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Abstract 

It is unclear whether neurovascular coupling is maintained during epileptic discharges. 

Knowing this is important to allow appropriate inferences from functional imaging 

studies of epileptic activity.  Recent blood oxygen level dependent (BOLD) functional 

MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, 

parietal and posterior cingulate cortices during generalised spike wave activity (GSW). 

We hypothesized that GSW-related NBR commonly reflect decreased cerebral blood 

flow (CBF). We measured BOLD and cerebral blood flow responses using simultaneous 

EEG with BOLD and arterial spin label (ASL) fMRI at 3T. Four patients with epilepsy 

were studied; two with idiopathic generalized epilepsy (IGE), and two with secondary 

generalized epilepsy (SGE). We found GSW-related NBR in frontal, parietal and 

posterior cingulate cortices. We measured the coupling between BOLD and CBF changes 

during GSW and normal background EEG and found a positive correlation between the 

simultaneously measured BOLD and CBF throughout the imaged volume. Frontal and 

thalamic activation were seen in two patients with SGE, concordant with the electro-

clinical features of their epilepsy. There was striking reproducibility of the GSW-

associated BOLD response in subjects previously studied at 1.5T. 

Our results are consistent with preserved neurovascular coupling between BOLD and 

CBF changes in patients with generalized epilepsy and in particular during GSW activity. 

Cortical activations appear to reflect areas of discharge generation whilst deactivations 

reflect changes in conscious resting state activity. 
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Introduction 

It is unclear whether cerebral neurovascular coupling is affected in patients with 

epilepsy. This is an important issue for interpretation of fMRI investigations in these 

patients. Characterisation of the cerebral blood flow (CBF) and blood oxygen level-

dependent response (BOLD) during epileptic discharges is therefore necessary, and in 

particular to better understand BOLD decreases. Generalised spike wave activity GSW 

is the hallmark of scalp EEG during absence (transient loss of consciousness) seizures 

in idiopathic generalised epilepsy (IGE) and is also seen in secondary generalised 

epilepsy (SGE). The predominant finding in EEG-correlated functional MRI (EEG-

fMRI) studies of GSW have been positive BOLD responses in the thalamus and 

negative BOLD responses (NBR) in areas of association cortex (Archer et al., 2003; 

Gotman et al., 2005; Hamandi et al., 2006; Laufs et al., 2006; Salek-Haddadi et al., 

2003), the latter akin to the “default mode” network of resting brain function (Greicius 

et al., 2003; Mazoyer et al., 2001; Raichle et al., 2001).  

The BOLD response arises from regional changes in deoxyhaemoglobin concentration 

due mainly to changes in CBF, with an additional effect of alterations in blood volume 

and oxygen extraction (Ogawa et al., 1990). Evidence from activation studies in 

animals demonstrates that the positive BOLD response reflects increased synaptic 

activity (Shmuel et al., 2006). However, the origin of NBR may correspond to either an 

absolute decrease in cerebral blood flow coupled with a decrease in neuronal activity, 

or an increase in oxygen consumption without, or in excess of any blood flow increase 

(abnormal neurovascular coupling), or due to vascular steal (Wade, 2002). 
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Evidence in healthy humans suggests that NBR equate to decreased neural activity or 

“deactivations” (Born et al., 2002; Czisch et al., 2004; Parkes et al., 2004). Recently, 

Shmuel et al used simultaneous fMRI and intracranial electrophysiological recordings 

in monkeys to show that NBR reflect absolute below-baseline decreases in neuronal 

activity, with tight coupling between NBR and neural activity decreases in the visual 

cortex (Shmuel et al., 2006).  

We hypothesized that GSW-related NBR would reflect decreased CBF. To test this we 

measured BOLD and cerebral blood flow using simultaneous EEG with BOLD and 

arterial spin label (ASL) fMRI using a 3T MRI scanner. 

Materials and Methods 

Patients 

We investigated four patients with frequent GSW. Two patients had SGE and two IGE 

(one with generalised tonic clonic seizures (GTCS), the other  with childhood absence 

epilepsy (CAE)) (Commission on Classification and Terminology of the International 

League Against Epilepsy, 1989), see table 1 for patient details. Patients gave written 

informed consent. The study was approved by the Joint Research Ethics committee of 

the National Hospital for Neurology and Neurosurgery.  

EEG Acquisition and Processing 

32 channels of surface EEG were recorded in the MR scanner using MRI compatible 

hardware (BrainAmp MRplus, Brainproducts, Munich, Germany; BrainCap MR, 

Easycap, Herrsching-Breitbrunn, Germany). Foam padding and ear defenders were 

used to minimize motion and improve patient comfort. Scanner and EEG clocks were 

synchronized, such that EEG sampling relative to scanner gradient switching was 
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constant (Mandelkow et al., 2006) facilitating improved EEG quality after imaging and 

pulse artefact subtraction (Vision Analyzer, Brain Products) (Allen et al., 1998; Allen et 

al., 2000). The start and stop of GSW events were visually marked on the EEG 

according to the fMRI time series (with a temporal resolution of ~0.2 seconds or ~1/16 

TR) for use in the fMRI analysis (general linear model).  

MRI acquisition  

Imaging was carried out on a 3T Siemens Allegra head scanner (Siemens, Erlangen, 

Germany) using a standard head transmit/receive coil. Two thirty minute runs of 

functional MRI with simultaneous EEG were acquired in each patient: 1)  a gradient 

echo (BOLD sensitive) echoplanar imaging (EPI) time series, whole brain coverage 

(TR (repetition time) / TE (echo time): 3120/40 ms, 48 slices, 500 volumes, 3x3x2mm, 

1 mm inter slice gap, FOV 19.2x19.2 mm2, matrix 64x64) which we will refer to as 

BOLD series, 2) a pulsed arterial spin labelling (PASL) sequence (Q2TIPS) (Luh et al., 

1999; Nöth et al., 2006) with the PICORE (proximal inversion with a control for off 

resonance effects) labelling scheme where arterial spins are labelled proximal to the 

imaging slices, which we refer to as ASL series. The scanning parameters were: TR 2.3 

sec, (time for acquisition of a single slice was 66ms, the remainder of the TR being the 

labelling phase), TE 30ms, 6 axial slices (extending superiorly from the top of the 

corpus callosum), 4 mm slice thickness, slice gap 0.5 mm FOV 22.4 cm x 22.4 cm, 

matrix 64 x 64 (see (Nöth et al., 2006) for sequence details).  A T1-weighted structural 

scan with an isotropic resolution of 1mm using an MDEFT sequence with optimised 

contrast for gray matter (GM)-white matter (WM) and imaging parameters as described 

in (Deichmann et al., 2004) was used to obtain GM and WM masks. 
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MRI processing 

The SPM2 (http://www.fil.ion.ucl.ac.uk/SPM) software package was used for image 

pre-processing and analysis. The structural image of each patient was segmented using 

SPM2 into GM, WM and CSF. In-house software was written in Matlab 

(www.mathworks.com) for the calculation of perfusion images. BOLD and ASL series 

were pre-processed separately.  

BOLD series: The first five images were discarded to allow for T1 equilibration effects. 

Images were spatially realigned, normalized to a standard EPI template based on the 

MNI reference brain (Ashburner and Friston, 1999) and spatially smoothed (8mm full 

width at half maximum isotropic Gaussian kernel).  

ASL series: The Siemens MoCo (motion correction in frequency space before image 

reconstruction) series of label and control images were used for analysis. Images were 

further realigned to the first image using SPM2. A time series of the difference images 

(control minus label) was calculated by subtracting adjacent control and temporally 

adjusted label images; a ‘surround average’ of preceding and following label images 

was used to remove effects of BOLD signal fluctuation within one TR (Aguirre et al., 

2002), and expressed as a ratio of the control image to remove BOLD contrast present 

in both label and control images (Garraux et al., 2005). 

We thresholded difference images according to Garraux et al (Garraux et al., 2005). In 

brief, abnormal flow values that did not fall within a physiological range (e.g. due to 

head motion) were removed, by retaining only 1) pairs of voxels where control signal 

intensity had a value greater than 80% of the global mean intensity of the control 



  Hamandi et al. BOLD and perfusion changes during GSW    
  

 7 

image, and 2) voxels with a fractional signal change of less than ± 5%. We will refer to 

this ratio difference image as ASL-P (ASL-Perfusion).  

A corresponding BOLD sensitive time series was calculated from the ASL data by 

summation of adjacent label and control images; we will refer to these as ASL-B (ASL-

BOLD).  

A further time series of difference only images (i.e. not expressed as a ratio) was 

calculated for quantitative analysis. The mean perfusion images, perfusion time series 

and structural images were spatially co-registered to a respective BOLD image for each 

subject, to allow masking of quantitative perfusion images with the GM map. 

Statistical analysis 

Blocks corresponding to GSW epochs were convolved with a canonical haemodynamic 

response function and its temporal derivative (Henson, 2003). These were entered into 

a design matrix along with a Volterra expansion of the 6 realignment parameters 

yielding 24 confounds (Henson, 2003). A mass univariate approach as implemented in 

SPM was used for whole brain analysis, or in the case of perfusion, the acquired 6 

slices. In the analysis of the BOLD series and the ASL-B images an autocorrelation 

(AR1) correction and a 128 Hz low pass filter were applied (Henson, 2003). In the 

analysis of the ASL-P images no modelling of intrinsic autocorrelation, filtering or 

temporal smoothing were applied (Wang et al., 2003). 

SPM uses an implicit mask during the estimation of statistical correlation, based on the 

inclusion of voxels with intensities higher than 80% of the global image mean. Whilst 

this is appropriate for BOLD analysis allowing inclusion of within brain voxels only, it 

is unsuitable for ASL data in that within brain voxel values in the subtraction images 
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can be lower than those outside. We therefore used an explicit mask from the subjects’ 

mean perfusion image to define voxels to be included in the ASL-P statistical analysis. 

The brain mask was obtained by segmentation of the mean EPI image using a seed and 

region-growing method (Lemieux et al., 2000). 

T-contrasts for positive and negative HRF were used to map GSW associated changes. 

The resulting statistical parametric maps, SPM{t}, from individual analyses were 

thresholded at P<0.05 using the family wise error (FWE) correction for multiple 

comparisons based on Gaussian random field theory (Friston et al., 1991) for the BOLD 

timeseries, and P<0.001 (uncorrected) for the perfusion images given their lower signal 

to noise ratio (Loring et al., 2002). 

Quantitative CBF analysis 

Absolute difference images acquired during periods of normal EEG activity (rest 

images) were used for the quantitative analysis. Rest images were defined as those 

acquired beyond 5 TRs (23 seconds) after the end of any given GSW and up to 1 TR 

before the start of the following GSW. These time values were chosen to avoid 

inclusion of images with GSW induced perfusion changes that may precede or persist 

longer than the EEG defined event EEG (Diehl et al., 1998) but still provide a sufficient 

number of rest images to increase the signal to noise ratio of the mean perfusion image 

and hence the most reliable quantitative values.  

Quantitative perfusion images were calculated using the average white matter signal 

(SWM) intensity of the control images to normalize signal intensity - taking into account 

the differences in spin density and relaxation times - to calculate the signal intensity for 

fully relaxed arterial blood (Nöth et al., 2006). A GM > 0.7 probability map obtained 
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from segmentation of the structural images was used to create a binary GM mask. This 

was multiplied with the quantitative CBF map resulting in a GM-CBF map and the 

mean of this map provided an estimate of global GM perfusion. 

BOLD and CBF correlation analysis 

To investigate the coupling between the ASL and BOLD measurements, we performed 

a voxel-wise correlation analysis between the two. This was done on a) the entire time 

series, b) the rest epochs (images acquired during background EEG activity), and c) the 

GSW epochs (images acquired during GSW). 

Firstly, a design matrix was created using SPM in an identical manner to that described 

earlier, but omitting the ‘effects of interest’ (the onset and duration of epochs of GSW) 

for both  the ASL and BOLD time series in order to remove confounding variance 

(motion, scanner drift). From this a residual time series of images was calculated using 

the SPMd toolbox (http://www.sph.umich.edu/~nichols/SPMd). 

The residual time series for each voxel was then examined using a one way analysis of 

covariance (ANCOVA) as implemented in the aoctool.m function in the Matlab 

statistics toolbox (www.mathworks.com). The correlation between BOLD and 

perfusion time courses was examined, with an additional regressor used to assign the 

data at each time point to either 1) a rest epoch (images acquired during background 

EEG activity), or 2) a GSW epoch (images acquired during GSW). The results of this 

analysis give the correlation coefficients and their significance. In particular, we 

examined the overall correlation between BOLD and perfusion signals, where a 

significant correlation at a voxel level was taken as |r|>0.3 and p<0.05 (Bonferroni 

corrected by the number of voxels within the explicit mask used for the perfusion SPM 
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analysis) with voxels not meeting these criteria set to zero (masked). For voxels 

meeting these criteria, the correlation coefficients were obtained for rest and GSW 

periods and a significant difference in correlation between periods taken as p<0.001 

uncorrected. This lower threshold was used to look for these more subtle changes rather 

than the Bonfferoni correction, which is conservative, as it considers all voxels to be 

independent. 

To clearly visualize the spatial overlap of the correlation analyses and the BOLD 

activation an overlay of statistical maps was created. It shows voxels of significant 

correlation (both between BOLD and perfusion signals, and differences in correlations 

between GSW and rest), (de-) activation, and overlap in different colours (figure 4).  

Results 

Good quality EEG allowed unambiguous identification of GSW epochs. Figure 1 

shows a segment of artefact corrected EEG recorded during the BOLD fMRI 

demonstrating GSW for each of the patients. Patient characteristics and the number, 

median and total duration of GSW epochs during each acquisition and for the 

previously acquired 1.5T data (Hamandi et al., 2006), and 3T BOLD and ASL runs are 

shown in table 1. The interval between the 1.5T and 3T experiments ranged from 1 to 4 

years. 

BOLD responses 

Figure 2 (and Table 2 web material) shows maps for positive and negative HRF GSW-

related changes, along with the previously published 1.5T results (Hamandi et al., 

2006). NBR were seen in all patients at 3T with good correspondence with the 1.5T 

results. Patient 1 (SGE) at 1.5 T had widespread NBR involving all lobes and a small 
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mesial frontal activation and a left occipital activation. At 3T there was a more 

extensive mesial and bifrontal activation as well as activation in the temporal and 

parietal lobes and bilateral cerebellum, with smaller areas of NBR in occipital, bifrontal 

and temporal areas. Patient 2 (SGE) with EEG evidence of left frontal epileptogenicity 

showed a small area of left frontal activation at 1.5T and 3T, and thalamic activation at 

3T. There was NBR in posterior cingulate, bilateral posterior parietal and frontal areas 

both at 1.5 and 3T. Patient 3 (GTCS) showed NBR in bilateral posterior parietal and 

medial anterior occipital areas in both sessions, without areas of activation. Patient 4 

(CAE) showed a widespread NBR throughout the cortex, with a medial orbito-frontal 

maximum at 1.5 and 3T. In the 1.5T session and to a greater extent in the 3T session 

there was signal increase in the cerebral ventricles and periventricular areas. 

CBF responses 

SPM analysis of the ASL-P and ASL-B series revealed areas of significant perfusion and 

BOLD change that were similar (figure 3), and consistent with the whole-brain BOLD 

results, in regions of overlapping coverage (figure 2). Patient 1 showed an increase in 

perfusion in mesial frontal areas and decreased perfusion in the precuneus. Patient 2 

showed decreases in perfusion in posterior parietal, posterior cingulate and frontal areas. 

In Patient 3, no significant perfusion change was observed. Patient 4 showed widespread 

decrease in perfusion throughout the scanned part of the cortex involving posterior 

parietal, posterior cingulate and frontal areas with a frontal maximum.  

Quantitative CBF 

Quantitative analysis showed a mean resting perfusion across all 6 slices of 56.8 ( ±  

22.1), 42.3 ( ±  24.2), 48.7 (± 23.8), and 53.3 (±  25.4) ml 100g-1 min-1 for patients 1 to 
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4 respectively. The perfusion decrease at the voxel ‘maximum’ for patients 1, 2 and 4 

were -11.1%, -23.5% and -37% respectively. 

BOLD and CBF correlation analysis 

Over the whole time series, irrespective of EEG state, nearly the entire imaged brain 

volume showed a significant positive correlation between BOLD and CBF signal in all 

cases (figure 4). This held true when epochs of normal background EEG and GSW were 

studied separately. There was a strong positive correlation between BOLD and CBF in 

regions that showed NBR (figure 4) comprising all regions of significant bold activation 

and deactivation. In addition, in regions with significant activation or NBR there were no 

areas of mismatch (low correlation) between CBF and BOLD responses. Statistical 

comparison showed a stronger correlation between CBF and BOLD during GSW than at 

rest; these were co-localised with regions of strongest BOLD (de-) activation. (c.f. dark 

red regions in the bottom row of statistic maps (figure 4) and spmT maps in figure 4a and 

bottom 2 rows of figure 4a). Some additional regions of significant change in correlation 

between rest and GSW were seen (light blue regions in the statistics maps in figure 4). 

These were generally in regions exhibiting low correlation at rest. 

Discussion 

BOLD and CBF were positively correlated in patients with epilepsy during background 

EEG activity and GSW. This correlation was on average stronger during GSW. We found 

GSW-related NBR in frontal, parietal and posterior cingulate cortices. Frontal and 

thalamic activation were seen in two patients with SGE, concordant with the electro-

clinical features of their epilepsies. Furthermore, striking reproducibility of the GSW-

associated BOLD response was observed in subjects previously studied at 1.5T. 
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The finding of GSW-related cortical NBR is consistent with previous studies (Archer et 

al., 2003; Gotman et al., 2005; Hamandi et al., 2006; Laufs et al., 2006; Salek-Haddadi et 

al., 2003). The cortical distribution of signal change in frontal, parietal and posterior 

cingulated cortices, comprise areas of association cortex that are hypothesized to be 

involved in an organized baseline level of activity (the so-called ‘‘default mode’’) 

(Greicius et al., 2003; Mazoyer et al., 2001; Raichle et al., 2001). Our perfusion results 

and the strong positive correlation between BOLD and perfusion show that these NBR 

correspond to decreases in cerebral perfusion. In patient 4 NBR were also seen in visual 

and other cortical areas. Although local cluster maxima overlapped widely with default 

mode areas described by Raichle et al (Raichle 2003), this suggests more widespread 

cortical effects of GSW in this case. In addition, more cortical areas might be involved in 

discharge generation that are not apparent due to possible interference by NBR. 

Previously, normal coupling between haemodynamic and metabolic responses was 

found to be preserved in selected brain regions in two cases with epilepsy (Stefanovic 

et al., 2005). The changes in cerebral metabolic rate of oxygen (CMRO2), BOLD and 

CBF were in the normal range, in the selected brain regions (Stefanovic et al., 2005). 

These regions were selected based on statistical thresholding in relation to a motor 

paradigm and interictal epileptiform activity in two patients, and the possibility of 

altered coupling outside, or at the periphery of, these regions was not considered. In 

both our and their study only a small number of patients were studied in view of the 

need for sufficiently high GSW events to compensate for the low signal to noise ratio of 

ASL.   
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In our study, we characterised the coupling between BOLD and CBF in cerebral areas 

affected by GSW (as revealed by the BOLD and CBF maps) and also in unaffected 

regions. We found a positive correlation between BOLD and perfusion signals across 

the entire imaging sessions suggesting preserved coupling both during the rest state 

(background EEG), as well as during epileptic activity, with the latter showing even 

stronger coupling. There were some local significant differences between the GSW and 

rest periods at a threshold of p<0.001 uncorrected (see figure 4). These results could 

indicate regional changes in neurovascular coupling between different states, or non-

linearity in this coupling. However, it is more likely that they reflect areas that show the 

largest changes in spontaneous activity providing a greater functional contrast range 

relative to the noise background. 

The failure to detect significant perfusion changes in patient 3 was likely due to the low 

signal to noise ratio of ASL in combination with the low efficiency of this session with 

only 12 events of 23 seconds total duration, compared to 38 – 68 events (total duration 

221 – 564 seconds for the other 3 patients (see table 1). A significant correlation 

between the BOLD and perfusion signal was found in this patient with a similar pattern 

to that observed in other subjects. 

The mean resting state cerebral perfusion across the whole volume in our subjects was 

similar to that reported in healthy subjects (Garraux et al., 2005). GSW-related decreases 

were in the range 11% to 37% in broad agreement with neuronally driven deactivations 

observed during cognitive and motor paradigms (Garraux et al., 2005) and blood flow 

velocity decreases seen in transcranial Doppler studies of GSW (De Simone et al., 1998; 

Diehl et al., 1998). In addition to TCD studies, decreases in perfusion have also been 
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observed during human absences and GSW, using near infrared spectroscopy (Buchheim 

et al., 2004) and the 133Xenon method (Sperling and Skolnick, 1995).  

In animal models the majority of thalamocortical neurons are steadily hyperpolarized and 

inactive during cortically generated spike wave seizures, with cortical dis-facilitation or 

‘temporal absence of network activity’ (Timofeev and Steriade, 2004). Our findings of 

preserved neurovascular coupling, are consistent with GSW-related NBR reflecting this 

decrease in neuronal activity (Shmuel et al., 2006). The extent of the observed NBR in 

the absence of large activations in some patients makes vascular stealing as a mechanism 

for NBR (Wade, 2002) highly unlikely. Quantitative perfusion measures were normal and 

in this context there is little evidence to support the notion of vascular stealing (Born et 

al., 2002)(Czisch et al., 2004)(Parkes et al., 2004)(Smith et al., 2004). 

The positive BOLD changes observed in this study were variable, in line with previous 

EEG-fMRI studies (Archer et al., 2003; Gotman et al., 2005; Hamandi et al., 2006; Laufs 

et al., 2006; Salek-Haddadi et al., 2003). Cortical activations concordant with the electro-

clinical diagnosis were seen in the 2 patients with SGE. In patient 1, the ictal semiology 

was typical of prefrontal seizures, suggesting orbitofrontal and anterior cingulate 

involvement (Niedermeyer, 1998) and concordant with the prefrontal activation. In 

patient 2, GSW had a left frontal onset in addition to independent left frontal discharges 

consistent with left frontal and thalamic activations. 

In this study, significant thalamic activation was seen in only one patient (#2). Thalamic 

fMRI activation has been seen in previous studies (Gotman et al., 2005; Hamandi et al., 

2006; Salek-Haddadi et al., 2003) in line with the well documented role of the thalamus 

in GSW (Avoli et al., 2001; Steriade, 2005). The absence of thalamic activation in the 
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other cases may be due to a lack of fMRI sensitivity to detect these changes; Laufs et al 

found thalamic activation in one case at 3T that was not seen at 1.5T (Laufs et al., 2006). 

The contrast between the degree of intra-subject similarity between the BOLD maps at 

1.5T and 3T and the degree of inter-subject variability is striking considering the time 

intervals involved (up to four years), the differences in the number of GSW events 

between intra-subject sessions and use of different scanners. Given that studies in much 

larger groups failed to reveal syndrome-specific patterns (Hamandi et al., 2006) this 

suggests that the vascular changes are relatively specific  in individual  patients.  

Significant activation was seen in the ventricles in one patient (#4). This has been 

previously reported in group analyses of GSW (Gotman et al., 2005; Hamandi et al., 

2006). The possible explanations for this effect include GSW-related head motion or 

altered CSF pulsation. 

Conclusion 

In the patients studied here the relationship between BOLD and CBF changes during 

rest and GSW activity was preserved consistent with normal neurovascular coupling. 

Cortical activations appeared to reflect areas of discharge generation whilst 

deactivations reflected decreases in resting state neural activity. 
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Table 1. Patient characteristics and details of EEG events during each scan run. 

Abs - absences, AEDs - anti-epileptic drugs, At Abs - atypical absences, SGE - secondary generalized epilepsy, EGTCS - epilepsy with generalized tonic clonic 

seizures, CAE - childhood absence epilepsy,. GTCS - generalized tonic-clonic seizures, CBZ - carbamazepine, LEV - levetiracetam, VPA - sodium valproate.  

1 blank spells, on occasion with abnormal posturing (looks left, dystonic posturing of both arms), occasional urinary incontinence, clusters associated with thought 

disorder (formed illusions, distortion of perception and auditory hallucinations). 

 

GSW events during fMRI  

Number (duration range / median duration / total duration)  

(seconds) 

 Age        Sex Diagnosis Seizures 

Type frequency / (age 

onset) 

AEDs Interictal EEG 

1.5T BOLD 3T BOLD 3T ASL 

1 39 F SGE Abs1 10-20 / d (9) 
GTCS 0-4/mnth (11) 

CBZ, 
LEV 

2-3Hz sW with 
admixed spikes 

57   (1.1 – 25 / 4 / 387)   43  (1.6 – 26 / 7.4 / 387) 38 (0.3 – 8.7 / 6.8 / 
405 ) 

2 21 M SGE Abs 8/mnth (13)  
GTCS 4/yr (18) 

CBZ, 
LEV,VPA 

2-3 Hz GSW  
L frontal onset 

32   (1.1 – 29 / 5 / 258 ) 40  (0.7 - 47 / 2.3 /  416) 44 (1.7 – 41.2 / 9.8 
/ 564) 

3 35 M EGTCS GTCS 3 in total (12) VPA 3 Hz GSW 33   (0.6 – 3.0 / 1.5 / 52) 25  (0.8 – 3.0 / 1.5 / 21) 12 (0.7 – 4.7 / 1.2 / 
23) 

4 30 F CAE Abs 15/d (8) None 3 Hz GSW 130 (0.3 – 28.7 / 3.3 / 591) 84  (1.0 – 8.3 / 2.6 / 199 ) 68 (0.8 – 9.8 / 2.8 / 
221) 
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Figure 1 

Representative EEG segments from each of the 4 experiments acquired during BOLD 

EPI at 3T, showing runs of generalized spike wave (GSW). Note the activity in patient 

#1 was predominantly slow wave with intermixed spikes and in patient #2 there is a left 

frontal lead into the GSW.  SGE - secondary generalized epilepsy, GTCS - generalized 

tonic clonic seizures, CAE - childhood absence epilepsy. 

Figure 2 

SPM {t} of BOLD time series for all patients. GSW-related positive (red) and negative 

(blue) BOLD changes at 1.5T (Hamandi et al., 2006) and 3T overlaid onto the SPM ‘T1 

template’, with ‘glass brain’ view below. In the overlays, sections were adjusted such 

that a similar slice orientation is displayed at 1.5 and 3T to facilitate comparison. All 

analyses are thresholded p<0.05 family wise error correction.  

SGE-secondary generalized epilepsy, GTCS - generalized tonic clonic seizures, CAE - 

childhood absence epilepsy    

Figure 3 

A conjunction of SPM{t} from ASL-P and ASL-B time series with positive (BOLD-red 

and Perfusion-green) and negative (BOLD-blue and Perfusion-cyan), for each of  

patients #1, #2 and #4, overlaid onto the subjects’ mean EPI. The extent and location of 

the six imaged slices relative to the whole brain can be seen from these activation maps. 

Comparison with figure 2 shows close correspondence to the whole brain BOLD maps.  

No significant CBF change was revealed in patient #3 likely due to the low number of 

GSW events during the scan run. SGE-secondary generalized epilepsy, CAE-childhood 

absence epilepsy. 
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Figure 4 

a) BOLD-perfusion correlation maps and ASL-B SPM for patient #4. The central 4 

slices (from 6) are displayed (similar results are seen in all slices). Top row: BOLD-

perfusion correlation for GSW epochs; Second row: BOLD-perfusion correlation for 

rest epochs; Third row: BOLD-perfusion correlation for entire time series. Fourth row: 

ASL-B SPM{t} for negative weighting on HRF. Fifth row: Statistics map showing 

regions exhibiting a significant correlation from the ANCOVA analysis plotted with 

regions of significant BOLD deactivation. Dark blue indicates regions that were neither 

deactivated nor showed BOLD-perfusion correlation. Mid blue regions show a 

significant positive correlation between BOLD and perfusion with light blue indicating 

areas that showed a significant difference in correlation between GSW and rest. Orange 

and red colors demonstrate co-localisation of BOLD deactivation and correlation.  

A strong positive correlation (yellow and red colours in row 3) is seen throughout the 

cortex during GSW. Regions of BOLD deactivation overlapped with significant 

correlation apart from at the very edges of the brain. The highest correlation is in the 

posterior parietal, posterior cingulate and frontal areas, with a significant difference in 

correlation between rest and GSW epochs within some of these areas (dark red in 

statistics maps). The orange/red regions in the statistics maps show that NBR was 

always associated with decreased perfusion.  

b) BOLD-perfusion correlation maps and ASL-B SPM{t} for all patients 

(representative slice) – analogous figure to a), but now per subject instead of per slice. 

Top row: BOLD-perfusion correlation for GSW epochs; Second row: BOLD-perfusion 

correlation for rest epochs; Third row: BOLD-perfusion for entire time series. Fourth 
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row: ASL-B SPM{t} for negative weighting on HRF; Fifth row: Statistics map showing 

regions exhibiting a significant correlation from the ANCOVA analysis overlaid with 

regions of significant BOLD deactivation. Dark blue indicates regions that were neither 

deactivated nor showed BOLD-perfusion correlation. Mid blue regions show a 

significant positive correlation between BOLD and Perfusion with light blue indicating 

areas that showed a significant change in correlation between GSW and rest. Orange 

and red colors demonstrate co-localisation of BOLD deactivation and correlation with 

perfusion; sixth row: Statistics maps, as above, showing regions exhibiting a significant 

correlation from the ANCOVA analysis, only here, plotted with regions of significant 

BOLD activation for each subject. A positive correlation was always seen between 

BOLD and perfusion time courses in regions with either a significant BOLD activation 

or deactivation. The strongest correlations were found in the frontal, posterior parietal 

and posterior cingulate cortex. Stronger correlations found during GSW occur in 

regions of highest correlation during GSW or lowest correlation at rest and are likely to 

reflect the larger signal changes relative to noise in both the perfusion and BOLD voxel 

time course in these areas. 
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Table 2. Details of main local maxima from SPM{t} of positive and negative HRF for the 1.5 and 3T BOLD fMRI sessions for each 

patient.  1.5T and 3T are shown side by side for comparison. The positive weighting on the HRF is denoted Act (activation), the 

negative Deact (deactivation), shown in italics. MNI coordinates, Z score and cluster size are given in each case. 

 


