

Figure 4.1 shows the H-CASL encoding scheme used in this study. Eight images are

acquired; each preceded by a different temporal sequence of tagging and control

periods. The CBF weighted images derived from the delivery of each of the sub-boli to

the tissue are reconstructed using the Hadamard encoding scheme. Each of the 7 sub-

boli have 4 control and 4 labelled states. Theoretically, the 8 images can be combined so

that for a single sub-bolus each of the 4 control and 4 label phases add constructively -

resulting in the net CBF- weighted difference between them. The 8 images can be

combined in different ways to reconstruct a CBF- weighted image from each of the 7

sub-boli with different PLDeff. For each reconstruction, both the tagged and control

states of the other 6 sub-boli cancel, resulting in zero net signal from these sub-boli.

For example, to reconstruct the CBF-weighted image due to the delivery of bolus no. 7

to the observation slice, the 8 acquisitions were combined as follows:

ΔM (Bolus No.7) = image 1 – image 2 - image 3 + image 4 –image 5 + image 6 + image 7 –image 8 [4.1]

Therefore 7 CBF-weighted images can be reconstructed (each equal to the difference

between 4 labelled and 4 control acquisitions) due to the arrival of each sub-bolus to the

tissue of interest. In this way 8 acquisitions can generate a perfusion weighted image

from 7 individual sub-boli at different PLDeff, each averaged over 4 images. To generate

a single average ΔM image at 7 different PLDs using standard CASL would require 14 

acquisitions (7 tagged images and 7 controls). As each of these H-CASL individual boli



154

have different PLDeff times, this approach can be used to sample the bolus inflow curve

with considerable data averaging in a relatively short imaging time which may benefit

CBF and δa estimation. It is important to note that non-plug flow (i.e. laminar and/or

pulsetile) will “blur the boundaries” of the individual small boli of labelled blood. Such

dispersion effects will be more problematic in H-CASL in comparison to standard

CASL

Preliminary results (see below) showed that H-CASL yielded precise δa estimates in

comparison to CASL. However the precision of CBF estimation using H-CASL was

considerably reduced when compared to the standard approach. Therefore in this work

as well as investigating the performance of H-CASL independently we also report the

results of a hybrid approach where H-CASL images are combined with CASL data at

fixed PLD (hybrid H-CASL) and compared to CASL data acquired at a range of PLDs

for similar temporal coverage of the dynamic delivery of labelled blood to the tissue in

the same total imaging time.

Figure 4.1
The H-CASL encoding scheme [Gunther, 2007]. In this work eight images are acquired
that can be combined to extract seven CBF-weighted images due to the delivery of each

Sub-Bolus no. 1

Control phase

effective PLD 1

effective PLD 2

effective PLD 3

Labelling phase

no. 2 no. 3 no. 4 no. 5 no. 6 no. 7

Time

Image Acquisition
(Im 1-8)

Im 5

Im 2

Im 3

Im 4

Im 1

Im 6

Im 7

Im 8



155

sub bolus to the tissue. In this schematic, a delay is present between each sub-bolus for
clarity; however there is negligible delay in practice.

4.3 METHOD

4.3.1 Animal Preparation and MRI Hardware

Animals were prepared and imaged using MRI as described in section 1.12 (MRI

Apparatus).

4.3.2 CASL and H-CASL In-vivo Implementation

The H-CASL scheme was implemented as illustrated in Figure 4.1. The first sub-bolus

had a duration of 1.8s. Sub-boli 2-7 had a duration of 0.2s to produce 7 PLDseff (0.02

0.22 0.42 0.62 0.82 1.02). Spoiler gradients of approximate duration 0.02s are applied

between the end of the H-CASL labelling/control phase and the first 900 excitation

pulse in all the acquisitions. A straightforward single slice CASL approach was used;

the plane of the tagging pulse (i.e. neck for label or above the head for control) was

changed by altering the offset frequency of the labelling/control pulse during a constant

gradient.

The 8 H-CASL acquisitions (see Figure 4.1) were followed by 12 standard CASL

acquisitions (label and control) at 6 PLDs (0.05, 0.1, 0.2, 0.3, 0.5, 0.8s) with a 3 second

labelling duration. These 6 PLD values were chosen as preliminary analyses

demonstrated that they were better optimised (Xie et al., 2008) for precise δa estimation

at the typical transit times in the rat cortex (0.2-0.3s) in comparison to 7 PLD times

fixed at the equivalent PLDeff in the H-CASL sequence (data not shown). This exploits

the flexibility of PLD selection in CASL which is restricted in H-CASL as the PLDeff

values are determined by the sub-bolus duration. Four standard CASL images (2

labelled and 2 control) at fixed PLD of 0.5 seconds were additionally acquired. In this

work we investigate the performance of H-CASL (8 acquisitions) independently in

addition to a hybrid approach which combines the H-CASL data with the fixed PLD

CASL images (Hybrid H-CASL)- 12 acquisitions). For the hybrid approach, the

resultant two subtracted (ΔM) images from the four CASL images were then averaged

and combined with the reconstructed H-CASL perfusion weighted images for

equivalent imaging times between the two methods (12 acquisitions in total). Images
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were acquired of a plane approximately 0.2, 0.3 and 0.4 mm caudal to the bregma

respectively for the three experiments using a spin echo EPI readout. The position of the

slice was changed for the three experiments in this way to examine the performance of

the new approach over a range of transit times (which should increase as the slice

moves further from the tagging plane). Tagging pulses were applied to a plane 2mm

caudal to the cerebellum. The protocol was repeated 15 times. Other acquisition

parameters were: slice thickness = 2mm; image matrix size = 12864; field of view =

4020mm2; TE = 36ms; inter-experiment delay = 4s. For each method, all the data

were averaged across the 15 repeats to produce a high SNR, “Gold Standard” data set

for which CBF and δa maps were generated from the masked images. In addition the

data were split into 5 groups of 3 repeats and averaged across the 3 repeats to generate 5

relatively “low SNR” groups. A Gaussian filter with kernel size of [3 x 3] pixels and a

standard deviation of 1 was applied to the “Gold Standard” and “low SNR” perfusion

weighted images to increase the SNR of the data before CBF and δa estimation. The

data were averaged in this way so that the SNRpwi of the in-vivo data was more

representative of typical applications (see 4.4 Results). CBF and δa estimates were

calculated for pixels within a cortical ROI for each of the 5 groups to examine their

precision (see 4.3.5 CBF and δa estimation). In summary, we perform separate analysis

on three groups: i) the standard multi-PLD CASL images; ii) The H-CASL acquisitions;

iii) The Hybrid H-CASL acquisitions.

4.3.3 Simulations

In the simulations zero mean Gaussian noise was added to modelled data before the

precision of the resultant CBF and δa measurements were estimated (see 4.3.4 CBF and

δa Estimation and 4.3.5 Data Comparisons). Simulated CASL data at 6 PLDs (0, 0.3,

0.6, 0.9, 1.2, 1.5) were constructed according to [Wang et al., 2002 (Eq. 2)] with δa

values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1s. Zero mean Gaussian noise were

then added to the data for a mean signal to noise ratio of the perfusion weighed signal

(SNRpws) of 5.75, the average SNRpwi of the 3 “low SNR” in-vivo data. The SNRpws is

calculated by taking the mean SNR of the simulated CASL perfusion weighted signal at

all PLDs. In the simulations the choice of PLDs were selected for a range of transit

times (0.1 -1s) whereas the PLDs in the in-vivo data were better optimised for precise δa

estimation given the expected transit times in the rat cortex (200-300ms). Throughout
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the simulations, the constant coefficients (T1a, α, Mo, R1n, R1s, δ, λ) are fixed at the 

values used in the in-vivo analyses (see 4.3.4 CBF and δa Estimation). The “true” CBF

was chosen to be 300 ml/100g/min, in overall agreement with the mean cortical in-vivo

estimates under our anaesthetic conditions (see 3.6 Results). For each of the three

different δa values the process was repeated 100 times and in each case CBF and δa

were estimated (see 4.3.4 CBF and δa Estimation). Simulated reconstructed H-CASL

data with the same sub-bolus durations as the in-vivo experiment (1.8, 0.2, 0.2, 0.2, 0.2,

0.2, 0.2s) were generated at the appropriate PLDeff according to [Wang et al., 2002. Eq

1].The same degree of zero mean Gaussian noise was then added to the data. These data

were then averaged over 4 simulated time courses as intended in the Hadamard

reconstruction to generate the simulated H-CASL data, which were then analysed

independently. To generate the Hybrid H-CASL data, simulated CASL data with τ = 3s

and fixed PLD of 0.5s were generated according to [Wang et al., 2002 (Eq 2)], to which

to same level of Gaussian noise was added. These data were averaged over 2

acquisitions and combined with the simulated H-CASL data to mirror the in-vivo

protocol.

4.3.4 CBF and δa Estimation

CBF and δa estimates were calculated for pixels within a cortical ROI for each of the 5

groups to examine their precision (see Data Comparisons). All images were aligned

using SPM prior to CBF and δa estimation to reduce possible movement artefacts. CBF

and δa were estimated on a pixel by pixel basis using the model described previously

[Wang et al, 2002]. For standard CASL, equation 4.2 was used for model fitting to the

data. The efficiency of the tagging pulse (α) was assumed to be 0.71 based on previous

measurements (Utting et al., 2003); the blood:brain partition coefficient for water (λ) 

was fixed at 0.9 ml of water per gram tissue/ml water per ml blood [Herscovitch and

Raichle, 1985]; instantaneous exchange is assumed where the tissue transit time (δ)

equals the arterial transit time (δa); the longitudinal relaxation constant of the blood

(T1a) is assumed to be constant at 1.5s based on previous measurements [Thomas et al.,

2006(b)]; the rate of longitudinal relaxation of the brain tissue during and after

application of the off-resonance labelling pulse (R1s and R1ns) was calculated from the

PLD dependant longitudinal decay of the mean cortical perfusion weighted signal from
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the high SNR, “Gold-Standard”, H-CASL and CASL data respectively and were fixed

for the calculation of the CBF and δa maps; the tagging duration (τ) was 3s; f is the

CBF; the equilibrium magnetisation of the tissue (M0) was estimated for each voxel by

fitting the CASL control images acquired at a range of PLDs to a simple T1 recovery

model [Alsop and Detre., 1996]. M0 as calculated from the CASL images was used to

quantify both the CASL and H-CASL perfusion weighted signal. Equation 4.3 was used

for model fitting to the H-CASL data where R1app has been replaced by R1s, since the

off-resonance labelling/control pulse is applied during PLDeff. In this case τ is 0.2 and

1.8s. The labelled blood water that has exchanged into the tissue is assumed to decay

with R1s during the 0.02 second delay between the end of the H-CASL labelling scheme

and imaging acquisition where the spoiler gradients are applied.
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For the Hybrid H-CASL the data acquired using H-CASL and CASL (at fixed PLD)

techniques was simultaneously fitted to equations 4.2 and 4.3 respectively. By

Under the condition that τ > δ:

[4.3]

For CASL:

For H-CASL:
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comparing the standard CASL approach to Hybrid H-CASL in this way we are

comparing CBF and δa estimates derived from the equivalent volume of labelled blood

acquired in the same imaging time.

4.3.5 Data Comparisons

To quantify the precision of the CBF and δa estimates we examine the absolute error of

the CBF and δa estimates calculated from the “low SNR” in-vivo data and the

simulated data with added Gaussian noise from the “true” value. In the case of the

simulations the “true” cerebral parameter values are known. For the in-vivo data the

“true values” are approximated to be the “Gold Standard” CBF and δa maps (assuming

the measurement errors to be purely random and not systematic). For CBF, the

precision was calculated by quantifying the absolute difference between the estimates

and the “true” value (θ) using:

ii
CBF
iE   [4.4]

where χi, is the CBF estimate in the ith pixel or repeat (i = 1,2,…ni; where for the in-vivo

data, ni is the number of pixels within a cortical ROI and for the simulations, ni is the

100 repeats;). Ei,
CBF is the resulting CBF error. The precision of the δa estimates is

quantified using an identical analysis. The Wilcoxon rank sum test was adopted to

determine the probability that a given rank ordering amongst the CBF or δa error

observations may have arisen by chance in the absence of an underlying true difference

between estimates generated with the CASL and H-CASL methods and between the

CASL and Hybrid H-CASL methods. The comparison was performed separately for

each of the three in-vivo experiments and for each of the simulated δa values.

4.4 RESULTS

Figure 4.2 shows the mean in-vivo cortical perfusion weighted signal of the standard

CASL and H-CASL data as a function of PLD and PLDeff , together with the respective

model fits to the data. The CBF and δa estimates within the cortical ROI are also

reported. The coefficient of determination of the model fit to the reconstructed H-CASL

ΔM signal (0.97, 0.98, and 0.93 for the three subjects respectively) provides some 

evidence that the scheme has successfully imaged the progression of the Hadamard

encoded sub-boli in the brain and that the adapted model is suitable for accurate CBF
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and δa quantification. The mean cortical CBF estimates (95% confidence intervals of

the fit) over the three experiments were 308 (303,313), 360 (354,371) and 242

(220,264) ml/min/100g using CASL and 297 (272, 321), 378 (351,405) and 256

(222,290) ml/min/100g using H-CASL respectively for the three experiments. The

mean cortical δa estimates (s) over the three experiments were 0.20 (0.18, 0.22), 0.23

(0.20, 0.26) and 0.27 (0.14 0.40) using CASL and 0.19 (0.17, 0.22), 0.26 (0.24, 0.28)

and 0.31(0.27, 0.34) using H-CASL respectively for the three experiments. For each

experiment the mean cortical CBF and δa estimates fall within the 95% confidence

intervals of one another between the CASL and H-CASL techniques.

Figure 4.3 shows the perfusion weighted images derived from the delivery of the

Hadamard encoded individual sub-boli (top row) and CASL extended bolus (bottom

row) to the observation slice at increasing PLD(eff) for the three experiments. The lack

of noticeable coherent signal from outside the brain suggests that, in both acquisition

schemes, the signal is proportional to CBF as intended. The patches of high intensity in

the H-CASL images at the earliest PLDeff are likely to represent the first inflow of

labelled blood into the tissue. Though the measured perfusion weighted signal from the

H-CASL sub-boli (τ = 0.2s) is a fraction of that from the CASL extended bolus (τ =

3s) the increased data averaging within the H-CASL acquisition and reconstruction

reduces the background noise. The mean SNRpwi of the CASL acquisitions for the three

experiments was 5.9, 6.7, and 4.7, following application of the Gaussian filter. The

mean SNRpwi of the H-CASL acquisitions for the three experiments was 2, 2.4, and 1.6,

following application of the Gaussian filter.

Figure 4.4 reports the median Eδa and ECBF observations across the 5 “low-SNR” groups

for the three in-vivo data sets using CASL, H-CASL and Hybrid H-CASL. H-CASL

returns a significant reduction in the Eδa values in comparison to standard CASL for

each of the 3 in-vivo experiments, denoting increased precision (p <0.05). CASL returns

a significant reduction in ECBF in comparison to H-CASL and in comparison to Hybrid

H-CASL (p <0.05) suggesting that CASL returns the most precise CBF estimates.

Figure 4.5 shows the median simulated Eδa and ECBF values estimated using the standard

CASL, H-CASL and Hybrid H-CASL methods models at different simulated δas.

Simulated data show that the H-CASL Eδa population is less than the CASL Eδa

population at 6 of the 10 different simulated arterial transit times (p<0.05). However
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CASL yields a reduction in ECBF at all 10 simulated transit times in comparison to

CASL and at 7 of the 10 simulated transit times in comparison to Hybrid H-CASL.

The in-vivo and simulated Eδa estimates provide evidence that H-CASL can improve the

precision of δa estimation in 2/3 of the imaging time required for standard CASL.

Conversely simulated and in-vivo data show the H-CASL returns significantly greater

ECBF values (even with the addition of the standard CASL images (Hybrid H-CASL)) in

all three in-vivo experiments and at most simulated transit times, demonstrating greater

precision in CBF estimation using standard CASL.

Figure 4.6 shows the “Gold-Standard” CBF and δa maps acquired with the H-CASL

and standard CASL schemes. Visual assessment demonstrates the similarity of contrast

in each of the cerebral parameter maps between the two imaging techniques, despite the

marked difference in acquisition methods and the interpretation of the ΔM signal from a 

steady state technique (CASL τ = 3s) and H-CASL (τ = 0.2s).
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[a]

[b]

[c]

CBF = 360 (354,371) ml/min/100g
δa = 0.23 (0.20,0.26)
Coefficient of determination = 0.99

CBF = 378 (351,405) ml/min/100g
δa = 0.26 (0.24,0.28)
Coefficient of determination = 0.98

CBF = 308 (303,313) ml/min/100g
δa = 0.20 (0.18,0.22)
Coefficient of determination = 0.99

CBF = 297 (272,321) ml/min/100g
δa = 0.19(0.17,0.22)
Coefficient of determination = 0.97

CBF = 242 (220,264) ml/min/100g
δa = 0.27 (0.14, 0.40)
Coefficient of determination = 0.83

CBF = 256 (222,290) ml/min/100g
δa = 0.31 (0.27,0.34)
Coefficient of determination = 0.937
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Figure 4.2
The mean in-vivo cortical perfusion weighted signal against PLD(eff) for the CASL (1st

row) and H-CASL (2nd row) sequences. Also plotted are the model fits to the data
together with the estimated CBF and δa. Results are reported for all three experiments
(a-c). The discontinuity in the H-CASL data at PLDeff of 1.2 seconds is due to the
increase in the tagging duration from 0.2s to 1.8s at the greatest PLD (1.22s) –
corresponding to the CBF-weighted signal from bolus no.1 in the cortical ROI. In this
figure the scales of the y-axis are different: the H-CASL perfusion weighted signal is
considerably smaller then the CASL ΔM signal.

PLDeff (s)
0.02 0.22 0.42 0.62 0.82 1.02 1.22

PLD (s)
0.05 0.1 0.2 0.3 0.5 0.8

Figure 4.3
The in-vivo perfusion weighted images (arbitrary units) derived from the delivery of the
H-CASL (top row) and standard CASL bolus at increasing PLD(eff) times (left to right)
for all three experiments.
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Figure 4.4
The median ECBF and Eδa estimates from the three in-vivo experiments (± 1 SEM). The
first row (a and b) shows the CASL and H-CASL results. The second row (c and d)
shows the CASL and Hybrid H-CASL results. The Median is reported as a summary
measurement to reduce the possible influence of outliers. Any significant differences in
the CASL and H-CASL error populations and between the CASL and Hybrid H-CASL
error populations at each simulated transit time or each different experiment are
denoted by *.
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Figure 4.5
The median ECBF and Eδa estimates from the simulations (± 1 SEM). The first row (a and
b) shows the CASL and H-CASL results. The second row (c and d) shows the CASL and
Hybrid H-CASL results. Any significant differences in the CASL and H-CASL error
populations and between the CASL and Hybrid H-CASL error populations at each
simulated transit time or each different experiment are denoted by *. The distinct
fluctuations in the simulated CBF and δa error observations reflects how well the PLD
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times are optimised for a given simulated transit time. As shown by Xie et al., [Xie et
al., 2008] the choice of PLD values for a given transit time can have a significant
influence on the precision of CBF and δa estimates

CASL H-CASL CASL H-CASL

[a] CBF δa

[b] CBF δa

[c] CBF δa

Figure 4.6
The in-vivo CBF and δa maps generated from the CASL and H-CASL schemes for the
three subjects (a-c).

4.6 DISCUSSION

This study demonstrates the potential utility of the H-CASL sequence in CBF and δa

quantification. Several factors demonstrate that this novel approach is viable for

accurate cerebral parameter estimation: (i) the good model fit to the data (Figure 4.2)

(ii) the noticeable lack of artefacts in the H-CASL perfusion weighted images (Figure

4.3) (iii) the similarity of contrast within each of the cerebral parameter maps between

the H-CASL and CASL methods (Figure 4.6). Furthermore, simulated and in-vivo data

suggest that H-CASL can improve the precision of δa estimation in 2/3 of the imaging

time required for standard multi-PLD CASL. Thus this new technique may have
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particular application as an efficient pre-scan for optimisation of PLD value(s) prior to

the main ASL imaging protocol [Dai et al., 2009; Xie et al., 2008].

H-CASL can yield precise δa estimates due to the sensitivity of the measured ΔM signal 

to the post-labelling delay, at which the small boli of labelled blood first arrives in the

imaging region (i.e. the transit time). Once the small bolus of labelled blood water has

exchanged into the tissue it rapidly decays according to T1sat (Alsop et al., 1996) which

is likely to further increase the sensitivity of the measurements to δa (see Figure 4.2).

Given that the estimated CBF is correlated with the transit time (i.e. errors in the

estimated transit time will reduce the precision of the calculated CBF) any such

improvement will aid the precision of CBF estimation. However, as expected, the

perfusion weighted signal from the H-CASL images (τ = 0.2s) is considerably lower

than the standard CASL approach (τ =3s). Consequently standard CASL possesses a

distinct advantage in CBF estimation (where the flow is proportional to the measured

ΔM signal in standard quantification models) despite the additional data averaging

within the H-CASL reconstruction. Therefore our aim was to combine the H-CASL

images (good δa estimation) with standard CASL images at fixed PLD (good CBF

estimation) and compare this approach with standard multi-PLD CASL. The simulated

and in-vivo error observations demonstrated that this hybrid approach considerably

improved the precision of the CBF estimates in comparison to the individual H-CASL

measurements. However despite the addition of the standard CASL images, the hybrid

approach could still not match the precision of CBF measurements generated from the

multi-PLD CASL images (the standard approach). Furthermore Figure 4.4 shows that

the introduction of the CASL images resulted in a small reduction in the precision of the

in-vivo δa observations. This may reflect the difficulty of devising a model that

describes the signal from small boli of labelled blood equally well as the steady state

signal from a large tagged bolus. Therefore although the hybrid approach may have

limited application, we propose that H-CASL on its own has value as a quick pre-scan

for precise δa estimation to guide ASL imaging parameter selection.

In this work the recovery of the CASL control images at increasing PLD is used to

estimate M0. To our knowledge, the H-CASL data cannot be used in a similar way to

estimate M0. Knowledge of this parameter is essential for CBF quantification but does

not influence to the precision of δa estimation. In general, the increased susceptibility
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of H-CASL to systematic errors (since any systematic error present in one of the eight

H-CASL acquisitions will propagate throughout the entire reconstruction) may prove

more challenging to overcome in human application where errors due to subject

movement and pulsetile motion can be more prominent. H-CASL is also likely to be

more susceptible to dispersion of labelled blood in transit to the brain (due to non plug

flow) in comparison to CASL. Indeed as dispersion is a non-linear process it is likely to

significantly affect the accuracy of H-CASL as the technique assumes linear delivery of

labelled blood to the tissue. Furthermore, in CASL we are estimating δa by focusing on

the tail of the tagged bolus of blood. In H-CASL we measure the first delivery of the

small boli to the imaging volume to determine δa. Therefore conceptually it can be seen

that dispersion effects may lead to a systematic disagreement between δa as estimated

using these two approaches (H-CASL and CASL underestimating and overestimating

δa respectively). In this work we have observed good agreement between the H-CASL

and CASL CBF and δa estimates, which suggest that dispersion effects are not acting as

a significant confounding factor in our acquisitions. This may be a consequence of the

high flow rate of blood in the feeding arteries of the rat. This high flow rate ensures that

a relatively large volume of blood is labelled in 0.2s and minimises the transit time (0.2-

0.3s) which limits the extent of dispersion en-route to the imaging region. In humans,

dispersion of the encoded sub-boli is likely to be more of an issue and greater sub-bolus

duration may be necessary to reduce the influence of such affects. Indeed, longer sub-

bolus duration may also be desirable due to the increased range of transit times in the

human brain.

In pilot experiments it was noted that the slightest shift of the brain within the field of

view (due to eddy currents or “warming up” of the imaging gradients and/or amplifier

for example) has severe implications for the reconstructed H-CASL perfusion weighted

images. Therefore H-CASL should be implemented with caution as any such

instabilities are likely to confound the reconstructed images. In general, the increased

susceptibility of H-CASL to systematic errors (since any systematic error present in one

of the eight H-CASL acquisitions will propagate throughout the entire reconstruction)

may prove more challenging to overcome in human application where errors due to

subject movement and pulsetile motion can be more prominent The implementation of

post-acquisition co-registration algorithms such as those in FSL [FMRIB, Oxford, UK]
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or SPM [FIL, UCL, London] may help make this approach more viable in human

studies. The efficient acquisition of perfusion weighted images derived from the

delivery of small boli of blood to the brain may particularly benefit studies focusing on

the location (e.g. intra/extravascular) of the ASL signal [eg. Chapter 2 of this thesis;

Silva et al., 1997; Wang et al., 2007] as the tagged blood is likely to be less dispersed

throughout different cerebral compartments.

4.7 SUMMARY

To conclude, this study provides evidence that H-CASL is viable in-vivo and can be

used for accurate CBF and δa measurement. The benefits to the precision of δa

estimation suggest H-CASL may be ideally suited as a quick pre-scan to guide ASL

imaging parameters [Dai et al., 2009; Xie et al., 2008].
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CHAPTER 5: FINAL DISCUSSION AND FUTURE WORK

5.1 SUMMARY

The main results from the previous experimental chapters can be summarised as
follows:

 By measuring the transverse decay of the ASL signal over a range of tagging

durations and post-labelling delay times with and without vascular crusher

gradients we have estimated the dynamic distribution of the signal deriving from

labelled water in the brain within the intra-vascular, and intra-cellular and extra-

cellular tissue space. Our results provide evidence for rapid exchange of labelled

water into the intra-cellular space relative to the transit-time through the vascular

bed, and provide a more solid foundation for CBF quantification using ASL

techniques.

 Secondly, we have demonstrated the potential of image de-noising methods to

reduce random errors in perfusion weighted images for more precise and

accurate CBF estimates.

 Finally we have presented the first in-vivo demonstration of Hadamard encoded

CASL and have provided evidence of the value of this technique for precise

transit time estimation.

5.2 CHARACTERISING THE ORIGIN OF THE ARTERIAL SPIN
LABELLING SIGNAL IN MRI USING A MULTI-ECHO ACQUISITION
APPROACH

The estimated T2IV (see Figure 2.27) at brief tagging duration (τ =500-1000ms) was

initially a considerable source of uncertainty as it appeared to contradict a number of

previous experiments. Intuitively we would expect the vascular portion of the ASL
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signal to be confined to the arterial side at short τ and PLD. We were originally of the

opinion that the T2 of the arterial blood should be around 3 times greater than that of the

tissue [Stanitz et al., 2005; Thomas et al., 2001] and were surprised when the measured

T2IV was found to be very similar to the T2 of the labelled water that had exchanged

into the tissue. We initially suspected that this outcome may reflect a systematic error in

the imaging protocol that was confounding our T2IV estimates. Further reading into the

literature provided evidence that the arterial side of the vasculature contains blood that

is not 100% saturated with oxygen in the rat brain [e.g. Vazquez et al., 2009, Lin et al.,

1998]. It is known that the T2 of blood is sensitive to its oxygen saturation [Zhou et al.,

2007] which provided a rational physiological explanation for our T2IV measurements.

The main problem encountered in this chapter is one of the sum of exponentials. This is

a problem that has been encountered previously in the MR literature e.g. in the context

of IVIM for perfusion imaging, which uses a bi-exponential model for diffusion to

differentiate the intra-vascular and extra-vascular compartments. As shown by King et

al., [King et al., 1991], the problems associated with obtaining reliable parameter

estimates from the data fitting process are such that the precision of parameter

estimation is limited in practice, despite the validity of the model. Very high SNR

(noise referring to random and systematic error) measurements are required for precise

parameter estimation”. As previously discussed, the uncertainty of the T2IC and T2EC

values restricts the extent of interpretation of our data. Our study was originally

designed to estimate the EC to IC origin of the ASL signal from the measured

transverse decay curves using results from previous work which obtained precise T2IC

and T2EC measurements (57ms and 174ms) in the grey matter of the rat brain at the same

field strength [Haida et al., 1987]. Our choice of T2IC and T2EC measurements from the

literature was partially vindicated by a recent in-vivo study that measured similar T2IC

and T2EC values (64ms ±10 and 184ms ±50), although this was at a different field

strength [Lascialfari et al., 2005]. However although these estimates are from the rat

brain cortical grey matter at the same field strength, they are from an ex-vivo sample

and therefore may not be exactly relevant to our in-vivo data. Ideally we would use our

own data to estimate T2IC and T2EC, rather than taking values from the literature.

However we were not able to achieve reasonable precision in the estimated T2IC and

T2EC by fitting to our data due to the limited coverage of the transverse decay curve as

well as the SNR of our in-vivo measurements. The results of simultaneously estimating



172

T2IC and T2EC as well as the proportion of the signal originating from the two

compartments (IC and EC) from our 9 in-vivo subjects (experiments) are presented in

appendix B2. Unfortunately, the huge 95% confidence intervals of the fitted parameters

demonstrate that the precision of the T2EC and T2IC values is limited to the extent that it

would be almost meaningless to take T2EC and T2IC estimates from our data. We also

present simulated data (appendix B1) which demonstrates that this imprecision does not

reflect systematic errors in our measurements but rather the difficulty of fitting

experimental data to a bi-exponential decay model (with no fixed parameters).

Therefore, although this is not ideal, we took values from previous studies that were

specifically designed to estimate T2IC and T2EC with some precision [Haida et al., 1987;

Matsumae et al., 2003]. The question of the reliability of these studies is open to

debate. It could be argued that the Haida experiment is sufficiently similar to our study

that taking their T2IC and T2EC estimates is a sensible and pragmatic approach

particularly given the reasonable agreement in the estimated T2IC and T2EC values from

a recent in-vivo study [Lascialfari et al., 2005]. However others may quite legitimately

question the validity of this decision. I feel though, that I have openly confronted this

point of controversy in the chapter. To ensure that the limitations of this approach were

made clear to the reader of my thesis, I discuss the justification and implications of this

approach in the text and present two versions of Figure 2.28 to show how this source of

uncertainty impacted the plots. I believe that this provides the most transparent account

of the limitations of our methodology and how this choice impacts the results displayed

in Figure 2.28.

However whilst this is a crucial consideration, it is important to emphasise that this

study presents several novel findings that do not rely on precise knowledge of T2EC and

T2IC.

For example:

1) The relatively narrow range of T2app
ΔM and T2app

ctrl observations suggests that

T2 effects are unlikely to be a significantly confounding factor in quantitative

ASL CBF rodent studies, particularly at short echo times (Figure 2.24).

However the significantly increased T2app of the perfusion-weighted signal in

comparison to the control may result in a small overestimation in CBF using
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standard quantification methods (e.g. Alsop et al., 1996, Buxton et al., 1998) as

the equilibrium magnetisation of the tissue (M0) is assumed to decay with the

same T2 as the labelled ASL signal in the brain.

2) The choice of T2IC and T2EC will have negligible effect on Figure 2.27 which

presents the T2IV observations (which may provide a surrogate index of oxygen

saturation) and provides evidence for the timescale of labelled blood water,

which has not exchanged into the tissue due to limited permeability of the blood-

brain barrier, to traverse the capillary bed.

In addition there are possible interpretations of Figure 2.28 regarding the delivery of

labelled blood water to the brain that (whilst relying on T2IC being approximately equal

to the overall T2 of the tissue and T2EC being significantly greater) do not require

precise knowledge of T2IC and T2EC. There are a number of studies that (although they

do not estimate T2IC and T2EC explicitly) do conclude that T2EC >> T2Tissue as stated in

the introduction of chapter 2. Figure 2.28 does still provide novel evidence in relation to

the delivery of blood water to the brain. For example:

3) The constancy of the ΦIC
ΔM and ΦEC

ΔM estimates at τ = 1s and τ =3s suggests that

a dynamic equilibrium is established between labelled water in the intra-and extra-

cellular tissue space by τ = 1s.

4) The ΔM signal is weighted towards the extra-cellular space, relative to the control

signal, even when τ=3s and with extended PLD. The short mean residence time

(120ms) of the extra-cellular spins relative to the τ and PLD timescale, as well as the

aforementioned evidence for establishment of a dynamic equilibrium, suggests this

may be due to gradual exchange of labelled blood from the vascular compartment to

the tissue at increasing PLD.

In summary, we are not able to generate meaningful values of T2IC and T2EC from our

data. Therefore we take T2IC and T2EC from the most relevant study that aimed to

precisely measure these parameters. Accepting the limitations of this approach we

present two versions of Figure 2.28 (a and b) to clearly illustrate the implications of this

source of uncertainty on ΦIV
ΔM,ΦEC

ΔM, ΦIC
ΔM and ΦIV

Ctrl, ΦEC
Ctrl, ΦIC

Ctrl.
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In this way I believe that I have clearly communicated how this limits the strength of

interpretation of Figure 2.28. Finally it is important to emphasise that this study

provides novel findings that do not rely on precise knowledge of T2IC and T2EC.

Ideally I would have implemented separate experiments designed to retrospectively

measure T2IC and T2EC by acquiring a high SNR multi-TE data set on the 2.35T system.

However given the limitations in terms of the strength of the gradients (and therefore

the minimum echo time) it is unlikely that we would be able to estimate T2IC and T2EC

with significantly greater precision than [Lascialfari et al., 2005].

The natural development of this technique would be to apply it to an animal model of

disease (a brain tumour for example). However, assuming T2EC and T2IC are the same

in normal and diseased tissue may not be correct and may yield misleading results.

Again, it may be necessary to acquire estimates of T2EC and T2IC for healthy and

diseased tissue using standard multi-TE image acquisitions before applying the methods

described in chapter 2 on an animal model of disease.

I am very pleased with the concordance of the trends in Figures 2.25 and Figure 2.26

(the individual T2app estimates from each of the 9 experiments with and without VCGs)

as these suggest that random and systematic errors have been well suppressed in these

experiments. Indeed the dominant affect that determines the size of the error bars in

Figure 2.24 seems to be an offset between the estimated T2 values between the 9

experiments; the trends at increasing τ and PLD themselves appear to be fairly

concordant. This offset may be due to slight differences in the calibration of the 90o and

180o excitation and re-focussing pulses between experiments, differences in the shim or

genuine inter-animal physiological variation. In particular, the rate of change of

T2app
ΔM(VCGs-off) from τ=1s to τ=3s does appear to be noticeably concordant between

the 9 subjects. I think that one of the main reasons we were able to achieve this

relatively high precision was by extensive interleaving of the different sequence

parameters in combination with long scan times; any systematic errors are likely to be

“evened” out over the course of a 4 hour acquisition protocol. Therefore despite the

limitations in the design of the pilot studies, there is no doubt that the final results

benefited from the experience of my previous experiments in relation to minimising

random and systematic errors in the experimental protocol.
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Our results provide evidence for the rapid exchange of labelled water into the brain

tissue. In fact it was surprising that only around 20% of the ASL signal derived from the

IV space at τ = 500ms and PLD =50ms, considering that the transit time from the

labelling plane to the ROI is approximately 250ms. Conceptually, it is somewhat

difficult to fathom how such a significant majority of labelled blood resides in the tissue

at these sequence timing parameters. However the marked deceleration of the blood

from the site of labelling (carotid and vertebral arteries) to the capillaries perhaps

provides an explanation for this behaviour. Blood is travelling at approximately 1m/s in

the carotid arteries as it leaves the heart which beats at about 400 beats per minute

[Utting et al.2003]. In the capillaries it travels at around 0.5mm/s [Villringer et al.,

1994]. This rapid deceleration is due to the branching and narrowing of the arteries into

arterioles and capillaries as blood flows up the vascular tree. Therefore it is perhaps this

pressure gradient that quickly forces the water into the tissue through the capillaries. It

is important to consider that the ΦIV
ΔM estimates are dependent on the extent of vascular

suppression. The ΦIV
ΔM values reported in this work may be underestimated because

signal from labelled blood water in the vasculature has not been significantly attenuated

by the VCGs. Our ΦIV
ΔM estimates are in agreement with previous MR studies under

similar experimental conditions and imaging parameters. Indeed the use of diffusion

gradients to remove the vascular ASL signal is fairly established in human studies [e.g.

Petersen et al., 2005]. However the assumption that diffusion gradients can efficiently

remove the vascular signal is contentious, particularly given evidence suggesting that

blood does not flow for a time in some capillaries [Villringer et al., 1994]. Therefore it

is possible that significant vascular signal remains with VCGs and the assumption of

pure tissue signal may not hold true in practice.”

The Hadamard encoded CASL study described in chapter 4 provides corroborative

evidence for the rapid exchange of labelled blood water into the tissue. The mean in-

vivo cortical perfusion weighted measurements from the reconstructed H-CASL small

boli suggest that the labelled water rapidly decays once it has arrived in the cortex (see

Figure 4.2). The T1 constant that describes this decay is just over 0.65s which is

equivalent to T1sat [Alsop and Detre, 1996] as measured from the recovery of the

standard CASL control images at increasing PLD. If the small volumes of labelled

blood water did not exchange into the tissue and remained in the vessels for a certain
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time prior to exchange then the rate of the decay would be more similar to that of blood

(T1 ~ 1.5s). The observation of rapid decay T1 decay provides evidence for fast

exchange.

In this work we present the proportion of the measured ASL signal originating from the

three compartments (IV, IC, EC). The longitudinal relaxation of tagged spins following

labelling plays a significant role in the tri-compartmental distribution of the ASL signal.

For example, blood water that has exchanged into the tissue during labelling will be

relaxing according to T1sat [Alsop and Detre, 1996] whereas labelled blood in the

vasculature will be recovering at a slower rate (T1b) [Alsop and Detre, 1996]. Therefore

it is likely that T1 acts to preferentially attenuate the signal from labelled blood water in

the tissue space in comparison to blood water that remains in the IV compartment

following labelling. However it is difficult to speculate in any greater detail how the

reported relative population estimates may change by taking the longitudinal relaxation

effects into account. For us to do this would require knowledge of the T1 relaxation

history of the labelled blood water in the different compartments, which is an unknown

parameter. For example, we do not know whether labelled blood water in the venous

vessels has flowed through the vasculature (due to the limited permeability of the blood

brain barrier) or whether it has exchanged into the tissue and then exchanged back into

the venules. We could impose a model on our data in order to estimate the T1

relaxation history of the labelled blood water in the different compartments. However

our data does not necessarily follow the ASL CBF quantification models described in

for example [Detre et al., 1992; Alsop et al., 1996; Parkes and Tofts 2002]. Indeed the

basic hypothesis that with CASL, you need to be in steady-state, which you can only

reach if t >> 2-3 times T1b.This is not the case in the ΔM images acquired at τ < 3000ms 

(i.e. 500ms, 1000ms, 1500ms). Therefore the standard CASL CBF quantification

models may not accurately describe the distribution of labelled blood in the brain at

these sequence timings. Our work is an exploratory study – we report the observed

changes in the measured ASL signal without imposing a model. We hope that our data

may perhaps be helpful to guide future ASL CBF quantification models that describe

the delivery of blood into the brain.

It would have been interesting to measure the transverse decay of the ASL signal at

shorter τ (<500ms) and longer PLD (>1200ms) to investigate the tri-compartmental
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distribution of the ASL signal at an earlier or later point during the labelled water’s

journey into the brain. This would likely have increased the dynamic range of the T2app

estimates reported in Figure 2.24. However pilot experiments suggested that the SNR at

these sequence timing parameters would significantly reduce the precision of the T2app

estimates. Therefore I choose τ = 500ms and PLD =1200ms to ensure that there was

reasonable SNR in the ΔM measurements. 

5.3 REDUCTION OF ERRORS IN ASL CEREBRAL PERFUSION
AND ARTERIAL TRANSIT TIME MAPS USING IMAGE DE-
NOISING

Chapter 3 highlights the benefits of image de-noising in quantitative ASL studies. Given

that post-acquisition image processing methods provide most benefit to low SNR data,

it is perhaps surprising that they have not become more prominent within ASL MRI,

given the intrinsically low SNR of the measurements. Our findings provide convincing

evidence that ICA can benefit multi time-point ASL data without introducing marked

spatial smoothing to the quantitative CBF and δa maps. I have since applied ICA to

multi-TI ASL human data, acquired at a number of different MRI centres. For example,

Figure 5.1(a) shows perfusion weighted images of an infant brain at 32 different inflow

times, acquired using a Look-Locker acquisition. Figure 5.1(b) shows the same images

following application of ICA to remove random errors. Although no formal

comparisons were performed on these data, visual inspection suggests that ICA acted to

significantly reduce random errors as intended. I hope to be able to publish the results

described in chapter 3 so that removal of random errors using ICA may soon become

common practice in future multi-time-point (PLD inflow times) ASL studies.
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[a]

[b]

Figure 5.1

Perfusion Weighted images acquired at 32 different inflow times using a Look-Locker
acquisition before (a) and after (b) application of ICA to remove random errors.

It was difficult to devise a fair comparison between different de-noising methods. An

obvious criticism of our methodology is the comparison of ICA (which operates on a

3D data set - 2D images at different PLDs) with 2D spatial filters. It could be argued

that a fairer comparison would be ICA against a 3D Wiener or AD filter. However it

seemed unintuitive to smooth the images in the “time” dimension before fitting the data

to a least squares model, particularly given that the CBF related information is

contained within the “high frequency” part of the PLD dependant time-course (see

Figure 3.1). As ICA works in a very different way to standard smoothing methods we
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found that this introduced no noticeable bias to the CBF and δa estimates (see 3.4.2

Results: Simulated data 2). However for these reasons when discussing the results, I do

not to make strong judgements in regards to which de-noising method is best but rather

emphasise the benefit of de-noising in comparison to not applying any such post-

processing. As discussed in section 3.5, the optimal filter will depend on each particular

data set which limits the relevance of comparisons between different de-noising

methods, made on the basis of our data sample.

In our analyses, we chose to determine the degree of smoothing (or “threshold”)

according to the automated threshold selection algorithms associated with each filter

(apart from the Gaussian filter). Some would argue that it may have been fairer to

standardise the level of smoothing based on visual inspection of the images. For

example we could increase the degree of smoothing until a certain boundary is

determined to be degraded. However this subjective measure would have been

challenging to implement in a fair manner as the AD filter (for example) is designed to

maintain boundaries between regions of marked contrast. We chose instead to

implement the “optimisation” algorithms that accompany each de-noising method.

These should automatically “optimise” the extent of smoothing by estimating the degree

of random errors in the image. In this way we sought to examine whether de-noising

can benefit CBF and δa maps with minimal subjective optimisation.

5.4. IN-VIVO HADAMARD ENCODED CONTINUOUS ARTERIAL
SPIN LABELLING (H-CASL)

The difficulty with imaging small boli of labelled water is that relatively few tagged

spins contribute to the perfusion weighted signal and therefore the SNR of the ΔM 

images is considerably reduced in comparison to standard multi-PLD CASL (τ = 3s).

Although there is significantly more effective “averaging” in the H-CASL

reconstruction (in a given imaging time) in comparison to CASL, the increase in SNR is

proportional to the square route of the number of averages and so the benefits to the

SNR are restricted in this way. Since the CBF is proportional to the perfusion weighted

signal in most ASL CBF quantification models [e.g. Alsop et al., 1996; Buxton et al.,
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1998] this means that the precision of CBF estimation using H-CASL (τ = 0.2s) is

severely limited in comparison to the standard method (τ =3s).

The inventor of this technique, Matthias Günther, intended the data to be flexible in

terms of the potential to re-combine it in different ways. He proposed that you do not

lose anything by acquiring the data in this way since you can generate the equivalent

images to those produced using standard CASL (the perfusion weighted image from a 3

second tagged bolus) by recombining the acquired images in a different way. The data

can then be additionally reconstructed to generate the perfusion weighted signal from

small boli of labelled blood to the brain as described in chapter 4, to provide additional

information (e.g. precise δa measurements).

For example, to generate the equivalent data to the standard CASL experiment the

images can be combined in the following way (see Figure 4.1):

7 x Image 1 – Image 2 – Image 3 – Image 4 – Image 5 – Image 6 –Image 7 – Image 8. [5.1]

The results of this reconstruction are shown in Figure 5.2. The CASL image was

acquired at a single PLD time (0.5s) and was averaged over all 15 repeats. All 8 H-

CASL images (each averaged over the 15 repeats) were used to reconstruct figure

5.2(b). Therefore in this example H-CASL required four times more imaging time in

comparison to standard single PLD CASL. Even though all 8 acquisitions contribute to

this image, visual inspection reveals that the SNR is lower than standard CASL. This

may be because each acquisition (with the same noise level) is not given equal weight

within the reconstruction. For example, the first acquisition is used seven times more

than each of the other images in this reconstruction. Therefore this approach is not

optimised to minimise the noise within the reconstructed perfusion weighted image.

Consequently I do not think that this is an efficient way to combine the data in relation

to the SNR of the perfusion weighted images. The method of reconstruction presented

in chapter 5 makes the most efficient use of the data since each image is given equal

weighting.



181

(a) (b)

Figure 5.2.
The perfusion weighted images derived from the standard CASL approach (a) and the
H-CASL approach (b) where the images are combined as described in equation 5.1. The
data presented is averaged over all the acquisitions for each technique from Experiment
1 (of 3).

I spent some time trying to optimise the sub-boli durations within the H-CASL scheme

for precise CBF and δa estimation. Initially I chose a sub-bolus duration of 0.3s.

However the reconstructed perfusion weighted images at PLD(eff) of 1.2,1.5 and 1.8s

provided little useful information at the typical transit times in the rat brain as the

labelled spins had undergone significant longitudinal relaxation according to T1sat at the

long PLDeff times. As demonstrated by Figure 5.3 below, the signal from sub-bolus 5, 6

and 7 had almost completely decayed at PLDeff of 1.22, 1.52 and 1.82s which limited

the benefits of H-CASL.

I hypothesised that a sensible approach may be to try and account for longitudinal

relaxation at increasing PLD by having variable sub-bolus duration. The idea was to

increase the duration of the sub-boli at increasing PLD(eff) so that perfusion weighted

signal would no longer be negligible at increased PLD(eff). The duration of the sub-

bolus was 0.05, 0.1, 0.15, 0.2, 0.25, 0.30 and 0.35s giving a PLD(eff) of 0.02, 0.07,

0.17, 0.32, 0.52, 0.82 and 1.22s. The images generated using this revised approach are

shown in Figure 5.4. Although this method successfully increased the SNR of the

perfusion weighted images derived from the delivery of sub-bolus 5, 6 and 7 to the

tissue, the sensitivity of the inflow curve to δa was significantly decreased, restricting

the precision of transit time estimation. As the fixed sub-bolus duration method had

already shown promising results in relation to the precision of transit time estimation, it

seemed that the utility of this variable sub-bolus duration approach was limited.
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I was now satisfied that using fixed sub-bolus duration was the best way to proceed. I

continued to try to optimise the duration of the sub-boli. Using short sub-boli ensured

that the bolus inflow curve could be frequently sampled so that the PLD at which

labelled blood first arrives in the imaging slice can be precisely defined. Using long

sub-boli restricted the density of the PLDeff sampling points, limiting the precision of δa

estimation. However if the duration of the sub-boli is too short then the SNR PWI was too

low to provide useful information. Therefore a sub-bolus duration of 0.2s was chosen as

a compromise between reasonable SNRPWI and sampling frequency. The final version

of H-CASL presented above also includes a long sub-bolus which was intended to

provide a high SNRPWI, transit time insensitive [Alsop et al., 1996] perfusion weighted

measurement.

Figure 5.3

The implementation of the H-CASL scheme with a sub-bolus duration of 0.3s. The
standard CASL images are shown below.

H-CASL

CASL

PLD(S) 0.02 0.32 0.62 0.92 1.22 1.52 1.82

PLD(S) 0.02 0.32 0.62 0.92 1.22 1.52 1.82
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Figure 5.4

The implementation of the H-CASL scheme with variable sub-bolus duration (top row).
The standard CASL images are shown below.

Initially H-CASL was a challenging technique to implement reproducibly. The slightest

shift of the brain within the field of view had dire implications for the reconstructed ΔM 

images. However once the imaging protocol was optimised in terms of the level of rigid

motion prevention, the technique was re-producible and we performed several

consecutive experiments without any obvious artefacts present in the H-CASL

perfusion weighted images. Based on my experience of experimental MRI and the

problems associated with H-CASL as well as my limited experience with human

scanners, I do have some doubt as to whether H-CASL is a viable sequence in human

studies. This is mainly because systematic errors (e.g. subject movement, pulsetile

motion) are more problematic when compared to pre-clinical rodent imaging. However

with background suppression and post-acquisition re-alignment, H-CASL may well be

clinically feasible.

5.5 FINAL CONCLUSION

In conclusion, ASL undoubtedly represents a promising approach to cerebral perfusion

measurement. However it suffers from low SNR and can be confounded by the effects

of neuropathology. Indeed, although a recent study has provided evidence supporting

the reproducibility of ASL for perfusion measurement in healthy volunteers [Petersen et

H-CASL

CASL

PLD(S) 0.02 0.07 0.17 0.32 0.52 0.82 1.22

PLD(S) 0.05 0.10 0.2 0.3 0.5 0.8 1.2
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al., 2008], accurate and robust CBF quantification in the diseased brain still represents a

significant challenge. Pathology may result in reduced CBF, increased transit time and

may introduce differences in T2 (ΔM) between healthy and diseased tissue. We hope

that the experimental work described in this thesis may be particularly helpful at

improving the utility of ASL in such applications.
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APPENDIX A: THE DISCRETE DISTRIBUTION OF TRANSIT

TIME ESTIMATES

A1. INTRODUCTION

We encountered unexpected results when implementing multiple fits of noisy data to

Alsop’s standard CBF quantification model [Alsop and Detre, 1996].
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Figure A1
The distribution of CBF estimates calculated from the simulated data with a SNRpwi of 2.

The distribution of CBF values appears to be approximately Gaussian about the true

CBF of 250ml/100g/min. However closer visual inspection suggestions it is skewed

towards greater CBF values. Initially we hypothesised that this was a result of the

documented bias behaviour of the estimates of non-linear models as previously

described; why we see an overall increase in the apparent CBF with random errors.

However the distribution of the δa estimates (Figure A2) is curious and likely provides

an additional explanation for the observed bias of the CBF estimates.
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Figure A2
The distribution of δa estimates calculated from the simulated data with a SNRpwi of 2.

Many of the δa estimates are falling on the exact discrete PLD times at which the ASL

signal is measured. Our initial explanation of this unexpected behaviour was “non-

convergence” of the fitting procedure. If this was the case then this would have a

significant influence on the resultant CBF and δa distributions. In chapter 3, we

examine the extent of any bias present in the CBF estimates. It was therefore imperative

to ensure that any measured bias was not dominated by errors in the fitting procedure.

In appendix A2 we examine the possibility of non-convergence and propose an

explanation for the discrete nature of the δa estimates.

A2. ASSESSING CONVERGENCE

Fits were performed using the MatLab 6.5 curve fitting toolbox functions. The first step

was to examine the response of the fitting algorithm itself. The fitting algorithms can

be implemented to “flag” whether the function has converged to a solution. This

parameter indicated that convergence was achieved for each one of the simulated and

in-vivo time-courses. Convergence was checked in this way for all the fits to the

simulated and in-vivo data.
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The non-linear-least-squares fitting algorithm aims to find the best model fit to the data

by minimising the squared residuals. However it was possible that the fitting algorithm

was stuck in a local minimum. This would perhaps explain why the δa estimates were

falling on the discreet values of the PLD at which the signal is sampled, while the

function was apparently converging. Therefore to check that the fitting algorithm was

indeed converging on the CBF and δa that resulted in the least squared residuals, I took

the following steps:

A simulated data set was generated with a true CBF of 250ml/100g/min and an arterial

transit time of 0.3s at the same PLDs used in the in-vivo analyses

(0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.5,2). Gaussian noise was then added to the data

for a SNR of 5. These data are referred to as the noisy time-course.

CBF and δa estimates were then generated by fitting the noisy time-course to the model

as before using the Marlab curve-fitting toolbox functions. Several alternate time-

courses with a range of δa and CBF values were then generated. For each of these time-

courses, the mean squared difference between the noisy time-course and each time-

course with different CBF and δa values (without any added noise) was calculated.

Figure A3 shows an example surface plot of the mean squared difference between the

noisy data and each of the time courses with different CBF (x-axis) and δa values (y-

axis). The minimum mean squared difference occurs when δa is equal to exactly 0.2s

which is different to the true δa that was originally defined (0.3s). Fitting the noisy-time

course to the fitting algorithm returns the same δa value (0.2s).

This process was repeated over a range of noisy-time courses and in each case, the CBF

and δa estimates generated using the two approaches were in good agreement with the

exception of when the δa value that the fit returns is less than the minimum PLD time

(see A4 The Problem when δa estimate < 0.15s (the minimum PLD time))
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Figure A3
Surface plot showing the mean squared difference between a simulated noisy time-
course and the modelled time-courses with different CBF (x-axis) and δa (y-axis)
values.

These calculations provided convincing evidence that the fits were indeed converging to

the minimum squared residual. Therefore non-convergence was unlikely to be the

reason for the tendency of the δa estimates to fall on the post-labelling delay at which

the signal is sampled. The next section presents an explanation for this behaviour.
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A3. AN EXPLANATION FOR THE DISCRETE NATURE OF THE
ARTERIAL TRANSIT TIME ESTIMATES
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Figure A4
The CBF quantification model at a range of arterial transit times (δa = 0.3s [red], δa =
0.6s [blue], δa = 0.9s [green]).

Figure A4 shows the standard CBF quantification equation modelled at a range of

arterial transit times. The apparent turning point is due to the “broken” behaviour of the

function, namely the switching condition for when PLD > δa. This represents the point

at which the tagged bolus of arterial blood has arrived in the region of interest. This

demonstrates that the model is insensitive to the transit time when δa is less than the

PLD at which the signal is sampled (with a fixed δ). Indeed this was one of the main

“take home messages” in this paper: as long as the PLD is greater then δa, the

measurement is relatively insensitive to the transit time. This property in combination

with the limited number of PLD times at which inflow curve is measured can explain

why the δa estimates are falling on the exact PLD times at which the perfusion weighted

signal is measured.
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Figure A5
Noisy time-course (black circles) and resultant model fit to the data (red line). The
residuals of the model fit to the data are also reported below. The fitted arterial transit
time is exactly 0.3s.

Figure A5 shows a simulated multi-PLD CASL time-course with added zero mean

Gaussian noise together with the model fit to the data. The model fit to the data yields a

transit time of 0.3s – one of the PLD times at which the perfusion-weighted signal was

sampled. An intuitive explanation for this behaviour is as follows:

Firstly the fitting algorithm estimates the CBF (which is a linear multiplying factor for

all the ΔM values) to minimise the residuals of the fit.  The algorithm then estimates the 

transit time for a given CBF that again minimises the residuals. The fitting algorithm

computes the transit time to be at the most 0.3s. This is to minimise the residual at PLD

= 0.3s. If the fitted transit time was greater than 0.3s then the residual at PLD = 0.3s

would be increased for a given CBF but as long as it is equal to or less then 0.3s then

this residual is the same. This is because the objective function is insensitive to δa as

long as the PLD at which the signal is sampled is greater then δa as illustrated in Figure

A4.
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Now the fitting algorithm finds the transit time under the condition that δa <=0.3s that

results in the best fit to the data by minimising the residuals at PLD = 0.15 and PLD =

0.2s. Because the noise has acted to considerably reduce the signal at PLD =0.2s then

the model minimises the residual at PLD = 0.2s by taking the greatest δa it can up to

0.3s. Therefore the estimated transit time resides on exactly 0.3s. Further examples are

displayed in Figure A6 and A7 where the true δa was set to 0.5s. Model fitting to the

data reported in Figure A6 and A7 yields a δa of exactly 0.5s and 0.3s respectively. This

can be explained using the same reasoning, behaviour which can be summarised as a

consequence of the fitting a model that includes “switching functions” to noisy data,

sampled at finite intervals. The use of fitting routines such as the “Trust Region

algorithm” [Branch et al., 1999] is normally only intended in continuously

differentiable functions, which is not the case here. Therefore although these findings

are still relevant (as these fitting routines are commonly employed to model fit ASL

timecourse data) it is important to note that these observations may not apply to

alternative fitting routines.
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Figure A6
Noisy time-course (black circles) and resultant model fit to the data (red line). The
residuals of the model fit to the data are also reported below. The fitted arterial transit
time is exactly 0.5s.
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Figure A7
Noisy time-course (black circles) and resultant model fit to the data (red line). The
residuals of the model fit to the data are also reported below. The fitted arterial transit
time is exactly 0.3s.

A4.THE PROBLEM WHEN THE ARTERIAL TRANSIT TIME < THE
MINIMUM PLD TIME.

If the best fit to the noisy data returns a transit time that is less than the minimum PLD

at which the perfusion weighed signal is sampled (0.15s in the case of chapter 4) then

the transit time cannot be estimated with precision any greater then between 0

(physiological limitations) and 0.15s. This is because changing the arterial transit time

in this range has no effect on Alsop’s model because the arterial transit time is only

present in the following term:

exp((min(δa-PLD,0)-δa).*R1a)

Consequently, changing δa will have no effect on the resultant function if it is less than

the minimum PLD. The minimum PLD in the experiments described in chapter 4 was
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fixed at 0.15s. Therefore when the least square fit to the noisy data produces a δa which

is less than 0.15 there is no way of estimating δa with any more precision. However this

issue does not affect the distribution of the CBF estimates as changing δa in this range

does not affect the resultant function. Therefore although we are not able to report the

mean value of the δa estimates, the mean value of the CBF estimates has been reported

to assess possible bias with the addition of Gaussian noise.

APPENDIX B: ESTIMATION OF T2 IC AND T2EC

B1 INTRODUCTION

In appendix B, I use a simple simulation, which mimics the experimental protocol

described in chapter 2 to demonstrate the difficulty of fitting experimental data to a bi-

exponential decay model (with no fixed parameters). I then continue to report the results

of fitting the model to the in-vivo data acquired in Chapter 2.

B2 SIMULATIONS

The plot below (Figure B1) shows simulated data generated using the bi-exponential

model described in Equation 2.2, at the same echo times as our study. 95 % of the

simulated signal arises from the IC compartment (T2IC =57ms) and 5% from the EC

compartment (T2EC = 174ms). A small degree of Gaussian noise is added to the

simulated data to give a SNR at the first echo time (29ms) of 80 (in approximate

agreement with the SNR of the control base images in our data). The simulated data are

then fitted to the bi-exponential model described in Equation. 2.2 but in this case T2IC

and T2EC are not fixed but are estimated in the fitting process. The model fit to the data

is shown by the solid line:
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.

Figure B1
[a] Simulated bi-exponential transverse decay with a small degree of added Gaussian
noise (black dots) together with the model fit to the data (solid line) at the echo times
used in our study. [b] The log plot of the fit.

The model fit returns the following estimates of the 4 parameters (95% confidence

intervals of the fit):

EC = 81.7 (-2176, 2339)
IC = 117 (-2099, 2333)
T2EC = 72.84 (-382.2, 527.9) ms

Measured Signal = EC*exp(-te/T2EC) +IC*exp(-te/T2IC)
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T2IC = 45 (-200.1, 290.1) ms
[R-square = 0.9977]

The inaccuracy and considerable uncertainty in the four parameter fit demonstrates the

difficulty of using our data to estimate the T2EC and T2IC. We could estimate T2EC and

T2IC using our data but the precision of the fit would severely limit any interpretation of

the values. We could impose fitting constraints; however in this case the estimated T2EC

and T2IC will often fall on the upper or lower limit of these constraints making the

resultant estimates dependent on the imposed limits.

However, if we assume the correct T2 values (as in the present analysis) then the fit

returns EC and IC values with reasonable certainty:

EC = 6.6 (2.0, 11.2) ; IC = 189 (179, 198.9)

We have performed further simulations which suggest that it would require acquisitions

at many more echo times and increased SNR in order to achieve reasonable precision in

the T2IC and T2EC parameter estimates. For example, [Matsumae et al., 2003] acquired

data at 60 echo times with 100 averages. The estimates are very sensitive to

physiological noise which may be why ex-vivo experiments were performed. The ex-

vivo transverse relaxation studies also allowed measurements at very short echo times,

improving the dynamic range of the measured transverse decay.

The plot below shows simulated data generated using the bi-exponential model at 60

echo times. 95 % of the simulated signal arises from the IC compartment (T2EC =57ms)

and 5% from the EC compartment (EC = 174ms). A small degree of Gaussian noise is

added to the simulated data to give a SNR at TE = 30ms of 250, reflecting the greater

number of averages and reduced physiological noise of the ex-vivo acquisitions in their

work [Matsumae et al., 2003].
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Figure B2

Measured Signal = EC*exp(-te/T2EC) +IC*exp(-te/T2IC)
M

ea
su

re
d

S
ig

n
al

(a
rb

it
ra

ry
u
n
it

s)

TE(ms)



198

[a] Simulated bi-exponential transverse decay with a small degree of added Gaussian
noise (black dots) together with the model fit to the data, based on the methodology
proposed in [Matsumae et al., 2003].[b] The log plot of the fit.

EC = 14.23 (8.491, 19.97)
IC = 284.8 (279.7, 290)
T2EC = 178.3 (139.9, 216.7) ms
T2IC_ = 53.48 (52.42, 54.54) ms
[R-square: 0.9999]

Although the precision of the estimates is considerably improved, the 95% confidence

intervals of the fit indicate that there is still some uncertainty in the estimates, even with

such rigorous coverage of the transverse decay curve.

B3 IN-VIVO DATA

The results of simultaneously estimating T2IC and T2EC as well as the proportion of the

signal originating from the two compartments (IC and EC) from our 9 in-vivo subjects

(experiments) are presented in the table below. Also shown is an example of the fitted

curve to one of the 9 data sets.

Measured mean cortical control signal (VCGs – on, τ=3000 , PLD = 1200s) =

)2/exp()2/exp( ECIC TteECTteIC  (Eq. B1)
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Subject
(Experiment)
Number

IC (95%
Confidence
Interval)
Arbitrary Units

EC (95%
Confidence
Interval)
Arbitrary Units

T2IC (95%
Confidence
Interval)
Ms

T2EC (95%
Confidence
Interval)
ms

1 49.28 (-664.3,
762.9)

62.55 (-606.8,
731.9)

39.27 (-164.5,
243.1)

78.57 (-286.8,
444)

2 50 (-
1.123e+004,
1.133e+004)

41.21 (-
1.125e+004,
1.134e+004)

54.83 (-1457,
1567)

69.09 (-2051,
2189)

3 95.4 (-1566,
1757)

4.898 (-1678,
1688)

61.8 (-276.3,
399.9)

110.3 (-
1.111e+004,
1.133e+004)

4 92.34 (-741.2,
925.9)

17.89 (-846.6,
882.3)

50.69 (-149.2,
250.6)

104.4 (-1723,
1932)

5 43.22 (-
8.73e+007,
8.73e+007)

38.86 (-
8.73e+007,
8.73e+007)

62.48 (-
4.006e+004,
4.019e+004)

62.47 (-
5.234e+004,
5.247e+004)

6 45.65 (-
1.935e+008,
1.935e+008)

27.95 (-
1.935e+008,
1.935e+008)

63.27 (-
2.694e+007,
2.694e+007)

63.27 (-
4.4e+007,
4.4e+007)

7 103.1 (-87.22,
293.4)

0.8296 (-
203.4, 205.1)

63.11 (-23.71,
149.9)

250 (-
5.766e+004,
5.816e+004)

8 50.18 (-
3.965e+007,
3.965e+007)

37.18 (-
3.965e+007,
3.965e+007)

61.98 (-
4.713e+005,
4.715e+005)

61.1 (-
3.461e+005,
3.462e+005)

9 97.13 (-434,
628.3)

A = 3.929 (-
550.8, 558.6)

56.41 (-104.2,
217)

137.7 (-9272,
9547)

Table B1
Table 1 shows the results of fitting the mean control perfusion weighted signal
(acquired with vascular crusher gradients (VCGs) at tagging duration (τ) = 3000ms
and post labelling delay (PLD) = 1200ms) to a bi-exponential model whilst
simultaneously fitting for all four unknown variables (IC, EC, T2IC, T2EC).
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Figure B3
The transverse decay of the mean control signal (VCGs on, τ=3000ms, PLD = 1200ms)
from subject no. 6 as a function of echo time (black dots) together with the model fit to
the data (red dashed line)

Unfortunately, the huge 95% confidence intervals of the fitted parameters demonstrate

that the precision of the T2EC and T2IC values is limited to the extent that it would be

almost meaningless to take T2EC and T2IC estimates from our data. This does not reflect

systematic errors in our measurements (as highlighted by the simulations described

above in B1) but rather the need for much more rigorous coverage of the transverse

decay curve and higher SNR to precisely estimate the four parameters simultaneously.

Therefore we took values from previous studies that were specifically designed to

estimate T2IC and T2EC with some precision [Haida et al., 1987; Matsumae et al., 2003].


