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Abstract--In this paper, we contend that there are 
significant advantages in treating some classes of sensor 
networks as biological-like systems-both in structural 
design characteristics and in operational processes. We 
show how this design process leads to a sensor network 
system that is robust to topological changes, is scaleable 
and self-organising-and has a number of other desirable 
features. The operating system kOS was designed to 
support the operation of distributed biologically-inspired 
algorithms, in order to accomplish tasks in a sensor 
network system. We look at t h e  design of kOS and anaiyse 
its performance. The work presented has been 
implemented in an environmental monitoring project, and 
has applications in other areas. 

Index Terms-Biological algorithms, operating systems, 
wireless sensor networks, 

I. INTRODUCTION 

Biology has inspired people in various fields to design 
systems in different, often elegant ways. Biological 
concepts have been used to inspire approaches such as 
artificial neural networks and evolutionary computation, 
and have led to alternative methods in fields such as 
operations research and robotics. In this paper we 
examine the characteristics of biological automata- 
simple biological “agents” which interact with their 
neighbours via simple rules, and yet seem to cooperate 
with a large number of individuals to perform some 
complex global task. 

There are significant advantages in treating some 
classes of sensor networks as biological automata-like 
systems-both in structural design characteristics and in 
operational processes. Biological automata have a 
number of desirable characteristics such as scalability, 
robustness, simplicity and self-organisation-which are 
also desirable characteristics of wireless sensor network 
systems, In Section I1 we look at the characteristics of 
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biotogical automaton systems and their applicability to 
the design of sensor networks. 
In Sections 111 and IV we look at the requirements of 

the network and of individual nodes in more detail, and 
begin to assign functions which satisfy these 
requirements. We describe how we may develop an 
architecture combining both a bottom-up and top-down 
approach. This is done by combining a set of biological 
automata-like features with the top-down design of a 
self-organising system. 

In Sections VI and VI1 we describe the design of kOS, 
an operating system that utilises many of these concepts 
to enable a network of computing devices to act like a 
system of biological automata. 

In section VI11 we describe an implementation of the 
kOS in the SECOAS project 1241 as part of a system for 
oceanographic environmental monitoring [l][23 1. The 
SECOAS project’s aim is to demonstrate alternatives to 
the current practices of using large, expensive devices to 
log data-an approach that has substantial risks of 
platform destruction and only monitors one spatial point. 
In Section IX we present some performance analysis 

results using the SECOAS project as a baseline, in order 
that our approach may be compared with others. 

11. BIOLOGICAL SYSTEMS AND SENSOR NETWORKS 

A Biological Automata 
In many biological hive or collective intelligence 

systems such as termite colonies [27], bacterial colonies 
[26] and firefly swarms [28], simple neighbour- 
neighbour interactions between organisms or cells 
results in complex behaviour, where members seem to 
work together to perform a global task. This property is 
sometimes referred to as emergence, as significant 
complexity is produced from seemingly simple rules and 
interactions. These systems all contain distributed 
computational units which respond to environmental 
stimuli, with little or no centralised management-these 
units are commonly referred to as biological automata or 
agents. A common theme amongst these systems is that a 
change in behaviour of individual units (and eventually 
of the whole system) occurs when an environmental 
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parameter is perceived to cross some threshold. 
Thresholds, depending on the system, may be the 
distance to a closest neighbour or the concentration of a 
chemical. From this set of characteristics, a number of 
remarkable traits emerge. 

Firstly, the systems tend to self-organise and self- 
optimise. These systems do not rely on central 
managcment-they exhibit global optimisation of 
various processes by simple neighbour-to-neighbour 
interaction only. This is conducted via chemical or 
electrical media, and this diffusion or transmission 
process has a limited range. 

As a consequence of having no central management, 
these systems often exhibit robustness to individual 
failures and topological changes. Adaptation is a major 
strength of biological systems, as they must response to 
addition or removal of members, as well as sudden 
changes in the environment. Because these systems have 
no central management and only use neighbour- 
neighbour interactions, they have remarkable scaling 
properties. 

Biological systems adapt to dynamic environments, as 
they encounter extreme variations of various parameters 
in their environment-such as temperature, humidity. 
pressure and availability of food (energy) sources. They 
also show adaptation to changing requirements, as new 
tasks must be executed in order to counter the change in 
environment. Some species of ants, for example, use a 
simple control mechanism to maintain a constant 
proportion of worker to warrior castes 1291. 

Finally, these systems gracefully adapt to achieve a 
result in an iterative-like process and tend to ignore 
outlier (possibly erroneous) results-such as in bird 
flocking [27]. This is a natural consequence of using 
neighbour-only interactions, as automata adapt using 
information from a number of neighbours. This means, 
however, that changes are slow to spread through such a 
network. 

B. Application to Sensor Network Systems 
Researchers in fields such as Artificial Intelligence 

and Robotics [29] and Computer Networks [30] have 
sought to mimic various aspects of such networks of 
biological “automata”. Our work has shown another 
application for such systems. What is striking about the 
characteristics of these biological systems is their 
similarity to the requirements of sensor networks-not 
only in terms of structure but also the processes required 
td achieve global tasks. In this section we explain how 
the design and operation of a sensor network may 
naturally be viewed as a biological-like system of 
automata. 

Wireless sensor network systems by their very nature 
are distributed. This is often due to the requirement of 

measuring a spatial field of parameters that a single 
sensor (even if somehow mobile) would not satisfy. In 
this case, centralised management is costly (in terms of 
power usage) due to communication and also limits the 
scalability of the network. It is natural, therefore, to limit 
communications to short range-possibly to neighbour- 
neighbour interactions only. This de-centraked 
management paradigm aligns well with the structure of 
biologicaI automaton systems. 

As a general rule in the field of sensor networks, it is 
desirable to limit the processing power of individual 
sensor nodes. This is because microcontroller units 
(MCUs) with limited memory and processing power 
have recently become exceedingly cheap. Even though 
these MCUs are limited in their ability, a network of 
such units can act as an extremely powerful system. This 
approach fits nicely with the characteristics of networks 
of biological automata and is economically attractive 
compared with alternative solutions. 

Scalability is a key issue in the design of sensor 
networks. It is important, especiaIly in environmental 
monitoring, because the size of the spatial field of 
interest will generally be unknown at the design phase. It 
is preciseiy by leveraging these characteristics from the 
biological world that we are able to design scaleable 
sensor networks. 

For simplicity of management (and eventually for 
lowering maintenance costs) an autonomous system is 
desirable. Ideally, only occasional high-level policies are 
used to manage the system. Biological networks, having 
no central management, are candidates for this model. 
Extending this, we would ideally like the system to be 
self-organising and self-optimised. This characteristic 
also makes the system robust against individual nodes 
faiiure. 

We would also like our system to adapt to dynamic 
environments and requirements. In environmental 
monitoring, various temporal phases of operation will 
exist-certain global tasks will be executed for 
monitoring ocean storms, for example-with different 
requirements for network traffic and node processing. 
Just as the size of the required network will be unknown - 
at the design phase, so will the details of the phenomena 
encountered. An environmental scientist (as the system 
user) would likely want the system to opeiate in new 
ways after discovering and new phenomena. 

Using iterative applications gives us many 
advantages. Firstly, the applications may adapt slowly to 
environmental and system conditions, just as their 
biological counterparts would do. They are also easy to 
manage as part of an overall system. This is because we 
may simply adjust their periodicity to alter the quality of 
their result: to adapt to radio bandwidth constraints or 
system processing demands, for example. When 
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applications are constructed this way, their operation 
becomes simple and predictable. 

As can be seen, then, virtually every one of the 
desirable characteristics of sensor networks has an 
analog from biological automata. It seems possible, 
therefore, to use the best ideas from the biological world 
and design a sensor network with a number of useful 
properties. One of the disadvantages of this approach, it 
must be noted, is that it is suitable for relatively high- 
latency requirement systems only. This is a consequence 
of having slow, iterative, neighbour-neighbour 
interactions between nodes. However, there remain 
many more advantages than disadvantages. In summary, 
then, our sensor network should exhibit the following 
characteristics: 

i Decentralised management 
e Self-organisation and autonomy 

Robustness to topological change 
Limited processing power of individual nodes 
Power control for individual nodes 
Adaptation to dynamic environments and changing 
roles 

111. SYSTEM REQUIREMENTS 
There are many tasks need to be achieved in the 

sensor system. We refer to this as the functional plane of 
the network. In this section, we describe what functions 
need to be supported across the network. 

With the constraint of slow, iterative neighbour- 
neighbour interactions, our system operates with weak 
consistency across the network. This means that nodes 
do not generally need to synchronise their databases, 
variables, etc in order to perform their tasks. This also 
means that nodes may execute the same tasks at diffyent 
times. Not surprisingly, biological systems exhibit the 
same characteristic. 

However, the system does require coordination 
between nodes to some degree, where individual nodes 
cooperate to achieve local tasks. This is for a number of 
reasons, Firstly (and particularly with environmental 
monitoring), areas of interest will generally appear in the 
spatial structure of the parameter of interest. It is useful, 
therefore, for nodes within this area to interact and 
understand the phenomenon as a sub-group within the 
network. Secondly, by coordinating their actions, nodes 
may save energy by electing representatives to report on 
this phenomenon. 'Therefore the system requires some 
mechanism for coordination across the network. Fig. 1 
shows how disparate sets of nodes contribute to various 
global tasks. 

VeriralYrw H a n z a n t d W w  , 

Functional Plane A /oT/ 
0 0  

Fig. 1.  Two views of the sensor network system: (a) the "horizontal" 
view showing layers of network functions (functional planes) upon a 
network of nodes, and (b) the "vertical" view functions (tasks) within 
one of these nodes. 

As the network topology is unknown at the design 
stage (and may even be dynamic) we require that the 
data transport protocol be independent of the topology as 
much as possible. We also note that as nodes are 
expendable we wish them to be anonymous-that is, 
their identity is unimportant, with location being their 
only useful identification. As the system should be 
extremely scaleable, building routing tables becomes 
infeasible. This naturally leads to using gossip-like 
protocols [6][20][32] for data dissemination, as they 
offer a SIOW, reliable service for any topology. This is an 
acceptable method for application parameter-sharing or 
for policy dispersion. For data acquisition, however, we 
wish to use at least some directional information. This 
"directed gossip" protocol would have an awareness of 
the direction of data sinks and data would naturally 
forward in that general direction. Concepts such as 
Directional Diffusion [31] are useful for these purposes. 

Power management at a system level is important as 
we do not wish individual nodes to fail at important 
junctions in the topology. We do this primarily by 
clustering nodes based on spatial data similarity [6][221. 
These clusters nominate a node to represent them, which 
sends data to the sensor data source on the cluster's 
bkhalf. In this way, excessive multi-hop radio 
communication is avoided and the system lifetime is 
extended. 

Finally, we require the system to have high integrity 
operation. Integrity, in this context, means that a system 
behaves as expected under a wide range of operational 
circumstances which include system failures as well as 
extremes of environment. Traditionally, engineers (for 
example in telecommunications) have designed systems 
by defining a precise performance for all circumstances. 
The result of this has often been expected operation, 
followed by catastrophic failure at some point as soon as 
the system-or the environment has breached the bounds 
of its operational parameters. To avoided this, the design 
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presented here requires that ai1 elements, be they nodes 
or algorithms, of the system can adapt to failures;’ 
corrupted data or imprecision’s in parameters; and still 
function sufficiently. 

\ 
IV.’. NODE REQUIREMENTS 

In this section we look at what features individual 
nodes require in order to support the concepts mentioned 
in Section 111, and progress to describe requirements 
elicited for other reasons. 

Firstly, each node requires ‘syme kind of radio 
communications device and a sensor device in order to 
measure physical parameters of interest:‘In this paper we 
treat these as two external modules, as our interest is 
primarily in the software layer. Also, (as sh14 be seen 
later) our implementation naturally divides each ,node 

’ into three separate modules with simple interfays 
between them-in fact many of the features we discus’s, 
require this to be the case. Our implementation work is 
focussed on the “processing module”, and our discussion 
in this paper shall be mostly limited to this module 
unless stated otherwise. 

On this processor module, tasks will need to perform 
simple mathematical calculations, as statistical data from 
sensors and other management parameters must be 
analysed and manipulated. As our applications generally 
execute in an iterative manner, the nodes require access 
to timers in order to schedule themselves for 
execution-these timers must be adjustabIe to enable to 
nodes to adapt their behaviour. Various other capabilities 
are required such as memory buffers .for storing 
parameters and history states. Moreover, i t  is necessary 
to implement these node functions on a simple 
microcontroller unit (MCU). We look at the allocation 
of these functions to a hardware implementation more 
closely in Section VIII. 

Power minimisation is also desirable, in order to 
extend the life of the network a5 much as possible. To do 
this we implement sleep or idle cycles-another standard 
feature in most MCU designs. We also choose an MCU 
which naturally has low power usage. However, with 
most wireless sensor networks the majority of power is 
expended in the radio communications device-so our 
design of the processor module is only a small part of 
the node’s power management. 

As we have stated above, individual nodes perform 
one piece of a global task. There are multiple tasks 
executed in the system, such as data retrieval and various 
kinds of collaboration. Individuals therefore have 
multiple pieces of work to achieve in order to contribute 
to these multiple tasks. 

To give each node the required flexibility to manage 
multiple tasks (where task schedules will generally 
change over time), it is necessary to have some kind of 

. 

operating system to be executing on each node. We shall 
now refer to the sub-set of tasks which perform some 
kind of algorithm as applications, as they are modular 
pieces of program code. An operating system is also 
necessary in order to manage various tasks priorities, 
such as high-priority interrupting tasks for interfacing to 
an external peripheral such as a radio communication 
module. It is also convenient for organising applications 
as programs and interfacing timer devices, for example. 
Fig. 2 shows the logical components in each node which 
we have discussed to this point. 

modu le  

*InpudOutput 

*Memory 

4M~thematical  
functions 
*Timers 

*Interrupts 

module 

Fig. 2. Thebgcal components (modules) within each node, showing 
the minimum functions needed for the processing module. 

A Operating Sjrstem Requirements 
We call this operating system “kOS”, meaning a 

“kind-of” or “kilobit” operating system-reflecting its 
relatively simple nature. The responsibility of kOS, then, 
is to provide a platform for the support of these 
distributed applications. As the applications are 
relatively simple in nature, the kOS does not need to 
support sophisticated libraries of mathematical funetions 
or provide a capability for multi-tasking execution. 

One of the first things we see, therefore, is that a 
simple single-tasking, run-to-completion execution 
model is sufficient. This greatly simplifies the design 
and operation of the *OS. Applications have low 
requirements for latency, meaning we can afford to do 
this without affecting their performance. The only real- 
time service we require is to read information from 
external peripherals when it is available with low 
latency-something most MCUs provide via an interrupt 
service. 

The architecture of these applications depends on 
similar code elements (algorithms, applications) running 
on each node, which communicate with each other on a 
nearest neighbour basis. Thus, the requirement on kOS is 
to be highly communication oriented. To do. this, we 
require an efficient messaging interface to be built into 
the kOS kernel. Applications may then use a simple call 
to send a message to remote nodes or to other algorithms 
on the same node. This design also has the advantage of 
decoupling application functions from their hardware 
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implementation location. The advantage of this shall be 
explained in more detail later-for now we simply 
observe that applications may execute3  other kinds of 
devices and still communicate using this messaging 
service. 

To maintain simplicity and robustness, we have 
designed kOS to be as stateless as possible. kOS is 
stateless in at least two senses. Firstly, the kOS does not 
need to maintain any context information during 
application execution, such as stack data-as all 
application instances run to completion before other 
applications execute. Secondly, the messaging service 
simply informs applications of the arrival of new data, 
and it is their responsibility to deal with this data 
appropriately within a given time. Circular buffers are 
used so that if new data is not dealt with in time, they are 
overwritten by newly-amiving data. In this way, no data- 
application state needs to be saved by kOS and the 
messaging process is loosely-coupled to application 
execution. This is not to be confused with the state of 
applications; appkations do require some small state 
information (such as a nearest-neighbour list for a 
clustering application)-our design simply assumes that 
kOS does not need to be aware of this. 

The kOS needs to be able to manage a schedule of the 
various tasks on each node. For simplicity, we force 
repetitive tasks to self-invoke their next execution time. 
Because the applications are “iterative” (that is, they are 
constantly refining their result similar to biological 
automata), we can adjust their period of execution (and 
hence the quality of their result) and scale the processor 
load accordingly. This means, for example, that a node 
can adjust to low power or low node-node bandwidth 
operation by only executing tasks occasionally. 

These requirements make the adoption of an object 
oriented paradigm appropriate. In this view, applications 
consist of object instances. These objects communicate 
through messaging-with the messages either being sent 
locally or over the radio communications channels, This 
approach provides a clear applications model which is 
naturally . oriented towards supporting distributed 
applications. 

As can be seen above, power awareness is not only a 
hardware issue but an operating system design issue as 
well. The OS has control over when the MCU should 
idle or sleep, and largely controls its processor load. 
These features allow the node to adjust for low-battery 
conditions, allowing the sensor system to gracefully 
reach the end of its (battery power) life by extending the 
lifetime of particular node-such as nodes at traffic 
bottle-necks, for example. Some of our work has been 
dedicated to designing distributed control applications to 
adjust nodes to these conditions [5] .  

In summary, the design of kOS is built on several 
guiding principles: 

Modularity of application design-via a simple 
messaging interface, 

+ Simple execution model+liminating most context 
information and providing robust and predictable 
operation, 

+ Power awareness-using adaptive scheduling, as 
well as other standard techniques such as using 
shutdown features, and 
Simple processing load control-by adjusting the 
execution periods of iterative applications. 

v. RELATED WORK 

In this section we examine the field of embedded 
operating systems, and compare their capabilities against 
our requirements stated in Section 1V.A. 

There are several efforts of research in embedded 
operating systems for wireless sensor networks. These 
include the Smart Dust concept [SI initiated by the 
Electrical Engineering and Computer Science 
Department at the University of California, Berkeley. 
This idea was later instantiated as the TinyOS operating 
system and the design and construction of several types 
of small platform “motes” able to execute TinyOS and 
applications [SI. TinyOS is a small footprint (at a 
minimum, 4kB in ROM), event-based operating 
environment designed for use with embedded networked 
sensors. Its design philosophy is complementary to ours 
in several ways. 

Firstly, TinyOS was designed to support concurrency- 
intensive operations in order that multiple applications 
and a radio slave device (which have no buffering and 
strict hard real-time constraints) be multi-threaded to 
give acceptable levels of service. This differs from our 
approach of single task execution: our applications have 
more relaxed latency requirements and can be pre- 
empted by higher priority tasks with no affect on their 
quality. Our radio (and other extemal hardware devices) 
has its own buffering and therefore more relaxed timing 
constraints. 

Secondly, there is a fundamental difference in 
philosophy between the two approaches. TinyOS was 
designed to be as minimal as possible in order to execute 
on extremely limited devices-limited in terms of size, 
power and processing capability. The stated goal of 
supporting cubic millimetre scale devices with minimal 
processing (the emphasis is on forwarding to an 
intelligent node) is vastly different from our goal: ours is 
to execute a small, simple OS on a cheap (possibly) 
wallet-sized device. Put simply, our emphasis is on the 
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support of networked applications rather than hardware. 
TinyOS has been implemented in many projects; perhaps 
the most relevant example is its use in 2002/2003 for 
monitoring animal habitats on Great Duck Island, Maine, 
USA [IO]. 

The EYES project, and its associated EYES operating 
system 1191 is much closer to our goals in that it seeks to 
support a self-organising sensor network of distributed 
applications. Another related project is within the 
Swedish Institute of Technology; where an operating 
system called Contiki E251 has been designed. In 
Contiki, reprogrammability is an important feature 
which has been built into the kernel library. As with 
TinyOS, however, its execution model is unsuitable for 
our purposes. 

There are various embedded operating systems that we 
considered. All the operating systems fail to meet our 
requirements because of one or more of the following: 
(i) they are specific to various embedded hardware 
functions or are minimal executives providing static task 
executions suitable only for particular applications (and 
do not easily allow application extensions or have only 
static task allocations), such as pOSEK [ l l ]  and 
CREEM [ 121; (ii) they use multi-tasking techniques 
[25][9], such as POSIX-compatible threading [ 131, 
whereas we require a simple single tasking execution 
model; (iii) their memory footprint is excessive for our 
MCU-based system, such as FClinux [14]; or (iv) they 
execute only on powerful Pentiums or ARM processors, 
such as VxWorks [ 151 and Ariel [ 161. 

There are also various projects simil’ir- io SECOAS, 
where nodes have been built and tested. Many of these 
projects implement a traditional communications stack- 
much too heavy for our purposes, as will be explained 
later. These include projects in the realm of “ad hoc 
networks” where routing protocols have been proposed 
[17][18] (such as to the MANET and‘ IETF working 
groups), or relatively heavyweight access schemes such 
as Bluetooth or 802.1 I have been used. Our project 
requirements are, rather, for a slowly-changing topology, 
gossip-based communications transport over a minimal 
communications stack and the inter-changeability of 
node roles. Hence we have little need for network 
addressing or routing. 

VI. KOS STRUCTURE 

In this section we examine how the requirements from 
Section 1V.A are implemented in our operating system. 
We look at the components that make up the system and 
what their interfaces are. In Section VI1 we look at the 
operation ofthe kUS. 

In the kOS structure, system functionality is abstracted 
into objects and methods. The architecture is devised in 

this way in order to promote a modular structure to the 
operating system and to allow loosely-coupled code 
elements to inter-operate. There are four types of 
objects: 

Local application objects-such as clustering or 
auto-location. 
Local system objects-such as the message handler 
and the scheduler. 
External devices such the radio and sensors are 
presented to application and system objects as 
interface objects. These objects exist purely to 
directly access the hardware required to enable 
external access-such as the USART device on an 
MCU. For example, an application object will use 
the message handler object (a local system object) to 
send a message over the radio. The message handler 
object will use the radio object to physically send the 
message to another node. 
Virtual applications which reside primarily on other 
devices-such as the sensor module, but whose 
messages must be interpreted locally. These objects 
are “virtual” in the sense that all that is required is 
that the incoming messages be handled 
appropriately. Generally, little processing is done 
and so only a small sub-set of the remote’ 
application’s‘code is needed. An example of a 
virtual object may be a virtual “networking” object. 
Whilst some code may reside on the kOS MCU, the 
bulk of the whole system’s networking code will 
logically be on a separate radio MCU. The virtual 
object may be referenced when a messaging packet 
contains useful network information for a kOS 
application; such as a received signal strength 
indicator useful for an auto-location application. It is 
useful to separate some seemingly external functions 
in this way because (for example) networking 
specifications may change during development. 

The next level of abstraction is the method. All actions 
(tasks) undertaken by objects are the result of a method, 
which is an executable and referenced portion of the 
object code. There are a range of methods which objects 
may execute. Some methods are shared-for test and 
reset commands, for example-and some are 
application-specific. Fig. 3 shows how the four types of 
objects interact with the two types of methods. We shall 
examine the operation of kOS using methods in Section 
VII. 

VIT. KOS OPERATION 

In this section we examine the two most important 
aspects of the kOS operation-task scheduling and 
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messaging-and also look at other features which were 
elicited in earlier sections. In Section VI11 we will then 
examine how the kOS has been implemented. 

The basic operation of the kOS revolves around a 
sleep/activity/sleep cycle-important for power 
conservation. The scheduler object manages these sleep- 
wake transitions and the order of execution tasking. 

.. . . . . . -. . 

I Object? I I Objeclc I 

Fig. 3. The kOS functional abstraction, showing the four types of 
objects and two types of methods. The objects use various methods 
across the Execution Interface and interact with other objects across 
the Messaging Interface. 

A Task scheduling 
The scheduler object manages the execution of object 

methods, or tasks. When a method has finished 
execution, the scheduler will preset a time for the next 
object method execution. As stated before, each 
application then nominates a future execute time. This 
basic operation is shown in a simple state diagram in 
Fig. 4. 

As stated in previous sections, we use the biological 
automaton characteristic of iteration to design 
applications. This means that execution times are 
relatively constant each instance. Thus the scheduler can 
control the quality of the result an application produces 
simply by altering the period of its execution. We may 
want lo do this to reduce bandwidth across our node- 
node radio links or to reduce power consumption when 
the node’s battery power is low. The scheduler will do 
this in order to keep the total processing duty ratio below 
a certain threshold. We use an off-line analysis to gauge 
the duty cycle of each object’s iteration-from here if is 
a simple operation in order to control the sum of all duty 
cycles in the kOS by adjusting each application in this 
way. 

Examples of possible object tasks include the periodic 
updating of neighbour lists by a clustering application, 
or the periodic iterative estimation of location by an 
auto-location application. 

B. Message handling 
All application objects need to communicate with (at 

least) their instances on radio-adjacent nodes to be most 

effective-that is, they are inherently distributed 
applications. For data that must be shared across the 
network, we have designed a custom gossiping transport 
protocol [6][20] using hash functions [21] and a 
synchronization process inspired by firefly behaviour 
[32]. Using this scheme, whole-network traffic naturally 
adapts to local changes-traffic increases when it needed 
(detected via hash function exchanges) and returns to 
normal after exchanges occur. 

High prionty 
scheduler 

I t  High 
priority 

prioriry 
Low prioriry 

inllrmpt 

Boo1 

T I  kOS reset 
command 

I - - - )  
1 slarl ‘ WDT rime-our 
1 - - - 1  

Fig. 4. Basic kOS operation, showing the sleep/wake cycle and the 
use of interrupt service routine for high and low-priority tasks. 

The message handler object is scheduled periodically, 
and is additionally scheduled after any radio or sensor 
interface messages are received. When new data is 
found, the object schedules a “new data arrival” method 
for the destination object. When this method executes 
and the application sees the new data, it is the 
application’s responsibility to read the new data and deal 
with it appropriately-for example, to incorporate the 
data into its own buffer, as the packet will be deleted due 
to the circular buffer operation. In this way, message 

,handling is loosely-coupled to application execution. 
A simple messaging protocol called SAM is used by 

objects for intra- and inter-node communication. The 
majority of SAM messages contain application 
information, such as the sharing of parameters or data. 
However, any object may use SAM to pass data or 
control information over the radio interface to 
neighbouring nodes or to applications residing on the 
same node. 

Using the message-handling service, a simple gossip- 
like protocol is used to disseminate various kinds of 
information around the network, such as policies or 
application parameters. For data acquisition, where we 
want to send sensor data to a network sink, we combine 
this gossip protocol with information from the specific 
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network layer used. As we shall explain later, one 
possible implementation of this kind of “directed gossip” 
feature uses the SSSNP network service layer [ 2 ] .  

C .  Robustness of operation 
In our node, robustness is very important as we are 

operating a remote, embedded system. By robustness, 
we mean several things: (1) that each node will operate 
as expected, and if not, is expected to reboot itself in an 
attempt to bypass any intermittent problems; (2) that 
applications will operate given unknown radio 
connectivity conditions; and (3) that applications will 
operate acceptably when load-controlled by the 
scheduler (see Section A above). 

The first simple step in ensuring that each node is 
robust in the sense of point ( 1 )  above is to implement a 
Watch-Dog Timer (WDT). This common MCU 
hardware feature simply resets the MCU if the WDT is 
not reset within a preset time. This is a standard method 
used for embedded applications. However, after a WDT 
power-on reset, the problem that led to the reset may 
occur again. As repair in impractical, we are currently 
investigating countering problems by ignoring (or more 
closely monitoring) calls to this problem objects, 
bypassing this problem for that particular node. 

Point (2) above (unknown radio connectivity) is 
satisfied by designing applications in  an iterative way. 
That is, they are called periodically so tfiatthey build the 
quality of their result using the latest available 
information during each iteration. If information from 
the network is unavailable for short periods of time, this 
simply halts the iterative process for that time period, 
after which the result again iterates. 

Point ( 3 )  above (load-control) is also satisfied by 
designing “iterative” applications. This is achieved by 
deconstructing each application object into methods, 
where each method has a relatively constant execution 
time. It is a simple matter to change the periodicity of 
these applications in order to satisfy some system 
processing goal. 

VIII. HARDWARE ENVIRONMENT 
The kOS was designed to execute on a 

microcontroIler, as it needs access to interrupts, a 
USART for communication, timers, logical ports, etc, 
and must be debugged and re-programmable. We chose 
Microchip Inc’s PIC 18F452 microcontroller [3],  as it 
(amongst other candidates) ( i )  has the necessary features 
we wanted; (ii) was already used by one of our industrial 
partners and (iii) had a large user community ensuring 
ongoing access to timely support. 

The kOS was developed using an xX6-based PC, a 
PIC1 8F452 and various Microchip lnc development 
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tools: (i) the MPLAB development environment; ($ the 
C18 C-compiler, (iii) the JCD2 in -circuit debugger, and 
(ivj the PICDEM 2 Plus demonstration board [7]. We 
have chosen the PICDEM 2 board for the lStprototype as 
it allows quick and cheap prototyping whilst providing 
the necessary basic functions we require, such as a 
crystal oscillator, EEPROM storage, a display and a 
physical interface for external communication. If  we 
wish to produce a more sophisticated and lower-power 
device we may build our own circuit board in the 
future-at the moment our focus is to support the 
applications. We use two 16-bit timers on the 
PIClXF452s-one for tasks execution and one for a real- 
time reference. 

k Node Memory Organisation 
The PIC 1 XF452 microcontroller unit (MCU) has three 

main types of memory. FLASH EPROM holds the 
program memory, where we’ have the kOS object code, 
object methods and constants. The second memory area 
is the RAM-a volatile memory used for short-term data 
such as the high- and low-priority application queues, 
sensor data storage, and radio receive and transmit data 
buffers. The third memory area is EEPROM-a non- 
volatile memory used for long-term storage of data, such 
as a history of boot-up failures for error control. The 
PIC18F452 has 32k FLASH, 1.5k RAM and 200 bytes 
of EEPROM on-board. The PICDEM2 board provides 
the fourth memory area, a large (256kB) EEPROM for 
storage of (i) sensor data both from sensor module; (ii) 
sensor data from the PICDEM2 on-board temperature 
sensor, and (iii) data copied as it passes through the 
radio upstream to the base-station. This data is useful for 
applications-for example, to enable spatial 
compression of data. 

B. Power awareness 
As we have briefly stated above, we utilize the sleep 

function of the PIC MCU in order to put the PIC to sleep 
during times of inactivity. We have taken several other 
steps to minimize the power consumption such as 
replacing power voltage regulators; however there 
remain other simple steps we could do quickly if desired. 
It would be a relatively trivial step to power-down the 
PICDEM board while this happens-an output pin 
would control the activity pin on a low-power voltage 
regulator. During sleep, we would then power the PIC 
using a watch-type battery. This would drastically 
reduce the power requirements for the board. As we 
shall see in Section IX.A, there are many options for 
power management. 

’ 

C. Radio Network Emulation 
To test our distributed algorithms and the networking 

features of the kOS, we designed a peer-to-peer network 



emulation. Our network emulation allows any number of 
kOS modules to be connected via emulated radio 
interfaces. Boards may be set as standard nodes or base- 
station nodes. The network is configured via network 
adjacency and signal strength matrices. 

D. SECOAS Implementation 
For the SECOAS project, the external radio and sensor 

modules have been custom designed by our project 
partners. As SECOAS is an oceanographic application, 
we use a floating buoy containing the radio and 
processor boards, with a submerged tethered sensor 
module for analyzing environmental parameters. This 
configuration is shown in Fig. 5-a photograph of a 
buoy is shown in Fig. 6. 

The radio module uses a PIC 16F876 processor and a 
Radiometrix RXllDXI radio transceiver. It uses a 
portion of the unlicensed spectrum at 173 MHz with a 
Time-Division Multiple-Access (TDMA) scheme at 10 
kilobits per second. To minimize power, the board only 
wakes for (i) radio transmissions; (ii) radio receptions 
and (iii) communication with the processor (kOS) board, 

A networking layer called SSSNP [2J (residing in the 
radio board) configures which time-slots to transmit and 
receive in,  ilpending on the node’s place in the 
topology-this allows the radio to wake-up precisely for 
receive time-slots. In order to conserve power, the radio 
board gives a small time window (20ms) for 
communication with the processor board. In  this time, 
the radio and processor boards complete a handshaking 
operation and exchange messages, before the radio 
returns to sleep or its radio transmit or receive operation. 
The SSSNP service assigns levels in the network 
hierarchy which a “directed gossip” application-level 
transport service uses for sensor data acquisition. 

The sensor module uses a PlC16F452 chip with a 
large flash memory storage device for sensor data. It 
logs pressure, turbidity, temperature and salinity and 
implements a distributed application [ 5 ]  for adaptive 
sampling of these sensors, as mentioned in Section 1V.A. 
In this way, the sensor iterates towards a sampling 
strategy adapted to network traffic conditions and 
remaining battery power. The processor and sensor 
modules exchange messages so that the sensor module 
can communicate with its node neighbours. 

Fig. 5. SECOAS project node components showing the radio, 
processor (kOS) and submerged sensor module. 

Fig. 6.  Photograph of prototype buoy with mounted enclosure (white 
box) containing the radio and kOS modules. Thc antenna and 
navigation light are also shown. The submerged sensor module is  not 
shown. 

For SECOAS, we have also implemented a distributed 
auto-location application [4][22] and an application to 
temporally compress sensor data [22] before 
transmission. 

1X. PERFORMANCE ANALYSIS 
In this section we use the benchmark of our SECOAS 

project prototype design to examine the performance of 
kOS and its associated hardware. Note that the purpose 
of the prototype SECOAS design was primarily to 
examine the radio and network performance, together 
with the performance of the various distributed 
applications. At the time of writing, we are presently 
collating network results; application-specific 
performance analyses may be seen elsewhere 
[2][4][5][6][20]. In this section we restrict ourselves 
mostly to brief results concerning the kOS and the 
processing board. 
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A Power usage 
For the SECOAS project, we have used a 12Ah 

alkaline battery, which is small enough to fit into the 
buoy’s radiolprocessor board enclosure. For the various 
elements described in Table I below, this gives a node 
lifetime of 299 days. This is more than adequate for our 
immediate testing purposes of one week, and is even 
adequate for the eventual goal4peration of around a 
year. In the current implementation, the sensor module 
uses a 6Ah battery-giving a lifetime of around one 
year. 

TABLEI . 
CURRENT USAGE POR VARIOUS HARDWARE ELEMENTS lN THE RAD10 

Current On-duty Average 
i m 4  ( W )  current (mA) Etement 

DXI radio 
transmit 9.5 2 0.19 

RX1 radio receive 12 2 0.24 
Radio module I 96 0.96 

0.20 I LMZ936 voltage 
regulator 
MAX232A RS232 7.90 
driver I 

kOS crystal 
oscillator 8.9 1 

0.002 

0.079 

0.089 

kOS PIC MCU 1.5 0.8 0.01 2 

0.10 99.2 0.00992 kOS PIC MCU 
slcep - 
Total (mA) 1-67 
Note that this table does not include measurements for the sensor 

module. 

B. CPU duty cycle 
Here we show how many instruction cycles the 

various kOS objects use - and what the awake duty ratio 
is. Table I1 shows the list of system and application 
objects that are currently implemented in kOS. Note that 
this is specific to the SECOAS project and that 
execution periods can vary widely in different 
implementations. Note that the full duty ratio is used in 
the measurement in Table I. As can be seen, then, our 
current implementation leaves the processor board idle 
to around 99% of the time, extending the battery life of 
the node significantly. 

C. Memory usage 
In Table I I I  we show how the two main types of 

memory (program and RAM) are used by system and 
application objects. The total in parentheses shows the 
minimal size of kOS without application objects. Our 
value of 12938/497 bytes compares with the TinyOS 
footprint of 3450/226 bytes [9]. As we explained in 
Section V, however: our implementation is naturally 
targeted toward a more capable hardware platform than 
TinyOS. 

TABLE II 
DUTY CYCLE MEASUREMEFFT OF KOS OBJECTS - 

Average Instruction Cycles per 
second Object 

Messenging 2335 
ScheduGng 
Gossiping 
Clustering 
Data 

4409 
47 

1236 
1 1  

Total 8044 (0.8%) 
Note that the PIC clocked at 4 MHz operates at 1 million 

instructions per second. 

TABLE III 
- MEMORY - USAGE MEASUREMENTS OF K o s  OBECTS - 

Program Size RAM Size 
(bytes) (bytes) 

Object 

Messenging 7928 45 

Gossiping 1250 39 

Scheduling 4310 161 
Data Fusion 2354 6 

Radio (VO) 392 128 (buffer) +35 
Sensor (VO) 308 128 (buffer) 
Others 3078 45 
Total 
Ihvtesl 

- - - 
19620 (12938) 587 (497) 

Note that the code size reduces by around 26% when no 
debugging is used. 

X. CONCLUSION 
In this paper we have shown how treating wireless 

sensor networks like biological automata can result in 
beneficial features such as scalability, robustness and 
self-organisation. A particular implementation has been 
shown in the kOS operating system; however, the novel 
work here is the design of the systems architecture. As 
we have shown, this novelty is primarily in they way we 
construct and support distributed applications-this 
framework could easily be built as a service layer over 
an alternative operating system. There are several 
disadvantages in constraining applications to this kind of 
system-however, the advantages listed above far 
outweigh the disadvantages for many applications. 
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