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1.  Introduction 
 
 “Thermodynamics of the City” (Wilson 2008) poses the question, in relation to 
the doubly constrained trip distribution model –What is Z?- where Z is the 
partition function.  To answer this question the entropy maximising procedure of 
Jaynes(1957) is employed, the partition function derived and expressions given for 
Helmholtz free energy, for more general free energies and for specific heat.  Phase 
changes are identified using these measures. The implications of these results are 
discussed and the possibility of a spatially based exergy analysis is suggested . 

 

2.  The Doubly Constrained Model   
 
  In the doubly constrained model the area of study is divided into 
zones and trips Tij , are modelled from origin zone i , to destination zone j.  The 
number of origins Oi , in each zone is given as are the number of destinations, Dj .  
The model is formulated as  

       
       

  ij i i j j ijT AO B D f c  (1) 

 
    
 
In this formulation f(cij) is the deterrence function which reflects the impact of the  
cost of travel, cij , between zones i and j .  In what follows we take 
 

   ijc

ijf c e


  (2) 

the conventional formulation for the deterrence function and the conventional 
form in the statistical mechanical development of thermodynamics.  However, the 
analysis may also be extended to other forms 
 
The constraints to which this model must conform are 
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      
j

iij OT                (3)

         
 

      
i

jij DT       (4)

              
 

      
i j

ijij CcT      (5)

              
 
The final constraint is one of total generalised cost and in this formulation, 
generalised cost is an analogue of energy in thermodynamics. 
 

3.  The Maximum Entropy Formulation 
 
  The above model has been formally derived (Wilson, 1970) and its 
assumptions explained.  The derivation below is slightly different and follows the 
derivation of Jaynes (Jaynes, 1982).  In this the additional and seemingly redundant 
constraint  of equation  (6) is added thus: 
 

   
i j

ij NT          (6)

        
 
where N is the total number of trips.   In the standard model this summation is 
implicit in the data used for Oi  and Dj and in the iterative estimation of the model.  
However, as Jaynes makes clear, under entropy maximisation, the information 
contained in the algebraic expression of the model is only that contained in the 
constraints, no more and no less (Jaynes, 1957).  It therefore makes sense to 
incorporate (6) as this is  information consistent with our observation of the 
system and as we shall see it allows us to derive the partition function.  In order to 
maximise entropy with respect to these constraints we use the Lagrange  multiplier 
equation. 
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  (7) 
             

in which 
N

T
p

ij

ij   , 
N

O
p i

i * , and 
N

D
p

j

j * . In this mode ijp is the probability of a 

single trip going from zone i to zone j .  The cost constraint is now a constraint on 
average cost from which we derive the maximum entropy distribution 
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ijji c

ij ep
 

 0           (8)

          
 
We may then set up the partition function Z as follows 
 





i j

c

c
ijjieZ


          (9)

            
where the subscript c  refers to the doubly constrained nature of the model and 
 

cZln0            

 (10)            
 
giving the model 
 

c

c

ij
Z

e
p

ijji  

  (11) 

 
The partition function behaves in the same way as the thermodynamic partition 
function in that the constraints are retrieved by differentiation of Zln . Thus 
 






i j

ijij
c cp

Z



ln
 (12)

  

0 0
ln

1

i j ij

i j ij j iji

c

c ci jc
ij

i j i j i ji c

e
Z

p e e e
Z

 (13) 

 
and hence 
 

1)( 0 


j

cijji ee


               
 (14)

  
Equation (13) corresponds to the standard expressions (Wilson 1970) for the 
balancing factors 
 

 


j

c

jji
ijeDBA 1][


 (15)

  
and similarly 
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 


j

c

iij
ijeOAB 1][

  (16)

 
  
It is convenient to write the partition function as 
 





i j

c

jic
ijesrZ


 (17)

 
  
which reflects the form of the standard trip distribution model where 
 

iii OAr   (18)

  
and 
 

jjj DBs   (19)

  
Using a single trip/particle model as a first step, has a number of advantages.  
Firstly,  the absence of other particles obviates the need to consider any 
interactions.  Secondly, with only one particle, considerations of distinguishability 
and indistinguishability do not arise. 

 
 
4.  Defining Helmholtz Free Energy 
 
Having defined the partition function the model follows thus 
 

c

c

ji

ij
Z

esr
p

ij

  (20) 

with cZ playing the role of a normalising constant.  From equation (20) we may 

write 
 

)ln(lnln cijjiij Zcsrp    (21) 

 
hence the entropy, S is given by 
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









 (22) 
  
  
where  
   

 ln lnij i j

i j

rs p rs    (23) 

       
and U  is the total internal energy. Hence, starting from equation (20) we have 
derived the expression 
 

1 1
( ln ln )i j cU S rs Z

 
      (24)

  

If 


1
 is taken as temperature then the left hand side of equation (24) may be 

written as FTSU   (25)
  
where U is the total energy, T is the temperature and F is the  free energy given by 
 

( ln ln )i j cF T rs Z     (26)

  
In the unconstrained case the i  and j  of equation (9) go to zero so the ji srln  

term also disappears giving 
 

ln uF T Z   (27) 

 

where ijc

u

i j

Z e


  (28) 

the partition function for the unconstrained model, which may be compared with 
the standard thermodynamic definition (Cowan 2005) of 
 

ZkTF ln  (29)
  
In this equation F is the Helmholtz free energy and k is Boltzmann‟s constant 
which (Jaynes 1957) „may be regarded as a correction factor necessitated by our 
custom of measuring temperature in arbitrary units‟.  We may thus define k as 
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unity which ensures that entropy is dimensionless and that temperature  or 


1
has 

the same dimensions as cij.   This is consistent with the definition of temperature as 
a measure of the average kinetic energy of the particles in an ideal gas. An 
alternative name for Helmholtz free energy is Arbeit, the German for work, as the 
free energy is the maximum energy available for work.  Helmholtz free energy is 
often denoted by A, a convention which we will follow when it aids clarity.  We 
may thus write for the unconstrained model 

1
ln uA Z


    (30) 

 
We may unpack equation (24) a little further by writing it as 

1 1
. . lni ij j ij c

i j i j

U S p p Z 
 

 
      

 
   (31) 

which may be interpreted as a left hand side identifying kinetic energy terms and a 
right hand side identifying potential or available energy terms. The right hand side 
shows an origin related term and a destination related term plus the free energy 
associated with the interchange. If we now take the origin term over to the left 
hand side and writing 

i

i
ij ij

i j

U p c





 
  

 
   (32) 

we get 

1 1
. ln

i j ij c

i j

U S p Z 
 

 
    

 
   (33) 

so the energy involved in adjusting the origins of the unconstrained model to those 
of the origin constrained model , is now contained within the internal or kinetic 
energy term.  Continuing the process to incorporate the destination constraints we 
may write 
 

1 1
ln

i j cU S Z 
 

     (34) 

 
This gives us the constrained model in an unconstrained formulation with cost 

/

ijc given by  

/ ji
ij ijc c



 
     (35) 

that is by an interchange cost, an origin cost and a destination cost.  The internal 
energy now includes the potential energy (as it should (Keenan, 1956) if the energy 
is in the form of heat or work, i.e. an energy which has its associated entropy 
change) and may thus be likened to enthalpy (see equation (55)). It should be noted 
that the origin and destination costs should not be interpreted simply as terminal 
costs but rather as the cost in transport terms of achieving the given pattern of 
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origins and destinations.  They might be regarded as the transport costs of location 
or the transport element of the rent and as such could include any terminal costs 
such as parking. If such costs are included in the cost matrix they will add an 
element of biproportionality to the matrix and will then be absorbed by the 
balancing factors in the doubly constrained model. This line of argument has been 
advanced before (Dieter, 1962) but it has been argued (e.g. Kirby, 1970) that the 
balancing factors cannot be costs associated with the origins or destinations as, 
when incorporated into the cost matrix,  new balancing factors will be produced 
under the doubly constrained model.  However, this is not correct as, if the 
balancing factors are absorbed into the cost matrix as in equation (35) , the correct 
model formulation is the unconstrained model.  If ir  and js  are completely 

absorbed into the cost matrix then the unconstrained model will give the same 
results as the doubly constrained model using the original cost matrix.   It should 
also be noted that in equations (31) to (34) the entropy, S, remains the same with 
its probability function incorporating both constraints as in equation  (11). The 
unconstrained model with the costs including both constraint costs, as set out 
above, will reproduce the results of the constrained iteration and this is 
demonstrated in Appendix 1. 
  
 
 

5. Ensembles in urban transport models 
 
Ensembles in thermodynamics are used to classify the nature of the system under 
consideration and also as a way of introducing frequency arguments.  It could be 
argued that both of these approaches are unnecessary.  The underlying concepts 
are Bayesian (Jaynes, 1957) needing no frequentist underpinning and the 
characteristics of the system can be described without reference to an ensemble.  
Indeed we might argue that all our knowledge of the system is contained in the 
Lagrange multiplier equation or in the partition function.  However,  given the 
extensive use made of ensembles in thermodynamic analysis , it is useful to locate 
entropy maximising transport models in this kind of framework .  This allows us to 
develop our analysis using statistical mechanics as a suggested itinerary rather than 
a route map. 
 

If we consider an ideal gas at equilibrium then any one portion of it, defined 
by an imaginary envelope, will be indistinguishable from any other part of it.  
Within the envelope average internal energy and temperature will be the same as 
outside. If the envelope were now to become real, rigid and a thermal barrier, the 
enclosed volume would have the same temperature and volume  as before but 
would now also have a pressure generated by the internal energy of the enclosed 
molecules. The system would be isolated from its surroundings but 
indistinguishable from them.  The pressure would be exactly balanced by the 
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pressure of the surrounding gas and the free energy would be zero. A number of 
such isolated systems together  corresponds to the microcanonical ensemble. 

 
However, in the analysis of transport models that follows it is the 

temperature   that is fixed and this corresponds to the canonical ensemble which 

is defined by its location of the system of interest, in a constant temperature heat 
bath (Sethna, 2008).  That   is fixed in transport modelling is evident from its use 

as an invariant in the projection of trips after cost and origin and destination 
changes.  In the first case, the microcanonical case, the internal energy determines 
the value of  .  In the second case, the canonical case,  temperature is set by the 

heat bath of the surrounding gas and each system in the ensemble has a heat 
permeable envelope (MacDonald, 2006). Generally, the use of Helmholtz free 
energy implies a canonical ensemble (MacDonald, 2006)  where temperature 
change in the heat bath (comprised of similar systems) allows heat energy transfer 
across the system envelope.  Indeed, the canonical representation is sometimes 
described as the Helmholtz representation (Callen, 1985 ).  In equation (7) the final 
constraint shows that the average energy is constrained and hence the approach is 
canonical (Sornette, 2000). 

 
Equation (30) acts as the bridging equation between micro and macro states.  

In the case of the constrained transport model, the constraints are created adding 
energy to the internal energy of the system  with its temperature  maintained at a 
constant by the heat bath. The heat bath corresponds to the time and money 
resources available in the economy in which the transport system is embedded. 
Similarly, any recourse to Gibbs free energy implies a grand canonical ensemble 
where not only is a similar transfer of energy permitted but particles can be 
interchanged, the particles themselves possessing energy.  This latter kind of 
ensemble analysis may be useful in examining modal split in an entropy maximising 
context. 

 
The external imposition of work on the system creates potential energy in 

the form of the constraints which is added to the internal energy thus increasing 
the system‟s  potential for work.  In effect the system has work done on it and this 
makes it distinguishable from its surroundings. A similar argument is advanced by 
Tribus (Tribus and McIrvine, 1971).  The heat bath may be seen as a lake of energy 
, the „wine bottle in a swimming pool‟ analogy.  Alternatively, it may be seen as a 
collection of  similar systems each exchanging energy with themselves and the 
system of interest, to maintain the constant average temperature.  The first view 
seems sufficient for our purposes as it effectively situates the system of interest, the 
city, within the heat bath of its economy.  The second view would correspond 
more nearly to the idea of „cities as  systems within  systems of cities‟ (Berry,1964). 

 
Another, possibly more familiar, way to consider the ensembles is to see the 

microcanonical ensemble as a closed system with all its parameters determined 
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internally.  The canonical ensemble may then be seen as an open system, open to 
heat transfers to and from the heat bath. The grand canonical ensemble might then 
be seen as an open system within an environment of similar open systems with 
particle, heat and other energy transfers being possible between the system of 
interest and its surrounding systems. 

 
 

 6. Multiple Trips 
 
The question arises of how expressions in equations (24) and (26) might change 
when we consider more than one trip, i.e. when we move from the single particle  
analysis to the multiparticle case.  Following Cowan (Cowan 2005) it might be 
argued that the multiparticle partition  function mZ  is given by  

 
N

sm ZZ            (36) 

          
 
where N is the number of trips/particles.  However, this is only the case when the 
trips/particles are distinguishable.  In the indistinguishable case we get 

N

sm Z
N

Z
!

1
           (37) 

 
following Cowan (Cowan 2005). 
 
The following derivation shows how the formulation of equation (26) arises 

naturally in moving from entropy expressed as 
i j

ijij pp ln to entropy expressed 

as 
i j

ijij TT ln  i.e. moving from the single particle to the multiparticle canonical 

representation.  However the use of 
i j

ijij TT ln for entropy, although 

appropriate for variational analysis, is not complete.  Taking 
 




ij

ijT

N
w

!

!
          (38) 

           
as the number of potential states of the system (Wilson 1970) we accept the 
definition of entropy S, as 
 


i j

ijij TTNNwS lnlnln        (39) 
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The single particle relationship expressed in equation (24) may be written, in the 
unconstrained case, as  
 

1 1
ln uU S Z

 
            (40) 

          
 
which may be expressed as  
 

1 1
( ln ) ln

ijij ij ij u

i j i j

p c p p Z
 

           (41) 

      
multiplying all through by N we get 
 

1
( ln ) ln

ijij ij ij u

i j i j

N
T c T p Z

 
           (42) 

       

adding NN ln
1


 (which equals 

i j

ij NT ln
1


) to both sides, gives 

 

NNZ
N

TTcT
i j i j

ijijij ij
ln

1
ln)ln(

1


      (43) 

 
which  may be written 
 
 

1
( ln ln ) ln

ijij ij ij u

i j i j

N
T c T T N N Z

 
          (44) 

     
 
The right hand side corresponds (Cowan 2005) to the expression for the  free 
energy for distinguishable particles and has been derived algebraically from the  
single particle case .  The left hand side includes  the entropy 


i j

ijij TTNNS lnln , the form similar to that used in  spatial interaction 

modelling.  In the doubly constrained case  we have 
 

1 1
( ln ) ( ln ln )

ijij ij ij c

i j i j

p c p p rs Z
 

           (45) 

    
 
multiplying by N gives 
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1

( ln ) ( ln ln )
ijij ij ij c

i j i j

N
T c T p rs Z

 
            (46) 

     
 

adding NN ln
1


gives 

 

)lnlnln()ln(
1

NZrs
N

TTcT
i j i j

ijijij ij
 


    (47)  

 
and hence as in equation (44) 
 

)lnln()lnln(
1

Zrs
N

NNTTcT
i j i j

ijijij ij
 


   (48) 

    
 

The change of entropy expression from 
i j

ijij pp ln to  
i j

ijij TTNN lnln has, 

as might be expected, scaled up the free energy by a factor of N since free energy is 
an extensive rather than intensive variable.  However, in variational analyses such 
as the differentiation involved in maximising entropy or the evaluation of changes 
in entropy, the terms in lnN have no effect as N is constant.  For the most part the 
analysis in this paper concentrates on the single particle case as this simplifies the 
algebra and emphasises use of average cost as the cost constraint as implied by the 
use of the canonical ensemble. 
 
 

7. Other Free Energies and Enthalpy 
 
In equation (27) the  free energy is that of a single particle monatomic gas; all the 
energy, U, is kinetic energy.  In considering system dynamics we need to take into 
account potential energy.  To approach this question we consider the standard 
thermodynamic expression for the grand canonical potential   (Callen, 1985). 
  

i i

i

U TS N      (49) 

where i iN  refers to the chemical energy of iN   particles of type i 

 
Equation (24) may be rewritten as 
 

1 1 1
ln cU S rs Z

  
      (50) 
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in which form it resembles  equation (49) for  the grand canonical potential, with 
1

ln rs


 taking the place of the potential energy represented by  the i iN  terms  

thus  

 
1 1

ln i j ij i j

i j

rs p  
 

     (51) 

In equation (50) the positive value of U reflects an energy induced by work done  
on the system. As the origins migrate to the destinations work is done which by 
itself would lead to a temperature fall.  However, the heat bath maintains the 
temperature thereby transferring energy to the system.  In this approach we are 
adopting the physics rather than the engineering sign convention.  Engineering, 
being concerned with work outputs, regards these as positive whereas in physics, 

such outputs are regarded as negative (Finn, 1986).  The value of  ln i jr s will 

always be positive as i  and j  are positive and we may write 

ln ln ln
ij

ij c c

ij i j ij c
i j i j u

p Z Z
p r s p I

Ze


   
     

  
   (52) 

On the right hand side of equation (52)I is the expected information given by 

ln
ij

ij

i j ij

p
I p

q
   (53) 

where 
ij

ij

c

ij c

i j

e
q

e











  (54) 

the probability distribution of the unconstrained model. The expected 
information,I, is greater than 0 provided ij ijp q  when it equals 0 (Theil, 1972). 

The final term, ln c

u

Z

Z

 
 
 

, may be positive or negative depending on whether or not  

1c

u

Z

Z

 
 

 
.  We may now write an expression for an enthalpy like function, H,   that 

combines the kinetic and potential energies of the system thus 
 
    

1
ln

i j

ij ij ij ij

i j i j

H p c rs p c
 

 

 
    

 
               (55) 

 
and we can then write, using equation(50) 
 
H F TS    (56) 
 
which shows that the energy input results in the production of entropy and free 
energy.  Equation (55)  again shows that we can formulate the doubly constrained 
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model as an unconstrained model by using the cost function  i j

ijc
 



 
 

 
 instead 

of ijc .
 

For Gibbs free energy, the chemical potential term in equation (49) is replaced by –
PV  giving H U PV  . 
  
 
In thermodynamics pressure,  volume and chemical potential are state variables, 
unlike work which is path dependent.  Taken together ir  and js  are unique (Evans, 

A.W., 1970) and thus ji srln  is also unique, implying that for given values of   

and ijc the value is path independent.  Thus ji srln  may be taken as being  

equivalent to a state variable .   
 
 

Case F 

Single particle unconstrained 1
ln uZ


  

Single particle constrained 1 1
ln lni j crs Z

 
  

Multiparticle unconstrained 
ln u

N
Z


  

Multiparticle constrained 
ln lni j c

N N
rs Z

 
  

Note: ijc

c i j

i j

Z rs e


 with, in the unconstrained case,  

          1ji sr and ijc

u

i j

Z e


  

Table1: Free energy expressions 
 
In Table 1 above  F has been taken to include potential energy in line with the 
definition of availability (Keenan, 1942). However, we might equally write equation 
(50) as 
 

1 1 1 1
ln lncU S r Z s

   
       (57) 

 
according to where the system is in its progressive transmutation of origins into 
destinations.  Equation (57) shows that the expenditure of the trip related kinetic 

energy and the origin related potential energy become the free energy, 
1

cZ


 , and 

the destination related potential energy. 
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8.  Defining a Generalised Free Energy 
 

We have seen from equations (52) to (56) and the subsequent analysis that 
the free energy defined is not exactly equivalent to the Gibbs free energy potential, 
G, defined usually as 

 
G H TS U PV TS       (58) 
 
This is because we do not have system wide equivalents of pressure and volume.  
The free energy associated with the biproportional model is closer to  the grand 
canonical  potential although any particle exchange is within the system between 
origins and between destinations(see section 10).  It may therefore be useful to 
think of it as biproportional free energy.  In this section we examine the nature of 
the free energy, F, implied by equation (52).  Using equations (20), (51) and  (52) 
we may write 
   

ln
1 1 1

ln lni j c

r s
i j

rs Z F
Z

c  
        (59) 

 
This gives an expression in units of energy as might be expected and all the 
potential  energy applied to the system plus the free energy is equal to the energy 
available from the system. The equation might be deduced more directly from a 

comparison of equations  (49) and (25).   A plot of free energy against 


1
 (diagram 

1) is shown below.  It shows that, at least for higher temperatures, F is a constant 
multiple of temperature.  At very low temperatures, below 10 in this case, the linear 
relationship is not so clear cut.  The low temperature behaviour is examined in 
more detail in section 10.  What is happening is that as the temperature rises so 

 falls and so ijc
e


rises.  This emphasises  the lower cost interchanges whose 

ijT values increase at the expense of those of higher cost.  The diagram shows 

results for an unconstrained model.  
Equations (50) and (51) would appear to indicate that in most circumstances we 
cannot find separate expressions for P and V.3   
 

                                           
3 If equation (58) is expressed in matrix form it can be resolved.  In particular if we consider the row formulation 

 
j

ii

c

ijij VPepp ij


ln

1
 then we may write ijp as P and 

ijc

ijep


ln  as C then we may write 

iiVPPC  .
1


. However this is not particularly useful for present purposes. 
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However, if we let 
 

ij ij

ij

c c

ij c

u

i j

e e
q

Ze

 



 


 


 (60)

  
 
We may write, using equation (59) 
  

1 1 1 1
ln ln ln ln lnijc ij ij

ij ij ij u u ij

i j i j i jij ij

p p
p e p p Z Z p

q q



   
        

     (61)
 

 
Thus, up to a constant, the  free energy F, is proportional to the expected 
information, I, where 
 


i j ij

ij

ij
q

p
pI ln  (62)

  
and again using equation (59),  we may write 
  
  

 
1

ln uF I Z


    (63) 
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A comparison with Table 1 shows that 
 

ji srI ln  (64)

  

which can be verified directly by using equation (20) to eliminate ji sr  from ln i jrs . 

In fact we could argue that as 
1

ln uZ


  is the free energy of the unconstrained 

single particle, so F in equation (63),  is the free energy  induced through the work 
done in achieving the row and column constraints then being added to the free 
energy of the unconstrained case.  Just as minimisation of free energy is equivalent 
to entropy maximisation so too is the minimisation of expected information 
(Morphet, 1975).  
 
The identification of free energy with expected information (times temperature) 
allows the use of the decompositions set out by Theil (Theil, 1967, Theil 1972) 
which are shown, adapted for the transport model, in Appendix 4 ).  We  may 
therefore write equation (63) as 
 























 

j

jjsD

i

iisO IpZIIpZIF
ji ** ln

1
ln

1


  (65)

  
 Where *ip  and jp* are defined as in equation (7) and 

 


i i

i

iO
q

p
pI

i

*

*

* ln  (66)

  
and 
 


j

i

ij

i

ij

i

ij

i

q

q

p

p

p

p
I

*

*

*

ln   (67) 

 
This shows the free energy decomposed into a between origin (destination)  
component , a weighted within origin (destination)  component and a system wide 
component of the unconstrained free energy.  Theil (Theil, 1972) interprets the 
two elements of the decomposition of I as two steps in the modification of the 
original matrix.  The first step transforms the matrix to a new origin distribution 
whilst the second transforms the revised matrix to give the new destinations.  
We may write 
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*
* * *

*

ln ln ln

ij

j ij

j

i ij ij

c

i c

i

j jci
O i i i c uc c

i i ii

j
j u

rs e
rs e

Zp
I p p p Z Z

q e e

Z





 





 

 
 

     
 
 

 
  


  (68) 

 
if we now write  
 

ij

i

c

u

j

Z e


   (69) 

and 
   

ij

i

c

c i j

j

Z rs e


   (70) 

The two terms introduced are the row components of their respective partition 
functions.  We may now write 
 

* (ln ln )i i

i

c u

O i

i c u

Z Z
I p

Z Z
    (71) 

 
Turning our attention to equation (67) we may write 
 

* *

ln ln

ij

ij

i

ij

i

ij

c

i j

c

i j

i j uij j ij

i c
j ji i c

c

j

rs e

rs e
rs Zp p

I
p p Ze

e

















 


 



  (72) 

 
hence  
 

ln ln ln
i ii i j u ci

I r s Z Z     (73) 

 
where 
 

*

ln ln
ij

i j i ji
i i

p
rs rs

p
   (74) 

 
Substituting from equations (71) and (73) into equation (65) we get  
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 

   

* *

*

1
(ln ln ) ln ln ln ln

1 1
ln ln ln ln

i i

i i

c u

i u i i j u ci
i ic u

i c i j i j ci
i

Z Z
F p Z p rs Z Z

Z Z

p Z rs rs Z



 

    
         

   

 
     

 

 



 (75) 

 
 
as before.  
   
 In equation (65) our energy analysis gives the first term (times temperature) as the 
work in free energy, required to construct the new origin distribution whilst the 
second term gives the work done to construct the new destination distribution 
using the free energy of the origin distribution.  The work is done to the system 
and is added to the existing free energy as defined in equation (27).  The source of 
the energy is the heat bath defined by the constant temperature parameter,  .  The 

identification of the type of free energy as being Gibbs, Helmholtz, Landau, 
(Cowan, 2005), Keenan availability, (Keenan, 1956) or essergy (Evans, 1980),  is 
unnecessary as the expected information formulation is general and incorporates 
all such free energies with the particular type being determined by the constraints 
in the Lagrange multiplier equation (Tribus and McIrvine, 19714: Evans and 
Tribus,1965: Evans, 1980)) where, rather than maximising entropy as in equation 
(7), we minimise expected information (Morphet 1975).   
 The free energies which we have defined are exergies.  Exergy is that 
component of enegy in a thermodynamic system, which is capable of useful work.  
Thus in minimising free energy we are minimising the maximum available work 
energy.  In looking for efficiency in energy use we should look to identify and 
exploit that exergy which remains available after a process has completed (Fisk, 
2006).   Simply looking at energy efficiency is less illuminating because energy is 
always conserved, whereas exergy is used, and used up, in the performance of 
work..  Thus in the singly constrained model we may interpret equation (25) as 
identifying the useful work done as U-TS reflecting the fact that the entropy times 
the temperature is that energy which goes missing in the process.  In transport 
terms this lost energy reflects the losses due to costs which do not directly achieve 
the transport purpose of converting origins into destinations.  Such costs might 
include the costs of congestion or other forms of delay and the lack of information 
on the best routes available. Efficiency would be gained by reducing entropy and 
by using that exergy remaining after the transfer of origins into destinations. 

                                           
4 Tribus and McIrvine use a different formulation for information, namely the differential entropy.  This is explored 
in Appendix 2. 
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9. System Dynamics 
 
The model as defined in equation (20), makes no reference to time although, as 
was argued in the case of the additional constraint on total trips, this information is 
in part, implied within the data which normally refer to a period of time over 
which trips were sampled, e.g. peak hour, 24 hour.  However, even given this 
period there is no information within the model about the rate of transfer of 
origins into destinations; this could be instantaneous or it could be distributed over 
the sample period.  In reality, although estimated simultaneously the balance of 
origins and destinations does not exist simultaneously but rather at any one time, 
the progressive evacuation of the origin zones is balanced by the  trips in transit 
and those trip ends which now occupy the destination zones.  The decomposition 
of free energy demonstrated in the preceding section suggests that it may be a 
useful characterisation of the position of the system at an instant in the time period 
for the conversion of origins into destinations and the understanding of the model 
in continuous terms.  However, the conversion of origins into destinations is not 
the only aspect of dynamic change although it may be the most easily observed.  
We need also to look at changes that may result from changing temperatures i.e. 
changing   values.  This is done in the next section where we identify phase 

changes in the system reflecting changes in the balancing factors.  In the case of 
the origin and destination constrained model these changes are hidden as changes 
within the iA  and jB  values.  However, when the iA  and jB  values are fixed the 

changes evidence themselves as changes in the distribution of origin and 
destination values. 
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10. Exploring Specific Heat and Phase Change 
 
 The definition of specific heat , , is given by 

 
   

 
U

T






 (76) 

but 
1

T


  and we may write 

 

 
2

1

T T


 


 (77) 

and therefore 

   

 2

2

1U U U

T T


 

  
   

  
 (78) 

The expression for internal energy is, for the unconstrained case 

 
1

ij

ij

c

ij ij ijc
i j i j

i j

U p c c e
e








  


 (79) 

so we may write 
 
  

2

2

ij ijij
c cc

ij ijij
i j i ji j

u u

c e c ec e
U

Z Z

 



 
  
  

     


 
. (80) 

  
   
and therefore 
 

  2
2 2 2

ij ij

U U
c c

T
 



 
   

 
  (81) 

 

so the specific heat is 2  times the variance of the energy.  This result is similar to 

that from standard statistical mechanics (Sethna, 2008) and is consistent with the 
formulation of specific heat as  

 
2

2

2

ln Z
 







 (82) 

but contains no information as to what is held constant.  Given that we have 
neither pressure nor volume it is reasonable to ask to what is the specific heat 
specific?  In this case it is specific to the trip and the total number of trips is what 
is held constant.   What distinguishes the unconstrained and the constrained 
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models is their differing formulation of  pij. and the use of the cost definition of 
equation (35) in the case of the doubly constrained model.  Effectively we are using 
enthalpy, H, as defined in equation (55) rather than internal energy,  a standard 
approach in thermodynamics. Diagrams 2 and 5 below show the variation of  

specific heat with 
1


 for the unconstrained and doubly constrained models with, as 

might be expected a higher specific heat in the doubly constrained case where 
work is being done, through the balancing factors, against the constraints.  As 
temperature rises in both cases a limit  is approached, of zero in the case of the 
unconstrained model.  In the case of the constrained model a positive limit is 
approached consistent with the effect of the constraints which prevent the 
temperature rise increasing entropy to a maximum.  In both cases there is a turning 
point in specific heat at a critical temperature, cT .  This and the shape of the curves 

are consistent with there being a phase change at cT .  Comparison with similar 

diagrams for gases (Fisher,1964 reproduced in Yeomans, 1992) offers some 

verification.  Diagram 3 plots the data against 
c

T

T
 consistent with the Fisher and 

Yeomans presentation.  Diagram 2 shows two estimates of specific heat, that of 

equation (81) and that of the more basic interval definition, 
U

T




.  The fit is very 

close and the interval definition (in this case 
H

T




) is used in diagram 5.   The use of 

specific heat to identify phase change is considerably clearer than the use of free 
energy where the kink at low temperature shown in Diagram 1 is  less than distinct. 
Diagram 4 shows what is happening to the unconstrained origins as the 
temperature rises. The rise and fall takes place on either side of the critical 
temperature suggesting a zone of instability. The same analysis is not available in 
the constrained case as the origins are, by definition, fixed.  However, Diagram 6 
shows a similar analysis for the accessibility constrained model with the 

i
A  and jB  

of equation (A3.5)  held constant. The equation is reproduced below as equation 
(83).  

        ijci j i j

ij

AB OD
T e

k N
        (83) 
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It indicates that the model is symmetrical between iO and jD  and iA and jB  so that 

we can iterate to fixed pressures (i.e. balancing factors) allowing trip ends to vary 
subject to their adding up to N.  It might be argued that, unlike the case of origins 
and destinations, we do not have any a priori values for the balancing factors with 
which to constrain the iteration.  However, we do have the choice of either 
iterating to previously determined balancing factors whilst changing some other 
parameter e.g. ijc .  Alternatively, we might argue that in the longer term the factors 

might be expected to equalise since they represent accessibilities which at equality 
would give a Pareto optimum.  It has been argued (Tribus and Evans, 1970) that 
the Langrage multipliers relating to subsystems will tend to equality across the 
system as a whole.   Knowing that accessibility is equal system wide we can iterate 
to any convenient constant value with the normalization to N ensuring the validity 
of the result..   This version of the model gives an explicit link between change in 
the model parameters and change in land use as exemplified by the changes in the 
origins and destinations.  

 The zone of instability around the critical value of 1  may include within it 

the potential values of  in the calibrated model.  In such circumstances the 
calibration search may prove difficult both because the search path may cross 
phases and because if, in reality, phase change is incipient then a single equilibrium 
model may be inappropriate and a different modelling strategy may be required.   
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11. Interpretation 
 
The daily commuting flow of traffic might be seen as reflecting the cyclic 
compression and expansion of an ideal gas in a heat engine as in a Carnot cycle 
(Fisk, 2006) . In the doubly constrained model the  initial isothermal expansion 
determines the origins and the subsequent expansion, the destinations.  The work 
done and energy dissipated is replaced by the heat bath maintaining the isothermal 
nature of the process.  The analysis takes no account of the value of the 
destinations achieved just as the thermodynamic analysis of the heat engine takes 
no account of the purpose and value of the work produced.   
This approach looks at the work done in terms of the  pressure and volume work 
defined in conventional thermodynamic analysis.  However, thermodynamics can 
include many other energies, eg magnetic and electric and we may consider the 
energy associated with the origins and destinations as being a particular land use 
transport energy inherent in the pattern of trips and trip ends. 
 
We have identified  with the inverse of temperature which, even in classical 

thermodynamics, is true only for an ideal dilute, monatomic gas.  It would seem 
better to interpret   as a modulus converting energy to information and vice 

versa.  This is closer to Gibbs original view (Gibbs, 1902)  and clarifies the role of 
entropy as missing or inaccessible information (Ben-Naim, 2008) so that we may 

interpret 
i j

ij ij
pp ln

1


as inaccessible energy.  It remains to interpret   in land 

use transport terms where it would seem to represent a measure of the efficiency 
of the use of information in directing the use of those resources identified in the 

definition of generalised cost.  Temperature 1


, has been interpreted as  

measuring the level of economic development, (Saslow, 1999) and we might 

therefore expect to interpret  1


 as an index of the level of development of the 

system under consideration with such efficiency  being higher in developed 
economies. 
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12. Conclusions 
 
 In this paper we have identified the partition function corresponding to the 
maximum entropy trip distribution model.  From this has followed a definition of 
the free energy which, in the case of the unconstrained model, corresponds to 
Helmholtz free energy.  The constrained model gives free energies more closely 
corresponding to Gibbs or Landau free energies.  However we have shown that 
the free energy, of whatever form,  is closely related to expected information and 
that minimising free energy is equivalent to minimising expected information 
which gives a similar model derivation to that of entropy maximisation.  In fact 
Evans (Evans, 1978) argues that information minimisation is more general as it 
admits of constraints that are not linear in ij

p , unlike entropy maximisation.

 The generalised free energy expressed in the terms of a land use model 
opens up the possibility of an explicitly spatial exergy analysis of land use patterns. 

The decomposition of free energy gives some insight into the dynamics of 
the system as it transfers origins to destinations whilst the derivation of an 
expression for specific heat gives a useful mechanism for comparing city transport 
systems since it is a dimensionless ratio unlike   .  The specific heat measure is 

also seen to be an effective indicator for phase change as   changes. 

The location of the analysis in an economic framework may be desirable but 
will require the relating of economic measures to those of thermodynamics.  Thus 
free energy may be related to value (Friston,2007), or to wealth (Saslow, 1999).   

Several questions still remain.  The trips/particles have been treated as 
distinguishable but in fact we can only distinguish between trips that go between 
differing origin or destination zones.  Within an interchange ij  the trips ijT  are 

indistinguishable with common energy levels.  This and the fact that the energy 
levels or zone to zone travel costs are not continuous, suggest that using the 
mathematical apparatus of  quantum analysis might produce some useful insights 
and confirm or otherwise, the classical analysis used here.  
  Although we have leant heavily on statistical mechanics and 
thermodynamics to guide the exploration in this paper it would be well to bear in 
mind Jaynes‟ view that „statistical mechanics is a branch of inference‟.  We might 
therefore seek to develop future work in this area  as inference applied to land-use 
transportation systems and seek to identify further information that might be 
included in the constraints. 
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Appendix 1 
 
A1.  Test Data 
 
In the following calculations5  we consider a cost matrix 
 
10   14.1 14.1 14.1 14.1 
14.1 10   20   28.3 20    
14.1 20   10   20   28.3 
14.1 28.3 20   10   20   
14.1 20   28.3 20   10 
 
with   = 0.1 giving the deterrence function matrix is 

 
0.3678794412 0.2441432832  0.2441432832  0.2441432832  0.2441432832  
0.2441432832 0.3678794412  0.1353352832  0.05901285367 0.1353352832  
0.2441432832 0.1353352832  0.3678794412  0.1353352832  0.05901285367 
0.2441432832 0.05901285367 0.1353352832  0.3678794412  0.1353352832  
0.2441432832 0.1353352832  0.05901285367 0.1353352832  0.3678794412 
 
In the case of the constrained models we assume origins and destination. 
The origins (row totals) are 
 
500 500 3000 5000 1000 
 
and the destinations (column totals) are 
 
5000 3000 1000 500 500 
 
The total number of trips is 10,000. 
 

A2.  The Unconstrained Case 
 
In the unconstrained case (i.e. not using the Origin and Destination totals) the trip 
matrix is (rounding to integers) 
 
   720   478   478   478   478 
   478   720   265   115   265 
   478   265   720   265   115 
   478   115   265   720   265 

                                           
5Calculations in Dyalog APL 12.0.5 incorporating Causeway RainPro graphics 
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   478   265   115   265   720 
 
and hence the ijp  matrix is (to 8 decimal places) 

 
  0.07197407  0.04776561  0.04776561  0.04776561  0.04776561 
  0.04776561  0.07197407  0.02647778  0.01154562  0.02647778 
  0.04776561  0.02647778  0.07197407  0.02647778  0.01154562 
  0.04776561  0.01154562  0.02647778  0.07197407  0.02647778 
  0.04776561  0.02647778  0.01154562  0.02647778  0.07197407 
 

This gives an entropy 
i j

ijij ppS ln =  3.084456695    

And an average cost ( 
i j

ijijcpCU
_

) of  14.53007    

 
And a value  

5.111277152ijc

u

i j

Z e


    (A1.1) 

giving a free energy ZF ln
1


  = -16.31449305  

 
We may now calculate independently, from A1 and A2, the value of the expression 
 

 SU


1
-16.31449305 

thus demonstrating the validity of the derivation in the unconstrained case. 
 
 

A3.  The Doubly Constrained  Case 
 
In the constrained case, with   = 0.1, we iterate the deterrence matrix to the given 

origin and destination totals to get a trip matrix of 
 
    215    211     37    13     25 
    143    319     20      3     14 
  1305  1069   505    66     56 
  2882  1029   410   395   283 
   455    372      28    23   122  
 
leading to a probability matrix of 
 
  0.02146974  0.02105062  0.00365735  0.00129634  0.00252594 
  0.01433188  0.03190530  0.00203925  0.00031518  0.00140840 
  0.13048999  0.10686671  0.05047063  0.00658108  0.00559161 
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  0.28822429  0.10292749  0.04101074  0.03951347  0.02832400 
  0.04548411  0.03724988  0.00282203  0.00229393  0.01215005 
 
from which we can extract balancing factors using the formulation of Kirby that 
these factors ,corresponding to the ri and sj  of equation(20)  giving an  ri sj   matrix 
of 
 
        0.353663        0.522503        0.090780        0.032177        0.062697 
        0.355735        0.525564        0.091312        0.032365        0.063064 
        3.238923        4.785195        0.831384        0.294683        0.574194 
        7.154085       10.569466        1.836347        0.650890        1.268270 
        1.128972        1.667947        0.289790        0.102716        0.200143 
 

and < ln ri sj   > = jiij srp ln  =  1.0196 

From equation (11) we may calculate Zc 

 





i j

c

ji
ijesrZ


=  6.0599 

In this case the entropy is given by 
i j

ijij ppS ln =  2.420065 

 

And the energy U by 
i j

ijijcpCU
_

=16.37999854 

  

Thus  SU


1
     -7.820651 

 

And ZsrF ji ln
1

ln


 = ¯7.820651 

 
Once again the equations balance thus verifying the derivation of free energy in the 
doubly constrained case.  
Similarly 
  
1

ln 7.820651uI Z


     (A1.2) 

 
showing the equivalence of the expected information expression to free energy. 
 
In addition  
 

i j

i j

rs  36.722866  (A1.3) 
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and 
 

2Z  36.722866  (A1.4) 
 

illustrating that 2

i j

i j

Z rs  

 
 

A4.  The Doubly Constrained  as a Singly Constrained Case 
 
In this model we examine the singly constrained case in which the balancing 
factors ,i jr s  are incorporated into the cost matrix and thus into the probability 

matrix.  
 
The  probability matrix is given by  
 
  0.02146974  0.02105062  0.00365735  0.00129634  0.00252594 
  0.01433188  0.03190530  0.00203925  0.00031518  0.00140840 
  0.13048999  0.10686671  0.05047063  0.00658108  0.00559161 
  0.28822429  0.10292749  0.04101074  0.03951347  0.02832400 
  0.04548411  0.03724988  0.00282203  0.00229393  0.01215005 
 
which is identical to that in the doubly constrained case but the cost matrix is now 
 
   20.39   20.59   38.09   48.47   41.79 
   24.44   16.43   43.93   62.61   47.64 
    2.35    4.34   11.85   32.22   33.85 
   ¯5.58    4.72   13.92   14.29   17.62 
   12.89   14.88   40.69   42.76   26.09 
 
which is considerably different from that of the doubly constrained model..  The 
negative value reflects the disproportionately high number of origins in zone 4. 
Effectively, to achieve that distribution a subsidy in excess of the transport cost is 
required.. 
 

The overall energy 
1

U S


  is  ¯18.016998 which compares with 
1

U S


  for the 

doubly constrained model of  ¯7.8207.  The difference of  ¯10.196298 is 

equal to the value of 
1

ln rs


 in the doubly constrained model, as expected. 

The average energy of  6.183652 compares with the equivalent value in the 
in the doubly constrained case of 16.3800 reflecting the high impact of the 
subsidy on the largest trip volume.  The value of Z in this case is  6.059939, 
the same as in the conventionally doubly constrained model. 
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A5.  The Uniform Balancing Factor Case 
 
In this approach the cost matrix is iterated to equal totals  and the balancing 
factors extracted and normalised to the total number of trips giving the model 
 

. .
* *

ij

c
ij

p p e
i j

p
Z

c



   (A1.5) 

 
The results for this model with the same cost and   values as before are an energy 

value U  of 15.1466 and entropy, S  of 2.9720 giving 
1

U S


  equal to ¯14.5737.  

From this is subtracted the value of 
1

ln rs


 of 2.332 to give -16.9057 which 

compares with the calculated value of  
1

ln cZ


  of ¯16.9058.  The values of 

internal energy, free energy and entropy lie between those of the unconstrained 
and doubly constrained models as might be expected given that the constraints are 
stronger than the former but weaker than the latter.   The trip matrix is given by 
 
       98      215     215     215     215 
     215    1078     397     173     397 
     215     397    1078     397     173 
     215     173     397    1078     397 
     215     397     173     397    1078 
and has a symmetry similar to that of the unconstrained case as might be expected 
since the deterrence matrix determines both. 
The origin (row) totals are 
959      2260      2260      2260      2260 
and the destination (column) totals are  
959      2260      2260      2260      2260 
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Appendix 2 
 
The Relation between Relative Entropy and Differential Entropy 
 
 
Both differential and relative entropy are described as Expected Information and 
we demonstrate their relationship below. 
 
Differential entropy, D,  is defined as 
 

u cD S S    (A2.1) 

 
and relative entropy R, as 
 

ln
ij

ij

i j ij

p
R p

q
   (A2.2) 

 
where the subscripts c and u refer to the constrained and unconstrained case 
respectively  as do the probabilities ijp  and ijq .  The unconstrained case acts as our 

reference case. 
 
We look first at the differential entropy and consider the constrained case in which 
the row and column constraints are incorporated into the cost matrix. We may 
write 
 

1
c cU S F


    (A2.3) 

That is the constrained internal energy less the constrained entropy times 
„temperature‟ equals the free energy. 
Similarly,  
 

1
u uU S A


    (A2.4) 

 
where A is the Helmholtz free energy of the unconstrained model and thus 
 

1 1
( )c c u uU S U S F A

 
          (A2.5) 

 
and so  
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   
1

u c c uS S F A U U


       (A2.6) 

 

The term  
1

u cS S


  is the expression for information difference used by Tribus, 

(Tribus and McIrvine, 1971) 
 
 
 Now let us consider the relative entropy or expected information 
 

 ( , ) ln
ij

ij ij i j ij c ij u

i j i jij

p
I p q p p c Z c Z

q
             (A2.7) 

so we may write 
 

   
1 1 1

, c
ij i j

u

Z
I p q p

Z
 

  
      (A2.8) 

 
and hence 
 

 
1 1

, ln i jI p q rs F A
 

     (A2.9) 

 
The equivalence now depends upon whether or not the difference in energies is 

equal to 
1

ln i jrs


 . In general this is not the case unless either 1i jr s   as in the 

unconstrained model or  
1

i

j

r
s

  which may be a case worth further examination.  

Where it is not the case recourse is had to renormalisation, to ensure that the two 
entropies uS  and cS  are compared at equivalent energy levels. This requires that 

they satisfy the equation 
 

 #ln lnij ij ij ij

i j i j

p q q q   (A2.10) 

where #

ijq   is the renormalized version of ijq  using the escort distribution 

 

  #

ij ijq C q


  (A2.11) 

where   is chosen to comply with equation (A2.10) and C is a normalising 
constant. (Quiroga et al, 2000). It then follows that  
 

  
#

#

#

1 1 1 1
ln ln ln

ij ij ij

u c ij ij ij

i j i j i jij ij ij

p p q
S S p p q

q q q   
       (A2.12) 
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and we see that the Tribus expression is equivalent to the expected information 

based on ijp  and ijq less the expected information based on #

ijq   and ijq  so 

 

   #, ( , )D I p q I q q   (A2.13) 

 
The renormalisation may be viewed in a more familiar light, as a calibration.  In 
calibration as in renormalisation, we assume a value for   the information energy 

modulus, and amend it iteratively to achieve equality in mean energy or trip length 
between the model and the prior or survey, data.  However, a new value of   

implies a new temperature or information energy modulus which does not fit with 
our canonical analysis in this paper in which the equilibrium is determined by a 
constant temperature and changes in temperature imply a new equilibrium.  The 
usefulness of D is in measuring the degree of self organisation in a system (Saparin 
et al, 1994)  but I is of more value in measuring actual energy changes which is 
what we are interested in in this case. The estimation of the destination exponent 
in retail models also parallels the renormalisation process.  
 The equivalence of  free energy and the differential entropy, given constant 
energy, may be shown by considering equations (A2.3) and (A2.4) which may in 
terms of our models, be written as 

1
lnc ij ij

i j

U p p F


    (A2.14) 

and 
 

1
lnu ij ij

i j

U q q A


    (A2.15) 

so  
1 1

ln lnc u ij ij ij ij

i j i j

U U p p q q F A
 

       (A2.16) 

but  
0c uU U    (A2.17) 

for equal energy and therefore 
1

( )u cS S F A


     (A2.18) 

which proves the result.   

 
 The diagram below shows for the unconstrained model, the convergence of the 

two functions,  ,I p q  and D,  as the value of temperature, 
1


, rises. Convergence 

takes place at a value of    of approximately 0.135 .  In general most calibrations 

are likely to give  values of   locating the model in the divergent area (Department 

for Transport 2006, Appendix 2). 
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 Appendix 3 
 
An expression for the balancing factors 
 
This appendix summarises the approach of Kirby (Kirby, 1970).   
Consider the trip matrix with a deterrence function of 1.  This will give 
 

.ij ij

i j j i

ij

ij

i j

T T
O D

T
N T

 

 


  (A3.1) 

     
This is an identity in that any given ijT matrix may be expressed in the manner of 

the right hand side of equation (A3.1).  However, if we now introduce a deterrence 
function that varies across ijT , in our case, an exponential function, we have 

ijci j

ij

O D
T e

N


    (A3.2) 

           
 

and this, in general will not balance to iO  and jD  leading to the introduction of 

balancing factors. 

N

DBOA
T

jjii

ij 
ijc

e


           

(A3.3) 
In practice the N term is absorbed into the balancing factors giving the usual 
formulation  
 

ijc

jjiiij eDBOAT


            

(A3.4) 
 
However, Kirby, rather than accepting this absorption, introduces a new area wide 
balancing factor k thus 
 

ijcjiji

ij e
N

DO

k

BA
T


            

(A3.5) 
 
This relation may be rewritten as 
 

N

DO

k

BA

e

T jiji

c

ij

ij




           

 (A3.6) 
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which is now in the same form as equation A4.1  so we may write 
 



 








i j
c

ij

j i
c

ij

c

ij

c

ij

ij

ijij

ij

e

T

e

T

e

T

e

T







.

  (A3.7) 

 
or 
 
 

ij

ij

ijij
c

i j
c

ij

j i
c

ij

c

ij

ij e

e

T

e

T

e

T

T













 


.

  (A3.8) 

 
 
For the single particle case we may write this as  
 

.
ij ij

ij

ij

ij ij

c c

ij i j i j

c
ij c
c

i j

p p

p rse e

p Ze

e

 





 





 

 


  (A3.9) 

 
This identity may be expressed in a number of ways.  In particular we may write 
 

.
ij ij

j iij ij ij

ijij

i j ij

p p

p q q

pq

q



 


  (A3.10) 

 

where 
ij

ij

c

ij c

i j

e
q

e











 

   
From equation (A3.9) we may write 

ij

ij

c c
i j

p
Z

e


   (A3.11) 

from 1.1 
  

ij

ij i j

c
i j i j c

p rs

Ze


    (A3.12) 
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therefore 
2

c i j

i j

Z rs   (A3.13) 

for N particles 
  

2ln ln lnc i j i jZ rs N rs      (A3.14) 

So for a single particle 
 
2ln lnc i jZ rs      (A3.15) 

 
We may also write, using equation (A3.9) and summing over j. 
 

ij

ij

c c i i j i jc
j j j

p
Z Z r rs r s

e


       (A3.16) 

and thus 
 

c j

j

Z s   (A3.17) 

Similarly, summing over i gives 
 

c i

i

Z r   (A3.18) 

Summing up we may say 
 

c i j

i j

Z r s     (A3.19) 

and 
 

2

c i j i j

i j i j

Z rs r s      (A3.20) 

 
 
Further we may consider ir  and js  themselves as row and column partition 

functions iZ  and jZ  such that 

ijci j

ij

c

Z Z
p e

Z


   (A3.21) 

In the case of the unconstrained model we may write, from equation (A3.18) that 
 

u i

i

Z r n    (A3.22) 

and, summing (A3.21) over i and j 
 

ijc

u

i j

Z e


   (A3.23) 
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In the case of the unconstrained model of Appendix 1 A2 the value of n is 5 but 
we see from equation (A1.1) that uZ  has a value of 5.111277152.  This discrepancy 

arises from the biproportionality already inherent in the deterrence function 
matrix..  On the one hand this problem of deterrence biproportionality may be 
seen as a weakness of the biproportional model which may be reduced by 
amending the zoning pattern.  On the other hand, the embedded biproportionality 
may be seen as an inherent feature of the deterrence matrix which reflects the real 
world system being modelled. This is likely to be true if the cost matrix includes 
additive row and column elements in the cost elements (prior to any consideration 
of terminal costs).  Such costs might reflect the  trip cost internal to the zone 
which forms part of the trip costs for all trips to or from the zone in question. 

Embedded biproportionality  is likely to affect calibration although not the 
resulting trip pattern as the biproportionality of the deterrence matrix will be 
absorbed by the overall doubly constrained iteration into its balancing factors.  

However, since the calibrated function would be i j ijc
e

    
 where   is the true 

value and ,i j   are the pre-existing biproportionality factors, the incorrect 

estimation of    would affect those applications where its value is required.  This 

would be true for values of free energy  and for some calculations of elasticity.  An 
estimation of the true value of   may be gained from the solution of equations  

(A3.22) and (A3.23). 
The low value of uZ  may also relate to the low temperature behaviour 

eliminating some origins and destinations and as a consequence, destroying the 
underlying symmetry of the original model. 
 Diagram 8 shows how, for the data of Appendix 1, the value of  

uZ approaches 2n  as   decreases, i.e. as temperature increases. The divergence 

from  2n   starts at  a value for  of about 0.04 and increases as    increases into the 

range of values we might normally expect in a transport model (Department for 
Transport,2006). A similar analysis applies when working from equation (A3.10) 
rather than equation (A3.9) but the values  for ir , js  and cZ  will differ reflecting 

the fact that equation (A3.9) refers to an iteration from ijc
e


 and equation (A3.10) 

to an iteration from ijq .  The two iterations determine two different reference 

environments and will accordingly, give different free energy values by a factor 
proportional to uZ .  The use of a reference environment means that in looking at 

changes in the system the effect of embedded biproportionality will not be very 
important. 
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Appendix 4 
 
The Decomposition of Expected Information 
 
Expected Information, I, is given by 
 
 

ln
ij

ij

i ij

p
I p

q
    (A4.1) 

 
where ijp is the posterior distribution and ijq  is the prior. In thermodynamic terms 

I


1
 is the change in potential defined by the prior and posterior states of the 

system.   
 
We may write 

 

* ** *
* * *

* * * *

* *

*

ln ln ln ln ln

i

ij ij

ij ij iji ii i
ij i i i

ij iji j i j i j ij i i i i

i i

i i O

i i

p p

p p pp pp p
p p p p

q qq p q p q

q q

p I I

   
   
      
   
   
   

 

     

 

 

  (A4.2) 
 
where 
 

*i ij

j

p p   (A4.3) 

and 
 
  

*i ij

j

q q   (A4.4) 

 
is the expected information calculated across  j for row i  and 

iOI is the 

expected information associated with the row (origin) total. 
 
We may thus write 
   

   * *i ji i O j j D

i j

I p I I p I I       (A4.5) 

iI
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This decomposition is based on Theil (Theil, 1967, Theil 1972 ) and suggests an 
interpretation of iI  as a within row effect and and

iOI  as a between row effect. A 

similar decomposition may  be effected for free energy thus 
 

* ** *
* * *

* *

ln ln ln ln ln
ij ij ij ij ij

ij ij

ij ij iji ii i
ij i i ic c c c c

i j i j i j ii i

j

p p

p p pp pp p
F p p p p

p pe e e e e
    


    

   
   
       
   
   
   

     


  (A4.6) 
 
thus 
 

  *
* *

1 1
ln i

i i i

i i i

p
F I Z p F p

Z 
       (A4.7) 

where 
 

_ ijc

i

j

Z e


   (A4.8) 
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