
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Genome-wide DNA methylation analysis for diabetic nephropathy in type 1
diabetes mellitus

BMC Medical Genomics 2010, 3:33 doi:10.1186/1755-8794-3-33

Christopher G Bell (christopher.bell@ucl.ac.uk)
Andrew E Teschendorff (a.teschendorff@ucl.ac.uk)

Vardhman K Rakyan (v.rakyan@qmul.ac.uk)
Alexander P Maxwell (A.P.Maxwell@qub.ac.uk)

Stephan Beck (s.beck@ucl.ac.uk)
David A Savage (d.savage@qub.ac.uk)

ISSN 1755-8794

Article type Research article

Submission date 4 February 2010

Acceptance date 5 August 2010

Publication date 5 August 2010

Article URL http://www.biomedcentral.com/1755-8794/3/33

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Medical Genomics

© 2010 Bell et al. , licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:christopher.bell@ucl.ac.uk
mailto:a.teschendorff@ucl.ac.uk
mailto:v.rakyan@qmul.ac.uk
mailto:A.P.Maxwell@qub.ac.uk
mailto:s.beck@ucl.ac.uk
mailto:d.savage@qub.ac.uk
http://www.biomedcentral.com/1755-8794/3/33
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


1 

 

Genome-wide DNA methylation analysis for diabetic 

nephropathy in type 1 diabetes mellitus 

 

Christopher G. Bell
1
, Andrew E. Teschendorff

1
, Vardhman K. Rakyan

2
, Alexander P. 

Maxwell
3
, Stephan Beck

1
, David A. Savage

3
 

 

 

1
Medical Genomics,

 
UCL Cancer Institute, University College London, London, United 

Kingdom 

2
Institute of Cell and Molecular Science, Barts and The London School of Medicine and 

Dentistry, Queen Mary University of London, London, United Kingdom 

3
Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, 

Northern Ireland, United Kingdom 

 

CGB: christopher.bell@ucl.ac.uk 

AT: a.teschendorff@ucl.ac.uk 

VKR: v.rakyan@qmul.ac.uk 

APM: a.p.maxwell@qub.ac.uk 

SB: s.beck@ucl.ac.uk 

DAS: david.savage@belfasttrust.hscni.net 

   

Corresponding authors: Dr. Christopher G. Bell (christopher.bell@ucl.ac.uk ) & Dr. David A. 

Savage (david.savage@belfasttrust.hscni.net) 

 



2 

 

Abstract 

 

Background: Diabetic nephropathy is a serious complication of diabetes mellitus and is 

associated with considerable morbidity and high mortality.   There is increasing evidence to 

suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We 

assessed whether epigenetic modification of DNA methylation is associated with diabetic 

nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus 

(T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal 

disease.   

Methods: We performed DNA methylation profiling in bisulphite converted DNA from cases 

and controls using the recently developed Illumina Infinium® HumanMethylation27 

BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci 

throughout the genome, which are focused on the promoter regions of 14,495 genes. 

Results: Singular Value Decomposition (SVD) analysis indicated that significant components 

of DNA methylation variation correlated with patient age, time to onset of diabetic 

nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression 

analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that 

demonstrated correlations with time to development of diabetic nephropathy.  Of note, this 

included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a 

gene in which the first intronic SNP rs13293564 has recently been reported to be associated 

with diabetic nephropathy. 

Conclusion: This high throughput platform was able to successfully interrogate the 

methylation state of individual cytosines and identified 19 prospective CpG sites associated 

with risk of diabetic nephropathy. These differences in DNA methylation are worthy of 

further follow-up in replication studies using larger cohorts of diabetic patients with and 

without nephropathy.
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Background 

   

Diabetic nephropathy is a serious microvascular complication of diabetes and has 

become the most common cause of end-stage renal disease (ESRD) in many national ESRD 

registries [1, 2]. Approximately one third of diabetic individuals will develop clinically 

apparent nephropathy characterised by persistent proteinuria, hypertension and eventual 

progressive decline in glomerular filtration rate [3, 4]. Whilst chronic hyperglycaemia is 

integral to the pathogenesis of diabetic nephropathy there is also strong evidence for a 

genetic susceptibility to this common complication of diabetes [5-7]. In genetically 

susceptible individuals, prolonged hyperglycaemia leads to chronic metabolic and 

haemodynamic changes [8, 9] whose effects, including those driven by transforming growth 

factor beta 1 (TGFβ1), promote structural abnormalities in the kidney such as glomerular 

basement membrane thickening, podocyte injury, and mesangial matrix expansion, with the 

later development of irreversible glomerular sclerosis and tubulointerstitial fibrosis [10].  

Genetic studies have found evidence for linkage to nephropathy at a number of 

chromosome loci including 2q, 3q22 and 19q [11, 12]. While no consistently replicated 

genetic associations have been identified, various candidate gene associations in diabetic 

nephropathy in type 1 diabetes (T1D) have been proposed, such as the SNP rs13293564 G/T 

substitution in intron 1 of UNC13B [13], and SOD1 SNPs [14].  An association with the 

ELMO1 gene and diabetic nephropathy was initially identified in patients with type 2 

diabetes mellitus [15] and this association has now also been reported for diabetic 

nephropathy in T1D [16]. A recent genome-wide association study identified FRMD3 and 

CARS gene variants as possible genetic susceptibility factors for T1D diabetic nephropathy 

[17]. 

Epigenetic mechanisms allow alteration of genome function without mutating the 

underlying sequence. They involve the interacting actions of DNA methylation (the addition 

of a methyl group to the 5th carbon position of cytosine), histone modifications and non-

coding RNAs [18]. A number of indirect lines of evidence point to the involvement of 

epigenetic changes in diabetic nephropathy. Murine models of disease progression 
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displaying temporal variation in gene expression have indicated these supra-sequence 

devices may be involved in the pathogenesis [19]. Gene expression changes reflect dynamic 

alterations in gene transcription and also messenger RNA stability, which may be influenced 

by the epigenetic modification of the genome in response to chronic hyperglycaemic stress.  

Altered DNA methylation has been additionally implicated in vascular disease [20, 21]. 

Furthermore, characteristics observed in diabetic nephropathy such as 

hyperhomocysteinaemia, dyslipidaemia, inflammation and oxidative stress can promote 

aberrant DNA methylation [22-24].  

DNA methylation in mammalian species, except for pluripotent stem cells [25, 26], 

appears to occur almost exclusively at consecutive CpG dinucleotides, of which there are 

approximately 28 million located within the human genome [27]. The majority of cytosines 

in these dinucleotides remain methylated (~80% in Homo sapiens) [27], which contrasts 

with CpG islands (CGIs) in which cytosines are generally unmethylated. CGIs are regions that 

exceed genome average levels of CpG density and co-localise with 72% of gene promoters 

[28], notably in those of highly expressed genes.  

In order to assess possible changes in CpG methylation in a genome-wide manner 

we utilised the high throughput Illumina Infinium® Human Methylation27 BeadChip DNA 

methylation array to investigate association with nephropathy in a case-control study of 192 

T1D patients. These probes interrogate the methylation state of 27,578 individual CpGs 

located predominately in CGIs within proximal promoter regions, between 1.5 kb upstream 

and 1 kb downstream of the transcription start sites of 14,475 consensus coding sequence 

genes throughout the genome. Furthermore 110 miRNA promoters are targeted with 254 

CpG loci probes [29]. This platform enables the high-throughput array based investigation of 

individual CpGs at a magnitude higher level than the previous array based Golden-Gate 

assay [30].  

The development, as well as the progression, of diabetic nephropathy has been 

linked to the same inflammatory cell processes that are implicated in the progression of T1D 

itself, such as the activated T cells involved in the destruction of islet β cells [7]. Thus 

changes in the expression of cytokines and other inflammatory markers from distinct blood 
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cell types make the investigation of methylation changes in DNA derived from blood a 

plausible option for examining epigenetic alterations in this disease. DNA methylation 

changes in peripheral blood have additionally been shown to indicate or be surrogate 

markers of active disease processes [31]. 

This study has investigated the possibility to identify DNA methylation biomarkers in 

peripheral blood cell-derived DNA that may be associated with the pathogenesis of T1D 

nephropathy. The study was designed to detect associations between the disease and 

differences in DNA methylation but not their functional relationship. Undertaken in a case 

control design, those with and without nephropathy were matched by age of onset and 

duration of diabetes.
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Methods 

 

Participants  

 

Cases (n= 96) and controls (n = 96) were recruited from nephrology and diabetic 

clinics in Belfast and Dublin (Table 1). Genomic DNA was extracted from whole blood 

samples from cases and controls using a salting out method. All participants were white, 

with parents and grandparents born in Northern Ireland or the Republic of Ireland. Both 

cases and controls were diagnosed with T1D before the age of 31 years and required insulin 

from time of diagnosis. The definition of a case was based on development of persistent 

proteinuria (>0.5g protein/24h) at least 10 years after diagnosis of diabetes, hypertension 

(BP >135/85 mmHg or treatment with antihypertensive agents) and presence of diabetic 

retinopathy. In contrast, a control was defined as a patient with T1D duration of at least 15 

years with urinary albumin excretion in the normal range and not receiving antihypertensive 

treatment. Patients with microalbuminuria were excluded from both groups. Cases and 

controls were matched for confounders that may affect DNA methylation namely age, 

gender and duration of diabetes within five year windows. Study approval for each 

recruitment site was obtained from respective research ethics committees (Queens 

University Belfast and Mater Misericordiae Hospital, Dublin) and written informed consent 

was obtained from all participants.  

 

Bisulphite conversion of DNA 

 

Bisulphite conversion of 1ug genomic DNA was performed using the EZ-96 DNA 

Methylation-Gold™ Kit (©Zymo Research Corp., USA) in two 96 well plates according to the 

manufacturer’s instructions. Cases and controls were randomly located between the two 

plates. Effective bisulphite conversion was checked by successful PCR amplification with a 

pair of primers specific for converted DNA and unsuccessful amplification with a pair of 
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primers for unconverted DNA, of 24 random samples across both plates (details available on 

request from authors).  

  

Illumina Infinium methylation assay 

 

DNA samples from cases and controls were interrogated utilising the Illumina 

Infinium® Human Methylation27 BeadChip. This platform detects the methylation status of 

27,578 CpG sites by sequencing-based genotyping of bisulphite treated DNA. The 

chromosomal distribution and other statistics relevant to these CpG sites are provided in 

Additional File 1: Supplementary Figure S1. This chemical modification of DNA converts only 

unmethylated cytosines to uracils, thereafter allowing for highly multiplexed genotyping 

with single site resolution. Bisulphite converted and unconverted (i.e. methylated) sites are 

simultaneously evaluated by hybridisation of DNA to site-specific probes attached to beads, 

one for unmethylated and the other for methylated sites, followed by allele specific base 

extension that includes a fluorescent label. Two different labels are used, and fluorescent 

signals are specific for either the T (unmethylated) or C (methylated) alleles. Methylation 

scores represented as β values are generated for each site using BeadStudio 3.2 software 

(© Illumina, Inc. 2003-2008) and are computed based on the ratio of methylated to 

methylated plus unmethylated signal outputs. Thus the β values range from 0 

(unmethylated) to 1 (fully methylated) on a continuous scale.  

This platform for quantitative methylation, essentially an adaptation of the highly 

successful Illumina Infinium I Whole Genome Genotype SNP genotyping assay used 

extensively for GWAS [32, 33], is extremely accurate and powerful.  Reproducibility 

estimates are extremely high with an average r
2
 correlation for β-values of 0.992 for 24 

technical replicates [29]. Due to the high density of probes up to 12 separate samples can 

be assayed on a single BeadChip, thus allowing for high-throughput processing. 

The Illumina Infinium methylation assay was performed according to the 

manufacturer’s instructions, and this along with the technical validation of the assay is 

detailed in Bibikova et al. [29].  Bisulphite-converted DNA was denatured, amplified, 
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fragmented and subsequently hybridised, with use of a specific hybridisation buffer, to the 

chip arrays (Sentrix positions A-L). Cases and controls were arranged to randomly 

approximate a 50:50 proportion on each chip. Primer extension was performed, then 

staining and coating, followed by imaging with the Illumina BeadArray reader. Internal 

quality controls included assessment of staining, hybridisation, target removal, extension, 

bisulphite conversion efficiency, dye specificity and additionally negative controls.  

 

Statistical analysis 

 

 Initial array results were visualised using Illumina® BeadStudio 3.2 (© Illumina Inc 

2003-2008). All computations and statistical analyses were performed using the R package 

(R 2.8.1) (http://www.r-project.org) [34] and Bioconductor [35].  

 

Quality control and data normalisation 

 

Quality control and normalisation of methylation data was undertaken using the 

analysis pipeline reported elsewhere [31]. Briefly, samples were monitored for coverage 

(fraction of CpGs with detectable intensity values above background) and bisulphite 

conversion efficiency (BSCE) using the controls provided on the Illumina Beadchip. Of the 

192 samples, one sample had failed BSCE and an additional four samples had relatively low 

coverage and BSCE. These samples were removed, leaving a total of 187 samples with 

approximately 81% global coverage (22,486 CpG sites). Intra-array normalisation was 

performed by the Illumina BeadStudio 3.2. software. The resulting β-valued data matrix was 

normalised further using a quantile-normalisation strategy, designed to reduce unwanted 

inter-array variation. The normalised and raw data are available from GEO (Gene Expression 

Omnibus, NCBI) under the accession number GSE20067. 

 

Singular Value Decomposition and Significance of Singular Values 
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Singular Value Decomposition (SVD) provides a linear representation of the data in 

terms of a relatively small number of components, which capture the most salient patterns 

of variation [36]. We verified that the first component of a SVD analysis on the β-valued 

data matrix captures over 90% of the variation in the data, representing the inherent bi-

modality of the methylation value distribution (see Figures 1a and 1b). Thus, to correctly 

evaluate the statistical significance of the remaining components of variation, the 

normalised data matrix needs to be adjusted by removing this background variation, by 

subtracting out the top principal component. This is essentially equivalent to normalising 

the data matrix by the mean profile. SVD was subsequently reapplied to the normalised 

adjusted data and the spectrum of singular values compared to the null distribution 

obtained by considering random matrices [37, 38]. Specifically, the normalised adjusted 

data was randomised by permuting the CpGs, using a distinct permutation for each sample. 

Subsequently, SVD was performed on the randomised data matrix and the fraction of 

variation of the inferred singular values compared to the fractions of variation of the 

unpermuted data (Figure 2). Using multiple randomisations we verified that the null 

distribution of singular values was very tight (Figure 2), as expected since null singular 

values reflect a global property of the randomised data, which should be robust to further 

randomisations of the data. Thus, significant components of variation were selected as 

those whose variation was larger than the expected variation under the null-hypothesis. 

This gave five principal components in addition to the top component, making a total of six. 

The biological significance of the five components of variation (top principal component did 

not correlate with any phenotype) was tested by correlation to phenotypes of interest and 

experimental factors (Figure 3). For continuous and ordinal variables (e.g. BSCE, age) 

associations were evaluated using linear regression, for categorical variables (e.g. Beadchip) 

we used a Kruskal-Wallis test. For the time to onset of nephropathy (CC-case/control) we 

used a Cox-regression with time to event = time to onset of nephropathy (NP), and event = 

1 (NP), 0 (no NP). 

 

Supervised analysis 
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Association between CpG-valued methylation profiles and diabetic nephropathy was 

performed using a Cox-regression model where time to event equals the time between 

diagnosis of T1D to the onset of nephropathy. Multivariate regressions were performed for 

each CpG separately and included factors for chip, BSCE, sex, cohort and age at sample 

draw. To correct for multiple testing we estimated the false discovery rate (FDR) using the 

q-value framework [39]. We have shown previously that the analytical q-value estimates are 

similar to those obtained using permutations of sample labels preserving the potential 

correlative structure between CpGs [31]. 
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Results 

 

Methylation profile of arrays 

 

The methylation values as defined by β scores ranging between 1 and 0, or fully to 

non-methylated, are displayed for all 27,578 CpGs queried as histograms in Figures 1a and 

1b, for controls and cases respectively.  Both show a similar pattern with a high peak of 

hypomethylated loci and a low peak in the hypermethylated loci. This is the expected U 

shape of methylation pattern of the genome but due to the array design which is skewed 

towards promoter region CpGs in CGIs shows the reverse pattern with a larger peak at the 

low end of the distribution.  The minimum and maximum β values results for a 

representative chromosome, chromosome 1, are shown in Figure 4. This displays the 

individual results for the 2,903 probed CpGs that reside across this chromosome, for cases 

and controls separately. Scatter plots showed highly equivalent intensity scores (r
2
 = 0.9990) 

and average β scores (r
2
 = 0.9996) between cases and controls (data not shown).  

 

DNA methylation analysis 

 

SVD of the normalised data revealed significant components of variation that 

correlated with age, time to onset of nephropathy, sex, but also with experimental factors 

including chip, cohort and bisulphite conversion efficiency (Figures 2 and 3). As age and 

experimental factors could confound the analysis, we identified CpGs correlating with time 

to onset of nephropathy by applying a multivariate Cox-regression model to each CpG site, 

including the confounding factors as covariates. We observed that the resulting p-value 

distribution was significantly different from a uniform distribution with an excess of p-

values close to 0, suggesting that a significant number of CpGs are correlated with time to 

onset of nephropathy (Figure 5). This involves the contribution of directional methylation 

increases or decreases observed in cases, with respect to the period of time that 

nephropathy took to develop, and controls, whom had had a variable period of T1D without 
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developing nephropathy. At an FDR = 0.15, we observed 263 CpGs as conferring increased 

risk and 162 CpGs conferring decreased risk for nephropathy, respectively (Additional File 2: 

Supplementary Table S1). However, whether these changes are related to cause or effect of 

early/late onset of nephropathy cannot be answered by this study. Gene set enrichment 

analysis searches for genes that share common biological function, chromosomal location, 

or regulation, and this analysis run on these data using the Molecular Signatures Database 

(MSigDB v2.5) [40] did not reveal any significant associations, after correction for multiple 

testing. Using a more stringent FDR of 0.05 resulted in a set of 19 CpGs and these are listed 

in Table 2.  The CpG cg07341907, located 5’ of the UNC13B gene, was the only CpG near a 

previously identified T1D nephropathy-associated candidate gene within this group. The box 

plot for adjusted methylation Z-score differences for this CpG is shown in Figure 6, with 

higher levels of methylation in the case group (0.00557) versus controls (-0.00563) 

(Uncorrected average β values were 0.147 and 0.157, for controls and cases respectively). 

The putative association SNP rs13293564 resides within the first intron of this gene [13]. 

MUNC13, the protein coded for by UNC13B, has been shown to be up-regulated in the renal 

cortex of rats with streptozotocin-induced diabetes and its expression is induced by 

hyperglycaemia [41]. 

To investigate whether there was a significant co-directional change of CpGs within 

1 kb of each other, the normalised results for each of those proximal pairs within this 

distance were combined and compared in a case versus control analysis, with two of the 

genes in Table 2, PPAPR3 (cg02590345 and cg16898420 – separated by 119 bp) and TRPS1 

(cg12569516 and cg21312090 – separated by 534 bp) also being in the top ten results of 

this analysis (data not shown).  

 

Discussion 

 

This study investigated the methylation state of approximately 14,000 CGIs in 

promoter regions of genes spread throughout the genome in a cohort of 192 type 1 diabetic 

patients, half of whom had developed diabetic nephropathy. A Cox-regression model was 
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utilised whereby the effect of a genetic susceptibility has a multiplicative effect over time 

on the risk of a subject developing nephropathy. This analysis, after accounting for 

confounding effects, identified an excess of CpG sites which were observed to have a 

change in methylation status that could be correlated with duration of diabetes prior to 

onset of nephropathy with a FDR of 0.15. Of these observations 263 CpGs were identified as 

conferring increased risk and 162 CpGs conferring decreased risk for nephropathy, 

respectively and co-localised to 421 unique genic regions. However this dataset did not 

reveal any significant enrichment of particular physiological gene set pathways.  

Using a more stringent FDR cut-off of 0.05, a set of 19 CpGs was identified (in 19 

unique gene CGIs). One CpG in this list, cg07341907 is located 18 bp upstream of the 

transcription start site of a previously identified type 1 diabetic nephropathy gene, UNC13B 

[13]. Levels of methylation for this CpG were shown to be slightly higher in the case group 

compared with controls. Whilst expression of this gene has been shown to be increased in 

models of nephropathy and hyperglycaemia [41] the expression effect of methylation 

changes can often be difficult to predict [42]. The other CpG assayed within this genic 

region, cg02096633, is located ~0.5 kb further downstream, 197 bp into the first intron and 

shows consistently low methylation levels in both cases and controls (β-value averages 

0.051 and 0.052 respectively).  The susceptibility SNP, rs13293564 resides within the first 

intron and in Caucasians (from CEU HapMap data) is within a linkage disequilibrium block of 

23 kb that includes the CGI. Tregouet et al. could determine no plausible function for the 

intronic SNP, however did identify five SNPs in strong linkage disequilibrium with this SNP 

that reside within the plausible promoter region [13]. Two of which (rs10081672 and 

rs10972333) were found to affect potential transcription factor binding sites. Additionally, 

the former SNP (rs10081672) creates or abrogates a CpG site depending on which allele is 

present. Therefore, modification of the promoter region of this gene whether genetically or 

epigenetically or in combination could influence its expression by affecting transcription 

factor binding. Tregouet et al. proposed that UNC13B mediates apoptosis in glomerular cells 

due to hyperglycemia, and they therefore suggested that this association could indicate 

initiation of nephropathy [13].  
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Whilst the 27K Infinium assay enables high-throughput investigation of individual 

CpG sites with high resolution, and is a considerable improvement on the previous Golden-

Gate methylation assay, this methodology still has some limitations. Only approximately 

0.1% of the total number of CpGs within the genome are assessed, however the placement 

of these CpGs are predominately within the CpG Islands with high likelihood of critical 

effects on promoter activity. As these CpGs can significantly affect or silence expression, 

changes can be more deleterious than gene sequence variants, therefore increasing the 

potential power of the assay. Additionally not all CpG sites need to be assessed as 

correlation of CpG status between sites can extend up to 1kb [43]. Whist dramatic switching 

on or off facilitated by DNA methylation may occur within these promoter regions, more 

subtle and perhaps dynamic effects may however be missed that are occurring in the 

surrounding CGI shores (regions within 2 kb of the islands) [44]. Changes in gene body 

methylation that may influence the expression of certain isoforms, by effecting the inclusion 

or exclusion of certain exons, are also not assayed.  Additionally this array does have a bias 

towards cancer and imprinted genes; with ~200 of these having 3-20 CpG probes per 

promoter. Increasing knowledge with regards to the most biologically informative CpG sites 

and future up scaling will undoubtedly improve targeted platforms, although a more in 

depth investigation of all of the CpGs of the genome would require a differing approach. An 

enrichment technique such as MeDIP-Seq would gain a representative genome wide picture 

but this lacks the base pair resolution of this array [45]. Isolated studies utilising full 

bisulphite sequencing of a very small number of genomes have recently been published 

[26], however scaling up to large numbers of cases and controls currently remains 

prohibitive due to cost. 

Like all genome-wide association studies this study was designed to find statistically 

significant associations, in this case with DNA methylation variation not with genotype, but 

not to identify the underlying mechanism(s) for the cause or function of the observed 

variation. Although DNA methylation is tissue-specific, examination of peripheral whole 

blood was informative in this case in order to determine whether any genome-wide 

methylation signal changes could be detected in this easily accessible surrogate tissue. 
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Whilst only a small number of significant sites were identified, due to the stringent False 

Discovery Rate cut-off implemented, this experiment did identify possible biomarkers in this 

pathogenic process with more easily implementable clinical utility potential. Therefore, this 

indicates that active disease processes can be identified in the DNA methylation pattern of 

peripheral blood and be a possible marker of these [31]. The development, as well as the 

progression, of diabetic nephropathy has been linked to the same inflammatory cell 

changes that are implicated in the progression of T1D itself, such as the activated T cells 

involved in the destruction of islet β cells [7]. Furthermore, additional inflammatory-related 

or other signals may be present in peripheral blood DNA that require isolation of specific 

cell types to detect and other methylation change signals may only be able to be identified 

in the affected renal cells themselves. 

 

Conclusion 

 

This study is one of the first to investigate a complex disease trait utilising this high-

throughput DNA methylation 27K array based assay. The effect of length of T1D status 

before developing or not developing nephropathy was observed to show a correlation with 

respect to methylation scores of individual CpG loci. By the examination of a cohort of 192 

T1D patients this study has confirmed the utility of this approach to genome wide DNA 

methylation analysis and the potential prospects for larger and subsequent replication 

studies of epigenomic factors in common diseases.   
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Table 1: Subjects 

 

 Controls Cases 

Number 96 96 

Age 43.2 42.8 

Sex (M/F) 47/49 48/48 

Age at Diagnosis 16.3 16.2 

Duration T1D 27.8 27.5 

 

Subjects: Number, Average Age, Sex proportion (Male/Female), Duration of T1D 
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Table 2: Methylation Associations  

 

Ilmn CpG ID Gene Gene Function Location coef exp(coef) se(coef) z Pr(>|z|) Q value 

cg01172656 NRBF2 
Transcription 

regulation 
10:64563126 0.631 1.880 0.136 4.653 3.266 x 10

-06
 0.031 

cg18346038 PIGU 
GPI-anchor 

biosynthesis 
20:32728489 0.624 1.867 0.136 4.603 4.164 x 10

-06
 0.031 

cg00117172 RUNX3 
Transcription 

regulation 
1:25128425 0.682 1.977 0.150 4.548 5.427 x 10

-06
 0.031 

cg02068676 COBRA1 

Negative 

regulation of 

transcription 

9:139269304 0.662 1.938 0.149 4.447 8.703 x 10
-06

 0.037 

cg00025138 MAP3K9 
Mixed-lineage 

kinase 
14:70345670 0.543 1.721 0.125 4.335 1.457 x 10

-05
 0.046 

cg03221776 MFSD3 
Transmembrane 

transport 
8:145704779 0.520 1.682 0.121 4.308 1.644 x 10

-05
 0.046 

cg12181621 HIST1H3I 
Nucleosome 

assembly 
6:27948047 0.558 1.748 0.132 4.216 2.486 x 10

-05
 0.048 

cg03752885 DAPK3 
Induction of 

apoptosis 
19:3920736 0.492 1.636 0.118 4.189 2.798 x 10

-05
 0.048 

cg12688215 KTI12 ATP binding 1:52271816 0.446 1.563 0.107 4.175 2.976 x 10
-05

 0.048 

cg07341907 UNC13B Exocytosis 9:35151971 0.606 1.833 0.145 4.169 3.056 x 10
-05

 0.048 

cg26850145 ZBTB5 
Transcription 

regulation 
9:37455023 -0.485 0.616 0.117 -4.142 3.441 x 10

-05
 0.048 

cg21312090 TRPS1 

NLS-bearing 

substrate import 

into nucleus 

8:116750901 0.441 1.555 0.107 4.135 3.543 x 10
-05

 0.048 

cg23266266 DCUN1D4 - 4:52403466 0.560 1.751 0.136 4.117 3.847 x 10
-05

 0.048 

cg04466870 SFXN4 
Transmembrane 

transport 

10:12091517

0 
0.477 1.611 0.116 4.102 4.092 x 10

-05
 0.048 
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cg16898420 PPAPR3 Catalytic activity 9:102830899 -0.711 0.491 0.175 -4.066 4.786 x 10
-05

 0.048 

cg17260725 CCNB2 Cell division 15:57184580 0.523 1.687 0.129 4.0596 4.915 x 10
-05

 0.048 

cg17428423 DOC2A 

Regulation of 

calcium ion-

dependent 

exocytosis 

16:29929633 -0.728 0.483 0.180 -4.053 5.049 x 10
-05

 0.048 

cg18731014 ZNF639 
Transcription 

regulation 
3:180524284 0.556 1.744 0.137 4.050 5.122 x 10

-05
 0.048 

cg21830413 VPS26 
Protein 

transport 
10:70554257 0.472 1.604 0.117 4.036 5.430 x 10

-05
 0.048 

 

Cox-Regression analysis results of CpGs, with FDR (q value) <0.05, for time to develop 

nephropathy. (Location given as Chromosome:Base Pair (Build Hs 36.1)) 
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Figure Legends 

Figure 1 – Average β values. 

Figure 1a (top): Controls, Figure 1b (bottom): Cases - Average β values across array. 

 

Figure 2 – Fraction of variation associated with principal components. 

Fraction of variation associated with principal components after adjustment for the top 

component which captures the inherent bi-modality of the methylation distribution. Red 

denotes the observed values, black denotes those obtained by randomly scrambling up the 

data matrix. Each black dot represents the value of 10 distinct randomisations, which all 

yield the same value as singular values represent measures of global variation which 

themselves are invariant under a global randomisation of the data.  

 

Figure 3 – Correlation of principle components to phenotype/experimental factors. 

Correlation of principal components (top component removed as it did not correlate with 

any phenotype) to phenotypes of interest and experimental factors: BS conversion 

(bisulphite conversion, C1(green), C2(blue)), Sex, Cohort, Chip, Batch, Age at Draw (Age 

when sample taken), Duration T1D, Age at Diagnosis, CC (time to onset of NP) 

Colour key: dark red = p value <10-10, red = p value <10-5, orange = p value < 10-2, pink = p 

value < 0.05, white = p value > 0.05. 

 

Figure 4: Maximum and minimum β values for Chromosome 1. 

Maximum and minimum β values across the 2903 probed CpGs located on Chromosome 1 

for Controls and Cases. 

  

Figure 5 – Nephropathy and duration type 1 diabetes p values.  

Histogram of p-values after explicit correction for all potentially confounding factors reveals 

an excess of significant p values for CpGs correlated with Nephropathy and duration of Type 

1 Diabetes.  
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Figure 6 – Z score values for cg07341907.  

Box plot for adjusted comparison of methylation Z-score values for the UNC13B promoter 

CpG:cg07341907 on controls (0) and cases (1). 

 

Additional File 1 

Supplementary Figure S1 

Distribution of CpG sites on Infinium platform. 

(Top, Left) Chromosome Distribution of CpG sites. (Top, Right) Distance to Transcription 

Start Site of CpG Locus. (Bottom, Left) Interrogated CpG Islands: near genes, near miRNA. 

(Bottom, Right) Number of CpG sites per CpG Island. 

 

Additional File 2 

Supplementary Table S1. 

List of CpGs with q value < 0.15. 

Column headings are IlmnID  = Illumina CpG ID, Gene_ID = Entrez Gene ID, Symbol = Gene 

Symbol, coef = coefficient, exp(coef) = exponential of coefficient, se(coef) = standard error 

of coefficient, z = z score, Pr(>|z|) = probability greater than absolute z score, q value 
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