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Abstract 

 

Introduction: Mutations in cardiac myosin binding protein-C (MYBPC3), the 

most common genetic cause of hypertrophic cardiomyopathy (HCM), have been reported 

to cause a comparatively benign and late-onset form of the disease with incomplete 

penetrance. Based upon selected families with small numbers of mutations, these early 

reports may be misleading however. This study aimed to redefine the clinical 

characteristics of HCM related to MYBPC3 by evaluating a large cohort of unselected 

patients and their families, in whom an MYBPC3 mutation had been identified. 

Methods: Index cases and their families underwent history, physical examination, 

electrocardiogram (ECG), transthoracic echocardiography, ambulatory ECG monitoring, 

metabolic exercise testing and mutation analysis. Long-term follow up data was collected 

where available. 

Results:  44 MYBPC3 mutations were identified in 59 index cases. 26 of 59 (44%) 

were missense with 11 (19%) insertions/deletions, 11 (19%) intronic, and 5 (8%) 

nonsense mutations. A further 6 (10%) had complex genetic status with two different 

sequence variations identified. Nine families shared the R502W missense mutation and 

haplotype analysis confirmed a common founder, the first to be described in a UK cohort. 

A further 111 mutation carriers were identified, of which 39 were clinically affected - 

disease penetrance was therefore incomplete (58%) and related to age and gender but not 

mutation type. Mean age at diagnosis was 40.1 +/- 15.9 years with a wide range (5-76); 

91.8% of affected mutation carriers were diagnosed over the age of 20 years. Most had 

asymmetric septal hypertrophy (86.4%) and mean maximal wall thickness was 20 +/- 
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5.8mm. Families sharing identical mutations showed significant variability in disease 

penetrance, age at diagnosis and risk of sudden death, suggesting that modifying factors 

play a significant role in disease development. No clinically useful markers of early 

disease expression were apparent from tissue Doppler studies in unaffected genotyped 

relatives. During long term follow up (mean 7.9 +/- 4.5 years) 1 individual developed 

hypertrophy as an adult, 5 individuals died (3 suddenly) and overall survival was 94%.  

 

Discussion: The broad spectrum of mutations, disease severity and natural 

history of disease suggests that earlier reports of late-onset, benign disease related to 

MYBPC3 mutations were premature. In this study disease expression is broadly similar 

to non-genotyped HCM cohorts with disease severity ranging from mild to severe, risk of 

sudden death ranging from low to high and clinical disease being diagnosed in all 

decades of life. Such variance is not adequately explained by the sarcomeric protein gene 

or specific mutation per se and other genetic and environmental factors influence disease 

penetrance, severity and prognosis. The next generation of genotype-phenotype studies 

require a shift in focus from single gene analysis to include other genetic and 

environmental variables and an international collaborative database is recommended.
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Pre-amble 

 

 

Since the initial description of „asymmetric hypertrophy of the heart in young adults‟ by 

Donald Teare in 1958 [Teare 1958], the condition now known as Hypertrophic 

Cardiomyopathy (HCM) has captured the imagination of clinicians, pathologists, 

geneticists and patients alike. The first descriptions linked the finding of severe cardiac 

hypertrophy with sudden cardiac death, and demonstrated the familial nature of this 

condition [Goodwin 1960][Pare 1961][Braunwald 1964]. Our understanding of HCM 

however has developed at great pace with the advent of molecular genetics and advanced 

cardiac imaging, but we are beginning to understand that the complexities of this 

condition are great and numerous. Over the last 15 years or so, genetic mutation analysis 

has been particularly helpful giving us insight into the molecular pathogenesis of HCM – 

„a disease of the sarcomere‟ and providing an opportunity for pre-clinical diagnosis in 

some families. The relationship between genotype and phenotype is not straightforward 

however and has received considerable attention by investigators striving to explain the 

clinical heterogeneity of this condition. The focus of this thesis is to provide further 

insights into the relationship between genotype and phenotype in patients with mutations 

in the gene encoding cardiac myosin binding protein-C (MYBPC3). 
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Overview of Hypertrophic Cardiomyopathy 

 

Definition and Diagnosis 

Hypertrophic cardiomyopathy (HCM) is defined clinically by ventricular hypertrophy in 

the absence of an identifiable cause [Maron 2003a][Maron 2006]. Most investigators 

would consider this to be a maximal wall thickness ≥13 mm, or more than 2 standard 

deviations from the mean corrected for age, size and gender [Maron 2003a] [Elliott 

2004]. This definition, while useful clinically, lacks precision and sensitivity as certain 

forms of HCM are associated with minimal hypertrophy [Thierfelder 1994], and it 

excludes family members who have inherited the family mutation with signs of early 

disease expression, although diagnostic criteria for family members have been proposed 

[McKenna 1997]. The diagnosis is traditionally best made with 2-dimensional 

transthoracic echocardiography (TTE) but recommendations for including 

electrocardiographic (ECG) abnormalities in the diagnostic criteria exist [McKenna 

1997]. 

 

Epidemiology 

The population prevalence of HCM in adults is estimated to be approximately 1 in 500 

(0.2%) [Maron 1995] based on echocardiographic screening in a young adult population, 

but this may be an underestimate if a broader definition of HCM is used. 
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Pathology 

HCM is characterized macroscopically by left ventricular hypertrophy. The pattern and 

degree of ventricular hypertrophy is highly variable. It is usually predominant in the left 

ventricle (but can be biventricular) and usually affects the interventricular septum (the 

„classical‟ asymmetric septal hypertrophy). It may also be concentric however, or 

eccentric involving any other ventricular wall including the apex [Maron 1983]. 

Hypertrophy may be associated with anterior displacement of the papillary muscles and 

mitral valve abnormalities leading to systolic anterior motion of the leaflets. If this 

anterior motion is complete and prolonged, obstruction to systolic ejection may occur in 

the left ventricular outflow tract with a resulting pressure gradient between the left 

ventricular cavity and the aorta. This dynamic process called left ventricular outflow tract 

obstruction (LVOTO) is present in perhaps 25% of individuals at rest and up to 70% of 

individuals on exertion or altered loading conditions, and is a major cause of morbidity in 

the HCM population [Maron 2006]. Other important abnormalities include diastolic 

dysfunction, left atrial enlargement and mitral regurgitation. 

On a histological level the classical pathological features of HCM are those of interstitial 

fibrosis with myocyte hypertrophy and disarray [Ferrans 1972][Factor 1991][Shirani 

2000][Varnava 2001]. Disarray is patchy and consists of obliquely aligned and irregular 

hypertrophied myocytes. There is nuclear enlargement, polychromasia and pleomorphism 

[Hughes 2004] and an increase in interstitial fibrosis and with altered collagen fibre 

morphology [Shirani 2000]. Intramural arteriolar hypertrophy and dysplasia is seen and 

may account for reduced coronary flow and small vessel ischaemia [Maron 1986a] 

[Varnava 2000].  
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Aetiology and Pathogenesis 

Genetic linkage studies and candidate-gene screening techniques have identified that 

mutations in sarcomeric protein genes account for approximately 60% of cases of HCM 

[see Table 1 for references]. Other molecular abnormalities include metabolic disorders 

such as Anderson-Fabry disease, AMP-kinase disease and glycogen storage disorders. 

Table 1  Spectrum of pathogenic genes identified in HCM 
 Abbreviation Reference  

Sarcomeric Protein disease   

Cardiac myosin binding protein C MYBPC3 Bonne 1995 
Watkins 1995a 

Beta-myosin heavy chain MYH7 Geisterfer-Lowrance 1990 

Cardiac troponin T TNNT2 Thierfelder 1994 
Cardiac troponin I TNNI3 Watkins 1993 

Kimura 1997 

Alpha-tropomyosin TPM1 Watkins 1995b 
Essential myosin light chain MYL3 Poetter 1996 

Regulatory myosin light chain MYL2 Poetter 1996 

Alpha cardiac actin ACTC Mogensen 1999 
Alpha-myosin heavy chain MYH6 Carniel 2005 

Niimura  2002 

Titin TTN Satoh 1999 
Cardiac troponin C TNNC1 Hoffman 2001 

Sarcomere Associated Protein Genes   

Muscle LIM protein CSRP3 Geier 2003 
Myosin light chain kinase 2 MYLK2 Davis 2001 

LIM binding domain 3 LDB3 Theis 2006 

Telethonin TCAP Hayashi 2004 
Vinculin/metavinculin VCL Vasile 2006a 

Vasile 2006b 

α-Actinin 2 ACTN2 Theis 2006 
Phospholamban PLN Haghighi 2006 

Myozenin 2 MYOZ2 Osio 2007 

Junctophillin 2 JPH2 Lansdtrom 2007 
Metabolic disorders   

AMP-activated protein kinase PRKAG2 AMP Kinase disease 

Blair 2001 
α-Galactosidase A GLA Anderson Fabry disease 

Sachdev 2002 

Acid α-1,4-glucosidase GAA Pompe disease 
Amato 2000 

Amylo-1, 6-glucosidase AGL Forbe‟s disease 

Amato 2000 
Lysosome-associated membrane protein 2 LAMP2 Danon disease 

Amato  2000 

Mitochondrial disorders Various genes MELAS, LOHN, MERRF 
DiMauro 2003 

Syndromic disorders   

Tyrosine phosphatase SHP-2 PTPN11 LEOPARD syndrome, Noonan 
syndrome 

Tartaglia 2002 

Sarkozy  2003 
Frataxin FRDA Friedrich‟s ataxia 

Palau 2001 
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The link between genetic mutation and the clinical phenotype of HCM is poorly 

understood. A number of different mechanisms may play a part including „poison 

polypeptide‟ or „dominant negative‟ effect where the mutated allele affects function of 

the wild-type allele, or haploinsufficiency where the wild-type allele is unable to produce 

sufficient normal functional protein. This may be an important mechanism in some 

families with MYBPC3 related disease where the post-translational protein product is so 

small that effective incorporation into the sarcomere would be impossible [Andersen 

2004]. 

The mechanism by which such molecular abnormalities cause the clinical features of 

HCM is varied and poorly understood. It is thought that the hallmark finding of 

hypertrophy is a secondary phenomenon to underlying abnormalities in myocyte function 

[Redwood 1999] and abnormal myocardial bioenergentics may play a pivotal role 

[Watkins 2003].  

 

Clinical Disease Expression 

The earliest descriptions of the disease necessarily focused on cases with severe 

hypertrophy and an obvious clinical phenotype [Teare 1958][Goodwin 1960][Pare 1961]. 

Sudden cardiac death was prominent leading health professionals and the lay public alike 

to fear the disease [Braunwald 1964]. However these early descriptions exaggerated the 

severity of disease and gloomy prognosis, as severe clinically obvious cases were 

overrepresented in these series. In fact the majority of patients in the community with 

HCM remain undiagnosed and are without symptoms with near normal life-expectancies.  
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There exists therefore a remarkably heterogeneous spectrum of disease severity. 

Presentations vary from neonatal heart failure [Lekanne Deprez 2006], sudden cardiac 

death in young adults, symptomatic left ventricular outflow tract obstruction, an 

incidental ECG abnormality, and asymptomatic elderly relatives diagnosed during family 

screening [Maron 2002]. 

While many patients are asymptomatic, the spectrum of clinical symptoms when present 

includes exertional chest pain, breathlessness, palpitations, syncope and pre-syncope. 

There are a number of different pathophysiological mechanisms responsible for causing 

symptoms which may co-exist in the same patient. Hypertrophy (the hallmark of clinical 

diagnosis) results in abnormal diastolic ventricular function and a consequent increase in 

left ventricular end-diastolic pressure. The resultant increase in left atrial pressure 

contributes to left atrial dilatation and predisposes the individual to atrial 

tachyarrhythmias. Arteriolar smooth muscle hyperplasia may induce ischaemia with 

scarring and fibrosis predisposing to ventricular arrhythmias [Varnava 2000].  

Left ventricular outflow tract obstruction (LVOTO) occurs in 25% of individuals at rest 

(and up to 70% on exercise) [Maron 2006] and is an important cause of both symptoms 

and mortality [Elliott 2006a]. LVOTO occurs in the presence of systolic anterior motion 

of the mitral valve and is highly labile. The pressure gradient in the LVOT is susceptible 

to changes in pre-load and after-load and may be inducible with manoeuvres such as 

Valsalva or exercise. Modifying LVOTO has been a focus of therapeutic strategies for 

many years. 
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Early reports described a high incidence of sudden death in selected cohorts of patients 

with HCM [Braunwald 1964]. Sudden death remains an important, but relatively 

uncommon complication of this disease with an annual mortality rate of approximately 

1% in unselected cohorts [Maron 2000a]. HCM however remains the leading cause of 

sudden cardiac death in athletes [Maron 1996]. It is likely that a combination of a 

predisposing arrhythmic substrate (such as severe hypertrophy, fibrosis and disarray) and 

subsequent triggers (such as exercise or ischaemia) are responsible for inducing 

ventricular arrhythmias [Frenneaux 2000] which is frequently the terminal event in 

individuals dying suddenly with HCM [Maron 2000b]. 

Accurately identifying individuals „at risk‟ has received considerable interest from 

investigators and algorithms exist to risk stratify patients and guide prophylactic therapies 

[Elliott 2000][Maron 2002a][Frenneaux 2004]. Such algorithms are imperfect however 

and such decisions should be individualized as much as possible. Current consensus 

guidelines [Maron 2003a] base risk stratification for sudden cardiac death risk upon 5 

established risk factors: a family history of sudden premature cardiac death, maximal 

wall thickness ≥ 30mm, an abnormal blood pressure response on exercise, unexplained 

syncope and non-sustained VT on Holter monitoring [Elliott 2000]. The relative risk of 

sudden death is related to the number of risk factors present in an individual. It should be 

noted that the significance of a risk factor is age dependent - the presence of non-

sustained VT in a child is significantly more predictive than in a 60 year old for example. 

Risk factors for sudden cardiac death and stroke are listed in Tables 2 and 3. 
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Table 2  Predictors and risk factors for Sudden Cardiac Death in HCM  
Risk Factor Definitions  

Major risk factors*   

Previous cardiac arrest Previous documented cardiac arrest 

with successful resuscitation 

 

Family history of sudden premature cardiac death   

Severe hypertrophy Maximal wall thickness ≥ 30mm  

Abnormal blood pressure response in patients < 40 years of age Failure to rise > 25mmHg from 
baseline to end of exercise OR a 

fall > 15mmHg from peak exercise 

to end exercise 

 

Unexplained syncope Syncope in absence of identifiable 

cause (e.g. LVOT obstruction) 

 

Non-sustained VT  3 or more beats of VT (rate > 120 

bpm) 

 

   
Other proposed risk factors   

Left ventricular outflow tract obstruction   

Myocardial ischaemia   
Late gadolinium enhancement on magnetic resonance imaging   

Mutation specific risk   

* Elliott 2000   

 

Stroke is also an important complication in HCM with an annual incidence of 

approximately 0.8% [Maron 2002a] and is a leading cause of death (with sudden death 

and heart failure) in the HCM population. Risk factors for stroke include female gender, 

increasing age, left atrial enlargement and congestive heart failure but the major risk 

factor is atrial fibrillation with 88% of all strokes occurring in individuals with a history 

of atrial fibrillation [Maron 2002a]. 

Table 3 Risk factors for Stroke in HCM* 
 

Atrial fibrillation  

Left atrial enlargement 

Congestive symptoms 
Increasing age 

* Maron 2002a 
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Table 4 Clinical symptoms, signs and complications in HCM 
 

Symptoms 

Chest pain 
Breathlessness 

Syncope / Pre-syncope 

Fatigue 
Palpitations 

Fluid retention 

 
Clinical Signs 

Sustained apical impulse 

Rapid upstroke pulse 
Ejection systolic murmur related to outflow tract obstruction 

Pansystolic murmur related to mitral regurgitation 

 
Complications 

Atrial arrhythmias 

Ventricular arrhythmias and sudden death 
Systemic thromboembolism including stroke 

Infective endocarditis 

Diastolic dysfunction and heart failure 
Left ventricular systolic dysfunction and heart failure 

 

 

 

Management 

The majority of individuals with HCM are asymptomatic. In these individuals 

management is limited to lifestyle advice, education, genetic counseling and often 

reassurance. In the remainder a number of strategies exist to modify symptoms, however 

few randomized trial data exist to guide management decisions.  

A major cause of symptoms in HCM is LVOTO and gradient reduction therapy has 

received considerable interest as a therapeutic measure in symptomatic patients. The 

mainstay of therapy are agents aimed at reducing inotropic work: beta-blockers, calcium 

channel blockers such as verapamil, and class 1 agents such as disopyramide [Sherrid 

2005] have been used effectively in reducing LVOTO [Maron 2003a]. While such drugs 

may be useful for symptomatic relief it must be borne in mind that no data exist to 

support their use in asymptomatic patients, despite the theoretical potential benefits in 

reducing LVOT gradient. In patients in whom medical therapy has been unsuccessful a 
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number of percutaneous and surgical strategies exist aimed at reducing LVOT gradient. 

Alcohol septal ablation, in which a portion of the interventricular septum is „ablated‟ with 

intracoronary absolute alcohol has been performed for over 13 years and has become a 

well established method of gradient reduction therapy [Sigwart 1995] [Knight 

1997][Faber 2000]. In some centres surgical myomectomy has been performed safely and 

effectively although the requirement for cardiopulmonary bypass carries limitations and 

associated risk [Koch 1980]. Programmed ventricular pacing has also received attention 

as a therapeutic option especially in those unsuitable for more aggressive forms of 

gradient reduction therapy, or in whom a device was indicated for another reason [Gadler 

1999]. While some patients benefit symptomatically, randomized trials have been 

contradictory and the use of pacing is not widespread [Kappenberger 1997][Nishimura 

1997][Kappenberger 1999].  

In individuals without LVOTO therapeutic strategies may be aimed at reducing 

arrhythmic burden with beta-blockers or amiodarone and alleviating heart failure 

symptoms. It is yet unknown whether the natural history of disease can be modified in 

asymptomatic individuals and randomized trials are urgently required in this group of 

patients. 

Prognosis 

Although the common perception amongst lay people and health professionals is that 

HCM is a feared diagnosis, the overall prognosis in unselected cohorts is relatively good. 

In a large cohort of unselected patients followed up for a mean 8.0 +/- 7 years HCM-

related death during follow up occurred in 12% with three modes of death accounting for 

the majority [Maron 2000a] - sudden death, heart failure death and fatal stroke. Mode of 
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death appears to be age related with sudden death being more prominent in the young and 

heart failure and stroke deaths being more prevalent later in life. Previous studies have 

suggested that an increased risk of sudden death is associated with specific genotypes 

(such as TNNT2 mutations [Watkins 1995b][Moolman 1997]) while others may carry a 

more benign prognosis (such as MYBPC3 mutations [Charron 1998a][Niimura 1998]) 

but whether these initial observations extend to large numbers of unselected individuals 

remains to be seen.  

In published series to date, the overall annual incidence of major complications is as 

follows: 

 sudden cardiac death - less than 1% [Maron 2000a][Maron 2002b] (although 

some individuals are at a much higher individual risk).  

 stroke – approximately 0.8% [Maron 2002a].  

 infective endocarditis - approximately 0.1% [Spirito 1999].  

 end-stage disease (related to left ventricular systolic dysfunction) - 0.87% 

[Thaman 2005].  

The incidence of sudden death may be modified however with implantable cardioverter-

defibrillator implantation [Maron 2008] which can successfully cardiovert ventricular 

tachycardia or fibrillation and abort sudden death [Maron 2007]. 

 

Genotype-Phenotype Correlations 

Hypertrophic cardiomyopathy is a diverse heart muscle disease: 

 Mutations in one of many different genes encoding both sarcomeric and non-

sarcomeric proteins cause the disease 
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 The spectrum of disease is broad – it can present at any stage in life with a wide 

range of symptoms and complications 

Such clinical diversity makes managing patients and families with the condition 

challenging as the clinician has to educate, inform and predict outcome for his patients 

based on knowledge about the disease which often appear conflicting.  

In order to examine determinants of the clinical diversity, early studies focused on 

whether the clinical variation between individuals could be explained by differences in 

the molecular genetic abnormality. A few early studies have led to accepted views on 

differences in patterns of disease expression that are gene-specific. These are summarized 

in Table 5. 

Table 5  Summary of Published Genotype-Phenotype Correlation Studies in HCM 
Gene Observed phenotype References 

MYBPC3 Late-onset, low penetrance, benign 

clinical course 

Niimura 1998 

Charron 1998a 

MYH7 Severe hypertrophy with high risk of 
sudden death 

Anan 1994 

TNNT2 Mild hypertrophy, high risk of sudden 

cardiac death 

Moolman 1997 

Watkins 1995b 
TNNI3 Variable 

? restrictive cardiomyopathy 

Mogensen 2004 

Doolan 2005 

Kubo 2007 

TPM1 Variable, sudden death reported Watkins 1995b 

MYL3 Variable, skeletal myopathy Poetter 1996 
MYL2 Variable, skeletal myopathy Poetter 1996 

ACTC Rare, apical hypertrophy Mogensen 1999 

MYH6 Rare, ? late onset Carniel 2005 
Niimura  2002 

TTN Rare, typical HCM Satoh 1999 

TNNC1 Rare, Typical Hoffman 2001  
Others Rare See references in Table 1. 

   

 

While these early observations were welcome – purporting to explain to some extent the 

clinical diversity seen in HCM – there are a number of important limitations when 

considering these genotype-phenotype studies: 

 Reports were based upon small numbers of mutations for each gene which may 

not be representative of the overall population 
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 In some cases the majority of data was obtained from small numbers of families 

which introduces selection bias  

 Most studies are conducted at large tertiary referral centres which include an 

element of referral bias. 

 Although the statistical mean for a given parameter may differ between different 

genes the variation in data may be similar and the differences in the calculated 

mean may not be clinically relevant. 
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Cardiac Myosin Binding Protein C 

 

In most cross-sectional series of individuals with HCM, MYBPC3 mutations are the most 

commonly identified (Van Driest 2005). The mechanisms underlying the pathogenic 

effects of MYBPC3 mutations are complex however and poorly understood. Cardiac 

myosin binding protein C (MyBP-C) is a polypeptide with a molecular weight of 

approximately 135 kDa [Winegard 1999]. It is a thick-filament associated protein which 

is localized to the C zone of the A band of the sarcomere [Robbins 2002] (Figure 1). It 

has 10 globular domains of which 7 are immunoglobulin I-like and 3 are fibronectin-3 

like. MyBP-C binds to myosin via the terminal C10 domain and titin via C9 or C10 

domains.  

 



 29 

Figure 1 Structure of the Cardiac Sarcomere and MYBPC Protein 

Its role in sarcomeric contraction is poorly defined but is thought to include the assembly, 

maintenance of structural integrity and regulation of contractile activity of the sarcomere 

[Flashman 2004][Oakley 2004]. Interestingly knock-out mice (with no functional MyBP-

C) are viable and assembly of the sarcomere is possible, albeit disordered, suggesting that 

MyBP-C is not absolutely essential for sarcomere formation [Harris 2002]. Cardiac 

hypertrophy and contractile dysfunction still occurred however. 

The gene encoding cardiac myosin binding protein C (MYBPC3) is located on the short 

arm of chromosome 11 (11p11.2) and comprises 35 exons of which two are unusually 

small (3 base pairs each) [Carrier 1997].  Pathogenic mutations have been reported 

throughout the entire length of the protein (for an on-line list of reported mutations see 

http://genetics.med.harvard.edu/~seidman/cg3/muts/MYBPC3_mutations_TOC.html).  
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In contrast to other sarcomeric protein genes, mutations in MYBPC3 commonly result in 

a truncated protein product suggesting that haploinsufficiency may play an important role 

in disease pathogenesis in some families. Moolman et al. examined protein expression in 

a large family sharing a single base insertion in exon 25 resulting in premature truncation 

and loss of the terminal myosin and titin binding sites [Moolman 2000]. Abnormal 

mutated protein was not demonstrated in human myocardial tissue obtained from surgical 

myectomy suggesting that the mechanism leading to disease development in this instance 

was haploinsufficiency (i.e. absence of normal protein) rather than the „dominant-

negative‟ effect proposed for missense mutations, observed commonly in other 

sarcomeric protein genes. Haploinsufficiency has been proposed by others as an 

important mechanism of disease development, at least in some families, with HCM 

related to MYBPC3 mutations [Rottbauer 1997][Flashman 2004] [Andersen 2004]. 
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The Spectrum of Clinical Disease in Patients with MYBPC3 Mutations 

A Historical Perspective 

In 1990 affected family members of a large French-Canadian family (originally described 

by Pare et al. in 1961 [Pare 1961]) were found to be heterozygous for the R403Q 

mutation in the MYH7 sarcomeric protein gene [Geisterfer-Lowrance 1990]. Subsequent 

studies identified mutations in other sarcomeric protein genes - TNNI3 [Watkins 1993], 

TNNT2 [Thierfelder 1994] and TPM1 [Watkins 1995b]. 

In 1993, Carrier et al. had mapped a different familial HCM locus to chromosome 11 

[Carrier 1993]. Using a large multi-generational family with multiple affected family 

members they were able to map the probable locus using micro satellite markers and 

linkage techniques. Although few clinical data were reported, the authors felt that this 

particular family was not noticeably different to other families with MYH7 mutations 

they had seen, leading them to conclude that mutations at this locus caused „the same 

phenotype as that described previously‟. It is important to understand however, that in 

order to perform linkage studies large families with multiple affected family members are 

required – not necessarily typical of the broader HCM population. Two years later, the 

same group were able to identify a splice acceptor site mutation in the MYBPC3 gene at 

this locus on chromosome 11 in the same family [Bonne 1995]. Interestingly the mutation 

was also present in several clinically unaffected family members raising the possibility of 

incomplete penetrance – a challenging concept for the clinician and geneticist. Previously 

mutations in the MYH7 gene were thought to be highly penetrant [Anan 1994] although 

reports of incomplete penetrance had been made [Fannapazir 1994]. Simultaneously, and 

reported in the same edition of Nature Genetics, Watkins et al. identified a splice donor 
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mutation and duplication mutation in MYBPC3 in two large multigenerational families 

[Watkins 1995a]. These families also both showed high but incomplete disease 

penetrance.  

In 1997, Carrier et al. characterized the entire sequence for the MYBPC3 gene and 

identified a further 6 mutations from 7 families with familial HCM. Of 43 mutation 

carriers, only 29 were clinically affected confirming previous reports of incomplete 

disease penetrance (in this case 67%).  

As further sarcomeric genes were identified as disease causing in HCM, and further 

individual mutations were identified, the focus of research switched from gene 

identification towards genotype-phenotype correlation studies in an attempt to explain the 

marked diversity in clinical disease expression - a discussion of some of the important 

themes relating to MYBPC3 mutations follows. 

 

Prevalence of MYBPC3 Mutations in Patients with HCM 

A number of studies have systematically screened patients with HCM for mutations in 

genes encoding sarcomeric proteins to estimate the relative frequency of mutations for 

each gene. This is of importance to the clinician or geneticist, especially if phenotypic 

differences exist between each particular genotype. Geographical or ethnic variations 

may exist and it is important that a wide selection of cohorts in different patient 

populations is examined to highlight any important differences.  

Erdmann et al. screened 110 unrelated patients from Germany and Turkey with HCM 

(defined as maximal wall thickness > 15mm) for mutations in MYBPC3 [Erdman 2001]. 
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13 mutations in 15 families were found accounting for approximately 15% of the overall 

HCM population. No other sarcomeric protein genes were screened however.  

Niimura et al. examined the spectrum of mutations in a defined group of elderly patients 

with late-onset HCM (diagnosed over the age of 40) [Niimura 2002]. 31 individuals (18 

female, 13 male) were screened. Mutations were identified in MYBPC3 (5 mutations), 

TNNI3 (2 mutations) and MYH6 (1 mutation). MYBPC3 mutations accounted for only 

16% of the overall population, but 62.5% of those in whom a mutation was identified. 

 

Alders et al. reported a founder mutation 2373insG in MYBPC3 which was identified in 

23% of patients with HCM in the Netherlands [Alders 2003]. Initially they screened 22 

patients for sarcomeric protein gene mutations and found an unexpectedly high 

proportion of unrelated individuals having this mutation. They then examined the DNA 

of a further 237 unrelated Dutch patients with HCM and found a further 50 carriers of the 

2373insG mutation giving an overall prevalence of 23% throughout the whole Dutch 

HCM population. Haplotype analysis confirmed the presence of a founder effect over 25 

generations previously. No clinical data was reported in this study. 

 

Morner et al. examined the spectrum of sarcomeric protein gene mutations in a Swedish 

population of 46 patients with familial or sporadic HCM [Morner 2003]. 7 MYBPC3 

mutations were identified in 10 families with double heterozygosity occurring in one 

family with a MYH7 mutation. 5 missense, 1 nonsense and 1 frameshift mutation were 

identified. The overall prevalence of MYBPC3 in this cohort was 21.7%. This study 
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demonstrated the geographical and phylogenetic variation in different patient populations 

as MYBPC3 was the most common disease gene in this Swedish population. 

 

Richard et al. screened 197 unrelated index cases in a French population for sarcomeric 

protein gene mutations. Disease causing mutations were identified in 124 index cases 

(64%) [Richard 1999]. MYBPC3 and MYH7 mutations accounted for 42% and 40% 

respectively of those in whom a mutation was identified but MYBPC3 mutations 

accounted for 26.4% of the overall population. Of the 39 MYBPC3 mutations, 26 

(66.7%) were frameshift or nonsense mutations including splice site mutations. The 

remainder (33.3%) were missense mutations. An important additional finding in this 

study was a high prevalence of families with complex genetic status (either compound or 

double heterozygotes or homozygotes) which occurred in 6% of cases. 

 

Erdmann et al. examined the spectrum of sarcomeric protein gene mutations in a German 

population [Erdmann 2003].  108 families were screened for sarcomeric protein gene 

mutations. 18 MYBPC3 mutations were identified in 20 families (18.5%). Little clinical 

data was reported, but this study demonstrated that MYBPC3 mutations are the most 

common genetic cause of HCM in this German population.  

 

Andersen et al. examined the spectrum of MYBPC3 mutations in a Danish population of 

81 consecutive patients referred to a tertiary centre in Copenhagen [Andersen 2004]. 

They also screened 7 other sarcomeric protein genes. 9 mutations were detected in 10 

families with one mutation present in two families (12.3% of the overall population). 
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Three families were found to be double heterozygotes with mutations occurring in both 

MYBPC3 and MYH7 – a high proportion (30%). Ectopic messenger RNA (mRNA) 

expression was studied using peripheral blood leukocytes. At least 3 of the 9 mutations 

were felt likely to cause haploinsufficiency - as the product of translation would be so 

short as to prevent effective incorporation into the sarcomere.  

Jaaskelainen et al. screened 37 Finnish patients with HCM for MYBPC3 mutations and 

identified 4 disease causing mutations, one of which was a founder mutation (Gln1061X) 

[Jaaskelainen 2002]. Penetrance was variable within the 6 families with the founder 

mutation and clinical disease severity varied with most individuals having mild 

symptoms but one patient requiring cardiac transplantation. Although the data was 

unpublished they demonstrated that MYBPC3 mutations are the most prevalent cause of 

HCM in Finland accounting for 38% of cases of familial HCM. 

 

Van Driest et al. screened 389 HCM patients at the Mayo Clinic for mutations  in the 

sarcomeric protein genes MYBPC3, MYH7, MYL2, MYL3, TNNT2, TNNI3, TPM1 and 

ACTC [Van Driest 2004]. 46 MYBPC3 mutations were identified in 71 individuals. The 

overall prevalence of MYBPC3 mutations in this population was 18.3% with MYH7 

mutations accounting for 13.8%. Of the MYBPC3 mutations, 46% were missense, 33% 

frameshift, 13% nonsense, 7% splice site and 2% in-frame deletions. It should be noted 

however that the patient population at the Mayo Clinic is subject to referral bias as it is a 

tertiary referral surgical centre with a reputation for surgical myomectomy. Their HCM 

population is not necessarily representative of the broader population of HCM patients 

with and without LVOT obstruction therefore. 
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Song et al. screened for mutations in MYBPC3, MYH7 and TNNT2 in a Chinese HCM 

population [Song 2005]. Of 100 patients with HCM, 25 mutations were found in 34 

families, including 9 MYBPC3 mutations (9%).  

 

Ingles et al examined the spectrum of sarcomeric mutations in an Australian HCM cohort 

[Ingles 2005]. Of 80 unrelated probands, 10 MYBPC3 mutations were identified in 11 

families (13.8%). 5% of the overall cohort had complex genetic status and were either 

double (MYH7 + MYBPC3) or compound (MYBPC3 + MYBPC3) heterozygotes.  

In summary, the prevalence of MYBPC3 mutations in unrelated, unselected patients with 

both familial and sporadic HCM ranges between 15 and 26.4%. MYBPC3 is the most 

commonly mutated gene in most series, and accounts for up to 50% of all identified 

mutations. In series of familial HCM this proportion is even higher. The clinical 

importance of MYBPC3 mutations therefore is their reported frequency in the overall 

HCM population, in that approximately 1 in 5 of the HCM population harbor a mutation 

in this gene.  

Penetrance of Disease 

In the first large scale study of its kind, Niimura et al. described the penetrance of disease 

and basic clinical characteristics of 228 gene positive individuals from 16 families with 

familial HCM in whom 12 different mutations in the MYBPC3 gene had been identified 

[Niimura 1998]. HCM was defined as a left ventricular wall thickness > 13mm in the 

absence of an identifiable cause. Mutations were considered pathogenic if absent in more 

than 200 chromosomes from control subjects, and were predicted to cause a biological 

effect. Of 212 gene carrying family members, 121 (57.1%) had evidence of clinical 
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disease expression. Symptom severity, and the pattern and extent of hypertrophy were 

similar to those observed in patients with other HCM causing mutations (data not 

published). Ninety one individuals did not fulfill clinical diagnostic criteria for HCM, of 

which 53 were adults. The main findings of this study were therefore: 

1) Disease penetrance in adult gene carriers was incomplete in the 16 families 

studied (70.9% overall and 57.1% in relatives assessed at family screening) 

2) Disease penetrance appeared to increase with age 

3) Prognosis appeared better than for families with MYH7 and TNNT2 mutations 

(data not published) 

The main limitation of this study is that the data is from a small number of families with 

familial HCM and over 50% of the data is derived from 3 large families sharing the same 

mutation. The possibility of referral bias also exists as such large families with multiple 

affected family members (while useful for linkage studies) are not necessarily 

representative of the broad population of HCM. The conclusions drawn suggesting that 

MYBPC3 disease is late-onset and benign are strongly worded and supported only by 

indirect or unpublished data. 

The impact of this paper however has been significant and long-lasting - current 

consensus guidelines recommend periodic screening throughout adulthood to detect 

patients with late-onset disease with major implications on resource allocation as well as 

causing potential anxiety for families attending for serial clinical examination [Maron 

2003a]. In addition, this study for the first time suggested that at least part of the 

phenotypic diversity seen by the clinician could be explained by genetic heterogeneity 
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and that mutation specific advice could potentially play a role in managing patients and 

families with HCM.  

In smaller studies involving a limited number of families disease penetrance has varied. 

Moolman et al. reported disease penetrance of only 35% in a large South African family 

[Moolman 2000] while estimates of 90-100% were reported by other groups [Rottbauer 

1997][Moolman-Smook 1998][Doi 1999]. Disease penetrance was calculated at 71% in a 

large French cohort [Charron 1998a] and 86% in a large German/Turkish population 

[Erdmann 2001]. Two further studies estimated penetrance at 57% in a Danish cohort 

[Andersen 2004] and 76.9% in a Japanese cohort [Kubo 2005].  

While an average disease penetrance statistic is useful it doesn‟t reflect the variation 

between families – i.e. some families are fully penetrant [Anan 2001] whilst others are 

incompletely penetrant [Moolman 2000]. The factors which affect disease penetrance 

however are poorly understood. Niimura et al. suggested that disease penetrance was age-

related – i.e. penetrance increases with increasing age [Niimura 1998]. By calculating the 

proportion of individuals who have clinical disease from the total number of mutation 

carriers in a particular age group, it was shown that this proportion increased with 

increasing age, implying a relationship between disease penetrance and age. These data 

were derived from cross-sectional data and not from longitudinal follow-up however and 

provide only indirect evidence that disease may develop at any stage throughout life, and 

is not limited to adolescence and young adulthood as previously thought [Maron 1986b]. 

Anecdotal evidence of disease developing during adulthood has occasionally been 

demonstrated however [Maron 2001]. Maron et al. described the development of 

echocardiographic left ventricular hypertrophy in genotyped adults [Maron 2001]. Sixty 
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one individuals from 7 families were found to be mutation carriers, of which 12 were 

clinically unaffected. 5 of these individuals were followed up prospectively, 3 (2 females, 

1 male) of which developed echocardiographic evidence of LVH during follow up at ages 

33, 35 and 42. One individual had an abnormal ECG on initial evaluation but the other 

two had normal ECGs at both the initial and follow-up evaluation. While this study did 

not determine the frequency of late-onset disease expression it did suggest that it can  

occur and they concluded that adult relatives without hypertrophy can no longer be 

reassured and require further follow up. These data support the theory that disease 

penetrance is age-related and that disease may develop in adults. 

 

Age at Diagnosis in Patients with MYBPC3 Mutations 

From the early studies examining the clinical spectrum of disease the general belief is 

that HCM develops in adolescence or early adulthood [Maron 1986b]. Following reports 

that MYBPC3 mutations may cause late-onset disease however [Niimura 1998] the 

relationship between age and disease onset has received considerable interest. Difficulty 

arises however because the age at clinical evaluation or first presentation does not 

necessarily correspond to the age at which the disease develops. Most studies which use a 

cross-sectional design are therefore unable to reliably identify at what age disease 

developed and unfortunately longitudinal studies are lacking.  

Assuming these limitations are constant however it is possible to compare the age at 

diagnosis or age at symptom onset for each sarcomeric gene.  

Estimates of mean age at diagnosis range from 33.0 years in a German population 

[Erdmann 2001] to 48.4 years in a Chinese population [Song 2005]. Wide confidence 



 40 

intervals of the mean exist however. In a study which pooled published data [Van Driest 

2005] from the United States, France, Germany, Sweden, Finland and Spain the overall 

age at diagnosis in patients with a MYBPC3 mutation was 37.9 which was statistically no 

different from any of the other major sarcomeric protein genes evaluated (MYH7 = 38.4, 

TNNT2 = 35.5, TNNI3 = 46.7, MYL2 = 35.1). The only longitudinal study to date which 

has reported disease development in adults demonstrated the development of hypertrophy 

de novo at the ages of 33, 35 and 42 [Maron 2001]. Disease development was defined in 

that study as the development of hypertrophy on transthoracic Echo which raises more 

complex questions regarding the definition of disease and whether ECG abnormalities 

constitute  disease development or not.  

Clinical Characteristics of Disease in Patients with MYBPC3 Mutations 

Although much interest has been focused towards genotype-phenotype correlations, 

clinical data from patients with MYBPC3 mutations in the published literature is limited. 

A broad spectrum of HCM phenotypes have been reported in association with MYBPC3 

mutations including neonatal heart failure [Lekanne-Deprez 2006], premature sudden 

cardiac death [Elliott 2000], severe outflow tract obstruction requiring surgical correction 

[Elliott 2006a], heart failure [Thaman 2005], thromboembolic stroke [Maron 2002] and 

mild disease with little restriction on daily activities [Niimura 1998].  

 

Although the first reports of MYBPC3 mutations were found in families with both 

sudden cardiac death and severe hypertrophy [Watkins 1995a], the concept that 

MYBPC3 mutations caused a benign and mild phenotype arose from the first large 

published genotype-phenotype correlation study [Niimura 1998]. Although the „clinical 
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expression‟ of patients in this study was „similar to other genetic causes of hypertrophic 

cardiomyopathy‟ the calculated Kaplan-Meier survival curves suggested improved 

survival compared to TNNT2 or „malignant‟ MYH7 mutations (raw data unpublished). 

Once again it should be pointed out that over 50% of the data in this study was derived 

from 3 families with the same single base pair insertion mutation. No other clinical data 

was reported in this study.  

 

Charron et al described the phenotype of 33 individuals carrying a splice acceptor 

mutation in intron 20 of the MYBPC3 gene from 2 unrelated families [Charron 1998b]. 

Their clinical data were compared with data from 3 families with mutations in the MYH7 

gene. Maximal wall thickness was 17.6 +/- 6.3mm. No clinically important differences 

were apparent between the MYBPC3 individuals and the MYH7 individuals. Long term 

survival in patients with the MYBPC3 mutation was significantly reduced however, 

(survival to ages 20, 50 and 60 was 100%, 90% and 44% respectively) but better in 

comparison to a MYH7 mutation. It was not clear whether the prognosis was similar in 

both the families with the same MYBPC3 mutation or whether the premature, disease-

related deaths occurred in one of the two families. 

This same data was included in a larger study of MYBPC3 mutations by the same group 

later that year [Charron 1998a]. This study aimed to compare disease expression both 

between MYBPC3 and other mutations and also within the same gene (MYBPC3). 

Almost 50% of the data in this study however was that published in the earlier paper by 

the same group. In a comparison between pooled data from 69 patients with MYBPC3 
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mutations and pooled data from 45 individuals with MYH7 mutations the important 

findings were: 

 1) age of onset of symptoms was higher in patients with MYBPC3 mutation 

(40.9 +/- 19 years vs 34.6 +/- 17, p<0.02). 

 2) mean age of death was higher in patients with MYBPC3 mutations (59.6 

+/- 10 years vs 38.5 +/- 16, p<0.002) 

 3) Kaplan-Meier product-limit curves showed better prognosis for patients 

with MYBPC3 mutations (p<0.0001). 

These data, accepting the limitations noted above, were used to support the hypothesis 

that MYBPC3 mutations were associated with a relatively mild form of the disease. 

 

Erdmann et al. screened 110 patients with HCM for mutations in MYBPC3 [Erdman 

2001]. 13 mutations in 15 families were found and 14 other family members were found 

to be gene carriers (4 of which were unaffected). Two interesting observations were 

made. Firstly there was a trend towards protein truncation mutations causing earlier more 

severe disease than missense mutations, although this didn‟t reach statistical significance. 

Secondly, comparing the age of onset, severity of hypertrophy, and need for ICD 

implantation or myectomy with a group of 11 families with MYH7 mutations 

(unpublished data) there was no significant difference. 

 

Richard et al screened 197 index cases for sarcomeric protein gene mutations [Richard 

2003]. Disease causing mutations were identified in 124 index cases (64%). MYBPC3 

and MYH7 mutations accounted for 42% and 40% respectively. Of the 39 MYBPC3 
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mutations, 26 were insertions/deletions, nonsense mutations or splice site mutations. The 

remainder were missense mutations. Index cases were classified into benign, intermediate 

or malignant groups according a history of adverse cardiac events within each family. 

MYBPC3 mutations were less prevalent in families with a malignant prognosis compared 

to MYH7 mutations, although MYBPC3 mutations were more common in patients with 

an intermediate prognosis than MYH7 mutations. MYBPC3 and MYH7 mutations were 

equally prevalent in families with a benign prognosis. Families with complex mutations 

(either compound or double heterozygotes or homozygotes) occurred in 6% of cases). 

 

In a large study of 389 HCM patients at the Mayo Clinic [Van Driest 2004], there were 

no apparent clinical differences between the different mutation types. Comparing 

MYBPC3 mutations to patients harboring MYH7, MYL2 or MYL3 mutations (thick 

filament) or ACTC, TNNT2, TNNI3 or TPM1 (thin filament) mutations there were no 

differences in terms in of age on onset, severity of hypertrophy, need for myectomy or 

ICD implantation. The mean age at diagnosis for patients with an MYBPC3 mutation was 

37.6 +/- 15 years. Interestingly 7% of the genotypes cohort (2.9% of the overall HCM 

cohort) had multiple mutations either as compound or double heterozygotes. These 

individuals were younger, more hypertrophied and required more interventions 

(myectomy or ICD) than any other subgroup. The HCM population at the Mayo Clinic 

however is subject to tertiary referral bias as it is specialist surgical centre offering 

surgical myectomy. Over 35% of patients had already undergone surgical myectomy 

prior to enrollment and 29% had an ICD. While screening this population has clear 
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benefit in itself, the results cannot be widely extrapolated to the HCM population in 

general.  

 

Lekanne Deprez et al [Lekanne Deprez 2006] described two cases of fatal neonatal HCM, 

both of whom were compound heterozygotes for MYBPC3 mutations. The first child 

carried the paternally inherited splice site mutation c.1624+1G>A and the maternally 

inherited c.2373_2374insG mutation. The second child carried the paternally inherited 

nonsense mutation Arg943X and the maternally inherited Glu1096fsX92. No cardiac 

tissue was available for proteomic analysis but the authors felt that given the existing 

knowledge of the functional significance of at least one of the mutations and speculation 

as to the significance of the others it was likely that both patients could be considered as 

true MYBPC3 knockouts – i.e. no functional MYBPC3 protein expressed in the cardiac 

tissue - hence the severe phenotype. 

 

A number of smaller studies have reported clinical data on individuals or small families 

with MYBPC3 mutations with clinical data not dissimilar to that seen in the larger studies 

[Rottbauer 1997][Moolman-Smook 1998][Richard 1998][Doi 1999][Waldmuller 2003] 

[Morner 2003][Konno 2003a][Song 2005]. 

 

Summary: 

Over the last 10 years we have learned a great deal about the relationship between 

genotype and phenotype and the existing literature can be summarized as follows: 
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 The prevalence of MYBPC3 mutations in genotyped HCM cohorts is 

approximately 15-25% 

 Disease penetrance is incomplete and ranges between 60-80% in most large series 

and may be age-related 

 Mean age at diagnosis from pooled data is approximately 37.9 years [Van Driest 

2005] 

 The pattern and degree of hypertrophy is highly variable 

 Prognosis is variable with both normal life expectancy and sudden premature 

death reported in different cohorts but few longitudinal data exist. While early 

studies suggested that MYBPC3 disease was associated with a more favorable 

prognosis, subsequent studies have observed a more varied clinical course. 

 

Despite the considerable interest in MYBPC3 related disease important questions 

therefore remain unanswered. This thesis attempts to add to the existing knowledge base 

by combining genetic and clinical evaluation of a large cohort of unselected individuals 

with MYBPC3 mutations; the specific aims and objectives of which are listed in the next 

section. 
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METHODS AND SUBJECTS 
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Aims and Objectives 

 

The overall objective of this study was to provide new insights into the relationship 

between genotype and phenotype in patients with HCM and a mutation in the MYBPC3 

gene. 

More specifically this study aimed to: 

 Determine the penetrance of disease expression associated with MYBPC3 

mutations in a large unselected population 

 Describe the spectrum of disease and clinical disease severity in affected mutation 

carriers 

 Evaluate markers of early disease expression in a genotyped population 

 Determine the long-term effects of MYBPC3 mutations by serial clinical 

evaluation 

 Determine the spectrum of disease expression in families sharing an identical 

mutation 

Methodology 

Study Design 

A cross-sectional design was used to determine the penetrance of disease and clinical 

disease severity. A longitudinal cohort design was used to determine the long-term 

effects of MYBPC3 mutations in individuals with HCM. 

A number of individuals were involved in data collection: 

 Steve Page (SP) 

 Stavros Kounas (SK) 
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 Brian Mist (BM) 

 Michael Christiansen (MC) 

 Paal Skytt Andersen (PSA) 

Case Selection 

A previous research programme at our unit had identified a cohort of 59 patients with 

HCM and a mutation in the MYBPC3 gene (BHF Programme Grant RG/2000009).  

These individuals had been identified from a larger cohort of 585 consecutive patients 

with HCM referred to our unit for evaluation who were systematically screened for 

genetic mutations in sarcomeric protein genes. All individuals fulfilled diagnostic criteria 

for HCM and the main reasons for referral included diagnostic clarification, clinical 

management, risk stratification and to facilitate family screening. 

 

Of these 585 individuals a total of 44 likely disease causing sequence variations were 

identified in 59 individuals. These individuals were either under active follow-up in our 

unit (n= 31) or had been seen previously and were now under local follow-up (n=28). 

Index cases were contacted (SP) to discuss whether they would be interested in 

participating in the study. They were provided with verbal and written information 

regarding the study (SP) and given time to consider whether they wished to take part. 

Participants were invited to attend the Inherited Cardiovascular Diseases Unit, The Heart 

Hospital, London for clinical evaluation. Participants were also asked to invite 1
st
 degree 

relatives to attend for clinical and genetic evaluation. If relatives were willing to 

participate they were provided with verbal and written information and written informed 

consent was obtained (SP - information sheet and consent form are found in the 
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Appendix). If clinical evidence of was demonstrated in a 1
st
 degree relative, or if that 

individuals was found to be a mutation carrier, cascade screening was then offered in turn 

to their 1
st
 degree relatives and so on.  

Clinical Evaluation 

All individuals (index cases and relatives) were invited to attend the Inherited 

Cardiovascular Diseases Unit, The Heart Hospital, London for clinical evaluation. 

Demographic details and full clinical history were obtained and combined with a physical 

examination (SP). 

 

Blood pressure measurements were obtained using a mannual sphygmomanometer. 

Systolic pressure was defined as the pressure at which the first Korotkoff sound first 

appeared and the fifth Korotkov sound was used to define diastolic pressure.  

 

A 12-lead electrocardiogram recording (ECG) by either SP or a cardiac physiologist. 

ECG recordings were made in the supine position at rest. Standard bipolar limb lead 

electrodes were connected to the right arm, left arm and left leg with a neutral electrode 

attached to the right leg. Augmented limb lead electrodes were recorded using Wilson‟s 

central terminal. Chest leads were positioned in the following sequence.  

 V1 4
th

 intercostals space just right of the sternum 

 V2 4
th

 intercostals space just left of the sternum 

 V3 midway between V2 and V4 

 V4 apex 

 V5 5
th

 intercostals space anterior axillary line 
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 V6 5
th

 intercostals space mid axillary line 

A paper spead of 25mm/s and calibration of 10mm/mV was used. 

ECGs were analysed by SP for the following: 

 Rhythm 

 Atrial morphology - biphasic P wave in V1 with terminal deflection > 1mm and 

>0.04s duration 

 PR interval 

 Presence or absence of Q waves (a pathological Q wave was defined as a negative 

deflection with a duration >40ms and greater than 1/3 ensuing R wave height, and 

a non-pathological defined as a negative deflection with a duration < 40ms and 

less than 1/3 ensuing R wave height). 

 QRS duration 

 Presence of left ventricular hypertrophy using Romhilt Estes score, Sokolow 

Lyon criteria and Cornell criteria (Table 6 for definitions). 

 T wave morphology – either flat or inverted below the isoelectric line 

Table 6  Definitions used for ECG LVH Measurements 

 
Parameter Definition Score 

Romhilt Estes Score Voltage Criteria (any of): 

R or S in limb lead > 20mm 

S in V1 or V2 > 30mm                                   3 points 
R in V5 or V6 > 30mm 

ST-T Abnormalities 

With Digoxin                                                  1 point 
Without Digoxin                                             3 points 

Left Atrial Enlargement in V1                                       3 points 

Left axis deviation                                                          2 points 
QRS duration > 90ms                                                     1 point 

Intrinsicoid deflection in V5 or V6 > 50ms                   1 point 

Scored out of 14. Scores 

> 4 considered to 

represent LVH 

Sokolow Lyon Criteria S in V1 + R in V5 or V6 > 35 mm Yes or No 
Cornell Criteria S in V3 + R in aVL > 24 mm (men) 

S in V3 + R in aVL > 20 mm (women) 

Yes or No 
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Individuals also had a transthoracic echocardiogram using a dedicated departmental 

protocol. Studies were performed on Vivid 7 machines (GE Healthcare, Little Chalfont, 

UK) using a 3.5Hz probe. In addition to standard views and measurements [Gardin 

2002], the following measurements were made: maximal left ventricular wall thickness 

measurements at 12, 3, 6 and 9-o‟clock positions at mitral valve, papillary muscle and 

apical levels (12- and 6 o‟clock only) using leading-edge to leading-edge technique.  

Right ventricular wall thickness (also using leading-edge to leading-edge technique) was 

assessed in the parasternal long axis view, the parasternal short axis view at the level of 

the RVOT, the right ventricular free wall in the apical 4-chamber view and the free wall 

in the sub-costal view [Foale 1986][McKenna 1988].  Pulsed tissue Doppler imaging was 

used to record the systolic, early and late diastolic velocities at mitral valve annulus at the 

septum and lateral wall (in the apical 4-chamber view) and anterior and inferior walls (in 

the apical 2-chamber view) when possible. Colour flow mapping was used to detect flow 

acceleration in the LV cavity and pulsed wave and continuous wave Doppler was used to 

estimate peak velocity in the LV outflow tract and mid-cavity. If no outflow tract 

obstruction was noted at rest the measurements would be repeated following a Valsalva 

manoeuvre. Left atrial diameter was recorded in the parasternal long-axis view and apical 

4-chamber view. The right ventricle was carefully assessed for evidence of hypertrophy 

and pulmonary artery systolic pressures were calculated. Transthoracic echo studies were 

performed by highly trained echocardiographers with a specialist interest in imaging 

patients with cardiomyopathy. Studies were reviewed off-line by SP and SK. 
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When possible individuals also underwent metabolic exercise testing using a bicycle 

ramp protocol. Tests were symptom limited and supervised by a trained exercise 

physiologist (BM). Gas exchange data, symptoms, arrhythmias and blood pressure 

response were recorded at baseline and throughout the exercise protocol into the recovery 

phase. A failure of the systolic blood pressure to rise at least 25mmHg above baseline 

was considered an abnormal blood pressure response (ABPR) [Elliott 2000]. 

Individuals underwent 24 hour ambulatory Holter monitoring if symptoms of palpitations 

or syncope were reported, or routinely in individuals with HCM as part of risk 

stratification for sudden cardiac death. Data was analysed manually by a cardiac 

physiologist and atrial and ventricular premature complexes, supraventricular and 

ventricular arrhythmias, bradycardia, mean, minimum and maximum heart rate were 

recorded. Patients were supplied with a symptom diary card to allow correlation of 

symptoms to arrhythmias. Non-sustained ventricular tachycardia (NSVT) was defined as 

three or more consecutive beats with a ventricular origin at a rate greater or equal to 120 

beats per minute. 

 

Other cardiac investigations such as coronary angiography, cardiac magnetic resonance 

imaging and myocardial perfusion imaging were performed on the basis of clinical need. 

If individuals were unable to travel to The Heart Hospital local arrangements for clinical 

screening were made with investigations (ECG and Echo) forwarded for analysis (SP). 

Clinical Management 

All individuals fulfilling diagnostic criteria for HCM were managed according to Clinical 

Expert Consensus Documents [Maron 2003a] and local clinical expertise. The main 
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principles of management were to reduce symptoms and to prevent sudden complications 

such as sudden cardiac death and stroke. Gradient reduction therapies included beta-

blockers, calcium channel blockers, disopyramide, alcohol septal ablation, surgical left 

ventricular myomectomy and dual chamber pacemaker implantation. Risk factors for 

sudden cardiac death were determined systematically in all individuals with HCM. Major 

risk factors were: previous cardiac arrest, unexplained syncope, family history of sudden 

cardiac death, left ventricular wall thickness greater than 30mm, non-sustained VT on 

Holter monitoring and an abnormal blood pressure response on bicycle exercise testing. 

In patients with 2 or more risk factors, consideration for ICD implantation was made. In 

those with only 1 risk factor, decisions were made on an individual basis. Patients felt to 

be at increased risk of thromboembolic stroke were considered for anticoagulation with 

Warfarin. Risk factors included atrial fibrillation, left atrial diameter greater than 50mm 

in the parasternal long axis view, heart failure and increasing age. 

Genetic Evaluation 

The cohort of index cases had been previously identified from a larger cohort of 585 

individuals fulfilling diagnostic criteria for HCM referred to our unit for evaluation. Each 

individual had provided a blood sample for mutation analysis. Each sample was screened 

for mutations in the following genes:  

 MYBPC3 

 MYH7 

 TNNT2 

 TNNI3 

 MYL2 
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 MYL3 

 TPM1 

 PRAKG2 (if clinically indicated – premature conduction tissue disease or pseudo 

pre-excitation pattern on ECG) 

 GLA (if clinically indicated – concentric hypertrophy, X-linked inheritance, 

associated non-cardiac symptoms such as angiokeratoderma and anhydrosis) 

All coding regions were screened systematically for sequence variations by direct 

sequencing and fluorescent (F)-SSCP analysis by MC, PSA and RFH according to 

standard techniques. All genes were screened even once a sequence variation had been 

identified. Sequence variations were considered to be pathogenic mutations on the basis 

of the following criteria with reference to published criteria [Cotton 1998]. 

 The sequence variation cosegregated with clinical disease within the family 

(determined from clinical evaluation performed by SP) 

 The sequence variation occurred within a region of conserved DNA across 

different species (for missense mutations) 

 The sequence variation was absent in commercially available control alleles 

 The sequence variation was predicted to cause a mutated protein with biological 

effect either confirmed by RNA functional studies or by inference in the case of 

non-sense or frameshift mutations 

Relatives were invited to provide a venous blood sample for mutation analysis for the 

family mutation. No other sarcomeric protein genes were screened in relatives. Relatives 

were counselled by either a clinical genetics counsellor or by SP. Counselling was 

performed face to face when possible or over the telephone if the patient was unable to 
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travel to The Heart Hospital. Relatives were provided with both verbal and written 

information (see Appendix) and informed written consent was obtained.  

 

Venous blood samples from relatives were collected (SP) into 2x4.5ml EDTA tubes 

which were immediately refrigerated and subsequently stored at -80 °C for subsequent 

batched DNA analysis. Samples were analysed for the known family mutation only and 

an individual could therefore either be wild type or a mutation carrier. 

If relatives were unable to attend The Heart Hospital individuals were offered genetic 

screening remotely with verbal and written information provided and genetic counselling 

performed by telephone. Venous blood samples were collected locally, and posted to The 

Heart Hospital for further processing. 

 

Definitions 

A number of terms are used frequently in this thesis and are defined below. 

A diagnosis of HCM was defined by ventricular hypertrophy greater or equal to 13mm in 

the absence of a haemodynamic cause [McKenna 1997] 

An index case was defined as an individual fulfilling diagnostic criteria for HCM, from 

the original cohort in whom a MYBPC3 mutation had been identified.  

An affected mutation carrier was an individual who carried the family mutation and had 

echocardiographic hypertrophy with a maximal wall thickness of at least 13mm. 

An unaffected mutation carrier was an individual who carried the family mutation but 

had a maximal wall thickness of less than 13mm.  
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Sudden cardiac death was defined as death occurring within 1 hour of the onset of new 

symptoms, or nocturnal death without an antecedent history of worsening symptoms. 

A family history of sudden cardiac death was defined as sudden cardiac death in two or 

more first degree relatives less than 40 years old. 

Disease penetrance was defined as the proportion of mutation carriers who demonstrated 

evidence of clinical disease expression sufficient to fulfil diagnostic criteria for HCM 

Statistics 

Data was recorded using Microsoft Excel spreadsheets and statistical analysis was 

performed using SPSS software. Mean values with standard deviations were calculated 

for continuous variables with ranges given where appropriate. Comparison of means 

between groups was made using Student‟s t-test and ANOVA when more than two 

groups were being compared, assuming the data was normally distributed. For categorical 

variables the Chi-square test was used. A p-value of < 0.05 was considered statistically 

significant. 
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Ethical Approval and Funding 

This clinical study was an observational, cross-sectional study in which the selection of 

patients and clinical management decisions were based upon clinical need rather than 

specifically for research. Local Ethical Committee approval was obtained as part of an 

ongoing larger British Heart Foundation Programme Grant (BHF Programme Grant 

RG/2000009) into genotype-phenotype correlations in HCM.  

 

Ethical approval was obtained for the larger study „Hypertrophic cardiomyopathy 

(HCM): Clinical and Genetic Investigation of a Hereditary Heart Disease‟. This ethical 

approval was obtained in 2003 by Professor WJ McKenna – approved by the 

Wandsworth Local Research Ethics Committee, South London REC, St George‟s 

Hospital, London (Ref 01.78.10). Following the departmental move to the Heart Hospital, 

UCLH, London, ethical approval was also sought from the UCLH REC (Ref 03/0196).  

 

Participation in the study was voluntary and individuals could withdraw from the study at 

any stage. All individuals providing blood for DNA analysis provided written informed 

consent. Funding for this study was provided by the British Heart Foundation who 

awarded a Junior Research Fellowship to SP.
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THE SPECTRUM OF MYBPC3 MUTATIONS IN FAMILIES 

WITH HCM 
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Introduction 

 

HCM is characterised by an autosomal dominant pattern of inheritance with a mutation in 

one of the sarcomeric protein genes identified in up to 60% of individuals [Richard 

2003]. For a complete list of genes associated with HCM see Table 1. The most common 

sarcomeric protein gene in which mutations are found is MYBPC3, accounting for 

approximately 20% of HCM cohorts [Van Driest 2005]. Most mutations are novel and 

„private‟ although founder mutations have been identified in some populations 

[Moolman-Smook 1999][Waldmuller 2003][Richard 2003][Alders 2003][Konno 

2003][Jaaskelainen 2004][Kubo 2005]. 

 

In most large series missense and insertions/deletions account for the majority of 

MYBPC3 mutations, with fewer nonsense and splice site mutations [Richard 

2003][Erdman 2003][Van Driest 2004]. 

 

In this section the spectrum of mutation identified in this study are described. 

 

Methods 

 

A previous study, supported by the British Heart Foundation (BHF Programme Grant 

RG/2000009) systematically screened a cohort of 585 consecutive individuals fulfilling 

diagnostic criteria for HCM for mutations in sarcomeric protein genes. DNA analysis was 

performed in Copenhagen, at the Statens Serum Institute by PSA and MC. 

DNA sequencing techniques and screening methods are described in the Methods 

Section.  
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Mutations located in the flanking introns of the MYBPC3 micro-exons were examined 

using in silico methods. Ectopic expression of mRNA in blood leukocytes in the 

respective patients was examined using reverse transcription-PCR. 

Results 

Index cases 

A total of 44 MYBPC3 mutations were identified in 59 of 585 index cases (10.1%) which 

were believed to be disease causing. These mutations are described in Table 7. Of the 44 

mutations identified 28 were novel (63.6%).  
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Table 7  Disease Causing MYBPC3 Mutations in 59 Index Cases with HCM 
 

Mutation Type Mutation Description 

Nonsense (4 mutations in 5 families) Q425X 

Q969X * 
K1055X 

R943X 

Deletions/Insertions (10 in 11 families) g7040_7041delTT 
g14271delC 

g14274delC 

g15919insG 
g16225delG 

g16190_16196delGCGTCTA 
g20350insT * 

g14291insA 

698delC 
g18567delCT  

Missense (15 in 26 families) R502W * 
R502Q * 
E258K * 
G341R 
R495G * 
P873Q 
E542Q 
D605N 
G490R 
R820Q 
T750M 
G148R 
F1177L 
C1266Y 
T957S 

Intronic (9 in 11 families) IVS20-2A>G 

IVS7+1G>A 
IVS13-2A>G 

IVS14-13G>A 

IVS1-2A>G 
IVS27+1G>A 

IVS13-19G>A * 

IVS17+4A>T 
IVS9-36G>A  

Complex Genetic Status (6 in 6 families) MYBPC3 G148R AND GLA N215S 

MYBPC3 IVS14-13G>A* AND MYH7 T1854M 
MYBPC3 R502W * AND MYH7 N602S 

MYBPC3 G490R AND MYBPC3 Q642X 

MYBPC3 V1125M AND MYBPC3 IVS9-1G>C 
MYBPC3 IVS18+7G>A AND MYBPC3 D880D 

Sequence Variations of Uncertain Significance (9 in 9 families) IVS26-52G>A 

IVS1-2A>G  
IVS20-23A>G  

IVS16-26C>G 

IVS8-37C>T  
IVS25-10C>T  

IVS2-51 T>C 

g15096C>T, G758G 
g21033C>T, I1193I 

  

* - Mutation found in more than 1 family 

 

A further 9 sequence variations were identified in which the pathogenicity was uncertain 

or unlikely. These mutations either did not co-segregate with clinical disease or were of 

uncertain functional significance. Data from these families was excluded from analysis. 
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Mutations were grouped by type (Figure 2). The most common type were missense 

mutations (26, 44%). Insertions or deletions accounted for 11 (19%). Five (8%) were 

nonsense mutations producing a premature stop codon. Eleven (19%) were intronic 

mutations. Interestingly 10% of the genotyped cohort had complex genetic status. In one 

index case, mutations were identified in MYBPC3 and GLA. This individual had clinical 

features consistent with Anderson Fabry disease with other similarly affected individuals 

on the maternal side of the family. The MYBPC3 mutation had been inherited from the 

paternal side of the family. In 2 families, mutations were identified in MYBPC3 and 

MYH7 (double heterozygotes) and in 3 families two mutations were identified in 

MYBPC3 (compound heterozygotes). One of these families had both an IVS18+7G>A 

mutation and a single base substitution (g17675 C>T) resulting in D880D. The 

significance of this second sequence variation is uncertain and it was not possible to 

study the functional consequences of this mutation as no relatives were found to be 

carriers of this mutation alone. 

 



 63 

Figure 2  Spectrum of mutations in 59 index cases 
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A total of seven mutations were discovered in the introns flanking the two micro-exons 

10 and 14, but none were found in introns flanking exon 11.  

Familial Mutation Analysis 

In addition to the 59 index cases, familial mutation analysis identified a further 111 

mutation carriers and 118 relatives who were wild type for the family mutation. The total 

number of mutation carriers (index cases and relatives) was 170. 
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Discussion 

 

The main findings can be summarised as follows: 

 The prevalence of MYBPC3 mutations in our HCM cohort was 10.1% 

 More than 60% were novel mutations 

 Missense mutations were the most frequent accounting for 44% of all mutations 

identified 

 The previously described R502W mutation was found in 9 families with evidence 

of a founder effect following haplotype analysis 

 Intronic mutations were common and accounted for 18.6% of mutations identified 

 Complex genetic status was common and occurred in 10.2% of index cases with 

an MYBPC3 mutation 

 

The spectrum of mutation type seen in this study is broadly similar to that seen in other 

cohorts of MYBPC3 mutations  (Figure 3) [Richard 2003][Erdman 2003][Van Driest 

2004]. 

 

A pathogenic mutation in MYBPC3 was identified in 10.1% of the overall HCM cohort 

which is slightly lower than previously reported [Van Driest 2005]. This may represent 

differences in mutation detection methods, although in this study all exons (including 3 

micro-exons) and intronic sequences were analysed. It may be that the strict criteria used 

in this study to define a disease causing mutation led to a lower yield than in previously 

published data.  
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Similar to previous series, most identified mutations were novel. The phenomenon of so-

called „private mutations‟ lends added complexity to the clinical genetics of HCM, as 

mutation specific data are usually lacking. Consequently „proof of pathogenicity‟ 

becomes more challenging and providing mutation specific advice when counseling 

families becomes impossible. This phenomenon is not specific to MYBPC3 mutations 

however.  

The finding of a founder effect in 9 families with the R502W mutation is interesting as 

this is the first founder mutation to be described in an UK population. Founder MYBPC3 

mutations have been described previously in HCM cohorts, including a highly prevalent 

2373insG mutation in the Dutch population, found in 23.2% of all HCM index cases 

[Alders 2003). Identifying several families with an identical mutation provides a unique 

opportunity to examine phenotypic heterogeneity having controlled for a specific 

mutation. This data is discussed later in Chapter: Disease Expression in Families Sharing 

Identical Mutations. 

 

Of note was a high proportion of individuals with complex genetic status with both 

double heterozygotes and compound heterozygotes seen. This has major implications for 

DNA screening strategies - a high incidence of complex genetic status affects the 

accuracy and reliability of genetic predictive testing and has implications for calculating 

the risk of inheriting a mutation for children in families with two pathogenic mutations. 

Whether the mutations are compound or double and whether the mutations occur on the 

same allele (for compound mutations) can greatly affect the risk that should be discussed 

with the parents when family planning. Furthermore, a more severe phenotype has been 
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described in certain individuals with complex genetic status [Van Driest 2004][Richard 

2003] including neonatal hypertrophy [Lekanne Deprez 2006] and severe hypertrophy in 

a female homozygous for a A627V missense mutation [Garcia-Castro 2005]. The high 

incidence of complex genetic status in this study supports a protocol of full sequencing of 

all sarcomeric protein genes [Ingles 2005], rather than targeted selective DNA screening 

as advocated by some [Girolami 2006]. This concept is further supported by the novel 

identification of pathogenic mutations in the intronic flanking regions of the two micro-

exons 10 and 14 [Frank-Hansen 2008]. 

 

In summary the spectrum of mutations in this cohort is broadly similar to previous studies 

but highlights the wide genetic heterogeneity typically seen in HCM. The remainder of 

this thesis describes in detail the clinical characterisation of index cases and their families 

with the MYBPC3 mutations identified during this study. 
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Figure 3  Spectrum of MYBPC3 mutations in different cohorts 
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DISEASE PENETRANCE, AGE AND GENDER IN 

FAMILIES WITH MYBPC3 MUTATIONS 
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Introduction 

 

In common with many autosomal dominant conditions, disease expression in HCM is 

highly variable, and for most reported mutations disease penetrance is incomplete (i.e. 

not all mutation carriers manifest clinical disease) [Niimura 1998][Charron 1998a]. As 

described in the Introduction, estimates of disease penetrance in families with MYBPC3 

mutations vary but in most studies of reasonable size, range between 57% [Andersen 

2004] and 86% [Erdmann 2001].  

The factors that influence disease penetrance are poorly understood. Niimura et al. 

suggested that low penetrance was characteristic of MYBPC3 mutations per se, and may 

be age-dependent [Niimura 1998]. Historically HCM has been considered to be a disease 

that develops in adolescence and early adulthood [Maron 1986b], but in a cross-sectional 

study of families with MYBPC3 mutations, Niimura et al. observed a linear relationship 

between increasing age and increasing disease penetrance with almost complete 

penetrance by the 7
th

 decade [Niimura 1998]. This was in contrast to families with 

mutations in MYH7 and TNNT2 who appeared to have almost complete penetrance by 

the 4
th

 decade. This observation provided indirect evidence that disease can develop in 

adulthood, and so called „late-onset‟ disease was felt to be a phenomenon associated only 

with MYBPC3 mutations. Cross-sectional studies however are inherently limited in their 

ability to identify „late-onset‟ disease rather than „late-diagnosis‟ – a distinction with 

important implications for how clinicians screen HCM families . Another study suggested 

that MYBPC3 mutations are predominant in a group of patients with disease diagnosed > 

40 years, although the proportion was not dissimilar to the overall genotyped HCM 

population (16%) [Niimura 2002].  



 70 

The relationship between penetrance and gender is unknown. Despite an autosomal 

dominant pattern of inheritance, most HCM cohorts demonstrate a slight male 

predominance of approximately 3:2, consistent amongst cohorts from different genetic 

and racial backgrounds [Maron 2003][Olivotto 2005]. Although data on gender 

differences in HCM are limited, a number of observations have been reported including: 

1) an inverse relationship between age and maximal wall thickness has been reported in 

females [Maron 2003a], 2) females are older at first diagnosis [Maron 2003b], 3) females 

are more symptomatic and have a higher prevalence of left ventricular outflow tract 

obstruction [Olivotto 2005], 4) overall mortality and risk of sudden cardiac death appear 

similar between males and females however [Elliott 2000]. If gender differences in 

clinical disease expression do exist it is possible that gender plays a role in determining 

disease penetrance. 

 

This section examines disease penetrance with particular reference to age and gender. 

 

Methods 

 

59 index cases found to have mutations in MYBPC3 were evaluated. Relatives were 

invited for clinical and genetic evaluation as described in Chapter 2. HCM was defined in 

relatives as unexplained LVH (maximal wall thickness ≥13mm) [McKenna 1997]. 

Disease penetrance was calculated as the proportion of all mutation carriers who fulfilled 

diagnostic criteria for HCM (index cases and relatives).  

Clinical markers of disease expression (including prevalence of symptoms and 

echocardiographic parameters) were compared between males and females. The 
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relationship between disease penetrance and age was also examined. Age at diagnosis 

was defined as the age (to the nearest year) at which a diagnosis of HCM was first made, 

rather than age at initial evaluation at our institution.  

 

Comparisons between groups were made using ANOVA or independent Students t-test 

for continuous variables and Chi-square test for categorical data. A p-value of <0.05 was 

considered statistically significant. 
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Results 

 

Disease Penetrance 

In addition to the 59 index cases, family screening identified a further 111 mutation 

carriers and 119 relatives who were negative for the family mutation. The total number of 

mutation carriers (index cases and relatives) was 170. At the last clinical evaluation, 98 

fulfilled diagnostic criteria for HCM and 72 were unaffected mutation carriers. Disease 

penetrance for the overall cohort was therefore 58% (Figure 4). 

Figure 4  Proportion of individuals fulfilling diagnostic criteria in 170 mutation carriers 

Proportion of Mutation Carriers with HCM

72 / 42%
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Unaffected
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Family screening identified an additional 39 affected mutation carriers from 234 family 

members screened (a yield of 16.7%).  
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Disease Penetrance and Age 

The relationship between disease penetrance and age at initial evaluation is shown in 

Figure 5.  

Figure 5  Disease Penetrance According to Age in 170 Mutation Carriers 
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Disease penetrance appeared to increase with age until the 6
th

 decade providing indirect 

but supportive evidence that the diagnostic hallmark of HCM (echocardiographic 

evidence of ventricular hypertrophy) may develop in adulthood. Interestingly, disease 

penetrance appears to plateau (or even fall in the 7
th

 and 8
th

 decades – perhaps due to 

reduced survival in affected individuals), demonstrating that a proportion of mutation 

carriers will never develop clinical evidence of disease. Of the 7 unaffected mutation 

carriers aged ≥70 years the spectrum of mutations was as follows: 1 nonsense, 1 deletion, 
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3 missense, 1 intronic and 1 compound heterozygote – i.e. a broad spectrum of mutation 

types is demonstrated in this sub-group of individuals. When disease penetrance is 

defined in terms of an abnormal ECG (defined as either RE score >4, abnormal T wave 

inversion or abnormal Q waves), rather than echocardiographic LVH, it is apparent that 

ECG abnormalities pre-date the development of LVH on echocardiography and using 

ECG criteria for evidence of clinical disease expression is more sensitive than criteria 

based upon echocardiography alone (Figure 6). It can be seen that disease penetrance, as 

defined by an abnormal ECG, is also incomplete - 71.2% overall – i.e. a proportion of 

mutation carriers (approximately 30%) have a normal ECG even at advanced age. 

 

Figure 6  Disease Penetrance According to ECG or Echo Criteria 
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Of 98 affected mutation carriers only 8 were diagnosed before the age of 20 years (8.2%) 

(Figure 7) – i.e. over 90% of individuals were diagnosed after the age of 20 years. Indeed 
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Figure 7 demonstrates that HCM related to MYBPC3 mutations can be diagnosed in any 

decade of life. Of the 4 individuals diagnosed age 70+, 3 were diagnosed in their 70s and 

1 in his 80s.  

Figure 7  Age at Diagnosis in 98 Affected Mutation Carriers 
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If all those diagnosed at family screening (in this group, age is dependent on the strategy 

of the screening hospital) were excluded, 4 of 49 (8.2%) were diagnosed before age 20 

years and 91.8% of index cases were diagnosed after the age of 20 years (Figure 8). 
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Figure 8  Age at Diagnosis in 49 Affected Mutation Carriers Excluding those Diagnosed at 

Family Screening  

Grouped Age at Diagnosis
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When affected individuals were grouped into early-diagnosis (< 40 years) and late-

diagnosis (≥ 40 years) there were no apparent important clinical differences in terms of 

septal thickness, maximal wall thickness, LV cavity size, or % symptomatic (Table 8). 

The age of 40 years was chosen as it has been used previously in studies to define early-

onset and late-onset disease [Niimura 2002]. The data was also analysed defining late-

onset disease as > 30 years, > 50 years, > 60 years and > 70 years. No significant 

differences were observed however in any of the variables shown in Table 8, and it was 

not possible to identify a clinically useful definition of late-onset disease. 

 

The prevalence of confirmed familial disease (defined as at least 1 other affected relative) 

was no more common in those with early-diagnosis (76.7% v 69.1, p=0.4). 



 77 

Table 8  Comparison between individuals with early and late diagnosis 
Parameter Early Diagnosis (< 40 Years) Late Diagnosis (≥40 

Years) 

P – value 

Number of Individuals 43 55 - 

Mean Age at Diagnosis (years) 23.0 +/- 7.8 53.2 +/- 10.1 0.000 

Male (%) 65.1 54.5 χ2 = 1.1, 1df, p=0.291 

Symptomatic (%) 60.0 59.2 χ2 = 0.006, 1 df, p=0.938 

Echo parameters    

LA diameter (mm) 40.3 +/- 8.4 42.2 +/- 6.2 0.220 

LVEDD (mm) 42.6 +/- 7.3 44.7 +/- 6.0 0.136 

LVESD (mm) 24.5 +/- 6.3 27.2 +/- 6.4 0.052 

FS (%) 43.9 +/- 9.5 41.6 +/- 8.6 0.384 

IVSd (mm) 17.7 +/- 6.0 18.0 +/- 4.8 0.782 

PWd (mm) 9.8 +/- 2.4 10.8 +/- 2.5 0.059 

MWT (mm) 18.6 +/- 5.8 18.7 +/- 5.2 0.922 

Mean number of Risk factors 0.9 +/- 0.8 0.8 +/- 0.8 0.490 

Confirmed familial disease (%) 76.7 69.1 χ2 = 0.7, 1 df, p=0.4 

    

 

In three individuals disease developed during prospective follow up. H610.1 (mutation 

Cys698del) and H62.2 (mutation Arg502Gln) were diagnosed shortly after initial 

assessment at ages 13 and 14 respectively. Only H610.8 (mutation 698delC) clearly 

developed HCM as an adult which was diagnosed age 53. He was first assessed in 1993, 

age 40, as part of family screening and had a normal ECG and Echo at that stage. In 

2006, age 53, he underwent a routine medical. ECG showed LVH with widespread 

repolarisation abnormalities and a Romhilt Estes score of 7. Transthoracic Echo showed 

asymmetrical septal hypertrophy with a maximal wall thickness of 15mm. He had had no 

interim assessment in between so the age at which LVH developed is not precisely 

known, but occurred between the ages 40 and 53. He was not known to be hypertensive 

and although fit and active, had never undergone sustained athletic training. 

 

Disease Penetrance and Gender 

Of 170 mutation carriers, 88 (51.8%) were male and 82 (48.2%) were female. Disease 

penetrance was higher in males than in females (65.9% v 48.8%, χ
2
=5.35, 1df, p= 0.021) 

(Figure 9). Mean age at diagnosis in affected individuals was no different between males 
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and females (40.6 +/- 15.1 years v 43.3 +/- 17.2, p=0.411). When all 170 mutation 

carriers are considered, males have greater LA diameter (40.7 v 36.5, p=0.001), greater 

LV cavity dimensions (LVEDD 46.4 v 43.1, p=0.001, LVESD 28.9 v 26.1, p=0.006) and 

greater degrees of hypertrophy (septal thickness 15.5 v 12.7, p=0.004, maximal wall 

thickness 16.1 v 13.6, p=0.012) (Table 9). When only affected individuals are considered 

however these gender differences no longer exist and are therefore explained by the 

higher disease penetrance in males.  

Table 9  Gender Differences in 170 Mutation Carriers 
Parameter Male Female p Value 

Number of Patients 88 82 - 

Age at diagnosis (affected only, years) 40.6 +/- 15.1 43.3 +/- 17.2 0.411 
% Affected 65.9 48.8 0.021 

% Symptomatic 38.6 36.8 χ2 = 0.049, 1 df, p=0.824 

% Predicted VO2 78.9 +/- 23.0 75.4 +/- 3.2 0.484 
Echocardiographic parameters    

LA dimension (mm) 40.7 +/- 7.2 36.5 +/- 7.4 0.001 

LVEDD (mm) 46.4 +/- 6.5 43.1 +/- 6.1 0.001 
LVESD (mm) 28.9 +/- 6.1 26.1 +/- 5.7 0.006 

FS (%) 39.2 +/- 7.8 40.3 +/- 9.5 0.517 

Septal thickness (mm) 15.5 +/- 6.0 12.7 +/- 5.9 0.004 
Posterior wall thickness (mm) 10.0 +/- 2.0 9.1 +/- 2.8 0.024 

Maximal wall thickness (mm) 16.1 +/- 6.2 13.6 +/- 6.2 0.012 

    

 



 79 

 

Figure 9  Disease Penetrance in Males and Females 

 

Another way of looking at the data is calculating the proportion of individuals fulfilling 

diagnostic criteria for HCM (maximal wall thickness ≥13mm) for grouped age at 

diagnosis or initial assessment (Figure 10). It can be seen that in all age groups disease 

penetrance is incomplete. 
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Figure 10  Number of individuals in each age group showing proportion fulfilling 

diagnostic criteria for HCM 

Grouped Age at Diagnosis or Initial Assessment
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Disease Penetrance and  Mutation Type 

Disease penetrance was incomplete for all mutation types (Figure 11). Of 38 families 

with at least 2 mutation carriers in adults aged 18 years or more, 33 showed incomplete 

penetrance and 5 showed fully penetrant disease (2 missense, 1 intronic, 2 complex 

genetic status). Disease penetrance was also incomplete in families with complex genetic 

status - 13 individuals inherited two possible disease causing mutations, of which 11 

fulfilled diagnostic criteria for HCM (84.6%). Two individuals were unaffected – one 

was a 17 year old female with a 2 base-pair deletion and cryptic splice site mutation in 
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MYBPC3. The other was a 51 year old female with missense mutations in MYBPC3 and 

MYH7.  

 

Figure 11  Disease penetrance according to mutation type 
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Penetrance appeared to be independent of the specific mutation. A total of 8 families 

shared the same R502W mutation: of the 6 families with at least 2 mutation carriers, 4 

families had incomplete penetrance while in 2 families all mutation carriers examined 

fulfilled diagnostic criteria for HCM (Figure 12).   
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Figure 12  Disease penetrance in 25 R502W mutation carriers 
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Discussion 

 

The main findings relating to disease penetrance can be summarized as follows: 

1. Disease penetrance is incomplete (57.6%) in this cohort of 170 MYBPC3 

mutations carriers 

2. Disease penetrance is related to age, however… 

3. Incomplete penetrance is seen in all groups even at advanced age 

4. Disease penetrance is independent of mutation type 

5. Disease penetrance is independent of specific mutation 

6. Disease penetrance is higher in males than in females 

 

Several important conclusions can be drawn from these data. 

Previous data have suggested that disease penetrance increases with age, and is complete 

by the later decades, with no plateau effect, implying that clinical evidence of disease will 

develop at some stage during an individual‟s lifetime [Niimura 1998]. While a 

relationship between increasing age and increased disease penetrance was also seen in 

this study, in contrast to previous data, a plateau effect (around the 5
th

 or 6
th

 decade) was 

observed suggesting that up to 25-30% of individuals may never develop clinical 

evidence of disease even at advanced age. This has important implications for counseling 

unaffected mutation carriers. Increased penetrance with increasing age indirectly supports 

the hypothesis of „late-onset‟ disease. Indirect evidence from cross-sectional data, does 

not prove this theory however and longitudinal cohort studies are required to accurately 

define the risk of developing disease in an individual. Our data suggests that in practice 
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this is an uncommon occurrence – „late-onset‟ disease was only demonstrated in 1 adult 

despite moderately rigorous serial evaluations (see also Results: Longitudinal Follow-

Up). 

 

Disease penetrance appears to be unrelated to mutation type. This is perhaps surprising as 

different mutation types might be expected to confer different mechanisms disease 

expression. It suggests a common final pathway leading to the development of 

hypertrophy independent of mutation type. It is particularly interesting that penetrance is 

incomplete even in individuals with complex genetic status and two disease causing 

mutations. Reports of severe neonatal HCM have been seen in families with complex 

genetic status with two mutations (insertion + splice site mutation in one neonate and 

deletion + nonsense mutation in another), and severe hypertrophy has been reported in a 

47 year old male homozygous for a MYBPC3 missense mutation [Garcia-Castro 2005]. 

In contrast we demonstrated two individuals without clinical evidence of disease despite 

carrying two disease causing mutations, supporting the role of powerful disease 

modifying factors. 

These modifying factors (genetic or environmental) apparently influence disease 

development independent of specific mutation, mutation type or age. This study is the 

first to report a gender difference in disease penetrance with a higher proportion of male 

mutation carriers affected than female. This observation is consistent with males being 

overrepresented in HCM cohorts [Maron 2003b][Olivotto 2005]. There are several 

possible explanations for this observation, including sex-chromosome factors or sex-

hormone differences which affect disease expression, environmental triggers or modifiers 
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such as athletic training may be more common in males than females. Gender specific 

differences in hypertrophy development have been observed in animal models [Witt 

2008] and gender differences have been reported in ECG derived hypertrophy regression 

in response to antihypertensive therapy [Okin 2008]. Identifying gender specific 

differences in HCM is important for at least two reasons: firstly it may guide 

investigators in a direction for further study which may improve our understanding of 

how, when and why disease develops and possible determinants of disease expression in 

this disease, and secondly it may lead to more directed and individual counselling for 

unaffected relatives in terms of the likelihood of developing disease in the future.  

Recent interest is focusing on single nucleotide polymorphisms (SNPs) and the role they 

might play in modifying disease penetrance and disease expression [Marian 2002]. 

Angiotensin converting enzyme (ACE) polymorphisms have been demonstrated to affect 

magnitude of LVH in individuals with HCM related to MYBPC3 mutations [Perkins 

2005], but the effect on disease penetrance has not been studied. A similar study in 26 

individuals from a single family with an insertion mutation in MYBPC3 suggested that 

the development of LVH occurred in those family members with „pro-LVH‟ genotypes 

(in ACE, angiotensinogen, angiotensin II receptor type 1, chymase A and aldosterone 

synthase genes) and not in those without [Ortlepp 2002]. This was true for LV mass, 

septal thickness and the prevalence of an abnormal ECG. While providing useful insight 

into the potential role of modifier mutations, by controlling for the main disease causing 

mutation, the clinical significance of identifying such modifiers is uncertain. The age at 

diagnosis in this cohort of affected individuals with MYBPC3 mutations is very wide and 

normally distributed. From these data there are no apparent clinically important 
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differences between individuals diagnosed early or late – they appear to have a similar 

pattern and magnitude of hypertrophy, and the types of mutation identified appeared to be 

similar. As age at diagnosis is normally distributed, the concept of late-onset disease is 

difficult to define and in this cohort has little clinical relevance.  

It must be remembered that age at diagnosis is not equivalent to the age at which 

hypertrophy develops which requires serial evaluation. Without control groups using 

individuals with other sarcomeric protein gene mutations, this study is unable to directly 

compare how these data are applicable to the overall HCM population. 
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CLINICAL DISEASE EXPRESSION IN AFFECTED 

INDIVIDUALS WITH MYBPC3 MUTATIONS 
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Introduction 

 

Detailed clinical data is lacking in cohorts of families with MYBPC3 mutations. Charron 

et al. found no significant differences in symptoms, ECG abnormalities, or pattern or 

degree of hypertrophy between two families (33 mutation carriers) sharing an identical 

splice acceptor site mutation (SAS Int20) and families with MYH7 mutations [Charron 

1998b]. A larger study (76 MYBPC3 mutation carriers, including the 33 SAS Int20 

carriers) by the same group compared symptoms, ECG and Echo parameters with 

families with MYH7 mutations. MYBPC3 mutation carriers were slightly older (41 v 35, 

p=0.02) and there were fewer deaths reported in this group (10 v 18, p=0.004). Mean 

septal thickness was 15 +/- 4mm, 30% had SAM and LVOT obstruction greater than 

30mmHg was present in 14% [Charron 1998a]. Erdmann et al reported a variable clinical 

course in 25 MYBPC3 mutation carriers but suggested that disease onset was earlier and 

invasive procedures (including ICD and septal ablation) were more common in families 

with protein truncations compared to those with missense or inframe deletions/insertions 

[Erdmann 2001]. In a large US study from the Mayo Clinic, index cases (i.e. no family 

screening was performed) with MYBPC3 mutations did not differ from patients with 

thick filament-HCM, thin filament-HCM, or mutation negative HCM with respect to age 

at diagnosis, severity of hypertrophy or incidence of major complications [Van Driest 

JACC 2004]. They did find more severe disease in patients with complex genetic status 

however. As discussed previously, data from the Mayo clinic is skewed towards 

individuals with obstructive HCM as it is a centre of expertise in surgical myomectomy, 

and such patients are over-represented in their cohort. 
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Data is somewhat conflicting therefore and requires clarification. In this section detailed 

clinical assessment of 98 affected MYBPC3 mutation carriers is reported. 

 

Methods 

 

Index cases and affected relatives were evaluated as described in the Methods section. 

Demographic data, symptomatology, ECG, Echo, Holter monitoring and exercise data 

were recorded and analysed for 98 affected mutation carriers. Data is presented as 

number of individuals, with percentages in parentheses. Mean +/- SD is reported where 

relevant. In group comparisons, categorical data are compared using Chi-square test and 

continuous variables compared using independent sample Student‟s t-test. A p-value of 

<0.05 was considered statistically significant. 

 

Results 

 

Index Cases 

 

34 of 59 individuals were male (57.6%) – Table 10. Mean age at diagnosis was 40.1 +/- 

15.9 years, range 5-76 (Figure 13). Reason for diagnosis were as follows: Symptoms 32 

patients (54.2%), incidental finding 16 (27.1%), family screening 10 (16.9%) and in 1 

individual (1.7%) the diagnosis was made at autopsy following sudden cardiac death. 54 

of 59 index cases (91.5%) were of White European ethnic origin, 2 (3.4%) were Black 

and 3 (5.1%) were Asian. Ethnic mix in the cohort was broadly similar to our overall 

HCM cohort (including other sarcomeric protein mutations and non-genotyped 
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individuals) – 91% White European, 2% Black and 6% Asian. Ethnic mix was also 

broadly similar to the ethnic composition of the general population derived from the last 

national census in 2001 – 92.1% White European, 2% Black, 4.0% Asian – [Census 

2001] 

Table 10 Clinical data for 59 index cases with mutations in MYBPC3 
 Total 

 

SD Range 

 

Demographics    
Total individuals (n (%)) 59(100)   

Male (n (%)) 35(59.3)   

Age at diagnosis (years) 40.0 15.9 5-76 
White Ethnicity (n (%)) 54(91.5)   

Symptomatic (n (%)) 42(71.2)   

    
Initial ECG    

Sinus Rhythm (n (%)) 55(93.2)   

LA enlargement (n (%)) 36(61)   
PR interval (ms) 167 26 108-224 

QRSd (ms) 97 17 80-160 

Mean RE score 6.2 3.4 0-12 
    

    

First Echo    
LA dimension (mm) 42 7.2 24-60 

LVEDD (mm) 43 6.7 25-60 

LVESD (mm) 25 6.2 15-48 
FS (%) 44 8.5 20-63 

IVSd (mm) 19 5.6 8-37 

PWd (mm) 10 2.4 6-18 
MWT (mm) 20 5.8 9-37 

ASH (n (%)) 51(86.4)   

Severe LVH ≥ 30mm (n (%)) 2(3.4)   

Mid-systolic obliteration (n (%)) 2(3.4)   

RVH (n (%)) 3(5.1)   

LVOTG > 30mmHg (n (%)) 18(30.5)   
Metabolic exercise test    

Peak VO2 ml/Kg/min 26.2 11.2 9.5-57.9 

% Predicted VO2 (%) 75 22 37-128 
Holter    

NSVT (n (%)) 13(22)   
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Figure 13  Age at Diagnosis in 59 Index Cases 
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55 of 59 index cases were in sinus rhythm at diagnosis (93.2%) with 2 (3.4%) in atrial 

fibrillation, 1 in an AV synchronous paced rhythm, and 1 unknown (presented with 

sudden cardiac death). Non-sustained ventricular tachycardia (NSVT – defined as 3 or 

more ventricular premature complexes at a rate > 120 bpm) on 24 hour Holter monitoring 

was present in 13 (22.0%) individuals. 36 (61.0%) had left atrial enlargement on ECG, 29 

(49.2%) fulfilled Sokolow Lyon criteria for LVH, 2 (3.4%) had bundle branch block and 

41 (62.5%) had a Romhilt Estes score ≥4. 

Most individuals had asymmetrical septal hypertrophy (86.4%) but other patterns of 

hypertrophy were observed including concentric (5.1%), eccentric (5.1%), apical (1.7%) 

and 1 (1.7%) undetermined (presented with sudden cardiac death). Mean septal thickness 

was 19 +/- 5.6mm, posterior wall 10 +/- 2.4mm and maximal wall thickness 20 +/- 

5.8mm (Figure 14). 
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Figure 14  Pattern of Hypertrophy in 59 Index Cases 
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* Patient presented with sudden death, so pattern of hypertrophy not identified ante-mortem 

 

One female (28 years old at diagnosis) had progressive wall thinning and predominant 

restrictive physiology requiring cardiac transplantation age 43. Left ventricular outflow 

tract obstruction (peak gradient ≥ 30mmHg) was seen in 18 (30.5%) individuals, with 

mid-cavity obstruction in 2 individuals (3.4%) and biventricular ventricular hypertrophy 

in 3 (5.1%). There were no differences in age at diagnosis or maximal wall thickness 

between different mutation types (Figures 15&16 and Table 11). 
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Figure 15  Age at Diagnosis in 59 Index Cases According to Mutation Type 
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Figure 16  Maximal Wall Thickness in 59 Index Cases According to Mutation Type 
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There were no statistically significant differences between different types of mutation in 

terms of age at diagnosis (p=0.970), % in sinus rhythm (p=0.521), LV cavity size 

(p=0.387) or maximal wall thickness (p=0.781). 

 

Table 11 Clinical and Demographic Data for 59 Index Cases with HCM According to 

Mutation Type 
 Nonsense Ins/Del Missense Intronic Complex 

Status 
Total P – value 

 

Number of Individuals 5 10 26 10 8 61 - 

Male (n(%)) 4 (80) 8 (80) 16 (61.5) 6 (60) 2 (25) 36 (59.0) 0.097 

Age at diagnosis (yrs) 40.0 38.5 41.4 37.1 40.4 40.0 0.970 
White Ethnicity (n(%)) 4 (80) 9 (90)  25 (96.2) 9 (90) 6 (75) 55 (90.2) 0.431 

Symptomatic (n(%)) 4 (80) 8 (80) 13 (50) 9 (90) 7 (87.5) 42 (70) 0.064 

        

Initial ECG        

Sinus Rhythm (n(%)) 4 (80) 10 (100) 25 (96.2) 9 (90) 8 (100) 56 (91.8) 0.521 

First Echo        
LA dimension (mm) 43.8 45.5 41.1 42.1 41.0 42.1 0.703 

LVEDD (mm) 42.4 42.3 45.2 40.6 41.7 43.3 0.387 

LVESD (mm) 24.5 23.2 26.3 23.3 25.6 25.0 0.749 
FS (%) 45.3 46.0 43.8 44.5 38.3 43.5 0.615 

IVSd (mm) 18.0 22.4 17.5 20.1 18.1 18.8 0.294 

PWd (mm) 10.9 11.1 10.2 10.6 10.1 10.5 0.804 
MWT (mm) 18.6 22.0 19.2 21.1 19.0 20.0 0.781 

        

 

All Affected Mutation Carriers 

 

In addition to the 59 index cases, family screening identified a further 111 mutation 

carriers of whom a further 39 fulfilled diagnostic criteria for HCM. Therefore, of 170 

mutation carriers (index cases and relatives) a total of 98 individuals fulfilled diagnostic 

criteria for HCM. Clinical data is shown in Table 12.  
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Table 12 Clinical data for 98 affected mutation carriers 
 Total SD Range 

 

Demographics    

Total individuals (n(%)) 98(100)   
Male (n(%)) 58(59.2)   

Age at diagnosis (years) 42.1 16.1 5-81 

White Ethnicity (n(%)) 92(93.9)   
Symptomatic (n(%)) 53(54.1)   

    

Initial ECG    
Sinus Rhythm  (n(%)) 94(95.3)   

PR interval (ms) 169 32 108-333 
QRSd (ms) 96 17 72-160 

Mean RE score 5.4 3.6 0-12 

    
First Echo    

LA dimension (mm) 41.4 7.3 22-60 

LVEDD (mm) 43.7 6.7 25-60 
LVESD (mm) 26.0 6.5 10-48 

FS (%) 42.5 9.0 20-67 

IVSd (mm) 17.9 5.3 6-37 
PWd (mm) 10.3 2.5 5-18 

MWT (mm) 18.7 5.4 6-37 

    

 

Mean age at diagnosis was 42.1 +/- 16.1 years (range 5-81) (Figure 17). Mean septal 

thickness was 17.9 +/- 5.3mm, posterior wall thickness 10.3 +/- 2.5mm and maximal wall 

thickness was 18.7 +/- 5.4mm. 84 (85.7%) had ASH with 7(7.1%) concentric, 3(3.1%) 

eccentric and 3(3.1%) apical patterns of hypertrophy. In one individual the pattern of 

hypertrophy was unknown as he had presented with sudden cardiac death and the 

diagnosis of HCM was made at autopsy. 

Maximal wall thickness did not appear to be related to age (Figure 18). Note that there 

was only one individual diagnosed between the ages 0-9 who had a maximal wall 

thickness of 24mm. 
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Figure 17  Age at Diagnosis in 98 Affected Mutation Carriers 
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Figure 18 Mean Maximal Wall Thickness in 98 Affected Mutation Carriers According to Age 
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In terms of risk factors for sudden cardiac death: 10 (10.2%) had previous history of 

unexplained syncope, 1 (1%) had maximal wall thickness > 30mm, 29 (29.6%) had a 

family history of sudden premature death in a relative < 40 years, 22 (22.4%) had NSVT 

on Holter monitoring and 12 (12.2%) had an abnormal blood pressure response on 

exercise. Sixty of 98 affected mutation carriers had a complete data set for risk 

stratification for sudden cardiac death (symptom and family history, Echo, 48 hour Holter 

and metabolic exercise test). The majority of these 60 individuals were index cases. The 

remaining 38 were largely affected relatives diagnosed during family screening who were 

due to be followed up at their local cardiac centre rather than at the Heart Hospital. Of the 

60 with complete data, 12 (20%) had 2 or more risk factors for sudden death, with the 

remaining 48 (80%) being considered at low or intermediate risk (≤1 risk factor) (Figure 

19). This is similar to the overall HCM cohort at the Heart Hospital with 83% being at 

low or intermediate risk (1 risk factor) and 17% having 2 or more risk factors (data 

derived from HCM database representing an unselected HCM cohort). 
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Figure 19 Risk factor profile at first assessment in 60 affected mutation carriers with complete 

data 
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Index Cases Compared to Relatives 

Compared to index cases, relatives diagnosed via family screening had less severe septal 

hypertrophy (16 v 19mm, p=0.002), less severe maximal wall thickness (17 v 21mm, 

p<0.001), greater LV cavity size (LVEDD 46 v 42mm, p=0.012, LVESD 28 v 24, 

p=0.006) and mean Romhilt Estes score was less (4.4 v 6.3, p=0.018) (Table 13). 

 



 99 

Table 13 Comparison between index cases and relatives diagnosed during family screening 
 Index cases Relatives P-value 

 

Demographics    

Total individuals (n) 59 39 - 
Male (n(%)) 35(59.3) 23(59.0) 0.973 

Age at diagnosis (years) 39.8 +/- 15.7 44.6 +/- 16.3 0.141 

White Ethnicity (n(%)) 54(91.5) 1(2.6) 0.412 
Symptomatic (n(%)) 40(67.8) 11(28.3) 0.002 

    

Initial ECG    
PR interval (ms) 170 +/- 26 168 +/- 38 0.746 

QRSd (ms) 98 +/- 18 93 +/- 15 0.151 
Mean RE score 6.3 +/- 3.3 4.4 +/- 3.8 0.018 

    

First Echo    
LA dimension (mm) 42.3 +/- 7.8 40.2 +/- 6.5 0.167 

LVEDD (mm) 42.2 +/- 6.8 45.7 +/- 6.0 0.012 

LVESD (mm) 24.3 +/- 6.5 28.1 +/- 5.8 0.006 
FS (%) 44.0 +/- 9.1 40.2 +/- 8.6 0.105 

IVSd (mm) 19.5 +/- 5.5 16.0 +/- 4.5 0.002 

PWd (mm) 10.5 +/- 2.4 10.1 +/- 2.6 0.490 
MWT (mm) 20.5 +/- 5.6 16.6 +/- 4.5 0.000 
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Discussion 

 

In this section a number of clinical data on 59 index cases and 39 affected relatives have 

been presented. The main findings relating to MYBPC3 mutations in this cohort can be 

summarized as follows: 

1. Disease may be diagnosed at any stage in life (5-81 years) and affected 

individuals are more commonly male (57.6%) 

2. There is a wide spectrum of disease in terms of pattern and magnitude of 

hypertrophy and symptomatic status 

3. Affected relatives were less symptomatic with milder hypertrophy than index 

cases 

4. Mutation type was not related to age at diagnosis or magnitude of hypertrophy 

 

Previous studies have attempted to describe sarcomeric protein gene mutations in terms 

of particular phenotype, by comparing summary statistics between different cohorts 

[Charron 1998b]. While this may highlight statistically significant differences in 

particular clinical parameters, it does not necessarily reflect the spectrum and variation of 

disease that may be encountered for any given genotype.  

 

The summary data from this study are broadly similar to those data published previously 

[Moolman 2000][Richard 2003][Van Driest 2004][Song 2005] however detailed clinical 

data in affected individuals with MYBPC3 mutations are lacking, and are obscured by the 

inclusion of data from unaffected mutation carriers [Charron 1998a][Charron 1998b], or 

such data are lacking [Niimura 1998][Doi 1999][Erdmann 2001][Andersen 2004]. Study 
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cohorts were similar in terms of age at diagnosis and maximal wall thickness (Table 14) 

suggesting that the individuals in this cohort are similar to the broad population of 

families with MYBPC3 mutations. 

Table 14 Summary data for affected MYBPC3 mutation carriers in this and previously 

published studies 
 This study Van Driest Richard Song Moolman 

Number of Individuals 98 63 48 16 10 

% Male 58 65 48 - 40 
Mean age at diagnosis 

(years) 
42 38 40 48 - 

Mean maximal wall 
thickness (mm) 

19 23 - 20 21 

      

 

Data from this study demonstrate a broad spectrum of disease. MYBPC3 mutation may 

cause severe hypertrophy at age 5 (H851) or sub-clinical disease diagnosed at family 

screening age 81 (H151). Some families have multiple cases of sudden cardiac death 

(H936) whereas other families appear to have a more benign clinical course (H544). Even 

within families sharing the same mutation, the spectrum of disease appears wide (see 

Disease Expression in Families Sharing Identical Mutations). For many of these 

important parameters, ranges are broad and standard deviations are wide. 

This study lacks a directly comparable control group, although it is possible to compare 

to the overall HCM population at The Heart Hospital, and previously published data 

would suggest that MYBPC3 related disease is not dissimilar to disease associated with 

other sarcomeric protein gene mutations. Van Driest et al compared clinical data from 63 

index cases with data from cohorts of thick filament (MYH7, MYL2 and MYL3) and thin 

filament (TNNT2, TNNI3, TPM1 and ACTC) mutations [Van Driest 2004]. No 

differences in age at diagnosis, severity of hypertrophy, incidence of myectomy or family 

history of HCM or sudden death were apparent between the groups.  
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Whether the broad spectrum of disease seen in our cohort is applicable to the wider HCM 

population is unproven.  
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DISEASE EXPRESSION IN FAMILIES SHARING 

IDENTICAL MUTATIONS 
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Introduction 

 

Following the recognition that mutations in sarcomeric protein genes are found in 

approximately 50% of cases of HCM [Richard 2003], interest has focussed on whether 

gene-specific, or mutation-specific phenotypes exist that may guide family counselling, 

clinical management and further our understanding of the pathogenesis of HCM. 

 

Early reports, necessarily based upon highly selected families suitable for linkage 

analysis, suggested that a specific phenotype could be attributed to a specific sarcomeric 

protein gene [Anan 1994][Watkins 1995b][Poetter 1996][Moolman 1997][Niimura 

1998][Charron 1998a][Mogensen 1999][Satoh 1999 [Hoffman 2001][Niimura 

2002][Mogensen 2004][Carniel 2005][Kubo 2007]. 

Moreover, early studies suggested that mutation specific differences exist, and reports of 

“malignant” and “benign” mutations in MYH7 and also in TNNT2 suggested a role for 

genetic analysis in risk stratification [Watkins 1992][Anan 1994][Consevage 

1994][Marian 1995a][Coviello 1997][Moolman 1997][Hwang 1998][Marian 1998][Ho 

2000][Roberts 2001][Van Driest 2002][Ackerman 2002]. 

 

While this is an attractive concept, potentially allowing the clinician or geneticist to 

provide a family with mutation specific advice, most mutations are private and novel and 

large numbers of individuals from separate families are required to confirm or refute the 

original claims regarding disease expression for that specific mutation. Van Driest et al. 

performed a meta-analysis examining gene specific differences pooling data from several 

large studies published between 1998 and 2004 and found no statistical differences in 
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terms of age at diagnosis, or severity of hypertrophy between populations with different 

sarcomeric protein gene mutations [Van Driest 2005]. While certain specific MYH7 

mutations are felt to have an adverse prognosis [Marian 1995a] it is less clear whether 

risk in MYBPC3 families is mutation specific. 

 

Systematic genetic screening programmes in unselected HCM cohorts allows comparison 

of families sharing the same mutation. While this study is limited to MYBPC3 mutations 

and therefore precludes gene specific comparisons, it does allow mutation specific 

comparisons to be made between families sharing the same MYBPC3 mutation. 

 

Methods 

Six mutations were identified in at least 2 unrelated families (Table 15.). Clinical data 

was compared between families sharing each identical mutation and is reported below. 

 
Table 15 Spectrum of mutations shared by more than one family 
Mutation Families Total Number of 

Gene Carriers 

Previously Reported 

Mutation? 

Arg495Gly H481, H600 3 No 
Arg502Gln H62, H151 15 Yes 

Arg502Trp H82, H448, H525, H579, H596, H819, H846, H851, H908 25 Yes 

Gln969X H652, H936 9 Yes 
Glu258Lys H432, H621, H919 8 Yes 

IVS13-23G>A H692, H896, H920 6 No 

    

 

 

Results 

Arg495Gly Mutation 

Two families shared the novel Arg495Gly mutation. In one family (H481) the proband 

presented age 67 with dilated phase HCM and incessant atrial arrhythmias. He died age 
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82 secondary to heart failure. No other family members were known to be affected, and 

his two children refused clinical and genetic screening. In another family (H600) with the 

same Arg495Gly mutation, the proband was diagnosed incidentally age 17 and found to 

have asymmetric septal hypertrophy (MWT 22mm) and paroxysmal AF treated with 

amiodarone. An ICD was implanted as primary prophylaxis for unexplained syncope and 

an abnormal blood pressure response to upright exercise. Her mother was diagnosed 

during family screening age 37 and found to have asymmetric septal hypertrophy (MWT 

16mm). No other family members were affected and four relatives were negative for the 

family mutation. 

Arg502Gln Mutation 

Two families shared the Arg502Gln mutation. The proband of family H151 was 

diagnosed incidentally age 14. Investigations showed severe septal hypertrophy (MWT 

37mm) but the patient remains asymptomatic during follow up. His sister is a gene carrier 

with an abnormal ECG but has shown no evidence of hypertrophy on Echo during 17 

years of follow up. Their father was diagnosed with HCM during family screening 

(asymmetric septal hypertrophy MWT 24mm) and is asymptomatic. Four other family 

members were found to be gene carriers. Two of these fulfilled diagnostic criteria for 

HCM (45 year old man with mild ASH and an 81 year old man with mild concentric 

LVH) and two did not fulfill diagnostic criteria (53 year old woman with abnormal ECG 

and normal Echo and 23 year old woman with normal ECG and Echo). There were no 

sudden deaths or strokes in this family. In contrast in family H62, the proband was 

diagnosed with HCM at post mortem having died suddenly age 16. Seven other adult 

family members were gene carriers. Of these 3 were clinically affected – 51 year old man 



 107 

with end-stage HCM and heart failure, 14 year old asymptomatic girl with apical 

hypertrophy and 54 year old man with hypertension and mild ASH which regressed 

during follow up. He died of a haemorrhagic stroke age 64. The other 4 had no evidence 

of disease expression during 18 years of follow up (now aged 57, 39, 37 and 34). 

R502W Mutation 

This mutation was identified in 9 apparently unrelated families (8 as the sole mutation 

and 1 in whom the MYH7 H602S mutation was also identified). The data described 

below is only for those individuals with a single R502W mutation.  

All 9 families were Caucasian and haplotype analysis identified a probable founder 

effect, the first to described in a British HCM population. 

Of 25 mutation carriers, 12 fulfilled diagnostic criteria for HCM and 13 were unaffected. 

The overall penetrance was 48%. In one family (H448) all three mutation carriers were 

clinically affected (100% penetrant), whereas in 3 other families with at least 2 adult 

mutation carriers the penetrance was incomplete (H851, H819 and H846). Of the 12 

affected individuals, 3 were diagnosed incidentally, 4 presented with symptoms and 5 

were diagnosed at family screening. Age at diagnosis was very different between the 

families with one male (H851.1) presenting age 5 with breathlessness, and one female 

(H579.6) presenting age 80 with an abnormal ECG. Age at diagnosis is shown in Figure 

20. Summary data for these families is shown in Table 16.  
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Table 16 Summary data for affected patients with R502W mutation 
 Mean Range Standard deviation 

Age at diagnosis (years) 41.9 5-80 18.8 

% Male (%) 50   

Echo parameters    
LA diameter (mm) 37.3 24-45 1.8 

IVSd (mm) 15.1 10-24 1.1 

PWd (mm) 9.8 6-16 0.8 
MWT (mm) 16.9 13-24 1.1 

LVEDD (mm) 45.5 25-55 2.4 

LVESD (mm) 27.5 15-35 2.0 
FS (%) 39.6 26-63 3.1 

    

 

 

 

 

Figure 20 Age at diagnosis for individuals with the R502W mutation 
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Disease penetrance varied between families sharing the R502W mutation (Figure 21). In 

H448 for example all 3 mutation carriers were affected whereas in H819 only 1 of 7 

mutation carriers was affected.  

 

Figure 21 Disease Penetrance in Families Sharing the R502W Mutation 
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Pattern and extent of hypertrophy varied significantly: One individual had severe 

asymmetric septal hypertrophy with a maximal wall thickness of 38mm, while other 

patients had either mild ASH or other patterns of hypertrophy (see Figure 22.) 
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Figure 22 Pattern of Hypertrophy in 25 mutation carriers with the R502W mutation. 
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Prognosis appeared to vary between families with multiple premature sudden cardiac 

deaths occurring in two families (H82 and H846), and a more benign prognosis in other 

families. In H82, H82.3 died suddenly age 36 in 1992. The post mortem noted pulmonary 

oedema, marked left ventricular hypertrophy with a heart weight of 400g and evidence of 

viral myocarditis on initial histology. Review of his histology 14 years later during this 

study however revealed widespread interstitial fibrosis and marked myocyte disarray. 

DNA was extracted from tissue blocks preserved at the time of death and attempts at 

DNA analysis would suggest that he was not a carrier for the R502W mutation. Due to 

the lack of a whole heart specimen and poor DNA quality the diagnosis and mutation 

status in this individual is not clear and limits the conclusions that can be drawn. His 

sister also died suddenly at the age of 12 in 1965. No post mortem was performed. The 

surviving sibling H82.2 is overweight with hypertension and was clinically unaffected. 

He was also wild type for the R502W mutation. This raises the possibility that another 

mutation was present in this family that may have contributed to the instances of sudden 
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cardiac death, possibly paternally inherited. Interestingly the father of these three children 

was clinically unaffected.  

Another family (H846) also had 3 instances of premature death although details were 

lacking. One male child died suddenly age 4 and was reported to have Tetralogy of Fallot 

(unconfirmed). Another female died suddenly age 15 at a bus stop and was reported to 

have „aortic coarctation and myocardial degeneration‟ – also unconfirmed. One other 

female died less than 12 months old of unknown causes. Interestingly, 2 second degree 

relatives in this family are clinically affected but do not carry the R502W mutation. In the 

case of H846.3 all other sarcomeric protein genes have been screened and no other 

mutations identified. This also raises the possibility that another (unidentified) mutation 

is present in this family and may be relevant to the reported cases of premature sudden 

cardiac death (albeit not confirmed to be related to HCM).  

 

The risk factors for sudden cardiac death in those affected individuals were assessed. 

Complete risk stratification was complete in only 8 out of 12 individuals with no 

metabolic exercise test data available for 4 individuals, and no Holter data available for 2 

individuals. 

Risk factor profiles are shown in Figure 23. 
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Figure 23 Spectrum of Risk Factors in Individuals with the R502W Mutation 
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During long term follow up of affected mutation carriers (mean 6.6 years +/- 1.3), 1 

woman developed heart failure, there were no sudden cardiac deaths or cardiac arrests, no 

individuals underwent LV myomectomy or alcohol septal ablation and 2 prophylactic 

ICDs were implanted. No appropriate ICD therapies were recorded during follow-up. 

The R502W mutation has been reported previously in several studies [Richard 2003][Van 

Driest 2004][Ingles 2005] but unfortunately no mutation specific data has been reported. 

It is therefore not possible to compare the observed phenotype in this study to the 

published literature. 
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Gln969X Mutation 

Two Caucasian families shared this nonsense mutation causing a premature stop codon. 

Once again the two families appear to have a very different clinical course. H652 is a 

large family, the index case of which (H652.1) presented in 1985 with effort intolerance 

and breathlessness. He was subsequently found to have ASH with provokable mid-cavity 

obstruction but no LVOTO, and severe diastolic dysfunction with restrictive filling 

pattern using transmitral pulsed wave Doppler. He remains limited by exertional 

symptoms despite medical therapy. Attempts at cardiac resynchronization therapy were 

unsuccessful due to phrenic nerve stimulation. Three siblings and his mother were found 

to be wild type for the Gln969X mutation. There are no other family members know to be 

affected, and no family history of sudden cardiac death. It is possible that the mutation 

has arisen de novo in the index case. 

In contrast, H936 manifests a particularly severe phenotype with multiple sudden cardiac 

deaths. The index case in the family (H936.1) presented age 29 with exertional 

breathlessness and was found to have ASH without outflow tract obstruction. His mother 

is affected with a mild phenotype but two of her siblings died suddenly at a young age 

and a further sibling survived a cardiac arrest and underwent ICD implantation. Three 

other siblings are clinically affected with a variable phenotype (H939.9 – asymptomatic 

with non-obstructive ASH and H936.7 – very limited with left ventricular outflow tract 

obstruction, heart failure, previous stroke and atrial fibrillation). Two other relatives are 

unaffected mutation carriers. A 3 year old girl is asymptomatic with a normal ECG and 
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Echo for her age and a 43 year old woman is also asymptomatic with a normal ECG and 

Echo. The overall penetrance of disease in adults in this family is 86%.  

Glu258Lys Mutation 

Three Caucasian families shared this missense mutation.  

In H621 the index case presented age 26 in 1991 with a murmur found at a routine 

medical examination. He was found to have ASH without LVOTO and is in permanent 

atrial fibrillation. His mother was an obligate carrier for the mutation (as both her 

children are carriers, and her husband is wild type for the family mutation) and died 

suddenly on the waiting list for a heart-lung transplant. She had ASH with restrictive 

physiology and developed severe pulmonary hypertension and right sided heart failure.  

H919 is a family with fully penetrant disease expression in all four mutation carriers. The 

index case (H919.1) presented age 21 with chest pain. She was found to have ASH 

without obstruction and has no risk factors for sudden cardiac death. Her brother and 

mother are both gene carriers with mild disease expression but are both asymptomatic. 

H919.6 died age 79 with post-mortem showing evidence of left ventricular hypertrophy 

and DNA analysis showing her to be a mutation carrier. She was asymptomatic prior to 

death and not known to have HCM ante-mortem. 

In H432 the index case (H432.1) presented for family screening following the sudden 

cardiac death of her son age 19. He didn‟t have a post-mortem examination but had been 

diagnosed with HCM 7 weeks prior to his death in 1996. At family screening the only 

other mutation carrier identified was his mother (H432.1) who was asymptomatic but had 

mild ASH on transthoracic echo. She remains asymptomatic 10 years later.  
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IVS13-23G>A Mutation 

Three families shared this intronic mutation which creates a de novo acceptor splice site, 

extending the transcript by 17 nucleotides, creating a frameshift and ultimately a 

premature stop codon in exon 15 [Frank-Hansen 2008]. They were of different ethnic 

origins (1 White British family, 1 Greek Cypriot family and 1 Asian family).  

H920.1 was a highly trained athlete who presented with syncope age 15. He was found to 

have ASH with a maximal wall thickness 17mm and no outflow tract obstruction. Other 

family members declined screening.  

H692.1 presented age 43 with chest pain and was found to have an eccentric pattern of 

hypertrophy involving the lateral wall and apex predominantly. No other mutation 

carriers have been identified in the family. 

H896.1 presented in 2001 with longstanding history of breathlessness and fatigue. He 

was found to have ASH, with a maximal wall thickness of 18mm and severe outflow tract 

obstruction with a peak resting gradient of 140mmHg. He subsequently underwent 

surgical myomectomy in 2001 and remains asymptomatic during follow up. Three other 

mutation carriers were identified in this family. His brother (age 25) and father (age 60) 

are both asymptomatic and unaffected. His paternal uncle however is also a mutation 

carrier and is clinically affected with ASH but is asymptomatic.  
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Discussion 

 

Although the number of individuals sharing a particular mutation in this study is small, it 

is evident that disease expression can be very different between individuals with an 

identical mutation. This is true for age at diagnosis (compare family H851 vs H579), 

family history of sudden cardiac death (H82 and H846 vs H448 and H579), and pattern 

and extent of hypertrophy (H851 vs H579). It is of particular interest that the pattern of 

hypertrophy can be so variable between individuals with the same (R502W) mutation 

with all types of ventricular hypertrophy seen in this sub-cohort. This suggests that 

factors independent of the mutation specific molecular abnormality in these families 

influence how, when and where hypertrophy develops.  

A major limitation of studying disease expression in families is the cross sectional design 

– HCM is a chronic disease and therefore longitudinal cohort studies are required to 

identify age-dependent trends. Longitudinal follow up of these individuals is beyond the 

scope of this thesis but may provide important insights into disease expression in the 

future.  

The major clinical implication of these data is that counseling relatives in families in 

which the mutation is known and has been previously reported in the literature should 

remain a general discussion of the principles of HCM inheritance and not try to include 

mutation specific information based upon limited published data.  

 

As individual institutions will always be limited by the infrequency of a particular 

mutation in their own cohort it is likely that international databases are required to report 

clinical data for a given mutation, increasing the statistical power, to allow important 
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trends (if they exist) to emerge. Even if such mutation specific trends do exist, it is 

evident from this study that at least some of the variance in disease expression is related 

to factors independent of the family mutation. It is likely that a combination of genetic 

factors (complex genetic status, disease modifier genes, polymorphisms and possibly 

gender (see Disease Penetrance, Age and Gender in Families with MYBPC3 Mutations) 

and environmental factors such as physical training and hypertension may play a role in 

determining the eventual phenotype in any individual. 
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EARLY DIAGNOSTIC MARKERS OF DISEASE 

EXPRESSION 
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Introduction 

 

In a disease state with age-related and incomplete penetrance it is theoretically desirable 

to be able to predict which individuals are likely to develop disease in the future as this 

may allow early intervention to reduce the risk of adverse events. 

Data from a transgenic rabbit model of HCM has suggested that reduced myocardial 

Doppler velocities may identify mutation carriers irrespective of ventricular hypertrophy 

[Nagueh 2000]. Further studies in humans have supported the role of tissue Doppler 

imaging in identifying unaffected mutation carriers [Nagueh 2001] and even predicting 

which individuals go on to develop HCM during longitudinal follow up [Nagueh 2003]. 

Data from other investigators have been inconsistent however [Ho 2002][Cardim 2002].  

In order to study this issue further, a number of clinically derived parameters were 

assessed in a large genotyped population in order to assess whether it is possible to 

accurately identify unaffected mutation carriers from control subjects from clinical data 

alone. 

Methods 

 

As part of an ongoing study we have identified a cohort of 59 index cases fulfilling 

diagnostic criteria for HCM and a disease causing mutation in the MYBPC3 gene. First 

and second degree relatives were invited to participate in this study and undergo clinical 

and genetic evaluation. Evaluation included history, clinical examination, 12-lead 

electrocardiogram (ECG) and transthoracic echocardiography (Echo). All at risk relatives 

were considered eligible and were only excluded if their Echo data was of insufficient 

quality to allow detailed analysis as described below. 
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ECGs were analysed (blinded to genotype) for the presence of pathological and non-

pathological Q waves, Romhilt Estes score, Sokolow Lyon Criteria, T wave inversion (> 

1mm in two consecutive leads), bundle branch block (QRS duration > 0.12s), axis 

deviation and atrial enlargement. Definitions used in ECG analysis are shown in Table 

17. 

Table 17 Definitions used in ECG analysis 
Parameter Definition Score 

Romhilt Estes Score Voltage Criteria (any of): 

R or S in limb lead > 20mm 
S in V1 or V2 > 30mm                                   3 points 

R in V5 or V6 > 30mm 

ST-T Abnormalities 
With Digoxin                                                  1 point 

Without Digoxin                                             3 points 

Left Atrial Enlargement in V1                                       3 points 
Left axis deviation                                                          2 points 

QRS duration > 90ms                                                     1 point 

Intrinsicoid deflection in V5 or V6 > 50ms                   1 point 

Scored out of 14. Scores 

> 4 considered to 
represent LVH 

Sokolow Lyon Criteria S in V1 + R in V5 or V6 > 35 mm Yes or No 

Cornell Criteria S in V3 + R in aVL > 24 mm (men) 

S in V3 + R in aVL > 20 mm (women) 

Yes or No 

Abnormal Q Wave Duration > 40ms and greater than 1/3 ensuing R wave height Yes or No 

Left atrial enlargement biphasic P wave in V1 with terminal deflection > 1mm and >0.04s 

duration 

Yes or No 

T wave abnormality Flat or inverted T wave Yes or No 

   

Konno 2005b 

 

Transthoracic echo data was analysed off-line (EchoPAC, GE Healthcare, Little 

Chalfont, UK) according to published criteria [Gardin 2002]. Septal and posterior wall 

thicknesses were measured at end-diastole by M-mode in the parasternal long-axis view 

as well as LV end-diastolic and end-systolic dimensions. LA diameter was measured in 

the parasternal long and short axis, and apical views. Mitral valve inflow pulsed wave 

Doppler was recorded to measure E and A wave velocity, E/A ratio, E wave deceleration, 

A wave duration, time velocity integral and isovolumic relaxation time. Pulmonary vein 

Doppler was recorded to measure S, D and A wave velocities, D wave deceleration time 

and time velocity integrals. Pulsed tissue Doppler recordings were made at the mitral 

annulus at the septum and lateral wall, and anterior and inferior walls when possible. All 
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measurements were made by one observer (SK) who was blinded to the genetic status of 

each individual.  

Longitudinal strain and strain rate were calculated from colour Doppler myocardial 

imaging data of the apical 4chamber view. Due to Doppler angle dependence, analysis 

was performed only at the basal and mid segments of the septal and lateral wall using 

high frame rate acquisitions (>140fps). Sample volume size was 10x2mm with 

continuous wall tracking and maximum measurements were averaged over 3 consecutive 

cardiac cycles. Technically adequate recordings obtained from 10 unaffected mutation 

carriers were matched for age and gender with 10 normal controls. 

 

Statistics 

Relatives were categorised into 3 groups on the basis of their genetic and clinical status: 

Mutation negative control subjects (Group 1), unaffected mutation carriers who did not 

fulfil diagnostic criteria for HCM (maximal LV wall thickness <13mm) (Group 2) and 

mutation carriers fulfilling diagnostic criteria for HCM (LV wall thickness >13mm) 

(Group 3). Means and standard deviations were calculated for continuous variables and 

Student‟s t-test (comparing groups 1 and 2) and ANOVA (comparing all three groups) 

were used to compare differences between groups. For categorical variables the Chi-

square test was used. A p-value < 0.05 was considered statistically significant. 
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Results 

 

A total of 96 individuals were included in the study including 56 mutation carriers with 

24 mutations, from 27 families. In two families more than one disease causing mutation 

was identified (complex genetic status). The spectrum of mutations is shown in Table 18.  

Table 18 Spectrum of MYBPC3 Mutations in Early Diagnosis Study 

Mutation Mutation Type Number of Mutation Carriers 

g_18567delCT 

R502Q 

R502W 

698delC 

g14271delC 

g16190_16196delGCGTCTA 

Q969X 

E258K 

G341R 

IVS1-2A>G 

IVS13-2A>G 

IVS14-13G>A 

IVS18+7G>A + D880D 

IVS20-2A>G 

K1055X 

IVS9-36G>A 

V1125M + IVS9-1G>C 

P873Q 

Q425X 

R943X 

T750M 

T957S 

Insertion/deletion 

Missense 

Missense 

Insertion/deletion 

Insertion/deletion 

Insertion/deletion 

Nonsense 

Missense 

Missense 

Intronic 

Intronic 

Intronic 

Complex  

Intronic 

Nonsense 

Intronic 

Complex 

Missense 

Nonsense 

Nonsense 

Missense 

Missense 

1 

7 

12 

2 

5 

1 

2 

2 

1 

2 

1 

1 

1 

3 

3 

1 

1 

2 

1 

2 

3 

2 

   

 

There were 40 mutation negative control subjects (Group 1), 39 unaffected mutation 

carriers (Group 2) and 17 mutation carriers fulfilling diagnostic criteria for HCM (Group 

3). The yield in terms of identifying individuals who fulfil diagnostic criteria for HCM 

from the screening programme was 17.7%.  Baseline clinical and echo data is shown in 

Table 18. Although there were slightly more females than males in Group 2 this was not 

statistically significant (χ
2
 =1.0, 1 df, p=0.311). Affected individuals were older and more 

symptomatic. Mutation types were similar between the three groups (data not shown). 
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There were no significant differences in terms of LV cavity dimensions (LVEDD 48.5 v 

47.7, p=NS), septal thickness (8.5 v 9.1, p=NS) or maximal wall thickness (8.8 v 9.5, 

p=NS) between mutation negative individuals and unaffected mutation carriers. 

 

Table 19 Clinical and demographic data of 96 individuals screened for HCM 
 Group 1 

Mutation Negative 

Group 2 

Unaffected 

Mutation Carriers 

Group 3 

HCM 

p-value 

Group1 vs Group2 

Number of Individuals (n) 40 39 17 - 

% Male 55.0 43.6 58.8 NS 

Mean Age (Years) 38.5 +/- 16.7 37.4 +/- 16.8 47.3 +/- 15.3 NS 
Transthoracic Echo Measurements 

LA size (mm) 

LVEDD (mm) 
LVESD (mm) 

IVSd (mm) 

PWd (mm) 
Maximal wall thickness (mm) 

FS (%) 

 

34.3 +/- 4.3 

48.5 +/- 5.0 
31.4 +/- 4.4 

8.5 +/- 1.4 

8.1 +/- 1.3 
8.8 +/- 1.5 

48.1 +/- 4.5 

 

35.0 +/- 4.8 

47.7 +/- 5.2 
30.9 +/- 4.0 

9.1 +/- 1.6 

8.6 +/- 1.5 
9.5 +/- 1.6 

47.4 +/- 4.8 

 

37.7 +/- 7.0 

44.0 +/- 4.5 
29.0 +/- 5.6 

13.9 +/- 4.6 

8.7 +/- 1.4 
15.3 +/- 4.3 

43.4 +/- 4.5 

 

NS 

NS 
NS 

NS 

NS 
NS 

NS 

     

* Students t-test comparing Groups 1 and 2 only. 

 

ECG Measurements 

Categorical and continuous ECG variables were compared between mutation negative 

(Group 1) and unaffected mutation carriers (Group 2) (Tables 20&21). Six mutation 

negative individuals had an abnormal ECG (5 were hypertensive and 1 had a history of 

previous anterior myocardial infarction). The prevalence of LA enlargement (20.5% v 

2.5%, p=0.012) and non-pathological Q waves (64.1% v 27.5, p=0.001) were more 

common in Group 2 (non-pathological Q wave: defined as a negative deflection with a 

duration < 40ms and an amplitude < 1/3 the height of the ensuing R wave). Unaffected 

mutation carriers had higher mean Romhilt Estes scores (1.4 vs 0.8, p=0.042), but a RE 

score > 4 was no more common in Group 2 (7.8% v 5.0, p=0.623). Mean S wave 

amplitudes were greater in Group 2 for leads V2 (16.6 v 12.4mV, p=0.023) and V3 

(12.7mm v 9.3, p=0.023). The proportion fulfilling Cornell criteria for LVH were more 
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common in Group 2 but this did not reach statistical significance (17.9% v 5.0, p=0.070). 

Eight (21%) unaffected mutation carriers had T wave inversion on the ECG (7 lateral or 

high lateral leads and 1 anteriorly) compared to 3 (8%) mutation negative controls 

(p=0.095).  

Overall, 15 of 39 (38.5%) unaffected mutation carriers had an abnormal ECG (defined as 

fulfilling either Cornell criteria, Sokolow Lyon criteria or a Romhilt Estes score ≥4). In 

comparison 6 of 40 (15%) mutation negative controls had an abnormal ECG (Chi square 

5.57, 1 df, p=0.18) 

 

Table 20 ECG measurements 

 
Group 1 

Mutation Negative 

Group 2 

Unaffected Mutation 
Carriers 

Group 3 

HCM 

p-value 

Group 1 v Group 2 

Heart rate (bpm) 69 +/- 14 69 +/- 12 66.5 +/- 14.2 0.907 

PR Interval (ms) 157 +/- 19 155 +/- 21 166 +/- 49 0.570 

QRS duration (ms) 86 +/- 10 86 +/- 10 89 +/- 12 0.926 

Mean Romhilt Estes 
Score 

0.8 +/- 1.2 1.4 +/- 1.6 3.1 +/- 3.9 0.042 

Total QRS Voltage (mV) 136 +/- 45 149 +/- 48 146 +/- 48 0.208 

S wave V1 9.6 +/- 5.2 10.9 +/- 4.7 10.5 +/- 4.7 0.229 

S wave V2 12.4 +/- 8.2 16.6 +/- 7.9 12.7 +/- 6.6 0.023 

S wave V3 9.3 +/- 6.1 12.7 +/- 6.9 13.1 +/- 6.1 0.023 

R Wave V5 12.0 +/- 5.2 11.8 +/- 4.6 9.8 +/- 4.2 0.835 

R Wave V6 9.9 +/- 3.8 9.8 +/- 3.9 8.9 +/- 4.2 0.950 

R Wave aVL 3.6 +/- 3.2 3.9 +/- 2.7 6.1 +/- 5.8 0.606 

     

Data presented as mean +/- SD 

Table 21 Sensitivity and Specificity for Categorical ECG Parameters 

 

Group 1 
Mutation 

Negative 

Group 2 
Unaffected 

Mutation 

Carriers 

Sensitivity (%) Specificity (%) 
P-value 

Chi-square 

LA Enlargement (n(%)) 
1(3) 8(21) 21 98 

0.012 

Pathological Q Waves (n(%)) 
1(3) 0(0) 0 98 

0.320 

Non-pathological Q Waves (n(%)) 
11(28) 25(64) 64 73 

0.001 
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Sokolow Lyon Criteria (n(%)) 
2(5) 1(3) 3 95 

0.571 

Cornell Criteria (n(%)) 
2(5) 7(18) 18 95 

0.070 

Romhilt Estes Score > 4 (n(%)) 
2(5) 3(8) 8 95 

0.623 

Abnormal T Wave Inversion (n(%)) 
3(8) 8(21) 21 93 

0.095 

 
    

 

 

Echo Measurements 

There were no differences in standard measurements of cavity size and wall thickness 

between groups 1 and 2 (Table 22). LA width measured in the apical 4 chamber view was 

greater in Group 2 however (37.2mm v 34.3, p=0.017) although other measurements of 

LA dimensions were no different. Indices of mitral valve pulsed wave Doppler were no 

different between the two groups. Pulmonary vein Doppler indices were also evaluated. 

AR wave duration was greater in Group 2 (115ms v 105, p=0.047) and D wave 

deceleration time was shorter (203ms v 232, p=0.038). All other indices were similar 

between the two groups. 

Table 22 2D and Doppler Echo Measurements 
 Group 1 

Mutation 

Negative 

Group 2 
Unaffected Mutation 

Carriers 

Group 3 
HCM 

p-value 
Group 1 v Group 2 

(t-test) 

LA dimension PLAX (mm) 34.3 +/- 4.3 35.7 +/- 4.9 38.4 +/- 6.0 0.184 

LA dimension SAX (mm) 34.5 +/- 5.0 35.3 +/- 5.2 39.7 +/- 7.8 0.474 

LA depth A4C (mm) 45.7 +/- 5.8 47.2 +/- 5.6 50.2 +/- 5.9 0.254 

LA width A4C (mm) 34.3 +/- 4.8 37.2 +/- 5.7 36.8 +/- 6.3 0.017 

E Velocity (cm/s) 0.8 +/- 0.2 0.8 +/- 0.1 0.8 +/- 0.2 0.524 

A Velocity (cm/s) 0.6 +/- 0.2 0.6 +/- 0.2 0.7 +/- 0.3 0.866 

EA ratio 1.5 +/- 0.7 1.5 +/- 0.5 1.2 +/- 0.5 0.824 

E Deceleration time (ms) 195 +/- 35 190 +/- 36 203 +/- 54 0.591 

A Duration (ms) 124 +/- 16 123 +/- 19 117 +/- 22 0.680 

Isovolumic relaxation time (ms) 94 +/- 19 90 +/- 17 105 +/- 27 0.264 

E Wave VTI (cm/s) 12.0 +/- 2.8 12.8 +/- 2.5 13.7 +/- 4.4 0.166 

A Wave VTI (cm/s) 5.4 +/- 2.0 5.1 +/- 2.0 6.3 +/- 2.8 0.510 
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S wave velocity (cm/s) 59.0 +/- 9.3 55.1 +/- 7.7 54.8 +/- 14.6 0.057 

D wave velocity (cm/s) 53.0 +/- 
17.0 

53.4 +/- 12.3 44.5 +/- 10.0 0.869 

AR velocity (cm/s) 24.9 +/- 5.6 26.1 +/- 7.1 31.0 +/- 9.3 0.421 

AR duration (ms) 105 +/- 21 115 +/- 22 114 +/- 21 0.047 

D Wave deceleration time (ms) 232 +/- 58 203 +/- 56 239 +/- 71 0.038 

S wave VTI (cm/s) 16.5 +/- 3.1 16.1 +/- 4.0 15.4 +/- 2.6  0.642 

D wave VTI (cm/s) 12.4 +/- 3.7 12.1 +/- 3.5 11.2 +/- 3.2 0.764 

AR wave VTI (cm/s) 2.4 +/- 0.7 2.7 +/- 0.8 3.1 +/- 1.0 0.167 

     

 

Tissue Doppler velocities at the mitral valve annulus were also compared. Late-diastolic 

velocities at the lateral annulus were greater in Group 2 (Aa 8.9 cm/s v 7.5, p=0.005) but 

all other indices were similar between the two groups (Table 23). 

Table 23 Tissue Doppler Measurements 

 
Group 1 

Mutation Negative 

Group 2 
Unaffected Mutation 

Carriers 

Group 3 

HCM 

P-value 

Group 1 v Group 2 

Sa Lateral  Annulus 

(cm/s) 
9.8 +/- 2.6 10.1 +/- 2.4 9.4 +/- 2.5 0.598 

Ea Lateral Annulus 
(cm/s) 

13.4 +/- 4.9 13.3 +/- 3.9 9.4 +/- 3.7 0.972 

Aa Lateral Annulus 

(cm/s) 
7.5 +/- 1.9 8.9 +/- 2.3 9.1 +/- 3.5 0.005 

E/Ea Ratio Lateral 6.0 +/- 1.8 5.8 +/- 1.2 9.6 +/- 8.6 0.615 

IVRT Lateral Annulus 

(ms) 
75.8 +/- 17.5 81.3 +/- 16.3 92.5 +/- 19.2 0.173 

Sa Septum (cm/s)* 8.1 +/- 1.4 7.9 +/- 1.6 7.0 +/- 1.9 0.716 

Ea Septum (cm/s)* 10.1 +/- 2.7 9.0 +/- 2.8 7.9 +/- 4.3 0.328 

Aa Septum (cm/s)* 8.1 +/- 21.1 7.3 +/- 1.3 7.9 +/- 1.1 0.251 

IVRT septum (ms)* 92.0 +/- 21.1 92.5 +/- 13.8 106 +/- 39.8 0.952 

     

* - Due to suboptimal image quality TDI data at the septum was measured in 18 individuals in Group 1, 9 Group 2 and 7 Group 3 

 

Having excluded those with an abnormal ECG (6 from Group 1 and 9 from Group 2, in 

order to assess the role of Echo in the context of a normal ECG) the observed differences 

persisted between the two groups in terms of 2D, Doppler and tissue Doppler indices: LA 
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4-chamber width (p=0.018), D deceleration time (p=0.041), Lateral Aa velocity 

(p=0.021), AR duration was no longer different between the two groups however 

(p=0.257). 

 

Strain and Strain-rate Imaging 

A sub-group of individuals with adequate image quality were selected for strain and 

strain-rate imaging analysis off-line. Data from 10 unaffected mutation carriers and 10 

age and sex matched mutation negative control subjects were evaluated (Table 24). No 

significant differences were observed for any parameters between the two groups. 

Table 24 Strain and Strain-rate Imaging in sub-groups of Groups 1 and 2 
Parameter Group 1 (n=10) Group2 (n=10) P – value 

Mean age 37.4 +/- 13.9 36.0 +/- 16.3 0.837 

% Male 50.0  50.0 - 
Strain    

Sa septum (%) 5.5 +/- 0.8 5.7 +/- 0.9 0.616 

Ea septum (%) 8.6 +/- 2.0 7.4 +/- 2.6 0.252 
Aa septum (%) 6.0 +/- 1.3 6.2 +/- 1.9 0.864 

Ea/Aa ratio septum (%) 1.6 +/- 0.7  1.4 +/- 0.9 0.603 

Sa lateral (%) 6.3 +/- 1.9 7.1 +/- 2.0 0.339 
Ea lateral (%) 10.5 +/- 4.2 9.8 +/- 3.3 0.722 

Aa lateral (%) 4.7 +/- 1.1 6.6 +/- 2.2 0.026 

Ea/Aa  lateral (%) 2.4 +/- 1.1 1.8 +/- 1.2 0.281 

Basal septum (%) 21.9 +/- 7.4 14.7 +/- 6.4 0.042 

Mid septum (%) 24.5 +/- 8.5  21.0 +/- 4.6 0.277 

Basal lateral (%) 20.6 +/- 7.1 20.6 +/- 7.7 0.992 
Mid lateral (%) 14.9 +/- 5.1 16.2 +/- 6.0 0.639 

Strain rate    

Basal septal (s-1) 1.4 +/- 0.9 1.1 +/- 0.5 0.372 
Mid septal (s-1) 1.7 +/- 0.8 1.4 +/- 0.5 0.229 

Basal lateral (s-1) 1.4 +/- 0.4 1.6 +/- 0.6 0.511 

Mid lateral (s-1) 1.1 +/- 0.3 1.2 +/- 0.5 0.675 

    

 

Lateral Aa velocity was greater in Group 2 (6.6 v 4.7, p=0.026) and basal septal strain 

was reduced (14.7 v 21.9, p=0.042).  
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Discussion 

 

In this study the clinical value of a large number of ECG and Echo measurements in 

predicting genetic status in a large cohort of unaffected HCM family members has been 

assessed.  The main findings were as follows: 

 Several ECG abnormalities including LA enlargement and deep S waves in V1 

and V2 were more common in unaffected mutation carriers compare to controls 

 Tissue Doppler indices were clinically unhelpful in predicting genetic status and 

previous data suggesting useful role for reduced Ea and Sa velocities were not 

confirmed in this study 

 

Previous studies have examined the ability to predict genotype from clinically derived 

parameters. Hagege et al. examined ECG criteria and 2D and M-mode Echo parameters 

in 100 genotyped individuals (20 unaffected mutation carriers) [Hagege 1998]. 50% had 

an abnormal ECG. When compared to gene negative individuals, unaffected mutation 

carriers had greater maximal wall thickness (9.7 vs 8.9mm), greater LV mass indexed for 

body surface area (107 vs 97g/m
2
) and larger left atrial volume (27 vs 23 mm

3
). They 

concluded that disease expression is a continuous spectrum from normal cardiac structure 

to typical ventricular hypertrophy.  

Following early experimental data from transgenic rabbits, Nagueh et al examined the 

role of tissue Doppler imaging in 3 groups of highly selected, age and sex matched 

individuals: 1) control subjects 2) mutation carriers without LVH and 3) mutation carriers 
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fulfilling diagnostic criteria for HCM [Nagueh 2001]. There were 13 unaffected mutation 

carriers with mutations in MYH7, TNNT2 and MYBPC3 genes and had no evidence of 

LVH on ECG or Echo. Systolic (Sa) and early diastolic (Ea) velocities were reduced 

compared to normal controls at both the septum and lateral mitral annulus, but to a lesser 

extent than in patients with HCM. E/Ea ratio (a marker of LV filling pressure) at both the 

septum and lateral mitral annulus were increased. Late diastolic velocities (Aa) were 

similar in both unaffected mutation carriers and controls. Not only were the statistical 

means different between groups but lateral Sa velocity of <13cm/s had a sensitivity of 

100% and specificity of 93% for differentiating between unaffected mutation carriers and 

controls. Similarly a lateral Ea velocity < 14 cm/s had a 100% sensitivity and 90% 

specificity. Septal Sa <12 cm/s and Ea < 13 cm/s both had 100% sensitivity and 90% 

specificity. The authors concluded that tissue Doppler derived data was able to reliably 

distinguish between unaffected mutation carriers and mutation negative controls and 

could thus prove useful in families with familial HCM where the mutation was unknown.  

 

In a second study the same group published follow-up data from 12 of the 13 unaffected 

mutation carriers over a two year period (age 17-51) [Nagueh 2003]. 6 of these 12 

individuals developed maximal LV wall thickness > 13mm, thus fulfilling diagnostic 

criteria for HCM. No significant changes between baseline and follow-up were noted in 

transmitral Doppler indices. Tissue Doppler parameters were also measured at baseline 

and at follow-up. Systolic (Sa) and early diastolic (Ea) velocities at both the septum and 

lateral mitral annulus were significantly reduced compared to controls at follow up. E/Ea 

ratio at the septum and lateral annulus remained higher at follow up compared to 
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controls. The authors concluded that these data confirmed the potential role of tissue 

Doppler imaging to identify unaffected mutation carriers who may subsequently develop 

left ventricular hypertrophy. 

 

Ho et al. examined tissue Doppler parameters in 18 unaffected MYH7 mutation carriers 

from 5 families and controls [Ho 2002]. Most mutation carriers (Asp 906Gly) came from 

a single family however (13 of 18 individuals). Ages were similar and transmitral 

Doppler indices were no different between the two groups. There were no statistical 

differences in ECG parameters between the two groups. Unaffected mutation carriers had 

greater LV ejection fraction (71 vs 64%, p<0.0001). Early diastolic (Ea) velocities were 

reduced at the lateral, septal and inferior mitral annulus in unaffected mutation carriers, 

while systolic (Sa) and late diastolic (Aa) velocities were no different between the two 

groups. The authors remarked that there was considerable overlap of values between the 

two groups and cut-off values were neither sensitive nor specific for predicting genotype. 

Cardim et al. assessed tissue Doppler indices in 5 unaffected mutation carriers 

(Arg502Gln mutation in MYBPC3 gene) [Cardim 2002]. Compared with 10 normal 

controls subjects, mutation carriers had lower LV systolic velocities (Sa) and lower early 

diastolic (Ea) velocities, although there was no clinically useful cut-off value which 

accurately identified mutation carriers. 

 

The results from our study are somewhat inconsistent with those published previously. 

We identified several ECG abnormalities which were were more prevalent in unaffected 

mutation carriers compared to mutation negative controls. LA enlargement is a common 
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abnormality in affected individuals and therefore LA enlargement on an ECG may 

represent evidence of early disease development. However while the specificity of LA 

enlargement on ECG was specific (98%) it was not sensitive in identifying unaffected 

mutation carriers. Unaffected mutation carriers also had higher mean Romhilt Estes 

scores (1.4 +/- 1.6 v 0.8 +/- 1.2), deeper S waves in V2 (16.6 +/- 7.9 v 12.4 +/-9.2mm) 

and deeper S waves in V3 (12.7 +/- 6.9 v 9.3 +/- 6.1mm) compared to mutation negative 

controls. Combined, these data suggest that ECG abnormalities occur early in disease 

development - and before hypertrophy develops. No ECG abnormality was sensitive 

however in identifying unaffected mutation carriers. Therefore while it is interesting to 

observe ECG abnormalities predating the development of hypertrophy (as detected by 

cardiac imaging), the ECG is unhelpful clinically in reliably predicting genotype, and 

does not allow the accurate identification of unaffected mutation carriers in this cohort. 

While Nagueh et al. [Nagueh2001] and Ho et al. [Ho 2002] reported reduced Sa and Ea 

velocities at the mitral annulus these results were not confirmed in this study. In our 

larger study, a cut-off of lateral Ea velocity < 14 had 40% sensitivity and 50% specificity 

in identifying mutation carriers. Lateral Sa velocity < 13 had sensitivity 50%, specificity 

50%. A septal Sa < 12 was 100% but 0% specific and septal Ea <13 was 70% sensitive 

and 30% specific, although adequate TDI data from the septum was obtained in a small 

number of individuals. There was considerable overlap between the two groups however 

and no indices reliably or consistently identified mutation carriers. In our study, the Aa 

velocity at the lateral annulus was increased in unaffected mutation carriers compared to 

control subjects. This result was not observed in other published studies and contradicts 
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the expected finding of reduced Aa velocities in subjects with clinically evident 

hypertrophy.  This may therefore represent a Type 2 statistical error. 

 

There are a number of explanations for different findings between our study and other 

published data. Although systolic TDI velocities are independent of age, diastolic 

velocities (Ea and Aa) are highly age dependent [Henein  2002]. The mean ages in 

affected mutation carriers and controls in the study by Ho et al. were 24 and 26 years 

respectively (NS) and 35 and 36 years (NS) in the study by Nagueh. In our study the 

mean age of unaffected mutation carriers (Group 2) was 37 and 39 (NS) for mutation 

negative controls. It is possible, but unlikely therefore, that differences in age explain the 

different findings. In our study 44% of mutation carriers were male compared to 55% 

mutation negative controls, compared to 40% and 60% in the study by Ho et al. and 23% 

and 23% in the study by Nagueh et al. As the findings by Nagueh et al were largely in 

women it is possible therefore that gender specific differences in disease penetrance 

account for the lack of positive result in our study. The TDI velocities, especially at the 

lateral annulus were lower in our control group than one might expect [Henein 2002]. 

Within this group however were individuals with other pathologies such as hypertension 

and ischaemic heart disease. We specifically chose to assess the role of early diagnostic 

markers in a practical, clinical setting however and therefore did not exclude such 

individuals.  

This study was limited to data from families with mutations in the MYBPC3 gene. This is 

the most common gene in which disease causing mutations occur [Van Driest 2004] and 

by limiting the study in this way gene specific differences should be avoided. Importantly 
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this study included a large range of mutations, representative of the overall cohort of 

MYBPC3 related disease. It is possible however that our findings are not necessarily 

applicable to the wider HCM population.  

 

Not previously reported is the role of deformation imaging in predicting genotype in this 

context. We found no significant differences between unaffected mutation carriers and 

controls in this regard. Although there are technical and methodological difficulties 

associated with deformation imaging [Teske 2007], the overall quality of data was high in 

this study and the two groups were well matched for age and sex, the lack of a positive 

result is likely to be real. 

 

In the absence of a known mutation in a family with HCM there are several theoretical 

advantages in identifying individuals before hypertrophy develops. Firstly in families in 

which the mutation is unknown, it could allow more focussed screening by selecting 

those individuals likely to, or at risk of, developing hypertrophy in the future. This has 

the potential advantage of avoiding unnecessary clinical visits by mutation negative 

individuals, which is beneficial both in terms of their own peace of mind and also of 

resource allocation. Secondly it could provide an opportunity to intervene at an early 

stage of the disease. Although to date there are no interventions that modify disease 

expression in humans, prophylactic ICD implantation in at risk mutation carriers is 

theoretically advantageous. Although sudden cardiac death in unaffected mutation 

carriers has been reported [McKenna 1990][Maron 1990], its incidence is poorly defined 

and how to best assess risk in unaffected mutation carriers is not known. 
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The strengths of this study lie in the large number of individuals examined (greater than 

the combined published data to date) and the blinded design. Subtle statistically 

significant differences were identified between unaffected mutation carriers and controls, 

but no clinically useful cut-off values were identified to allow accurate blinded 

identification of mutation carriers with no clinical evidence of disease expression. While 

careful, technical evaluation of tissue Doppler indices may elucidate subtle differences 

(as published by Nagueh et al. and Ho et al.) in mutation carriers this remains of 

academic interest at present. It is interesting for example to note that identifying 

abnormalities of contractile function before hypertrophy is evident, supports the 

hypothesis that ventricular hypertrophy in HCM is compensatory. At present however 

tissue Doppler derived data do not allow the accurate identification of unaffected 

mutation carriers and thus do not allow a more focussed family screening strategy 

In summary, previously identified abnormalities of systolic and diastolic myocardial 

function in unaffected mutation carriers were not consistently confirmed in this study. 

While small studies in highly selected groups of individuals have suggested a role for 

tissue Doppler imaging in accurately identifying mutation carriers from controls, the 

application of such parameters does not appear to be relevant to clinical practice in this 

larger, less selected group of individuals. Family screening programmes ought to 

therefore continue to evaluate all relatives at risk of inheriting disease causing mutations 

for the time being. 
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LONGTERM FOLLOW-UP DATA 
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Introduction 

 

There are relatively few data describing the natural history of HCM in relation to 

MYBPC3 mutations. Most series of genotyped patients have used a cross-sectional 

design and detailed longitudinal cohort studies are lacking. Such data are important when 

trying to manage patients and their families, and in trying to anticipate and prevent 

complications in the future. As has already been discussed, the issue of whether 

echocardiographically detectable hypertrophy develops commonly in adulthood is 

particularly important. Existing longitudinal data relating to HCM in individuals and 

families with MYBPC3 mutations are summarised below. 

 

Maron et al described for the first time the development of ventricular hypertrophy in 

adults [Maron 2001]. Of 12 adult unaffected mutation carriers at initial evaluation, 5 were 

followed up prospectively, 3 (1 male) of whom developed echocardiographic ventricular 

hypertrophy at ages 33, 35 and 42. One individual had incomplete systolic anterior 

motion at initial evaluation age 29 with partial RBBB on ECG however, and another 

individual had an abnormal ECG with Q waves and T wave inversion at baseline age 27. 

In only one individual did hypertrophy develop with a normal ECG and Echo at baseline 

(age 38).  

 

Nagueh et al described LVH developing in 6 of 12 adult mutation carriers unaffected at 

baseline assessment. 7 of these 12 shared the InsG791 mutation in MYBPC3 although it 

is not clear how many of these 7 developed HCM during 2 years of follow-up [Nagueh 

2003].  
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Kubo et al described longitudinal follow-up in 15 families sharing an identical Japanese 

founder mutation (V592fs/8) in MYBPC3 [Kubo 2005]. 39 mutation carriers were 

identified of which 30 fulfilled diagnostic criteria at initial assessment. During a mean 

follow-up period of 9.2 +/- 5.5 years AF was detected in 33% (3.6%/year). LA size 

increased from 40 +/- 8.3 mm to 46 +/- 9.0mm (p-value not reported). At last follow-up 7 

individuals had developed “end-stage” HCM defined as LV systolic dysfunction, cavity 

dilatation and irreversible heart failure. 6 of these 7 patients were 60 years or older. There 

were 2 stroke deaths, 1 heart failure death and 1 ICD discharge during follow-up (overall 

combined risk 1.4% per year). 

 

This part of the study examines the natural history of clinical disease related to MYBPC3 

mutations for both affected and unaffected mutation carriers.   

 

Methods 

 

Clinical data was compared at baseline and at last follow-up assessment for all mutation 

carriers with at least two clinical evaluations at least 12 months apart. Paired sample t-

tests were used to compare means. Data are presented as mean +/- standard deviation, or 

as percentages. A p-value < 0.05 was considered statistically significant. 
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Results 

 

All Mutation Carriers 

Longitudinal follow up data was available for 84 mutation carriers. Of these, 67 were 

clinically affected at baseline. Mean age at start of follow up was 37.1 +/-16.4 years 

(range 5-76). Mean duration of follow-up was 7.9 +/- 4.5 years (range 1-19).  

 

Overall survival was 94.0% - there were 5 deaths (3 sudden, 1 heart failure, 1 stroke). 

The 3 sudden deaths occurred in the following individuals: 

 A 32 year old female (H588.2 with the IVS14-13G>A mutation) was diagnosed 

age 28 and followed up for 4 years. She had a maximal wall thickness of 22mm 

and had evidence of NSVT on Holter monitoring and an episode of syncope 

which occurred during physical exercise. Before prophylactic ICD implantation 

could be arranged she died suddenly while dancing. 

 A 58 year old man (H697.1 with the K1055X mutation) was diagnosed with 

obstructive HCM age 51 following an incidental finding of a cardiac murmur. He 

was asymptomatic until he developed AF at which stage he developed heart 

failure. He was treated with amiodarone. He had a maximal wall thickness of 

26mm, a positive family history of premature sudden cardiac death, and a 

borderline blood pressure response on exercise. He died suddenly age 58. 

 A 31 year old man (H934.1 with the g14274delC mutation) presented age 30 with 

acute pulmonary oedema while swimming. Subsequent investigations 

demonstrated asymmetric septal hypertrophy (maximal wall thickness 24mm) 
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with incomplete SAM and NSVT on exercise. He died suddenly shortly 

afterwards. 

One individual (H608.1 with the intronic splice site IVS1-2A>G mutation) had 

progressive wall thinning and predominantly restrictive physiology and underwent 

cardiac transplantation for intractable heart failure. One individual was lost to follow up. 

The overall annual mortality rate was therefore 0.75% and annual risk of sudden death 

0.45%. The proportion of patients who were symptomatic was no different at baseline 

compared to follow-up (65.7% and 64.7%). 4 individuals underwent alcohol septal 

ablation and 2 underwent surgical myomectomy for symptomatic outflow tract 

obstruction. 13 individuals underwent ICD implantation (11 prophylactic, 2 following 

aborted sudden death). No appropriate ICD therapies (either anti-tachycardia pacing or 

DC shock therapy) were detected in 3.0 +/- 1.7 years (range 1-6). There were 5 strokes (1 

fatal, annual risk of stroke 0.75%) Arrhythmias were common however with 28.8% of 

individuals having documented NSVT on Holter monitoring and 18.3% developing at 

least one episode of AF during follow-up.  

Table 25 Event rates in 84 mutation carriers 

 
 Number (%) 

Symptom-free survival 35 (43.2) 

Alive 79 (94.0) 
Complications  

Cardiac transplantation 1 (1.2) 

Heart Failure Death 1 (1.2) 
Sudden death 3 (3.7) 

Heart Failure 9 (11.0) 

Atrial fibrillation 15 (18.3) 
NSVT or VT 23 (28.8) 

Survived Cardiac Arrest 1 (1.3) 

Stroke 5 (6.1) 

Infective Endocarditis 1 (1.2) 

Interventions  

Pacemaker 7 (8.4) 
Cardiac resynchronisation 1 (1.2) 

ICD 13 (15.7) 
Surgical myomectomy 2 (2.4) 

Alcohol septal ablation 4 (4.8) 
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Affected Mutation Carriers 

Echocardiographic data for affected individuals at baseline and at follow-up was 

compared (Table 26 and Figures 24-31). Longitudinal follow up was associated with a 

reduction in septal thickness (16.5 at baseline v 15.2mm, p=0.033), increased LV end-

systolic diameter (25.5 v 28.6mm, p=0.000), reduced fractional shortening (41.6 v 37.0%, 

p=0.000) and increase in LA diameter (39.8 v 42.3 v mm, p=0.001). 13.4 % developed 

clinical symptoms of heart failure during follow up and dilated-phase HCM (defined as 

LVEDD > 55mm and FS < 25%) occurred in 2 individuals (3.0%). 

Table 26 Echocardiographic parameters at baseline and at last follow up in 67 affected 

mutation carriers 
 Baseline Follow-up P-value * 

Age (years) 37.1 +/- 16.4 47.0 +/- 16.9 0.000 

IVSd (mm) 16.5 +/- 6.6 15.2 +/- 6.4 0.033 

PWd (mm) 9.8 +/- 2.7 9.2 +/- 2.6 0.122 

MWT (mm) 17.6 +/- 6.7 16.8 +/- 6.2 0.166 

LVEDD (mm) 43.5 +/- 7.2 44.7 +/- 6.9 0.086 

LVESD (mm) 25.5 +/- 7.1 28.6 +/- 6.8 0.000 

FS (%) 41.6 +/- 9.1 37.0 +/- 8.2 0.000 

LA (mm) 39.8 +/- 8.2 42.3 +/- 8.6 0.001 

    

*Using paired-samples T-test. 

These data are shown graphically in Figures 24-31. Boxes represent the arithmetic mean 

with bars representing 95% confidence intervals. 
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Figure 24 Aortic Diameter at Baseline and Last Follow up  
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Figure 25 LA Diameter at Baseline and Last Follow up 
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Figure 26 LVEDD at Baseline and Last Follow up 
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Figure 27 LVESD at Baseline and Last Follow up 
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Figure 28 Septal Thickness at Baseline and Last Follow up 
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Figure 29 Posterior Wall Thickness at Baseline and Last Follow up 
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Figure 30 Maximal Wall Thickness at Baseline and Last Follow up 
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Figure 31 Fractional Shortening at Baseline and Last Follow up 
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Unaffected Mutation Carriers 

17 individuals who were clinically unaffected at baseline were followed up for a mean 

9.4 +/- 7.1 years (range 1-18). Mean age at baseline was 25.0 +/- 14.3 years (range 10-53) 

and 33.1+/- 14.8  years (range 11-66) at second evaluation. Of these 17 individuals 3 

(17.6%) developed clinical evidence of disease expression during follow up (Table 27). 2 

of the 3 developed evidence of disease expression at ages 13 and 14. The third individual 

(H610.8) (5.9% of those followed up) was first evaluated at age 39 and found to have a 

normal ECG and Echo. He came from a large family with a deletion mutation (698delC) 

with multiple affected family members. He was subsequently diagnosed with HCM 

during a routine health check age 53 on the basis of T wave inversion in the anterior chest 

leads and asymmetric septal hypertrophy on transthoracic echocardiography (maximal 

wall thickness 15mm). He had not been evaluated in the interim period so it is not known 

at what age the hypertrophy developed. There was no history of hypertension or athletic 

training and he remains asymptomatic. 

 
Table 27 Clinical Data for 3 Individuals developing LVH during the course of follow up. 
Individual Mutation Gender Age 1 

(years) 

Age 2 

(years) 

MWT 1 

(mm) 

MWT 2 

(mm) 

ECG 1 ECG 2 

H610.13 Cys698del 
 

F 13 21 6 14 (eccentric) Nonpathological 

Inferolateral Q 
waves 

Partial RBBB, 

pathological 
inferolateral Q 

waves 

H62.2 Arg502Gln F 14 27 8 18 (apical) NA TWI V1-V4 
H610.8 Cys698del 

 

M 39 53 11 15 (ASH) NA TWI V2-V6 
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Figure 32 Maximal wall thickness in unaffected mutation carriers at initial evaluation 
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Summary Echo data is shown in Table 28. There were no statistically significant 

differences in Echo derived parameters at baseline and at last follow-up assessment in 15 

unaffected mutation carriers, despite three individuals developing hypertrophy during 

follow up. Changes in maximal wall thickness with time are shown in Figure 32. 

Table 28 Echo parameters in unaffected mutation carriers at initial evaluation 
 1st Assessment Last Assessment P value 

Age (years) 25.5 +/- 15.2 33.5 +/- 15.5 0.001 

LA size (mm) 31.8 +/- 5.1 34.0 +/- 5.0 0.174 

LVEDD (mm) 49.5 +/- 5.8 47.3 +/- 5.9 0.272 
LVESD (mm) 32.7 +/- 3.7 31.8 +/- 4.4 0.253 

FS (%) 32.1 +/- 3.7 31.9 +/- 2.9 0.887 

IVSd (mm) 7.8 +/- 1.3 7.3 +/- 1.6 0.214 
PWd (mm) 7.7 +/- 1.6 7.5 +/- 1.6 0.723 

MWT (mm) 8.6 +/- 1.6 9.7 +/- 3.6 0.262 
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Discussion 

 

The main findings of this part of the study were as follows: 

1. Annual mortality amongst mutation carriers was 0.75% per year 

2. Annual sudden death rates were 0.45% per year 

3. Left atrial diameter increases with age 

4. LV end-systolic diameter increases and fractional shortening decreases with age 

5. There is septal thinning but no decrease in maximal wall thickness with age 

6. Hypertrophy can develop in adulthood but appears to be an uncommon event 

 

Previous studies have calculated annual complication rates amongst non-genotyped 

cohorts of patients with HCM (i.e. affected patients only).  

 The incidence of stroke is approximately 0.8% [Maron 2002a] – in our 

study the incidence of stroke amongst affected mutation carriers was 

0.94%.  

 The incidence of sudden death is approximately 1.02% [Elliott 2006b] – in 

our study the incidence of sudden death was 0.57%.  

 The published incidence of endocarditis is approximately 0.38 [Spirito 

1999] – in our study the incidence was 0.19 

The observed complication rates in our cohort are therefore similar to published rates for 

non-genotyped cohorts therefore, which is contrary to previous suggestions that 

MYBPC3 mutations are associated with a relatively good prognosis [Niimura 

1998][Charron 1998a][Charron 1998b][Richard 2003]. The event rates in this study are 
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low however and the actual complication rates may be significantly different if the 

numbers studied were greater. 

 

Our study identified one patient who developed echocardiographic LVH during follow 

up. While this phenomenon has been described before [Maron 2001][Nagueh 2003], it 

appears to be an uncommon event and may not justify the current recommendations for 

periodic lifelong screening of unaffected adult relatives [Maron 2003a]. Large 

longitudinal follow-up studies are required in unaffected mutation carriers to better 

understand the frequency of hypertrophy development in adulthood. This study has now 

identified a cohort of unaffected mutation carriers who will continue to be followed up 

long-term and hopefully provide an insight into this important aspect of HCM 

epidemiology. 
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CONCLUSIONS 
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Conclusions 

 

Over the last 50 years since Donald Teare‟s early description [Teare 1958] our 

understanding of hypertrophic cardiomyopathy has increased significantly. Modern 

techniques of DNA analysis and advanced cardiac imaging have enhanced our 

knowledge of this fascinating condition and the great complexities of this condition have 

become apparent. While elements of clinical management are fluid, with imaging and 

therapeutic techniques coming in and out of fashion, certain „established facts‟ regarding 

HCM have been established. One such „fact‟ is the role of sarcomeric proteins in disease 

pathogenesis, and mutations in the gene encoding cardiac myosin binding protein-C are 

of central importance. Studying genotyped cohorts therefore provides the opportunity to 

gain further insights into the condition. 

 

In this thesis the largest cohort of HCM index cases with MYBPC3 mutations, and their 

families, have been described. Several important themes have emerged: 

 

 Complex genetic status is common which has major implications for mutation 

detection strategies and counselling families. 

 The spectrum of clinical disease is broad and even with individuals sharing a 

specific mutation, implying that disease modifying factors influence disease 

development and severity to a powerful degree. 

 Disease penetrance is incomplete and may be related to gender suggesting an area 

for further study 
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 Clinical disease may present at any stage in life indicating that HCM should be 

part of the differential diagnosis in a patient presenting with cardiac symptoms at 

any age, and should be considered in anyone with affected family members. 

 Although age-related penetrance is suggested by cross-sectional data, disease 

developing de novo is rare during adulthood. Do family screening strategies need 

to accommodate this apparently rare event? In asymptomatic individuals, serial 

clinical assessment may be associated with a low yield in detecting new cases of 

HCM 

 Although the overall prognosis for this cohort is good, individual risk is highly 

variable and clinical management decisions need to reflect this 

 Clinically useful markers of early disease expression and genotype prediction is 

not possible with currently available indices  

 

This study has a number of strengths. This study describes the largest cohort of index 

cases to date with MYBPC3 mutations. The total number of mutation carriers (including 

family members) is the second largest to date with only one study [Niimura 1998] 

including more genotyped individuals. These data therefore add considerably to the body 

of knowledge available. Detailed clinical characterisation of such a cohort has never been 

previously performed and the longitudinal data presented are novel. Additionally, the 

evaluation of markers of early disease expression is in the largest genotyped cohort to 

date.  

Establishing accurate genotype-phenotype correlations requires large numbers of 

patients, multiple different mutations, and need to be repeated in different patient 



 152 

populations. The initial descriptions of MYBPC3 mutations, in highly selected families, 

may have over-emphasised the frequency and clinical relevance of „late-onset‟ disease 

therefore, leading to premature assumptions of late-onset and benign disease. A major 

strength of this study therefore is that families were unselected and included a broad 

spectrum of mutations that is representative of MYBPC3 related disease as a whole. 

  

There are a number of limitations to this study however.  

 

Tertiary referral centres inevitably introduce an element of referral bias (such as the over-

representation of obstructive HCM at the Mayo Clinic). While this is true, the reputation 

of the Inherited Cardiovascular Disease Unit at The Heart Hospital, London, and 

previously at St George‟s Hospital, London, is not based upon a particular clinical 

problem such as surgical myomectomy, and the reasons for referral are broad and include 

a wide range of patients. Indeed the international reputation of the Inherited 

Cardiovascular Disease Unit indicates that an inclusive demographic cohort is described. 

Therefore both patients with complex clinical problems, referred for expert opinion, and 

patients referred routinely for assessment from the local catchment area are represented. 

 

This study lacks a comparative group, or a cohort of patients with mutations in another 

sarcomeric protein gene. It would clearly be advantageous to directly compare clinical 

indices between cohorts of patients with other sarcomeric protein mutations, but detailed 

clinical evaluation of such cohorts is beyond the scope of this study. This study is 
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therefore limited to comparisons with previously published data regarding MYBPC3 

mutations and unselected cohorts of HCM index cases. 

A further limitation was that due to limited clinical resources we were unable to fully 

clinically evaluate unaffected family members with ambulatory ECG monitoring and 

metabolic exercise testing. While there is not a strong clinical indiciation to evaluate 

unaffected family members in this way, having a cohort of unaffected mutation carriers 

provides a unique opportunity to fully investigate the phenotype of HCM. Unfortunately 

it was not possible to perform ambulatory ECG monitoring and metabolic exercise testing 

in all patients due to limited clinical availability. 

 

What might the future hold? 

 

The role of single gene genotype-phenotype studies is probably coming to an end 

[Ackermann 2005]. To data studies have been limited by small family size, a low 

frequency of each specific mutation and inability to assess and control other disease 

modifying factors [Marian 2001]. More sophisticated models of disease that include a 

monogenic mutation with other genetic and environmental variables are required. The 

Human Genome Project allows a new era of genetic evaluation to begin with single 

nucleotide polymorphisms (SNPs) and their effect on monogenic disorders to be 

investigated [Marian 2002]. Studying families sharing an identical mutation provides a 

good opportunity to study candidate variables [Marian 2002] and controlling mutation 

specific variation by studying founder mutations is an attractive direction for future 

studies. Large longitudinal cohort studies of genotyped families are required to determine 
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the frequency of adult-onset disease and gain insights into the natural history of 

hypertrophic cardiomyopathy. Given the limitations of individual centres, establishing 

international databases and a collaborative approach is desirable [Arbustini 2002]. 

 

Although classifying, and establishing diagnostic criteria for HCM has proved 

problematic [McKenna 1997][Richardson 1996][Maron 2003a][Maron 2006][, redefining 

HCM in the genetic era will be required to include mutation carriers not fulfilling 

diagnostic criteria – whether these individuals are at risk of sudden complication remains 

unclear, but even if this is the case this risk is probably not great. 

 

The significant body of literature published to date has probably raised as many questions 

as it has answered, but with careful systematic clinical and genetic evaluation our 

knowledge can only be enhanced. It is hoped that the data presented in this thesis 

contributes, in a small part, to this body of knowledge. 
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The appendix contains the following: 

 

1. Information sheet provided for relatives prior to obtaining informed consent. 

2. Informed consent sheets used for aquiring blood samples for genetic analysis in 

relatives. 
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Hypertrophic Cardiomyopathy -  
 

An information sheet for relatives 
 

 

 

What is Hypertrophic Cardiomyopathy? 

People who are affected by hypertrophic cardiomyopathy (HCM) often have thickening 

of the heart muscle. Some do not have symptoms of disease while others may experience 

episodes of breathlessness, chest pain, and palpitations or have attacks of dizziness or 

fainting. 

 

HCM is hereditary (inherited), and is therefore likely to run in families. In recent years 

changes in certain genes have been found to cause HCM. These genes make proteins in 

the sarcomere. Sarcomeres are fibres of the muscle that make the heart contract to pump 

blood around the body. Someone who carries a change in one of these genes has a 50% 

risk of passing the disease onto each of their children. Fortunately, a substantial number 

of the individuals carrying the gene change are healthy and have no major symptoms 

from the disease. 

 

 

Why am I giving blood? 

A relative of yours has HCM and has previously seen Professor McKenna in London. 

Genetic investigations showed a change in one of the genes causing HCM. Based on the 

nature of the specific change found we assume that this change is the disease causing 

agent within your family. There is a chance that you also have this change and by giving 

a blood sample we can test for this change. This will help us decide whether you have 

HCM or not. 

 

 

What other tests do I need? 

We would also like you to have a simple heart trace (ECG) and a heart scan (Echo). 

These tests are to look for evidence of heart muscle thickening that is part of the disease. 

The Heart Hospital 

Cardiology Department 

16-18 Westmoreland StreetLondon 
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What happens next? 

The results for the genetic test will take several months to arrive. When we have the 

results, we can compare your result with the result of the ECG and Echo scan. We will 

base any decision making upon your ECG and Echo scan, but will let you know your 

genetic result which may help us to understand the condition in your family better. 

 

If you have any questions, please do not hesitate to get in touch. 

 

 

 

Dr Steve Page 

Clinical Research Fellow to Professor WJ McKenna 

 
Department of Inherited Cardiovascular Disease 

47 Wimpole Street 

The Heart Hospital 

London W1G 8PH 

 

Telephone: 0207 573 8888 Ext 4908 

E-mail:  steve.page@uclh.nhs.uk 
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