
A Biologically-Inspired Approach to Designing
Wireless Sensor Networks

Matthew Britton, Venus Shum, Lionel Sacks and Hamed Haddadi

Abstract--In this paper, we contend that there are
significant advantages in treating some classes of sensor
networks as biological-like systems-both in structural
design characteristics and in operational processes. We
show how this design process leads to a sensor network
system that is robust to topological changes, is scaleable
and self-organising-and has a number of other desirable
features. The operating system kOS was designed to
support the operation of distributed biologically-inspired
algorithms, in order to accomplish tasks in a sensor
network system. We look at t h e design of kOS and anaiyse
its performance. The work presented has been
implemented in an environmental monitoring project, and
has applications in other areas.

Index Terms-Biological algorithms, operating systems,
wireless sensor networks,

I. INTRODUCTION

Biology has inspired people in various fields to design
systems in different, often elegant ways. Biological
concepts have been used to inspire approaches such as
artificial neural networks and evolutionary computation,
and have led to alternative methods in fields such as
operations research and robotics. In this paper we
examine the characteristics of biological automata-
simple biological “agents” which interact with their
neighbours via simple rules, and yet seem to cooperate
with a large number of individuals to perform some
complex global task.

There are significant advantages in treating some
classes of sensor networks as biological automata-like
systems-both in structural design characteristics and in
operational processes. Biological automata have a
number of desirable characteristics such as scalability,
robustness, simplicity and self-organisation-which are
also desirable characteristics of wireless sensor network
systems, In Section I1 we look at the characteristics of

’Manuscript received September 13”, 2004. This work was supported by the
University College London and the UK Department of Trade and Industry
(DTI).

biotogical automaton systems and their applicability to
the design of sensor networks.
In Sections 111 and IV we look at the requirements of

the network and of individual nodes in more detail, and
begin to assign functions which satisfy these
requirements. We describe how we may develop an
architecture combining both a bottom-up and top-down
approach. This is done by combining a set of biological
automata-like features with the top-down design of a
self-organising system.

In Sections VI and VI1 we describe the design of kOS,
an operating system that utilises many of these concepts
to enable a network of computing devices to act like a
system of biological automata.

In section VI11 we describe an implementation of the
kOS in the SECOAS project 1241 as part of a system for
oceanographic environmental monitoring [l][23 1. The
SECOAS project’s aim is to demonstrate alternatives to
the current practices of using large, expensive devices to
log data-an approach that has substantial risks of
platform destruction and only monitors one spatial point.
In Section IX we present some performance analysis

results using the SECOAS project as a baseline, in order
that our approach may be compared with others.

11. BIOLOGICAL SYSTEMS AND SENSOR NETWORKS

A Biological Automata
In many biological hive or collective intelligence

systems such as termite colonies [27], bacterial colonies
[26] and firefly swarms [28], simple neighbour-
neighbour interactions between organisms or cells
results in complex behaviour, where members seem to
work together to perform a global task. This property is
sometimes referred to as emergence, as significant
complexity is produced from seemingly simple rules and
interactions. These systems all contain distributed
computational units which respond to environmental
stimuli, with little or no centralised management-these
units are commonly referred to as biological automata or
agents. A common theme amongst these systems is that a
change in behaviour of individual units (and eventually
of the whole system) occurs when an environmental

0-7803-8801 - 1/05/$20.00 (c)2005 IEEE.

256

parameter is perceived to cross some threshold.
Thresholds, depending on the system, may be the
distance to a closest neighbour or the concentration of a
chemical. From this set of characteristics, a number of
remarkable traits emerge.

Firstly, the systems tend to self-organise and self-
optimise. These systems do not rely on central
managcment-they exhibit global optimisation of
various processes by simple neighbour-to-neighbour
interaction only. This is conducted via chemical or
electrical media, and this diffusion or transmission
process has a limited range.

As a consequence of having no central management,
these systems often exhibit robustness to individual
failures and topological changes. Adaptation is a major
strength of biological systems, as they must response to
addition or removal of members, as well as sudden
changes in the environment. Because these systems have
no central management and only use neighbour-
neighbour interactions, they have remarkable scaling
properties.

Biological systems adapt to dynamic environments, as
they encounter extreme variations of various parameters
in their environment-such as temperature, humidity.
pressure and availability of food (energy) sources. They
also show adaptation to changing requirements, as new
tasks must be executed in order to counter the change in
environment. Some species of ants, for example, use a
simple control mechanism to maintain a constant
proportion of worker to warrior castes 1291.

Finally, these systems gracefully adapt to achieve a
result in an iterative-like process and tend to ignore
outlier (possibly erroneous) results-such as in bird
flocking [27]. This is a natural consequence of using
neighbour-only interactions, as automata adapt using
information from a number of neighbours. This means,
however, that changes are slow to spread through such a
network.

B. Application to Sensor Network Systems
Researchers in fields such as Artificial Intelligence

and Robotics [29] and Computer Networks [30] have
sought to mimic various aspects of such networks of
biological “automata”. Our work has shown another
application for such systems. What is striking about the
characteristics of these biological systems is their
similarity to the requirements of sensor networks-not
only in terms of structure but also the processes required
td achieve global tasks. In this section we explain how
the design and operation of a sensor network may
naturally be viewed as a biological-like system of
automata.

Wireless sensor network systems by their very nature
are distributed. This is often due to the requirement of

measuring a spatial field of parameters that a single
sensor (even if somehow mobile) would not satisfy. In
this case, centralised management is costly (in terms of
power usage) due to communication and also limits the
scalability of the network. It is natural, therefore, to limit
communications to short range-possibly to neighbour-
neighbour interactions only. This de-centraked
management paradigm aligns well with the structure of
biologicaI automaton systems.

As a general rule in the field of sensor networks, it is
desirable to limit the processing power of individual
sensor nodes. This is because microcontroller units
(MCUs) with limited memory and processing power
have recently become exceedingly cheap. Even though
these MCUs are limited in their ability, a network of
such units can act as an extremely powerful system. This
approach fits nicely with the characteristics of networks
of biological automata and is economically attractive
compared with alternative solutions.

Scalability is a key issue in the design of sensor
networks. It is important, especiaIly in environmental
monitoring, because the size of the spatial field of
interest will generally be unknown at the design phase. It
is preciseiy by leveraging these characteristics from the
biological world that we are able to design scaleable
sensor networks.

For simplicity of management (and eventually for
lowering maintenance costs) an autonomous system is
desirable. Ideally, only occasional high-level policies are
used to manage the system. Biological networks, having
no central management, are candidates for this model.
Extending this, we would ideally like the system to be
self-organising and self-optimised. This characteristic
also makes the system robust against individual nodes
faiiure.

We would also like our system to adapt to dynamic
environments and requirements. In environmental
monitoring, various temporal phases of operation will
exist-certain global tasks will be executed for
monitoring ocean storms, for example-with different
requirements for network traffic and node processing.
Just as the size of the required network will be unknown -
at the design phase, so will the details of the phenomena
encountered. An environmental scientist (as the system
user) would likely want the system to opeiate in new
ways after discovering and new phenomena.

Using iterative applications gives us many
advantages. Firstly, the applications may adapt slowly to
environmental and system conditions, just as their
biological counterparts would do. They are also easy to
manage as part of an overall system. This is because we
may simply adjust their periodicity to alter the quality of
their result: to adapt to radio bandwidth constraints or
system processing demands, for example. When

257

applications are constructed this way, their operation
becomes simple and predictable.

As can be seen, then, virtually every one of the
desirable characteristics of sensor networks has an
analog from biological automata. It seems possible,
therefore, to use the best ideas from the biological world
and design a sensor network with a number of useful
properties. One of the disadvantages of this approach, it
must be noted, is that it is suitable for relatively high-
latency requirement systems only. This is a consequence
of having slow, iterative, neighbour-neighbour
interactions between nodes. However, there remain
many more advantages than disadvantages. In summary,
then, our sensor network should exhibit the following
characteristics:

i Decentralised management
e Self-organisation and autonomy

Robustness to topological change
Limited processing power of individual nodes
Power control for individual nodes
Adaptation to dynamic environments and changing
roles

111. SYSTEM REQUIREMENTS
There are many tasks need to be achieved in the

sensor system. We refer to this as the functional plane of
the network. In this section, we describe what functions
need to be supported across the network.

With the constraint of slow, iterative neighbour-
neighbour interactions, our system operates with weak
consistency across the network. This means that nodes
do not generally need to synchronise their databases,
variables, etc in order to perform their tasks. This also
means that nodes may execute the same tasks at diffyent
times. Not surprisingly, biological systems exhibit the
same characteristic.

However, the system does require coordination
between nodes to some degree, where individual nodes
cooperate to achieve local tasks. This is for a number of
reasons, Firstly (and particularly with environmental
monitoring), areas of interest will generally appear in the
spatial structure of the parameter of interest. It is useful,
therefore, for nodes within this area to interact and
understand the phenomenon as a sub-group within the
network. Secondly, by coordinating their actions, nodes
may save energy by electing representatives to report on
this phenomenon. 'Therefore the system requires some
mechanism for coordination across the network. Fig. 1
shows how disparate sets of nodes contribute to various
global tasks.

VeriralYrw H a n z a n t d W w ,

Functional Plane A /oT/
0 0

Fig. 1. Two views of the sensor network system: (a) the "horizontal"
view showing layers of network functions (functional planes) upon a
network of nodes, and (b) the "vertical" view functions (tasks) within
one of these nodes.

As the network topology is unknown at the design
stage (and may even be dynamic) we require that the
data transport protocol be independent of the topology as
much as possible. We also note that as nodes are
expendable we wish them to be anonymous-that is,
their identity is unimportant, with location being their
only useful identification. As the system should be
extremely scaleable, building routing tables becomes
infeasible. This naturally leads to using gossip-like
protocols [6][20][32] for data dissemination, as they
offer a SIOW, reliable service for any topology. This is an
acceptable method for application parameter-sharing or
for policy dispersion. For data acquisition, however, we
wish to use at least some directional information. This
"directed gossip" protocol would have an awareness of
the direction of data sinks and data would naturally
forward in that general direction. Concepts such as
Directional Diffusion [31] are useful for these purposes.

Power management at a system level is important as
we do not wish individual nodes to fail at important
junctions in the topology. We do this primarily by
clustering nodes based on spatial data similarity [6][221.
These clusters nominate a node to represent them, which
sends data to the sensor data source on the cluster's
bkhalf. In this way, excessive multi-hop radio
communication is avoided and the system lifetime is
extended.

Finally, we require the system to have high integrity
operation. Integrity, in this context, means that a system
behaves as expected under a wide range of operational
circumstances which include system failures as well as
extremes of environment. Traditionally, engineers (for
example in telecommunications) have designed systems
by defining a precise performance for all circumstances.
The result of this has often been expected operation,
followed by catastrophic failure at some point as soon as
the system-or the environment has breached the bounds
of its operational parameters. To avoided this, the design

25 8

\

presented here requires that ai1 elements, be they nodes
or algorithms, of the system can adapt to failures;’
corrupted data or imprecision’s in parameters; and still
function sufficiently.

\
IV.’. NODE REQUIREMENTS

In this section we look at what features individual
nodes require in order to support the concepts mentioned
in Section 111, and progress to describe requirements
elicited for other reasons.

Firstly, each node requires ‘syme kind of radio
communications device and a sensor device in order to
measure physical parameters of interest:‘In this paper we
treat these as two external modules, as our interest is
primarily in the software layer. Also, (as sh14 be seen
later) our implementation naturally divides each ,node

’ into three separate modules with simple interfays
between them-in fact many of the features we discus’s,
require this to be the case. Our implementation work is
focussed on the “processing module”, and our discussion
in this paper shall be mostly limited to this module
unless stated otherwise.

On this processor module, tasks will need to perform
simple mathematical calculations, as statistical data from
sensors and other management parameters must be
analysed and manipulated. As our applications generally
execute in an iterative manner, the nodes require access
to timers in order to schedule themselves for
execution-these timers must be adjustabIe to enable to
nodes to adapt their behaviour. Various other capabilities
are required such as memory buffers .for storing
parameters and history states. Moreover, i t is necessary
to implement these node functions on a simple
microcontroller unit (MCU). We look at the allocation
of these functions to a hardware implementation more
closely in Section VIII.

Power minimisation is also desirable, in order to
extend the life of the network a5 much as possible. To do
this we implement sleep or idle cycles-another standard
feature in most MCU designs. We also choose an MCU
which naturally has low power usage. However, with
most wireless sensor networks the majority of power is
expended in the radio communications device-so our
design of the processor module is only a small part of
the node’s power management.

As we have stated above, individual nodes perform
one piece of a global task. There are multiple tasks
executed in the system, such as data retrieval and various
kinds of collaboration. Individuals therefore have
multiple pieces of work to achieve in order to contribute
to these multiple tasks.

To give each node the required flexibility to manage
multiple tasks (where task schedules will generally
change over time), it is necessary to have some kind of

.

operating system to be executing on each node. We shall
now refer to the sub-set of tasks which perform some
kind of algorithm as applications, as they are modular
pieces of program code. An operating system is also
necessary in order to manage various tasks priorities,
such as high-priority interrupting tasks for interfacing to
an external peripheral such as a radio communication
module. It is also convenient for organising applications
as programs and interfacing timer devices, for example.
Fig. 2 shows the logical components in each node which
we have discussed to this point.

modu le

*InpudOutput

*Memory

4M~thematical
functions
*Timers

*Interrupts

module

Fig. 2. Thebgcal components (modules) within each node, showing
the minimum functions needed for the processing module.

A Operating Sjrstem Requirements
We call this operating system “kOS”, meaning a

“kind-of” or “kilobit” operating system-reflecting its
relatively simple nature. The responsibility of kOS, then,
is to provide a platform for the support of these
distributed applications. As the applications are
relatively simple in nature, the kOS does not need to
support sophisticated libraries of mathematical funetions
or provide a capability for multi-tasking execution.

One of the first things we see, therefore, is that a
simple single-tasking, run-to-completion execution
model is sufficient. This greatly simplifies the design
and operation of the *OS. Applications have low
requirements for latency, meaning we can afford to do
this without affecting their performance. The only real-
time service we require is to read information from
external peripherals when it is available with low
latency-something most MCUs provide via an interrupt
service.

The architecture of these applications depends on
similar code elements (algorithms, applications) running
on each node, which communicate with each other on a
nearest neighbour basis. Thus, the requirement on kOS is
to be highly communication oriented. To do. this, we
require an efficient messaging interface to be built into
the kOS kernel. Applications may then use a simple call
to send a message to remote nodes or to other algorithms
on the same node. This design also has the advantage of
decoupling application functions from their hardware

1 .

259

implementation location. The advantage of this shall be
explained in more detail later-for now we simply
observe that applications may execute3 other kinds of
devices and still communicate using this messaging
service.

To maintain simplicity and robustness, we have
designed kOS to be as stateless as possible. kOS is
stateless in at least two senses. Firstly, the kOS does not
need to maintain any context information during
application execution, such as stack data-as all
application instances run to completion before other
applications execute. Secondly, the messaging service
simply informs applications of the arrival of new data,
and it is their responsibility to deal with this data
appropriately within a given time. Circular buffers are
used so that if new data is not dealt with in time, they are
overwritten by newly-amiving data. In this way, no data-
application state needs to be saved by kOS and the
messaging process is loosely-coupled to application
execution. This is not to be confused with the state of
applications; appkations do require some small state
information (such as a nearest-neighbour list for a
clustering application)-our design simply assumes that
kOS does not need to be aware of this.

The kOS needs to be able to manage a schedule of the
various tasks on each node. For simplicity, we force
repetitive tasks to self-invoke their next execution time.
Because the applications are “iterative” (that is, they are
constantly refining their result similar to biological
automata), we can adjust their period of execution (and
hence the quality of their result) and scale the processor
load accordingly. This means, for example, that a node
can adjust to low power or low node-node bandwidth
operation by only executing tasks occasionally.

These requirements make the adoption of an object
oriented paradigm appropriate. In this view, applications
consist of object instances. These objects communicate
through messaging-with the messages either being sent
locally or over the radio communications channels, This
approach provides a clear applications model which is
naturally . oriented towards supporting distributed
applications.

As can be seen above, power awareness is not only a
hardware issue but an operating system design issue as
well. The OS has control over when the MCU should
idle or sleep, and largely controls its processor load.
These features allow the node to adjust for low-battery
conditions, allowing the sensor system to gracefully
reach the end of its (battery power) life by extending the
lifetime of particular node-such as nodes at traffic
bottle-necks, for example. Some of our work has been
dedicated to designing distributed control applications to
adjust nodes to these conditions [5] .

In summary, the design of kOS is built on several
guiding principles:

Modularity of application design-via a simple
messaging interface,

+ Simple execution model+liminating most context
information and providing robust and predictable
operation,

+ Power awareness-using adaptive scheduling, as
well as other standard techniques such as using
shutdown features, and
Simple processing load control-by adjusting the
execution periods of iterative applications.

v. RELATED WORK

In this section we examine the field of embedded
operating systems, and compare their capabilities against
our requirements stated in Section 1V.A.

There are several efforts of research in embedded
operating systems for wireless sensor networks. These
include the Smart Dust concept [SI initiated by the
Electrical Engineering and Computer Science
Department at the University of California, Berkeley.
This idea was later instantiated as the TinyOS operating
system and the design and construction of several types
of small platform “motes” able to execute TinyOS and
applications [SI. TinyOS is a small footprint (at a
minimum, 4kB in ROM), event-based operating
environment designed for use with embedded networked
sensors. Its design philosophy is complementary to ours
in several ways.

Firstly, TinyOS was designed to support concurrency-
intensive operations in order that multiple applications
and a radio slave device (which have no buffering and
strict hard real-time constraints) be multi-threaded to
give acceptable levels of service. This differs from our
approach of single task execution: our applications have
more relaxed latency requirements and can be pre-
empted by higher priority tasks with no affect on their
quality. Our radio (and other extemal hardware devices)
has its own buffering and therefore more relaxed timing
constraints.

Secondly, there is a fundamental difference in
philosophy between the two approaches. TinyOS was
designed to be as minimal as possible in order to execute
on extremely limited devices-limited in terms of size,
power and processing capability. The stated goal of
supporting cubic millimetre scale devices with minimal
processing (the emphasis is on forwarding to an
intelligent node) is vastly different from our goal: ours is
to execute a small, simple OS on a cheap (possibly)
wallet-sized device. Put simply, our emphasis is on the

260

support of networked applications rather than hardware.
TinyOS has been implemented in many projects; perhaps
the most relevant example is its use in 2002/2003 for
monitoring animal habitats on Great Duck Island, Maine,
USA [IO].

The EYES project, and its associated EYES operating
system 1191 is much closer to our goals in that it seeks to
support a self-organising sensor network of distributed
applications. Another related project is within the
Swedish Institute of Technology; where an operating
system called Contiki E251 has been designed. In
Contiki, reprogrammability is an important feature
which has been built into the kernel library. As with
TinyOS, however, its execution model is unsuitable for
our purposes.

There are various embedded operating systems that we
considered. All the operating systems fail to meet our
requirements because of one or more of the following:
(i) they are specific to various embedded hardware
functions or are minimal executives providing static task
executions suitable only for particular applications (and
do not easily allow application extensions or have only
static task allocations), such as pOSEK [l l] and
CREEM [121; (ii) they use multi-tasking techniques
[25][9], such as POSIX-compatible threading [131,
whereas we require a simple single tasking execution
model; (iii) their memory footprint is excessive for our
MCU-based system, such as FClinux [14]; or (iv) they
execute only on powerful Pentiums or ARM processors,
such as VxWorks [151 and Ariel [161.

There are also various projects simil’ir- io SECOAS,
where nodes have been built and tested. Many of these
projects implement a traditional communications stack-
much too heavy for our purposes, as will be explained
later. These include projects in the realm of “ad hoc
networks” where routing protocols have been proposed
[17][18] (such as to the MANET and‘ IETF working
groups), or relatively heavyweight access schemes such
as Bluetooth or 802.1 I have been used. Our project
requirements are, rather, for a slowly-changing topology,
gossip-based communications transport over a minimal
communications stack and the inter-changeability of
node roles. Hence we have little need for network
addressing or routing.

VI. KOS STRUCTURE

In this section we examine how the requirements from
Section 1V.A are implemented in our operating system.
We look at the components that make up the system and
what their interfaces are. In Section VI1 we look at the
operation ofthe kUS.

In the kOS structure, system functionality is abstracted
into objects and methods. The architecture is devised in

this way in order to promote a modular structure to the
operating system and to allow loosely-coupled code
elements to inter-operate. There are four types of
objects:

Local application objects-such as clustering or
auto-location.
Local system objects-such as the message handler
and the scheduler.
External devices such the radio and sensors are
presented to application and system objects as
interface objects. These objects exist purely to
directly access the hardware required to enable
external access-such as the USART device on an
MCU. For example, an application object will use
the message handler object (a local system object) to
send a message over the radio. The message handler
object will use the radio object to physically send the
message to another node.
Virtual applications which reside primarily on other
devices-such as the sensor module, but whose
messages must be interpreted locally. These objects
are “virtual” in the sense that all that is required is
that the incoming messages be handled
appropriately. Generally, little processing is done
and so only a small sub-set of the remote’
application’s‘code is needed. An example of a
virtual object may be a virtual “networking” object.
Whilst some code may reside on the kOS MCU, the
bulk of the whole system’s networking code will
logically be on a separate radio MCU. The virtual
object may be referenced when a messaging packet
contains useful network information for a kOS
application; such as a received signal strength
indicator useful for an auto-location application. It is
useful to separate some seemingly external functions
in this way because (for example) networking
specifications may change during development.

The next level of abstraction is the method. All actions
(tasks) undertaken by objects are the result of a method,
which is an executable and referenced portion of the
object code. There are a range of methods which objects
may execute. Some methods are shared-for test and
reset commands, for example-and some are
application-specific. Fig. 3 shows how the four types of
objects interact with the two types of methods. We shall
examine the operation of kOS using methods in Section
VII.

VIT. KOS OPERATION

In this section we examine the two most important
aspects of the kOS operation-task scheduling and

26 I

messaging-and also look at other features which were
elicited in earlier sections. In Section VI11 we will then
examine how the kOS has been implemented.

The basic operation of the kOS revolves around a
sleep/activity/sleep cycle-important for power
conservation. The scheduler object manages these sleep-
wake transitions and the order of execution tasking.

.. -. .

I Object? I I Objeclc I

Fig. 3. The kOS functional abstraction, showing the four types of
objects and two types of methods. The objects use various methods
across the Execution Interface and interact with other objects across
the Messaging Interface.

A Task scheduling
The scheduler object manages the execution of object

methods, or tasks. When a method has finished
execution, the scheduler will preset a time for the next
object method execution. As stated before, each
application then nominates a future execute time. This
basic operation is shown in a simple state diagram in
Fig. 4.

As stated in previous sections, we use the biological
automaton characteristic of iteration to design
applications. This means that execution times are
relatively constant each instance. Thus the scheduler can
control the quality of the result an application produces
simply by altering the period of its execution. We may
want lo do this to reduce bandwidth across our node-
node radio links or to reduce power consumption when
the node’s battery power is low. The scheduler will do
this in order to keep the total processing duty ratio below
a certain threshold. We use an off-line analysis to gauge
the duty cycle of each object’s iteration-from here if is
a simple operation in order to control the sum of all duty
cycles in the kOS by adjusting each application in this
way.

Examples of possible object tasks include the periodic
updating of neighbour lists by a clustering application,
or the periodic iterative estimation of location by an
auto-location application.

B. Message handling
All application objects need to communicate with (at

least) their instances on radio-adjacent nodes to be most

effective-that is, they are inherently distributed
applications. For data that must be shared across the
network, we have designed a custom gossiping transport
protocol [6][20] using hash functions [21] and a
synchronization process inspired by firefly behaviour
[32]. Using this scheme, whole-network traffic naturally
adapts to local changes-traffic increases when it needed
(detected via hash function exchanges) and returns to
normal after exchanges occur.

High prionty
scheduler

I t High
priority

prioriry
Low prioriry

inllrmpt

Boo1

T I kOS reset
command

I - - -)
1 slarl ‘ WDT rime-our
1 - - - 1

Fig. 4. Basic kOS operation, showing the sleep/wake cycle and the
use of interrupt service routine for high and low-priority tasks.

The message handler object is scheduled periodically,
and is additionally scheduled after any radio or sensor
interface messages are received. When new data is
found, the object schedules a “new data arrival” method
for the destination object. When this method executes
and the application sees the new data, it is the
application’s responsibility to read the new data and deal
with it appropriately-for example, to incorporate the
data into its own buffer, as the packet will be deleted due
to the circular buffer operation. In this way, message

,handling is loosely-coupled to application execution.
A simple messaging protocol called SAM is used by

objects for intra- and inter-node communication. The
majority of SAM messages contain application
information, such as the sharing of parameters or data.
However, any object may use SAM to pass data or
control information over the radio interface to
neighbouring nodes or to applications residing on the
same node.

Using the message-handling service, a simple gossip-
like protocol is used to disseminate various kinds of
information around the network, such as policies or
application parameters. For data acquisition, where we
want to send sensor data to a network sink, we combine
this gossip protocol with information from the specific

262

network layer used. As we shall explain later, one
possible implementation of this kind of “directed gossip”
feature uses the SSSNP network service layer [2] .

C . Robustness of operation
In our node, robustness is very important as we are

operating a remote, embedded system. By robustness,
we mean several things: (1) that each node will operate
as expected, and if not, is expected to reboot itself in an
attempt to bypass any intermittent problems; (2) that
applications will operate given unknown radio
connectivity conditions; and (3) that applications will
operate acceptably when load-controlled by the
scheduler (see Section A above).

The first simple step in ensuring that each node is
robust in the sense of point (1) above is to implement a
Watch-Dog Timer (WDT). This common MCU
hardware feature simply resets the MCU if the WDT is
not reset within a preset time. This is a standard method
used for embedded applications. However, after a WDT
power-on reset, the problem that led to the reset may
occur again. As repair in impractical, we are currently
investigating countering problems by ignoring (or more
closely monitoring) calls to this problem objects,
bypassing this problem for that particular node.

Point (2) above (unknown radio connectivity) is
satisfied by designing applications in an iterative way.
That is, they are called periodically so tfiatthey build the
quality of their result using the latest available
information during each iteration. If information from
the network is unavailable for short periods of time, this
simply halts the iterative process for that time period,
after which the result again iterates.

Point (3) above (load-control) is also satisfied by
designing “iterative” applications. This is achieved by
deconstructing each application object into methods,
where each method has a relatively constant execution
time. It is a simple matter to change the periodicity of
these applications in order to satisfy some system
processing goal.

VIII. HARDWARE ENVIRONMENT
The kOS was designed to execute on a

microcontroIler, as it needs access to interrupts, a
USART for communication, timers, logical ports, etc,
and must be debugged and re-programmable. We chose
Microchip Inc’s PIC 18F452 microcontroller [3], as it
(amongst other candidates) (i) has the necessary features
we wanted; (ii) was already used by one of our industrial
partners and (iii) had a large user community ensuring
ongoing access to timely support.

The kOS was developed using an xX6-based PC, a
PIC1 8F452 and various Microchip lnc development

263

tools: (i) the MPLAB development environment; ($ the
C18 C-compiler, (iii) the JCD2 in -circuit debugger, and
(ivj the PICDEM 2 Plus demonstration board [7]. We
have chosen the PICDEM 2 board for the lStprototype as
it allows quick and cheap prototyping whilst providing
the necessary basic functions we require, such as a
crystal oscillator, EEPROM storage, a display and a
physical interface for external communication. If we
wish to produce a more sophisticated and lower-power
device we may build our own circuit board in the
future-at the moment our focus is to support the
applications. We use two 16-bit timers on the
PIClXF452s-one for tasks execution and one for a real-
time reference.

k Node Memory Organisation
The PIC 1 XF452 microcontroller unit (MCU) has three

main types of memory. FLASH EPROM holds the
program memory, where we’ have the kOS object code,
object methods and constants. The second memory area
is the RAM-a volatile memory used for short-term data
such as the high- and low-priority application queues,
sensor data storage, and radio receive and transmit data
buffers. The third memory area is EEPROM-a non-
volatile memory used for long-term storage of data, such
as a history of boot-up failures for error control. The
PIC18F452 has 32k FLASH, 1.5k RAM and 200 bytes
of EEPROM on-board. The PICDEM2 board provides
the fourth memory area, a large (256kB) EEPROM for
storage of (i) sensor data both from sensor module; (ii)
sensor data from the PICDEM2 on-board temperature
sensor, and (iii) data copied as it passes through the
radio upstream to the base-station. This data is useful for
applications-for example, to enable spatial
compression of data.

B. Power awareness
As we have briefly stated above, we utilize the sleep

function of the PIC MCU in order to put the PIC to sleep
during times of inactivity. We have taken several other
steps to minimize the power consumption such as
replacing power voltage regulators; however there
remain other simple steps we could do quickly if desired.
It would be a relatively trivial step to power-down the
PICDEM board while this happens-an output pin
would control the activity pin on a low-power voltage
regulator. During sleep, we would then power the PIC
using a watch-type battery. This would drastically
reduce the power requirements for the board. As we
shall see in Section IX.A, there are many options for
power management.

’

C. Radio Network Emulation
To test our distributed algorithms and the networking

features of the kOS, we designed a peer-to-peer network

emulation. Our network emulation allows any number of
kOS modules to be connected via emulated radio
interfaces. Boards may be set as standard nodes or base-
station nodes. The network is configured via network
adjacency and signal strength matrices.

D. SECOAS Implementation
For the SECOAS project, the external radio and sensor

modules have been custom designed by our project
partners. As SECOAS is an oceanographic application,
we use a floating buoy containing the radio and
processor boards, with a submerged tethered sensor
module for analyzing environmental parameters. This
configuration is shown in Fig. 5-a photograph of a
buoy is shown in Fig. 6.

The radio module uses a PIC 16F876 processor and a
Radiometrix RXllDXI radio transceiver. It uses a
portion of the unlicensed spectrum at 173 MHz with a
Time-Division Multiple-Access (TDMA) scheme at 10
kilobits per second. To minimize power, the board only
wakes for (i) radio transmissions; (ii) radio receptions
and (iii) communication with the processor (kOS) board,

A networking layer called SSSNP [2J (residing in the
radio board) configures which time-slots to transmit and
receive in, ilpending on the node’s place in the
topology-this allows the radio to wake-up precisely for
receive time-slots. In order to conserve power, the radio
board gives a small time window (20ms) for
communication with the processor board. In this time,
the radio and processor boards complete a handshaking
operation and exchange messages, before the radio
returns to sleep or its radio transmit or receive operation.
The SSSNP service assigns levels in the network
hierarchy which a “directed gossip” application-level
transport service uses for sensor data acquisition.

The sensor module uses a PlC16F452 chip with a
large flash memory storage device for sensor data. It
logs pressure, turbidity, temperature and salinity and
implements a distributed application [5] for adaptive
sampling of these sensors, as mentioned in Section 1V.A.
In this way, the sensor iterates towards a sampling
strategy adapted to network traffic conditions and
remaining battery power. The processor and sensor
modules exchange messages so that the sensor module
can communicate with its node neighbours.

Fig. 5. SECOAS project node components showing the radio,
processor (kOS) and submerged sensor module.

Fig. 6. Photograph of prototype buoy with mounted enclosure (white
box) containing the radio and kOS modules. Thc antenna and
navigation light are also shown. The submerged sensor module is not
shown.

For SECOAS, we have also implemented a distributed
auto-location application [4][22] and an application to
temporally compress sensor data [22] before
transmission.

1X. PERFORMANCE ANALYSIS
In this section we use the benchmark of our SECOAS

project prototype design to examine the performance of
kOS and its associated hardware. Note that the purpose
of the prototype SECOAS design was primarily to
examine the radio and network performance, together
with the performance of the various distributed
applications. At the time of writing, we are presently
collating network results; application-specific
performance analyses may be seen elsewhere
[2][4][5][6][20]. In this section we restrict ourselves
mostly to brief results concerning the kOS and the
processing board.

264

A Power usage
For the SECOAS project, we have used a 12Ah

alkaline battery, which is small enough to fit into the
buoy’s radiolprocessor board enclosure. For the various
elements described in Table I below, this gives a node
lifetime of 299 days. This is more than adequate for our
immediate testing purposes of one week, and is even
adequate for the eventual goal4peration of around a
year. In the current implementation, the sensor module
uses a 6Ah battery-giving a lifetime of around one
year.

TABLEI .
CURRENT USAGE POR VARIOUS HARDWARE ELEMENTS lN THE RAD10

Current On-duty Average
i m 4 (W) current (mA) Etement

DXI radio
transmit 9.5 2 0.19

RX1 radio receive 12 2 0.24
Radio module I 96 0.96

0.20 I LMZ936 voltage
regulator
MAX232A RS232 7.90
driver I

kOS crystal
oscillator 8.9 1

0.002

0.079

0.089

kOS PIC MCU 1.5 0.8 0.01 2

0.10 99.2 0.00992 kOS PIC MCU
slcep -
Total (mA) 1-67
Note that this table does not include measurements for the sensor

module.

B. CPU duty cycle
Here we show how many instruction cycles the

various kOS objects use - and what the awake duty ratio
is. Table I1 shows the list of system and application
objects that are currently implemented in kOS. Note that
this is specific to the SECOAS project and that
execution periods can vary widely in different
implementations. Note that the full duty ratio is used in
the measurement in Table I. As can be seen, then, our
current implementation leaves the processor board idle
to around 99% of the time, extending the battery life of
the node significantly.

C. Memory usage
In Table I I I we show how the two main types of

memory (program and RAM) are used by system and
application objects. The total in parentheses shows the
minimal size of kOS without application objects. Our
value of 12938/497 bytes compares with the TinyOS
footprint of 3450/226 bytes [9]. As we explained in
Section V, however: our implementation is naturally
targeted toward a more capable hardware platform than
TinyOS.

TABLE II
DUTY CYCLE MEASUREMEFFT OF KOS OBJECTS -

Average Instruction Cycles per
second Object

Messenging 2335
ScheduGng
Gossiping
Clustering
Data

4409
47

1236
1 1

Total 8044 (0.8%)
Note that the PIC clocked at 4 MHz operates at 1 million

instructions per second.

TABLE III
- MEMORY - USAGE MEASUREMENTS OF K o s OBECTS -

Program Size RAM Size
(bytes) (bytes)

Object

Messenging 7928 45

Gossiping 1250 39

Scheduling 4310 161
Data Fusion 2354 6

Radio (VO) 392 128 (buffer) +35
Sensor (VO) 308 128 (buffer)
Others 3078 45
Total
Ihvtesl

- - -
19620 (12938) 587 (497)

Note that the code size reduces by around 26% when no
debugging is used.

X. CONCLUSION
In this paper we have shown how treating wireless

sensor networks like biological automata can result in
beneficial features such as scalability, robustness and
self-organisation. A particular implementation has been
shown in the kOS operating system; however, the novel
work here is the design of the systems architecture. As
we have shown, this novelty is primarily in they way we
construct and support distributed applications-this
framework could easily be built as a service layer over
an alternative operating system. There are several
disadvantages in constraining applications to this kind of
system-however, the advantages listed above far
outweigh the disadvantages for many applications.

XI. ACKNOWLEDGEMENTS
The authors would like to thank Ian Henning, Steve

Fitz and Taimur Khan from the University of Essex for
information on the radio module, and their assistance
with designing the inter-module communication
interface. We would also like to thank John Argirakis
and Nathan Boyd from Intelisys Ltd for information on
the sensor module.

265

XII. . REFERENCES
[I] L. Sacks, M. Britton, I . Wokoma. A. Marbini, T. Adebutu, I.
Marshall, C. Koadknight, .I. Tateson, D. Robinson and A. Gonzalez-
Velazquez. “The development of a robust, autonomous sensor
network platform for environmental monitoring,” in Sensors and
their Applications XXII; Limerick, Ireland, 2”d-4’h September, 2003.

121 A. Gonzalez-Velazquez, M. Britton, L. Sacks and 1. Marshall,
“Energy savings in wireless ad-hoc sensor networks as a result of
network synchronisation,” in the London Communications
Symposium, University College London, 8’-9‘ September, 2003.

[3] PIClXFXX2 Data Sheet, Microchip Technology h c , Document
DS39561B, 2002.

[4] T. Adebutu, L. Sacks. and 1. Marshall, “Simple position
estimation for wireless sensor networks.” in the London
Communications Symposium University College ‘London, sth-9Ih
September, 2003.

[SI C. Roadknight and I. Marshall, “Sensor networks of intelligent
devices,” In Proceedings EWSN2004, pp. 58-61,2004.

161 1. Wokoma, L. Sacks and 1. Marshall, “Clustering in sensor
networks using quorum sensing,” in the London Communications
Sy”s ium University College London, sth-9lh September, 2003.

[7] PICDEM 2 Plus User’s Guide, Microchip Technology Inc,
Document DS5 1275A. 2000.

- - -.-

- ..

IS] K. Pister, J. Kahn and B. Boser, “Smart Dust: wirekss networks
of millimeter-scale sensor nodes,” Highlight Article in 1999
Electronics Research Laboratory Research Summary, 1999.

191 J. Hill. R. Szcwczyk, A. Woo, S . Hollar, D. Culler and K. Pister,
“System architecture directions for networked sensors,” in the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[IO] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and J.
Anderson. “Wireless sensor networks for habitat monitoring,” in the
2002 ACM International Workshop on Wireless Sensor Networks
and Applications, September 28, 2002, Atlanta, GA, USA.

[i 1] pOSEK, “A super-small, scalable real-time operating system for
high-volume, deeply embedded applications,” http://www.isi.
cordproducts/pose!dindex.htm.

[I21 B. Kauler, “CREEM Concurrent Realtime Embedded Executive
for Microcontrollers,” w. goof e e . c o d c r e e m ht m

[13] S. Kleiman, D. Shah, B. Smaalders, “Programming with
threads,” Prentice Hall, Mountain View, California, 1996.

[I41 pCLinux Project. -.
[15] Wind River web-site. ww. ui ndr i ver . com

[I61 Microware web-site. w. ni c r o w r e . cam

[I71 D. Miltz, I. Broch and D. Johnson, “Experiences designing and
building a multi-hop wireless ad hoc network testbed,” CMU School
of Computer Science Technical Report CMU-CS-99-116. 1999.

[181 S. Desilva and S. Das, “Experimental evaluation of a wireless ad
hoc network,” in Proceedings of the 9’ lnt. Conf. on Computer
Communications and Networks (IC3N), Las Vcgas. October 2000.

[191 S. Duiman and P. Havinga, “Operating system fundamentals for
the EYES distributed sensor network,” Progress Report 2002,
Utrecht, the Netherlands, October 2002.

1201 I. Wokoma, L. Sacks and I. Marshall, “Biologically inspired
models for sensor network design,” in the London Communications
Symposium, University College London, September, 2002.

[21] M. Castro, P. Druschel, Y. C. Hu and A. Rowstron, “Exploiting
network proximity in distributed hash tables,” presented at the
FuDiCo 2002 Intemational Workshop on Future Directions in
Distributed Computing, Bologna, Italy, June 2002.

[22] L. Shum, I. Wokoma, T. Adebutu, A. Marbini, L. Sacks and M.
Britton, “Distributed algorithm implementation and interaction in
Wireless Sensor Networks,” 2”d International Workshop on Sensor
and Actor Network Protocols and Applications, Boston, Aug 20Ih,
2004.

[23] M. Britton and L. Sacks. “The SECOAS project: development
of a self organizing, wireless sensor network for environmental
monitoring,” Znd International Workshop on Sensor and Actor
Network Protocols and Applications, Boston, Aug 20*, 2004.

[24] SECOAS web site. www.adastral.ucl.ac.u~sensomets/secoas

[25] A. Dunkels, B. Gronvall and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” In
Proceedings of the First IEEE Workshop on Embedded Networked
Sensors 2004 (IEEE EmNetS-I), Tampa, USA, November 2004.

1261 M. Miller and B. Bassler, “Quorum sensing in bacteria,” Annual
Review in Microbiology, pp. 165-199, 2001.

1271 G. Flake, The Computational Beauty of Nature: Computer
Explorations of Fractals, Chaos, Complex Systems, and Adaptation,
MIT Press, Cambridge, USA, 1999.

[28] C. Tcuschcr and M. Capcarrere, “On fireflies, cellular systems,
and evolware,” Lecture Notes in Computer Science, Volume 2606 I
2003, pp. 1-12, August 2003.

[29] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence:
from Natural to Artificial System, Santa Fe Institute. Oxford
University Press, 1999.

[30] G. Di Caro, “Two ant colony algorithms for best-effort routing
in datagram networks,” I Oth LASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS’98), 1998.

[31 I C. Inlanagonwiwat, R. Govindan and D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm for sensor
networks,” in Mobile Computing and Networking, 2000.

[32] I. Wokoma I. Liabotis, 0. Pmjat, L. Sacks and I . Marshall, “A
weakly coupled adaptive gossip protocol for application level active
networks,” pOLrCY 2002, 2002.

266

http://www.isi

