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ABSTRACT 

For the existing water treatment processes, difficulties in removing humic 

substances (HS) to improve drinking water quality, and safety, have created the 

demand for exploring novel options to enhance HS removal.  Here a 

combination of solar irradiation and granular activated carbon (GAC) adsorption 

is proposed.  It aims to make use of the most freely available and abundant 

energy source, sunlight, to improve the performance of GAC adsorption process.  

An investigation into how characteristics of HS vary under natural sunlight and 

how this influences the subsequent removal of HS by GAC adsorption was carried 

out.  Bulk water parameters, and more specifically, UV absorbance at 254 nm 

(UV254), as well as dissolved organic carbon (DOC) were used in conjunction with 

molecular weight (MW) to evaluate the performance of the solar-GAC method.  

The observation was made that solar irradiation led to a decrease in DOC, UV254 

and MW of HS.  The high MW components were photodegraded into smaller 

molecules, even with very low solar intensity in winter.  Significant 

photodegradation of small molecules was also achievable by exposure to natural 

sunlight alone.  Pre-treatment using solar irradiation was shown to successfully 

improve the GAC adsorption performance on HS removal, increasing the DOC 

removal from 69 % to 95 %.  An up to three-fold increase in the adsorption 

capacity of GAC for the irradiated HS was observed.  Solar collectors were 

found to effectively enhance the photodegradation of HS, and consequently 

enhance the removal of HS by GAC adsorption.  The application of solar 

collectors could be a viable option for humic water treatment.  The proposed 

solar irradiation-GAC adsorption method provides a new approach for the 

treatment of humic rich waters.  The utilization of solar irradiation in water 

treatment processes is considered a sustainable and promising field. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and motivation for work 

Humic substances (HS) are the main constituent of the dissolved natural organic 

matter (NOM) and account for up to 90 % of the dissolved organic carbon (DOC) 

in all natural waters (Thurman, 1985).  Although HS themselves are regarded as 

non-toxic, several problems may arise during drinking water treatment.  These 

problems include: 

- HS have aesthetic effects which are the colour, odour and taste of water; 

- HS enhance the transportation and distribution of synthetic compounds and 

heavy metals (Ding and Wu, 1997); 

- HS can lower the efficiency of other water treatment processes, reducing the 

removal of target pollutants (Newcombe et al., 2002b);  

- During the water disinfection step, HS can react with chlorination and cause 

the formation of disinfection by-products (DBPs), such as trihalomethanes 

(THMs) and haloacetic acids (HAAs) (Singer, 1999; Barrett et al., 2000).  It 

is suspected that DBPs can cause cancer to humans.   

An increase of HS content has been observed in water sources in many countries 

over the past 20 years (Worrall et al., 2004; Skjelkvåle et al., 2005; Vuorenmaa et 
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al., 2006).  Freeman et al. (2001) have reported increases of DOC of up to 65 % 

for 11 streams and 11 lake catchments over a timescale of 12 years in the UK.  

The increased DOC greatly challenges the water treatment works (WTWs) to 

guarantee water quality and provide safe potable water to the public.   

Current water treatment processes are not specifically designed for removing HS.  

The conventional processes (comprising of coagulation, sedimentation and sand 

filtration) can generally remove 10-90 %, with an average of 30 % of dissolved 

organic matter (Li et al., 2003).  Improving DOC removal by increasing 

coagulant dose will result in an increased amount of sludge production and extra 

cost.  Interest in the use of advanced oxidation processes (AOPs) has risen over 

the years; nevertheless, it is typically associated with high cost, by-products with 

unknown toxicity and undesired chemical residuals.  The need therefore rises for 

exploring new approaches to improve HS removal, with emphasis on low energy 

consumption, low chemical addition, and low cost. 

1.2 Scope of work 

The general aim of this research is to propose and investigate a new approach for 

removing HS from water, for the purpose of improving the already existing 

treatment process.  More specifically, the research work is focused on using solar 

irradiation as a pre-treatment method to enhance the adsorption of HS by granular 

activated carbon (GAC).  This will be achieved by a series of investigations 

conducted at different times of the year and on different water samples containing 

HS, looking at:   

 changes in the characteristics of HS following natural sunlight irradiation;  

 improvement in the GAC adsorption performance of the irradiated HS.   
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This thesis is the first to evaluate the use of solar energy as a pre-treatment 

method for improving HS removal by GAC, and makes an important contribution 

to the knowledge of this subject.   

1.3 Thesis overview 

Chapter 2 initially presents a review of available literature on the characteristics of 

HS, which is helpful in selecting the most relevant analytical methods to represent 

HS and in linking those characteristics with the proposed treatment method, 

within the scope of this research.  Here by targeting the treatment method, the 

review will be focused on two aspects – solar irradiation and GAC adsorption.  

In the section on solar irradiation, characteristics of sunlight, applications of solar 

irradiation in drinking water treatment and solar collector technologies are 

discussed.  A detailed review is carried out on the physicochemical changes of 

HS resulting from irradiation, keeping in mind that most of the referred work 

carried out by other researchers is performed using artificial light sources.  In the 

section on GAC adsorption, factors that control the adsorption of HS by GAC are 

thoroughly reviewed.  Properties of GAC, adsorption models and continuous 

flow mode are also presented.  Finally, some of the water treatment processes 

with respect to HS removal are briefly reviewed. 

In Chapter 3, specific objectives are defined here to achieve the aim of this 

investigation. 

Chapter 4 describes various aspects of the experimental design for the work 

conducted, including materials, analytical methods, solar irradiation experimental 

set-up, batch and column adsorption studies.   
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In Chapter 5, experimental results are presented and discussed.  In the section on 

solar irradiation effects, the solar measurement data and light transmission 

property of the experimental container are first examined, which is useful for 

interpreting and comparing the results for all the experiments carried out.  The 

effects of solar irradiation on HS are reported according to the time order of the 

seasonal experiments conducted – winter, spring and summer.  The kinetics of 

HS removal in terms of DOC and UV absorbance at 254 nm (UV254) are 

determined to quantitatively compare the solar effects, in particular the 

improvement by using solar collectors.  Since the hypothesis of this work is 

based on the size exclusion effects between HS and GAC, it is important to know 

the changes in molecular size of HS upon solar irradiation.  More attention is 

therefore paid on the molecular weight (MW) changes during solar irradiation.  

Some factors, such as pH and microbial activity that may affect the 

photodegradation of HS are also discussed.  Further investigations on aqueous 

fulvic acid (FA) and a natural water sample allow a better understanding and 

evaluation of the solar-GAC method, and these results are then presented.   

A section on adsorption is also presented in Chapter 5.  It starts with a brief 

description of the Aquasorb 101 GAC used in this research, based on the 

information from the supplier and lab analytical data.  The equilibrium isotherms 

are examined to describe the adsorption behaviour, followed by a comparison of 

adsorption parameters in order to quantitatively evaluate the improvement in the 

adsorption of the irradiated HS.  The role of the molecular size of HS in the 

adsorption process is also carefully examined, which is useful in understanding 

and explaining the experimental observations.  The GAC adsorption is normally 

used as a continuous flow process in water treatment, it is important to examine 

the effects of solar irradiation on HS adsorption under continuous flow conditions 
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in order to provide information for the large-scale applications; these results are 

then presented. 

To date, the work presented in this thesis is the first to examine a combination of 

solar irradiation and GAC adsorption to improve the removal of HS.  It is useful 

to compare findings in this study with relevant external researches so as to enable 

a theoretical assessment of the proposed method.  A comparison of results from 

different researchers is presented in Chapter 6.   

Finally, in Chapter 7, conclusions are drawn based on the findings throughout the 

experimental work.  Several suggestions that would require more attention for 

future work are also made.   
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction  

Health and safety concerns with respect to the presence of humic substances (HS) 

in water supply are arising.  In this chapter, a literature review is carried out as 

background work to explore the potential for using solar irradiation to enhance the 

removal of HS.  Topics reviewed on HS are composition and structure, bulk 

characterization, as well as the role of HS in disinfection by-product (DBP) 

formation.  Recent findings on the changes of HS due to irradiation are discussed, 

together with a description of solar spectrum, applications of sunlight in water 

treatment and solar technologies with respect to the development of solar 

collectors.  Additional interest is also given on the granular activated carbon 

(GAC) adsorption process, as it has been recommended as one of the best 

available methods to remove HS and can potentially be combined with solar 

irradiation.  Finally, other available water treatment processes in terms of HS 

removal are briefly reviewed.  

2.2 Humic substances 

2.2.1 A brief review of HS 

HS are the dominant group of natural organic matter (NOM) and are ubiquitous in 

aquatic and terrestrial environments (Thurman, 1985).  They are developed 
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randomly from the decomposition and transformation of plant tissues or animal 

residues (MacCarthy, 2001).  Terrestrial streams continuously carry HS through 

soils and eventually into water bodies.  The soils of watersheds, especially pH 

values, mineral composition and cations directly affect the amount and 

composition of aquatic HS (Hayes and Clapp, 2001).  Environmental conditions, 

such as climate, biosphere and geography, also greatly influence the properties of 

HS (Piccolo, 2001).  The concentration and distribution of HS vary for different 

water sources.  For example, ground water and sea water have the lowest 

dissolved organic carbon (DOC) concentration of HS, while tea-coloured rivers or 

dystrophic lakes may contain HS of 30 mg DOC/L or greater.  An extensive 

review has been carried out by Thurman (1985) and a summary of the 

representative data is presented in Table 2.1.   

Table 2.1 DOC concentration and distribution of HS in natural waters (Thurman, 

1985). 

 

 

HS are considered to be a complex mixture of organic compounds of highly 

heterogeneous nature.  The elemental contents of HS are Carbon (C), Hydrogen 

(H) and Oxygen (O) as well as a small percentage of Nitrogen (N), Sulphur (S) 

and other constituents (Rice and MacCarthy, 1991).  The major functional 

Water source DOC of HS 
(mg/L) 

HS of total 
DOC (%) 

Lake water 0.5-5 40 

River water 0.05-10 50 

Ground Water 0.03-0.1 25 

Sea Water 0.06-0.6 25 

Wetland 10-50 75 
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groups in HS are carboxylic and phenolic groups.  The presence of functional 

groups is very important with respect to the behaviour of HS in the environment 

and during water treatment.  Negative charges of HS, solubility, binding metal 

ions and organic contaminants, as well as adsorption onto mineral surfaces are all 

related to functional groups (Chen et al., 2002).  Despite extensive studies on 

elemental contents, functional groups and physicochemical reactions, little is 

known about the actual structure of HS to date.  It is traditionally accepted that 

HS are polymers constituted of aromatic or aliphatic units with a diverse array of 

functional groups.  The distribution of functional groups and arrangement of 

molecules vary from macromolecule to macromolecule, but the overall chemical 

characteristics are not sufficiently different to allow HS to be separated to 

individual components on a chemical basis (Summers and Roberts, 1988a).  The 

macromolecular self-association of relatively small molecules through weak 

binding forces such as van der Waals forces, charge transfer, hydrophobic 

interactions and hydrogen bonding also complicates the HS analysis (Summers 

and Roberts, 1998a; Piccolo, 2001).  Some models have been suggested to assist 

the understanding of HS structures and two of them are presented in Figures 2.1 

and 2.2.   

 

Figure 2.1 Proposed structure of humic acid (Stevenson, 1982).   
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Figure 2.2 Proposed structure of fulvic acid (Leenheer et al., 1998).  

Table 2.2 Physicochemical characteristics of HS (Reckhow et al., 1990; Karanfil 

et al., 1996a).     

HS Aromaticity 
(%) 

Carboxylic 
acidity 
(meq/g) 

Phenolic 
acidity 
(meq/g) 

Mw
a (Da) 

Ohio River HA 34 3.8 1.5 9.0 Åb 

Ohio River FA 14 5.0 1.0 5.5 Å 

Laurentian HA 33.4 8.9 5.7 3982 

Laurentian FA 28.2 11.7 9.3 2402 

SRFAc 24.8 8.1 3.3 1920 

AHAd 57.7 7.9 3.6 4006 

Mw: Weigh-average molecular weight 

Å: Molecular size 10-10 m 

SRFA: Suwannee River fulvic acid 

AHA: Aldrich humic acid 

A classic definition is to divide soluble HS into humic acid (HA) and fulvic acid 

(FA) based on their solubility in water as a function of the pH value of the 

extraction medium (MacCarthy, 2001).  HA is the fraction that is not soluble at 
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pH lower than 2, but soluble at higher pH.  The fraction that can dissolve at all 

pH values is FA.  In general, FA accounts for a larger fraction than HA in natural 

waters, whereas in soils the HA content is higher than the FA content (Nikolaou 

and Lekkas, 2001).  Table 2.2 presents a summary of the physiochemical data of 

FA and HA from different sources (Reckhow et al., 1990; Karanfil et al., 1996a).  

From the above data and graphs, it can be seen that HA is generally of higher 

molecular weight (MW) and a lower proportion of oxygen containing functional 

groups compared to FA.  It has been revealed that FA has large relatively 

immobile aliphatic structures with many carboxylic groups and HA has a high 

aromaticity with many carbonates and phenolic groups (Cook and Langford, 

1998).  Chen et al. (2002) reported that soil derived HS have a relative 

abundance of aromatic functional groups compared to aquatic HS while the latter 

possesses more carboxylic functional groups compared to the former.  From the 

data in Table 2.2, it is clearly seen that HA and FA isolated from various sources 

exhibit different characteristics, confirming the heterogeneous nature of HS.  As 

a result, the reactivity and treatability of HS may differ from source to source 

when looking at water treatment processes.  AHA and SRFA are commonly used 

as reference materials in HS research, enabling inter-laboratory comparisons 

under different experimental conditions.   

2.2.2 Bulk characterization of HS 

The amorphous mixture nature makes it impossible to characterize a unique 

fraction of HS.  Therefore, characteristic data of HS obtained by current 

techniques refer to average properties (MacCarthy, 2001).  Likewise, due to the 

complexity of HS, a single analytical method can only yield data of limited 

usefulness (Peuravuori and Pihlaja, 1997; Chen et al., 2002).   
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2.2.2.1 Ultraviolet and visible light absorbance 

Absorption of ultraviolet (UV) or visible irradiation by organic molecules 

corresponds to the excitation of electrons and is related to certain functional 

groups.  HS contain a variety of chromophores absorbing light of a wide 

wavelength range found in the solar spectrum.  The most prominent 

chromophores are aromatic structures and conjugated bonds.   

 

Figure 2.3 UV/visible spectra of several lake waters with different DOC of HS 

(Zuo and Jones, 1997).  

In the visible range (400-800 nm), HS absorb mostly the short wavelength part of 

light.  The typical yellow-brown colour of natural water is a consequence and a 

raw correlation between colour and humic content or MW exists (Wang et al., 

1990; Hautala et al., 2000).  Absorbance at wavelengths between 400 nm and 

465 nm has been recommended for measuring the colour of HS (Bennett and 

Drikas, 1993; Hautala et al., 2000).   
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In the UV range (200-400 nm), unlike many other organic compounds, HS do not 

exhibit distinguishable peaks when scanned with a UV spectrophotometer.  

Instead, a smooth increase of absorbance with decreasing wavelength is observed.  

An example of this is given in Figure 2.3, which shows a gradually decreasing 

absorbance as the wavelength increases.  This observation is explained by the 

existence of numerous high energetic bonds and aromatic rings which do not have 

distinguishable absorption spectra.   

Table 2.3 A summary of the applications of UV-visible spectroscopy to 

characterize HS.  

Wavelength Correlative properties References 

254 nm 
DOC, HS content, 

aromaticity, formation of 
DBPs 

Dobbs et al., 1972; Reckhow 
et al., 1990; Deflandre and 
Gagne, 2001; White et al., 

2003 ; Ates et al., 2007 

400, 410, 456, 
465 nm Colour Bennett and Drikas, 1993; 

Hautala et al., 2000 

272 nm Aromatic rings, formation of 
DBPs 

Li et al., 1998; Korshin et 
al., 2002 

280 nm MW Chin et al., 1994; Peuravuori 
and Pihlaja, 1997 

250/365 nm 
(E2

*/E3) 
Aromaticity, MW Peuravuori and Pihlaja, 

1997; Chen et al., 2002 

465/665 nm 
(E4/E6) 

Humification, MW, 
aromaticity 

Thurman, 1985; Chin et al., 
1994; Schmitt-Kopplin et al., 

1998 

* E is the absorbance. 
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The light absorbing properties are of great importance in characterizing HS.  A 

summary of some applications of UV-visible spectroscopy from different 

researchers is given in Table 2.3.  Among them, UV absorbance at 254 nm 

(UV254) is singled out as the most commonly used parameter for characterizing 

HS; this is due to the fact that it is a highly specific indicator of aromatic and 

conjugated character of organics, and also convenient to measure.   

2.2.2.2 Organic carbon content 

Another surrogate parameter, widely used for characterizing HS, is DOC 

concentration, which is measured instead of total organic carbon (TOC) by 

passing the solution through a 0.45 µm membrane filter (Standard Methods for the 

Examination of Water and Wastewater, 1998).  A good correlation has been 

obtained between UV254 and DOC (with an R2 value of 0.93) from data collected 

from a number of water sources and references, as illustrated in Figure 2.4.  In 

general, the higher the DOC, the higher the UV254 value is.  It should be noted 

that this observation is based on data collected from a variety of untreated water 

samples.  After physicochemical treatment, changes in UV254 and DOC of HS 

will differ.  For example, some non-humic fractions which are available for 

biodegradation may account for DOC concentration but absorb little UV.  As a 

result, one might observe no decrease in UV254 after treatment, although these 

fractions may have been utilised by bacteria.   

The ratio of UV254 and DOC can be used to evaluate the relative change.  This 

ratio is called specific UV absorbance (SUVA) and is often used as an indicator of 

the aromatic carbon content of HS (Weishaar et al., 2003; Singer, 1999).  The 

higher the SUVA value, the more aromatic the HS are.  Edzwald and Tobiason 
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(1999) have related the SUVA value with hydrophobicity and hydrophilicity of 

HS.  Generally, the SUVA value is higher for HS with high hydrophobicity.   

y = 0.0491x - 0.0573
R2 = 0.9348
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Figure 2.4 Relationship between DOC and UV254 for a variety of water samples 

(Collins et al., 1986; Chow et al., 1999; Nokes et al., 1999; Bergamaschi et al., 

2000; Volk et al., 2000; Singer and Bilyk, 2002; Chow et al., 2008).   

2.2.2.3 Molecular size 

The size of humic molecules is an important characteristic of HS.  It has been 

found that the molecular size is related to nearly all physicochemical aspects of 

HS, such as DBP formation (Reckhow et al., 1990), coagulation efficiencies 

(Ratnaweera et al., 1999), complexation of metals (Leenheer et al., 1998), 

adsorption of HS onto mineral and carbon (Kilduff et al., 1996; André, 2006), and 

partitioning of organic pollutants.  The size of organic molecules has been shown 

to be directly proportional to the MW (Cornel et al., 1986) and therefore 

commonly represented as MW.  An illustration of the effects of MW on HS 
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properties and reactivity is adapted from Cabaniss et al. (2000) and shown in 

Figure 2.5.   

 

Figure 2.5 Effect of MW on HS properties and reactivity (Cabaniss et al., 2000). 

Literature values indicate that the MW of HS can vary from a few hundreds to 

more than 1×106 Dalton (Da).  Recent research shows that HA has an average 

MW in the range of 2,000-5,000 Da and FA has an average MW varying from 

500 to 2,000 Da (Thurman, 1985).  Recently, the measurement of molecular size 

has been widely conducted by means of high performance size-exclusion 

chromatography (HPSEC).  This technique is based on different accessibility of 

molecules of various sizes into the column pores.  As a HS sample passes 

through the column, smaller components are relatively easily accessible to the 

column pores thus have a longer retention time.  Consequently, large 

components will elute earlier from the column than small ones (Chin et al., 1994).  

HPSEC analysis is carried out without pre-isolation of aquatic HS and requires 

only a small amount of sample (less than 5ml) as well as a short running time 

(normally 10 to 20 minutes).   
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Commonly employed HPSEC columns for HS analysis are TSK, Protein-Pak and 

Biosep columns, all packed with silica gels (Chin et al., 1994; Peuravuori and 

Pihlaja, 1997).  Conte and Piccolo (1999) compared the performance of Biosep 

and TSK columns on the MW determination of HS.  They found that both TSK 

and Biosep columns can adequately be used to monitor relative changes in MW 

but values are not absolute.  

HPSEC can simultaneously provide number average molecular weight (Mn), 

weight average molecular weight (Mw) and polydispersity (ρ) by using 

polystyrene sodium sulphonates (PSS) standards to calibrate the column (Chin et 

al., 1994; Pelekani et al., 1999).  Salicylic acid and acetone are sometimes used 

as low MW standards (Karanfil et al., 1996a; Zhou et al., 2000).  Baseline 

corrections, MW cutoffs (MWCOs) of the chromatogram, and UV detection 

wavelength can also influence the MW determination (Zhou et al., 2000).   

Other characterization techniques include Fluorescence Emission Spectrometry, 

Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance 

(NMR) and Electron Paramagnetic Resonance (EPR) (Nikolaou and Lekkas, 2001; 

Chen et al., 2002).  

2.2.3 HS as precursors for chlorination by-products 

Since the early work of Rook (1974), HS have been strongly implicated as 

principle precursors for carcinogenic DBPs during chlorination of drinking water 

and this has led to much attention paid on the adverse aspects of HS on drinking 

water safety.  HS react with chlorine to produce trihalomethanes (THMs), 

haloacetic acids (HAAs) and some other by-products.  An equation to model the 

reaction of HS with chlorine is (Singer, 1999): 
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HOCl + Humic substances + Br-       CHCl3 + CHBrCl2 + CHBr2Cl + CHBr3 + 

ClAA* +Cl2AA + Cl3AA + BrAA + Br2AA + Br3AA + 

BrClAA +BrCl2AA + Br2ClAA + other chloro-, bromo- 

and bromo-chloro species                       (2.1)               

* AA: acetic acids                                                                 

A number of factors can control the extent of DBP formation, such as temperature, 

pH, bromide (Br) content, amount and characteristics of HS (Ye et al., 2009).  

For example, the formation of THMs and HAAs increases with increasing 

temperature, so DBP levels would be higher during the warmer months of the year 

(Singer, 1999), which could be a plausible reason in this study to make use of 

sunlight for HS removal so as to control the DBP formation.  

Among these factors, characteristics and concentrations of HS have been found to 

have the major influence on the DBP formation and many studies have reported a 

simple and reliable correlation between surrogate parameters of HS and DBP 

formation (Korshin et al., 1997; Kitis et al., 2001; Weishaar et al., 2003).  White 

et al. (2003) found that UV254 is a good indicator for DBP formation, whereas 

DOC is less correlated to DBP formation.  Reckhow et al. (1990) and Singer 

(1999) reported that DBP production correlates well with SUVA and aromatic 

carbon content.  Representative results are shown in Figure 2.6.  The good 

correlation between SUVA or UV254 and DBP formation potential can possibly be 

explained by the fact that the electron-rich sites of HS, including activated 

aromatic structures and conjugated bonds, are primarily attacked by chlorine 

(Ates et al., 2007).  Collins et al. (1986) observed that the reactivity of HS in 

forming THMs varies as a function of MW.  That is, THM formation increases 

with increasing MW.   
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  (a) 

(b) 

Figure 2.6 Relationship between (a) DBP formation and UV254 (White et al., 

2003); and (b) DBP formation and UV254 (Singer, 1999).   

It should be noted that the good correlations reported above are for a single water 

with a high humic content in each study.  HS characteristics may vary 

significantly depending on water sources, leading to different DBP formation 

potentials.  Goslan (2003) found that when a range of water sources that did not 

have a high humic content were investigated, the correlations between water 

characteristics and THM formation were very weak.  Jung and Son (2008) 
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reported that the THM formation potential for raw waters with high aromaticity 

showed high correlations with SUVA while raw waters with low aromaticity had 

low correlations with SUVA.   

It can therefore be concluded that, for a specific set of water system, in particular, 

a water source with a high humic content, the key correlations are: 

- The higher the UV254, the more DBP will be formed; 

- The higher the SUVA, the higher the aromaticity, and the more DBP will be 

formed; 

- The higher the MW, the more DBP will be formed. 

Thus, to control the DBP formation of a water that contains a large amount of HS, 

potentially one should give priority to reducing the aromaticity, UV254, SUVA and 

MW of humic waters and hence reduce the concentration of precursors.   

2.3 Sunlight in water treatment 

2.3.1 Solar irradiation as source of energy 

The sun is the most freely available and renewable energy source on the earth.  

The earth receives 1.7×1014 kW energy (1.5×1018 kWh per year) coming from the 

sun, which is approximately 28,000 times the consumption of the entire world 

during that period (Rodríguez, 2003).  Solar irradiation outside the atmosphere 

has wavelengths from 0.2 µm to 50 µm.  Due to the absorption, scattering and 

reflection by different components in the atmosphere, such as ozone, oxygen, 
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clouds and aerosols, the irradiation is attenuated to wavelengths between 0.3 µm 

and 3 µm when reaching the earth surface.   

 

Figure 2.7 Diffuse and direct solar irradiation (Rodríguez, 2003). 

Global irradiation is composed of direct and diffuse irradiation (Figure 2.7).  

Direct irradiation is the irradiation which reaches the earth without being absorbed 

or reflected in the atmosphere.  Diffuse irradiation is the irradiation that has been 

dispersed in the atmosphere and reaches the ground level at random directions.  

The total direct irradiation in clear days is at its maximum and the diffuse 

irradiation is at its minimum.  The opposite situation is in cloudy days.    

2.3.1.1 Solar spectrum 

The solar spectrum is commonly divided into various regions (or bands) and 

sub-regions on the basis of wavelength (Figure 2.8).  The chemical and 

biological reactivity, as well as the photon energy of sunlight components, 

increase with the wavelength decreasing from longer to shorter.  UV-C is 

commonly referred to as the germicidal irradiation of the highest energy that can 
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alter DNA molecules and cause cell death.  A prolonged exposure to UV-B 

irradiation can lead to sunburn and skin cancer.  UV-A is considered less 

harmful but can indirectly distort DNA molecules of living organisms by 

producing highly reactive chemical radicals such as hydroxyl radical.  The 

visible spectrum of sunlight can be detected by human eyes by colours (Figure 

2.8).  Visible irradiation is considered less or non-harmful to living organisms.  

Visible light in the violet and blue bands from 400 to 500 nm has higher 

frequency and energy than the light in other bands, which is also called 

high-energy visible light.   
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Figure 2.8 Distribution of the components of sunlight.   

A standard sunlight spectrum (ASTM, 1992) is presented in Figure 2.9.  The 

standard spectrum represents the solar irradiation on the earth surface in a clear 

day.  It is clearly seen that UV irradiation only accounts for a very small 
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proportion of the solar spectrum, with only up to 4 % of the total solar energy 

(Corin et al., 1998).  This is because, when passing through the atmosphere, all 

UV-C irradiation and 90 % of UV-B irradiation are absorbed by ozone, or other 

atmospheric components, while UV-A irradiation is less affected by the 

atmosphere.  Consequently, the UV irradiation reaching the earth’s surface is 

largely UV-A and only a small amount is UV-B (World Health Organisation, 

WHO).  The solar intensity and the UV level vary with time of day and time of 

year.  They are also affected by latitude, altitude, thickness of ozone layer and 

weather conditions (WHO).  This variability makes it of great importance to 

measure solar data on-site and at real time, with respect to the experiments that 

will be discussed in chapter 5.   

 

Figure 2.9 Solar spectrum of the direct irradiation on the ground level on a clear 

day (ASTM, 1992).  (W/m2 nm is the unit of irradiation intensity of each 

wavelength) 
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2.3.1.2 World distribution of solar irradiation 

The distribution of solar irradiation all over the world varies from one location to 

another depending on geographic conditions, season, and time of day.  

According to Acra et al. (1984), the global geographic distribution of solar 

irradiation is generally divided into four belts.  A brief description with respect 

to the northern hemisphere is given by Acra et al. (1984): 

- The most favourable belt (15-35 °N).  This region has the greatest amount of 

sunlight and is most favourable for solar energy applications because of limited 

rainfall and cloud coverage.  The sunshine duration is on average 3000 h/year.  

Many of developing countries in northern Africa and southern Asia are within this 

region.   

- The moderately favourable belt (0-15 °N).  This region has high humidity and 

frequent cloud coverage.  There is usually 2500 h of sunlight per year.  The 

solar intensity all over the year is relatively uniform due to the slight seasonal 

variations.  

- The less favourable belt (35-45 °N).  The average solar irradiation intensity is 

similar to that of the above two regions.  Nevertheless, there are significant 

seasonal variations in solar intensity and daylight hours in this region.  Moreover, 

cloudiness and atmospheric pollution significantly reduce the solar intensity. 

- The least favourable belt (45 °N and above).  Most parts of North America and 

northern Europe are located within this belt.  Due to the higher latitude and 

lower solar altitude, half of the total irradiation is diffuse irradiation, with a 

relatively higher proportion in winter. 
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London (with latitude around 51°) is located within the least favourable belt.  

The weather in London features a mixture of sunshine, cloudiness and wetness.  

During winter months, daylight hours are short and solar intensity is low.  In the 

summertime, there are more sunny days, with frequently rain and cloud.  Despite 

this, the absence of published information (regarding the use of solar irradiation, 

and in particular under natural conditions, as a pre-treatment method prior to GAC 

adsorption to remove HS from water) encouraged a series of investigations to be 

carried out in London.  This research could provide important information to 

those areas with more favourable conditions for solar applications.  

2.3.1.3 Natural sunlight vs. solar simulator 

The solar spectrum contains all wavelengths that can be found in the emission 

from different lamps used in laboratory studies.  Figure 2.10 shows two 

examples of the spectral distribution and irradiation of a mercury lamp and a solar 

simulator that were used for HS photodegradation studies in the lab (Doll and 

Frimmel, 2003; Patel-Sorrentino et al., 2004).  A comparison between Figure 2.9 

and Figure 2.10 clearly demonstrates the difference in spectral distribution 

between simulated light and natural sunlight.  The intensity of artificial light in 

the UV range which is more effective in photooxidation is much higher than that 

in natural sunlight.  Patel-Sorrentino et al. (2004) reported that the photon energy 

from a mercury lamp (Figure 2.10b) was approximately 30 times greater than the 

solar photon energy.  In the work by Chow et al. (2008), it was estimated that an 

exposure of 24 h in the solar simulator is equivalent to 4 days of full, clear and 

sunny day exposure.  This implies that the photodegradation process under 

natural sunlight would be much slower than that observed under artificial light.  

Figure 2.10a also shows the sunlight spectral irradiation in different regions, 

including central Europe for different months of a year (Jananuary, March and 
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June), New Zealand and Germany.  As it can be seen, solar intensity varies 

depending on season and location, as well as time of day.  Therefore, lab studies 

using the simulated sunlight only provide useful information to understand the 

photodegradation of HS within a short period.  However, under natural sunlight 

conditions, solar intensities are not as constant as those under artificial light.  If 

solar irradiation is to be used as the energy source for application purposes, more 

investigations should be conducted under natural sunlight and this is one of the 

main drives for the research work presented in this thesis.   

 (a) 

        (b) 

Figure 2.10 Examples of the spectral distribution and irradiation of (a) a solar 

simulator (Doll and Frimmel, 2003) and (b) a mercury lamp (Patel-Sorrentino et 

al., 2004) used in HS photodegradation studies.  
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2.3.2 Photodegradation of HS 

HS contain many chromophoric groups that absorb irradiation at both UV and 

visible wavelengths.  In natural environments, HS are the main light absorbing 

constituent of natural water.  The yellow-brown to black colour of natural waters 

is the consequence of light absorbing.  The absorption of light by these 

chromophores leads to structural modification and gradual decomposition, which 

is known as photodegradation (Rodríguez-Zúñiga et al., 2008).   

2.3.2.1 Photodegradation process 

Photodegradation of HS by solar irradiation involves the formation of excited 

states and highly reactive species, such as singlet oxygen (1O2), hydrogen 

peroxide (H2O2), hydroxyl radical (·OH), superoxide (O2
-), and hydrated electrons 

(e-
aq) (Frimmel, 1994; Thomas-Smith and Blough, 2001; Goldstone et al., 2002; 

Paul et al., 2006).  The excited states decay rapidly.  The reactive species are 

powerful oxidants that can react fast with numerous organic components present 

in water.  It has been found that pH, metals and compositions of HS affect the 

production of oxidant radicals.   

Photodegradation by solar irradiation has been suggested to proceed via both 

direct and indirect photochemical pathways (Goldstone et al., 2002).  Absorption 

of photons by chromophores can directly result in a rapid rearrangement or 

breakdown of chromophoric structures and formation of non-chromophoric 

photoproducts.  Consequently, the loss of absorbance is higher at the spectral 

output of the irradiation source (Del Vecchio and Blough, 2002; Parkinson et al., 

2003).  An example is presented in Figure 2.11, which clearly shows that the 

biggest loss in absorbance occurred with chromophores at the irradiation 
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wavelength.  The loss of absorbance over the entire spectrum can be attributed to 

the indirect photodegradation.  The excited chromophores might act as 

precursors (sensitizers) for the production of reactive species which can oxidize 

both UV and non-UV absorbing chromophores.  Therefore, if direct 

photoreactions dominate, the rate of photodegradation will be proportional to the 

amount of light absorbed by HS.  If indirect photoreactions also play an 

important role, photodegradation of humic compositions which are not 

chromophoric may occur (Goldstone et al., 2002).   

 

Figure 2.11 Relationship between irradiation and absorbance removal (Parkinson 

et al., 2003).  A is the absorbance.   

2.3.2.2 Effects of irradiation on properties of HS 

Following the absorption of irradiation, a series of photoreactions occur in HS, 

leading to photobleaching (Allard et al., 1994; Reche et al., 1999; Chow et al., 

2008), DOC loss (Corin et al., 1996; Patel-Sorrentino et al., 2004),  MW 

decrease (Frimmel 1998; Lou and Xie, 2006), production of CO, CO2 and low 

MW organic compounds (Zuo and Jones, 1997; Brinkmann et al., 2003; Lehtola 
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et al., 2003; Xie et al., 2004), which in turn influence the physical, chemical and 

biological aspects of HS.   

Photobleaching – Photobleaching is a result of the destruction of chromophores 

(i.e. breakdown of aromatic structures or conjugated bonds), reflected by a loss of 

absorbance.  However, irradiation does not affect all chromophores in HS to the 

same extent, as a result, a nonuniform loss of absorbance across the entire 

wavelength range is observed using a spectrophotometer.  Figure 2.11 is a good 

example to illustrate this from Parkinson et al. (2003).  Del Vecchio and Blough 

(2002) who studied irradiation of humic samples using irradiation at different 

wavelengths found that the largest losses in absorbance always occurred at the 

irradiation wavelength.  A non-uniform loss in absorbance (200-550 nm) was 

also observed by Rodríguez-Zúñiga et al. (2008).  Corin et al. (1997) found that 

the UV254 absorbance decreased more rapidly than the absorbance at 460 nm for a 

lake water sample under UV irradiation, suggesting that the chromophores 

absorbing in the UV range are less stable against the radical attack than the 

chromophores responsible for the yellow colour of natural humic waters.  

Results from these studies imply two effects: (1) the primary photoreaction of 

chromophores that match the irradiation wavelength, and (2) the secondary 

photodegradation of chromophores with reactive species generated from the 

primary photoreaction.  This corresponds to the direct and indirect 

photodegradation pathways as previously described.   

Due to the heterogeneous nature of HS, a comparison of the removal of HS by 

different researchers is difficult unless exactly the same light source and HS 

samples are used.  The light irradiance is commonly expressed as the light 

‘intensity’ in W/m2, or the light ‘dose’ in kJ/m2, which is determined from the 

intensity and the irradiation time.  Published work however shows that 



Chapter 2                                           Literature Review 

 48

irradiation could result in UV254 reduction of HS, as presented in Table 2.4.  

UV254 absorbance is a commonly used surrogate to evaluate the irradiation effect 

on HS properties.  The available data demonstrate that: 

(1) the removal of UV254 is dependent on HS characteristics as well as irradiation 

wavelengths and intensities;  

(2) for the same water, the reduction of UV254 increases with increasing 

irradiation.   

Table 2.4 Irradiation effects on the UV254 removal of HS (Allard et al., 1994; 

Corin et al., 1998; Hongve, 1998; Goslan et al, 2006; Chow et al., 2008).  

Irradiation UV254 absorbance 
 

Source Intensity Duration 
(h) 

Initial 
(cm-1) 

Removal 
(%) 

References

Aquatic 
FA 12  N/A 95 

Soil HA 

UV lamp 
at 254 nm 16 W/m2 

58  N/A 95 

Allard et 
al., 1994 

8  31 
Lake 
water 

UV lamp 
at 254 nm 0.42 W/m2

168  

0.816 

85 

Corin et 
al., 1998 

Reservoir 
water 

UV lamp 
at 254 nm 34 W/m2 90 0.536 85 Goslan  

et al, 2006

Wetland 
water 0.306 25 

Drainage 
water 0.218 24 

Aqueduct 
water 0.087 38 

River 
water 

Solar 
Simulator 650 W/m2 24  

0.053 35 

Chow et 
al., 2008 
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DOC loss – A summary of the published DOC removal data with respect to 

irradiation is presented in Table 2.5; it is shown that irradiation leads to a decrease 

in DOC concentration of HS.  Contradictive findings to the listed research have 

been reported by Goslan et al. (2006) and Chow et al. (2008) who found that 

irradiation did not lead to any DOC change, possibly due to the high resistance of 

organics to complete mineralization.  These results indicate that the removal of 

DOC is also greatly affected by the characteristics of both HS and irradiation 

source.   

The decrease of DOC is attributed to the mineralization of dissolved organic 

molecules to CO, CO2 and other inorganic dissolved organic matter.  The CO 

and CO2 are transferred into the atmosphere, leading to a direct loss of DOC (Zuo 

and Jones, 1997; Xie et al., 2004).   

When HS are exposed to irradiation under different types of atmosphere (oxygen, 

nitrogen and air), the DOC loss differs.  Schmitt-Kopplin et al. (1998) found that 

the decrease of colour and TOC was much higher in the presence of oxygen 

compared to nitrogen.  Patel-Sorrentino et al. (2004) and Xie et al., (2004) 

reported a notable loss of DOC under oxygen (up to 46 %) and an extremely small 

DOC loss under nitrogen (2 %), while there was an insignificant difference in 

DOC loss between samples under oxygen and air atmospheres.  These results, on 

one hand, suggest the consumption of oxygen in the photodegradation process of 

HS.  Oxygen may act as an electron acceptor and a participant in secondary 

reactions to form photoproducts (Zuo and Jones, 1997; Patel-Sorrentino et al., 

2004).  On the other hand, it seems likely that the quantity of oxygen in the air is 

sufficient to support the photodegradation process.   
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Table 2.5 Irradiation effects on the DOC removal of HS (Allard et al., 1994; 

Corin et al., 1998; Hongve, 1998; Pullin et al., 2004; Winter et al., 2007; 

Rodríguez-Zúñiga et al., 2008).  

Irradiation      DOC 
 

Source Intensity Duration 
(h) 

Initial 
(mg/L)

Removal 
(%) 

References

30  50 
Aquatic 

FA 
UV lamp 
at 254 nm 16 W/m2 

71  
10 

75 

Allard et al., 
1994 

8  19 
Lake 
water 

UV lamp 
at 254 nm 0.42 W/m2

168  
17.7 

42 

Corin et al., 
1998 

Pond 
water 

Natural 
sunlight 157 W/m2 288 12 32 Hongve, 

1998 
Creek 
water 

Solar 
simulator 750 W/m2 48  27.4 16 Pullin et al., 

2004 

Lake 
water 7.0 10 

Pond 
water 11.9 24 

Aldrich 
HA 

Natural 
sunlight N/A 312 

(13d) 

10.9 26 

Winter et 
al., 2007 

River 
water 

(winter) 
48  11.2 68 

River 
water 

(summer) 

Hg-Xe 
lamp at 
290-475 

nm 

58 W/m2 

48  10.9 79 

Rodríguez-
Zúñiga et 
al., 2008 

MW decrease – The reduction in UV254 and DOC indicates the breakdown of 

certain structures and formation of photoproducts due to irradiation.  This may in 

turn influence the MW, which is a key parameter on the physical, chemical and 

biological properties of HS.  Some researchers have looked at the changes in 
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MW due to the photodegradation of HS, finding that following the absorption of 

light, there is a decrease in the average MW of HS (Lepane et al., 2003; Buchanan 

et al., 2005; Lou and Xie, 2006; Carvalho et al., 2008).  Representative HPSEC 

chromatograms of HS before and after irradiation are shown in Figure 2.12 (Lou 

and Xie, 2006).  It can be seen that the total peak area of chromatograms 

decreased after irradiation, suggesting a decrease in the MW of the irradiated HS.  

One should keep in mind that the decrease in MW measured by HPSEC only 

represents the changes of chromophores, i.e. destruction of carbon double bonds 

or degradation of large components to smaller compounds which do not absorb 

light to the same extent as their parent molecules.   

 

Figure 2.12 HPSEC chromatograms of HS before and after irradiation under 

different atmospheres (Lou and Xie, 2006). 

HS are a mixture of organic compounds with a wide range of MW.  Changes in 

different MW fractions may vary, and therefore affect the overall MW.  Studies 

on the reduction of MW fractions in HS have been performed on the fractionated 

HS or by means of HPSEC measurement.  Carvalho et al. (2008) fractionated 
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FA samples into four MW fractions (>10, 10-5, 5-1 and <1 kDa) using 

ultrafiltration (UF).  Following solar irradiation, the authors found a dramatic 

increase in the lowest MW fraction (<1 kDa) and a significant decrease in the 

fraction with MW >10 kDa.  Buchanan et al. (2005) observed that the high MW 

hydrophobic molecules were susceptible to photoirradiation.  As a result of 

photodegradation, non-UV absorbing and low MW hydrophilic molecules were 

formed.  Lehtola et al. (2003) studied the changes in the MW by dividing 

HPSEC chromatograms into several fractions and making a comparison of each 

MW fraction before and after UV irradiation (Figure 2.13).  As shown, the 

highest removal was observed in the fractions with large molecular size, 

especially in sample B where fractions 1, 2 and 3 were undetected in the 

chromatograms after irradiation.  Changes in medium and small fractions varied.  

In contrast to an increase in fraction 5 of sample A, reductions in medium MW 

fractions were observed in the other two samples.  The increase in the smaller 

fractions was more significant for samples A and B.  It is apparent that the 

overall MW reduction is a result of the photodegradation of MW fractions.  The 

photodegradability of different fractions varies within the same humic mixture 

and can also be affected by the raw water characteristics.  

Moran and Zepp (1997) have suggested that four classes of degradation products 

of HS are formed during solar irradiation:  

(1) low MW organic compounds;  

(2) carbon gases (CO, CO2 and other forms of inorganic carbon);  

(3) unidentified bleached organic matter; and  

(4) nitrogen- and phosphorus-rich compounds.   
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Figure 2.13 MW fractions of different water samples before and after UV 

irradiation (Lehtola et al., 2003).  Samples A, B and C were raw waters from 

three Finnish waterworks.  Samples A and B were ground waters and sample C 

was surface water.  Numbering with decreasing order of MW.   

All of the identified small organic photoproducts are carbonyl compounds, most 

of which have the MW less than 100 Da (Moran and Zepp, 1997).  Decreases in 

pH values during irradiation have been observed (Corin et al., 1996; Lepane et al., 

2003; Lou and Xie, 2006), which is a result of the photoproduction of small 

organic acids.  The formation of photoproducts is consistent with the decrease in 

UV254, DOC and MW.  The physical and chemical characteristics of the 

irradiated HS are therefore different from the non-irradiated HS.   

There is no doubt that UV irradiation in sunlight greatly affects the 

photodegradation of HS.  However, it does not necessarily mean that UV 

irradiation is the only active irradiation for HS photodegradation.  Several 

studies have suggested a less effective action of the violet and blue light 

(wavelengths between 400 and 490 nm) in the visible region with respect to the 
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removal of HS (Archibald and Roy-Arcand, 1995; Moran and Zepp, 1997; 

Frimmel, 1998; Lou and Xie, 2006).  Lou and Xie (2006) compared the 

contributions of UV-B, UV-A and visible irradiation to the MW decrease of 

several HS waters and found that visible light was responsible for up to 40 % of  

the MW decrease, indicating the important influence of visible irradiation on HS 

properties.  This further justifies the possibility of making use of natural sunlight 

for the purpose of removing HS from water in the research presented in this thesis.  

However, considering the low intensity of UV irradiation and the less effective 

action of visible light, the photodegradation of HS by natural sunlight may 

proceed with relatively slow kinetics and hence is less effective.  A further 

treatment stage is therefore required. 

2.3.3 Water treatment with solar energy 

2.3.3.1 Using solar energy in drinking water treatment  

Treating drinking water with natural sunlight is a promising and sustainable 

approach.  Solar irradiation can remove a number of organic chemicals and 

microorganisms from water and avoid generation of harmful by-products from 

chemical addition (Caslake et al., 2004).   

Sunlight is known to remove a variety of pathogenic bacteria by direct exposure, 

which is called solar disinfection (Blanco et al., 1999; Kehoe et al., 2000; 

McLoughlin et al., 2004).  Solar disinfection involves both heating and 

photochemical effects.  Photons of sunlight are absorbed by light-sensitizers 

which can be excited and react with surrounding oxygen to generate highly 

reactive radicals.  These radicals can distort the DNA molecules or break the 

chain structures.  As a consequence, the replication process of microorganisms is 
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blocked and bacteria are inactivated.  Kehoe et al. (2000) reported that by 

exposing Escherichia coli (E.coli) containing water to natural sunlight for 8 h 

with solar intensity of 97.6 mW/m2, total inactivation was achieved for a highly 

turbid water of 300 NTU (nephelometric turbidity unit).  Ubomba-Jaswa et al. 

(2009) found that for complete inactivation, the minimum UV-A dose should be 

above 108 kJ/m2.  As suggested by the Solar Water Disinfection (SODIS) 

method, contaminated water placed in a transparent PET-bottle or glass bottle and 

simply exposed to the sun for 6 hours can provide safe drinking water for people 

in developing countries.   

By exposure to solar irradiation alone, a number of organic contaminants, such as 

pesticides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals, can be 

photodegraded (Bertilsson and Widenfalk, 2002; Doll and Frimmel, 2003; 

Matamoros et al., 2009).  For example, Bertilsson and Wildenfalk (2002) found 

that the photodegradation of three types of PAHs followed first-order kinetics.  

Under 1.6 W/m2 UV-B and 13.3 W/m2 UV-A irradiations, anthracene and 

phenanthrene were rapidly photodegraded (half-lives of 1 and 20.4 h, 

respectively), while the half-life of naphthalene was more than 100 h.  

Matamoros et al. (2009) studied the photodegradation of four pharmaceuticals 

(carbamazepine, ibuprofen, 17 alpha-ethinylestradiol and ketoprofen) under 

natural sunlight (daily average 270 W/m2) and a solar simulator (507.5 W/m2).  

The authors found that the half-lives of four pharmaceuticals varied from 0.54 

min to 39 h when exposure to simulated light, while their half-lives are 5 to 111 

longer with natural sunlight.  The mechanism for the photodegradation of 

organic contaminants follows the basic photochemical processes (as described in 

section 2.3.2.1), involving electronic excitation and generation of reactive species.   
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Examples above illustrate that solar-induced photodegradation can remove 

various contaminants.  However, the photodegradation efficiency depends on a 

number of factors, such as irradiation intensity, exposure time, characteristics of 

chemicals and turbidity of water.  As shown, exposure to natural sunlight is a 

relatively slower process than using artificial light source.  To accelerate the 

photodegradation process, in solar applications, photocatalysts (such as titanium 

dioxide (TiO2) and Fenton reagent (addition of H2O2 to Fe2+ salt)) have been 

introduced (Malato et al., 1997; Blanco et al., 1999; Fernández-Ibáňez et al., 2003; 

McLoughlin et al., 2004; Mavronikola et al., 2009).  The reactive radicals 

generated through catalysts can destroy most of microorganisms and organic 

molecules.  In addition, artificial UV irradiation is often employed instead of 

natural sunlight to accelerate the process (Cho et al., 2005; Paleologou et al., 

2007).  However, it is inevitably associated with extra cost.   

2.3.3.2 Solar collectors 

The practical use of solar-driven photochemical processes has been largely 

enabled by the design and construction of different types of solar collectors.  The 

solar collector is a device that is designed to efficiently collect solar photons and 

introduce them to target waters to promote specific chemical reactions.  Solar 

collectors are traditionally classified into three categories according to their 

thermal performance (Rodríguez et al., 2004), which are summerized in Table 2.6. 

A non-concentrating solar collector is a static system without any solar tracking 

mechanisms (Figure 2.14).  The flat plate is usually aiming to the sun at a 

specific tilt depending on the geographic location, and in particular the latitude of 

the site.  Their main advantages are low manufacturing cost and simplicity.  

http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=T2I8kloFo68chEJNj1D&name=Mavronikola%20C&ut=000268262000017&pos=1
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Non-concentrating collectors are typically encountered in applications that require 

only a small scale use.   

Table 2.6 Classifications of solar collectors (Rodríguez et al., 2004). 

Type of Solar 
Collector Featured Collectors Concentration Ratio

Non- 
concentrating Flat Plate < 1.5 

Medium- 
concentrating Parabolic Trough Collector 5 - 50 

High- 
concentrating Parabolic Dish 100 - 10,000 

 

Figure 2.14 Non-concentrating solar collectors - flat plates at PSA, Spain (source: 

http://www.psa.es/webeng/instalaciones/desalacion.php).  PSA: Plataforma Solar 

de Almería. 

The parabolic trough collector (PTC) is a good representative of 

medium-concentrating solar collectors (Figure 2.15).  This device has a structure 

with a parabolic reflective surface and is normally equipped with either single- or 

two-axis sun tracking devices, which enable the incoming sunlight to be always 

perpendicular to the collector aperture.  All the direct irradiation reaching the 
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aperture is therefore reflected and concentrated onto the tubular receiver installed 

along the linear focus of the parabola.  PTCs can concentrate the sunlight 

intensity between 5 and 50 times, depending on the sun tracking system and the 

parabola size.  

 

Figure 2.15 Medium-concentrating solar collectors - parabolic trough collectors 

at PSA, Spain (source: http://www.psa.es/webeng/instalaciones/parabolicos.php). 

 

Figure 2.16 High-concentrating solar collectors - parabolic dish at PSA, Spain 

(source: http://www.psa.es/webeng/instalaciones/discos.php). 

The parabolic dish is a high-concentrating collector that has a focal point instead 

of a linear focus (Figure 2.16).  It features a paraboloid with solar tracking 

http://www.psa.es/webeng/instalaciones/discos.php
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mechanisms.  For effective sun tracking, high-precision optical systems are 

required.  The solar intensity concentration achieved by a high-concentrating 

collector can be up to 10,000 times of what can be achieved with a 

non-concentrating solar collector.   

The advantages and disadvantages of non-concentrating and concentrating solar 

collectors are summarized in Table 2.7 based on the reviews by Malato et al. 

(2002) and Rodríguez et al. (2004) who studied solar photocatalysis for water 

treatment.  In general, concentrating collectors have significantly better 

performance but they require sun tracking systems, which lead to increased 

installation and maintenance cost.   

Table 2.7 Advantages and disadvantages of the non-concentrating and 

concentrating solar collectors (Malato et al., 2002; Rodríguez et al., 2004).   

Type Advantages Disadvantages 

Non-concentrating 
collector 

(flat plate type) 

 
a. More economic due to lower 
maintenance requirements; 
 
b. More suitable for small scale 
use; 
 
c. Simple installation; 
 
d. Use both direct and diffuse 
irradiation. 
 

Less efficient in 
concentrating sunlight on 

an energy basis 

Concentrating 
collector 

(parabolic trough 
or dish type) 

 
a. Receiving a large amount of 
energy per area of the 
containers; 

 
b. Suitable for supporting 
catalysts. 
 

a. Relatively expensive; 
 

b. Design to only use 
direct irradiation; 
 
c. Water overheating may 
occur. 
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   (a) 

   (b) 

Figure 2.17 (a) Simulations of the incident sunlight reflected by a compound 

parabolic collector onto the bottle located in the centre (Blanco et al., 1999), and 

(b) an example of the CPC application (Rodríguez, 2003).   

In addition to the above applications, compound parabolic collectors (CPCs) are 

of growing interest in solar applications.  The CPC is a static collector with a 

reflective surface describing an involute around a cylindrical tube (Figure 2.17a). 

As there are no tracking mechanisms of CPCs, they are more economic than solar 

tracking collectors.  The CPC is proposed as a combination of parabolic 

collectors and flat plate systems, therefore, it is able to concentrate direct solar 
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irradiation, and also have the properties of flat static plates using diffuse 

irradiation (Malato et al., 1997; Ajona and Vidal, 2000; Rodríguez et al., 2004).  

Figure 2.17a is an illustration given by Blanco et al. (1999), showing that the 

incident light (including direct and diffuse) can be effectively collected and 

reflected by a CPC onto the bottle located in the centre.  An example of a CPC 

type collector is presented in Figure 2.17b (Rodríguez, 2003).   

Instead of the pilot scale solar applications, a variety of small scale water 

treatment studies have been carried out using simple and static solar collectors, 

including plastic pouches or plastic bottles with light reflective and absorptive 

surfaces (Kehoe et al., 2001; Walker et al., 2004; Mani et al., 2006), dark grey 

polyvinyl chloride (PVA) base covered by acrylic plate (Caslake et al., 2004), and 

V-groove, parabolic and compound parabolic reactors (McLoughlin et al., 2004).   

A number of laboratory and field tests have proven the effective use of solar 

collectors in water treatment (Malato et al., 1997; Blanco et al., 1999; Rodríguez 

et al., 2003 and 2004; Navntoft et al., 2008; Remoundaki et al., 2009).  For 

example, Navntoft et al. (2008) studied the inactivation of E.coli in a well water 

using CPC under sunlight and found that complete inactivation was achieved in 

the CPC system when 150 kJ/m2 irradiation received from the sun, while the water 

without CPC needed 210 kJ/m2, which means that complete inactivation using 

CPC was achieved sooner than that without CPC.   

Other studies on the removal of HS from water by photocatalytic methods using 

solar collectors have been reported recently (Moncayo-Lasso et al., 2008; 

Remoundaki et al., 2009), however, there is limited information regarding using 

solar irradiation alone to treat humic rich waters.  It is therefore of interest to 

conduct research work using different types of solar collectors to evaluate the 
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effect of sunlight alone and performance of solar collectors on the properties of 

HS.  

2.4 GAC adsorption 

The GAC adsorption process is of great importance in water industry.  It can be 

used to remove a variety of contaminants, such as taste and odour compounds, 

algal toxins, industrial chemicals and natural organic materials (Newcombe, 1999).  

Adsorption by GAC is considered to be one of the best available and 

recommended technologies for the removal of HS (Jacangelo et al., 1995; 

Karanfil et al., 2000).  However, it has been found in practice that the presence 

of HS significantly reduces the effectiveness of GAC adsorbers with respect to 

equilibrium capacity, adsorption rates and removal of the target contaminants 

(Carter and Weber, 1994; Newcombe et al., 2002a).  As a result, the operational 

life of fixed-bed GAC adsorbers is significantly reduced.  The rapid saturation of 

GAC requires frequent replacement or regeneration, resulting in an increase in 

treatment costs and a loss of GAC capability to produce high quality water.  

Typical high removal efficiencies of HS by GAC adsorption process have been 

reported to be 60-80% (Owen et al., 1993; Lambert and Graham, 1995).  A study 

on a Finnish water treatment plant which involved GAC adsorption process 

showed that only a 47 % removal of TOC was achieved (Matilainen et al., 2002).  

A fundamental understanding of the factors that influence the GAC adsorption 

process is essential in order to optimise the existing method, or tailor new 

strategies to improve the HS removal.   
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2.4.1 GAC properties 

The main raw materials for GAC production include wood, coal, peat, coconuts or 

bones (Crittenden et al., 2005; Newcombe, 2006).  The activation processes 

include treatment with carbon dioxide and high temperature steam (900-1100°C) 

or air.  Carbons with high internal surface and porous structures are therefore 

generated.  The surface area of GAC is normally referred to as the internal area, 

due to the fact that the external surface area of GAC is less than 1/100 of the 

internal area (Newcombe, 2006).  Therefore, the internal area provides the 

majority of the sites for adsorption.  The surface area of GAC is usually about 

1000 m2/g with a maximum value of roughly 1400 m2/g (Fettig, 1999).  The 

pores on GAC can be classified into three categories, according to their size 

(Crittenden et al., 2005): 

- Macropores  (> 50 nm) 

- Mesopores  (2 nm - 50 nm) 

- Micropores  (< 2 nm) 

The surface area, total pore volumes, and pore size distribution can vary 

significantly among different carbons, depending on the type of raw materials and 

production processes.  For example, the micropores could account for between 

30 % and 80 % of the total surface area (Fettig, 1999). 

Carbon (C) is the most abundant element in GAC (80-98 %), followed by oxygen 

(2-20 %) which mainly exists in oxygen-containing functional groups, such as 

carboxylic and phenolic groups (Newcombe, 2006).  These functional groups are 

believed to greatly influence GAC surface chemistry, such as hydrophobicity, 
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heterogeneity and point of zero charge (pHpzc) (Fettig, 1999).  In addition to 

oxygen, GAC also contains a variety of elements such as S, Cl, Na, K, Si and Fe, 

depending on the composition of raw materials and the methods of generation.  

Cheng et al. (2005) applied two aspects of modification to commercial carbons: (1) 

high temperature ammonia treatment to enlarge the surface, and (2) impregnation 

with iron.  Both treatments led to a dramatic increase in the adsorption of HS, 

implying that pore size and surface chemistry of GAC are two aspects that could 

be improved to enhance the HS removal.  

2.4.2 Effects of physicochemical characteristics on HS adsorption 

Adsorption is a surface phenomenon.  The surface characteristics of adsorbates 

and adsorbents play a major role in controlling the adsorption behaviour of the 

system.  The interactions between GAC and HS can be explained from the 

physical and chemical perspectives.   

2.4.2.1 Physical aspect  

For the physical aspect, the ability of humic molecules to access GAC pores is of 

great importance in controlling adsorption.  Available data about size 

distribution of HS and pore size distribution of GAC have revealed that most 

pores of commercially available GAC are smaller than the average molecular size 

of HS (Dastgheib et al., 2004).  For example, Filtrasorb 400 (F400), a commonly 

used GAC in water treatment, has approximately 1000 m2/g specific surface area 

and about 86 % of the surface area falls into pores smaller than 1 nm in width 

(Kilduff et al., 1996).  The average molecular sizes of HS have been reported to 

be between 0.4 and 4 nm, using various analytical techniques to measure them 
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(Cornel et al., 1986; Aiken and Malcolm, 1987; Karanfil et al., 1999).  

Apparently, some larger humic fractions would be excluded from the small GAC 

pores due to size exclusion effects.   

Evidence for size exclusion effects can be found in some investigations which 

were carried out on bulk water or different fractions of HS (Summers and Roberts, 

1988; Kilduff et al., 1996; Yasua et al., 1997; Karanfil et al., 1999; Newcombe et 

al., 2002a; Schreiber et al., 2005).  Kilduff et al. (1996), Yasua et al. (1997) and 

Schreiber et al. (2005) reported that humic waters with lower initial average MW 

can be treated to a greater extent, which could be attributed to the good 

accessibility of small molecules to the micropores of GAC.  By looking into 

different MW fractions which were fractionated using UF from the whole humic 

solutions, Kilduff et al. (1996) found that the GAC adsorption capacity of smaller 

molecules (MW 1400 Da) increased by more than a factor of 5, compared to the 

fractions with MW about 6800 Da, based on the Freundlich modelling results.  

Karanfil et al. (1999) compared the HS adsorption using several commercial 

coal-based carbons and found that the adsorption capacity increased with an 

increasing surface area in the meso- and macropore size range.   

Studies listed above provide experimental evidence that adsorption effectiveness 

is highly related to size exclusion effects.  It is therefore important to have a 

good compatibility between pore size distribution of the GAC used and molecular 

size distribution of HS.  On one hand, for a given size distribution of humic 

molecules in waters, benefits arise from having adsorbents with sufficiently 

accessible surface areas, or large pores, to adsorb HS.  On the other hand, for a 

given probable pore size distribution of the GAC used, benefits to the adsorption 

of HS also arise from using the pre-treatment to reduce the amount, or size, of 

large molecules.  Previous studies have proven that coagulation and ozonation 
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can significantly increase the GAC adsorption capacity of HS due to the 

elimination of high MW components through pre-treatment processes (Hooper et 

al., 1996; Matilainen et al., 2006).  In some cases, the GAC adsorbers can also 

host microorganisms and partly act as biological filters after an oxidation 

treatment (Graham, 1999).  Biological GAC filters have been found to be 

effective in removing low MW humic fractions. 

2.4.2.2 Chemical aspect 

For the chemical aspect, surface chemistry of GAC, molecular structures of HS 

and solution chemistry are important factors that affect the interactions between 

HS and GAC (Dastgheib et al., 2005).  Similar functional groups, such as 

carboxylic and phenolic groups, have been identified both on GAC surface and 

within HS structures.  The repulsive forces between these functional groups may 

be responsible for the low adsorption capacity of GAC for HS.  Carboxylic 

groups deprotonate at pH values of 4 to 5 and phenolic groups depronate at pH 

values of 9 to 10.  Therefore, for the pH range typically encountered in water 

treatment (6.5-8), HS are expected to be negatively charged.  To enhance the 

adsorption of HS, the GAC surface should exhibit positive charge (basic surface 

area) to create the attractive forces between GAC and HS.  Karanfil et al. (1999) 

carried out comprehensive investigations with four representative humic samples 

and seventeen activated carbons to study the role of GAC surface chemistry on 

the adsorption of organic compounds.  The authors found that the repulsive 

forces between strongly acidic functionalities within the humic structure and on 

the GAC surface may significantly reduce adsorption capacity, and HS removal 

decreased with increasing GAC surface acidity.  
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The pH value of the solution appears to have a significant influence on the 

adsorption of HS by GAC; decreasing pH will increase the HS adsorption.  

Possible reasons are as follows (Newcombe, 1999): 

- decrease in negative charge of HS, or increase in the positive charge on GAC, 

which can increase attractive forces between HS and GAC surface; 

- decrease in the solubility of HS due to protonation of carboxylic groups, 

which can increase driving forces for adsorption onto the hydrophobic GAC 

surface. 

Apart from pH, ionic strength, presence of calcium (Ca) cations, and dissolved 

oxygen have all been reported to influence HS adsorption by GAC (Summers and 

Roberts, 1988; Karanfil et al., 1996b; Fettig, 1999).  For example, the sensitivity 

of adsorption to dissolved oxygen has been found to depend on MW, 

polydispersity, aromaticity and acidity for natural NOM, while the soil derived 

HA is relatively not sensitive to the presence or absence of oxygen. 

2.4.3 Approaches to evaluate the adsorption of HS 

2.4.3.1 Isotherm models 

Adsorption isotherms can be obtained by performing a series of batch experiments 

to examine the adsorbent capacity for the target adsorbate.  Previous adsorption 

investigations have led to the development of a large amount of theoretical 

equilibrium isotherm models, which provide a good quantitative description and 

representation of experimentally obtained data, as well as a useful tool for 

predicting the full-scale continuous flow process.  The main equilibrium 
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isotherm models that have been previously applied in the HS-GAC adsorption 

system and are of interest within the scope of this research include: 

- The Langmuir model 

The well-known Langmuir equation describes monolayer adsorption onto 

homogeneous adsorbent.  There is a stoichiometry between the number of sites 

and the number of adsorbate molecules.  It is assumed that all the sites have the 

equal energy of adsorption.  The relevant equation is: 

1
v bCm eqe bCe

=
+

                                                   (2.2) 

where qe: adsorbed amount of adsorbate on the adsorbent at equilibrium 

concentration Ce [mg/g] 

      vm: maximum adsorption amount of adsorbate adsorbed per unit weight of 

adsorbent [mg/g] 

      b: constant related to the energy of adsorption 

      Ce: adsorbate concentration in solution at equilibrium [mg/L] 

Equation 2.3 can be linearised to become: 

1 1 1
q v v bCe m m e

= +                                               (2.3) 

Constants qe and Ce can then be calculated from the plot of 1/qe vs. 1/Ce. 
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- The Freundlich model 

The Freundlich model is empirical and accounts for the heterogeneity of the 

adsorbent surface.  Each adsorption site is considered to have a specific energy.  

Multilayers can be formed on the adsorbent surface.  The equation is: 

1/nq K Ce eF=                                                                             (2.4) 

The Freundlich parameters KF and 1/n can be obtained by plotting qe versus Ce in 

a logarithmic scale, i.e.:  

Log qe = Log KF + 1
n

Log Ce                                                           (2.5) 

KF indicates the adsorption capability of the adsorbate.  The larger the KF, the 

larger the qe value will be.  The exponential constant 1/n is related to the 

distribution of energy sites.   

- The modified Freundlich model 

A modified Freundlich model has been recommended by several researchers to 

describe the adsorption of commercial and natural HS by GAC (Summers and 

Roberts, 1988a and 1998b; Karanfil et al., 1996a and 1996b; Kilduff et al., 1996).  

It expresses the equilibrium condition in terms of the amount of unadsorbed 

components per unit of adsorbent, rather than the traditional equilibrium DOC 

concentration in solution.  This modified form of Freundlich isotherm is 

described as: 

qe = KF (Ce/D) 1/n                                                (2.6)               



Chapter 2                                           Literature Review 

 70

where the qe and Ce are as before; D is the GAC dose (g/L); KF is the Freundlich 

parameter, representing the adsorption capacity at a value of Ce/D equal to unity; 

and 1/n is the exponential constant.  The modified Freundlich parameters KF and 

1/n can be obtained by plotting log qe versus log Ce/D, as follows: 

Log qe = Log KF + 1
n

Log Ce/D                                                        (2.7) 

2.4.3.2 Continuous flow adsorption process  

In drinking water treatment practice, GAC is often applied in a fixed-bed column.  

The column can be regarded as numerous batch adsorption operations in series.  

Adsorption occurs in a particular region in the bed, known as the mass transfer 

zone (MTZ) which moves with time (Crittenden et al., 2005).  As the solution 

passes through the bed, the adsorbent is gradually consumed till the MTZ 

reaching the end of the contact bed.  It is usually considered that the 

breakthrough occurs when the effluent concentration is 5 % of the influent 

concentration, hence a breakthrough at time tB.  At the final stage, the target 

compounds are no longer eliminated from the effluent as the bed has reached its 

capacity.  Figure 2.18 qualitatively illustrates the breakthrough curve ‘S’ shape 

for an ideal adsorption system where the adsorbate has small size and a simple 

structure.   

Compared to batch adsorption studies, continuous flow studies are considered 

more effective in assessing and predicting the performance of GAC adsorbers (Li 

et al., 2003).  The operation of full-scale adsorbers is time-consuming, expensive 

and impractical to be conducted in a laboratory environment.  The rapid 

small-scale column test (RSSCT), which is a scale down version of the full-scale 
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GAC column has been developed (Crittenden et al., 1986, 1987 and 1991).  A 

number of studies have proven that the RSSCT method can successfully simulate 

the full-scale plant operation and produce identical breakthrough profiles for a 

full-scale GAC column (Crittenden et al., 1984, 1986 and 1991).  The use of 

RSSCT method offers the following advantages: less time, reduced water volume 

requirement, reduced operating cost, and no requirement for isotherms and 

kinetics studies.   

 

Figure 2.18 Representative shape of the breakthrough curve with breakthrough at 

5 % of the influent concentration (André, 2006). 

In the RSSCT method, mathematical models are used to define the scaling 

relationship between the small- and full-scale columns so as to maintain perfect 

similarity between the performances of adsorbers (Crittenden et al., 2005).  In 

the RSSCT column, GAC of smaller size is used, prepared from the GAC used in 

the full-scale column.  The scaling relationships are a function of the carbon 

particle sizes used in RSSCT and full-scale columns.  A review of previous 

studies by Summers et al. (1995) has shown that the RSSCT method can be used 

successfully to assess the full-scale column performance with respect to the 
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control of NOM and DBP formation.  The equations used to determine the 

RSSCT parameters are summarized as follows (Crittenden et al., 2005): 

The critical RSSCT design and operating parameters are the empty bed contact 

time (EBCT) and the loading rate, as can be calculated using the following 

equations: 

2 X

SC SC

LC LC

EBCT D
EBCT D

−
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                             (2.8) 

in which: D – the particle size of GAC [nm] 

SC – small column  

LC – large column  

X – diffusivity factor 

It is recommended that a value of 1 be used for the X parameter when HS are the 

target compounds (Summers et al., 1995).   

The hydraulic loadings of the small- and full-scale columns are related to the 

particle size according to the following equation: 

SC LC

LC SC

V D
V D

=                                                                                (2.9) 

in which: V – loading rate [m/h] 

The flow rate and length of the column can easily be determined from Equations 

2.10 and 2.11: 
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QSC = VSC ASC                                                 (2.10) 

in which: Q – flow rate [ml/min] 

A – area of the cross section of the column [cm2] 

LSC= VSC EBCTSC                                                                      (2.11) 

in which: L – length of the contact bed [cm]  

The mass of GAC in the RSSCT column can be calculated as: 

MSC = QSC EBCTSC ρLC                                                                (2.12) 

in which: M – mass of adsorbent [g] 

ρ – bulk density of the full-scale column [g/ml] 

2.5 Water treatment processes for removing HS – a brief review 

A number of physical, chemical and biological technologies have been proven 

being capable of removing HS from natural water sources (Owen et al., 1993; Fu 

et al., 1994; Goel et al., 1995; Jacangelo et al., 1995; Lambert and Graham, 1995; 

Volk et al., 2000; Parkinson et al., 2003; Chin and Bérubé, 2005).  Some 

examples are shown in Table 2.8.  As can been seen, HS removal efficiencies 

greatly vary from water source to water source and from process to process.  

This is due to the heterogeneous nature of HS waters and variations in water 

treatment conditions.  It is therefore more appropriate to evaluate the removal 

efficiencies of HS by different water treatment processes on the same water 

source.   
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Table 2.8 Examples of water treatment methods and their natural HS removal 

performances (Owen et al., 1993; Fu et al., 1994; Goel et al., 1995; Jacangelo et 

al., 1995; Lambert and Graham, 1995; Volk et al., 2000; Parkinson et al., 2003; 

Chin and Bérubé, 2005). 

Method Initial DOC 
(mg/L) 

DOC 
Removal 

(%) 
References 

Photo- 
oxidation UV alone 8.2 36 Parkinson et al., 

2003 

 O3/UV 1.9 50 Chin and Bérubé, 
2005 

Adsorption GAC 7.8 69 Lambert and 
Graham, 1995 

 γ-Al2O3 7.8 46 Lambert and 
Graham, 1995 

Membrane UF, NF 8.2 80-100 
Fu et al., 1994; 
Jacangelo et al., 

1995 

Coagulation Aluminium 2.5-15.1 10-40 
Owen et al., 

1993; Volk et al., 
2000 

Oxidation O3 only 10 27 Goel et al., 1995 

 O3 + 
biodegradation 10 75 Goel et al., 1995 

As Aldrich humic acid (AHA) will be the target compound used in this research, 

examples on treating this model humic material using different water treatment 

processes are illustrated in Table 2.9 (Allard et al., 1994; Rebhun et al., 1998; 

Chen and Wu, 2004; Murray and Parsons, 2004; Wiszniowski et al., 2004; 

Buchanan et al., 2008; Listiarini et al., 2009; Bond et al., 2010).  Likewise, 

different processes exhibit different capabilities in HS removal.  All the 

technologies have their advantages and disadvantages.  Representative processes 

will be discussed in the following sections.   
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Table 2.9 Examples of water treatment methods and their AHA removal 

performances (Allard et al., 1994; Rebhun et al., 1998; Chen and Wu, 2004; 

Murray and Parsons, 2004; Wiszniowski et al., 2004; Listiarini et al., 2009). 

Method Initial DOC 
(mg/L) 

DOC 
Removal (%) References 

Photocatalytic 
degradation (solar 
irradiation + TiO2) 

100 86-93 Wiszniowski et al., 
2004 

GAC 10 50-80 Chen and Wu, 2004 

NF 10 82-98 Listiarini et al., 2009

Coagulation 
(alum or ferric chloride) 16.5-50 93-98 Rebhun et al., 1998 

UV-C irradiation 10 95 Allard et al., 1994 

AOP 
(Fenton process) 10.5 90 Murray and Parsons, 

2004 

NF: Nanofiltration 

AOP: advanced oxidation process 

2.5.1 Membrane filtration 

Membrane filtration, including microfiltration (MF), ultrafiltration (UF) and 

nanofiltration (NF), has grown rapidly as a drinking water treatment method over 

the past decade.  It features many advantages over conventional treatment 

methods, such as smaller size, easier operation and maintenance as well as good 

water quality.  However, the application of membrane filtration in practical 

applications has been restricted by fouling issues (Zularisam et al., 2006).  Even 



Chapter 2                                           Literature Review 

 76

a small portion of HS can lead to serious and irreversible fouling.  Recent 

research has highlighted the influence of high MW components, high aromatic 

hydrophobic acids, and organic colloidal materials of HS in the fouling of 

membranes (Amy and Cho, 1999; Fan et al., 2001).  Problems of hydraulic 

resistances, frequent regeneration or replacement, as well as high operating and 

maintenance cost therefore arise.   

MF and UF are considered inadequate in removing HS due to the pore sizes of the 

membranes being significantly larger than most of humic molecules.  For that 

reason, NF is more effective in removing HS.  Pre-treatment, such as MF or UF, 

pH adjustment, and conventional treatment followed by ozonation, is required for 

NF applications due to fouling problems.  Coagulation treatment prior to 

membrane filtration has been used to enhance the removal of HS and reduce 

fouling by aggregating fine particles to form a highly porous and less dense cake 

on the surface, that can be easily removed by backwashing (Fabris et al., 2007).  

Powered activated carbon (PAC) adsorption is another pre-treatment method used 

for reducing HS levels through the rapid adsorption of dissolved foulants to 

alleviate membrane fouling.  Flux decrease and accumulation of carbon on the 

membrane surface are problems typically associated with PAC addition.  It is 

essential to tailor pre-treatment strategies for difference water sources.  

Representative schematics of the combination of pre-treatment and membrane 

filtration for drinking water treatment are illustrated in Figure 2.19 (Jacangelo et 

al., 1997).   
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Figure 2.19 Schematic of the combination of pre-treatment and membrane 

filtration for drinking water treatment (Jacangelo et al., 1997). (RO represents the 

reverse osmosis) 

2.5.2 Coagulation 

Chemical coagulation is the major HS removal process for drinking water 

treatment in many countries (Ratnaweera et al., 1999).  When coagulants 

(normally aluminium or ferric salts) are added to the water, several mechanisms 

begin to work with respect to HS removal (Chow et al., 2009): (1) charge 

neutralisation – the cationic metal interacts with negatively charged HS; (2) 

adsorption of molecules on the metal hydroxides; and (3) formation of insoluble 

metal hydroxides where HS are removed by sweep coagulation.  Many factors 

can influence the removal of HS by coagulation, such as concentrations and 

properties of HS, charge and dosage of coagulant as well as pH and temperature 
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(Kam and Gregory, 1999; Ratnaweera et al., 1999; Chow et al., 2009).  Sharp et 

al. (2006) used XAD resin adsorption techniques to fractionate moorland waters 

into hydrophilic fraction (HPIA), humic acid fration (HAF), fulvic acid fraction 

(FAF) and hydrophilic non acid (HPINA).  The authors found that the 

hydrophobic fractions, including HAF and FAF, were more readily removed by 

the coagulation process, while the HPINA was least amendable to be removed by 

coagulation due to a negligible charge density.  Results revealed that the organic 

make up of raw water may greatly influence treatability and coagulation 

performance.   

Enhanced coagulation by adding excess coagulants, or adjusting pH, has been 

proposed by the United States Environment Protection Angency (USEPA) for 

improving the removal of DBP precursors from conventional water treatment 

processes (Jiang and Graham, 1996).  However, increasing coagulant doses 

could result in more sludge production, unwanted metal ion residue and associated 

high operating cost.    

2.5.3 Advanced Oxidation Processes (AOPs) 

The use of AOPs for improving the performance of water treatment is of growing 

interest in recent years.  A number of AOPs, such as UV/H2O2, UV/O3, Fenton 

process, and UV/TiO2, have been investigated for treating refractory organics, 

bacteria and HS in water (Legrini et al., 1993; Graham, 1999; Wang et al., 2000; 

Murray and Parsons, 2004; Goslan et al., 2006).  AOPs typically involve the 

rapid generation of strong oxidants, such as hydroxyl radicals, to destroy the 

refractory organic structures.  For example, in UV/H2O2 or UV/O3 processes, the 

generation of oxidants can be described as the following mechanisms: 
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H2O2 + hv      2OH·                                          (2.13) 

O3 + hv       O2 + O·                                         (2.14) 

where hv is the photon energy from UV irradiation.  The attack of the oxidant to 

HS is non-selective and capable of rapidly oxidising HS in water.  Chin and 

Bérubé (2005) reported that O3/UV led to 50 % reduction in DOC concentration 

and 70 % reduction in HAA formation potential.   

UV irradiation is typically considered to be used as a pre-treatment method, as it 

alone is generally considered to be an ineffective procedure for HS removal 

(Legrini et al., 1993).  Thomson et al. (2002) investigated the potential of UV-C 

irradiation in facilitating biological treatment and improving the water quality.  It 

was found that the low MW photoproducts generated by UV-C irradiation were 

significantly removed by the bio-treatment and the water quality was greatly 

improved as measured by the decreased chlorine demand, DOC and UV254.  

Similar observation has also been made by Buchanan et al. (2008) who found that 

using vacuum UV (185 nm + 254 nm) irradiation followed by a biological carbon 

adsorption treatment improved the reduction of DOC concentration of HS from 

29% to 54 %.  The advantages of using UV irradiation to treat HS compared to 

other processes are: no requirement for recycling of the substrate, no chemical 

addition, and no sludge by-products formed (Parkinson et al., 2003).  However, 

it is associated with extra operating cost due to the usage of UV light. 

Ozonation has also been tested as a pre-treatment unit prior to conventional 

treatment processes, such as slow sand filtration and coagulation.  According to 

Graham (1999), for water sources with DOC being principally composed of HS, 

the typical colour removal for slow sand filtration is approximately 42 %, whereas 

the DOC removal is only of 9 to 15 %.  By introducing pre-ozonation, higher 
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colour and DOC removals were observed (Table 2.9).  As a result, the THM 

formation potential was reduced.  The removal of HS is dependent on the ozone 

doses and also affected by the nature of water sources (Goel et al., 1995). 

Table 2.10 Published data for colour and DOC removals by slow sand filtration 

with pre-ozonation (Graham, 1999).   

Water Source Ozone Dose 
(mg O3/L) 

DOC 
Removal (%) 

Colour 
Removal (%) 

Seagahan, UK 5 25 70-80 

Lake Vyrnwy, UK 1.1-2.5 26.5 52 

River Dee, UK 0.5* 28 58 

Model Water 6-7 34-40 67-82 
* mg O3/mg TOC 

2.6 Conclusions 

From the available literature reviewed above, the following conclusions may be 

drawn: 

 UV254 absorbance, DOC and HPSEC allow rapid measurements of HS 

properties and give information that can be linked to the DBP formation 

potential for a water source with a high humic content; 

 irradiation can alter the physicochemical properties of HS (reflected as a 

decrease in DOC, UV254 and molecular size).  The nature of HS waters may 

greatly influence the photodegradation of HS; 

 not only the UV irradiation, but also the visible irradiation can photodegrade 

HS.  Both of them can be found in the natural sunlight spectrum; 
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 no research work known to the author has related the solar-induced 

photodegradation of HS with the subsequent GAC adsorption process to 

enhance the removal of HS from water; 

 sunlight is the most freely available and abundant energy source.  It is a 

promising field in water treatment; 

 solar collectors can be applied to promote the sunlight-induced photoreaction.  

The solar tracking concentrating collectors have high optical efficiency but 

require high capital investment.  The simple non-tracking solar collectors are 

of low cost and more suitable for a small scale use; 

 the adsorption of HS by GAC can be affected by physical as well as chemical 

factors.  Improvement of adsorption can be achieved by modification on 

either aspect;   

 for a chemically compatible adsorption system, low MW components are 

preferentially removed from the humic mixture by GAC due to the better 

accessibility to GAC pores; 

 adding pre-treatment units prior to conventional treatment processes, or a 

combination of processes, may significantly benefit the removal of HS; 

and, 

 the solar irradiation – GAC adsorption method is considered to be a possible 

combination to enhance the removal of HS from water, with the potential 

advantages of low energy consumption, low chemical addition, and 

associated low cost on waste handling .  
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CHAPTER 3 

AIMS AND OBJECTIVES 

 

The aim of this work was to investigate a new and alternative water treatment 

method for removing humic substances (HS) from water, using a combination of 

granular activated carbon (GAC) adsorption and sunlight, a renewable energy 

source.   

The following objectives were set:   

 Evaluate the impact of natural sunlight on the properties of HS with respect to 

UV absorbance at 254 nm (UV254), dissolved organic carbon (DOC) 

concentration and molecular weight (MW) and establish the relationship 

between solar irradiation and HS changes; 

 Investigate the use of static solar collectors, including two parabolic 

collectors and a compound parabolic collector, for promoting the 

photodegradation process of HS, and therefore their removal by GAC 

adsorption;   

 Compare the adsorption behaviour of the irradiated and non-irradiated HS by 

Aquasorb 101 GAC in order to determine the effect of pre-treatment with 

sunlight on the overall HS removal;  

 Evaluate the possibility of treating HS using natural sunlight at different times 

of the year, followed by GAC adsorption; 



Chapter 3                                         Aims and Objectives 

 83

 Evaluate the treatability of HS waters with different properties (Aldrich 

humic acid water, Suwanee River fulvic acid water, and natural water) using 

the proposed solar irradiation-GAC adsorption method.   
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CHAPTER 4 

MATERIALS AND METHODS 

 

4.1 Introduction  

To address the goal of this research, a series of laboratory investigations have 

been carried out.  This chapter describes various aspects of the experimental 

framework, including the experimental set-up and analytical techniques.  First, a 

general description of the hypothesis and approach of this study is given.  

Selection, collection and preparation of humic substances (HS) samples, as well 

as analytical methods (including UV absorbance at 254 nm (UV254), dissolved 

organic carbon (DOC) concentration and molecular weight (MW)) which have 

been implemented throughout this study are described in detail.  The focus is 

then given on the solar irradiation experimental set-up.  In this part, selection of 

containers for HS samples, design of solar collectors, and measurement of solar 

irradiation are discussed.  Finally, a description is given on the studies performed 

on the adsorption of HS by granular activated carbon (GAC), including batch 

isotherm experiments and small column tests.   

4.2 Hypothesis and approach 

Considering that GAC preferentially adsorbs smaller molecules from the humic 

mixture, and that photodegradation decreases the MW of HS by breaking down 

high MW components into smaller molecules, a hypothesis is made that solar 
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irradiation increases the adsorption capability of GAC for the irradiated HS.  

This hypothesis was examined in the present work by comparing the adsorption 

behaviour of irradiated and non-irradiated HS by GAC.  For the purpose of 

exploring a new approach with low energy consumption and low cost.  Natural 

sunlight was used as the energy source.  A commercially available GAC was 

used without modifications.  A schematic diagram of the sample treatment 

methodology is given below (Figure 4.1).  A more detailed description will be 

given in the following sections.   

 

Figure 4.1 Schematic diagram of the HS sample treatment methodology.   

4.3 HS samples 

4.3.1 Description of HS 

HS samples used in this research included aqueous solutions prepared from the 

commercially available Aldrich humic acid (AHA) sodium salt, Suwanee River 

fulvic acid (SRFA), and a natural water sample collected from a water treatment 

works (WTW) of Yorkshire Water.  

HS samples 

UV254, DOC, and MW 
measurements 

Solar 
irradiation 

GAC 
adsorption 
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AHA (lot number H1-675-2) was purchased from Sigma-Aldrich, UK.  It was 

selected to be used in most of the experiments.  This is because: 

- it is a very well-defined reference material and has been widely used in HS 

research (Allard et al., 1994; Karanfil et al., 1996a; Schmitt-Kopplin et al., 

1998; Selcuk et al., 2003); 

- complex physicochemical background and seasonal variations of natural 

waters make it difficult to evaluate the solar irradiation effects alone on the 

removal of HS in this study; 

- techniques for extracting HS from natural waters are sophisticated and 

expensive, it was beyond the budget of this project; 

- a large amount of HS containing water was needed. 

SRFA was purchased from the International Humic Substances Society (IHSS).  

It is also a common reference material.  The removal of SRFA was studied to 

evaluate the treatability of fulvic acid (FA) compared to humic acid (HA) using 

the solar-GAC method.   

A natural water sample was collected from the inlet channel prior to any chemical 

treatment at the Chellow Heights Water Treatment Works (Bradford, UK) in 

autumn.  The sample was collected using two 5 L polyethylene containers and 

transported to the environmental engineering lab at University College London 

(UCL) the next day after collection.  This water was a mixture of waters from 

Upper Baden, Scar House and Angram Reservoirs in North Yorkshire.  It was a 

typical upland water of dark colour which was a consequence of water passing 

through peat, the major soil type in the upland areas of Yorkshire.   
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4.3.2 Preparation of HS solutions 

Deionised water was obtained by passing municipal water through an 

ion-exchange system (Purite Limited, Thame, UK) and used to prepare AHA and 

SRFA solutions.   

4.3.2.1 Stock Solution 

To prepare the stock solution, 5 g of AHA powder were dissolved in one litre of 

deionised water.  The mixture was stirred for a few minutes and left to settle.  

The supernatant solution was filtered progressively using Whatman number 1 

filter paper (11 µm), Whatman number 3 filter paper (6 µm) and finally on a 

Whatman 0.45 µm cellulose nitrate membrane filter.  Prior to use, each cellulose 

nitrate filter was rinsed with 500 ml of deionised water to prevent organic 

compounds leaching from filters to interfere the HS measurement (Karanfil et al., 

2003; Khan and Subramania-Pillai, 2007).  The filtered stock solution was stored 

at 4 °C if not in use. 

4.3.2.2 Experimental solutions 

AHA – experimental solutions were prepared by diluting the stock solution.  An 

appropriate amount of stock solution was taken with a pipette, dissolved in 1 L of 

deionised water and stirred to mix completely.  The prepared 1 L experimental 

solution was then transferred to a 1 L pre-washed transparent polyethylene 

terephthalate (PET) bottle and ready for use.   

SRFA – in the SRFA experiment, similar amounts of SRFA and AHA powders 

were separately weighed, dissolved in 1 L of deionised water and well mixed.  
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Before transferring to 1 L bottles, solutions were filtered through 0.45 µm filters.   

Natural water sample – the natural water sample was filtered through 0.45 µm 

filters to remove suspended particles as soon as it was delivered to the laboratory 

at UCL.  1 L aliquots of the filtered water were transferred into 1 L PET bottles.  

The solar irradiation experiment using natural water started within one week after 

sample collection.   

All the experimental solutions were stored in the fridge at 4 °C if not in use. 

4.4 Analytical methods 

4.4.1 Sampling  

All samples were analysed for UV254 absorbance, DOC concentration, molecular 

weight distribution (MWD) and pH.  The sampling procedure was as follows: 

- Prior to sampling, 0.45 µm syringe filters (polypropylene and cellulose, 25 

mm, Sartorius Minisart RC) were pre-washed to prevent cellulose acetate from 

causing a reading at 254 nm.  Approximately 100 ml of deionised water was 

used to wash each filter until the UV254 of filtrate was zero.   

- Filter 15 ml of sample through a 0.45 µm syringe filter.  The first 5 ml of 

filtrate was discarded.   

- Approximately 3 ml were used for UV254 measurement immediately, and then 

returned to its corresponding experimental solution after the measurement.  

- About 6 ml of filtrate was kept in a Pyrex glass tube sealed with parafilm for 

further DOC analysis.  All tubes were soaked in a 10 % nitric acid bath 
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overnight, thoroughly rinsed with deionised water and dried at 105 °C in 

advance.  Checks on tubes filled with deionised water were undertaken every 

time when DOC analysis was conducted so as to make sure no interference of 

DOC coming from the glass tube into the HS solution. 

- About 1 ml of filtrate was injected into a small sampling vial with a sealed cap 

(Perkin Elmer, UK) for high performance size exclusion chromatography 

(HPSEC) measurement.   

The filtrates for DOC and HPSEC measurements were kept in the fridge at 4 °C.  

Duplicate experiments were performed. 

4.4.2 UV254 measurement 

UV254 measurement was made on a double-beam Camspec UV-visible 

spectrophotometer (UK) with an optical path length of 1 cm in a quartz glass 

cuvette in the Chadwick laboratory of Environmental Engineering, UCL.  

Deionised water was used as a blank to adjust zero.  Measurement of deionised 

water was made every 10-15 samples to check the stability of the instrument.  

The cuvette was regularly soaked in hydrochloric acid (HCl) overnight, washed 

with acetone and deionised water to avoid any interference from the contaminants 

attached on the cuvette wall.  The relative standard deviation (RSD), determined 

from replicate experiments, was less than 3 %.   

4.4.3 DOC  

DOC was measured on a Shimadzu TOC-5000A analyser (Shimadzu, Milton 

Keynes, UK) in the chemistry laboratory of Centre for Water Science at Cranfield 

University, UK.  The system consists of a TOC-5000A analyser coupled with an 
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autosampler module.  The analyser was operated using the combustion/ 

non-dispersive infrared gas analysis method.  The total organic carbon (TOC) 

was calculated by measuring the total carbon (TC) and the inorganic carbon (IC) 

and then subtracting the IC from the TC.  The machine was calibrated regularly.  

Working standards were diluted from 1000 mg/L TC and IC standards to the 

appropriated concentrations with deionised water.  Working standards were also 

inserted and measured in every 10-15 samples in order to check the stability of the 

TOC analyser.  The analyser was recalibrated as soon as the value of the standard 

was beyond 10% of the expected value.  As samples were filtered through 

0.45µm filters, DOC was measured instead of TOC (Standard Methods for the 

Examination of Water and Wastewater, 1998).  The RSD, determined from 

selected samples, was less than 5 %.   

4.4.4 SUVA 

The specific UV absorbance (SUVA) was determined as a ratio of UV254 (m-1) 

with DOC (mg/L), using the unit of litre per milligram carbon per meter.   

4.4.5 HPSEC 

4.4.5.1 Instrumentation 

The MWD of HS was measured using the HPSEC method which is based on the 

theory that small compounds more easily diffuse into the pores of column packing 

materials therefore elute out of the column later than larger molecules (Chin et al., 

1994; Peuravuori and Pihlaja, 1997; Cabaniss et al., 2000).  HPSEC was 

performed on a high performance liquid chromatography (HPLC) system (Perkin 

Elmer, UK), equipped with a series 200 pump, an autosampler and a UV detector 
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set to 254 nm.  The mobile phase was 0.01 M sodium acetate (HPLC grade, 

Fisher Scientific, UK) at a flow rate of 1 ml/min at room temperature.  The 

column was a BIOSEP-SEC-S3000 (Phenomenex, UK) 7.8 mm (ID) × 30 cm and 

the guard column was the ‘Security Guard’ fitted with a GFC-3000 disc 4 mm (ID) 

× 3 mm (Phenomenex, UK).  The guard column was checked regularly and the 

cartridge was replaced as soon as the packing material was “dirty” (showing 

visual contaminants).  Chromatograms were recorded and processed with the 

TotalChrom Navigator software for HPLC (Perkin Elmer, UK).  A 

chromatogram of detector response vs. time was generated for each sample.  In 

addition, an inter-laboratory comparison was made between UCL and Cranfield 

University where the same column and method were used.  The comparison 

showed a similar distribution of chromatograms of the same HS sample. 

4.4.5.2 Column calibration 

The column was calibrated using a set of sodium polystyrene sulfonates (PSS, 

purchased through Kromatek, UK, from Polymer Standards Service GmbH, 

Germany) with peak MWs of 891, 6430, 15800 and 33500 daltons (Da).  The 

concentration of each standard was made to 1 g/L.  An example of HPSEC 

chromatograms of these standards is presented in Figure 4.2.  Each PSS standard 

exhibited a single peak in their chromatograms, except for the PSS 891 Da 

standard, of which multiple peaks were observed in the chromatogram.  This is 

in agreement with the previous finding by Zhou et al. (2000).  The PSS standard 

of the smallest MW was therefore excluded from employment to calibrate HS.  

Instead, acetone (MW = 58 Da, HPLC grade, Aldrich) was used to calibrate the 

low end of the MWD and an individual peak was obtained by HPSEC 

measurement, as illustrated in Figure 4.2.  A combination of PSS and acetone as 

standards to characterize HS has been used in several studies (Karanfil et al., 
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1996a; Zhou et al., 2001; Pullin et al., 2004).  However, the use of PSS standard 

of low MW (≤ 1000 Da) for HS calibration has been reported in some work, in 

which multiple peaks in the chromatogram of the low MW PSS standard were not 

mentioned (Świetlik et al., 2002; Carvalho et al., 2008).  
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Figure 4.2 An example of HPSEC chromatograms of PSS standards having MWs 

of 891, 6430, 15800 and 33500 Da as well as acetone for the purpose of calibrating 

HS.   

It should be noted that the PSS standards used in the calibration of HS covered a 

wide range of MW.  This was due to the fact that at the present time, no good 

standards for the intermediate MW range (i.e. 200-4000 Da) have been identified 

(Zhou et al., 2000).  There is no doubt that the identification of standards in this 

range could improve the calibration of the MW of HS.   

A linear regression between the log peak MW and the retention time (t) was used 

for the calibration of the MW of HS (Pelekani et al., 1999; Zhou et al., 2000), in 

the form of: 
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log (MW) = a - b(t)                                             (4.1) 

An example of the calibration curve is shown in Figure 4.3.  A correlation factor 

of R2 > 0.99 was consistently obtained for the calibration throughout this research.  

Using equation 4.1, the MW of each humic fraction can therefore be obtained 

according to the time they elute out of the HPSEC column. 

Log MW = 7.3299 - 0.4937t
R2 = 0.9945
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Figure 4.3 An example of the calibration function obtained by linear regression of 

the log MW and retention time of calibration standards. 

4.4.5.3 Calculating MW 

Number-average MW (Mn), weight-average MW (Mw), and polydispersity (ρ) of 

HS were determined using following equations (Chin et al., 1994; Peuravuori and 

Pihlaja, 1997; Zhou et al., 2000):  
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where hi is the height of the chromatogram curve of HS at retention time t; Mi is 

the MW of molecules at retention time t, which was determined according to the 

calibration results (equation 4.1).   

Data processing of HPSEC chromatograms, including baseline corrections and 

molecular weight cut-offs (MWCOs), is critical in determining the MW of HS 

(Zhou et al., 2000).  Various combinations of MWCOs at high and low MWs 

(for example, low MWCO of 2 % and high MWCO of 1 %, or low MWCO of 1 

% and high MWCO of 1 %) were evaluated on determining the MW 6430 Da PSS 

standard.  The calculated MW values obtained from different combinations of 

MWCOs were then compared with the information from the supplier (Polymer 

Standards Service GmbH, Germany).  As a result, the high MWCO and low 

MWCO at 1% of the maximum response were determined in MW calculation 

because the calculated MW value of PSS standard was closest to the value 

provided by the supplier.   

The MWCO was based on the linear fitting baseline correction because linear 

fitting is simple and reproducible with common spreadsheet programs.  After 
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baseline correction and determination of MWCOs, Mn, Mw and ρ were then 

calculated using spreadsheet programs.  Calibration was carried out every time 

when analysing HS samples.  A day-to-day difference of approximately 5 % 

RSD for MW of AHA was observed.   

Once the calibration condition and data analysis method have been decided, it was 

then tested on the calculation of the MW of AHA and SRFA which are model 

humic materials commonly used in HS research.  The obtained MW values were 

found to be close to the published data (see chapter 5).  An accurate calibration 

and calculation of MW would enable an inter-laboratory comparison.  However, 

it should be kept in mind that due to the absence of PSS standards with 

intermediate MW and the heterogeneous nature of HS, an uncertainty of MW 

value obtained in this work might arise.  It is therefore more appropriate to 

interprete the molecular size alteration of HS by their relative changes in MWD 

rather than their absolute values.  In the following chapter, both the absolute MW 

values and the relative MW changes will be given and discussed. 

In addition, destruction/formation curves were obtained by subtracting 

chromatograms of the irradiated HS from the non-irradiated HS, as suggested by 

Frimmel et al. (1998) and Lepane et al. (2003).  Destruction/formation curves 

can directly provide information regarding the removal and accumulation of MW 

fractions.  Results will be discussed in detail in chapter 5.   

4.4.6 pH 

pH values were recorded using a Conductivity & pH meter (Jenway Ltd., UK).  

The pH meter was calibrated with pH buffer solutions 4.01, 7.01, and 10.01 every 

time prior to analysis.   
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4.5 Solar irradiation experiment 

4.5.1 Basic experimental set-up 

Before exposure to sunlight, UV254, DOC, MWD and pH of HS solution in each 

bottle were measured.  PET bottles containing HS solutions were placed in three 

collectors: compound parabolic collector (CPC), parabolic collector (PC) and 

bigger parabolic collector (BPC), which were located on the roof of Chadwick 

building, UCL.  Each collector can place up to 4 bottles and the number of 

samples was determined according to each experimental design.  Details of 

irradiation experiments are shown in Table 4.1, including duration, number of 

samples and sampling frequency.  Each solar collector was positioned as a 

non-tracking static system inclined 51° (the latitude of London), and the bottles 

were aligned in an east-west orientation to maximise sunlight capture (Rodríguez 

et al., 2004).  The solar irradiation values were recorded during irradiation 

experiments by a CS300 pyranometer (Campbell Scientific, UK) which was 

mounted adjacent to solar collectors.  Figure 4.4 presents a photograph of the 

solar irradiation experimental set-up taken on site. 

HS solutions were placed in a flat tray which was covered by an aluminium foil 

sheet at the same experimental site (the tray can not be seen in Figure 4.4).  

These samples are also referred to as the HS solutions irradiated without 

concentrating sunlight.  Some HS solutions were stored in the dark at room 

temperature, serving as a control which is referred to as the non-irradiated HS in 

this thesis.   
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Table 4.1 Details of solar irradiation experiments, including experimental duration, solar collectors used and sampling frequency. 

Experiment Season Duration Initial DOC of HS 
sample (mg/L) 

Solar 
collectors used

Sampling 
frequency*  

Winter experiment Winter 23/11/07-31/01/08 AHA 8.5 All Every week 

Spring experiment Spring 08/03/08-17/04/08 AHA 8.3 All Every week 

Effects of pH value Spring 08/05/08-22/05/08 AHA 8.3 CPC and Tray Every 3 days 

Summer experiment Summer 01/07/08-04/09/08 AHA 8.5 All Every 3-4 days 

SRFA vs. AHA Autumn 08/09/08-10/10/08 AHA 3.8 
SRFA 5.1 BPC and Tray Every 3-4 days 

AHA vs. natural HS Autumn 11/10/08-27/11/08 AHA 8.8 
Natural 12.9 All Every week 

Column study Winter-Spring 22/12/08-25/05/09 AHA 7.2 Tray N/A 

*All experiments were duplicated
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Figure 4.4 Solar irradiation experimental set-up on the roof of Chadwick Building, 

UCL, London.  From left to right: bigger parabolic collector (BPC), compound 

parabolic collector (CPC) and parabolic collector (PC). 

After the completion of solar irradiation experiments, all the irradiated HS 

solutions were kept in the fridge at 4 °C for analysis and future adsorption 

experiments which were carried out within two weeks.  All experiments were 

duplicated.  

4.5.2 PET bottles 

To choose suitable containers for HS in solar irradiation experiments, several 

factors should be taken into account: (1) light transmission characteristics, (2) 

durability, (3) chemical stability, (4) availability, (5) cost, and (6) weight.  

Containers commonly used for HS photodegradation studies are made of quartz 

and Pyrex borosilicate glass materials (Schmitt-Kopplin et al., 1998; Del Vecchio 

and Blough, 2002; McLoughlin et al., 2004; Chow et al., 2008).  An alternative 

and cost-effective approach for small-scale solar applications is to use transparent 

PET bottles, which has been recommended by the Swiss Federal Institute of 

Aquatic Science and Technology (EAWAG) for the Solar Water Disinfection 
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(SODIS) project.  The feasibility of using PET containers in drinking water 

disinfection treatment has been reported in several studies (Walker et al., 2004; 

Mani et al., 2006).  

Quartz glass can transmit significantly more UV radiation than most of other 

materials, but is of very high cost.  Glass bottles are relatively easily broken and 

of heavy weight.  PET is an uncoloured transparent plastic material and widely 

used as the material for soft drink bottles.  The advantages of using PET bottles 

are low weight, relatively unbreakable and of low cost.  However, glass and PET 

materials selectively absorb some wavelengths of irradiation.   

 

Figure 4.5 The PET bottle used for solar irradiation experiment (source: Medfor 

Ltd., UK). 

Difference in the light transmission properties of different materials was evaluated 

by means of UV/visible spectrophotometry and photodegradation tests on HS 

solutions.  Transmittance of borosilicate glass (represented by a glass cuvette), 

quartz glass (represented by a quartz cuvette) and a plastic sheet (cut from a PET 

bottle into 1 × 3.5 cm then inserted in a quartz cuvette) was compared at 

wavelengths from 300 to 700 nm using a spectrophotometer.  Deionised water 

was served as a blank.  Photodegradation experiments were carried out during a 
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good sunny week in April and a good sunny week in July.  Considering the high 

cost of quartz bottles, only glass and PET containers were used.  The comparison 

results will be discussed in chapter 5.   

A picture of a PET bottle (Medfor Ltd., UK) used in solar irradiation experiments 

is presented in Figure 4.5.  The bottle was round in cross-section with a diameter 

of 8 cm.  It came with a white PP tamper-evident screw cap.  In the preliminary 

experiments, PET bottles containing deionised water were exposed to sunlight for 

a few weeks and the UV254 absorbance of the irradiated deionised water was 

regularly checked.  The observed results proved that no interference was 

generated from bottles by solar irradiation, indicating the chemical stability of 

PET material.   

4.5.3 Solar collectors 

Solar collectors used in this research were all static systems without sunlight 

tracking mechanisms.  One collector had a compound parabolic profile and the 

other two had a parabolic profile.  This was due, on one hand, to the easier 

installation and lower manufacturing cost of the static system than the 

sophisticated solar tracking systems at the laboratory trial level.  In the second 

place, this study was the first to assess a possible combination of solar irradiation 

with GAC adsorption to enhance HS removal, applying simplified collectors 

would be sufficient to verify the hypothesis of this research and provide general 

information for solar collector applications with respect to the proposed 

solar-GAC method.  As a consequence of the simplification, solar collectors used 

in this study would exhibit reduced sunlight concentrating efficiencies compared 

to those with sunlight tracking devices.   
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The size of each collector was designed according to the given PET bottle size 

(diameter of 8 cm).  For the parabolic profile, the geometric focus of the 

parabola was 4 cm above the base to allow the PET bottle centre to meet the 

parabola focus (Figure 4.6).  In theory, direct solar irradiation perpendicular to 

the parabolic collector aperture plane is reflected by the parabola to its focus.  

Parabolic collectors were made into two different sizes, the term BPC was used to 

distinguish the one of bigger size from the smaller one which was called PC 

thereafter.  Both BPC and PC were designed on the basis of the following 

equation, written as (Gray et al., 1997):  

y = x2/4f                                                                                (4.5) 

where f is the distance of the focal point to the parabola bottom, which is 4 cm in 

this work.  According to equation 4.5, the parabola was then plotted using the 

AutoCAD software.  Table 4.2 presents the actual sizes of PC and BPC 

employed in this research.  The profile of PC and BPC was the same as they 

were designed from the same equation, while the height of PC was only 1/3 of 

that of BPC.  The size of PC was determined according to that of CPC (see Table 

4.2 and Figure 4.8) in order to evaluate and compare the solar concentrating 

efficiencies of collectors with different profiles but similar aperture areas.  The 

graphic design was then printed out at its actual designed size.  The wooden 

frame of collector was fabricated first according to the graphic design.  The 

reflective mirror surface was then placed firmly into the frame and cut to fit the 

frame.  Pictures of PC and BPC are given in Figures 4.7a and 4.7b, respectively.   
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Figure 4.6 Schematic of parabolic curve, showing the reflection of sunlight 

perpendicular to the parabolic collector aperture plane.  

Table 4.2 Sizes of solar collectors (PC, CPC and BPC) used in this research.   

Solar collectors Width  
(cm) 

Height  
(cm) 

Bottle centre 
above base 

(cm) 

PC 25 10 4 

BPC 40 32 4 

CPC 25 10 6 

 

The CPC has a surface area following an involute around a tubular container.  

The design of CPC in this study was based on the work by Blanco et al. (1999) 

and Rodríguez et al. (2004).  Data in the CPC graph in these publications were 

extracted using the Engauge Digitizer software, transferred into Excel software 

and then plotted using the AutoCAD software.  The graphic design was printed 

out at its actual size (given in Table 4.2) and the fabrication procedure was the 

same as that for the parabolic ones.  Figures 4.8 and 4.7c present a schematic of 

CPC and a picture of CPC used in this research, respectively.   
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  (a) 

 (b) 

  (c) 

Figure 4.7 Pictures of three solar collectors used in this research: (a) PC, (b) BPC, 

and (c) CPC.   
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Figure 4.8 Schematic of the compound parabolic curve (height 10 cm and width 

25 cm) with 8 cm as the bottle diameter.   

As solar collectors were fixed towards the same direction, their difference in 

sunlight concentrating efficiencies is considered to be mainly related to the 

difference in collector configuration and reflective area.  CPC has been found to 

have the advantage of using both direct and diffuse irradiation.  Thus, all light 

reaching CPC can be reflected to the sample located in the centre.  That is: 

Qcpc = (Idir + Idif) Acpc                                             (4.6) 

where Qcpc is the total solar energy received by HS solutions in CPC; Idir and Idif 

are the irradiation of direct and diffuse sunlight, respectively; Acpc is the aperture 

area of CPC.   

For the parabolic profile, assuming k1 as the concentrating factor (≤ 1) for direct 

irradiation and k2 (≤ 1) for diffuse irradiation, the total energy received by HS in 

two parabolic collectors is therefore expressed as: 

Qbpc = (k1Idir + k2Idif) Abpc                                                               (4.7) 

Qpc = (k1Idir + k2Idif) Apc                                                                 (4.8) 
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The k1 value reaches its maximum (=1) at the moment when direct incident light 

is just perpendicular to the collector aperture during a day.   

The sample in the flat tray can capture both direct and diffuse irradiation reaching 

the bottle area.  That is: 

Qtray = (Idir + Idif) Abottle                                            (4.9) 

If the concentrating factors k1 and k2 both reach their maximum values, solar 

energy received by HS samples in different collectors under the same weather 

conditions is in a order as: Tray < PC = CPC < BPC.  In this case, the 

concentrating efficiencies of solar collectors relative to the flat tray are estimated 

to be approximately 3 (CPC and PC) and 5 (BPC), according to the aperture size 

and bottle diameter.  The order and concentrating efficiency can be influence by 

(1) the concentrating factors k1 and k2, which are constantly changing with the 

position of sun and time of day, and (2) the relative amount of direct and diffuse 

irradiation in total solar irradiation.  Therefore, the solar concentrating efficiency 

of solar collectors used in this research would be lower in practice.   

In the photocatalytic applications, mirrors based on aluminium are considered to 

be the best option owing to its low cost and high reflectivity.  The reflective 

aluminium mirror attached to a layer of high impact polystyrene sheet was 

purchased from Amari Plastics plc. (UK) and shaped according to the collector 

design to fit the supporting frame as previously described.   

4.5.4 Solar irradiation measurement 

A CS300 pyranometer was used to measure solar irradiation and connected with 

an EnviroMon data logger (Pico Technology Limited, UK).  According to the 



Chapter 4                                       Materials and Methods 

 106

manual by the supplier (Campbell Scientific, UK), the CS300 pyranometer can 

accurately measure solar irradiation from 300 nm to 1100 nm.  The conversion 

factor (5.00 W m-2 per mV) was used to convert the voltage (mV) signal from the 

sensor head to solar intensity in the unit of W m-2, calculated as: 

I = S × conversion factor = S × 5 W m-2 per mV                      (4.10) 

where I: solar intensity [W m-2]; 

S: output of sensor head recorded by data logger [mV].   

The total solar dose (J m-2) received by the earth surface of the experimental site 

was calculated from the accumulation of solar irradiation as: 

1 1
60

n n

n n
i i

E I t I s
= =

= × = ×∑ ∑                                        (4.11) 

where E: total solar dose [J m-2] 

In: average solar intensity recorded every minute [W m-2] 

In addition, solar irradiation and UV data for the same period were obtained from 

the National Meteorological Library and Archive for comparison purposes.   

4.6 Granular activated carbon adsorption experiment 

4.6.1 Characterizing GAC 

Adsorption studies of HS were performed with a commercial GAC (AquaSorb 

101) purchased from Universal Mineral Supplies, UK.  It is said to be a highly 

economical, medium activity GAC manufactured by steam activation from 
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selected grades of bituminous coal and typically used in municipal drinking water 

treatment and adsorption of taste and odour (information provided by the supplier).  

GAC was used as received without modifications and kept in a desiccator if not in 

use.   

Characteristics of GAC determined in this work included surface area and pore 

size distribution.  Surface area and porosity analysis was performed on a Coulter 

Omnisorp 100 (Beckman-Coulter, UK) at Imperial College, London, UK.  In 

brief, the measurement was based on the adsorption isotherms of nitrogen onto a 

solid increasing with the pressure of gas at 77 K.  Prior to analysis, GAC was 

degassed for 7-8 hours at 150 °C.  Surface area was calculated from the 

Brunauer Emmett and Teller (BET) equation.  Pore size distribution of GAC was 

determined using the t-plot method which indicates the amount of meso- and 

macropores in the carbon.  Analytical results were provided by Imperial College 

and will be discussed in next chapter. 

4.6.2 Adsorption isotherm study (batch experiments) 

Batch adsorption experiments were conducted to determine the equilibrium 

isotherms which can be used to describe the adsorption behaviour of HS by GAC.  

Prior to adsorption, all flasks were soaked in a 10 % nitric acid bath overnight, 

washed with deionised water and dried in the oven at 105 °C for 24 hours.  

Isotherm experiments were performed in 100 ml flasks sealed with parafilm.  

The equilibrium adsorption was set to 6 days based on the preliminary kinetics 

studies.  0.005, 0.01, 0.02, 0.05, 0.1 and 0.2 g GAC were carefully weighed and 

added in a series of 50 ml HS solutions separately.  The HS solutions were 

agitated in a temperature-control shaker (Stuart Orbital Incubator, Barloworld 

Scientific Ltd., UK) at 22±1 °C at 200 rpm.  The shaker was equipped with dark 
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brown glass walls to avoid any light interference.  Two types of blanks were 

served as controls - flasks containing HS solutions without GAC, and flasks 

containing GAC in contact with deionised water only.  They were to ensure that 

HS did not attach to the wall of flasks to affect analytical results and no organic 

matter was released from GAC to interfere the measurement, respectively.  After 

equilibration, an aliquot of solution was filtered through a pre-washed 0.45 µm 

filter for further analysis as described in the “analytical methods” section.   

The amount of HS adsorbed by GAC was calculated using the following equation: 

0

0.05

eq
DOC

DOC DOC
q m

−
=                                           (4.12) 

where qDOC: HS adsorbed by GAC in terms of DOC [mg g-1]; 

DOC0: initial DOC concentration of HS [mg L-1]; 

DOCeq: equilibrium DOC concentration of HS [mg L-1]; 

m: mass of GAC in the flask [g]. 

The adsorption isotherms were plotted as the amount of HS remaining in solution 

(Ceq) and against the amount of HS adsorbed per gram of adsorbent (qe).   

4.6.3 Small column experiments 

Column experiments were carried out to obtain HS breakthrough curves under 

continuous flow conditions.  The small column study was based on the rapid 

small scale column test (RSSCT) method.   
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4.6.3.1 GAC preparation 

The preparation of GAC followed the description in the standard RSSCT method 

(Crittenden el al., 2005).  GAC used for isotherm experiments was received as 

12/40 mesh (particle size range of 420-1680 μm) and considered to be the GAC 

used in the full-scale column.  The smaller GAC used in RSSCT studies was 

obtained by crushing the GAC for the full-scale column.  The crushed carbon 

was sieved to obtain the 60/80 mesh size fraction (particle size range of 177-250 

μm).  Crushing and sieving were continued until all of the GAC passed through 

the upper sieve.  The GAC retained on the bottom sieve was removed, washed 

with deionised water, dried overnight at 105 °C and kept in a desiccator until use.   

4.6.3.2 Column set-up 

All RSSCT studies were carried out at room temperature.  The schematic of the 

column experimental design is shown in Figure 4.9.  A small glass column 

having an internal diameter of 1 cm and a total length of 20 cm was used.  The 

influent water was supplied from a head tank to the small column and the flow 

rate was controlled by a flow meter connected with a Teflon tube to the column 

inlet.  Wall effects were minimised because the ratio of column diameter to GAC 

particle size was ~ 50 (Crittenden et al., 1986 and 1991).  The GAC bed was 

supported by a 100 micron mesh screen and both column ends were fitted with 

Teflon end adapters.  All of these apparatus were cleaned thoroughly before use.   
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Figure 4.9 Schematic of the rapid small scale column test (RSSCT) experiment.   

Table 4.3 A summary of the rapid small scale column test (RSSCT) parameters 

used in this study. 

Particle diameter (mm) 0.21 (60/80) 

Column diameter (cm) 1.0 

Column length (cm) 20 

Bed length (cm) 8.33 

Mass of GAC (g) 3.4 

EBCT (min) 1.05 

Flow rate (ml/min) 6.23 

Loading rate (m/h) 4.76 

 

A summary of experimental parameters for RSSCT studies is tabulated (Table 4.3).  

A designated amount of GAC was pre-wetted with deionised water and carefully 

Influent 
Reservoir 

Flow meter 

GAC bed 

Teflon end 

Glass column 

100 micron mesh screen 

Effluent sampling 
20

cm
 

5cm 
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packed into the column using a spatula.  The column was backwashed with 

deionised water during and after packing to eliminate air so as to reach the 

designated bed length at approximately 8.5 cm.  HS samples were filled into the 

head tank and the flow rate was set at the desired value.  A check on the small 

column system was undertaken every time when sampling to ensure no air was 

present in the influent tube and the flow rate was maintained within 5 % of the 

designated flow rate.  Experiments were duplicated.   

Column effluent samples were collected using 10ml pre-washed Pyrex glass vials 

from the tube connected to the outlet.  UV254 absorbance was measured 

immediately.  Samples for DOC and HPSEC analysis were stored in the fridge at 

4 °C until use. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Introduction 

It has been concluded from the literature review that humic substances (HS) can 

be broken down into smaller organic molecules by solar irradiation.  

Furthermore, the adsorption capability of a given granular activated carbon (GAC) 

for HS is expected to increase with decreasing molecular size.  In the search for 

effective HS removal treatment processes, it has been found that using artificial 

UV irradiation can enhance the removal of HS in the following biological 

activated carbon process.  For example, Buchanan et al. (2008) reported that the 

removal of HS was improved by 26 % when UV irradiation was used as a 

pre-treatment method prior to GAC adsorption.  This is due to UV irradiation 

fragmenting high molecular weight (MW) compounds into smaller molecules.  

However, using artificial UV light makes the treatment expensive.  UV 

irradiation can also be found in natural sunlight spectrum.  Despite this, solar 

effects on the properties and reactivity of HS with respect to the subsequent GAC 

adsorption have not been related nor studied in detail.  No published report to 

date, known to the author, has encouraged a series of experiments to be carried out, 

aiming at evaluating the solar irradiation-GAC method and exploring the potential 

use of natural sunlight to enhance the removal of HS.   

The discussion of the experimental results essentially consists of two main 
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sections - solar irradiation and GAC adsorption.   

The first section discusses the effects of solar irradiation on HS properties with 

respect to UV absorbance at 254 nm (UV254), dissolved organic carbon (DOC) 

concentration and molecular weight (MW).  Since natural sunlight was used as 

the source of energy, it is essential to know the characteristics of natural sunlight 

during the experimental period and therefore establish the correlation between 

solar irradiation and HS properties.  The performance of different solar collectors 

which were applied to promote the photodegradation of HS is quantitatively 

evaluated by fitting kinetics models.  Some parameters relevant to HS 

photodegradation, including pH and microbial activities, are discussed.  Finally, 

solar irradiation effects on the properties of Suwannee River fulvic acid (SRFA) 

and a natural water sample are assessed, supporting the observations made on the 

Aldrich humic acid (AHA) which is a model material.   

The second section discusses the removal of HS by GAC adsorption, subsequent 

to solar irradiation.  For each set of experiments, isotherms are first examined to 

describe the adsorption behaviour of HS, followed by the application of 

adsorption models to fit experimental data to enable a quantitative description of 

the influence of the pre-treatment using solar irradiation on the GAC adsorption 

process.  Results are further discussed on the basis of the high performance size 

exclusion chromatography (HPSEC) measurement.  In addition, results from 

continuous flow studies using the rapid small scale column test (RSSCT) method 

are discussed, providing essential information to the effectiveness and feasibility 

of using solar irradiation to improve the GAC adsorption performance. 

 



Chapter 5                                      Results and Discussions 

 114

5.2 Effects of solar irradiation on the properties of HS 

5.2.1 Evaluation of solar irradiation 

Investigations on the photodegradation of HS were carried out under natural 

sunlight.  It is clear that solar irradiation and the UV level are constantly 

changing from day to day and from season to season for a given location.  The 

real-time solar irradiation values were recorded by a CS300 pyranometer 

(Campbell Scientific, UK) located on site.  Details of the solar measurement can 

be found in Chapter 4.  In the following content, the solar irradiance will be 

expressed as the ‘solar intensity’ in W/m2, or the ‘solar dose’ in kJ/m2, which is 

determined from the intensity and the irradiation time.  A summary of the 

accumulative solar dose in each experiment is presented in Table 5.1.  As shown, 

solar irradiation values greatly varied with season and duration of experiments.  

For example, the total solar irradiation in summer was four times more than that 

in winter for the same experimental duration.    

Table 5.1 Accumulative solar dose during irradiation experiments at Chadwick 

Building of UCL, London, UK.  

Experiment Accumulative solar dose 
(× 105 kJ/m2) 

Winter period 1.44  

Spring period 2.61 

Summer period 5.97 

Initial pH effects 1.59 

SRFA vs. AHA 1.96 

Natural water vs. AHA 1.42 
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Figure 5.1 Distribution of daily solar dose for four seasons: data recorded at UCL and by Met Office.   
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Figure 5.2 Distribution of daily UV intensity for four seasons.  
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For comparison and validation purposes, solar irradiation data recorded by 

Meteorological Office (Met Office) during the same period were collected from 

the Met Office National Meteorological Library and Archive.  The daily 

variations of solar data recorded at UCL and by the Heathrow meteorological 

station (which is the nearest meteorological station to UCL) for four seasonal 

experiments are illustrated in Figure 5.1.  The followings were observed: (i) 

similar trend of UCL and Met Office data in each season; (ii) minor difference 

between UCL and Met Office data when solar intensity was low, such as in winter, 

early spring and late autumn; and (iii) significant difference when solar intensity 

was high, i.e. during the summertime.   

The deviation of UCL experimental measurement from Met Office data can be 

attributed to the following potential reasons: 

- The CS300 pyranometer measures both UV and visible irradiation ranging 

from 300 to 1100 nm (information from the supplier).  The pyranometer used 

at the Heathrow meteorological station is the CM 11 type (Kipp & Zonen) 

which measures irradiation at spectral range 310-2800 nm.  About 90 % of 

sunlight energy is between 300 and 1100 nm.  Therefore, the observed data at 

UCL should be at least 10 % lower than the meteorological data.   

- The accuracy of solar measurement may lead to the difference between 

experimental data and meteorological data.  According to the supplier (Kipp 

& Zonen), the CS300 and CM 11 pyranometers have ±5 % and ±3 % 

accuracies, respectively, for the irradiation measurement.   

- The location of the experimental site limited the incident light to the 

experimental installations.  Some buildings nearby are taller than the 
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Chadwick Building where experiments were conducted.  These taller 

buildings may directly affect the amount of solar irradiation reaching the 

experimental site, in particular the direct irradiation.  In the summer, there is 

an increased proportion of direct irradiation in total solar irradiation compared 

to winter (McVeigh, 1983).  This provides a plausible explanation for the big 

discrepancies in solar measurement taken during the summer.   

It should be noted that the Heathrow meteorological station is about 25 kilometres 

(km) away from UCL.  According to McVeigh (1983), in the UK it can be 

assumed that the average irradiation data from any meteorological station within 

150 km are adequate for practical design purposes.  Based on the observation in 

this research, it can be concluded that this assumption is probably applicable only 

to open sites without incident light being interfered by surroundings.   

The above comparison validates the solar measurement at UCL.  Results from 

this research can therefore well present the correlation between the 

photodegradation of HS and natural sunlight, and can be used as a reference for 

future research activities.   

Considering the aim of this research, UV irradiation at the experimental site was 

not measured in detail.  The daily maximum UV data obtained through Met 

Office are used here to provide general information for evaluating UV irradiation 

during the experimental period of this study.  A summary of UV measurement 

results corresponding to Figure 5.1 is presented in Figure 5.2.  As shown, the 

distribution of UV irradiation is generally similar to that of the total solar 

irradiation, with the highest intensity occurring in the summer period, and 

significantly lower in winter.  According to the Met Office data, it is estimated 

that UV irradiation accounted for no more than 0.6 %, 1.5 %, 3.2 % and 1.3 % of 
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natural sunlight irradiation for winter, spring, summer and autumn periods, 

respectively.  As expected, UV intensity in London is much lower compared to 

other regions.  The maximum UV intensity during the experimental period was 

7.5 W/m2.  As an example, the average UV intensity ranging between 22 W/m2 

and 44 W/m2 was reported by McLoughlin et al. (2004) who conducted solar 

disinfection research in Spain.                                                         

5.2.2 Light transmission characteristics of experimental bottles 

In HS photodegradation studies and solar applications, experiments are normally 

conducted using quartz or Pyrex borosilicate glass containers with small volumes 

of solutions (Schmitt-Kopplin et al., 1998; Del Vecchio and Blough, 2002; Chow 

et al., 2008).  In this research, however, a large volume of water was required (at 

least 15 L in each set of experiment), which means a number of containers were 

needed.  Therefore, when choosing experimental containers, availability should 

be firstly taken into account.  In addition, compared to glasses, polyethylene 

terephthalate (PET) material has the advantage of being light and not easy to 

break.  These advantages made it more appropriate to use PET bottles for 

convenient transportation and safety reasons as experimental site was on the roof 

of Chadwick building.  Due to the good light transmission capability of PET 

material, PET bottles have been recommended for the SODIS method which 

makes use of the UV-A irradiation in sunlight to disinfect contaminated water.  

As discussed in the literature review, the UV-A irradiation also plays an important 

role in the photodegradation of HS.  Based on the above considerations, PET 

bottles were chosen as containers in the solar irradiation experiments in this 

research.   
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Figure 5.3 Light transmission characteristics of quartz, borosilicate glass and PET 

materials as a function of wavelength, measured on a UV-visible 

spectrophotometer.   

It was necessary to evaluate the difference in light transmission and 

photodegradation of HS when using PET, quartz and glass materials.  The 

percentage of light transmission through quartz glass, borosilicate glass and PET 

bottles as a function of wavelength (300-700 nm) was measured on a UV-visible 

spectrophotometer, as illustrated in Figure 5.3.  Quartz material showed the best 

light transmission capability, while borosilicate glass and PET materials 

selectively absorbed irradiation.  As shown, quartz glass can transmit more than 

95 % of irradiation over the entire wavelength range, with excellent transmission 

capacity at UV range.  Borosilicate glass can transmit more than 95 % of visible 

light, 85 % on average of UV-A light, and 30 % of UV-B light.  PET material has 

almost the same light transmission capability for visible light as does borosilicate 

glass, but reduced transmission at UV range, with about 66 % and only 2 % for 

UV-A and UV-B irradiation, respectively.  The observed distribution of light 
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transmission characteristics of these materials is in good agreement with the 

observations made by Reche et al. (1999) and Mani et al. (2006).  A comparison 

of light transmission characteristics of different materials reveals that the use of 

PET material does not affect the effect of visible light on the photodegradation of 

HS.  However, by using PET material, the effect of UV irradiation on HS 

photodegradation is reduced compared to using quartz and borosilicate glass 

materials.   

An investigation on the photodegradation of HS solutions in PET and borosilicate 

glass bottles was carried out during a sunny week in spring and a sunny week in 

summer, with total solar doses 3.39 × 104 kJ/m2 and 8.59 × 104 kJ/m2, respectively.  

All samples were tested when they cooled down to the room temperature; 

however, temperature was not measured in the experiment.  It is likely that the 

temperature in summer was higher, which may affect the photodegradation of HS.  

A decrease in UV254 and absorbance over the entire UV/visible spectrum was 

observed in all the irradiated HS solutions with initial UV254 0.37cm-1 (Figure 5.4).  

Figure 5.4b shows a gradual decrease of absorbance with increasing wavelength, 

which is in agreement with previous observations (refer to section 2.2.1).  This is 

due to the presence of numerous high energetic and aromatic structures that do not 

have distinguishable adsorption spectra.  As there is no UV-C in natural sunlight, 

the absorbance decrease between 220 nm and 280 nm can be attributed to the 

indirect photodegradation by UV-A, UV-B and visible light.  For the HS 

solutions in PET bottles, the absorbance decrease between 220 nm and 280 nm 

was caused by the indirect photodegradation by UV-A and visible light since 

UV-B irradiation was blocked by PET material (Figure 5.3).  The absorbance 

decrease above 280 nm can be explained by both direct and indirect 

photodegradation (refer to section 2.3.2.1) as both UV-A and visible light were 

received by HS solutions (Figure 5.3).  Figure 5.4 shows that: (1) under the same 
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irradiation condition, the absorbance decrease at 254 nm and the entire spectrum 

in borosilicate glass bottles was slightly more than that in PET bottles, probably 

due to the glass material being more transparent to the UV irradiation, as 

demonstrated in Figure 5.3; and (2) spectral changes of HS in PET and glass 

bottles followed a similar trend.  These observations confirm that the use of PET 

bottles in HS photodegradation studies can provide comparable data to those 

using borosilicate glass bottles.  If positive outcomes can be obtained through 

using PET bottles in the solar-GAC method, more pronounced results would be 

expected if the UV-transparent bottles, such as quartz and borosilicate glass 

bottles, are applied.  
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Figure 5.4 Changes in (a) UV254 absorbance and (b) UV/visible absorption 

spectrum of HS solutions in PET and glass bottles due to solar irradiation in 
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spring (solar dose 3.39 × 104 kJ/m2) and summer (solar dose 8.59 × 104 kJ/m2) 

with initial UV254=0.37 cm-1.  

Table 5.2 Characteristics of HS solutions prior to solar irradiation in winter 

experiments (solar dose 1.44×105 kJ/m2).   

pH UV254 
(cm-1) 

DOC  
(mg L-1) 

SUVA 
(L mg-1 m-1) Mn (Da) Mw (Da) ρ 

7.7 0.67 8.50 7.9 1561 4092 2.62

SUVA: specific UV absorbance 

Mn: number average molecular weight 

Mw: weight average molecular weight 

ρ: polydispersity 

5.2.3 Seasonal evaluation of solar irradiation on HS characteristics 

5.2.3.1 Winter experiment 

Experiments were carried out during the winter period with a total solar dose of 

1.44×105 kJ/m2.  Table 5.2 presents the characteristics of HS solutions prior to 

solar irradiation.  The DOC concentration for HS solutions was selected to the 

range between 8 to 9 mg/L, as this range was considered to represent a typical 

level of HS in natural waters.  As a consequence of solar irradiation, a reduction 

in DOC concentration was observed in all HS solutions, as shown in Figure 5.5.  

Each data point represents an average of results for duplicate samples in each 

collector.  The DOC reduction due to irradiation can be explained by the 

production of CO, CO2 and other forms of inorganic carbon matter (Moran and 

Zepp, 1997; Zuo and Jones, 1997; Xie et al., 2004).  CO and CO2 may transfer to 

the atmosphere, with the latter possibly being dissolved in water and lowering the 

pH of water as a result (Patel-Sorrentino et al., 2004).  The DOC reduction 

increased with increasing solar irradiation, with a final removal of 11-15 %.  The 

DOC reduction of HS solutions in solar collectors was slightly more than that in 
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the tray, but the difference was insignificant.  A possible reason behind these 

minor variations is the lower solar intensity during the winter months being 

insufficient for a complete photodegradation of HS.  
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Figure 5.5 Effect of solar irradiation on the DOC concentration of HS in different 

solar collectors in winter (initial DOC 8.50 mg/L, solar dose 1.44×105 kJ/m2).   

UV254 absorbance was measured to evaluate solar irradiation effects on specific 

chromophoric groups of HS, rather than the total organic matter.  It is a good 

indicator of the aromatic chromophores which have a high reactivity toward 

chlorination to form disinfection by-products (DBPs).  A decrease in UV254 

therefore indicates the alteration and destruction of aromatic structures, as well as 

the reduced DBP formation potential.  Under natural sunlight, the decrease of 

UV254 can probably be explained by the indirect photodegradation pathway, as 

there is no UV-C irradiation reaching the earth.  Figure 5.6 shows a gradual 

decrease of UV254 with increasing solar irradiation, with approximately 14-20 % 

of UV absorbing chromophores finally being removed.  In general, given a long 
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exposure time in winter, HS were ineffectively removed in terms of UV254 and 

DOC, due to the low solar intensity.   
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Figure 5.6 Effect of solar irradiation on the UV254 absorbance of HS in different 

solar collectors in winter (initial UV254 0.67 cm-1, solar dose 1.44×105 kJ/m2). 

It should be pointed that in Figures 5.5 and 5.6, the removal of HS is plotted 

against the accumulative solar dose which is the solar irradiation received by the 

earth surface of the experimental site.  The actual solar irradiation received by 

HS solutions is a function of the incident sunlight and the solar collector 

configuration.  It is also partially reduced by the PET material.  The complexity 

of predicting the incident and reflected sunlight within collectors, however, does 

not allow for an accurate calculation or measurement of the solar irradiation 

actually received by HS solutions placed in solar collectors.  Therefore, one can 

not directly plot the HS removal as a function of the actual solar irradiation 

received by HS solutions.  If the removal of HS is only attributed to solar 

irradiation, then any observed difference in HS removal would reflect the 
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difference in solar irradiation received by samples.  As a consequence, 

expressing experimental results as a function of solar irradiation received by the 

earth surface would allow for a direct comparison of the concentrating efficiencies 

between different collectors.   

Photodegradation of HS has been previously reported to follow the first-order 

reaction, as presented in equation 5.1 (Kieber et al., 1990; Zuo and Jones, 1997; 

Xie et al., 2004; Chow et al., 2008).  Similarly, in this study, the HS removal 

fitted the first-order reaction with an R2 > 0.96 for most of HS solutions.   

C= C0 e-kt                                                      (5.1) 

where C0 is the initial concentration of HS in mg/L, k is the first-order decay rate 

constant in s-1 and t is the reaction time in s.  The reaction time can be substituted 

by the solar dose, which can be obtained from equation 4.11.   

The kinetics of the photodegradation of HS, with respect to DOC concentration 

and UV254 absorbance, can therefore be calculated from the following equations: 

ln[DOC] = ln[DOC]0 – k1Q                                        (5.2) 

ln[Abs] = ln[Abs]0 – k2Q                                          (5.3) 

where [DOC]0 is the initial DOC concentration in mg/L; [DOC] is the DOC value 

when sampling in mg/L; [Abs]0 is the initial UV254 absorbance in cm-1; [Abs] is 

the UV254 when sampling in cm-1; k1 is the first order decay rate constant for DOC 

and k2 is the first order decay rate constant for UV254.  A summary of the 

calculated first-order decay rate constants is presented in Table 5.3.   

Table 5.3 First-order decay rate constants of HS irradiated in different solar 
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collectors in winter experiment (DOC removal 11-15 %, UV254 removal 14-20 %, 

solar dose 1.44×105 kJ/m2). 

Solar collectors k1
* k2

* 

CPC 0.109 0.163 

PC 0.102 0.152 

BPC 0.110 0.159 

Tray 0.077 0.121 

* unit: ×10-5 m2/kJ 

As shown, HS solutions in different solar collectors followed the same order of 

reactions, with varying k values.  In a first-order reaction, the coefficient k stands 

for the slope of the ln-linear regression.  The higher the value of k, the faster the 

photodegradation process is.  The decay rate constant k depends on irradiation 

intensity, water characteristics and geometry of the solar collector (Ajona and 

Vidal, 2000; Vidal and Díaz, 2000).  By comparing the k values of samples, a 

few observations were made as follows:  

- Using solar collectors enhanced the removal of HS.  When using compound 

parabolic collector (CPC), parabolic collector (PC) and big parabolic collector 

(BPC), the photobleaching (decrease in UV254) rate of HS was promoted by 

approximately 35 %, 26 % and 31 % relative to using the tray, respectively.  

The enhancement is attributed to more solar energy being collected and 

reflected to HS samples by solar collectors.  Although solar irradiation in 

winter was fairly low, this result supports the view that solar collectors may be 

applied to improve the photodegradation of HS.   

- Differences between solar collectors with regard to the enhancement of HS 
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removal were small.  Although having a much smaller reflective surface area, 

CPC showed a similar photodegradation rate to that of BPC.  According to 

Rodríguez et al. (2004), CPC has the advantage of concentrating diffuse solar 

irradiation.  The diffuse irradiation accounts for more than 75 % of total solar 

irradiation in the winter in UK (McVeigh, 1983).  The result in winter study 

therefore demonstrates that the compound parabolic profile can give a better 

diffuse sunlight capture than the parabolic profile.   

- The decay rate constant of DOC was lower compared to that of UV254.  

Assuming that the UV absorbing chromophores in HS were completely 

broken down to H2O, CO and CO2 by solar irradiation, the rate of DOC 

reduction should be identical to, or higher than, the rate of UV254 reduction.  

The unequal rates indicate the destruction of aromatic structures resulting in 

the formation of some dissolved organic compounds that have less UV light 

absorptivity than their parent materials but still contribute to DOC value.  

Similar observations have been reported by Corin et al. (1996), Chow et al. 

(2008) and Rodríguez-Zúñiga et al. (2008).  In addition, the greater reduction 

of UV254 relative to DOC has led to a slight decrease in the SUVA of the 

irradiated HS (from 7.9 to 7.4 L mg-1 m-1), suggesting a decrease in the 

aromaticity following solar irradiation.  The high SUVA value of HS also 

reflects the fact that the soil derived HS are of high aromatic character.    

High performance size exclusion chromatography (HPSEC) was used to measure 

the change in the molecular size of HS following solar irradiation.  

Chromatograms of HS before and after solar irradiation are illustrated in Figure 

5.7.  Similar distributions were observed for all the irradiated HS solutions; 

therefore, only the results for HS solutions irradiated in BPC and tray are 

discussed here.  No substantial changes were observed in the chromatograms of 



Chapter 5                                      Results and Discussions 

 129

the dark control during the experiment, reflecting the stability of HS.   

-30000

-20000

-10000

0

10000

20000

30000

40000

10 100 1000 10000 100000

MW (Da)

D
et

ec
to

r R
es

po
ns

e
Non-irradiated
BPC irradiated
Tray irradiated
BPC D/F curve
Tray D/F curve

Formation
Destruction

 

Figure 5.7 Chromatograms of HS before and after solar irradiation in winter and 

destruction/formation (D/F) curves (initial DOC 8.50 mg/L and UV254 0.67 cm-1, 

DOC removal 11-15 % and UV254 removal 14-20 %, solar dose 1.44×105 kJ/m2). 

The chromatogram of the non-irradiated HS showed a minor peak prior to the 

main peak, indicating a dominant proportion of high MW compounds and a small 

amount of low MW components in the un-treated solution.  After exposure to 

sunlight, the main peak shifted to lower MW values, suggesting a decrease of the 

molecular size of HS.  Solar irradiation also resulted in a decrease in the height 

and area of the chromatogram.  The total area (or height) of a chromatogram is 

proportional to the sum of the concentrations of organic chromophores of various 

sizes (Lou and Xie, 2006).  A decrease in the total area means the removal of 

some chromophores from the mixture due to solar irradiation.  Corresponding to 

what was observed in Figures 5.5 and 5.6, using solar collectors resulted in more 

changes in the molecular weight distributions (MWD) of the irradiated HS 

solutions in BPC.   
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For a mixture of molecules such as HS, the MWD can be represented by several 

parameters, including Mn, Mw, and polydispersity (ρ).  The Mw and Mn values of 

the untreated HS were 4092 Da and 1561 Da (Table 5.2), which are close to those 

values reported in the literature (Chin et al., 1994; Karanfil et al., 1996a).  As a 

result of solar irradiation, the Mw was decreased by 23 %, 22 %, 25 % and 20 % 

for HS in CPC, PC, BPC and tray, respectively.  It seems likely that solar 

irradiation had more pronounced influence on the HS properties with respect to 

the average molecular size rather than the DOC and UV254.  Solar irradiation not 

only reduced the MW, but also diminished the heterogeneities of HS (ρ decreased 

from 2.6 to 2.3), in accordance with previous observations by Lepane et al. (2003) 

as well as Lou and Xie (2006).  

Additional information can be obtained from destruction/formation curves (Figure 

5.7) by subtracting chromatograms of the irradiated HS from the non-irradiated 

HS, as suggested by Frimmel et al. (1998) and Lepane et al. (2003).  Despite low 

solar intensity in winter, a significant removal of the high MW components was 

observed from the destruction curve, supporting the notion that the high MW 

compounds are readily photodegraded (Buchanan et al., 2005; Carvalho et al., 

2008).  The observed formation of smaller molecules can be attributed to the 

photoproducts from the breakdown of high MW components and these 

photoproducts still contributed to the DOC and UV254 values.  Therefore, using 

solar irradiation in winter (or under low solar intensity) can effectively reduce the 

load of large molecules on the subsequent water treatment processes.  A further 

treatment stage with good capability of removing smaller molecules will be 

necessary.   

One should keep in mind that HPSEC can only measure the UV absorbing 

chromophores in HS.  Some smaller molecules formed from the destruction of 
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high MW components may not be detected by the HPSEC measurement.  Many 

components that do not absorb UV at 254 nm may also act as precursors for DBP 

formation (Matilainen et al., 2002).  However, study on the DBP formation 

potential is beyond the scope of this research.   

Table 5.4 Characteristics of HS solutions prior to solar irradiation in spring 

experiment (solar dose 2.61×105 kJ/m2). 

pH UV254 
(cm-1) 

DOC  
(mg L-1) 

SUVA  
(L mg-1 m-1) Mn (Da) Mw (Da) ρ 

7.3 0.67 8.29 8.1 1563 4241 2.71

SUVA: specific UV absorbance 

Mn: number average molecular weight 

Mw: weight average molecular weight 

ρ: polydispersity 

5.2.3.2 Spring experiment 

A summary of the initial characteristics of HS is given in Table 5.4 and changes in 

DOC and UV254 during solar irradiation in spring are shown in Figures 5.8 and 5.9, 

respectively.  Following solar irradiation with an accumulative dose of 2.61×105 

kJ/m2, a removal of 28-45 % for UV254 and 18-31 % for DOC were observed.  It 

is clear that the increased removal of HS is linked to the increased solar 

irradiation.   
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Figure 5.8 Effect of solar irradiation on the DOC concentration of HS in different 

solar collectors in spring (initial DOC 8.29 mg/L, solar dose 2.61×105 kJ/m2).  
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Figure 5.9 Effect of solar irradiation on the UV254 absorbance of HS in different 

solar collectors in spring (initial UV254 0.67 cm-1, solar dose 2.61×105 kJ/m2).   
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Table 5.5 First-order decay rate constants of HS irradiated in different solar 

collectors in spring experiment (DOC removal 18-31 %, UV254 removal 28-45 %, 

solar dose 2.61×105 kJ/m2). 

Solar collectors k1
* k2

* 

CPC 0.113 0.166 

PC 0.110 0.158 

BPC 0.140 0.218 

Tray 0.082 0.132 

* unit: ×10-5 m2/kJ 

The photodegradation of HS in spring also followed the first-order reaction.  

With respect to DOC, a comparison between the decay rate constants 

demonstrates that the photodegradation rate of HS was promoted by 71 %, 38% 

and 34 % when using BPC, CPC and PC, respectively, relative to the HS 

irradiated without concentrating sunlight (Table 5.5).  These results reveal a clear 

advantage of using BPC which has a larger reflective surface to capture more 

sunlight.  The magnitude of enhancement for CPC samples was slightly higher 

compared to PC samples, indicating the advantage of CPC in collecting diffuse 

irradiation over PC of the similar scale.   

HPSEC chromatograms of HS solutions before and after solar irradiation are 

illustrated in Figure 5.10.  In addition to a shift of the peak to lower MW values 

and a decrease in the height and area of chromatograms, two distinct 

characteristics are observed in chromatograms of the irradiated HS.   

Firstly, instead of a dominant peak, several new peaks and shoulders appears in 
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chromatograms of the irradiated HS in BPC.  These peaks and shoulders were 

either caused by the lower MW factions produced during irradiation so as to have 

their intensity increased at specific MW, or replaced by new peaks and shoulders 

from other low MW photoproducts (Lou and Xie, 2006).  The pH value of HS 

solutions dropped following solar irradiation (from 7.3 to around 6.1), indicating 

that the important components of low MW photoproducts are small organic acids.  

A number of low MW organic acids have been identified as photochemical 

degradation products of HS, such as formic, acetic, malonic, oxalic and pyruvic 

acids (Moran and Zepp, 1997; Brinkmann et al., 2003).  In addition, CO2 which 

was generated by the complete photodegradation of HS may dissolve in water and 

lower the pH.   

-30000

-20000

-10000

0

10000

20000

30000

40000

10 100 1000 10000 100000

MW (Da)

D
et

ec
to

r R
es

po
ns

e

Non-irradiated
BPC irradiated
Tray irradiated
BPC D/F curve
Tray D/F curve

Destruction

Formation

 

Figure 5.10 Chromatograms of HS before and after solar irradiation in spring and 

destruction/formation (D/F) curves (initial DOC 8.29 mg/L and UV254 0.67 cm-1, 

DOC removal 18-31 % and UV254 removal 28-45 %, solar dose 2.61×105 kJ/m2). 
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Secondly, as shown in the destruction and formation curves, after solar irradiation, 

there was a net removal of low MW fractions (< 1000 Da) and a reduced 

formation of intermediate MW fractions (approximately in the MW range of 

1000-3000 Da), although more large molecular chromophores were removed.  

This is different from what was observed in Figure 5.7, where it shows less 

destruction of high MW components but more formation of intermediate and low 

MW fractions.  It is likely that the increased solar intensity in spring was 

sufficient to remove some of the intermediate and low MW compounds in HS.  

These compounds could either be the intermediate and small size molecules 

present in the original HS or the photoproducts being generated and removed 

simultaneously.  A simultaneous production and removal mechanism has been 

suggested by Buchanan et al. (2005) who studied the removal of humic fractions 

under UV-C irradiation.  However, no information relevant to natural sunlight (in 

which the UV-C irradiation is absent) has been found in the consulted references.  

The increased UV intensity in the spring might be an important contributor to the 

enhanced removal of intermediate and smaller molecules.   

The order of the decrease of Mw values was in agreement with the DOC and 

UV254 results, being the highest for HS in BPC (37 %), intermediate in CPC and 

PC (33 % and 31 %) and the lowest in the tray (24 %).  A great photodegradation 

in spring resulted in a great decrease of polydispersity.  For example, the value of 

polydispersity dropped from 2.7 to 2.2 for the HS solutions irradiated in BPC. 

5.2.3.3 Summer experiment 

Characteristics of HS solutions prior to solar irradiation are given in Table 5.6.  A 

significant removal of HS was obtained with a total solar dose of 5.97 ×105 kJ/m2.  

The UV254 absorbance dropped by up to 84 % and the DOC concentration 
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dropped by up to 62 %, as illustrated in Figures 5.11 and 5.12.  As a result, the 

SUVA value of the irradiated solutions was significantly reduced from 8.0 L mg-1 

m-1 to 5.0, 5.3, 3.4 and 6.3 L mg-1 m-1 for HS in CPC, PC, BPC and tray, 

respectively, suggesting a significant reduction in the aromaticity of HS following 

solar irradiation.  This significant removal is apparently attributed to the strong 

solar intensity in the summertime.  UV254 and DOC of HS decrease after 

exposure to light, as previously discussed in the literature review.  The reported 

removal efficiencies vary, depending on the characteristics of HS, type and 

intensity of irradiation and exposure time (Tables 2.4 and 2.5).  The result in 

summer experiments shows that the HS removal efficiencies that have been 

obtained using artificial UV irradiation can be achieved by using natural sunlight 

alone. 

Table 5.6 Characteristics of HS solutions prior to solar irradiation in summer 

experiment (solar dose 5.97 ×105 kJ/m2).   

pH UV254 
(cm-1) 

DOC  
(mg L-1) 

SUVA  
(L mg-1 m-1) Mn (Da) Mw (Da) ρ 

7.4 0.68 8.51 8.0 1680 4503 2.68 

SUVA: specific UV absorbance 

Mn: number average molecular weight 

Mw: weight average molecular weight 

ρ: polydispersity 
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Figure 5.11 Effect of solar irradiation on the DOC concentration of HS in 

different solar collectors in summer (initial DOC 8.51 mg/L, solar dose 5.97×105 

kJ/m2). 
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Figure 5.12 Effect of solar irradiation on the UV254 absorbance of HS in different 

solar collectors in summer (initial UV254 0.68 cm-1, solar dose 5.97×105 kJ/m2). 
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Table 5.7 First-order decay rate constants of HS irradiation in different solar 

collectors in summer (DOC removal 50-62 % and UV254 removal 60-84 %, solar 

dose 5.97×105 kJ/m2). 

Solar collectors k1
* k2

* 

CPC 0.143 0.207 

PC 0.132 0.200 

BPC 0.170 0.306 

Tray 0.103 0.156 

* unit: ×10-5 m2/kJ 

Again, the photodegradation rate of HS was in a descending order as BPC > CPC 

> PC > tray.  The DOC removal was enhanced by 65 %, 39 % and 28 % when 

using BPC, CPC and PC (Table 5.7).  This observation, together with the other 

seasonal experimental results, demonstrates the large potential benefits of the use 

of parabolic solar collectors with large reflective surface.  It also conforms to 

previous findings that the compound parabolic profile has better performance in 

concentrating sunlight relative to the parabolic profile of the similar scale (Vidal 

and Díaz, 2000; McLoughlin et al., 2004).   

It is worth noting that even after a long period of exposure duration the summer, a 

complete removal of HS by natural sunlight was not achieved in this study.  As 

the photodegradation of HS followed the first-order reaction (equation 5.1), the 

relationship between the concentration of HS and solar dose can be described as 

an exponential function, implying that the 100 % photodegradation of HS would 

not be expected to achieve under prolonged sunlight exposure.  This is in 

accordance with the hypothesis made by Lou and Xie (2006), who established the 
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relationship between MW and irradiation time with a single exponential function, 

and suggested that solar irradiation is incapable of completely oxidizing NOM 

even after a very long period of irradiation.  Given the incomplete degradation of 

HS by sunlight, a further treatment stage is therefore required.   

Significant differences in the MWD of HS following solar irradiation in summer 

are observed in Figure 5.13, suggesting remarkable structural changes of HS 

molecules.  The high MW chromophores appear to be largely removed, leaving 

only a small amount of lower MW fractions in water.  As can be seen from the 

destruction/formation curves, there was a destruction of chromophores across the 

entire range of MW, except that there was a slight accumulation of lower MW 

molecules in the HS solutions irradiated in the tray.  This implies that strong 

solar irradiation during summer is sufficient to break down humic molecules with 

different sizes, even the smaller ones.   
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Figure 5.13 Chromatograms of HS before and after solar irradiation in summer 

and destruction/formation (D/F) curves (initial DOC 8.51 mg/L and UV254 0.68 

cm-1, DOC removal 50-62 % and UV254 removal 60-84 %, solar dose 5.97×105 
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kJ/m2).  
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Figure 5.14 (a) HPSEC chromatograms of HS irradiated in BPC during summer; 

(b) removal of different MW fractions of HS irradiated in BPC due to solar 

irradiation during summer. 
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A detailed investigation was carried out by measuring changes in the MWD of HS 

during solar irradiation.  Chromatograms of HS in BPC and tray are shown as 

insets in Figures 5.14 and 5.15, respectively.  To compare the performance of 

different MW fractions following solar irradiation, chromatograms of HS are 

roughly split into five MW fractions, as <1000 Da, 1000-3000 Da, 3000-5000 Da, 

5000-10000 Da and 10000-18000 Da.  The high MW fractions are here referred 

to those with the MW of more than 5000 Da, the intermediate MW fractions to 

those with the MW range of 5000-1000 Da, and the lowest MW fractions to those 

having the MW less than 1000 Da.  The ratio of the decrease of the peak height 

(or area) to the initial peak height (or area) in chromatograms can be used as a 

measure for estimating the removal of HS fractions within the defined MW range.  

The efficiency of solar irradiation in removing different MW fractions can 

therefore be obtained.   

The high MW fractions in HS irradiated in BPC were nearly completely removed 

after solar irradiation, and with just a small solar dose (0.33 ×105 kJ/m2 for the 

first day) the highest MW fraction (10000-18000 Da) decreased by 56 %.  The 

rapid initial breakdown confirms large molecules being preferentially 

photodegraded by solar irradiation.   This is due to the large size and high 

conjugated character of these compounds which have a higher possibility of 

interaction with the incoming irradiation and oxidant radicals generated 

(Buchanan et al., 2005).  Following small solar doses of 0.33 and 0.66 ×105 

kJ/m2, a rapid increase in both intermediate and low MW fractions was observed, 

corresponding to the rapid breakdown of high MW fractions.  Progressive 

changes in the MW fraction of 3000-5000 Da were observed with increasing solar 

irradiation, with more than 90 % of organic compounds within this MW range 

finally being removed.  As to the smaller molecules, the removal process was 
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more complicated.  It was expected that the smaller molecules would rapidly 

accumulate as a consequence of the breakdown of the high MW fractions after 

small solar doses and continuously accumulate due to the further breakdown of 

intermediate MW fractions.  Instead, what was observed was that the amount of 

smaller molecules remained roughly constant for a period of time.  A possible 

explanation could be that some low MW photoproducts were simultaneously 

formed and removed, and some small molecules originally in HS may also be 

photodegraded.  Following solar irradiation, the total removal of smaller 

compounds was 48 % and 61 % for the MW <1000 Da and 1000-3000 Da 

fractions, respectively.  These fractions are considered to be the ones mainly 

responsible for the final UV254 of the irradiated HS, and partially contribute to the 

DOC concentration.   

Likewise, as to the HS solutions in the tray, the highest MW fraction was rapidly 

removed, followed by the second highest MW fraction.  The corresponding total 

removal efficiencies were approximately 94 % and 87 %, respectively.  The 

removal of low and intermediate MW fractions was found to be significantly less 

relative to those in BPC.  The removal of small fractions was only observed 

during the end of the solar exposure, with more than 83 % of smaller molecules 

still remaining in water.  The removal of MW fractions of HS in CPC and PC 

showed a similar pattern to these in BPC and flat tray, and their values were 

between those illustrated in Figures 5.14 and 5.15.   
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Figure 5.15 (a) HPSEC chromatograms of HS irradiated in the tray during 

summer, (b) removal of different MW fractions of HS irradiated in the tray due to 

solar irradiation during summer. 

The observations in Figures 5.14 and 5.15 imply that two possible processes may 

occur in the photodegradation of HS: (i) a primary cleavage or disaggregation of 
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high MW compounds and (ii) a secondary photodegradation of organic 

constituents.  Schmitt-Kopplin et al. (1998) suggested that the fast 

disaggregation of HS may be initiated by oxidative cleavage of hydrogen binding 

functions and easily oxidizable phenolic linkages.  The photodegradation of 

smaller organic compounds is shown to be related to the irradiation intensity.  

With the assistance of solar collectors, a significant removal of small molecules 

can be achieved.  Since the solar collectors used in this research were simplified, 

non-solar tracking systems, it is assumed that the removal of HS will be greatly 

promoted by using sunlight-tracking collectors with higher concentrating ratios, 

i.e. 5 to 50 (Malato et al., 2004).  Also, significantly better HS removal may be 

expected if experiments are to be carried out for regions with stronger sunlight.   

The effect of solar irradiation on the MW value was also significant.  For 

example, the Mw value of HS irradiated in BPC was decreased by 76 %, together 

with a great decrease of polydispersity from 2.7 to 1.9, reflecting a decreased 

heterogeneity of the irradiated HS.   

5.2.4 Factors affecting the photodegradation of HS 

Apart from solar intensity, the photodegradation of HS can be influenced by many 

factors, such as pH, concentration, microbial species, source of HS, carboxylic 

acidity, dissolved oxygen and ionic metals in the water (Collins et al., 1986; Gao 

and Zepp, 1998; Schmitt-Kopplin et al., 1998; Lepane et al., 2003; 

Rodríguez-Zúñiga et al., 2008).  It is helpful to investigate those factors on the 

removal of HS for a better understanding of the solar-GAC method.  Some of 

them were examined in this study. 
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5.2.4.1 Microbial effects 

Solar irradiation may have both direct and indirect effects on the microbial 

activity in water (Corin et al., 1998).  On one hand, solar irradiation, and in 

particular its UV fraction which is also known as germicidal irradiation, can 

inactivate microorganisms.  On the other hand, exposure to sunlight stimulates 

the microbial growth in water, due to the formation of smaller organic molecules 

which are more biologically available than their parent molecules.  The 

enhancement and inhibition of microbial activity in the irradiated water containing 

HS have been reported by several authors (Gjessing and Källqvist, 1991; Lund 

and Hongve, 1994; Corin et al., 1998).   

In theory, microbial degradation of HS is likely to occur in this study, since the 

solar exposure duration was long and the equipment was not sterilized.  A key 

question therefore rises: was the removal of HS actually mainly attributed to the 

microbial degradation in this research?  With this question, a regular check was 

made on the properties of the irradiated HS solutions after the completion of solar 

irradiation experiments.  The check was conducted weekly within 6 to 10 weeks 

time.  These irradiated solutions were kept in the dark after solar irradiation 

experiments.  Therefore, microbial degradation, if any, is supposed to play a 

major role in changing the properties of HS.   Figure 5.16 shows the evolution 

of the properties of the irradiated HS solutions in BPC after winter, spring and 

summer irradiation experiments.  The y-axis represents the evolution of DOC 

and UV254, normalized by dividing by the corresponding DOC and UV254 of HS at 

time zero (the final DOC and UV254 values of HS by the end of solar irradiation 

experiments).  A random change in HS properties after solar irradiation 

experiments can be seen.  The increase/decrease of UV254 and DOC values were 

less than 7 % and 5 %, respectively.   
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A direct comparison between the degradation of HS due to solar irradiation and 

the further degradation of the irradiated HS when kept in the dark is illustrated in 

Figure 5.17.  It appears that the removal of HS due to the further degradation was 

insignificant compared to the solar-induced degradation of HS.  In fact, if 

analytical uncertainties are taken into account, the variation resulting from the 

microbial activity, if any, can be considered negligible.  This agrees well with 

Hongve (1994) who compared the photodegradation of sodium azide preserved 

and unpreserved HS and found that photodegradation of HS is primarily a 

photochemical process where microbial activity is suppressed.   

It can therefore be concluded that the removal of HS in this research is mainly 

attributed to the photodegradation induced by solar irradiation.  Microbial 

degradation may also occur, but the effects can be considered neglected.   
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Figure 5.16 Evolution of the properties of irradiated HS solutions in BPC after 

the completion solar irradiation experiments in winter (solar dose 1.44×105 kJ/m2), 

spring (solar dose 2.61×105 kJ/m2) and summer (solar dose 5.97×105 kJ/m2).   
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Figure 5.17 Removal of HS in terms of UV254 and DOC due to solar irradiation 

and further degradation after irradiation.   

5.2.4.2 pH effects  

pH is an important factor that affects the characteristics and reactivity of organics.  

Experiments were carried out under the same conditions with pH as a variable.  

Prior to solar irradiation, the water quality was: DOC = 8.30 mg L-1, UV254 

absorbance = 0.67 cm-1 and pH = 7.5.  The pH of HS solutions was adjusted by 

adding sodium hydroxide (NaOH) and hydrochloric acid (HCl) to bring pH values 

to 4.2 (acidic) and 9.7 (basic), respectively.  Solar collectors used for pH 

experiments were CPC and flat tray. 
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Figure 5.18 Removal of HS with initial pH values of 4.2, 7.5 and 9.7 by solar 

irradiation (initial DOC 8.30 mg/L and UV254 0.67 cm-1, solar dose 1.59×105 

kJ/m2).   

Experiments were carried out in spring with a total solar dose of 1.59 ×105 kJ/m2.  

The total removal results are plotted in Figure 5.18.  The DOC concentration was 

decreased by 9.9 %, 8.9 % and 12.8 % for the pH 4.2, 7.5 and 9.7 solutions 

irradiated in the tray, respectively.  The corresponding UV254 absorbance 

reductions were 21.4 %, 17.5 % and 25.9 %.  The photodegradation of HS 

irradiated using a solar collector was significantly promoted compared to that in 

the flat tray.  It appears that the changes in UV254 were more pronounced for the 

pH adjusted HS solutions (acidic and basic) compared to the pH 7.5 solution, 

whereas the influence of pH on DOC reduction was relatively small.  At high pH, 

the deprotonation of carboxylic and phenolic functional groups results in an 

increase of the electrostatic repulsive force among humic molecules; it may 

weaken some hydrogen bonds that hold molecules together, leaving humic 

molecules susceptible to disaggregation (Avena and Wilkinson, 2002; Brigante et 

al., 2007).  On the contrary, for lower pH values, HS are able to form large 
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aggregates due to the reduced electrostatic repulsion (Avena and Wilkinson, 2002).  

A hypothesis to explain the increased removal of HS under acidic conditions 

could be that the addition of acid might form associations with humic molecules 

that are more liable to photodegradation or/and weaken some interactions that 

hold molecules together.  Some precipitation at low pH might also result in a 

larger decrease (Pullin et al., 2004).  The observed behaviour is in agreement 

with what has been previously reported by Gao and Zepp (1998), Brinkmann et al. 

(2003) and Pullin et al. (2004). 

Irradiation led to a shift of the main peak to lower MW values and the removal of 

chromophores was more pronounced for the HS irradiated in the solar collector 

(Figure 5.19).  The destruction/formation curves exhibit a pronounced removal 

of large molecules in the pH 9.7 solutions.  This explains the observed higher 

removals of DOC and UV254 of the pH 9.7 solutions.  For the acidic HS solutions, 

it seems likely that the addition of acid increased the photodegradability of 

smaller molecules, which were either photoproducts from the breakdown of large 

molecules or those originally present in HS solutions.  

It can therefore be concluded that pH adjustment can alter the interactions 

between HS constituting molecules, and hence affect their photodegradation 

performance by solar irradiation.   
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Figure 5.19 HPSEC chromatograms and destruction/formation (D/F) curves of 

HS solutions at three different initial pH values (4.2, 7.5 and 9.7) before and after 

solar irradiation: (a) HS irradiated in CPC, and (b) HS irradiated in tray (initial 

DOC 8.30 mg/L and UV254 0.67 cm-1, solar dose 1.59×105 kJ/m2). 
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5.2.4.3 Effects of solar irradiation on aquatic FA 

A series of experiments carried out under natural sunlight give a practical and 

realistic demonstration that solar irradiation can effectively break down the large 

humic components and reduce the DOC concentration and UV254 absorbance of 

HS.  However, HS in natural waters do not have the MW and degree of 

aromaticity as high as does the AHA.  Fulvic acid (FA) is another important 

category of HS, accounting for 20-50 % of the organic matter pool in natural 

environments (Thurman, 1985).  It is therefore essential to evaluate the 

treatability of FA using the solar irradiation–GAC adsorption method and the solar 

effect on FA properties will first be discussed here.  Experimental solutions were 

prepared from approximately 10 mg L-1 SRFA and 10 mg L-1 AHA.  Similar 

initial amount of SRFA and AHA resulted in different characteristics of solutions, 

as can be seen in Table 5.8, although the carbon assay values were similar (53.5 % 

for SRFA and 50.7 % for AHA).  The big difference in DOC can be attributed to 

the filtration procedure when preparing samples.  The large molecules were 

removed from the AHA mixture so as to reduce its DOC concentration.  In 

contrast to the DOC concentration, the UV254 absorbance of HA was higher than 

that of SRFA, reflecting the fact that AHA contains a larger fraction of aromatic 

structures than does SRFA.  According to Karanfil et al. (1996a), the aromaticity 

of AHA is 57.7 %, while it is only 24.8 % for SRFA.    

Solar irradiation resulted in a continuous decrease in UV254 and DOC of AHA and 

SRFA solutions.  The final removals are presented in Figure 5.20.  In spite of 

the fact that the SRFA sample was more concentrated in terms of DOC, the 

observed photodegradation rate of SRFA was slightly faster compared to AHA.  

This difference is in accordance with some earlier studies.  Allard et al. (1994) 

found that it took 58 h to remove 95 % of HA by exposure to UV-C light, while 
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only 12 h for FA to achieve 95 % removal.  Kulovaara et al. (1996) measured 

total organic carbon (TOC) changes in the FA and HA isolates from a lake water 

by UV irradiation.  The FA isolate was found to decrease faster at the beginning 

of irradiation and HA degradation proceeded at a relatively constant rate.  The 

authors suggested that the photodegradation of FA structures proceeds faster 

relative to HA structures.  Lepane et al. (2003) found that the loss in optical 

properties was in the order: natural seawater > FA > HA, under the UV-B 

irradiation.   

Table 5.8 Characteristics of AHA and SRFA solutions prior to solar irradiation 

(solar dose 1.96 ×105 kJ/m2).   

 DOC  
(mg L-1) 

UV254 
(cm-1) pH Mw (Da) Mn (Da) ρ 

AHA 3.80 0.25 7.1 4049 1719 2.36 

SRFA 5.06 0.20 4.9 2234 1201 1.86 

Mn: number average molecular weight 

Mw: weight average molecular weight 

ρ: polydispersity 
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Figure 5.20 Total removals of SRFA and AHA with respect to DOC and UV254 

due to solar irradiation (initial DOC 5.06mg/L (SRFA) and 3.80 mg/L (AHA), 

initial 0.20 cm-1 (SRFA) and 0.25 cm-1 (AHA), solar dose 1.96 ×105 kJ/m2). 

The Mw values of non-irradiated samples were 4049 Da (AHA) and 2234 Da 

(SRFA), as given in Table 5.8, confirming the notion that AHA possesses certain 

high MW components that are not present in SRFA.  Following solar irradiation, 

there was a slightly higher reduction in MW values for SRFA.  Similar 

observation has been reported by Lou and Xie (2006) who found that the aquatic 

humic samples (Suwannee River HA (SRHA), SRFA and a natural water) were 

more susceptible to the photoalternation of the MW by visible irradiation 

compared to a soil derived HA.   

Thus, it can be concluded that FA is more prone to be photodegraded while HA is 

more resistant to photodegradation, possibly due to the high chemical stability of 

the aromatic structures.  On the other hand, it can be deduced that results from 

studies employing the soil derived HS may lead to an underestimation of the 

photodegradation efficiency of natural humic rich waters (which consist of both 
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FA and HA) by solar irradiation.  Consequently, it would be expected that when 

dealing with humic rich waters using natural sunlight, higher and faster 

photodegradation of humic waters might be obtained compared to the waters only 

containing HA.  

5.2.5 Evaluation of natural water source 

Results obtained from the above studies on humic model materials (AHA and 

SRFA) lead to the following initial conclusions: (i) if a water contains a high 

content of large humic molecules, it is likely that solar irradiation would 

effectively remove the high MW components, while the load of large molecules 

on the subsequent treatment processes would be successfully reduced; and (ii) if a 

water containing both FA and HA, as encountered in all natural waters, it is likely 

that solar irradiation would remove HS at a faster rate and to a greater extent than 

HA alone.   

Table 5.9 Characteristics of the natural CH water and AHA water prior to solar 

irradiation in autumn (solar dose 1.42 × 105 kJ/m2).   

 pH DOC 
(mg L-1)

UV254
(cm-1)

SUVA 
(L mg-1m-1)

Mw 
(kDa) 

Mn 
(kDa) ρ 

CH water 6.4 12.90 0.72 5.58 4.67 2.43 1.92

AHA water 7.3 8.83 0.71 8.04 4.20 1.62 2.59

SUVA: specific UV absorbance 

Mn: number average molecular weight 

Mw: weight average molecular weight 

ρ: polydispersity 
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To test these initial conclusions, the proposed solar irradiation-GAC adsorption 

method was then applied to a natural water sample collected from the Chellow 

Heights Water Treatment Plant of Yorkshire Water.  This natural water sample is 

herein referred to as ‘CH water’.  Over the past ten years, Yorkshire Water has 

experienced a continual increase in the NOM content of raw water and difficulties 

in meeting trihalomethanes (THMs) regulations.  The increase in colour of water 

is seasonal with peaks occurring in autumn (Goslan, 2003).  Solar irradiation 

experiments were therefore carried out in autumn with an accumulative solar dose 

of 1.42 × 105 kJ/m2.  The quality of CH water prior to irradiation is summarized 

in Table 5.9 where some features of this natural water can be seen:  

- Compared to AHA, there were possibly a higher content of acidic functional 

groups in CH raw water according to its lower pH value;   

- With the similar UV254 absorbance, CH water had a higher DOC content of 

12.9 mg L-1 than AHA water (DOC 8.8 mg L-1), indicating that a large portion 

of the organic components in this natural water sample did not have 

absorbance at 254 nm or did not possess aromatic or conjugated structures; 

- Consequently, the SUVA value of CH water was lower than that of AHA water 

(Table 5.9), confirming a lesser hydrophobicity and aromaticity of the natural 

aquatic HS;   

- CH water surprisingly had a higher MW (4.67 kDa) compared to AHA (4.20 

kDa).  As reflected in Figure 5.21, there were a larger number of organic 

components in CH water covering the entire MW range.  The observed high 

MW can be linked to the characteristics of the source of the CH water – the 

upland water passing through peat.  Due to the terrestrial origin, it is also 

possible that the ratio of HA to FA is higher in this upland water than in some 

other surface waters.   
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Figure 5.21 HPSEC chromatograms of CH water and AHA water before and after 

solar irradiation in autumn (initial DOC 12.90 mg/L for CH water and 8.83 mg/L 

for AHA water, initial UV254 0.72 cm-1 for CH water and 0.71 cm-1 for AHA water, 

solar dose 1.42×105 kJ/m2).   
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Figure 5.22 Effect of solar irradiation on the DOC concentration of CH water and 

AHA water in BPC and flat tray in autumn (initial DOC 12.90 mg/L for CH water 

and 8.83 mg/L for AHA water, solar dose 1.42×105 kJ/m2).   
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Figure 5.23 Effect of solar irradiation on the UV254 absorbance of the CH water 

and AHA water in BPC and flat tray in autumn (initial UV254 0.72 cm-1 for CH 

water and 0.71 cm-1 for AHA water, solar dose 1.42×105 kJ/m2). 

The DOC and UV254 of the dark control for both waters remained almost 

unchanged duration experiment, confirming the stability of HS.  A gradual 

removal of HS was observed with increasing solar irradiation (Figures 5.22 and 

5.23).  The DOC of HS was removed by 21-29 % for CH water and 14-24 % for 

AHA water.  Apparently, natural HS displayed a faster photodegradation rate.  

For example, for HS irradiated in tray, the photodegradation rate in terms of DOC 

was 0.145×10-5 m2/kJ for CH water and only 0.097×10-5 m2/kJ for AHA water.  

There are some possible explanations to this:  

- Sharp et al. (2006) fractionated an upland water sample from Yorkshire Water by 

XAD resin adsorption technique and found that the FA faction accounted for the 

greatest fraction of DOC, followed by HA fraction.  Similar observations have 

also been reported by Ma et al. (2001) and Goslan (2003), who reported that the 

majority of DOC in upland water sources was presented as FA fraction, while HA 
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accounted for a lesser proportion.  From previously published data and the 

measured low SUVA value of CH water, it can therefore be inferred that CH water 

contained more FA fraction than HA fraction.  FA is more readily 

photodegradated than HA, as discussed in section 5.2.4.3.  Thus, the natural 

water showed a faster degradation rate than AHA water. 

- It is well-known that carboxyl containing compounds can form strong 

complexes with metals that undergo rapid photoreactions (Faust and Zepp, 1993; 

Brinkmann et al., 2003; Xie et al., 2004).  A greater amount of carboxylic 

functional groups is expected in CH water, compared to AHA water.  And the 

iron, for example, is one of the most commonly metals present in natural waters.  

The Fe(III)-carboxylate complexes may therefore promote the photodegradation 

process of the CH water;  

- The indirect photodegradation of non-chromophoric organic materials can 

contribute to the DOC loss; 

- As discussed in section 5.2.4.2, the pH value of water may also play a role in 

improving the photodegradation of HS.  

The first-order decay rate constants presented in Table 5.10 show that the UV254 

decreased faster than did the DOC concentration, suggesting a decrease in the 

SUVA value of HS following solar irradiation and hence a decrease in aromaticity.  

This is in agreement with the findings in other seasonal experiments.  Using BPC 

significantly enhanced the photodegradation of CH water relative to the tray, with 

approximately 72 % and 63 % enhancement for the DOC and UV254 removal, 

respectively.  The corresponding magnitude of enhancement for AHA water was 

78 % (DOC) and 77 % (UV254).   
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Table 5.10 First-order decay rate constants of CH water and AHA water irradiated 

in BPC and flat tray in autumn (DOC removal 21-29 % for CH water and 14-24 % 

for AHA water, solar dose 1.42×105 kJ/m2). 

Samples k1
* k2

* 

CH water in BPC 0.249 0.275 

CH water in tray 0.145 0.169 

AHA water in BPC 0.173 0.216 

AHA water in tray 0.097 0.122 

* unit: ×10-5 m2/kJ 
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Figure 5.24 Removal of different MW fractions of CH water and AHA water in 

BPC and tray due to solar irradiation in autumn (initial DOC 12.90 mg/L for CH 

water and 8.83 mg/L for AHA water, DOC removal 21-29 % for CH water and 

14-24 % for AHA water, solar dose 1.42×105 kJ/m2). 

Although solar intensity during this experiment was not strong, a significant 

change in the MWD was observed (Figure 5.21).  Apparently, solar irradiation 
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was more effective in altering the MWD of CH water, with more changes 

observed in the chromatograms.  Figure 5.24 shows the photodegradation 

efficiencies of different MW fractions in HS.  Compared to AHA, CH water had 

more large molecules removed and less smaller molecules remaining in water.  It 

is possible that either many photoproducts were produced and degraded 

simultaneously, or/and more non-chromophoric photoproducts were formed in CH 

water.  Observations in this experiment conclusively evidence the treatability of 

natural humic rich water subjected to solar irradiation.  The influence on the 

subsequent GAC adsorption process will be discussed in the section 5.3. 

5.2.6 Summary of solar irradiation results 

Solar irradiation undoubtedly alters the physicochemical characteristics of organic 

components that comprise HS, reflected by UV254, DOC and MW changes.  The 

total DOC removal of HS was up to 15 %, 31 % and 62 % after exposure to 

sunlight of 1.44 ×105 kJ/m2, 2.61 ×105 kJ/m2 and 5.97 ×105 kJ/m2, respectively.  

And the removal of DOC was up to 29 % for CH water with irradiation of 1.42 

×105 kJ/m2.  Winter et al. (2007) reported a 26 % DOC reduction of AHA 

solution (initial DOC 10.9 mg/L) exposed to natural sunlight for 13 days in 

summer in Waterloo, Canada, however, the solar dose was not measured in their 

work.  Compared to the work by Winter et al. (2007), photodegradation of HS in 

this work was much slower (62 % DOC removal for 10 weeks in summer).  This 

can be possibly attributed to the low solar intensity in London compared to 

Waterloo.  Hongve (1998) also studied the photodegradation of HS under natural 

sunlight on a pond water sample with initial DOC 12 mg/L.  After exposure to 

1.63 ×105 kJ/m2 solar irradiation, a 32 % DOC removal was achieved.  This 

value is higher than what was observed on AHA water and close to the DOC 

removal of CH water in autumn experiment (solar intensity 1.44 ×105 kJ/m2), 
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confirming the treatability of natural humic waters by solar irradiation.  Up to 84 

% UV254 decrease and 62 % DOC decrease were achieved in this research.  

Comparisons between experimental data and published results (given in Tables 

2.4 and 2.5) show that the removal of HS in terms of DOC and UV254 that has 

been obtained using artificial UV irradiation can be achieved by using natural 

sunlight alone.  For example, Goslan et al. (2006) reported that by exposing an 

upland water under UV lamp at 254 nm (34 W/m2), the UV254 of HS was reduced 

by 85 %.   

A summary of the first-order decay rate constants for the photodegradation of HS 

in four seasonal experiments is presented in Figure 5.25.  The main observations 

are:  

(1) the photodegradation rate varied with season due to varying solar intensities;  

(2) using solar collectors effectively improved the photodegradation of HS under 

any irradiation conditions (or any seasons).  This is attributed to the increased 

solar irradiation within solar collectors.  The magnitude of enhancement varied 

from 13 % to 65 % for DOC and from 26 % to 96 % for UV254, depending on the 

solar collector configuration and solar intensity; 

(3) the UV254 absorbance was more remarkably reduced than the DOC 

concentration, leading to a decrease in the SUVA value.  This demonstrates the 

aromaticity loss following solar irradiation, and the DBP formation potential may 

be reduced;  

(4) the natural humic rich water was more readily photodegraded compared to 

AHA water, suggesting the treatability of natural humic rich waters and 

confirming that the observed positive outcome from AHA is not only restricted to 

the model material. 
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Figure 5.25 Summary of the first-order decay rate constants for HS solutions 

irradiated in different seasons: (a) k1 for DOC, and (b) k2 for UV254. 

The photodegradation rate is found to be strongly correlated with solar irradiation.  

In each seasonal experiment, the photodegradation of AHA was found to follow 

the first-order kinetics.  The first-order decay rate constant k depends on 

irradiation intensity, water characteristics and geometry of the solar collector.  
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When the same AHA waters and the same solar collector were used, k is only 

related to the solar intensity.  A direct correlation between the decay rate 

constants of AHA solutions in the tray (Tables 5.3, 5.5, 5.7 and 5.10) and solar 

dose in four seasonal experiments is illustrated in Figure 5.26.  As can be seen, k 

values of AHA increase with increasing solar doses.  There was a linear 

correlation between solar dose and decay rate constant k for UV254.  However, a 

linear correlation for DOC was not found, which is caused by the apparent 

difference between k values obtained from winter (1.44 ×105 kJ/m2) and autumn 

experiments (1.42 ×105 kJ/m2) when the total solar dose was similar.  This is 

possibly due to the DOC analytical error as the corresponding k values in relation 

to UV254 were similar.  The decay rate constant of CH water was noticeably 

higher than that of AHA water under the same irradiation condition, suggesting 

the good treatability of natural humic rich waters by solar irradiation.   

It can therefore be concluded from Figure 5.26 that stronger solar intensity would 

lead to a faster photodegradation of HS.  Even under natural sunlight, a 

significant HS removal is achievable.  Solar irradiation as a sustainable energy 

source has the advantage of being freely and locally available.  Solar irradiation 

in London is in fact much lower than many other regions, with the average daily 

intensity at the experimental site of approximately 8.53 ×103 kJ/m2 in summer.  

Solar data available from the published photodegradation or disinfection studies 

show that the daily intensities were 14.03 ×103 kJ/m2 for California, 21.08 ×103 

kJ/m2 for Malaysia and 15.12 ×103 kJ/m2 for India (Kehoe et al., 2000; Mani et al., 

2006; Chow et al., 2008).  As pronounced removals were achieved in this 

research, significantly better HS removal would be expected if experiments are 

conducted for regions with stronger sunlight.   
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Figure 5.26 Correlations between first-order decay rate constants of HS solutions 

irradiated in the flat tray and solar doses in four seasonal experiments.   

5.3 Effects of solar irradiation on the adsorption of HS by GAC 

5.3.1 Characteristics of GAC 

The Aquasorb 101 GAC was used as the adsorbent in this study.  A summary of 

characteristics of this GAC relevant to the adsorption study is presented in Table 

5.11.  The value of the surface area measured was similar to the value stated by 

the supplier (950 m2/g).  It is clear that the pore size distribution of the Aqua101 

GAC was mainly in the microporous range (pore width < 2 nm), with a smaller 

portion (26 %) in the mesoporous (2 nm-50 nm) and macroporous (> 50 nm) 

range.  Filtrasorb 400 (F400), a commonly used GAC in water treatment, has 

approximately 1000 m2/g specific surface area and about 86 % of the surface area 

falls into the pores smaller than 1 nm in width (Kilduff et al., 1996).  The Norit 

Row 0.8 Supra carbon used in water treatment applications was reported to have 
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only 15 % of the surface area of meso- and macropores (Świetlik et al., 2002).  It 

can be seen that the Aquasorb 101 carbon has the feature of many commercially 

available GAC in terms of the pore size distribution.  It was selected as the 

representative carbon used in this research.  Since the hypothesis of this research 

was based on the size exclusion effects, it is assumed that the observation made on 

the Aqua101 carbon would be also applicable to other commercial carbons with a 

higher portion of micropores and a smaller portion of meso- and macropores.   

Table 5.11 Basic characteristics of the Aquasorb 101 GAC (Universal Mineral 

Supplies, UK).  

Surface area (m2/g) 919.4 

Surface area micropore (m2/g) 682.9 

Surface area meso+macropores (m2/g) 236.5 

Pore volume (cm3/g) 0.88 

pHPZC 9.5 

        pHPZC: Zero point of charge 

5.3.2 Seasonal evaluation of solar irradiation effect on GAC adsorption of HS 

The interactions between HS and GAC affect the adsorption of HS by GAC.  

Since the same type of GAC was used throughout this research, the properties of 

HS are considered to determine the extent of adsorption.  Solar irradiation 

resulted in reductions in DOC, UV254, MW and pH of HS, which are expected to 

lead to the differences in the adsorption behaviour of the irradiated HS from the 

original.   
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5.3.2.1 Winter experiment 

Adsorption isotherms of the irradiated and non-irradiated HS in winter 

experiments are presented in Figures 5.27.  It is shown that the extent of 

adsorption increased with increasing equilibrium concentration or with decreasing 

GAC dose.  Although no significant reduction in UV254, DOC and MW was 

observed following solar irradiation in winter, the adsorption behaviour of HS was 

substantially influenced.  Adsorption isotherms of the irradiated HS solutions 

differed slightly, corresponding to the minor differences in the UV254, DOC and 

MW changes following solar irradiation (as can be seen in Figures 5.5, 5.6 and 

5.7).  From the isotherms, some information on the adsorption system can be 

obtained:   

- higher loads of the irradiated HS on GAC when compared to the 

non-irradiated HS;   

- steeper isotherm slopes of the irradiated HS, and in particular at high 

equilibrium concentrations; 

- earlier adsorption starting points (or less delay) of the irradiated HS in those 

cases where the equilibrium concentration was low. 

It is evident that solar irradiation improved the adsorption of HS over the entire 

concentration range of interest.  For example, for an equilibrium concentration 

Ce value of 6 mg /L, the amount of HS adsorbed from the non-irradiated and 

irradiated HS solutions was approximately 3 and 6 mg/g, respectively.  As 

previously discussed, there are two major factors, size exclusion effects and 

electrostatic interactions that can affect the adsorption of HS by GAC.  

According to the lab analysis, more than 74 % of the Aqua101 GAC surface was 

located within micropores (<2 nm).  The average size of humic molecules has 

been reported to fall into the range of 0.4 and 4.2 nm (Cornel et al., 1986; Aiken 
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and Malcolm, 1987; Karanfil et al., 1999).  According to the estimation by 

Cornel et al. (1986), the radius of AHA with MW larger than 5 kDa was more than 

2 nm.  Karanfil et al. (1999) reported that the radius of AHA (MW 4006 Da) had 

an average radius of 2.1 nm.  According to Figure 5.7, most of the AHA used in 

this research was within the MW range of 100-10,000 Da.  Clearly, some 

molecules with size larger than 2 nm were present in the non-irradiated HS 

solutions; therefore, they were not accessible to the fine carbon micropores.  

Solar irradiation decreased the molecular size of HS (Figure 5.7).  The smaller 

molecules formed from the breakdown of high MW components were more 

accessible to the fine carbon pores than the larger ones due to the size exclusion 

effects.  On the other hand, solar irradiation slightly increased the acidity of HS, 

according to a decrease in the pH value from 7.7 to 6.5 following solar irradiation.  

The GAC surface is more positively charged with increasing acidity, as indicated 

by the pHPZC value, resulting in a stronger link between the irradiated HS and 

GAC surface.  These physicochemical aspects justify the enhanced adsorption of 

the irradiated HS by GAC. 

Further looking into each isotherm, a sharp rise was observed following a 

relatively slow increase of the load as the equilibrium concentration of the 

irradiated HS increased.  The steep slope indicates a strong interaction between 

adsorbate and adsorbent (André, 2006).  This strong interaction can be explained 

by the greater accessibility of the irradiated humic molecules to carbon pores, 

possibly due to the reduced size and increased surface attraction.  As a result, for 

a small dose of carbon with limited adsorption sites, GAC became saturated and 

the load increased sharply.  The slow change of the load with high carbon dose 

indicates that only a little surface was available for large molecules.  This 

explains the slow change in the load of the non-irradiated HS by GAC, and also 
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corresponds to the fact that high MW compounds were still the dominant 

components in the irradiated HS solutions in winter experiment.  
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Figure 5.27 Adsorption isotherms of the irradiated and non-irradiated HS 

solutions by GAC in winter experiment (initial DOC 8.50 mg/L, DOC removal 

11-15 %, solar dose 1.44×105 kJ/m2).   

When examining the region of low equilibrium concentrations, a delay in 

adsorption was observed.  The delay can be interpreted as the presence of 

non-adsorbable compounds in HS solutions for a carbon dose of 4000 mg/L (the 

maximum DOC dose in this study).  For the irradiated HS, the starting point of 

adsorption was approximately 0.9 mg DOC/L, whereas a longer delay of 3 mg 

DOC/L was observed for the non-irradiated HS.  The non-adsorbable compounds 

accounted for about 11 % (irradiated HS in BPC) and 35 % (non-irradiated HS) of 

the original HS.  There are two possible reasons to this: either solar irradiation 

has completely photodegraded non-adsorbable compounds or the non-adsorbable 

compounds have been transformed into smaller adsorbable compounds by solar 

irradiation.   
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Several isotherm equations are available to model the adsorption behaviour (see 

Chapter 2).  A good correlation of experimental data with models enables a 

better understanding of the adsorption process and a direct comparison between 

different systems.  The conventional Langmuir (equation 2.2) and Freundlich 

(equation 2.4) models have been used more than 99 % of the time to describe the 

equilibrium adsorption of a variety of organic compounds onto activated carbon 

(Cooney, 1998).  In addition to the conventional models, a modified Freundlich 

model (eq. 2.6) has been used by several researchers to describe the adsorption of 

commercial and natural HS by GAC (Summers and Roberts, 1988; Karanfil et al., 

1996a and 1996b; Kilduff et al., 1996).  It expresses the equilibrium condition in 

terms of the amount of unadsorbed components per unit of adsorbent, rather than 

the traditional equilibrium DOC concentration in solution (equation 2.6).   

Initially the modified Freundlich model was compared with the conventional 

Langmuir and Freundlich models.  The three equations were separately applied 

to model the GAC adsorption results of the non-irradiated HS and the irradiated 

HS in BPC (data have been shown in Figure 5.27).  Parameters obtained through 

model fitting were then used to determine the new estimates of the DOC load on 

GAC, qe, as the computed value.  Results for the irradiated HS in BPC and the 

non-irradiated HS are illustrated in Figure 5.28.  The X and Y axes, respectively, 

represent the experimental value qe and its corresponding computed value from 

each model.  If the model can perfectly represent experimental values, all 

computed values and their corresponding experimental values should meet and 

fall onto the same line (the solid line).  A good model fitting should produce a 

minimum deviation between experimental values and computed values and 

certainly within the uncertainty of the overall measurement.  Apparently, the 

modified Freundilich model represented adsorption data better, with all computed 
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values falling into the 10 % uncertainty region (between two dashed lines) relative 

to the experimental data over the investigated range.  The conventional 

Langmuir and Freundlich models yielded much lower computed qe values of the 

irradiated HS at the lowest GAC dose.   
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Figure 5.28 Comparisons of experimental value and computed value of qe based 

on the Langmuir, Freundlich and modified Freundlich models: (a) non-irradiated 

HS (DOC 8.50 mg/L) and (b) HS irradiated in BPC (DOC 7.23 mg/L). The 
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dashed lines represent 10 % uncertainty. 

The Langmuir model considers the adsorption limited to one layer, corresponding 

to a unique type of adsorbent or adsorption energy.  It is highly likely to be valid 

for a well-defined molecule or a homogenous adsorbent or at a low coverage for a 

heterogeneous adsorbent (André, 2006).  The Freundlich model accounts for the 

heterogeneity of the adsorbent surface; however, it can not sufficiently model the 

polydisperse polymer adsorption (Summers and Roberts, 1988b).  A maximum 

error in qe at the lowest GAC dose when applying the Freundlich model was also 

observed by Summers and Roberts (1988a).  Adsorption of polydisperse 

molecules (such as HS) by GAC is dose-dependent (Karanfil et al., 1996a).  

When the GAC dose is low, the most adsorbable components are preferentially 

removed from the mixture.  With increasing carbon dose, the less adsorbable 

components are also removed.  Therefore, it is the composition of non-adsorbed 

HS at equilibrium that decides the extent of adsorption, rather than the residual 

liquid-phase concentration (Summers and Roberts, 1988a).  A recommended 

parameter to represent the non-adsorbed HS composition is the amount of 

non-adsorbed solute per unit mass of adsorbent, resulting in a modified form of 

the Freundlich model (equation 2.6).   

André (2006) used the same GAC as the one used in this research to adsorb 

Aldrich HS (with a DOC of 10 mg/L) from water and found that the Freundlich 

model and Henry model (which is identical to the Freundlich model when the 

exponent n-1 is equal to 1) fitted isotherms well, while the Langmuir model was 

suitable for only a few cases.  The observation in Figure 5.28a justifies the 

validity of applying the conventional equations to model the adsorption of Aldrich 

HS by GAC, even though there is an approximately 10 % deviation at the lowest 

GAC dose.  However, considering the original hypothesis of this research with 
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respect to the preferential adsorption of smaller photoproducts, and together with 

the excellent fits of the modified Freundlich model (Summers and Roberts, 1988; 

Karanfil et al., 1996a and 1996b; Kilduff et al., 1996) to experimental values 

(Figure 5.28b), it is more appropriate to employ the modified Freundlich equation 

for modeling the adsorption of irradiated HS, as it takes account of both the 

polydispersity of HS and the heterogeneity of GAC.   
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Figure 5.29 Adsorption of the irradiated and non-irradiated HS solutions by GAC 

in winter experiments.  Solid and dashed lines represent the fitting of the 

modified Freundlich model to experimental data (initial DOC 8.50 mg/L, DOC 

removal 11-15 %, solar dose 1.44×105 kJ/m2).   

The dose-normalized form of isotherms for winter HS solutions is illustrated in 

Figure 5.29.  The lines represent the modified Freundlich model fits to 

experimental values.  Parameters obtained from the modified Freundlich model 

are presented in Table 5.12.  There were approximately parallel shifts of 

isotherms when plotting qe vs. Ce/D on log-log axes.  According to Karanfil et al. 

(1996a), the relatively parallel isotherms indicate different macromolecules 
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having a uniform chemical affinity for the GAC surface.  It can therefore be 

deduced that with low solar intensity (or in winter), the chemical properties of HS 

did not greatly change.  Size exclusion effects dominated the adsorption process 

and chemical aspect only played a minor role.   

Table 5.12 Modified Freundlich isotherm parameters for the irradiated and 

non-irradiated HS solutions in winter experiment (initial DOC 8.50 mg/L, DOC 

removal 11-15 %, solar dose 1.44×105 kJ/m2).   

Solar collectors KF n-1 KF,irr/KF,non 
Maximum 
adsorption 

load (mg/g) b 

CPC 2.15 0.273 1.16 7.05 

PC 2.27 0.279 1.22 6.53 

BPC 2.54 0.278 1.37 8.16 

Tray 2.33 0.258 1.25 6.47 

Non-irradiated 1.86 0.236 - 3.83 
KF: (mg DOC/g GAC) 1-1/n 

Maximum adsorption load: DOC load on 100 mg GAC/L 

The adsorbability of HS can be interpreted in terms of the Freundlich 

unit-capacity parameter (KF) which represents the adsorption capacity at Ce/D 

equal to unity.  The ratio of the Freundlich parameters determined for the 

irradiated and non-irradiated HS, KF,irr/KF,non, can be used to compare the 

improvement of the HS adsorbability due to the pre-treatment with solar 

irradiation.  It is clearly shown in Table 5.12 that as a result of exposing HS to 

solar irradiation, the magnitude of KF was increased by 16-37 %.  The lower 

enhancement of the HS adsorbability when using CPC and PC compared to using 

flat tray is possibly due to DOC analytical errors occurring to the lowest 
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equilibrium concentrations.  The maximum adsorption load represents the 

amount of HS adsorbed on a GAC dose of 100 mg/L at equilibrium (which is the 

lowest carbon dose used in this study).  Due to the preferential adsorption 

phenomenon, GAC of the lowest dose is presumed to adsorb the most adsorbable 

molecules from the mixture.  The change in the maximum adsorption load 

therefore specifically refers to the change in the amount of the most adsorbable 

molecules following solar irradiation.  As shown, solar irradiation increased the 

amount of the most adsorbable molecules in the irradiated HS solutions by 

67-113% compared to the non-irradiated solutions.  The results for KF and 

maximum adsorption load evidence that HS components of different molecular 

sizes exhibit different adsorbability; more importantly, it shows that for humic 

rich waters, only a small dose of solar irradiation may greatly improve the 

performance of GAC adsorption.   
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Figure 5.30 Chromatograms of the non-irradiated and irradiated HS solutions 

after adsorption by GAC (1000 mg/L) in winter experiment (initial DOC 
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8.50mg/L, DOC removal 11-15 %, solar dose 1.44×105 kJ/m2).   

The HPSEC chromatograms of HS remaining in solutions after adsorption by 

1000 mg GAC/L are plotted in Figure 5.30.  After adsorption, the MWD of the 

non-irradiated HS shifted towards higher MW values, indicating the favourable 

adsorption of smaller molecules from the humic mixture by GAC.  A 

considerable amount of high MW compounds still remained in the solutions after 

adsorption, due to the fact that large molecules were excluded from carbon pores.  

Solar irradiation improved the HS removal over the entire MW range, with a 

slightly more decrease in the chromatogram of the HS irradiated in BPC.   

5.3.2.2 Spring experiment 

There is a noticeable difference between spring isotherms (Figure 5.31) and 

winter isotherms (Figure 5.27).  The former exhibits higher loads on GAC and 

steeper slopes of isotherms, indicating stronger interactions between GAC and the 

irradiated HS molecules, and the irradiated HS solutions in spring more efficiently 

removed relative to the winter ones.  This can be explained by the higher solar 

intensity in spring resulting in higher reductions in UV254, DOC and MW, as 

previously presented in section 5.2.3.2.   
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Figure 5.31 Adsorption isotherms of irradiated and non-irradiated HS solutions by 

GAC in spring experiment (initial DOC 8.29 mg/L, DOC removal 18-31 %, solar 

dose 2.61×105 kJ/m2).   
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Figure 5.32 Adsorption of irradiated and non-irradiated HS solutions by GAC in 

spring experiment.  Solid and dashed lines represent the fitting of the modified 

Freundlich model to experimental data.  (initial DOC 8.29 mg/L, DOC removal 

18-31 %, solar dose 2.61×105 kJ/m2). 
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Examining the low equilibrium concentration region, the amount of 

non-adsorbable compounds remaining in the solutions was in an ascending order: 

BPC < CPC ≈ PC < tray < non-irradiated, indicating the different extent of the 

non-adsorbable compounds removal due to solar irradiation.  A GAC dose of 

100 mg/L adsorbed up to two times more humic molecules from the irradiated HS 

solutions than the non-irradiated solutions (Table 5.13).  Given the same 

distribution of GAC adsorption sites for winter and spring HS solutions, the result 

reflects that there were more adsorbable molecules accessible to carbon pores in 

spring irradiated samples.   

Table 5.13 Modified Freundlich isotherm parameters for irradiated and 

non-irradiated HS solutions in spring experiment. (initial DOC 8.29 mg/L, DOC 

removal 18-31 %, solar dose 2.61×105 kJ/m2).  

Solar collectors KF  n-1 KF,irr/KF,non 
Maximum 
adsorption 
load (mg/g) 

CPC 1.80 0.420 1.28 9.32 

PC 1.80 0.376 1.28 8.95 

BPC 2.32 0.377 1.65 9.70 

Tray 1.75 0.299 1.24 7.16 

Non-irradiated 1.41 0.208 - 3.35 
KF: (mg DOC/g GAC) 1-1/n 

Maximum adsorption load: DOC load on 100 mg GAC/L 

Similarly, the conventional Langmuir and Freundlich models did not represent the 

experimental data well over the range of adsorption isotherms of interest.  The 

modified Freundlich equation was applied as the adsorption model.  Results are 

presented in Figure 5.32 and Table 5.13.  Approximately 65 %, 28 %, 28 % and 
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24 % of the improvement in the HS adsorbability was observed due to 

pre-treatment with solar irradiation.  The impact of solar irradiation on the 

Freundlich exponential coefficient (n-1) showed similar trends to that on KF.  The 

n-1 is related to the adsorption energy (adsorbent or adsorbate heterogeneity) or 

availability of adsorption sites (Weber et al., 1991).  An increase in n-1 value 

means that the energy of adsorption is more uniform (André, 2006).  For a given 

adsorbent, HS components with various molecular sizes and structures are 

expected to adsorb with different energies.  Solar irradiation reduced the 

heterogeneity of HS, and consequently reduced the heterogeneity of the 

adsorption system.  This helps explain the increase of the exponential coefficient 

for the adsorption of the irradiated HS solutions. 
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Figure 5.33 HPSEC chromatograms of HS remaining in solution after GAC 

adsorption in spring experiment: (a) HS irradiated in BPC, (b) HS irradiated in 

tray, and (c) non-irradiated HS (DOC removal 18-31 %, solar dose 2.61×105 

kJ/m2). 
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Representative HPSEC chromatograms of HS remaining in solutions after 

adsorption by various doses of GAC are illustrated in Figure 5.33, showing that as 

the adsorbent dose increased, a greater amount of chromophoric HS was removed 

from the solution.  It also demonstrates the fact that smaller molecules were 

readily removed from the mixture, mainly leaving larger organic compounds in 

the solutions after adsorption; this is reflected by the chromatograms shifting to 

larger MW values.  At the highest GAC dose (4000 mg/L), almost no detectable 

chromophores remained in the irradiated HS solutions after adsorption, showing 

that all the irradiated chromophoric molecules were accessible to the GAC surface.  

It also implies that the non-adsorbable compounds, observed in the isotherms of 

irradiated HS in Figure 5.31, consisted of organic molecules that do not have the 

aromatic character.  The non-adsorbable compounds observed in equilibrium 

isotherms accounted for 31 % (non-irradiated HS) and 10 % (irradiated HS in 

BPC) of the total DOC, respectively; whereas the non-adsorbable chromophores 

accounted for 15 % (non-irradiated HS) and 0 % (irradiated HS in BPC) of the 

total chromophoric HS.  It can therefore be deduced that the non-adsorbable 

chromophores have been completely photodegraded or/and transformed into 

adsorbable compounds by solar irradiation; and the adsorbability of 

non-chromophoric compounds were partially changed, resulting from the indirect 

photodegradation.   

The Freundlich parameters KF and n-1 (data shown in Table 5.13) as a function of 

the initial MW of the non-irradiated and irradiated HS prior to adsorption are 

plotted in Figure 5.34.  The higher the initial MW, the lower the adsorption 

capacity was.  This can be related to the observation in the chromatograms 

shown in Figure 5.10.  Solar irradiation led to the destruction of high MW 

compounds and formation of smaller molecules which are more accessible to the 
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fine carbon pores.  A lower MW value of the irradiated HS indicates that there 

were more high MW compounds photodegraded and more smaller molecules 

present in the irradiated HS.  A good correlation between the Freundlich 

parameters and the MW of HS (Figure 5.34) indicates the important role of 

molecular size in determining the extent of adsorption of HS by GAC.   
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Figure 5.34 Correlations between MW of the non-irradiated and irradiated HS 

and adsorption parameters: (a) KF and (b) n-1. (The solid and dashed lines suggest 
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the trend)   
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Figure 5.35 Correlations between the aromaticity of the non-irradiated and 

irradiated HS and adsorption parameters of HS: (a) KF, and (b) n-1. (The solid and 

dashed lines suggest the trend.)   

The Freundlich parameters are also found to be well correlated with the SUVA of 

HS, as displayed in Figure 5.35.  The SUVA is a good surrogate to indicate the 

aromaticity of organic compounds, allowing for an evaluation of the influence of 
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chemical structures in terms of aromaticity on the adsorption of HS.  

Photoproducts produced from the breakdown of high MW components are of 

lower MW and less aromaticity, thus more hydrophilic and more soluble in water 

compared to their parent compounds.  Aromatic components of HS are 

hydrophobic in character, and therefore more readily adsorbed by GAC (Karanfil 

et al., 2000).  For example, McCreary and Snoeyink (1980) observed that a 

higher adsorption capacity for a soil derived HA than for the smaller fulvic 

molecules isolated from the same source.  On the contrary, it is shown in Figure 

5.35 that the adsorbability of HS increased with decreasing aromaticity.  This 

observed trend is more likely to be a result of the impact of MW rather than the 

aromaticity, indicating that MW is the primary factor controlling the adsorption in 

this research.   
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Figure 5.36 SUVA values of the irradiated and non-irradiated HS remaining in 

solutions after adsorption by various doses of GAC in spring experiment (DOC 

removal 18-31 %, solar dose 2.61×105 kJ/m2).   
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Figure 5.36 shows the SUVA value of HS remaining in solutions after adsorption 

by various GAC doses.  As can be seen, the SUVA value of the irradiated HS 

remaining in solutions decreased with increasing GAC dose, indicating a decrease 

of the aromaticity.  However, the SUVA of the non-irradiated HS only slightly 

changed after contacting various GAC doses.  This means that using solar 

irradiation as a pre-treatment method can noticeably enhance the removal of 

aromatic compounds in the irradiated HS, which might be the aromatic 

photoproducts with lower MW.  Since the aromatic compounds are known to be 

more reactive in the DBP formation, as a result, the DBP formation potential of 

the solar pre-treated humic water may be greatly reduced.   

Due to the lack of analytical capabilities for characterizing functional groups, 

chemical structures of HS in terms of functional groups were not studied in this 

research.  One should keep in mind that functional groups might influence the 

adsorption of HS.  Carboxylic groups are predominate groups in HS.  McCreary 

and Snoeyink (1980) found that the extent of HS adsorption decreased with 

increasing carboxylic acidity.  Conversely, Karanfil et al. (1996a) reported an 

increasing extent of HS adsorption with increasing carboxylic groups.  The two 

previous reports suggest that the impact of functional groups is specific to the 

system under study.  However, a study by Xie et al. (2004) revealed that the 

concentration of carboxylic groups only slightly decreased or increased during 

irradiation.  It is therefore considered that the influence of carboxylic groups was 

insignificant in this study.   
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Figure 5.37 Changes in the MW of HS solutions remaining in the solutions after 

adsorption by various GAC doses in spring experiment: (a) weight-average MW, 

and (b) number-average MW.   
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Figure 5.38 Changes in the polydispersity of the non-irradiated and irradiated HS 

solutions remaining in solution after adsorption by various GAC doses in spring 

experiment. 

The average MWs (Mn and Mw) of HS remaining in solutions as a function of 

Ce/D are plotted in Figure 5.37.  As a result of the preferential removal of low 

MW compounds, the Mn and Mw of the residual HS were generally higher than 

the corresponding control value C (Mn and Mw of HS without contacting GAC).  

The greatest difference was observed when the carbon dose was high and mainly 

high MW compounds were left in the solutions.  When the carbon dose was low, 

MW values of HS remaining in solution approached the control values.   

It has become apparent that the smaller molecules are preferentially adsorbed by 

GAC due to the better accessibility to carbon pores.  If complete preferential 

adsorption is exhibited for the low MW compounds, both the Mn and Mw will 

increase and the polydispersity will decrease (Kilduff et al., 1996).  This agrees 

well with the observed trend of all the irradiated HS solutions as displayed in 
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Figure 5.38.  An opposite trend was noticed for the non-irradiated HS.  The 

polydispersity of the non-irradiated HS increased with increasing equilibrium 

concentrations.  If the Mn, Mw and polydispersity increase simultaneously, the 

Mw must increase faster than the Mn.  This means that some smaller molecules 

were non-adsorbable or adsorbed to a lesser extent than the larger ones (Kilduff et 

al., 1996).  The latter is more possible as there were only an insignificant amount 

of non-adsorbable small molecules observed in chromatograms at high GAC dose 

(Figure 5.33c).  Therefore, some non-irradiated large HS molecules were also 

adsorbed by the GAC surface, more specifically, the external surface.  As a result, 

the adsorption access was restricted for the smaller molecules and the preferential 

adsorption was incomplete.  The greater adsorption of large molecules might be 

explained by the shorter diffusion distances to adsorption sites travelled by the 

larger molecules relative to the smaller ones (Newcombe et al., 2002a).  Based 

on this observation, the enhanced adsorption of the irradiated HS can also be 

attributed to the fact that solar irradiation broke down some high MW components 

that had greater adsorption on GAC, and consequently made more adsorption sites 

available for smaller molecules.   

In addition, the improvement in the adsorption of the irradiated HS may also be 

caused by the dilution of HS solutions, as HS was removed by up to 43 % in terms 

of DOC concentration following solar irradiation in spring.  When GAC dose is 

lower relative to the initial concentration of HS, there are limited sites available 

for adsorption.  At high GAC dose relative to the initial concentration, there is a 

greater removal of HS as more adsorption sites are available.  Consequently, at a 

constant GAC dose and a range of HS concentrations, the extent of adsorption 

decreases with increasing initial DOC value (Summers and Roberts, 1988a).     
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Figure 5.39 Adsorption isotherms of the non-irradiated and irradiated HS with 

similar initial concentrations.   

In order to eliminate the initial concentration effect and only to evaluate the effect 

of solar irradiation on adsorbability, isotherms of the irradiated and non-irradiated 

HS with similar initial concentrations were compared (Figure 5.39).  It was 

achieved by diluting the non-irradiated solution to the similar concentration of the 

solar-irradiated solution in BPC.  The Freundlich parameters for the diluted 

non-irradiated solution were found to be slightly higher than those of the original 

solution, confirming the notion that the adsorption capacity of HS increases upon 

dilution.  However, more pronounced differences were observed between the 

irradiated and diluted HS solutions, as reflected in the isotherms shown in Figure 

5.39 and the adsorption parameters shown in Figure 5.40.  The adsorbability of 

the irradiated HS was almost two times that of the non-irradiated HS, the 

maximum adsorption load was increased by more than two times, and there were 

more non-adsorbable compounds in the diluted solutions.  These results 

demonstrate that the dilution of HS solutions resulting from solar irradiation only 
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played a minor role in improving the removal of HS by GAC.  It is the initial 

molecular composition of HS, rather than the solution concentration, determines 

the extent of adsorption.  This notion fits well to the idea of using solar 

irradiation as a pre-treatment method.  Although the extent of DOC removal 

varies among water sources as discussed in section 2.3.2.2, using solar irradiation 

can effectively changes the molecular size distribution of HS, and consequently 

enhance their removal by the following adsorption process. 
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Figure 5.40 Comparisons of the adsorption parameters of irradiated and diluted 

HS solutions with similar initial concentrations.  

5.3.2.3 Summer experiment 

As expected, significant differences were observed in the isotherms of the summer 

irradiated HS (Figure 5.41) from the winter and spring HS.  The summer 

samples exhibited a rapid increase as the equilibrium concentration increased, 



Chapter 5                                      Results and Discussions 

 190

indicating all the irradiated molecules having strong interactions with the GAC 

surface.  These molecules are considered to be smaller than 2 nm.  There was 

also a noticeable advantage of using BPC.  For example, at the equilibrium 

concentration of 2 mg/L, the DOC load of the BPC samples on GAC was 

approximately four times that of the CPC and PC samples.  The advantage can 

be also seen from the maximum adsorption load on GAC, which was improved by 

up to 3.6 times due to pre-treatment using solar irradiation.  The difference in 

isotherms between the irradiated HS in small solar collectors was insignificant, 

corresponding to the results from irradiation experiments.  There were less than 5 

% of the non-adsorbable compounds remaining in irradiated HS solutions after 

adsorption, indicating that the strong solar irradiation in summer effectively 

degraded non-adsorbable compounds which were also non-chromophoric, 

probably via the indirect photodegradation pathway.   

A quantitative evaluation of the adsorption of HS in summer experiment is 

illustrated in Figure 5.42 and Table 5.14.  The adsorbability of the irradiated HS 

was increased by 61 % (CPC), 71 % (PC), 99 % (BPC) and 42 % (Tray) as 

compared to the non-irradiated HS.  As a result of the significant decrease in 

MW and heterogeneity of HS, the n-1 value and maximum adsorption load of the 

irradiated HS were significantly increased.   
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Figure 5.41 Adsorption isotherms of the irradiated and non-irradiated HS 

solutions by GAC in summer experiment (initial DOC 8.51 mg/L, DOC removal 

50-62 %, solar dose 5.97×105 kJ/m2).   
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Figure 5.42 Adsorption of the irradiated and non-irradiated HS by GAC in 

summer experiment.  Solid and dashed lines show the fitting of the modified 

Freundlich model to the experimental data (initial DOC 8.51 mg/L, DOC removal 

50-62 %, solar dose 5.97×105 kJ/m2).   
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Table 5.14 Modified Freundlich isotherm parameters for the irradiated and 

non-irradiated HS solutions in summer experiment (initial DOC 8.51 mg/L, DOC 

removal 50-62 %, solar dose 5.97×105 kJ/m2).   

Solar collectors KF n-1 KF,irr/KF,non 
Maximum 
adsorption 
load (mg/g) 

CPC 2.32 0.474 1.61 11.75 

PC 2.46 0.421 1.71 10.32 

BPC 2.86 0.644 1.99 14.16 

Tray 2.05 0.388 1.42 8.02 

Non-irradiated 1.44 0.229 - 3.88 
KF: (mg DOC/g GAC) 1-1/n 

Maximum adsorption load: DOC load on 100 mg GAC/L 
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Figure 5.43 Chromatograms of HS remaining in the solutions after adsorption by 

GAC in summer experiment: (a) HS irradiated in BPC, and (b) HS irradiated in 

the flat tray (DOC removal 50-62 %, solar dose 5.97×105 kJ/m2). 
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Figure 5.44 SUVA values of HS remaining in the solutions after adsorption by 

various dose of GAC in summer experiment (DOC removal 50-62 %, solar dose 

5.97×105 kJ/m2). 
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Figure 5.45 Effect of MW on the adsorption behaviour of HS by GAC in summer 

experiment: (a) KF and (b) n-1. The solid and dashed lines suggest the trend.   

The chromatograms of HS irradiated in BPC and tray after contacting different 

carbon doses are illustrated in Figure 5.43.  Because the chromatograms of the 

non-irradiated HS solution exhibited a similar distribution to what was shown in 

Figure 5.33c, it is not presented here.  Using BPC dramatically improved the 
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total removal of HS over the entire MW range.  The chromophoric humic 

molecules remaining in BPC solutions were undetectable by HPSEC until carbon 

dose decreased to 400 mg/L (Figure 5.43a).  This result demonstrates the 

accessibility of all irradiated molecules to GAC adsorption sites, and in particular 

the UV absorbing chromophores.  As a result, the SUVA of HS remaining in the 

solutions after adsorption was significantly reduced, as can be seen in Figure 5.44.   

On the other hand, it suggests the greatly reduced DBP formation potential, as the 

aromaticity of HS was significantly reduced by the solar-GAC treatment.   

Again, the Freundlich parameters KF and n-1 exhibited a strong correlation with 

the MW, as illustrated in Figure 5.45, confirming the major role of size effects in 

the observed adsorption behaviour of HS. 

5.3.3 Effect of pH 

Irradiation experimental results have proven that the pH-adjusted HS solutions 

were more liable to be photodegraded.  This may in turn influence their 

performance in the following GAC adsorption process.  A comparison of the 

Freundlich parameter KF in Figure 5.46 shows that: 

(1) for the non-irradiated HS solutions, the greatest adsorption was observed on 

the acidic solutions.  Similar observations have been reported by Newcombe 

(1994) and Li et al. (2003).  There are two possible reasons: (i) decrease in 

the negative charge of HS and increase in the positive charge of GAC surface 

(which had the pHpzc of 9.5) created stronger attractive forces between HS and 

GAC surface, and (ii) decrease in the solubility of HS due to the protonation 

of the carboxylic groups increased the driving force for adsorption onto the 

hydrophobic carbon surface.  Therefore, the removal of HS increased as pH 
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decreased.   

(2) for the solar irradiated HS, it appears that the greatest removal was for the pH 

9.7 solution, which has been proven to be more readily photodegraded.  It 

should be noted that, the pH value of this solution decreased from 9.7 to 6.8 

following solar irradiation, and no further pH adjustment was carried out prior 

to adsorption studies because the influence of the initial pH value on the 

removal of HS by the solar irradiation-GAC adsorption method was of 

research interest in this experiment.  The enhanced removal is therefore 

largely attributed to the breakdown of high MW fractions and the increased 

proportion of smaller molecules due to solar irradiation, rather than pH effects.  

The higher removal of the acidic HS (which had pH value of 4.4-4.8 prior to 

adsorption) relative to the pH 7.5 HS might be mainly due to the surface 

attractive interactions, as no plausible explanation regarding molecular size 

can be found in the HPSEC results (Figure 5.18).   
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Figure 5.46 Freundlich adsorption parameter KF of the non-irradiated and 

irradiated HS solutions with different initial pH values (4.2, 7.5 and 9.7).  
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Similar trends were also obtained for other adsorption parameters.  In addition to 

the fact that solar irradiation effectively improved the adsorption of HS by GAC, 

it demonstrates that the solar-GAC method is sensitive to pH adjustment.  In 

water treatment applications, pH adjustment is sometimes applied to optimise the 

removal of target compounds.  This will in turn affect the performance of the 

solar-GAC process in terms of HS removal, if solar irradiation is used as part of 

the water treatment.  
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Figure 5.47 Adsorption isotherms of AHA and SRFA solutions before and after 
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solar irradiation (solar dose 1.96 ×105 kJ/m2): (a) conventional isotherms and (b) 

modified Freundlich isotherms.   

5.3.4 Adsorption of FA 

Here the adsorption isotherms of SRFA and AHA are compared (Figure 5.47).  In 

general, SRFA exhibits higher carboxylic type of acidity, more hydrophilic and 

more soluble in water compared to AHA.  This may consequently reduce its 

adsorption by GAC.  However, it appears in isotherms and Freundlich 

parameters that the non-irradiated SRFA was adsorbed to a greater extent than the 

non-irradiated AHA.  The observed behavior suggests that the size exclusion 

effects of SRFA are large enough to overcome the opposite effects of 

hydrophilicity and solubility in GAC adsorption.    
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Figure 5.48 Changes in adsorption parameters of the non-irradiated and irradiated 

SRFA and AHA solutions.   
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Solar irradiation improved the adsorbability of SRFA, as reflected by an increase 

in KF, n-1 and maximum adsorption load as well as a decrease in non-adsorbable 

components (Figure 5.48). Although SRFA was found to undergo the 

photodegradation to a greater extent (section 5.2.4.3), it appears solar irradiation 

had more pronounced influence on AHA than SRFA with respect to the 

subsequent GAC adsorption process.  For example, following solar irradiation, 

the Freundlich parameter KF was increased by about 92 % and 165 % for SRFA 

and AHA, respectively.  A plausible explanation to this is that many of the FA 

molecules were small enough to be adsorbed, and therefore photodegradation of 

these small molecules did not greatly alter the overall removal of FA.  The 

proportion of the non-adsorbable compounds in SRFA was reduced from 3.5 % to 

0.4 % due to pre-treatment using solar irradiation (Figure 5.48).  On one hand, 

this supports the notion that many of fulvic molecules are already accessible to 

carbon pores, as the non-adsorbable compounds in the non-irradiated AHA 

accounted for 26 % of the total DOC.  On the other hand, it demonstrates the 

possibility of using solar irradiation to reduce molecular size of FA (which 

generally has much lower MW than HA) and increase the adsorbability.  Given a 

water consists of both FA and HA, it is likely that sunlight would effectively work 

and reduce the molecular size of all humic components.  This would in turn 

greatly benefit the subsequent treatment processes, in particular for those having 

high requirements of particle sizes of contaminants, such as GAC and membrane 

filtrations.   

5.3.5 Evaluation of natural water source 

The applicability of the findings with the model humic material (AHA) to a humic 

rich water (CH water) was investigated by carrying out batch equilibrium 

experiments using the same GAC.  Results are presented in Figure 5.49 and 
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Table 5.15.   
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Figure 5.49 Isotherms of the non-irradiated and irradiated CH water and AHA 

water by GAC: (a) conventional isotherms and (b) modified Freundlich isotherms 

(DOC removal 21-29 % for CH water and 14-24 % for AHA water, solar dose 

1.42×105 kJ/m2). 
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For the non-irradiated solutions, although CH water was of higher MW and more 

concentrated, the adsorbability of natural HS (KF value of 3.47) was two times 

that of the AHA water (KF value of 1.71).  The maximum adsorption load of 

natural aquatic HS on GAC was three times higher than AHA.  There are several 

possible reasons to this.  First, this upland water is assumed to contain a greater 

amount of FA (see section 5.2.5) that has been proven more readily removed by 

GAC relative to the soil derived AHA.  Second, surface attractive interactions 

are expected to be stronger between GAC surface and CH water according to the 

lower pH of natural water.  Third, CH water is considered to have higher ionic 

strength which increased the adsorption capacity.  Finally, CH water contains 

some adsorbable components that do not exist in AHA.  These components have 

humic or non-humic characteristics and they are accessible to carbon pores, 

therefore contribute to the observed higher removal of natural HS.   

The adsorbability of natural HS was increased by up to 33 % due to pre-treatment 

using solar irradiation.  This result is similar to what was observed with AHA.  

The maximum removal in Table 5.15 refers to the DOC reduction of HS at the 

highest GAC dose (4 g/L).  When solar irradiation was used prior to GAC 

adsorption, maximum removals of 94 % and 92 % were obtained for CH water 

irradiated in BPC and tray, respectively.  It is evident that, even though solar 

intensity during experimental period was considerably low (1.42 ×105 kJ/m2), the 

adsorbability of natural aquatic HS was greatly improved.  Since comparable 

results were obtained between CH water and AHA water, it can be deduced that a 

more pronounced removal of natural HS would be seen if there is strong solar 

irradiation provided.   
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Table 5.15 Modified Freundlich isotherm parameters for CH water and AHA 

water on GAC (DOC removal 21-29 % for CH water and 14-24 % for AHA water, 

solar dose 1.42×105 kJ/m2). 

Samples KF 1/n KF,irr/KF,non 
Maximum 
adsorption 

loadb (mg/g) 

Maximum 
removal 

(%) 

CH water in BPC 4.60 0.353 1.33 20.50 94 

CH water in tray 4.46 0.344 1.29 18.73 92 

CH water 
non-irradiated 3.47 0.271 - 13.43 86 

AHA water in BPC 2.33 0.327 1.36 9.89 89 

AHA water in tray 2.22 0.311 1.30 9.32 85 

AHA water 
non-irradiated 1.71 0.228 - 4.18 72 

KF: (mg DOC/g GAC) 1-1/n 

Maximum adsorption load: DOC load on 100 mg GAC/L 

Maximum removal: DOC removal by 4000 mg GAC/L 
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Figure 5.50 Chromatograms of the non-irradiated and irradiated CH water and 
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AHA water before and after adsorption by 2000 mg GAC/L (DOC removal 21-29 

% for CH water and 14-24 % for AHA water, solar dose 1.42×105 kJ/m2).   

Representative HPSEC results for the MWD of CH water and AHA water after 

adsorption by GAC of 2000 mg/L are plotted in Figure 5.50.  When solar 

irradiation was applied, HS molecules in the CH water of all molecular sizes were 

effectively removed by GAC, leaving an almost undetectable portion of organic 

matter in water, confirming the effectiveness of the solar-GAC method and 

treatablility of this natural humic rich water.   
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Figure 5.51 Changes in the MW of CH water and AHA water remaining in 

solutions after adsorption by various doses of GAC. 
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Figure 5.52 Changes in the polydispersity of CH water and AHA water remaining 

in solutions after adsorption by various doses of GAC. 

As illustrated in Figures 5.51 and 5.52, the measured Mw and polydispersity of 

CH water and AHA water as a function of Ce/D followed a similar trend, 

suggesting what has been learned from AHA with respect to size effects on 

adsorption is also applicable to this natural water.  Solar irradiation can break 

down large molecules, leaving more GAC adsorption sites available to the smaller 

photoproducts or already existing smaller molecules; and the smaller 

photoproducts can be preferentially removed by GAC. 

5.3.6 GAC column adsorption 

The batch equilibrium adsorption studies provide useful information regarding the 

adsorption of HS by GAC.  However, batch studies are usually limited to the 

treatment of small volumes of solutions.  In drinking water treatment 

applications, GAC adsorption is normally operated on a continuous flow basis and 

the fixed-bed adsorber is considered more efficient (Al-Ghouti et al., 2007).  The 
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complex characteristics of HS are found to adversely affect the performance of 

GAC adsorbers.  As a result, the operational life of fixed-bed GAC adsorbers is 

significantly reduced and the operating cost is increased due to frequent 

replancement and regeneration.  Compared to batch studies, very few results 

have been reported in the literature regarding the removal of HS under a 

continuous adsorption condition.  The effect of solar irradiation as a 

pre-treatment method on the breakthrough behaviours of HS has not been 

published to date.  Therefore, further investigations under continuous flow 

conditions are necessary to provide more information regarding the effective use 

of solar irradiation to improve the performance of GAC adsorption for HS 

removal.   

Table 5.16 Characteristics of HS solutions used in small column studies.   

 UV254 (cm-1) DOC (mg/L) Mw (Da) Mn (Da) 

Non-irradiated 0.585 7.21 3963 1484 

Irradiated A  0.498 6.75 2355 982 

Irradiated B 0.181 3.12 1115 620 

Mn: number average molecular weight 

Mw: weight average molecular weight 

In this study, small-scale columns were used and the operational parameters were 

determined using the rapid small scale column test (RSSCT) method.  It has been 

suggested that the parameters obtained through RSSCT studies could satisfactorily 

predict the fixed-bed performance for large column runs (Crittenden et al., 2005).   

A summery of the characteristics of influent HS solutions to small GAC columns 

is shown in Table 5.16 and the corresponding chromatograms are illustrated in 
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Figure 5.53.  All samples were diluted from the same stock solution to the same 

initial concentration.  The non-irradiated HS were those kept in the dark, while 

the irradiated A and B samples were exposed to sunlight for a shorter and longer 

period, respectively.  Due to unexpected technical problems, the reading of solar 

intensity was not recorded for this period.  As can be seen in Table 5.16, solar 

irradiation removed 6.4 % of HS from sample A and 56.7 % from sample B with 

respect to the DOC concentration.  High MW components were preferentially 

removed, resulting in a shift of the MWD to smaller MW values (Figure 5.53).  

A significant removal of HS over the entire MW range was observed for sample 

B. 
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Figure 5.53 MWD of the non-irradiation and irradiated HS solutions measured by 

HPSEC before column feeding (initial DOC 7.2, 6.8 and 3.1 mg/L for the 

non-irradiated, irradiated A and irradiated B samples, respectively).  
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Figure 5.54 Breakthrough curves of the non-irradiated and irradiated HS solutions 

by small GAC columns using the RSSCT method (initial DOC 7.2, 6.8 and 

3.1mg/L for the non-irradiated, irradiated A and irradiated B samples, 

respectively).  

The observed breakthrough curves of all samples are illustrated in Figure 5.54, 

plotted as the relative residual concentration C/C0 (effluent DOC concentration at 

sampling time to influent DOC concentration at time zero) versus the volume of 

water treated.  All experiments were duplicated and each data point in Figure 

5.54 represents an average of results for duplicate samples.  The breakthrough 

curves generally exhibit a characteristic convex shape, which is in agreement with 

previous findings by Li et al. (2003) and André (2006).   

Influent DOC of the non-irradiated HS was 7.2 mg/L.  The breakthrough of the 

non-irradiated HS occurred very quickly (Figure 5.54).  Actually an initial DOC 

was immediately measured in the effluent.  This agrees well with what was 

found from the previous equilibrium studies, for example, approximately 35 % of 
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HS still remained in water after contacting GAC of the highest dose (4000 mg/L).  

The non-adsorbable HS are high MW compounds which do not adsorb well on 

GAC due to the size exclusion effects.  Similar observations have been obtained 

by Schreiber et al. (2005) and André (2006) for the adsorption of a pond water 

and AHA water on GAC, respectively.  The authors reported an earlier 

breakthrough of high MW compounds from small GAC columns.  The earlier 

breakthrough of large molecules is validated by Figure 5.55a, which shows the 

chromatograms of the non-irradiated HS remaining in the effluent after passing 

through the small GAC column.  The high MW compounds immediately 

appeared in the effluent, and the peak of the chromatogram at high MW values 

rapidly became nearly identical to that of the influent.  This indicates that the 

high MW compounds are only adsorbed on GAC to some extent.  An immediate 

presence of a small number of low and intermediate MW compounds in the 

effluent of the non-irradiated HS solutions was also observed, suggesting that 

inside the column, some high MW compounds are adsorbed which block access 

for smaller molecules to the carbon surface.  As the non-irradiated humic 

solution continued to flow, the effluent concentration increased.  The final 

effluent concentration rose to 82 % of the influent concentration (C0=7.21 mg/L) 

and remained stable till the end of the column experiments at about 2000 min.  

The chromatograms of the effluent also remained relatively unchanged after the 

effluent concentration became constant (i.e. the MWD of the effluent at 6h in 

Figure 5.55a), showing that some molecules can still be adsorbed by GAC.   

Adsorption of HS was enhanced by applying solar irradiation as a pre-treatment 

method, as reflected by a later breakthrough of the irradiated A sample in Figure 

5.54.  The influent concentration was 6.8 mg/L.  The irradiated A sample 

showed a similar shape of the breakthrough curve to the that of the non-irradiated 
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HS.  The initial breakthrough took place after 8 min.  The effluent 

concentration rapidly increased after breakthrough and rose to 80 % of the 

influent concentration (6.8 mg/L).  From Figure 5.55b, chromatograms show that 

there were almost no detectable chromophoric molecules in the effluent during the 

first ten minutes of running.  This means that the adsorbability of the 

non-adsorbable compounds that were immediately found in the effluent of the 

non-irradiated HS have been improved by solar irradiation.  Similar to the 

non-irradiated HS, as the adsorption of the irradiated A sample proceeded, the 

peak of the chromatogram at high MW values gradually approached that of the 

influent.  This means that the high MW compounds were eluted from the column.  

However, the process was much slower compared to the non-irradiated HS. 

The influent concentration of sample B was 3.1 mg/L.  The removal trend of this 

sample was different from the others.  The initial breakthrough of sample B 

occurred at 60 min, showing a significant improvement in the adsorbability of HS 

due to the pre-treatment using solar irradiation.  The improvement is apparently 

attributed to the decreased molecular size, and also to the reduced initial 

concentration.  The effect of the molecular size on the breakthrough of AHA by 

GAC columns has been previously studied by André (2006) who fractionated 

AHA into different MW fractions.  The author found that GAC adsorb HS with 

MW less than 5 kDa well.  The breakthrough for the low MW fractions was 

observed after 90 hours, while for the 5-10 kDa fractions the breakthrough took 

place after 5 hours.  After the breakthrough, the effluent concentration of the 

irradiated B sample gradually increased till the end of column experiments, as 

illustrated in Figure 5.54.  This indicates that all the irradiated molecules in 

sample B were accessible to the carbon surface.  Although the DOC 

concentration was measured from the effluent since after 60 min, there were no 
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observable HS components in the HPSEC chromatograms until after 

approximately 30 h of column running (Figure 5.55c).  Since DOC is not only a 

surrogate for the aromatic molecules but also for the weak UV absorbing 

molecules, for example aliphatic and alicyclic compounds, such behaviour means 

that the aromatic humic molecules can be preferentially removed from the influent 

and can also replace the other weakly adsorbed non-chromophoric organic 

compounds that have been initially adsorbed.  This is explained by the better 

accessibility of smaller aromatic molecules to GAC pores and strong hydrophobic 

interactions with the GAC surface.  The aromaticity of the effluent water is 

therefore largely reduced, implying the reduced DBP formation potential.  In 

addition, the observation in Figures 5.54 and 5.55c confirms the different trends in 

breakthrough curves when DOC and UV254 are used as analytical surrogates, in 

agreement with previous findings by Schreiber et al. (2005).  A faster 

breakthrough curve is obtained if the DOC concentration is used as a measure for 

HS.   

The combined solar-GAC treatment significantly improved the DOC removal by 

60 % relative to the non-irradiated HS.  Using pre-treatment methods to enhance 

the HS removal by carbon columns has been previously reported (Urfer and Huck, 

1997; Gauden et al., 2006; Toor and Mohseni, 2007; Buchanan et al., 2008).  For 

example, UV pre-treatment increased the overall HS removal from 29 % (without 

pre-treatment) to 54 % by GAC adsorption (Buchanan et al., 2008).  UV-H2O2 

pre-treatment improved the HS removal by the following biological carbon 

adsorption by 52 % (Toor and Mohseni, 2007).  As can be seen, the observation 

in this research is comparable to the published data.  The characteristics of HS, 

activated carbon employed, and extent of pre-treatment determine the 

effectiveness of column performance on HS removal.  A sufficient pre-treatment, 
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i.e. high UV dose, would greatly benefit the subsequent adsorption performance.  

However, using artificial light and chemicals makes the treatment expensive.  

More research is necessary to explore the potential use of natural sunlight instead 

of artificial light prior to adsorption. 
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Figure 5.55 Chromatograms of HS remaining in the effluent after passing through 

the small GAC column: (a) non-irradiated HS, (b) irradiated A HS, and (c) 

irradiated B HS (initial DOC 7.2, 6.8 and 3.1 mg/L for non-irradiated, irradiated A 

and irradiated B, respectively).  

As the RSSCT can well represent the large scale operations, from the above 

findings, it can be concluded that using solar irradiation as a pre-treatment method 

can successfully improve the performance of GAC adsorbers with respect to HS 

removal, increase the column operational life and improve the water quality.   

5.3.7 Summary of GAC adsorption results 

The maximum DOC removal efficiencies of HS following solar irradiation and 

adsorption treatment are summarized and compared in Figure 5.56.  Using GAC 

alone can provide reasonable removals of 60-70 % of AHA and 84 % of CH water.  

However, GAC does not effectively remove HS of all molecular sizes and rapidly 

gets saturated.  The enhanced HS removal by employing solar irradiation prior to 

GAC adsorption process is clearly illustrated, with the total removal efficiency 
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rising up to 96 %.   
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Figure 5.56 Maximum removals of HS following solar irradiation and GAC 

adsorption.   

The change in the Freundlich parameter KF of the irradiated HS relative to the 

non-irradiated HS can be used as a measure to assess the magnitude of the 

adsorbability enhancement, as illustrated in Figure 5.57.  It proves that even solar 

irradiation of low intensity can effectively enhance the adsorbability of HS 

molecules; for example, 16-37 % enhancement was found in winter.  As a result 

of the enhanced adsorbability, the GAC adsorption capacity was more efficiently 

utilized (Figure 5.58).  All those parameters are closely related to the extent of 

photodegradation in the pre-treatment process.   

The effective use of the solar-GAC method was further proven with a natural 

water sample (CH water), which showed a more pronounced removal.  This 

confirms the applicability of the observation based on AHA.  Furthermore, using 
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solar collectors noticeably improved the overall removal of HS with respect to all 

parameters investigated and in particular for the one with larger reflective surface.   
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Figure 5.57 Enhancement in the adsorbability of HS by GAC due to solar 

irradiation. 
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Figure 5.58 Maximum adsorption load of HS on GAC following solar irradiation 

and GAC adsorption.  
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CHAPTER 6 

OVERALL COMPARISONS AND DISCUSSIONS 

 

6.1 Introduction 

The drivers for the introduction of solar irradiation to humic substances (HS) 

removal are to (1) explore a new and sustainable approach for HS removal; (2) 

improve the removal of HS in granular activated carbon (GAC) adsorbers; and 

(3) reduce the energy consumption.  Sunlight presents a good opportunity, 

being low cost and available globally.  Experimental work has shown that solar 

irradiation could effectively enhance the adsorption of HS by GAC.   

A comparison of the findings in this research with the results from other studies 

on the HS removal is necessary.  From the literature consulted, no researchers 

have linked solar irradiation and GAC adsorption to the treatment of HS.  The 

heterogeneous nature of HS further complicates the comparison.  Here, the 

Aldrich humic acid (AHA) is selected as the target compound to allow 

comparisons of different processes based on the literature data.  This is because 

AHA is a model material that has been widely studied and it is also the main 

material used in this research.  The following section brings together the best 
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available information regarding the performance of different processes on the 

removal of the commercial AHA.   

6.2 Overall comparisons of different processes on HS removal 

Published data are collected from the work by Allard et al. (1994), Rebhun et al. 

(1998), Wiszniowski et al. (2002 and 2004) Chen and Wu (2004), Murray and 

Parsons (2004) and Listiarini et al. (2009) whose research involved the 

treatment of AHA.  The treatment processes include nanofiltration (NF), 

NF/alum pre-treatment, GAC adsorption, TiO2/natural or simulating solar 

irradiation, UVC irradiation, UV/H2O2, Fenton (Fe2+/H2O2) process and 

coagulation, together with the solar-GAC method in this research.  Results are 

presented comparatively on the basis of the removal of UV absorbance at 254nm 

(UV254) and dissolved organic carbon (DOC), which are illustrated in Figures 

6.1 and 6.2, respectively.   

-UV254 

UV254 has been widely used as a surrogate parameter to indicate the aromaticity 

of HS.  As discussed in the literature review, the high UV254 value also reflects 

the HS fractions with hydrophobic properties and high MW for the water with a 

high humic content.  Figure 6.1 shows that most of the consulted processes 

well performed with respect to UV254, with more than 80 % of AHA being 

removed.  This is not surprising as humic compounds with aromatic structures, 
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hydrophobic properties and high MW are more readily removed by 

physicochemical treatments (Buchanan et al., 2008).   
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Figure 6.1 Comparison of different treatment processes for the removal of 

UV254 absorbance of AHA. (1) Allard et al. (1994); (2) Murray and Parsons 

(2004); (3) Wiszniowski et al. (2004); (4) and (5) Listiarini et al. (2009); (6) 

results in this research. 

The efficiency of AHA removal varies, depending on the treatment process 

employed, operational conditions and physicochemical properties of AHA 

solutions.  A summary of the experimental conditions corresponding to the 

treatment processes in Figure 6.1 are listed in Table 6.1.  A comparison and 

discussion of each process in comparison with the solar-GAC method is given 

below. 
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Table 6.1 Experimental conditions corresponding to the treatment process listed 

in Figure 6.1 regarding the removal of UV254 of AHA (Allard et al., 1994; 

Murray and Parsons, 2004; Wiszniowski et al., 2004; Listiarini et al., 2009).   

Treatment process Experimental conditions Reference 

UVC irradiation UV intensity of 16 W/m2 for 58 h,  
DOC 10 mg/L 

Allard et al., 
1994 

Fenton 0.25 mM Fe2+, Fe2+:H2O2 1:10, 
DOC 10.5 mg/L 

Murray and 
Parsons, 2004; 

TiO2/natural 
sunlight 

Q UV 60 kJ/L, 0.7g/L TiO2,  
DOC 100 mg/L 

Wiszniowski et 
al., 2004 

NF NF270, size 9.0±4.2 nm,  
DOC 10 mg/L 

NF/alum NF270, size 9.0±4.2 nm,  
30 mg/L alum, DOC 10 mg/L 

Listiarini et al., 
2009 

Solar* Solar dose 5.97× 105 kJ/m2, 
DOC 8.5 mg/L 

GAC adsorption* Aquasorb 101 GAC 2g/L, DOC 8.5 
mg/L 

Solar/GAC* Solar dose 5.97× 105 kJ/m2, Aquasorb 
101 GAC 2g/L, DOC 8.5 mg/L 

this research 

 

As a result of UV-C irradiation for 58 h, 95 % UV254 removal of AHA (initial 

DOC 10 mg/L) was observed by Allard et al. (1994).  Compared to the 84 % 

removal of AHA (initial DOC 8.5 mg/L) under natural sunlight for 10 weeks in 

London, the degradation rate under UV lamp was much faster.  This is because 

UV irradiation is strongly absorbed by humic molecules (Frimmel, 1994) and 
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UV-C irradiation has the highest photo energy that can directly photodegrade 

organic compounds.  In natural sunlight, UV-C irradiation is absent (see section 

2.3.1.1), while UV-A and UV-B irradiation only account for a small portion (no 

more than 4 %).  In addition, using PET bottles in this research only partly let 

through the UV-A and UV-B irradiation and thus reduced the extent of 

photodegradation of HS (see section 5.2.2).  Therefore, the photodegradation of 

HS under natural sunlight is a slow process.  However, using artificial light 

source makes the water treatment expensive.   

Advanced oxidation processes (AOPs) are of growing interest in current 

drinking water treatment (see section 2.5.3).  A number of AOPs, such as 

UV/H2O2, UV/O3, Fenton process, and UV/TiO2, have been investigated for 

treating refractory organics.  Murray and Parsons (2004) studied the use of 

Fenton (Fe2+/H2O2) to treat AHA water with initial DOC 10.5 mg/L.  The 

optimum condition to obtain 90 % UV254 removal was Fe2+ of 0.25 mM and 

Fe2+:H2O2 ratio of 1:10 at pH 4.  The process only took up to 30 min.   The 

Fe2+ concentration and Fe2+:H2O2 ratio influence the overall performance.  For 

example, only 40 % UV254 was removed when Fe2+:H2O2 ratio was 1:10 and 

Fe2+ concentration was 0.5 mM.  Therefore, one should carefully tailor the 

treatment conditions according to the humic water characteristics.  An 

improper Fe2+ dose or Fe2+:H2O2 ratio may not only reduce the HS removal 

efficiency but also increase the chemical residuals and operating cost.  Instead 

of UV irradiation, Wiszniowski et al. (2004) investigated natural sunlight 

combined with TiO2 to treat AHA water.  Up to 98 % UV254 reduction was 
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achieved with 0.7 g/L TiO2 and Q UV 60 kJ/L.  It should be noted that the initial 

DOC concentration of AHA in the work by Wiszniowski et al. (2004) was 100 

mg/L, which is much higher than other listed studies.  Such a high AHA 

concentration is also not common in natural waters.  The high AHA 

concentration and removal efficiency prove the effectiveness of using 

TiO2/natural sunlight method to treat water with a high humic content.  It also 

presents a good example of replacing artificial light by natural sunlight in 

treating humic waters.  Apparently, AOPs are significantly faster than the 

solar-GAC process.  The advantage of AOPs is the high efficiency achieved 

within a short time.  Due to the addition of chemical agents, problems with 

operating cost and chemical residuals handling are inevitable.  Using solar 

irradiation prior to GAC can successfully reduce the energy consumption and 

chemical residual problems.   

NF process features many advantages over conventional treatment methods, 

such as smaller size, easier operation and maintenance as well as good water 

quality.  Using NF alone, the removal of AHA with an initial concentration of 

10 mg/L was 82 % (Listiarini et al., 2009).  A fouling problem was noticed due 

to the large molecular size of AHA.  By introducing alum prior to NF, the 

removal of AHA was increased from 82 % to 98 %.  This is attributed to alum 

coagulant aggregating fine particles to form a highly porous and less dense cake 

on the NF surface that can be easily removed by backwashing (Fabris et al., 

2007).    However, problems with the sludge production by addition alum 

coagulant prior to NF should be taken into account when employing the 
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NF/alum method. 

In the work presented in this thesis, 84 % and 64 % UV254 removal of AHA was 

achieved using natural solar irradiation alone and GAC adsorption alone (2 g/L), 

respectively.  The low removal of AHA by GAC is attributed to the fact that the 

high MW compounds did not adsorb well on the GAC surface.  When solar 

irradiation employed prior to GAC adsorption, up to 95 % of AHA was removed.  

The high removal efficiency verifies the hypothesis that solar irradiation breaks 

down high MW compounds to smaller molecules therefore improves the 

adsorption behaviour of the irradiated HS by GAC.   

-DOC 

A comparison of the removal efficiency of AHA in terms of DOC concentration 

by different treatment processes is presented in Figure 6.2 and a summary of the 

corresponding experimental conditions is given in Table 6.2.  The removal of 

DOC is linked to the degradation of both aromatic and non-aromatic organic 

components, while the UV254 reduction mainly reflects the changes in aromatic 

compounds.  Some of the non-aromatic components have been found to 

contribute to the DBP formation (Bond et al., 2010).   It is therefore necessary 

to investigate the removal efficiencies of AHA in terms of DOC by different 

processes. 
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Figure 6.2 Comparison of different treatment processes for the removal of DOC 

content of AHA.  (1) Rebhun et al. (1998); (2) and (3) Wang et al. (2000); 

(4)Wiszniowski et al. (2002); (5) Wiszniowski et al. (2004); (6) Chen and Wu 

(2004); (7) Murray and Parsons (2004); (8) results in this research. 

Coagulation has been recommended as one of the best available technologies for 

the removal of HS from water (Jacangelo et al., 1995).  It was found that both 

Al2O3 and FeCl3 can successfully remove AHA of a wide range of 

concentrations (16.5 to 50 mg/L), depending on the coagulant dose (Rebhun et 

al., 1998).  When the coagulant dose exceeded 40 mg/L, nearly 98 % of AHA 

was removed.  Increasing coagulant dose inevitably results in an increasing 

sludge production and handling cost.  The sludge generated by coagulation 

process is difficult to dewater due to the increased metal ion and organic content 

(Murray and Parsons, 2004). 
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Table 6.2 Experimental conditions corresponding to the treatment process listed 

in Figure 6.2 regarding the removal of DOC of AHA (Rebhun et al., 1998; Wang 

et al., 2000; Wiszniowski et al., 2002 and 2004; Chen and Wu, 2004; Murray 

and Parsons, 2004).   

Treatment process Experimental conditions Reference 

Coagulation Al2O3 or FeCl3 40 mg/L,  
DOC 16.5, 30 or 50 mg/L 

Rebhun et al., 
1998 

UV/H2O2 
1h, UV intensity 275.8 W/m2,  

0.1 % H2O2 

Solar/H2O2 
2h, UV intensity 23.2 W/m2,  

0.1 % H2O2 

Wang et al., 
2000 

TiO2/simulating 
sunlight 

6h, 1 g/L TiO2,  
DOC 100 mg/L 

Wiszniowski et 
al., 2002 

TiO2/natural 
sunlight 

Q UV 33 kJ/L, 1 g/L TiO2,  
DOC 100 mg/L 

Wiszniowski et 
al., 2004 

GAC adsorption F200 GAC 2.5 g/L, DOC 10 mg/L Chen and Wu, 
2004 

Fenton 0.1 mM Fe2+, Fe2+:H2O2 1:10, 
DOC 10.5 mg/L 

Murray and 
Parsons, 2004 

Solar* Solar dose 5.97× 105 kJ/m2, 
DOC 8.5 mg/L 

GAC adsorption* Aquasorb 101 GAC 2g/L, DOC 8.5 
mg/L 

Solar/GAC* Solar dose 5.97× 105 kJ/m2, Aquasorb 
101 GAC 2g/L, DOC 8.5 mg/L 

this research 

Wang et al. (2000), Wiszniowski et al. (2002 and 2004) and Murray and Parsons 

(2004) used a variety of AOPs to treat AHA water.  Different from the optimum 
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condition for the UV254 removal as discussed before, Murray and Parsons (2004) 

found that the maximum DOC removal was achieved when the Fe2+ 

concentration was 0.1 mM and there was only a slight difference for the DOC 

removal when different Fe2+:H2O2 ratio was applied.  This creates the difficulty 

in determining the operational conditions to achieve the high removal of both 

UV254 and DOC of humic waters.  There was a dramatic difference between 

UV/H2O2 and solar/H2O2 on the removal of AHA water (Wang et al., 2000).  

90 % DOC removal was achieved for the former after 1 h treatment, while only 

20 % removal for the latter after 2 h.  This observation is attributed to the 

difference in the UV intensity between artificial light and natural sunlight.  The 

UV irradiation is more effective in the activation of H2O2.  Wiszniowski et al. 

(2002 and 2004) investigated solar photocatalytic degradation of AHA by TiO2 

under simulating sunlight and natural sunlight.  88 % DOC removal of AHA 

was obtained within 6 h using TiO2/simulating sunlight.  The DOC removal of 

AHA using TiO2/natural sunlight was slightly higher (93 %).  This is due to the 

longer exposure time under natural sunlight (3 days) resulting in more 

irradiation received and used for the photodegradation process.  The above 

examples demonstrate the effectiveness of using AOPs in HS removal in terms 

of efficiency and reaction time.  It also shows that when solar irradiation is 

involved in the treatment, the process is relatively slower.  Either chemical 

addition or additional treatment step is therefore necessary to improve the water 

quality.   

A relatively lower removal of AHA (50 %) with initial DOC 10 mg/L was 
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obtained using 2.5 g/L F200 carbon (Chen and Wu, 2004).  The DOC removal 

value validates the observation in this research (46 % removal of AHA by 2g/L 

Aquasorb 101 GAC).  This can be explained by the similarity of the pore size 

distribution of the two carbons.  The F200 carbon has 65 % surface area of 

micropores (610 m2/g out of 934 m2/g) and 35 % of meso- and macropores (324 

m2/g out of 934 m2/g).  And the Aquasorb 101 carbon has 26 % surface area 

(236 m2/g out of 919 m2/g) in the meso- and maroporous range and 74 % (683 

m2/g out of 919 m2/g) in the microporous range.  The low degree of AHA 

removal by commercial carbons suggests that a majority of the micropores are 

not accessible by large AHA molecules.  On the other hand, it indicates that the 

findings in this research on the Aquasorb 101 carbon may be applicable to other 

commercial carbons.   

Solar irradiation showed a major improvement in removing HS by GAC 

adsorption, increasing the DOC removal from 46 % (using GAC alone) to 90 % 

(solar + GAC), due to the decrease of large molecules and increase of smaller 

adsorbable components.  Even in winter with low solar intensity, the removal 

of AHA by GAC was increased by 30 % due to solar irradiation (see section 

5.3.2.1), indicating the effectiveness of using solar irradiation as a pre-treatment 

method to GAC adsorption.   

This chapter compared the removal of AHA water using different treatment 

processes.  As can be seen, most of the consulted processes seem to perform 

well and can be considered as options for HS control.  Using solar irradiation 
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prior to GAC adsorption was proven to significantly improve the adsorption of 

AHA and be able to achieve the AHA removal that can be achieved by AOPs, 

NF and coagulation processes.  Compared to these processes, the solar-GAC 

method does not require the consumption of artificial energy and chemicals, and 

therefore does not have the chemical residual handling problems.  It favours 

the environment.  However, when the removal and treatment time are 

considered together, it appears that the solar-GAC process is not as effective as 

other processes.  For example, the consulted processes only took 30 min to 3 

days to complete the reaction, while the solar-GAC process took up to 10 weeks 

in this research.  Despite this, experimental observations are evidence for the 

potential use of solar irradiation as a pre-treatment method to assist the water 

treatment process for improving HS removal.  Sunlight presents a good 

opportunity in many fields, being low cost, available in significant quantities as 

well as preventing the pollution from the waste generated from chemical 

addition.  Conducting solar irradiation tests in the sunlight-rich regions, using 

high performance solar collectors and employing GAC with a higher portion of 

meso- and macropores may help shorten the treatment time.  Further 

investigations are suggested to better understand the proposed method in this 

research.   
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 Conclusions 

A novel method for removing humic substances (HS) was proposed in this 

research, comprising a combination of solar irradiation and granular activated 

carbon (GAC) adsorption.  This method is based on the fact that solar irradiation 

can break down large HS components into smaller molecules which are 

preferentially adsorbed by GAC.  This is the first study to evaluate the use of 

solar irradiation as a pre-treatment method for improving the subsequent GAC 

adsorption performance with respect to HS removal; it therefore makes an 

important contribution to the knowledge of this method.  The main findings 

coming out of this study are as follows: 

 Solar irradiation reduced the dissolved organic carbon (DOC) concentration, 

UV absorbance at 254 nm (UV254), aromaticity and molecular weight (MW) 

of HS.  An up to 84 % decrease of UV254 and up to 62 % decrease of DOC 

following solar irradiation were achieved in this research, showing that the 

HS removal efficiencies that have been reported by using artificial UV 

irradiation can be achieved by using natural sunlight alone (solar dose 

5.97×105 kJ/m2). 

 The photodegradation of DOC and UV254 followed the first-order kinetics.  
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For waters of similar characteristics, the first-order decay rate constants were 

well correlated with solar doses.  Not only UV irradiation but also visible 

irradiation in sunlight contributed to the photodegradation of HS. 

 The high MW components in HS were more readily photodegraded, leading 

to the formation of smaller molecules.  With the lower solar intensity in 

winter, there was an accumulation of intermediate and low MW fractions due 

to the breakdown of large molecules.  While with increased solar intensity in 

spring and summer, solar irradiation alone removed HS fractions of all 

molecular sizes.  A significant removal of the low MW compounds was 

shown to be achievable under strong sunlight.  

 The application of solar collectors provided an efficient and viable way to 

promote the photodegradation of HS, and therefore benefited their removal by 

the subsequent GAC adsorption process.  For example, the photodegradation 

rate of HS in BPC was two times that of HS in tray in summer experiment.  

And the maximum adsorption load of HS in BPC on GAC was enhanced by 

three times compared to that of HS in tray.  For small scale applications, 

static solar collectors with large reflective surface would effectively work.   

 Pre-treatment using solar irradiation substantially improved the GAC 

adsorption performance with regard to HS removal.  Even though the solar 

intensity (or dose) in winter was fairly low, the adsorbability of HS was 

improved by up to 37 % and the maximum adsorption load was increased by 

113 %.  The improved adsorption behaviour was attributed to: (1) the 

increased amount of smaller molecules which were preferentially adsorbed by 

GAC from the mixture; (2) the decreased amount of large molecules that had 

great adsorption affinities to GAC surface and restricted access of smaller 
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molecules to carbon pores; (3) the dilution of solution concentration; and (4) 

the increased surface attractive interactions as a result of the decreased pH of 

HS solutions.  Among them, the size effects were proven to play a major 

role.   

 High performance size exclusion chromatography (HPSEC) data showed that 

the irradiated humic molecules could be completely removed by GAC.  As 

the UV absorbing chromophores are known to be more reactive in 

disinfection by-product (DBP) formation for a water with a high humic 

content, this observation hence gives a good indication for the reduced DBP 

formation potential of the solar-treated water. 

 Fulvic acid (FA) was found to be more prone to photodegradation than humic 

acid (HA).  An improvement was also found for the adsorption of irradiated 

FA.  Thus the effectiveness of the proposed solar-GAC method is likely to 

be seen when treating natural waters which contain both FA and HA. 

 Comparable results were obtained between a natural water and Aldrich HA 

(AHA), showing the potential of using solar irradiation for improving the 

GAC adsorption of humic rich waters.   

 Solar irradiation significantly improved the GAC adsorber performance based 

on smaller column studies, resulting in a longer operational life of the GAC 

adsorber and better effluent water quality.  Since the rapid small scale 

column test (RSSCT) can well represent the full-scale filtration process, the 

use of solar irradiation as a pre-treatment method would be expected to 

reduce the regeneration or replacement frequency of GAC adsorbers, and 

therefore reduce the cost. 
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 The combination of solar irradiation with GAC adsorption exhibits the 

possibility of removing HS from water in a sustainable way.  It improves the 

performance of the already existing GAC adsorption process, and does not 

require chemical addition, hence reducing the formation of chemical residues 

and associated waste handling cost simultaneously.   

7.2 Recommendations 

This work has proven the idea of using natural sunlight prior to GAC adsorption 

process to enhance the removal of HS from water. Future work is necessary to 

assist in understanding and evaluating this new approach.  The following points 

are recommended for future work: 

 Different water sources – HS from different water sources have varying 

characteristics and treatability.  Investigations on different waters would give 

a more realistic idea of the effectiveness and applicability of the solar 

irradiation-GAC adsorption method.  HS collected from the same water 

source during different times of the year should also be examined.   

 Sunlight-rich regions – solar irradiation in London is in fact much lower than 

many other regions.  The research conducted in London, however, has 

successfully proven the effective use of natural sunlight to improve HS 

removal by GAC.  Further research in the sunlight-rich regions is strongly 

recommended to verify the observation in this research.   

 Chemical mechanisms – if different waters with varying characteristics are 

examined as suggested above, it is also of interest to examine whether the 

chemical aspects play an important role in determining the removal of HS and 
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to what extent, in order to gain an insight into the mechanisms.   

 Different GAC – The Aquasorb 101 GAC is mainly microporous and GAC 

containing more meso- and macropores has been found to better adsorb HS.    

The effects of solar irradiation on the adsorption of HS by GAC with different 

pore size distributions could be different.   

 DBP formation – the effectiveness of HS removal by the solar-GAC method 

in this research was based on the changes in UV254, DOC and HPSEC data.  

Although UV254 and aromaticity are well correlated with the DBP formation, 

further analysis on the DBP formation potential could give a better 

understanding of the effectiveness of the solar-GAC method in terms of 

drinking water safety.   

 High performance solar collectors – with simplified and static solar collectors, 

the removal of HS was significantly improved.  The estimated maximum 

solar concentrating efficiencies of static solar collectors employed in this 

research were 3-5 (see section 4.5.3).  If high performance solar collectors 

(i.e. with solar concentrating efficiency more than 50) are applied, the 

experimental duration can be greatly shortened and higher removal efficiency 

would be expected.  

 Effects on other processes – using natural sunlight as a pre-treatment method 

offers a sustainable and viable option to reduce the HS load, in particular the 

large molecules, on the subsequent treatment processes.  Further research on 

a combination of solar irradiation with other water treatment processes is also 

recommended.  
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