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Abstract

After the deregulation of electricity industries on the premise of in-

creasing economic efficiency, market participants have been exposed

to financial risks due to uncertain energy prices. Using time-series

analysis and the real options approach, we focus on modelling energy

prices and optimal decision-making in energy projects.

Since energy prices are highly volatile with unexpected spikes, cap-

turing this feature in reduced-form models leads to more informed

decision-making in energy investments. In this thesis, non-linear

regime-switching models and models with mean-reverting stochastic

volatility are compared with ordinary linear models. Our numerical

examples suggest that with the aim of valuing a gas-fired power plant,

non-linear models with stochastic volatility, specifically for logarithms

of electricity prices, provide better out-of-sample forecasts.

Among a comprehensive scope of mitigation measures for climate

change, CO2 capture and sequestration (CCS) plays a potentially sig-

nificant role in industrialised countries. Taking the perspective of a

coal-fired power plant owner that may decide to invest in either full

CCS or partial CCS retrofits given uncertain electricity, CO2, and

coal prices, we develop an analytical real options model that values

the choice between the two technologies. Our numerical examples

show that neither retrofit is optimal immediately, and the optimal

stopping boundaries are highly sensitive to CO2 price volatility.

Taking the perspective of a load-serving entity (LSE), on the other

hand, we value a multiple-exercise interruptible load contract that

allows the LSE to curtail electricity provision to a representative con-

sumer multiple times for a specified duration at a defined capacity
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payment given uncertain wholesale electricity price. Our numerical

examples suggest that interruption is desirable at relatively high elec-

tricity prices and that uncertainty favours a delay in interrupting.

Moreover, we show that a deterministic approximation captures most

of the value of the interruptible load contract if the volatility is low

and the exercise constraints are not too severe.
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Chapter 1

Introduction

Until the 1990s, electricity industries had been vertically integrated1 worldwide,

where regulators fixed prices as a function of generation, transmission, and distri-

bution costs. Due to little uncertainty in prices, investors could, therefore, make

decisions by applying standard deterministic valuation tools such as discounted

cash flow analysis. In recent years, electricity industries in many countries have

been deregulated with the aim of introducing competition in generation and retail

activities. Wilson (2002) and Wolak (1999) provide a comprehensive survey of

reformed electricity markets in developed countries. Wilson (2002) claims that

vertically integrated structures are most desirable when there is strong competi-

tion, and optimisation to meet system constraints is preferable to participants’

flexibility to optimise their own operations. On the other hand, the deregulated

approach works better when incentives for cost minimisation and good schedul-

ing decisions by participants are preferable to coordination in electricity markets.

Wolak (1999) shows that market structures and market rules can have an impor-

tant impact on behaviour of market prices.

This change from a regulated monopoly to private ownership of generation

and market liberalisation may result in lower prices and more efficient use of

resources. However, prices, which are now to be determined by the interac-

tion of supply and demand, have become highly volatile with unexpected spikes.

These sudden spikes may be explained as a response to temperature, supply, or

1The electricity industry had been a naturally regulated monopoly with a guaranteed rate
of return in exchange for an obligation to serve.
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1.1 Modelling Electricity and Gas Prices

transmission shocks. Accounting for uncertainty in energy prices and modelling

market-based decision-making is, thus, crucial under the deregulated paradigm.

Indeed, ignoring such aspects of deregulated markets is likely to result in mis-

valuation of energy projects.

1.1 Modelling Electricity and Gas Prices

Although there are many papers on modelling energy prices, there is limited

information about modelling electricity and natural gas spot prices distinctly,

i.e., taking into account their correlation together with either unexpected spikes

or stochastic volatility. This is important because both electricity and natural gas

prices exhibit such features. In addition, natural gas tends to be the price-setting

fuel in many markets, such as in the UK.

Schwartz & Smith (2000) has developed a two-factor model for commodity

prices where the short-term derivatives are modelled with a mean-reverting pro-

cess and the equilibrium to which prices revert evolves according to a Brownian

motion process; however, it considers neither the existence of correlation between

commodity prices, such as electricity and gas, nor the presence of high-frequency

spikes. Using a similar two-factor analysis, Näsäkkälä & Fleten (2005) models

the spark spread, defined as the difference between the price of electricity and the

cost of gas required for the generation of electricity, directly. It may lose some

information about the spark spread’s uncertainty structure compared to models

with separate electricity and gas price processes. Cortazar & Schwartz (1994),

Laughton & Jacoby (1993), and Smith & McCardle (1998) argue that mean-

reverting price processes, instead of geometric Brownian motion (GBM) process

models, are more appropriate for commodities. On the other hand, Pindyck

(1999) analyses the long-run evolution of energy prices, such as oil, coal, and

natural gas, and suggests that although the long-run energy prices are mean

reverting, since their rate of mean reversion is low, the use of GBM models is

unlikely to lead to large errors in optimal investment rules.

Kosater & Mosler (2006) has successfully applied non-linear autoregressive

Markov regime-switching models in the spirit of Hamilton (1989). Its forecast

study suggests that it is beneficial to apply the non-linear model, at least for
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1.1 Modelling Electricity and Gas Prices

long-term forecasting. The idea behind this approach is to model the spikes as a

separate regime. Karakatsani & Bunn (2008) also uses a regime-switching model

in order to discover the response of agents and, thus, alterations in prices during

temporary market irregularities. Maribu et al. (2007) applies mean-reverting

models for both electricity and gas by considering two variants for electricity:

one with constant volatility and one with stochastic volatility. However, it does

not allow for the possible stochastic volatility of gas prices simultaneously.

In energy markets, a wide range of bottom-up models that include sup-

ply/demand fundamentals is also available (see, e.g., Fleten & Lemming (2003);

Kumbaroğlu & Madlener (2003); Martinsen et al. (2003)). While these models

may be used more by practitioners, financial models require access only to market

prices, which are more readily available than bottom-up data. Such accessibility

makes financial models desirable from this perspective. Furthermore, neural net-

works have also been employed with some success in forecasting energy prices (see,

e.g., Azadeh et al. (2008); Connor (1996); Rodriguez & Anders (2004); Szkuta

et al. (1999)).

In this thesis, due to spikes and stochastic volatility in energy prices, we pro-

pose non-linear regime-switching models and models with mean-reverting stochas-

tic volatility. For the former objective, we extend the model described in Kosater

& Mosler (2006) and Karakatsani & Bunn (2008) to a multivariate model with

two regimes for the logarithms of correlated electricity and gas spot prices. For

the latter one, the work by Maribu et al. (2007) is extended such that the pos-

sibility of stochastic volatility for both the logarithm of electricity price and the

logarithm of gas price is investigated. The innovation of this part of our study

is that the cross-variogram is used to estimate the unobservable parameters of

the stochastic volatilities. Finally,we examine the implications of modelling as-

sumptions on investment decisions. In particular, we take the perspective of an

investor in a UK gas-fired power plant by modelling the logarithms of electricity

and gas prices distinctly via both linear and non-linear multivariate models. We

are then able to assess the out-of-sample forecasting performance of such models

by valuing a gas-fired power plant with and without daily operational flexibility

using data from 2001 to 2006.
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1.2 Investment Decision-Making in Energy Mar-

kets

As another result of the deregulation of electricity industries on the premise of

increasing economic efficiency, market participants, such as generators, retailers,

and marketers, have been exposed to uncertain electricity, fuel, and CO2 prices.

In order to make optimal investment and operational decisions, participants may

find it beneficial to take the real options approach (Dixit & Pindyck (1994)). In

addition to facilitating optimal timing of decisions, it also permits the analysis

of mutually exclusive projects, e.g., in terms of technology choice, and sequential

nested projects, e.g., lagged decisions that arise frequently in the energy sector

and are not easily addressed by traditional approaches.

1.2.1 Carbon Capture and Sequestration (CCS) Technol-

ogy

Since the 1970s, as global greenhouse gas (GHG) emissions have increased signif-

icantly due to human activities, so have temperatures. Global average sea levels

have been rising, global average air and ocean temperatures have been increasing,

and wind patterns as well as snow, ice, and frozen ground have been changing

(IPCC (2005)). Carbon dioxide (CO2) is referred to as the most critical anthro-

pogenic GHG, annual emissions of which grew by about 80% between 1970 and

2004 (IPCC (2007)) mainly due to fossil-fuel combustion and deforestation. Con-

tinuing CO2 emissions at or above current rates would result in further warming

and more changes to the global climate during the 21st century.

Serious consideration is currently being given by industrialised countries to

reducing their CO2 emissions. These countries, known as Annex 1 (forty countries

and separately the European Union), joined the 1997 Kyoto Protocol and have

agreed to reduce their CO2 emissions to an average of 5% below 1990 levels during

the period 2008-2012. In order to implement its commitments, the European

Union introduced a CO2 Emission Trading Scheme (EU ETS) that allocates CO2

emission permits to its facilities in the power sector, iron and steel manufacturing,

and other heavy industries. Such facilities may emit CO2 annually up to their
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1.2 Investment Decision-Making in Energy Markets

allowance limits, and any additional emission requires purchase of surplus permits

from counterparties. Thus, the negative externality of CO2 emissions may be

reflected in the cost of purchasing additional permits.

A wide range of mitigation options is now available or proposed to be available

by 2030. These options include better end-use efficiency improvements, conver-

sion to less carbon-intensive fuels (e.g., switching from coal to gas), nuclear power,

renewable energy sources (such as hydropower, wind, and solar), and CO2 cap-

ture and sequestration (CCS) technology. However, since primary energy use will

continue to rely on fossil fuels in the near term, CCS technology could play a

key intermediate role in alleviating climate change. Moreover, CCS is more likely

to reduce overall mitigation costs and allow additional flexibility in attaining

GHG emission reduction (IPCC (2005)). Nevertheless, according to Hildebrand

& Herzog (2008), capturing almost all emissions, or full capture, is a policy that

is less likely to progress either new coal-fired plants or CCS technology in the

near term. The implementation of full capture at a coal-fired power plant has a

critical effect on plant technology, operation, and economics. On the other hand,

partial capture of the emissions could be a very good replacement at the first

step. In effect, it could provide plant owners with additional flexibility in offset-

ting emissions costs without the burdensome capital investment or efficiency loss

associated with full CCS.

This thesis considers the perspective of a coal-fired power plant owner that

must decide how to mitigate its CO2 emissions by investing in either partial

(PCCS) or full (FCCS) CCS technology. The former may correspond to either

retrofitting only some of the generators in a power plant or capturing some of

the CO2 emissions. We assume that the power plant is operating at its rated

capacity in a CO2-constrained environment that requires the purchase of permits

for any CO2 emissions. Given uncertainty in electricity, coal, and CO2 prices, fol-

lowing the standard smooth-fit techniques developed by Dixit & Pindyck (1994),

we value each mutually exclusive mitigation option via the real options approach

and determine when to adopt it assuming discretion over timing and technology

choice. We use an approach that is similar to the one described in Décamps

et al. (2006), which extends the analysis of Dixit (1993) by providing some con-
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ditions under which the optimal investment region is dichotomous under price

uncertainty.

Herbelot (1992) also applies option valuation techniques in a similar study,

but it analyses the investment situation of a coal-fired power plant that has to

reduce its sulfur emissions by either switching to lower-sulfur coal or investing

in an emission control system. The two stochastic variables in this study (al-

lowance price and coal price premium2) follow correlated geometric Brownian

motion (GBM) processes. It develops a discrete-time binomial model to evaluate

numerically the investment opportunity. Pindyck (2002) proposes a continuous-

time model of environmental policy adoption that takes into account uncertainty

over both environmental change and the social costs of environmental damage.

The analytical solution to this problem is formalised in Adkins & Paxson (2010),

which examines an asset depending on both uncertain revenues and operation

costs that has a renewal opportunity. It provides a stochastic two-factor real

options model that is solved analytically. While Wickart & Madlener (2007) also

uses the real options approach to consider a two-factor model, i.e., the mutually

exclusive investment choice between combined heat-and-power production and

a conventional heat-only generation system, it accounts for uncertainty in one

variable at a time. Abadie & Chamarro (2008a), on the other hand, assumes two

sources of risk, viz., the price of emissions allowance and the price of electricity,

and evaluates the option to install a CCS unit in a coal-fired power plant via a

lattice-based approach. It models the electricity and CO2 emissions permit prices

as evolving according to correlated geometric mean-reverting (GMR) and GBM

processes, respectively, and obtains the allowance price thresholds above which it

is optimal to invest in CCS immediately. The results indicate that current permit

prices do not lead to an immediate adoption of this technology. Similarly, Abadie

& Chamarro (2008b), applying binomial lattices, studies the choice between in-

vesting either in a natural gas combined cycle power plant or in an integrated

gasification combined cycle power plant.

In this thesis, we analyse the incentives for CCS retrofits and expand the real

options theory for mutually exclusive investment under uncertainty to the case

with two risk factors. We examine two situations:

2The difference between low-sulfur and high-sulfur coal prices.
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- Individual investment options, when investing in FCCS and PCCS tech-

nologies are analysed independently.

- Mutually exclusive options, when the decision to invest in either FCCS or

PCCS technology is explored.

Having more than one stochastic variable and following the same procedure as

in Adkins & Paxson (2010), we evaluate the individual investment options an-

alytically. Moreover, we calculate an optimal stopping boundary for the CO2

permit price, depending on the fuel price, above which it is optimal to invest in

FCCS/PCCS technology immediately. Our results suggest that at current CO2

and coal prices, adopting the emission-reduction policy is not optimal, although

both technologies (FCCS and PCCS) are in-the-money. This general conclu-

sion is thoroughly consistent with previous studies, such as Abadie & Chamarro

(2008a). However, as a result of applying different approaches and using different

stochastic models for prices, the CO2 thresholds may, unsurprisingly, differ in

comparable studies.

Evaluating the mutually exclusive options, we generalise the theory proposed

by Décamps et al. (2006) into a two-dimensional space. We introduce an indif-

ference region around the intersection of the NPVs of the projects, over which it

is optimal to wait before investing in either technology. As the FCCS technology

produces higher cash flows than the PCCS one along with a significantly larger

sunk capital cost, the optimal investment region may become dichotomous. Af-

ter evaluating each project separately, we have two different option values and,

correspondingly, two optimal stopping boundaries: C∗(pccs)(F ) and C∗(fccs)(F ). If

the CO2 price is less than C∗(pccs)(F ), then the plant owner waits until the CO2

price reaches this value via either an increase in the CO2 price or a decrease in

the fuel price. However, for high values of CO2, around the indifference curve,

the solution to the separate valuation is no longer optimal. Over this region,

there are two critical thresholds, C∗
L(F ) and C∗

U(F ) (C∗
L(F ) < C∗

U(F )). When

the current CO2 price is included in [C∗(pccs)(F ), C∗
L(F )], it is optimal to invest

immediately in PCCS technology, while for those values greater than C∗
U(F ), it is

optimal to invest immediately in FCCS. For values in [C∗
L(F ), C∗

U(F )], however,
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it is optimal to wait. Since there is no analytical solution to valuing the mutu-

ally exclusive option to retrofit, we propose an algorithm in order to solve this

two-factor real options problem numerically. After valuing the mutually exclu-

sive options, we show that without considering the waiting opportunity over the

indifference region, the plant owner may lose a modest amount of money by in-

vesting immediately. We then explore how these variables, viz., the CO2 emission

allowance and coal prices, may interact in affecting the time of adoption. Finally,

we focus on the effects of price volatility on such mutually exclusive mitigation

options.

1.2.2 Multiple-Exercise Interruptible Load Contract

Under deregulation, although forward and spot markets have been used by sup-

pliers in making investment and operational decisions, demand response, the lack

of which creates risk exposure for load-serving entities (LSEs), has been con-

spicuously absent in most regions. Demand response programmes significantly

decrease the costs of managing risk and improve the overall supply reliability

(PG&E (2008a)), which is beneficial for both consumers and LSEs. Incentive-

based demand response programmes, such as interruptible load (IL) contracts

provided by LSEs, give consumers load reduction incentives in order to encour-

age their participation.

In this thesis, we take the perspective of an LSE that has its representative

consumer on an IL contract with multiple interruption opportunities. The LSE

must decide when to exercise each interruption opportunity given uncertainty in

the electricity price. Once each interruption is exercised, it continues for a spec-

ified duration of time, and the next interruption becomes available at least one

day after the end of the current curtailment, i.e., a problem of making sequen-

tial nested decisions with lags. Although there is a huge literature in the area

of making sequential decisions, there is little information on problems with lags

that depend on prices with structural stochastic processes. For example, Baldwin

(1982) considers sequential investments in which the opportunities arrive one at

a time with no time to complete. Similarly, Dixit & Pindyck (1994) analyses a

two-stage investment where each stage takes no time, and Majd & Pindyck (1987)
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values a sequential investment where each unit of investment buys an option on

the next unit.

Nevertheless, Bar-Ilan & Strange (1998) examines a model of two-stage se-

quential investment where each stage takes time to complete, i.e., there are lags.

Gollier et al. (2005), on the other hand, not only assumes a construction lag time

between each two stages, but also examines a multiple sequential investment with

a power plant consisting of four modules, where each module is available only after

the construction of the previous one.

In analysing IL contracts, Kamat & Oren (2001) considers a simple form of an

IL contract consisting of only two interruption opportunities, while Baldick et al.

(2006) allows for the possibility of multiple interruptions. In particular, Kamat &

Oren (2001) focuses on the pricing of a bundle of a simple forward contract with a

two-exercise IL contract, where electricity prices are modelled with three different

single-factor stochastic processes: a geometric Brownian motion (GBM) process,

a mean-reverting model, and a mean-reverting model with jumps. It shows that

under realistic price models, such contracts alleviate peak demand and energy

shortages. On the other hand, Baldick et al. (2006) considers the impact of

interruption on the spot price of electricity by constructing a structural model

using data from Texas in which the spot price of electricity is determined by the

interaction of supply and demand. It shows that when the supply is inadequate,

such that the retailer has to resort to the electricity spot market, the IL contract

becomes quite valuable. Nonetheless, as the number of power plants or competing

retailers increases, the value of the IL contract decreases, and interruptions are

exercised at higher expected loads.

In contrast to the structural modelling in Baldick et al. (2006), here, we

assume that the electricity spot price follows a GBM process as in Bar-Ilan &

Strange (1998) and Gollier et al. (2005), which solve sequential nested decision-

making problems with lags, and in Oren (2001), which derives the value of a

financial instrument referred to as a double-call option. In this thesis, we extend

the approach described in Bar-Ilan & Strange (1998) and Gollier et al. (2005) by

providing a quasi-analytical solution to multiple sequential investment problems

with lags. Bar-Ilan & Strange (1998) analyses a project that involves two stages

with the possibility of abandonment and suspension after the end of the first stage.
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Although an analytical solution to the problem is provided, it is not easily possible

to generalise it to a multiple sequential investment. On the other hand, Gollier

et al. (2005) considers a multiple sequential investment with lags, however, it does

not solve the problem analytically. In a general sense, the methodology of solving

multiple sequential investment with lags is similar to that of swing options, but,

there is little information on either sequential or swing options that is analytical.

Deng & Xia (2006) and Jaillet et al. (2004), e.g., use numerical methods to solve

problems concerning swing options. Taking the perspective of a tolling contract3

holder, Deng & Xia (2006) proposes a real options approach that values the tolling

contract by maximising the total payoff associated with all exercise tolling options

given that no more than N options can be exercised during the life of the contract.

It uses dynamic programming and value function approximation by Monte Carlo

based least-squares regression to solve the valuation problem. Similarly, Jaillet

et al. (2004) implements numerical scheme for pricing swing options, which permit

their holders the right to receive greater or smaller amounts of energy subject to

both daily and periodic limits, from the point of view of a profit-maximising

agent.

In this thesis, a formal methodology for solving a sequential nested decision-

making problem with lags under uncertainty is provided. The methodology is

then applied to value multiple-exercise IL contracts in order to obtain policy in-

sights. Although there is an analytical solution to the single-exercise IL contract,

the solution to the multiple-exercise IL contract is expressed in a recursive form

that can be solved numerically starting from the last interruption and working

backwards. We also compare our solution to a deterministic approximate IL con-

tract valuation. Our numerical examples reveal that this approximation captures

most of the value of an IL contract when the electricity price volatility is low and

the interruption lag is not large.

3A tolling contract signed between a buyer and a power plant owner gives the buyer the right
to either operate the power plant or take the output electricity subject to certain constraints
during pre-specified time periods for an upfront premium.
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1.3 Structure of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 proposes four lin-

ear stochastic models frequently used in energy markets to model the logarithms

of electricity and gas spot prices for the purposes of valuing a gas-fired power

plant. Next, due to spikes and stochastic volatility in energy spot prices, Markov

regime-switching approaches and a mean-reverting stochastic volatility model are

posited to improve upon these simple linear models. Finally, the performances of

these models are compared using UK electricity and natural gas daily spot prices

for valuing both flexible and inflexible power plants. Chapter 3 takes the perspec-

tive of a coal-fired power plant owner in order to develop a real options model that

values the choice between two emissions-reduction technologies. Specifically, the

plant owner may decide to invest in either full or partial carbon capture seques-

tration retrofits given electricity, CO2, and coal prices, which follow correlated

stochastic processes. The optimal stopping boundaries are also calculated for

both individual and mutually exclusive options. Chapter 4 develops a real op-

tions analysis of multiple-exercise interruptible load contracts from the viewpoint

of an LSE that provides electricity to consumers at a fixed tariff while procuring

this electricity at a stochastic wholesale price. It is assumed that the consumer

is on a multiple-exercise interruptible load contract that allows the LSE to in-

terrupt electricity provision a fixed number of times for specified durations at

defined capacity payments. By solving recursive equations starting from the last

interruption, we obtain the value of the contract and optimal interruption price

thresholds as well as their deterministic approximation. Chapter 5 concludes with

a discussion about the findings and limitations of the current approaches. Future

research recommendations in these areas are also provided.
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Chapter 2

Valuing a Gas-Fired Power Plant:

a Comparison of Ordinary Linear

Models, Regime-Switching

Approaches, and Models with

Stochastic Volatility

Energy prices are often highly volatile with unexpected spikes. Capturing these

sudden spikes may lead to more informed decision-making in energy investments,

such as valuing gas-fired power plants, than ignoring them. In this chapter,

non-linear regime-switching models and models with mean-reverting stochastic

volatility are compared with ordinary linear models. The study is performed using

UK electricity and natural gas daily spot prices and suggests that with the aim

of valuing a gas-fired power plant with and without operational flexibility, non-

linear models with stochastic volatility, specifically for logarithms of electricity

prices, provide better out-of-sample forecasts than both linear models and regime-

switching models.
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2.1 Market Structure, Data, and Descriptive Statis-

tics

In the pre-privatisation electricity industry in Britain, prior to 1990, the Central

Electricity Generating Board had a dominant role. It sold electricity to twelve

government-owned Area Boards, which distributed and supplied the electricity to

consumers in their regional districts. After privatisation on 1 April 1990, these

Area Boards were left unchanged and converted to twelve Regional Electricity

Companies (REC). Large industrials with peak demand greater than 1 MW were

then able to choose their suppliers from any of these twelve RECs as well as from

National Power or PowerGen directly. This peak demand level was reduced to

100 kW in 1994, and it was removed in 1998 when even residential customers

were given the option of choosing their supplier from any of the twelve RECs.

Several studies have provided important insights on this restructuring (see, e.g.,

Bolle (1992); Green (1996); Green & Newbery (1992); Klemperer & Meyer (1989);

Wolak (1999)). After successful performance of this restructuring when the gen-

erators bid into an Electricity Pool1, in 1997, the Power Pool was judged by the

regulator and government to have failed and was replaced by the New Electricity

Trading Arrangements (NETA) on 27 March 2001. The outcomes achieved under

NETA over its first year of operation include: a) significant increase in the liquid-

ity2 and improvement in the transparency of the wholesale markets, b) facilitation

of a decrease in wholesale and retail prices, and c) considerable development in

the performance of the balancing market (see Hesmondhalgh (2003)). Prices in

this balancing market with full competition have been highly volatile, although

a number of rule changes have been agreed to reduce this volatility. Three power

exchanges were established for trading: the UK Power Exchange (UKPX), the

UK Automated Power Exchange (UK APX)3, and the International Petroleum

1In order to keep generation in balance with demand, a special spot market known as the
Pool was created, and all major generators and suppliers were required to, respectively, sell to
and buy from the Pool at common prices.

2Henney et al. (2002) reports that the spot markets are not liquid, while the forward markets
are more liquid than before.

3In February 2003, the APX UK was acquired by Amsterdam Power Exchange (Dutch APX),
and in 2003, they merged with the UKPX into the APX Group. Finally, in December 2008, the
European Energy Derivative Exchange N.V. (ENDEX N.V.) was acquired by the APX Group,
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Exchange (IPE; currently IntercontinentalExchange, ICE).

A total of 2105 daily observations over six years of electricity spot prices in

£/MWhe and gas spot prices in £/MWh from UK energy markets, provided by

the APX Group are available and plotted in Figure 2.1.a. The sample period

begins on 27 March 2001 (introduction of NETA) and ends on 31 December

2006. The electricity spot prices are daily averages of half-hour reference price

data (RPD), while the gas spot prices are the weighted-average prices of all trades

for the relevant gas day on the OCM (On-the-day Commodity Market)4 platform

with relative times of observations measured in years.

The data set is split into two periods (see Figure 2.1): an in-sample period5

(from 27 March 2001 to 26 March 2004) and an out-of-sample period (from 27

March 2004 to 31 December 2006). We assume that the future prices follow

the same structure as the past prices. Hence, the in-sample period is used to

estimate the unknown parameters, and the out-of-sample period is used to assess

the forecast of the models of interest.

With respect to the qualitative aspects of the data, some atypical fluctuations

are observed in the data that are caused not only by exceptional seasons, such

as freezing winters or hot summers, but also by the existence of some salient

events. In particular, the critical dispute over the natural gas and transit prices

between Russia and Ukraine, which started in March 2005 and culminated on 1

January 2006 when Russia cut off gas supplies passing through Ukrainian ter-

ritory, affected UK energy prices (BBC (2006a, b)). The situation, however,

calmed after the two countries reached an agreement in principle of restoring

Russia’s gas supply to Europe. Consequently, UK energy prices started return-

ing to their historical average values (Nesterov (2009)). Moreover, the British

Electricity Trading and Transmission Arrangements (BETTA), which introduced

and to complete the integration process, both companies started operating under one, unified
brand name (APX-ENDEX) in June 2009 (www.apxendex.com).

4An on-the-day commodity market for gas has been launched as part of the new reforms to
improve liquidity and increase competition in UK wholesale gas market.

5One may criticise that the in-sample period looks more benign and less volatile than the out-
of-sample period (Figure 2.1.a). However, since the data become smoother in the logarithmic
scale, Figure 2.1.b does not show a huge distinction between the in-sample and the out-of-
sample data set, but if anything, it shows the robustness of the results. On the other hand, in
Section 2.5.2, the in-sample period is expanded so that after forty weeks are added, it is more
representative of the out-of-sample period.
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Figure 2.1: UK electricity and gas spot prices, 2001-2006 (APX Group)

a single wholesale electricity market for Great Britain with a single transmission

operation (National Grid) independent of generation and supply, came to force

on 1 April 2005 (Treasury (2005)). In addition to the creation of BETTA, the

EU ETS that started in 2005 was also a major intervention in the time series.

A summary of the descriptive statistics of electricity and gas spot prices as

well as those of their natural logarithms is presented in Table 2.1. It is shown that

the spot prices and their logarithms are skewed to the right (positively skewed),

which clearly resulted from the upward spikes. Their positive kurtosis statistics

also indicate a leptokurtic6 distribution.

According to most of the previous articles on energy prices, such as Schwartz

& Smith (2000) and Näsäkkälä & Fleten (2005), the logarithms of spot prices,

Yt, (presented in Figure 2.1.b) are decomposed into two factors,

Yt =

[
log(Et)
log(Gt)

]
=

[
XE

t

XG
t

]
+

[
fE

t

fG
t

]
, (2.1)

where Et andGt refer to observed electricity and gas spot prices, respectively. The

first term on the right-most side is the stochastic part of log prices, and the second

term is a deterministic seasonal function, which will be introduced in the next

section. In Schwartz & Smith (2000) and Näsäkkälä & Fleten (2005), however,

6A leptokurtic distribution is described as “fat in tails” and has a more acute peak around
the mean when compared to a normal one.
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2.2 Seasonality

Table 2.1: Descriptive statistics, UK energy spot prices (£/MWhe and £/MWh)
and their logarithms, 2001-2006 (APX Group)

Statistic Electricity ln Electricity Gas ln Gas
Mean 24.5397 3.1007 8.8904 2.0604
StDev 13.2800 0.4198 5.4088 0.4778
Variance 176.3580 0.1763 29.2555 0.2283
Skewness 3.3447 0.8296 3.2734 0.3699
Kurtosis 21.7419 0.8522 17.0807 1.8679
Number 2105 2105 2105 2105
Minimum 8.6030 2.1521 0.4930 -0.7073
1st Quartile 16.0570 2.7762 5.7890 1.7560
Median 20.5670 3.0237 7.6690 2.0372
3rd Quartile 29.5700 3.3868 10.1920 2.3216
Maximum 190.5490 5.2499 61.3500 4.1166

prices are assumed to follow a two-factor stochastic model with a deterministic

seasonal function. These models include a short-term deviation, which reverts

toward zero, and the equilibrium price level.7 Bernard et al. (2008), Cartea &

Williams (2008), and Aiube et al. (2008) also use similar models in analysing spot

prices.

2.2 Seasonality

Before proposing the stochastic models for the logarithms of the energy prices, we

obtain the deterministic seasonal function in Equation (2.1), using the in-sample

data consisting of n = 1095 observations. Looking at the sample autocorrelation

functions8 of logarithms of electricity and gas prices, graphed in Figure 2.2, the

7Schwartz & Smith (2000), e.g., assumes that ln St = χt + ξt + ft, where St, χt, ξt, and
ft denote, respectively, the spot price of commodity, the short-term deviation, the equilibrium
price level, and the deterministic seasonal function at time t. As the forecast horizon increases,
i.e., t → ∞, the short-term deviation tends to zero, i.e., χt → 0. Therefore, long-maturity
forwards are required to estimate the unobservable equilibrium price, ξt, and the difference
between the long- and short-maturity forwards provides the information about the short-term
deviations, χt.

8Sample autocorrelation functions calculate the autocorrelations of data for different lags
and are commonly used in checking the randomness of data, detecting seasonality, and model
identification.
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2.2 Seasonality

existence of spikes at lags equal to seven (i.e., at lags 7, 14, 21, etc), reveals a

significant weekly seasonality (particularly in electricity prices). Moreover, since

the range of the in-sample data covers a three-year period, yearly seasonality

is also worth considering. The time-series plot of the in-sample data, graphed

in Figure 2.4.a, which shows that the data tend to increase over the winters

while they decrease during the summers, also supports the presence of yearly

seasonality.

(a) Electricity (b) Gas

Figure 2.2: The sample auto-correlation functions of logarithms of electricity (a)
and gas (b) before removing the seasonality

Consequently, the deterministic part of Equation (2.1) can be specified by a

set of cosine and sine terms defined at the frequencies λj = 2πj/s and λ′j = 2πj/s′

as follows (see Harvey (1989) for more details):

f
(i)
t =

∑[s/2]
j=1

(
γ

(i)
1j cosλjt+ γ

∗(i)
1j sinλjt

)

+
∑[s′/2]

j=1

(
γ

(i)
2j cosλ′jt+ γ

∗(i)
2j sinλ′jt

)
, t = 1, 2, ..., n,

(2.2)

where i ∈ {E,G}, the function [a/2] for any a ∈ Z is defined as

[a/2] =

{
a/2 for a even

(a− 1)/2 for a odd
, (2.3)

s = 7, s′ = 365, n = 1095, and {γ(i)
1j , γ

∗(i)
1j , γ

(i)
2j , γ

∗(i)
2j } are the unknown coefficients

that are to be estimated via applying linear regression to the data, a method

similar to the one in Maribu et al. (2007) (estimations are provided in Appendix
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2.2 Seasonality

(a) Electricity (b) Gas

Figure 2.3: The sample auto-correlation functions of logarithms of electricity (a)
and gas (b) after removing weekly and yearly seasonality

A. Figure 2.3 displays the sample autocorrelation function of the log prices after

removing the seasonality. Clearly, no more weekly seasonality exists in these new

data. Looking at Figure 2.4.b, logarithms of electricity and gas spot prices over

the in-sample period after removing the seasonality, it is revealed that the yearly

seasonality is also well captured because no more annual upward or downward

trend is observed.
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Figure 2.4: Logarithms of the UK electricity and gas spot prices (in-sample data),
before (a) and after (b) removing the seasonality
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2.3 Stochastic Linear Models

2.3 Stochastic Linear Models

After capturing the seasonality, four linear stochastic models are proposed for the

logarithms of prices9:

Model (1) Mean reversion for both electricity and gas (MR-MR)

dXE
t = κE(λE −XE

t )dt+ σEdW
E
t (2.4)

dXG
t = κG(λG −XG

t )dt+ σGdW
G
t (2.5)

where dWE
t and dWG

t are correlated increments of standard Brownian motion

processes with E(dWE
t dW

G
t ) = ρdt10.

Model (2) Arithmetic Brownian motion for electricity and mean reversion

for gas (ABM-MR)

dXE
t = µEdt+ σEdW

E
t (2.6)

dXG
t = κG(λG −XG

t )dt+ σGdW
G
t (2.7)

Model (3) Geometric Brownian motion for both electricity and gas (GBM-GBM)

dXE
t = µEX

E
t dt+ σEX

E
t dW

E
t (2.8)

dXG
t = µGX

G
t dt+ σGX

G
t dW

G
t (2.9)

Model (4) Geometric Brownian motion for electricity and mean reversion for

gas (GBM-MR)

dXE
t = µEX

E
t dt+ σEX

E
t dW

E
t (2.10)

dXG
t = κG(λG −XG

t )dt+ σGdW
G
t (2.11)

9Guthrie & Videbeck (2007) reveals that the intra-period correlation patterns of electricity
prices cannot be captured by standard financial models of spot prices. Although we do not
have time-dependent correlation parameters, by calculating the intra-week and intra-month
correlations, no specific patterns were found in our electricity spot prices.

10For simplicity, we consider only instantaneous correlation between electricity and gas prices
rather than lag/lead correlations.
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2.3 Stochastic Linear Models

Table 2.2: Estimation using multivariate normal regression
Parametersa Model (1) Model (2) Model (3) Model (4)

Electricity σE 2.3761 2.5669 0.9008 0.9008
µE 0.0152 0.4082 0.4082
κE 106.9175
λE 2.8159
ρ 0.2086 0.1773 0.1542 0.1735

Gas σG 1.9700 1.9675 1.1882 1.9675
µG 0.6643
κG 43.6338 35.5522 35.5696
λG 1.7832 1.7828 1.7828

aThe standard errors of the estimations are reported in Appendix B

2.3.1 Estimation

Writing the discrete-time form of the processes after applying an Euler approxi-

mation based on stochastic differential Equations (2.4) to (2.11) with time steps

of length ∆t = 1/365, i.e., one day, we can apply multivariate normal regression

to estimate the unknown parameters of the models. For example the discrete-time

approximation of model (1), Equations (2.4) and (2.5), can be written as

[
∆XE

t

∆XG
t

]
=

[
−κE∆tXE

t−1

−κG∆tXG
t−1

]
+

[
κEλE∆t

κGλG∆t

]
+ Vt (2.12)

where ∆X
(.)
t = X

(.)
t −X

(.)
t−1, and Vt (2 × 1) is normally distributed with a mean

of zero and the covariance matrix ν,

ν =

[
σ2

E∆t σEσG∆tρ

σEσG∆tρ σ2
G∆t

]
. (2.13)

The in-sample data, which include observations from 27 March 2001 to 26

March 2004, are then used to estimate the unknown parameters of the four linear

models. The results are reported in Table 2.2, and the models will be compared

in the next subsection. The standard errors of the estimations are reported in

Appendix B. In Appendix C, we show that the residuals are approximately

normal with mean of zero and a roughly constant variance.
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2.3 Stochastic Linear Models

Table 2.3: RMSE of the models
Model (1) Model (2) Model (3) Model (4)

RMSE 0.1138 0.1187 0.1221 0.1187

2.3.2 Comparison

Although the data are stationary11, i.e., a mean-reverting model is the most

suitable one among the others, we are still interested in comparing both the

goodness-of-fit and the out-of-sample forecasting performance of each model. The

measurements used for comparison are the root-mean-square error (RMSE) for

the former objective and the expected root-mean-square error (ERMSE) over the

out-of-sample period for the latter one.

The RMSE value of each model is:

RMSE =

√√√√ 1

2n

n∑

t=1

(yt − ŷt)′(yt − ŷt) (2.14)

where yt is a vector consisting of logarithms of observed energy prices at time t,

ŷt refers to its predicted value, and n = 1095 is the total number of observations

over the in-sample period. The results indicate that mean reversion for both

electricity and gas spot prices, model (1), with the lowest RMSE of 0.1138 is

regarded as the best-fitted model (see Table 2.3).

As mentioned before, our data set is divided into two subsets: the in-sample

and the out-of-sample period. After estimating the unknown parameters of

models of interest using the in-sample period we calculate the r-step ahead ex-

pected values of the log prices over the out-of-sample period (from 27/03/04 to

31/12/06). In order to evaluate the forecasting performance of each model, we

then find the ERMSE of the models for different values of r (from 1 to 365 days)

11Stationarity is confirmed by running augmented Dickey-Fuller (ADF) unit root test (see
Dickey & Fuller (1979) for more details). The ADF test strongly rejects the null hypothesis of
a unit root in the time series with a very small p-value of less than 0.001. The t-statistics for
logarithms of electricity and gas prices are -13.5093 and -7.5401, respectively, while the critical
value associated with the sample size 1095 for a significance level of 0.001 is -4.981 (Hamilton
(1994)).
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2.4 Non-Linear Stochastic Models

as follows,

ERMSE(r) =

√√√√ 1

2(T − r + 1)

n+T∑

t=n+r

(yt − ŷ(t|t−r))′(yt − ŷ(t|t−r)) (2.15)

where the vector yt includes the logarithms of observed electricity and gas spot

prices at time t, the vector ŷt|t−r consists of their predictions given information at

time t−r, and T , the total number of observations over the out-of-sample period,

which has the value of 1010. The results, presented in Figure 2.5, also reveal that

model (1) outperforms other linear models in terms of long-term forecasting,

although model (4) is better over shorter lead times. One sample path from each

model, for both electricity and gas, is also graphed in Figures 2.6 and 2.7. These

simulations also indicate that mean-reverting models are more appropriate for the

logarithms of electricity and gas prices, although they are not powerful enough in

capturing the spikes of electricity prices. Based on all these comparison methods,

thus, the first model, MRMR, is picked as the best linear model and will be used

when considering non-linearity in the following section.

2.4 Non-Linear Stochastic Models

In terms of the recent spikes and stochastic volatility in UK energy spot prices,

Markov regime-switching approaches and a mean-reverting stochastic volatility

model may be more appropriate for forecasting and valuing investments than

the simple linear models of Section 2.3. Towards that end, we explore two such

non-linear models in this section.

2.4.1 Markov Regime-Switching (MRS) Approaches

The idea behind modelling regime-switching commodity prices is to distinguish

between two independent regimes: the stable regime and the spike regime (Hamil-

ton (1989)). Since the regime state is not observable, we need to use Hamilton

filter. The model will then be estimated applying maximum-likelihood optimisa-

tion in connection with the Hamilton filter for the unobservable regime-switching

process (see Appendix D for more details). Kosater & Mosler (2006), using Ger-
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Figure 2.5: The expected root-mean-square error

man hourly electricity spot prices over four years, considers two variants for a

two-regime model: one with a stable regime and a spike regime and one with

a stable regime and a modified spike regime. In the latter one, it distinguishes

between high spikes and low spikes as typical of very high demands over working

days and very low demands over weekends and holidays. Karakatsani & Bunn

(2008), analysing UK half-hourly electricity spot prices over the first year after

the introduction of NETA, also suggests the presence of two, or sometimes three,

regimes in the most volatile trading periods12.

Motivated by this work on modelling electricity prices, we propose a multi-

variate model with two regimes for the logarithms of correlated electricity and

gas spot prices. Let St denote the unobservable regime parameter at time t, i.e.,

St =

{
0 stable regime

1 spike regime
(2.16)

12In Karakatsani & Bunn (2008), each day consists of 48 trading periods, and a total number
of 300 days for each period are analysed.
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Figure 2.6: Simulation of electricity spot prices over the in-sample period

where the transition between two regimes is governed by a first-order Markov

process:

Prob[St = 0|St−1 = 0] = p,

Prob[St = 1|St−1 = 0] = 1 − p,

Prob[St = 1|St−1 = 1] = q,

Prob[St = 0|St−1 = 1] = 1 − q.

(2.17)

We assume that the stochastic part of the logarithms of electricity and gas spot

prices in Equation (2.1) are split into two factors as follows,

[
XE

t

XG
t

]
=

[
α

(St)
E

α
(St)
G

]
+

[
Z

E(St)
t

Z
G(St)
t

]
(2.18)

where the superscript St, hereafter, denotes the regime state, the first term on the

right-hand side is a vector containing the long-term equilibrium levels for the log

prices, and the second term consists of two correlated mean-reverting processes,
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Figure 2.7: Simulation of gas spot prices over the in-sample period

following from the previous analysis on our data set,

[
dZ

E(St)
t

dZ
G(St)
t

]
=

[
−κ(St)

E Z
E(St)
t dt

−κ(St)
G Z

G(St)
t dt

]
+

[
σ

(St)
E dWE

t

σ
(St)
G dWG

t

]
, (2.19)

where E(dWE
t dW

G
t ) = ρdt.13 The discrete-time approximation of the process

based on this stochastic differential equation with time steps of length ∆t = 1/365

(one day) can be written as follows:

[
Z

E(St)
t

Z
G(St)
t

]
=

[
(1 − κ

(St)
E ∆t)Z

E(St−1)
t−1

(1 − κ
(St)
G ∆t)Z

G(St−1)
t−1

]
+

[
σ

(St)
E ∆WE

t

σ
(St)
G ∆WG

t

]
(2.20)

In order to apply the Hamilton-filter algorithm, Equations (2.18) and (2.20)

should now be combined into one equation,

13Here, for simplicity, we consider only one correlation between electricity and gas in both
regimes. We could, however, consider four different correlations: correlation between the spike
regime of electricity and the spike and stable regimes of gas, as well as, the correlation between
the stable regime of electricity and the spike and the stable regimes of gas.
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2.4 Non-Linear Stochastic Models

[
X

E(St)
t

X
G(St)
t

]
=

[
α

(St)
E

α
(St)
G

]
+

[
φ

(St)
E (X

E(St−1)
t−1 − α

(St−1)
E )

φ
(St)
G (X

G(St−1)
t−1 − α

(St−1)
G )

]
+ V

(St)
t (2.21)

where

φ
(St)
E = 1 − κ

(St)
E ∆t, (2.22)

φ
(St)
G = 1 − κ

(St)
G ∆t, (2.23)

and V
(St)
t (2 × 1) given St, is normally distributed with mean of zero and the

covariance matrix

ν(St) =

[
σ

2(St)
E ∆t σE

(St)σG
(St)∆tρ

σE
(St)σG

(St)∆tρ σ
2(St)
G ∆t

]
. (2.24)

In Appendix D, we show how we can estimate the unknown parameters using

the Hamilton filter for this multivariate conditionally normal distribution (see

Equation (2.21)).

Figure 2.4.b shows that, after removing the seasonality, no unexpected spikes

are observed in the logarithms of gas spot prices over the in-sample data. Thus,

we are no longer interested in capturing the spikes in gas prices. In this model,

which is defined as MRRS, we assume that logarithms of gas prices follow a

simple linear mean-reverting model with only one regime, while the logarithms

of electricity prices are mean-reverting processes with two separate regimes, the

spike regime and the stable regime.

Parameter estimates are reported in Tables 2.4 and 2.5. As we expected, the

probability of remaining in the same state for the stable regime (0.9804) is very

high in comparison with that value for the spike regime (0.4689), which is rela-

tively small. Another probability reported in Table 2.4 is the initial conditional

probability Π0 = Prob[S0 = 1|Y0] (see Appendix D for more details) that is

extremely small and indicates that the process at time zero given all available

information would be almost certainly in the stable regime. The estimates of

parameters of gas prices are similar to those of the mean-reverting model in the

previous section; moreover, the estimates of parameters of electricity prices in

stable regime are also very close to those in model (1). As we would expect, how-
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2.4 Non-Linear Stochastic Models

Table 2.4: Estimation of probabilities
Parameter p q Π0

Estimation 0.9804 0.4689 0.0001
Stnd. error 0.0003 .0052 0.0303

Table 2.5: Estimation using Hamilton-switching-regime algorithm

Electricity Gas
Parameter α σ κ α σ κ ρ

Stable Estimation 2.8117 2.0404 100.6824 1.7837 1.9716 44.1133 0.2231
Stnd. error 0.0004 0.0018 0.2223 0.0007 0.0013 0.1465 0.0009

Spike Estimation 2.9680 6.2511 132.8057
Stnd. error 0.0018 0.0317 1.7775

ever, the volatility of the spike regime (6.25) of electricity prices is much higher

than that of the stable regime (2.04), which makes it eligible to capture some

spikes of the time series.

A sample path drawn from this non-linear model along with the actual data

over the in-sample period is graphed in Figure 2.8. Comparing these simulations

with those drawn from the linear mean-reverting model (graphed in Figures 2.6

and 2.7), it can be seen that although the regime-switching model is not able to

capture the high electricity price spikes, it behaves better than the simple linear

model in predicting low spikes.

2.4.2 Mean-Reverting Stochastic Volatility

In order to improve the unrealistic assumption of constant volatility in model (1),

here, mean-reverting models with stochastic volatility driven by a mean-reverting

process are posited. We define a mean reversion with stochastic volatility for

the logarithm of the electricity price and two variants for the logarithm of the

gas price: one with deterministic volatility (MRSV1) and one with stochastic

volatility (MRSV2). Model MRSV1 (Equations (2.25-2.33)) is similar to the

proposed model in Maribu et al. (2007), but, we analyse spot prices rather than

forward prices.
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Figure 2.8: Simulation of electricity (a) and gas (b) spot prices over the in-sample
period

In Equation (2.4), we assume that the variance, σE, is a function of the

unobservable stochastic variable Zt:

dXE
t = κE(λE −XE

t )dt+ σ(ZE
t )dWE

t (2.25)

where ZE
t is another mean-reverting process independent of XE

t :

dZE
t = −κeZ

E
t dt+ σedW

e
t (2.26)

In this thesis, we assume that σ(ZE
t ) = γEe

ZE
t (and σ(ZG

t ) = γGe
ZG

t for model

MRSV2). Notice that in model MRSV1, the natural gas price is given by the

same mean-reverting process in Equation (2.5).

2.4.2.1 Estimating the Unobservable Stochastic Volatility

Since the volatility variable, ZE
t , in Equation (2.25) is not observable, a tool from

spatial statistics, the variogram, is used to estimate the unknown parameters in

Equation (2.26) (Fouque et al. (2000)).14

14As in Chib et al. (2002), we can also use Markov chain Monte Carlo (MCMC) methods to
estimate the unknown parameters for both unobservable and observable variables.
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2.4 Non-Linear Stochastic Models

Variogram analysis Based on the stochastic volatility model, Equation (2.25),

the normalised fluctuation of the data

DE
t =

∆XE
t√

∆tXE
t−1

(2.27)

can be written as

DE
t = κE(

λE

XE
t

− 1)
√

∆t+
σ(ZE

t )∆WE
t

XE
t−1

√
∆t

(2.28)

The first term on the right-hand side is omitted, because it is negligibly small for

small values of ∆t (Fouque et al. (2000)). The normalised fluctuation process,

thus, is modelled as

DE
n =

σ(ZE
n )ǫEn

XE
n−1

(2.29)

where {ǫn} is a sequence of IID standard normal random variables with mean

0 and variance 1 representing ∆WE
t /

√
∆t. Equation (2.29) shows that the nor-

malised increment, D
′E
n , is modelled as

D
′E
n =

∆XE
n√

∆t
= DE

nX
E
n−1 = σ(ZE

n )ǫEn (2.30)

As suggested in Fouque et al. (2000), we will analyse the log absolute value

of the normalised increments Ln, where

LE
n = log|D′E

n | = log(σ(Zn)) + log|ǫEn | (2.31)

Fouque et al. (2000) proves that the empirical variogram of LE
n defined as

V E
j =

1

Nj

Nj∑

n=1

(LE
n+j − LE

n )2, (2.32)

where j is the lag and Nj is the total number of points, is an unbiased estimator

of the semivariogram:

γE
j = 2c2 + σ2

e/κe(1 − e−jκe∆t), (2.33)
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where c2 = V ar(log|ǫ|).15 Using the in-sample data, the quantities Ln (n =

1, 2, . . . , 1094) and the empirical variograms are calculated. Finally, the approx-

imate estimations of the unknown parameters of the unobservable stochastic

volatility are computed and reported in Table 2.6 (see Appendix E for more

details).

If both the volatilities of logarithms of electricity and gas prices are assumed

to be stochastic (MRSV2), i.e.,

dXE
t = κE(λE −XE

t )dt+ σ(ZE
t )dWE

t , (2.34)

dXG
t = κG(λG −XG

t )dt+ σ(ZG
t )dWG

t , (2.35)

where,

dZE
t = −κeZ

E
t dt+ σedW

e
t , (2.36)

dZG
t = −κgZ

G
t dt+ σgdW

g
t , (2.37)

with E(dW e
t dW

g
t ) = ρegdt, then in order to take into account the available cor-

relation between these stochastic volatilities, we propose a new model based on

the empirical cross-variogram of {LE
n } and {LG

n } (defined in Chilés & Delfiner

(1999)), instead of their separated empirical variograms, as follows:

V EG
j =

1

Nj

Nj∑

n=1

(LE
n+j − LE

n )(LG
n+j − LG

n ) (2.38)

where

LG
n = log|D′G

n | = log(σ(ZG
n )) + log|ǫGn | (2.39)

Using the same method as in Fouque et al. (2000), in Appendix F, we prove

that this empirical cross-variogram16 is an unbiased estimator of the semi-cross

variogram:

γEG
j =

ρegσeσg

κeκg

(2 − e−κej∆t − e−κgj∆t) + 2cov(log |ǫE|, log|ǫG|) (2.40)

15The empirical variogram, V E
j , is the sample mean of the semivariogram, γE

j = E(LE
n+j −

LE
n )2.
16The empirical cross-variogram, V EG

j , is the sample mean of the semi-cross variogram,

γEG
j = E(LE

n+j − LE
n )(LG

n+j − LG
n ).
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The estimated parameters using the in-sample data (reported in Table 2.6) show

that the stochastic volatility of the logarithm of the electricity price has a high

rate of mean reversion, i.e., it is nearly four times that of the stochastic volatility

of the logarithm of the gas price in model MRSV2. The positive correlation

between the stochastic volatilities of electricity and gas prices indicates that any

increase (decrease) in the volatility of the electricity price is associated with an

increase (decrease) in the volatility of the gas price.

Table 2.6: Estimation: parameters of the unobservable stochastic volatility
Model κE

Z σE
Z κG

Z σG
Z ρeg

MRSV1 300.0020 9.2368 - - -
MRSV2 297.6075 11.0237 80.8329 4.0804 0.1881

2.4.2.2 Estimating the Main Model

We can now, after estimating the stochastic volatility process, estimate the main

model of the energy prices. The discrete-time approximation of the stochastic

differential Equations (2.5), (2.25), and (2.26) with time steps of length ∆t then

can be written as

Xt =

[
(1 − κE∆t)XE

t−1

(1 − κG∆t)XG
t−1

]
+

[
κEλE∆t

κGλG∆t

]
+ Vt(Zt) (2.41)

where

Xt =

[
XE

t

XG
t

]
, (2.42)

Vt(Zt) given Zt is multivariate normally distributed with zero mean and the

covariance matrix ν, where

ν =

[
σE(Zt)

2∆t σE(Zt)σG∆tρ

σE(Zt)σG∆tρ σ2
G∆t

]
. (2.43)
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2.4 Non-Linear Stochastic Models

It follows that Xt given {Xt−1, Zt} is multivariate normally distributed with mean

µ =

[
(1 − κE∆t)XE

t−1 + κEλE∆t

(1 − κG∆t)XG
t−1 + κGλG∆t

]
(2.44)

and the covariance matrix ν, indicated in Equation (2.43). The log likelihood

function of this process, which can be written as follows:

l(Θ, z) =
n∑

t=1

log f(xt|xt−1, zt,Θ) (2.45)

depends on unobservable stochastic variables Zt. Hence, it is not possible to

maximise it with respect to the unknown parameters Θ = {κE, λE, γE, κG,

λG, σG} because of presence of unknown variables Zt.

Taking N = 10000 sample paths {z(1)
t , z

(2)
t , . . . , z

(N)
t } from the distribution

{f(zt|zt−1); t = 1, . . . , n}, which has been estimated before, starting with an

initial value z0, we define Θ̂(j) as the maximum likelihood estimator of parameter

Θ corresponding to the sample path j = 1, · · · , N :

l(Θ̂(j), z(j)) = max
Θ

l(Θ, z(j)), (2.46)

Finally, the one with the highest likelihood function is defined as the quasi-

maximum likelihood estimator of Θ, Θ̂:

l(Θ̂) = max
j=1,···,N

l(Θ̂(j), z(j)), (2.47)

Estimates are reported in Table 2.7 and indicate that the parameters of the main

models, such as κE, λE, κG, and λG, in both MRSV1 and MRSV2 are very close

to those in the linear mean-reverting model (Table 2.2). However, the correlation

between electricity and gas has decreased, specifically in model MRSV2, which

is likely due to the introduction of a new correlation between their volatilities.

Figures 2.9 and 2.10 display some sample paths from models MRSV1 and MRSV2

over the in-sample data set, respectively. It is observed that these models are

more able to capture even very high spikes than both models MR and MRRS.

Simulations drawn from model MRSV2 reveal that high spikes in electricity prices

are coincident with high spikes in gas prices, while in model MRSV1 high spikes
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Figure 2.9: Simulation of electricity (a) and gas (b) spot prices over the in-sample
period via model MRSV1

of electricity may occur with low or no spikes in gas prices.

Table 2.7: Estimation using mean-reverting stochastic volatility
Parameters MRSV1 MRSV2

Estimate Stnd. Error Estimate Stnd. Error
Electricity κE 108.9525 0.1460 121.5248 0.1452

λE 2.8320 0.0002 2.8015 0.0002
γE 2.5813 0.0012 3.3313 0.0015
E0 3.1375 0.0116 3.1685 0.0016
ρ 0.1883 0.0007 0.1906 0.0006

Gas σG 1.9687 0.0009
κG 40.0335 0.1095 43.5456 0.1034
λG 1.7860 0.0006 1.7827 0.0006
γG 2.0859 0.0011
G0 2.2013 0.0025 2.2024 0.0049
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Figure 2.10: Simulation of electricity (a) and gas (b) spot prices over the in-
sample period via model MRSV2

2.5 Valuing the Gas-Fired Power Plant over the

Out-of-Sample Period

The four stochastic models that will be assessed on the basis of valuing a gas-fired

power plant are redefined here17:

- Mean reversion for both logarithms of electricity and gas prices (MR)

- Mean reversion with Markov regime switching for the logarithm of the

electricity price and simple linear mean reversion for the logarithm of the

gas price (MRRS)

- Mean reversion with stochastic volatility for the logarithm of the electricity

price and deterministic volatility for the logarithm of the gas price (MRSV1)

17The focus of our thesis is on comparing ordinary linear models with regime switching
approaches and models with stochastic volatility with the aim of valuing a gas-fired power plant.
Some other non-linear models that are not examined in this thesis, such as mean-reverting jump-
diffusion (MRJD) processes, may also be able to capture the high energy price spikes. In an
MRJD process, the normal, continuous changes in price (diffusion process) are modeled by a
mean-reverting process, while the abnormal, discontinuous changes (jump process) are modeled
by a Poisson distribution (for more details see, e.g., Cartea & Figueroa (2005); Clewlow et al.

(2005); Deng (2000)). Moreover, in this study we do not model spark spreads directly because
not only we may lose some information about the spark spreads’ uncertainty structure, but also
modelling the spark spread directly implies a constant heat rate, which makes it cumbersome
to do sensitivity analysis.
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2.5 Valuing the Gas-Fired Power Plant over the Out-of-Sample Period

- Mean reversion with stochastic volatility for both logarithms of electricity

and gas prices (MRSV2)

2.5.1 Assumptions

We assume that the gas-fired power plant produces electricity with a constant

capacity of 100 MWe. The value of the plant depends only on the spark spread

each day, and it can be switched on and off depending on its profitability in a

particular day. The total number of daily running hours are twenty-four with an

operating heat rate, ǫ, of 2.5 (MWh/MWhe). We use a constant risk-adjusted

annual interest rate r = 0.0618, which results in a daily interest rate of d = 0.0002.

The profit of the power plant without operational flexibility each day is

Pt = H ×K(Et − ǫGt) (2.48)

which may be negative, while the profit of the plant with operational flexibility

as in the following equation would never be negative:

Pt =

{
H ×K(Et − ǫGt) if Et − ǫGt > 0

0 if Et − ǫGt ≤ 0
(2.49)

where H, ǫ, and K denote, respectively, the daily operating hours, the heat rate,

and the capacity of the plant.

Using this profit function, the present value (PV) of the power plant with and

without the flexibility over the out-of-sample period can be calculated via the

following equation19:

PV = Pn+1 +
Pn+2

(d+ 1)
+

Pn+3

(d+ 1)2
+ . . .+

Pn+T

(d+ 1)T−1
(2.50)

The expected PV for the linear model can be calculated directly by computing

the expected price at time t (from n + 1 to n + T ); however, it is not possible

18In case of using forward prices, risk-neutral pricing (Cox & Ross (1976)) can be used instead
because the risk is directly taken into account in forward prices rather than in the net cash flow
discount rate.

19Since the in-sample period includes n observations, the out-of-sample period starts from
the (n + 1)st observation.
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to calculate it for the non-linear models using the analytical formula. In order

to have more consistent results, we use Monte Carlo simulation for both linear

and non-linear models. A total of M sample paths are drawn from each model,

{ỹ(j)
n+1, ỹ

(j)
n+2, . . . , ỹ

(j)
n+T ; j = 1, . . . ,M}. The PV of the power plant can then be

calculated by starting at the last date n+ T and working backward to the initial

time, step by step. The only profit the plant will receive at time n + T is Pn+T

(Deng et al. (2001)), which helps us to find the PV of the plant at time n+T −1,

PV
(j)
n+T−1 = P

(j)
n+T−1 +

PV
(j)
n+T

(d+1)
= P

(j)
n+T−1 +

P
(j)
n+T

(d+1)
(2.51)

where the superscript j denotes the sample path. This new information is used to

calculate the expected value of the plant at time n+T−2 and is worked backward

successively until the initial time period (n+ 1) using recursive Equation (2.51):

PV
(j)
n+1 =

T∑

i=1

P
(j)
n+i

(1 + d)i−1
(2.52)

Finally, the expected PV of the plant can be estimated by calculating the mean

of the PVs of the plant for all sample paths:

P̂ V =
1

M

M∑

j=1

PV
(j)
n+1 (2.53)

2.5.2 Forecasting Comparison

Before assessing the proposed models with regard to their abilities in valuing the

gas-fired power plant, we calculate their ERMSEs over the out-of-sample period.

For this, we first simulate N sample paths of the out-of-sample price forecasts,

{ỹ(j)
n+1, ỹ

(j)
n+2, . . . , ỹ

(j)
n+T ; j = 1, . . . , N}, from each model and then calculate the

ERMSE value as follows:

ERMSE =
1

N

N∑

j=1

√√√√ 1

2T

n+T∑

t=n+1

(yt − ỹ
(j)
t )′(yt − ỹ

(j)
t ) (2.54)

The results reported in Table 2.8 reveal that the linear model, mean reversion

without capturing either the spikes or stochastic volatility, has the best forecasting
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Table 2.8: ERMSE over the out-of-sample period
MR MRRS MRSV1 MRSV2

ERMSE 0.4280 0.4280 0.4537 0.4820

performance20 among the others. As this model is also the simplest one, most

decision-makers apply it in analysing investments.

On the other hand, simulations of electricity and gas spot prices for these four

models, graphed in Figures 2.11 and 2.12, reveal that although the linear model

can be considered a good model for short-term periods, i.e., less than a year, it

is the worst one for long-term forecasting. Meanwhile the mean-reversion model

with stochastic volatility for both logarithms of electricity and gas prices is better

able to capture the behaviour of prices, specifically electricity prices, with respect

to long-term forecasts.

The actual PV of the gas-fired power plant with and without flexibility over

the out-of-sample period is £10.423 million and £6.992 million, respectively (see

Tables 2.9 and 2.10 for the expected PVs). Contrary to our expectations from the

previous comparison based on price forecasts, the simple linear model provides

the least accurate expected value of the plant with and without flexibility because

we have seen before that this model is not able to capture the spikes, specifically

in electricity prices. Similarly, since the regime-switching model is not able to

capture high spikes of electricity prices, it also underestimates the expected PV of

the plant. The mean-reverting model with stochastic volatility for both electricity

and gas, on the other hand, provides the best forecast of the PV for both situations

with and without flexibility because it is able to predict spikes with the correct

frequency, although not with the right timing, which results in the high value of

the ERMSE. It is also revealed from these results that the expected PV calculated

by each model is less than the actual PV of the plant over the out-of-sample data.

This may have resulted from the fact that our in-sample data set is less volatile

than the out-of-sample data.

In order to verify the accuracy of this seemingly counterintuitive result, we use

the forecasting procedure similar to that of Kosater & Mosler (2006). Using the

20It should be mentioned that the forecasting performance refers to the direct energy price
performance rather than the power plant valuation performance.

54



2.5 Valuing the Gas-Fired Power Plant over the Out-of-Sample Period

Mar−04 Mar−05 Mar−06 Mar−07
0

20

40

60

80

100

120

140

160

180

200

Out−of−sample period

E
le

ct
ric

ity
 p

ric
e 

(£
/M

W
h

e)

 

 
MRSV2
MRSV1
MRRS
MR
Actual data

Figure 2.11: Simulation of electricity spot prices over the out-of-sample period
(two years and forty weeks)

Table 2.9: The expected PV of the gas-fired power plant with flexibility together
with the lower and upper quartiles (in million £)

MR MRRS MRSV1 MRSV2
PV 6.4882 6.5001 7.8869 8.6068

Lower quartile 6.0783 6.0776 7.2923 7.9229
Upper quartile 6.8974 6.9228 8.4445 9.1219

Table 2.10: The expected PV of the gas-fired power plant without flexibility
together with the lower and upper quartiles (in million £)

MR MRRS MRSV1 MRSV2
PV 3.7959 3.8408 4.6698 4.5013

Lower quartile 3.1416 3.1797 3.7988 3.5032
Upper quartile 4.4751 4.5180 5.5438 5.4681
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Figure 2.12: Simulation of gas spot prices over the out-of-sample period (two
years and forty weeks)
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Figure 2.13: In-sample and out-of-sample periods

first 1095 observations as the in-sample data (see Figure 2.13), we estimate the

parameters of the models of interest. Then, we make out-of-sample forecasts up

to two years ahead and calculate the out-of-sample expected PV of the plant for

those models, both with and without flexibility. The ERMSEs of these models are

also calculated. Next, the in-sample data are enlarged by seven observations (one

week) and again forecasts and required calculations for the new out-of-sample

data (two years ahead) are made21. This procedure is repeated forty times.

The results are plotted in Figures 2.14 and 2.15. These results are entirely

consistent with our previous findings, i.e., the non-linear models MRSV1 and

MRSV2 are better able to capture the value of the power plant. We observe

that before the tenth week is added to the in-sample data, the expected PV of

the power plant under the MRSV2 model is greater than that under the MRSV1

model. This occurs because the estimated correlation coefficient between the

logarithms of the electricity and gas price processes (see Figure 2.16) is lower

21Each time we enlarge the in-sample period, the out-of-sample period contains prices for
two years ahead.
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under the MRSV2 model during the first ten weeks and is higher from this point

onwards. Since a lower correlation coefficient results in a more dispersed spark

spread, which can be capitalised upon by operational flexibility, the expected PV

of a flexible power plant is inversely proportional to its correlation coefficient.

Hence, the expected PV of the power plant is greater under the MRSV2 model

for the first ten weeks and then lower thereafter.

For a power plant without operational flexibility, a more dispersed spark

spread will not necessarily lead to an increase in expected PV. Instead, we find

that the expected plant PV under the MRSV1 model eventually becomes greater

than that under the MRSV2 model (see Figure 2.15) because more volatile gas

prices are added to the in-sample data from week 20 onwards, i.e., corresponding

to observation 1235 (see Figure 2.13). Even though the eventually higher esti-

mated correlation coefficient under the MRSV2 model reduces the risk of losses,

the added in-sample data, nevertheless, imply higher expected natural gas price

forecasts under the MRSV2 model than the MRSV1 model, thereby leading to a

lower expected plant PV.

2.5.3 Sensitivity Analysis

2.5.3.1 Heat Rate

In order to determine how the results change with respect to the heat rate, we

calculate the out-of-sample (from 27 March 2004 to 31 December 2006) expected

PV of the plant with operational flexibility for different values of heat rate (rang-

ing from 2 to 3) with all other factors are fixed (see Figures 2.17 and 2.18). It

is revealed that for low values of the heat rate, both MRSV1 and MRSV2 are

unlikely to capture the exact value of the out-of-sample PV of the plant, which

may result from a low volatility of profit function. Figure 2.17 shows that for

heat rate values of more than 2.8, model MRSV1 forecasts the PV of the plant

with flexibility better than MRSV2 does, whereas neither MRSV1 nor MRSV2

is able to capture the PV of the plant without flexibility when the heat rate is

larger than 2.8.
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Figure 2.14: Expected PV and 95% CIs of the flexible plant with rolling expansion
of the in-sample period

2.5.3.2 Stochastic Volatility of Electricity Prices via Changes in γE

Here, we would like to see how the expected PV of the plant would change if we

modify the coefficient γE in the volatility function of electricity prices, γEe
ZE

t , in

either MRSV1 or MRSV222. Figures 2.19 and 2.20 illustrate that the more (less)

volatile the volatility of the electricity prices, the greater (lower) the expected

plant PV. This dependence of the expected plant PV on γE is stronger in MRSV2

than in MRSV1 due to the presence of stochastic volatility in gas prices. Recall

from Section 2.5.2 that the expected plant PV under the MRSV2 model is initially

greater due to a lower correlation coefficient between electricity and gas prices,

which results in a more dispersed spark spread under MRSV2. Since a flexible

power plant is able to benefit from such variability, its expected PV is greater.

On the other hand, considering the plant without flexibility (see Figure 2.20), it

22It must be mentioned that by increasing (decreasing) γEeZE

t , we assume that the data are
more (less) volatile, i.e., the analysis in this section is not directly connected to the real data.
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Figure 2.15: Expected PV and 95% CIs of the inflexible plant with rolling ex-
pansion of the in-sample period

is revealed that for small values of γE, the expected PV estimated by MRSV1

is larger than that estimated by MRSV2. This occurs because gas prices with

stochastic volatility are more likely to produce high price spikes that will not

be offset by corresponding spikes in electricity prices when γE is low. Thus, a

power plant without operational flexibility will be at risk of losing money in such

a situation.

2.6 Conclusions

After the liberalisation of the electricity industry, exploring the behaviour of

energy prices, such as highly unexpected spikes and stochastic volatility, has be-

come a main issue in energy economics in many countries. This chapter provides

a comprehensive set of both linear and non-linear multivariate models for elec-

tricity and gas prices. A comparison study is carried out using UK electricity and
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Figure 2.16: Estimated correlation between the logarithms of electricity and gas
prices with rolling expansion of the in-sample period

gas spot prices to evaluate the forecasting performance of the proposed models

in decision-making such as valuing a gas-fired power plant. We split our data

set into two periods: the in-sample period that is used to estimate the models

of interest and the out-of-sample period that is used to assess the forecasting

performance of each model.

We first propose four linear models for logarithms of the data based on mean-

reverting and geometric Brownian motion processes. Consistent with previous

studies, such as Cortazar & Schwartz (1994), Laughton & Jacoby (1993), and

Smith & McCardle (1998), we show that the mean-reverting model for both log-

arithms of electricity and gas not only is the best-fit linear model, but also has

the best out-of-sample forecasting performance. However, due to its weakness

in capturing the high-value sudden spikes of energy prices, we then allow for

three non-linear models: a) mean reversion with Markov regime-switching with

two independent regimes (the stable regime and the spike regime), b) mean re-

version with stochastic volatility for the logarithm of the electricity price and
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Figure 2.17: Expected PV of the plant with flexibility for different values of heat
rate
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Figure 2.18: Expected PV of the plant without flexibility for different values of
heat rate
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Figure 2.19: Expected PV of the plant with flexibility for different values of γE
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Figure 2.20: Expected PV of the plant without flexibility for different values of
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2.6 Conclusions

deterministic volatility for the logarithm of the gas price, and c) mean reversion

with stochastic volatility for both logarithms of electricity and gas prices. We

next take the viewpoint of an investor in a gas-fired power plant with operational

flexibility and compare the ability of linear and non-linear models in valuing the

power plant over the out-of-sample period.

The study suggests that the linear model provides out-of-sample price fore-

casts with the lowest ERMSE in comparison to the non-linear models because

it does not forecast any spikes at all, while the non-linear forecasts generate

a large number of spikes with different levels and on different time locations. It

seems clear that appearance of high spikes in forecasts with correct frequency and

value, but not with right timing, may lead to large RMSEs when compared to

the historical data; however, it would result in more accurate long-term decision-

making in energy investments. Among the non-linear models, in contrast to

earlier findings (e.g., Karakatsani & Bunn (2008); Kosater & Mosler (2006)), the

regime-switching model is unlikely to capture long-term volatile electricity price

behaviour over long-term periods. This may have resulted from different levels of

spikes in electricity prices. For example, in UK electricity spot prices, the spikes

range from about £40/MWhe to £180/MWhe, while the equilibrium price is

around £20/MWhe. This behaviour of electricity prices is strong evidence of

the presence of stochastic volatility. Consequently, the non-linear models with

stochastic volatility for logarithms of electricity prices perform better than both

the linear and the regime-switching models in terms of valuing a gas-fired power

plant. The volatility of gas prices, on the other hand, does not seem to be stochas-

tic, such that the model MRSV1 is able to capture the PV of the gas-fired power

plant better than model MRSV2 over the different two-year out-of-sample peri-

ods (Figures 2.14 and 2.15), although it does not provide better results over the

specific out-of-sample period ranges from 27 March 2004 to 31 December 2006

(Tables 2.9 and 2.10). Moreover, since the model MRSV1 is simpler than MRSV2,

it is chosen as the best model among both the linear and non-linear models. In

the next chapter, we focus on the importance of timing and technology choice

rather than price modelling in making investment decisions in the energy sector.
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Chapter 3

Real Options Analysis of

Investment in Carbon Capture

and Sequestration Technology

Among a comprehensive scope of mitigation measures for climate change, CO2

capture and sequestration (CCS) plays a potentially significant role in industri-

alised countries. In this chapter, we develop an analytical real options model

that values the choice between two emissions-reduction technologies available to

a coal-fired power plant. Specifically, the plant owner may decide to invest in ei-

ther full CCS (FCCS) or partial CCS (PCCS) retrofits given uncertain electricity,

CO2, and coal prices.We first assess the opportunity to upgrade to each technol-

ogy independently by determining the option value of installing a CCS unit as a

function of CO2 and fuel prices. Next, we value the option of investing in either

FCCS or PCCS technology. If the volatilities of the prices are low enough, then

the investment region is dichotomous, which implies that for a given fuel price,

retrofitting to the FCCS (PCCS) technology is optimal if the CO2 price increases

(decreases) sufficiently. The numerical examples using current market data sug-

gest that neither retrofit is optimal immediately. Finally, we observe that the

optimal stopping boundaries are highly sensitive to CO2 price volatility.
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3.1 Carbon Capture and Sequestration (CCS) Technology

3.1 Carbon Capture and Sequestration (CCS)

Technology

CCS is a process by which CO2 is separated from industrial and energy-related

sources. It is then transported for geological storage, ocean storage, or mineral

carbonation in order to be isolated permanently from the atmosphere or for use in

industrial processes (IPCC (2005)). A power plant equipped with CCS technology

requires additional energy for capture, transport, and storage, which causes a

reduction in overall efficiency of the plant.

According to IPCC (2005), there are three types of CO2 capture systems:

- Post-combustion, which captures CO2 from the flue gas and is applied in

existing power plants;

- Pre-combustion, in which CO2 in the fuel is separated before combustion,

which is more costly and applicable only to new fossil fuel plants;

- Oxyfuel combustion, which uses high purity of oxygen that causes CO2

with high concentrations in flue gas to be easily separated. However, it

is more expensive because of a higher energy requirement to produce pure

oxygen.

After CO2 is captured, it can be transported from the source to the storage site

either through pipelines or using ships. However, for a large amount of CO2

over short distances, pipelines are preferred, although smaller volumes of CO2,

specifically for larger distances overseas, may be transported with ships (IPCC

(2005)).

Installing FCCS technology with access to geological or ocean storage, a coal-

fired power plant can capture up to 85-95% of its CO2 emissions (IPCC (2005)),

while using approximately 10-40% more energy than before. However, achieving

this CO2 capture is likely to be too expensive and almost impossible in near term.

With regard to this difficulty, Hildebrand & Herzog (2008) considers a lower rate

of capturing, PCCS, as a reasonable first step in putting CCS into action. A

coal-fired power plant equipped with PCCS could lower its CO2 emissions to a

gas-fired power plant’s, i.e., a capture of nearly 45-65%. FCCS technology could

cause up to a 60% increase in the capital cost of a pulverised coal power plant,
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3.2 Problem Formulation

while this increase for PCCS is extremely less. Moreover, a power plant with

PCCS requires less energy than a power plant with FCCS, thereby limiting the

efficiency loss.

3.2 Problem Formulation

3.2.1 Assumptions

We take the perspective of the owner of a baseload coal-fired power plant with

infinite lifetime1 intending to reduce its CO2 emissions by investing in either

PCCS or FCCS technology. Since the timing of the retrofit is at the discre-

tion of the owner, the option is perpetual. Additionally, we assume that the

investment is entirely irreversible and cannot be scrapped once installed, nor is

it possible to suspend the CCS unit to allow venting. The option of switching

from one technology to another is also assumed to be impracticable in this study.

Three sources of uncertainty are taken into consideration: fuel input price, Ft

(in $/MWh), electricity output price, Et (in $/MWhe), and CO2 permit price,

Ct (in $/tCO2). Future revenues and costs of the investment are discounted at

a subjective constant annual rate, µ. After investing in either technology, the

electricity production of the plant, Q (in MWhe/year), would remain the same

as before; however, the overall efficiency of the plant will decline due to further

energy requirements. Finally, once the retrofit decision is made, the CCS tech-

nology is installed immediately, i.e., there is no time-to-build problem as in Majd

& Pindyck (1987).

3.2.2 NPV of Mitigation Projects

We assume that Et, Ft, and Ct evolve stochastically according to the following

GBM processes:2

1Although a coal-fired power plant has a typical lifetime of forty years, for simplicity, in this
thesis, we assume that it has an infinite lifetime. This is justified by the impact of discounting
the cashflows that are several decades in the future. Plus, assuming that all equipment lasts
forever removes any complication from having to compare technologies with different lifetimes.

2As suggested in Pindyck (1999), although long-run energy prices are mean-reverting, since
their rate of mean reversion is low, the GBM assumption may be acceptable in many applica-
tions.
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3.2 Problem Formulation

dEt = αEEtdt+ σEEtdz
E
t (3.1)

dFt = αFFtdt+ σFFtdz
F
t (3.2)

dCt = αCCtdt+ σCCtdz
C
t (3.3)

where {αi < µ; i = E,F,C}3 and {σi; i = E,F,C} are, respectively, the drift and

the volatility parameters, and dzi
t stands for the increment of standard Brown-

ian motion process. Moreover, we suppose that the prices are correlated, i.e.,

E(dzi
tdz

j
t ) = ρijdt for {(i, j) = (E,F ), (E,C), (F,C)}. Therefore, the net ex-

pected discounted profit of an existing power plant without any CCS, conditional

on current prices E, F , and C, is given by:

V (E,F,C)

= QE

[∫ ∞

0

(Ete
−µt − ǫFFte

−µt − ǫCCte
−µt)dt|E0 = E,F0 = F,C0 = C

]

= Q

[
E

µ− αE

− ǫFF

µ− αF

− ǫCC

µ− αC

]
(3.4)

where ǫF and ǫC represent the heat rate (in MWh/MWhe) and the emission rate

(in tCO2/MWhe), respectively, of a power plant without CCS. Thus, the expected

net present value (NPV) of investing in retrofit project j = {pccs, fccs} can be

calculated as follows:

V (j)(E,F,C) = Q

[
E

µ−αE
− ǫ

(j)
F

F

µ−αF
− ǫ

(j)
C

C

µ−αC

]
− I(j) − V (E,F,C) ⇒

V (j)(F,C) = Q

[
(ǫF−ǫ

(j)
F

)F

µ−αF
+

(ǫC−ǫ
(j)
C

)C

µ−αC

]
− I(j)

(3.5)

3The interest rate must be greater than the output price’s drift rate; otherwise, waiting
longer would always be a better policy, and the optimal time of invest would never exist (the
integral in Equation (3.4) could be indefinitely large by choosing a large T ). It must also be
greater than the cost’s drift rate; otherwise, if it is not optimal to invest now, it would never
be optimal (the integral in Equation (3.4) could be indefinitely small by choosing a large T ).
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3.2 Problem Formulation

where I(j) includes the initial sunk capital cost of the retrofit to technology j to-

gether with all other costs, such as additional operating and maintenance costs,

which are discounted at the constant rate µ. Here, ǫ
(j)
C and ǫ

(j)
F are the CO2

emissions and heat rate, respectively, with retrofit j. From Equation (3.5), it is

revealed that the expected NPV of mitigation no longer depends on the electricity

price since the plant’s electricity output is unaffected. As we could expect, the

expected NPV is decreasing in F and increasing in C because of the negative co-

efficient (ǫF − ǫ(j)F ) and the positive coefficient (ǫC − ǫ(j)C ), respectively. Intuitively,

CCS technology reduces the plant’s efficiency, which increases its post-retrofit

heat rate while decreasing its CO2 emissions rate. Accordingly, the value of the

opportunity to mitigate, W (j)(F,C), depends only on the fuel price and CO2

permit price.

3.2.3 Valuation of the Mitigation Options

3.2.3.1 Optimal Stopping, Value Matching, and Smooth Pasting

Since the plant owner can either invest in retrofit project j = {pccs, fccs} (stop-

ping region) and receive V (j)(F,C) calculated in Equation (3.5) or wait (con-

tinuation region), the choice in every instant is binary. Therefore, the Bellman

equation4, as the primary equation of optimisation theory, becomes

W (j)(F,C) = max{V (j)(F,C),
E[dW (j)(F,C)]

µdt
} (3.6)

Intuitively, there is an optimal stopping boundary, C∗(j)(F ), that separates the

state space into stopping and continuation regions, i.e., it is the two-dimensional

analogue of the trigger in the canonical real options problem. For C < C∗(j)(F ),

it is optimal to wait, i.e., the second term on the right-hand side is the larger of

the two or µW (j)(F,C) = E[dW (j)(F,C)]
dt

. On the other hand, for C ≥ C∗(j)(F ) it is

optimal to invest immediately in retrofit project j, i.e., W (j)(F,C) = V (j)(F,C)

for all values of F . Therefore by continuity, we can impose the value-matching

4Bellman’s Principle of Optimality: An optimal policy has the property that, whatever the
initial action, the remaining choices constitute an optimal policy with respect to the subproblem
starting at the state that results from the initial actions (Dixit & Pindyck (1994)).
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condition, which states that the value lost equals the value gained, as follows:

W (j)(F,C∗(j)(F )) = V (j)(F,C∗(j)(F )) (3.7)

Moreover, the values W (j)(F,C) and V (j)(F,C), regarded as functions of F and

C, should meet tangentially at the free boundary C∗(j)(F ). We then have the two

smooth-pasting conditions as the first-order conditions of optimisation as follows

(see Dixit & Pindyck (1994) for an argument on value-matching and smooth-

pasting conditions):

W
(j)
F (F,C) = V

(j)
F (F,C) on C = C∗(j)(F ) (3.8)

W
(j)
C (F,C) = V

(j)
C (F,C) on C = C∗(j)(F ) (3.9)

where the subscripts denote the partial derivatives, e.g., W
(j)
F (F,C) = ∂W (j)(F,C)

∂F
.

3.2.3.2 Individual Investment Options

Using dynamic programming, we first derive the value of the option to invest

in PCCS and FCCS, independently. The Bellman equation, explained in the

previous section, states that when it is optimal to wait, i.e., C < C∗(j)(F ), the

rate of return on the option, µW (j)(F,C), must equal the expected rate of capital

gain on it, E[dW (j)(F,C)]/dt:

µW (j)(F,C) = E[dW (j)(F,C)]/dt (3.10)

Thus, by applying Itô’s lemma to the right-hand side of Equation (3.10) given

that F and C evolve according to the GBM processes (3.2) and (3.3), the option

to invest in j must satisfy the following partial differential equation (PDE):

µW (j)(F,C) = αFFW
(j)
F (F,C) + 0.5σ2

FF
2W

(j)
FF (F,C) + αCCW

(j)
C (F,C)

+0.5σ2
CC

2W
(j)
CC(F,C) + ρσFσCFCW

(j)
FC(F,C) (3.11)

where ρ =
E(dzF

t dzC
t )

dt
.5

5Since the electricity price is not relevant to retrofits, from now on, we define ρ = ρFC .
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3.2 Problem Formulation

A general solution to the PDE, Equation (3.11), is of the power form as follows:

W (j)(F,C) = A(j)F β(j)

Cη(j)

; 0 < F <∞, 0 < C < C∗(j)(F ) (3.12)

where A(j), β(j), and η(j) are endogenous coefficients, depending on F , which

are to be determined together with the free boundary, C∗(j)(F ). Substituting

Equation (3.12) into Equation (3.11) yields:

H(β(j), η(j)) = αFβ
(j) + 0.5σ2

Fβ
(j)(β(j) − 1) + αCη

(j) + 0.5σ2
Cη

(j)(η(j) − 1)

+ρσFσCβ
(j)η(j) − µ = 0

(3.13)

Equation (3.13) is that of an ellipse in η and β that passes through all four axes

(Adkins & Paxson (2010)) and is graphed in Figure 3.1 using the data provided

in Table 3.1. This implies that Equation (3.12) can have the form:
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Figure 3.1: Function H(β, η) = 0
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(j)
1 F β

(j)
1 Cη

(j)
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(j)
2 F β

(j)
2 Cη

(j)
2 + A

(j)
3 F β

(j)
3 Cη
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3 + A

(j)
4 F β

(j)
4 Cη

(j)
4

(3.14)
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3.2 Problem Formulation

where,

η
(j)
1 > 0 and β

(j)
1 < 0

η
(j)
2 < 0 and β

(j)
2 > 0

η
(j)
3 > 0 and β

(j)
3 > 0

η
(j)
4 < 0 and β

(j)
4 < 0

(3.15)

However, by imposing limiting boundary conditions on F and C, we can eliminate

the last three terms in Equation (3.14). When the fuel price, F , tends to infinity,

the option value becomes worthless; therefore, the coefficients A
(j)
2 and A

(j)
3 in

Equation (3.14) must be zero to prevent from diverging. Similarly, for low values

of C (close to zero) it is not justifiable to invest in any CCS technology, i.e., the

option value is worthless and the coefficient A
(j)
4 in Equation (3.14) must be zero,

too. We then end up with the following option value function:

W (j)(F,C) = A
(j)
1 F β

(j)
1 Cη

(j)
1 0 < F <∞, 0 < C < C∗(j)(F ) (3.16)

which can be rewritten as:

W (j)(F,C) = A(j)F β(j)

Cη(j)

0 < F <∞, 0 < C < C∗(j)(F ) (3.17)

where η(j) > 0 and β(j) < 0. To prove uniqueness of the solution, standard

techniques for such elliptic PDEs usually rely on proof by contradiction, which

are outlined in Appendix G.

We now use one value-matching and two smooth-pasting conditions along with

Equation (3.13) to solve for the four unknowns:

A(j)F β(j)

Cη(j)

= Q

[
(ǫF − ǫ

(j)
F )

µ− αF

F +
(ǫC − ǫ

(j)
C )

µ− αC

C

]
− I(j) on C = C∗(j)(F )

(3.18)

A(j)β(j)F β(j)−1Cη(j)

= Q
(ǫF − ǫ

(j)
F )

µ− αF

on C = C∗(j)(F ) (3.19)
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A(j)η(j)F β(j)

Cη(j)−1 = Q
(ǫC − ǫ

(j)
C )

µ− αC

on C = C∗(j)(F ) (3.20)

Rearranging Equation (3.20), we obtain the coefficient A(j) as follows:

A(j) =
Q(ǫC − ǫ

(j)
C )

η(j)(µ− αC)
F−β(j)

[C∗(j)(F )]1−η(j)

(3.21)

Substituting this into Equation (3.19) gives the following equation for the optimal

stopping boundary:

C∗(j)(F ) =
η(j)(ǫF − ǫ

(j)
F )(µ− αC)

β(j)(ǫC − ǫ
(j)
C )(µ− αF )

F (3.22)

Finally, a linear relationship between β(j) and η(j) using Equation (3.18) is given

by:

β(j) =
Q(ǫF − ǫ

(j)
F )(η(j) − 1)F

(µ− αF )I(j) −Q(ǫF − ǫ
(j)
F )F

, (3.23)

which is decreasing in η(j), because of the negative coefficient (ǫF − ǫ
(j)
F ) and

the positive denominator.6 If we impose this line on H(β(j), η(j)) = 0, then it

intersects the function at two points, which we now try to obtain. It must be

mentioned that in Adkins & Paxson (2010), this part of the process is solved nu-

merically, i.e., it does not provide the following analytical solution for calculating

η1. In Figure 3.2, using the data for PCCS technology, provided in Table 3.2, we

show the intersections of the two lines, for the lowest and the highest value of F

in our range of data, and the ellipse H(β(j), η(j)) = 0.

After substituting the exponent β(j) from Equation (3.23) into Equation (3.13),

we end up with the following quadratic polynomial:

a(η(j))2 − bη(j) − c = 0 (3.24)

6The denominator, [(µ − αF )I(j) − Q(ǫF − ǫ
(j)
F )F ], is positive because (µ − αF ) is positive

and (ǫF − ǫ
(j)
F ) is negative.
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Figure 3.2: The intersection of function H(β, η) = 0 (data from Table 3.1) and
Equation (3.23) for PCCS technology (data from Table 3.2), e.g., when F =

$50/MWh, η
(pccs)
1 = 1.33 and β

(pccs)
1 = −0.21.

where

a = (0.5σ2
F + 0.5σ2

C − ρσFσC)((ǫF − ǫ
(j)
F )QF )2

−(σ2
C − ρσFσC)(µ− αF )(ǫF − ǫ

(j)
F )QI(j)F

+0.5σ2
C(µ− αF )2(I(j))2

(3.25)

b = (0.5σ2
F + 0.5σ2

C − ρσFσC + αF − αC)((ǫF − ǫ
(j)
F )QF )2

−(σ2
C − ρσFσC − 0.5σ2

F + αF − 2αC)(µ− αF )(ǫF − ǫ
(j)
F )QI(j)F

+(0.5σ2
C − αC)(µ− αF )2(I(j))2

(3.26)

c = (µ− αF )((ǫF − ǫ
(j)
F )QF )2

+(αF − 0.5σ2
F − 2µ)(µ− αF )(ǫF − ǫ

(j)
F )QI(j)F

+µ(µ− αF )2(I(j))2

(3.27)

Since (ǫF − ǫ
(j)
F ) < 0, (µ− αF ) > 0, and the volatility of coal price is assumed to
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3.2 Problem Formulation

be less than that of the CO2 price (σF < σC)7, coefficients a and c are positive.

The discriminant ∆ = b2 +4ac is, therefore, positive, which ensures the existence

of two real and distinct roots:

η
(j)
1 =

b+
√
b2 + 4ac

2a
(3.28)

η
(j)
2 =

b−
√
b2 + 4ac

2a
(3.29)

In Appendix H, we prove that η
(j)
1 is always greater than 1; as a result, the

corresponding β
(j)
1 calculated from Equation (3.23) is negative. On the other

hand, η
(j)
2 is negative; thus, the corresponding β

(j)
2 is positive. It is observed

that the boundary condition W (j)(F,C) → 0 as F → ∞ appears superfluous

and seems entirely guaranteed by value-matching and smooth-pasting conditions.

Therefore, the unknowns η(j), β(j), and A(j) in Equation (3.17) are calculated,

respectively, via Equations (3.28), (3.23), and (3.21). Figure 3.2 shows that, for

this choice of data, η
(j)
1 is increasing in F while β

(j)
1 is decreasing. Equation

(3.23) also substantiates the inverse relationship between β
(j)
1 and η

(j)
1 . A list of

the calculated unknowns for some values of F are reported in Appendix I.

We may, finally, be interested in simplifying the option value function by

substituting A(j) into Equation (3.17) and combining Equations (3.23) and (3.22).

We then have:

W (j)(F,C) =
Q(ǫC − ǫ

(j)
C )

η(j)(µ− αC)
[C∗(j)(F )]1−η(j)

Cη(j)

,

{
0 < F <∞
0 < C < C∗(j)(F )

(3.30)

where η(j) is calculated from Equation (3.28) and

C∗(j)(F ) =
η(j)(µ− αC)

(η(j) − 1)(µ− αF )

(µ− αF )I(j) −Q(ǫF − ǫ
(j)
F )F

Q(ǫC − ǫ
(j)
C )

(3.31)

7CO2 price volatility is likely to be greater than currently suggested, which is higher than
that of coal price, and is even tending to exceed natural gas price volatility (Celebi & Graves
(2009)).
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3.2.3.3 Mutually Exclusive Options

Now, we would like to consider the mutually exclusive option to retrofit with

either PCCS or FCCS technology. By plotting the expected NPV of each tech-

nology, we note that there will be an indifference curve, CI(F ), where they in-

tersect, and if the volatilities are low enough, then it may be the case that the

option value for investment in PCCS technology is greater than that for the

FCCS technology. In this event, an indifference region will open up around the

indifference curve, in which case it is optimal to wait before investing in either

technology. This dichotomous option, which includes the option value functions

of both technologies, must satisfy the Bellman equation (Equation (3.13)). Fol-

lowing the same methodology as in Section 3.2.3.2, over the indifference region,

{(F,C) | 0 < F <∞, C∗
L(F ) < C < C∗

U(F )}, it must have the form:

Ψ(F,C) = D1F
δ1Cγ1 +D2F

δ2Cγ2 +D3F
δ3Cγ3 +D4F

δ4Cγ2 (3.32)

where,

D1, D2 , D3, D4 > 0

δ1 < 0 and γ1 > 0

δ2 > 0 and γ2 < 0

δ3 > 0 and γ3 > 0

δ4 < 0 and γ4 < 0

(3.33)

However, the limiting boundary conditions of F help us to get rid of the last

two terms in Equation (3.32). For low values of F (close to zero), the option

value of investing in PCCS becomes worthless, and the mutually exclusive option

value equals the option value of investing in FCCS. This occurs if D4 = 0 and

the coefficients D1, δ1, and γ1 tend to, respectively, A
(fccs)
1 , β

(fccs)
1 , and η

(fccs)
1 .

On the other hand, for large values of F (F → ∞), the option value of investing

in FCCS becomes worthless and the mutually exclusive option value approaches

the option value of investing in PCCS. This condition holds if D3 = 0 and the

coefficients D2, δ2, and γ2 tend to A
(pccs)
2 , β

(pccs)
2 , and η

(pccs)
2 , respectively.8 We,

8Since the FCCS technology by using more fuel than the PCCS technology, captures more
CO2, when fuel price is close to zero, it is optimal to invest in FCCS, while for large values of
F , it is not economical at all to invest in FCCS.
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finally, end up with the following option value:

Ψ(F,C) = D1F
δ1Cγ1 +D2F

δ2Cγ2 (3.34)

where,

D1, D2 > 0

δ1 < 0 and γ1 > 0

δ2 > 0 and γ2 < 0

(3.35)

Intuitively, in the indifference region, when the fuel price decreases and the

CO2 permit price increases, investment in FCCS becomes more likely. Therefore,

for any value of (F,C) in this region, the first term on the right-hand side of

Equation (3.34) can be interpreted as the value of the option to upgrade to

FCCS. On the other hand, since the PCCS technology requires less energy than

the FCCS one and captures less CO2, it is more profitable when the fuel price

increases and CO2 permit price decreases. Thus, we interpret the second term

on the right-hand side of Equation (3.34) as the value of the option to upgrade

to PCCS for any value of (F,C) in the indifference region. Now, the power

coefficients, which are the two roots of Equation (3.13), are to be determined

along with the endogenous coefficients, D1 and D2, as well as the upper, C∗
U(F ),

and lower, C∗
L(F ), free boundaries that indicate where the intermediate option

value curve value-matches and smooth-pastes with the expected NPV curves of

the FCCS and PCCS technologies, respectively.

Substituting Equation (3.34) into Equation (3.11) yields:

(
αF δ1 + 0.5σ2

F δ1(δ1 − 1) + αCγ1 + 0.5σ2
Cγ1(γ1 − 1) + ρσFσCδ1γ1 − µ

)

×D1F
δ1Cγ1 +

(
αF δ2 + 0.5σ2

F δ2(δ2 − 1) + αCγ2 + 0.5σ2
Cγ2(γ2 − 1)

+ρσFσCδ2γ2 − µ)D2F
δ2Cγ2 = 0 (3.36)

which holds if and only if

αF δ1 + 0.5σ2
F δ1(δ1 − 1) + αCγ1 + 0.5σ2

Cγ1(γ1 − 1) + ρσFσCδ1γ1 − µ = 0 (3.37)
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αF δ2 + 0.5σ2
F δ2(δ2 − 1) + αCγ2 + 0.5σ2

Cγ2(γ2 − 1) + ρσFσCδ2γ2 − µ = 0 (3.38)

These two equations together with the following six value-matching and smooth-

pasting conditions are used to solve for the eight unknowns (D1, D2, δ1, γ1, δ2,

γ2, C
∗
L(F ), and C∗

U(F )):

Ψ(F,C) = Q

[
(ǫF − ǫ

(pccs)
F )

µ− αF

F +
(ǫC − ǫ

(pccs)
C )

µ− αC

C

]
− I(pccs) on C = C∗

L(F )

(3.39)

ΨF (F,C) = Q
(ǫF − ǫ

(pccs)
F )

µ− αF

on C = C∗
L(F ) (3.40)

ΨC(F,C) = Q
(ǫC − ǫ

(pccs)
C )

µ− αC

on C = C∗
L(F ) (3.41)

Ψ(F,C) = Q

[
(ǫF − ǫ

(fccs)
F )

µ− αF

F +
(ǫC − ǫ

(fccs)
C )

µ− αC

C

]
− I(fccs) on C = C∗

U(F )

(3.42)

ΨF (F,C) = Q
(ǫF − ǫ

(fccs)
F )

µ− αF

on C = C∗
U(F ) (3.43)

ΨC(F,C) = Q
(ǫC − ǫ

(fccs)
C )

µ− αC

on C = C∗
U(F ) (3.44)

From Equations (3.43) and (3.44), which are linear functions of D1 and D2,

we can calculate D1 and D2 in terms of the other unknowns:

D1 = Q
(ǫC − ǫ

(fccs)
C )(µ− αF )δ2C

∗
U(F ) − (ǫF − ǫ

(fccs)
F )(µ− αC)γ2F

(µ− αF )(µ− αC)(γ1δ2 − γ2δ1)F δ1C∗
U(F )γ1

(3.45)
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Initial value

Θ0 = {β(fccs)
1 (F1), η

(fccs)
1 (F1),

β
(pccs)
2 (F1), η

(pccs)
2 (F1),

CI(F1) + u1, CI(F1) − u2}
k=1

-

Solve for

Θ(Fk) = {δ1(Fk), γ1(Fk),
δ2(Fk), γ2(Fk),

C∗

U (Fk), C∗

L(Fk)}
-

Initial value

Θ0 = Θ(Fk)

k = k + 1

6

Figure 3.3: Numerical solution heuristic

D2 = Q
(ǫF − ǫ

(fccs)
F )(µ− αC)γ1F − (ǫC − ǫ

(fccs)
C )(µ− αF )δ1C

∗
U(F )

(µ− αF )(µ− αC)(γ1δ2 − γ2δ1)F δ2C∗
U(F )γ2

(3.46)

By substituting these coefficients into Equations (3.39-3.42), we reduce the system

of eight equations to a new system of six non-linear equations with six unknowns,

Θ(F )={δ1(F ), γ1(F ), δ2(F ), γ2(F ), C∗
U(F ), C∗

L(F )}, which must be solved nu-

merically.

With an appropriate guess of the starting values using the fsolve command

in Matlab, we can solve this system numerically. First, we discretise the values

of the fuel price, e.g., in the ascending set {0, F1, F2, F3, · · ·}. Starting from

F1, the most reasonable guess for the initial values of δ1(F1) and γ1(F1) might

be β
(fccs)
1 (F1) and η

(fccs)
1 (F1), respectively, calculated from Equations (3.28) and

(3.23). Similarly, we can use β
(pccs)
2 (F1) and η

(pccs)
2 (F1), Equations (3.29) and

(3.23), as an appropriate choice for the initials of δ2(F1) and γ2(F1), respectively.

However, the only information we have on the initials of C∗
U(F1) and C∗

L(F1) is that

they surround the indifference point, CI(F1). Therefore, we consider CI(F1) + u1

and CI(F1)−u2 as the initials of C∗
U(F1) and C∗

L(F1), respectively. Here, u1 and u2

may be chosen randomly, e.g., from the interval (0,1)$/tCO2. Using these initial

values, we solve the problem for Θ(F1). Next, we use the calculated Θ(F1) as

the initial values for the unknown parameters Θ(F2) and solve for them similarly.

Successively, in each step k, the previous calculated Θ(Fk−1) can be used as the

initial value of the current step and solve the system for Θ(Fk) (see Figure 3).
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3.3 Data

Data are reported in Tables 3.1 and 3.2. Parameters of CO2 and coal price models

and the data for FCCS technology are roughly adopted with Abadie & Chamarro

(2008a) and Abadie & Chamarro (2008b)’s choice of parameters. The coal price

in our study evolves according to a GBM process, while the electricity price,

which represents the efficiency loss from the CCS retrofit, follows a GMR process

with a low rate of mean reversion (0.125) in Abadie & Chamarro (2008b). The

PCCS technology is proposed considering emissions reduction and initial capital

cost provided by Hildebrand & Herzog (2008).

Parameter Description Value
αF Growth rate of coal price 0.04
αC Growth rate of CO2 price 0.03a

σF Volatility of coal price 0.05b

σC Volatility of CO2 price 0.47a

ρ Correlation between coal and CO2 prices 0.20c

µ Discount rate 0.08
Φ Capacity of the plant (MWe) 500
Q Annual energy production of the plant (MWhe) 4380000
F0 Current price of coal ($/MWh) 15.5d

C0 Current price of CO2 ($/tCO2) 25.59a

aAbadie & Chamarro (2008a)’s data (using daily futures price data from ICE).
bAbadie & Chamarro (2008b)’s data (using yearly average prices gathered by

the US Energy Information Administration).
cSince there is little information on CO2 permit prices, we first assume a

reasonable positive correlation coefficient between CO2 and fuel prices. We then
show how any changes in this coefficient may affect the results.

dThe current price of coal is $95/tCoal. According to ORNL (2009), a ton of
coal on average produces 22 GJ (6.11 MWh) of energy. Thus, $95/tCoal divided
by 6.11 MWh/tCoal yields approximately $15.5/MWh.

Table 3.1: Price and plant parameter values
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Parameter Description PC PC PC
with PCCS with FCCS

ǫC Emission rate (tCO2/MWhe) 0.80 0.32a 0.08b

ǫF Heat rate (MWh/MWhe) 2.42 2.55 2.8
O&M Additional operation - 1.4 1.5

and maintenance ($/MWhe)
T&S Transport and storage ($/tCO2) - 9 9
K Initial capital cost of retrofit (m$) - 130 331.57
I(j)c Total retrofit investment cost (m$) - 443.17 768.475

aCapture of nearly 60% of the CO2 emissions.
bCapture of nearly 90% of the CO2 emissions.
cI(j) = K(j) + Q

µ
(O&M) + Q

µ
(T&S)(ǫC − ǫ

(j)
C )

Table 3.2: CCS parameter values

3.4 Numerical Examples

3.4.1 Individual Investment Options

We first consider a super critical pulverised coal power plant that has the op-

tion to invest in PCCS/FCCS technology in order to reduce its CO2 emissions.

Given current prices, we find the optimal stopping boundaries for independently

investing in PCCS and FCCS as follows:

C∗(pccs)(F0) = $66.33/tCO2

C∗(fccs)(F0) = $92.12/tCO2

As we would expect, the critical CO2 price for investing in PCCS technology

is noticeably less than that for investing in FCCS technology. This difference

between the free boundaries can be attributed to the high option value of waiting

(the difference between the option value and the NPV, which are reported in

Table 3.3) for FCCS ($608.53m) in comparison to that for PCCS ($196.72m).

Both technologies are in-the-money, i.e., if the plant owner has to invest now or

never, then she would invest immediately. On the other hand, she would lose a

large amount of money by killing the waiting opportunity, specifically by investing

in FCCS technology. Clearly, the NPVs of investing in FCCS and PCCS are more

sensitive to C than to F , because the coefficient of C, in Equation (3.5), is larger
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than the coefficient of F for both technologies.

The optimal stopping boundaries for each technology are graphed in Figures

3.4 and 3.5. As expected, these boundaries are strictly increasing with respect

to F , i.e., the higher the fuel price is, the less likely the plant owner is to adopt

the emission-reducing policy. It is also revealed that the boundaries are approx-

imately linear with respect to F . This results from small changes in η(j) for dif-

ferent values of F , e.g., in Table I.1, it is observed that η(pccs) ranges from 1.2919

to 1.3339, which causes an approximate linear relationship between C∗(j)(F ) and

F in Equation (3.31). These lines can be estimated as follows:

C∗(pccs)(F ) = 46.8520 + 1.2570F (3.47)

C∗(fccs)(F ) = 54.1245 + 2.4523F (3.48)

The NPV and the option value of investing in PCCS and FCCS are, respectively,

graphed in Figures 3.6 and 3.7. From these graphs, the distinction between the

NPV and the option value of investing in FCCS compared with PCCS is clearly

visible. Furthermore, the expected NPV for FCCS is more sensitive to both F

and C.

Our results for investing in the FCCS technology are similar to those of Abadie

& Chamarro (2008a). Although the option value of investing in such CCS technol-

ogy in both studies are nearly equal, the NPV calculated in Abadie & Chamarro

(2008a) is almost twice as much as the value calculated in this thesis, which

may be due to our different choice of model for the fuel price as the source of

cost in our model. The use of a GMR process with high volatility (50%) and

high mean-reversion rate (0.96) for the electricity price in Abadie & Chamarro

(2008a) precipitates adoption in comparison with our study with the assumption

of a GBM process for the fuel price. This results in a higher NPV and, thus, a

lower critical threshold ($73.54/tCO2) calculated in Abadie & Chamarro (2008a)

in comparison with the value calculated in our study ($92.12/tCO2).
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Mitigation technology NPV (m$) Option value (m$)
(j) V (j)(F0, C0) W (j)(F0, C0)

PCCS 412.20 608.92
FCCS 200.59 809.12

Table 3.3: NPV and option values

3.4.1.1 Sensitivity Analysis

Figure 3.8 shows the optimal stopping boundary, C∗(fccs)(F ), for different values

of σF and σC . The solid line shows the boundary for the base case values of the

volatilities, σF = 0.05 and σC = 0.47. It is revealed that C∗(fccs)(F ) is more

sensitive to changes in the CO2 price volatility than in the fuel price volatility.

By letting σC to be fixed at its base value, if we increase the value of σF to 0.2 (a

300% increase), then a negligible increase in C∗(fccs)(F ) is observed. On the other

hand, a 75% decrease in σC (to 0.1175) can make a significant downward change

in C∗(fccs)(F ). This is intuitively because the CCS technology is more exposed to

the CO2 price than to the fuel price. In general, increasing uncertainty over the

prices raises the value of waiting and, thus, shifts the optimal stopping boundary

upward.
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Figure 3.4: Free boundary C∗(pccs)(F ) as a function of F for PCCS retrofit
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Figure 3.5: Free boundary C∗(fccs)(F ) as a function of F for FCCS retrofit

The correlation between the two stochastic variables may also affect the value

and the time of adopting the emission-reduction policy. Figure 3.9 shows that

a high positive correlation between the two GBM processes makes the adoption

more accessible by reducing the critical threshold. Intuitively, high positive cor-

relation reduces the risk of large differences between the two variables because

any increase (decrease) in one variable may be accompanied by an increase (de-

crease) in the other. Hence, due to decrease in overall uncertainty, investment is

optimal sooner. On the other hand, with a high negative correlation, an increase

(decrease) in one variable is associated with a decrease (increase) in the other,

i.e., we need to wait longer to receive more information about the prices. In this

case, the overall uncertainty increases.

As we would expect, the larger the sunk capital cost of the investment is, the

less likely the plant owner is to invest. This is illustrated in Figure 3.10 that

compares the optimal stopping boundary for the base value of the capital cost

with the boundaries for an increase of 100% as well as a decrease of 50%. Finally,

we can generalise the results from the sensitivity analysis of the FCCS technology

to that of the PCCS one.
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Figure 3.6: NPV and option value for PCCS

3.4.2 Mutually Exclusive Options

Now, suppose that the PC power plant has to choose between two alternative

technologies: PCCS or FCCS. As discussed earlier in Section 3.2.3.3, using the

data provided in Section 3.3, we first plot the expected PVs of both technologies

to determine whether or not their intersection can lead to an indifference region.

Figure 3.11 illustrates that the PCCS technology, which has a lower sunk capital

cost, is uniformly dominated by the FCCS one. In this case, for CO2 prices

greater than the optimal boundary of FCCS (C∗(fccs)(F )), we invest immediately

in FCCS, while for those prices less than this critical boundary, we wait.

Although the data here suggest that the PCCS technology would be skipped,

it may be plausible that future innovations favour it. In order to determine how

the methodology of Section 3.2.3.3 may cope with such an outcome, we modify the

data such that the optimal investment region becomes dichotomous. As discussed

in Décamps et al. (2006), a sufficient condition in order to have a dichotomous

optimal investment region is that the PCCS retrofit generate slightly lower output

flow than the FCCS retrofit, but at a considerably lower sunk capital cost. We

would also require the volatilities of the prices to be relatively low, otherwise

the optimal investment region would never be dichotomous. Concerning this, we
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Figure 3.7: NPV and option value for FCCS

propose a superior PCCS technology in which the CO2 emissions rate drops to

0.14 tCO2/MWhe (capture of nearly 82%), while the initial capital cost is reduced

to $75m. All other parameters are kept unchanged. We now plot the expected

NPV of each technology in Figure 3.12. It is observed that the option value of

investing in PCCS is greater than that of investing in FCCS. This fact results

in an indifference region opening up around the indifference line in which it is

optimal for the investor to wait9 before investing in either technology. It should

be mentioned that our solution to the individual investment options holds over

the range [0, C∗(pccs)(F )]. We now need to evaluate the intermediate option and

to find the two thresholds: C∗
L and C∗

U .

The intermediate option value as well as the thresholds are calculated using

the algorithm in Figure 3 and graphed in Figures 3.13 and 3.14, respectively. It

is revealed that for low values of CO2: (i) for a constant CO2 price, when the fuel

price increases, it is more attractive to wait for PCCS, and when it decreases, it

is more attractive to invest immediately; (ii) for a constant fuel price, increasing

the CO2 price results in investing in PCCS technology in order to reduce plant’s

9Over the indifference region the investor has to wait because the NPVs of both technologies
are equal and she cannot decide whether to invest in FCCS or PCCS. Therefore, she has to
wait and see how the prices change in the future.
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Figure 3.8: FCCS Free boundary sensitivity analysis with respect to volatilities

CO2 emissions. Over the indifference region: (i) for any constant CO2 price,

as the fuel price increases, investing in PCCS becomes more economical, and

as it decreases, investing in FCCS is preferred; (ii) for a constant fuel price,

when the CO2 price increases, it is more attractive to invest in FCCS, and when

it decreases, it is more attractive to invest in PCCS because FCCS technology

captures more CO2 emissions than the PCCS technology does. Given the current

price F0 = 15.5 ($/MWh), we find the PCCS retrofit threshold C∗(pccs)(F0) =

$50.83/tCO2. As the CO2 price ($25.59/tCO2) is currently below this threshold,

no retrofit is immediately adopted. However, suppose that the current CO2 price

given F0 = $15.5/MWh is located exactly on the indifference line, i.e., CI(F0) =

$136.21/tCO2. The expected NPVs of investing in FCCS and PCCS, which are

identical, and the mutually exclusive intermediate option value of investing in

either technology are given in Table 3.4. The option value of waiting before

investing in either technology is then $20.042m which shows that by investing

in any technology without considering this waiting opportunity we may lose an

amount equal to 0.28% of the NPV of investing. Although such a high CO2 price

is not currently plausible, future international agreements on emissions may make

result in such prices. For example, in Sweden, the CO2 tax is $145/tCO2 (Swedish
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Figure 3.9: FCCS free boundary sensitivity analysis with respect to the correla-
tion coefficient

Government Budget Bill (2008)).

V (pccs)(F0, CI(F0)) $7.1776 billion
V (fccs)(F0, CI(F0)) $7.1776 billion
Ψ(F0, CI(F0)) $7.1976 billion
C∗

L(F0) $121.45/tCO2

C∗
U(F0) $151.96/tCO2

Table 3.4: NPVs, option value, and thresholds with enhanced PCCS technology
and higher initial CO2 price

3.4.2.1 Sensitivity Analysis

From the previous example with the models of irreversible investments, decreasing

the price volatilities reduces the waiting value. This can be seen from Figure

3.15, which depicts the optimal stopping boundaries with a 40% decrease in the

base values of the price volatilities. Comparing these boundaries to those for

the base values, it is observed that both the postponing areas are narrower for

the reduced volatilities. On the other hand, the mutually exclusive intermediate

88

Chapter2/Chapter2Figs/graphs/fbFCCSrho.eps


3.4 Numerical Examples

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

F($/MWh)

C
($

/tC
O

2) I(fccs) = $768.475million

I(fccs) = $331.5636million

I(fccs) = $1.537billion

Figure 3.10: FCCS free boundary sensitivity analysis with respect to the capital
cost

option value at the indifference point, Ψ(F0, CI(F0)), reduces to $7.1848 billion

which is equivalent to losing 0.10% of the NPV of investing by killing the waiting

opportunity. This value, however, rises to $7.2167 billion with a 40% increase

in the base values of the price volatilities, which reveals that we may lose 0.55%

of the NPV of investing if we fail to take advantage of waiting. Furthermore, in

Figure 3.16 we plot the NPVs of FCCS and PCCS technologies and their option

values with the price volatilities twice as much as the base values. It is observed

that even the enhanced PCCS technology, which has a lower sunk capital cost, is

uniformly dominated by the FCCS one. In this case, for CO2 prices greater than

the optimal boundary of FCCS (C∗(fccs)(F )), we invest immediately in FCCS.
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Figure 3.11: NPV and option value (separate valuation) indicate that the PCCS
technology is uniformly dominated by the FCCS one (σF = 0.05 and σC = 0.47)

Figure 3.12: NPV and option value with enhanced PCCS technology (separate
valuation) indicate that the option value of investing in PCCS (W (pccs)) is greater
than that of investing in FCCS (W (fccs)), thereby resulting in an indifference
region around the indifference line (CI(F )) (σF = 0.05 and σC = 0.47)
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Figure 3.13: NPV and option value with enhanced PCCS technology (mutually
exclusive options) show that for CO2 prices less than C∗(pccs)(F ), we wait for
PCCS, while for those prices between C∗(pccs)(F ) and C∗

L(F ), we invest immedi-
ately in PCCS; over the indifferent region (Ψ), we wait to invest either in PCCS
or FCCS, and for CO2 prices greater than C∗

U(F ), we invest immediately in FCCS
(σF = 0.05 and σC = 0.47)
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3.4 Numerical Examples
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Figure 3.14: Free boundaries with enhanced PCCS technology (σF = 0.05 and
σC = 0.47)
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Figure 3.15: Free boundaries with enhanced PCCS technology (σF = 0.030 and
σC = 0.282)
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3.5 Conclusions

Figure 3.16: NPV and option value with enhanced PCCS technology (separate
valuation) indicate that the PCCS technology is uniformly dominated by the
FCCS one and for CO2 prices greater (less) than C∗(fccs)(F ), we invest immedi-
ately in (wait for) FCCS (σF = 0.10 and σC = 0.94)

3.5 Conclusions

As industrialised countries have agreed to reduce their CO2 emissions, which is

assumed to be the most critical anthropogenic GHG, a wide range of mitigation

options have been proposed. Among these, the CCS technology is of high im-

portance because fossil fuels continue to be the dominant energy resources in the

near term. Capturing almost all emissions is the main objective of policymakers;

however, it may critically alter the technology, operation, and economics of a

power plant. As a result, in this chapter we analyse both full and partial capture

technologies under uncertainty over CO2 permit and coal prices.

We first take the perspective of a coal-fired power plant that has to decide

whether to invest, now or any time in the future, in an emission-reduction technol-

ogy. Thus, we examine the opportunity to invest in FCCS and PCCS technologies

separately. The options to invest in such technologies are valued as well as the

optimal stopping boundaries. Using current market data, we find that invest-
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3.5 Conclusions

ing in any CCS technology is not optimal. The critical threshold for investing

in FCCS given current coal price is $92.12/tCO2, while the current CO2 price

is $25.59/tCO2. By proposing a more achievable PCCS technology, although we

could reduce the critical threshold to $56.70/tCO2, it is still not optimal to invest

immediately.

We then assume that the plant owner has to decide simultaneously between

investing in either FCCS or PCCS technology and introduce the required condi-

tions under which the investment region becomes dichotomous. Regarding these

conditions, we propose an enhanced PCCS technology such that its calculated

option value from the separate valuation is greater than that of the FCCS tech-

nology. Therefore, their NPVs intersect each other at an indifference curve that

leads us to value a postponing area where we wait before investing in either tech-

nology. Unlike our analytical solution to the separate valuation, this mutually

exclusive option value, depending on more than one stochastic variable, must be

solved numerically. As such, our solution method is a quasi-analytical one.

The sensitivity of the investment opportunities to changes in the volatilities

and the correlation of the stochastic prices as well as in the sunk capital cost

is analysed in this chapter. Our numerical examples show that the investment

option is highly sensitive to alterations in the volatility of CO2 price. Generally,

increases in volatilities cause increases in optimal boundaries as well as in option

values. However, the correlation between the two prices has an opposite impact

on the optimal boundaries, such that high positive correlation between prices

makes the waiting area narrower.

On the whole, the outcome of this chapter is twofold. Firstly, we demonstrate

that investing in any CCS technology is not economically advisable in the near

term. It would be, however, more attractive should more rigorous climate policies

be imposed, e.g., which either increases the CO2 price level or reduces the uncer-

tainty in the CO2 price. Secondly, from a theoretical point of view, we develop

a two-factor real options model for mutually exclusive investment under uncer-

tainty over two correlated variables. In the next chapter, we focus on optimal

operational decision-making under uncertainty in the energy sector.
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Chapter 4

Real Options Analysis of

Multiple-Exercise Interruptible

Load Contracts

In deregulated electricity industries, load-serving entities (LSEs) provide electric-

ity to their consumers at fixed retail rates, while they procure this electricity

from wholesale electricity markets. Taking the perspective of such an LSE, we

assume that a representative consumer is on an interruptible-load (IL) contract

that allows the LSE to curtail electricity provision multiple times for a specified

duration at a defined capacity payment. Given that the wholesale electricity price

follows a geometric Brownian motion process, a relevant policy question is: how

high should the wholesale electricity price be before the LSE exercises each inter-

ruption opportunity? We proceed by first finding the optimal interruption policy

for a single-exercise IL contract before extending the model to consider many in-

terruptions. While the generalised model does not have a closed-form analytical

solution, it is, nevertheless, possible to solve it numerically to obtain an optimal

interruption policy. Our numerical example of valuing a twenty-exercise IL con-

tract, using the data provided by PG&E and NERC, suggests that interruption is

desirable at relatively high electricity prices. Moreover, we show that the optimal

value of the contract and the optimal interruption thresholds are highly sensitive

to the volatility such that uncertainty favours a delay in interrupting. For com-

parison, we show that a deterministic approximation captures most of the value
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4.1 IL Contracts

of the IL contract as long as the volatility is low and the exercise constraints are

not too severe.

4.1 IL Contracts

As a consequence of peak demand and supply constraints during hot summer and

cold winter days, the electricity spot price increases significantly relative to its

normal level. Therefore, LSEs, which purchase electricity from wholesale electric-

ity spot markets and sell it to consumers at fixed retail rates, become exposed to

huge losses. Over time, this may result in the interruption of electricity over the

entire service area due to rationing. Although building enough power plants looks

a reasonable resolution to this scenario, it may not be viable because besides the

policy resistance to construction of new power plants and transmission lines, it

would impact tariff rates and the environment. By contrast, demand response

programmes are designed to be both fiscally and environmentally responsible so-

lutions to temporary peak demand periods. Consumers’ voluntary participation

in demand response programmes helps enhance electricity reliability not only for

their own businesses, but also for the entire service territory. Moreover, they will

be offered appropriate incentives for their contribution to such programmes.

An IL contract between an LSE and a representative consumer allows the LSE

to interrupt a portion or all of the load over some period of time in exchange for

a pecuniary compensation. Clearly, such an LSE would exercise the interruption

when the electricity spot price is significantly higher than the retail price. On the

other hand, the LSE has to offer appropriate incentives to those consumers who

participate in such programmes. In practice, no physical interruption occurrs as

consumers are required to curtail their load. Several types of IL contracts offered

by LSEs are now available, the most common of which are pay-in-advance and

pay-as-you-go contracts. In the former, the consumer receives a discount on the

retail price of electricity for the entire load, while in the latter, a compensation

is paid per unit of load interrupted. Baldick et al. (2006) shows that retailers

prefer to sign pay-as-you-go contracts because they always have a positive value

due to payment, and interruptions that are made to the benefit of the retailers.

Consumers will be notified of an interruption event between thirty minutes to two

calendar days prior to the event. Each interruption may continue for two to six
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4.2 Problem Formulation

hours, and the maximum number of interruptions is limited, e.g., for a programme

provided by PG&E operating over the summer season (from 1 May through 31

October), the maximum number of interruptions is twenty-five, and the maximum

number of interruption hours is seventy-five. Consecutive interruption days may

also be restricted to a maximum of one, two, or three days. Customers who

are involved in this programme would be paid compensation of $100-1000/MWh

depending on the type of contract (PG&E (2008b) and PG&E (2009)).

4.2 Problem Formulation

4.2.1 Assumptions

In this chapter, we focus on the pay-as-you-go contract with infinite lifetime1

where a customer responds to the interruptions 100% of time. We first consider

a single-exercise IL contract on a continuous, flat load of a unit MW, in which

the LSE has a perpetual option to interrupt the consumer’s electricity supply for

T years at a cost of $I. Then, we suppose that a contract with N interruptions

exists with interruption n lasting for Tn years and having a capacity payment of

$In, n = 1, . . . , N . Moreover, the minimum lag between each two interruptions

assumed to be h years, i.e., the (n + 1)st interruption is available Tn + h years

after exercising the nth interruption. The retail price is fixed at C (in $/MWh),

while the wholesale electricity spot price, {Pt, t ≥ 0} (in $/MWh), follows the

exogenous, stochastic GBM process2:

dPt = αPtdt+ σPtdZt (4.1)

where α and σ are, respectively, the annual growth rate and volatility parameters,

and dZt stands for the increment of a standard Brownian motion process. The

current electricity spot price is P0, and the future returns and costs are discounted

at a subjective constant annual rate ρ > α. We suppose that the LSE serves a

1Although an IL contract has an expiration time, for simplicity, in this chapter, we assume
that each interruption can occur at any time in the future.

2It must be mentioned that all the analyses in this chapter rely on the assumption that the
electricity spot price evolves according to a GBM process. In case of assuming other processes
for the stochastic variable, in general, analytical solutions may not exist, and we would typically
have to resort to numerical methods to obtain a solution.
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small amount of load compared to the system, such that its interruption does not

affect the spot price of electricity.

4.2.2 Single-Exercise IL Contract

There are two states in this setup: one in which the LSE has not exercised the

interruption and, thus, realises no savings over its instantaneous profit, $(C −
Pt)dt, and the other in which the interruption has been exercised, thereby allowing

the LSE to save $(Pt − C)dt for a capacity payment of $I for T years. Thus, its

decision-making problem to select the optimal time, τ , at which to exercise the

interruption is:

F (P0) ≡ sup
τ∈S

EP0

[∫ τ+T

τ

H(Pt − C)e−ρtdt− e−ρτI

]
(4.2)

where S denotes the set of stopping times of the filtration generated by the price

process and H refers to the number of hours in a year. Here, F (P0) is the

maximised expected value of the option to exercise the interruption, where the

expected payoff (in $) from immediate exercise is:

V (P0) ≡ EP0

[∫ T

0

H(Pt − C)e−ρtdt

]

=

∫ T

0

H(P0e
−(ρ−α)t − Ce−ρt)dt

= aP0 − bC (4.3)

where a = H(1−e−(ρ−α)T )
ρ−α

and b = H(1−e−ρT )
ρ

. By using the strong Markov property

of the GBM process and the law of iterated expectations, we have:

EP0

[
EPτ

[∫ τ+T

τ

H(Pt − C)e−ρtdt

]]
= EP0

[∫ τ+T

τ

H(Pt − C)e−ρtdt

]
(4.4)

Hence, Equation (4.2) may be re-written as:

F (P0) ≡ sup
τ∈S

EP0

[
EPτ

[∫ τ+T

τ

H(Pt − C)e−ρtdt

]
− e−ρτI

]
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= sup
τ∈S

EP0

[
EPτ

[∫ T

0

H(Pt′+τ − C)e−ρ(t′+τ)dt′
]
− e−ρτI

]

= sup
τ∈S

EP0

[
e−ρτ {V (Pτ ) − I}

]
(4.5)

The second equality results from applying the transformation t′ = t−τ . According

to Dixit & Pindyck (1994) (p. 315), the expected stochastic discount factor given

the current price and optimal price threshold, P ∗, is:

EP0

[
e−ρτ

]
=

(
P0

P ∗

)β

(4.6)

where β is the positive root of the characteristic quadratic equation 1
2
σ2β(β −

1) + αβ − ρ = 0. Thus, the optimal stopping time problem becomes a non-linear

maximisation one:

F (P0) ≡ max
P ∗≥P0

(
P0

P ∗

)β

{V (P ∗) − I} (4.7)

The first-order necessary condition to this problem yields:

β

(
P0

P ∗

)β−1
P0

(P ∗)2
{aP ∗ − bC − I} =

(
P0

P ∗

)β

a

⇒ P ∗ =

(
β

β − 1

)
(I + bC)

a
(4.8)

The second-order sufficiency condition is verified in Appendix J. Since β = 1
2
−

α/σ2 +
√

[α/σ2 − 1
2
]2 + 2ρ/σ2 > 1 is a positive, exogenous constant, the fraction

β
β−1

is also greater than one. This implies that P ∗ > (I+bC)
a

≡ P det, which is the

threshold at which to exercise the interruption from a now-or-never deterministic

discounted cash flow (DCF) perspective. By re-arranging Equation (4.8), we

obtain that it is optimal to interrupt electricity supply when the expected PV of

the electricity price is greater than the PV of the cost of interruption, i.e., the

capacity payment and the PV of the forgone retail rate:

aP ∗ =

(
β

β − 1

)
(I + bC) (4.9)
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Figure 4.1: Decision-making timeline for τN−1

Hence, as expected, uncertainty favours a delay in the decision-making as the

value of waiting imposes an additional (implicit) cost of action. In Appendix K,

we prove analytically that both the optimal threshold, Equation (4.8), and the

optimal value of the contract, Equation (4.7), are increasing functions of σ.

4.2.3 Multiple-Exercise IL Contract

4.2.3.1 Solve for the Nth and (N − 1)st Interruptions

An optimal interruption policy for an N -exercise IL contract is a set of threshold

prices, {P ∗(N)
τ1 , . . . , P

∗(N)
τn , . . . , P

∗(N)
τN }, where τn and P

∗(N)
τn , n = 1, . . . , N , repre-

sent, respectively, the optimal time and the optimal threshold price of exercising

the nth interruption from an N -exercise IL contract. Starting with the Nth in-

terruption, we note that it offers the same opportunities as a single-exercise IL

contract. Therefore, its value and exercise price should also be the same. We

define the following ∀n:

an = H
1 − e−(ρ−α)Tn

ρ− α
(4.10)

bn = H
1 − e−ρTn

ρ
(4.11)

Vn(P ) = anP − bnC (4.12)

Thus, assuming that when the Nth interruption option is first available (see Fig.

1), it is still optimal to wait, i.e., P
∗(N)
τN ≥ PτN−1+TN−1+h, then the maximised value

of the option to exercise the Nth interruption (discounted to time τN−1+TN−1+h
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when it is first available) is:

F
(N)
N (PτN−1+TN−1+h) ≡ sup

τN∈S

EPτN−1+TN−1+h

[
e−ρ(τN−(τN−1+TN−1+h)) (4.13)

×{VN (PτN
) − IN}]

= max
P

∗(N)
τN

≥PτN−1+TN−1+h

(
PτN−1+TN−1+h

P
∗(N)
τN

)β {
VN

(
P ∗(N)

τN

)
− IN

}

The solution to Equation (4.13) yields:

P ∗(N)
τN

=

(
β

β − 1

)
(IN + bNC)

aN

(4.14)

Working backwards to the (N − 1)st interruption option (see Fig. 1), if it is

still optimal to wait, i.e., P
∗(N)
τN−1 ≥ PτN−2+TN−2+h, then the LSE’s nested problem,

i.e., the maximised value of the option to exercise the (N − 1)st interruption

onward (discounted to time τN−2 + TN−2 + h), is3:

F
(N)
N−1(PτN−2+TN−2+h) ≡ sup

τN−1<τN

EPτN−2+TN−2+h

[
e−ρ(τN−1−(τN−2+TN−2+h)) (4.15)

×
{
VN−1

(
PτN−1

)
− IN−1 + e−ρ(TN−1+h)

EPτN−1

[
F

(N)
N

(
PτN−1+TN−1+h

)]}]

⇒ F
(N)
N−1(PτN−2+TN−2+h) = max

P
∗(N)
τN−1

≥PτN−2+TN−2+h

(
PτN−2+TN−2+h

P
∗(N)
τN−1

)β

(4.16)

×
{
VN−1(P

∗(N)
τN−1

) − IN−1 + e−ρ(TN−1+h)
E

P
∗(N)
τN−1

[
F

(N)
N

(
PτN−1+TN−1+h

)]}

The conditional expectation of the Nth interruption’s option value at time τN−1+

TN−1 +h given the information at time τN−1 depends on whether or not the Nth

3When the (N − 1)st interruption is first available at time τN−2 + TN−2 + h, if P
∗(N)
τN−1

≥
PτN−2+TN−2+h, then the LSE has to wait until the price reaches the optimal threshold P

∗(N)
τN−1

.
The LSE will then exercise the (N − 1)st interruption and receive the immediate payoff

VN−1(P
∗(N)
τN−1

) − IN−1. Therefore, in order to find the (N − 1)st optimal threshold, we need
to maximise the immediate payoff at time τN−1 plus the Nth interruption option value, which
is available TN−1 + h years later, discounted to time τN−2 + TN−2 + h. Since these values are
random, we need to take their expectations given available information.

101



4.2 Problem Formulation

interruption is exercised immediately, i.e., whether or not PτN−1+TN−1+h ≥ P
∗(N)
τN :

F
(N)
N (PτN−1+TN−1+h)

=





aNPτN−1+TN−1+h − bNC − IN if PτN−1+TN−1+h ≥ P
∗(N)
τN(

PτN−1+TN−1+h

P
∗(N)
τN

)β [
VN

(
P

∗(N)
τN

)
− IN

]
otherwise

(4.17)

Thus:

E
P

∗(N)
τN−1

[
F

(N)
N

(
PτN−1+TN−1+h

)]
= E

P
∗(N)
τN−1

[
aNPτN−1+TN−1+h (4.18)

−bNC − IN ] × P
P

∗(N)
τN−1

[
PτN−1+TN−1+h ≥ P ∗(N)

τN

]

+E
P

∗(N)
τN−1



(
PτN−1+TN−1+h

P
∗(N)
τN

)β [
VN

(
P ∗(N)

τN

)
− IN

]



×P
P

∗(N)
τN−1

[
PτN−1+TN−1+h < P ∗(N)

τN

]

By the definition of conditional probability and optimal thresholds, and the char-

acteristics of a GBM process (see Etheridge (2002)), we have:

P
P

∗(N)
τN−1

[
PτN−1+TN−1+h ≥ P ∗(N)

τN

]
= Φ




(
α− 1

2
σ2
)
(TN−1 + h) − ln

(
P

∗(N)
τN

P
∗(N)
τN−1

)

σ
√
TN−1 + h




(4.19)

where Φ is the cumulative distribution function (CDF) of a standard normal

random variable.

Returning to Equation (4.18), we now calculate the conditional expectation

as follows:

E
P

∗(N)
τN−1

[
F

(N)
N

(
PτN−1+TN−1+h

)]
=
[
aNP

∗(N)
τN−1

eα(TN−1+h) − bNC − IN

]

×Φ
(
R(Tn−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)

+

(
P

∗(N)
τN−1

P
∗(N)
τN

)β

eγ(TN−1+h)

×
[
aNP

∗(N)
τN

− bNC − IN
] (

1 − Φ
(
R(Tn−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
))

(4.20)
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Figure 4.2: Decision-making timeline for τn

where γ = βα+ 1
2
β(β−1)σ2 and R(t,X, Y ) =

(α− 1
2
σ2)t−ln (X

Y )
σ
√

t
. Inserting Equation

(4.20) into the optimisation problem in Equation (4.16) and taking the first-order

necessary condition yields (see Appendix L for more details):

P ∗(N)
τN−1

(β − 1)
[
aN−1 + aNe

−(ρ−α)(TN−1+h)
(
Φ
(
R(TN−1 + h, P ∗(N)

τN−1
, P ∗(N)

τN
)
)

−
φ
(
R(TN−1 + h, P

∗(N)
τN−1 , P

∗(N)
τN )

)

(β − 1)σ
√
TN−1 + h


1 −

(
P

∗(N)
τN−1

P
∗(N)
τN

)β−1

e(γ−α)(TN−1+h)








= β
[
bN−1C + IN−1 + (bNC + IN)e−ρ(TN−1+h)

(
Φ
(
R(TN−1 + h, P ∗(N)

τN−1
, P ∗(N)

τN
)
)

−
φ
(
R(TN−1 + h, P

∗(N)
τN−1 , P

∗(N)
τN )

)

βσ
√
TN−1 + h


1 −

(
P

∗(N)
τN−1

P
∗(N)
τN

)β

eγ(TN−1+h)






 (4.21)

where, φ is the probability distribution function (PDF) of a standard normal

random variable. Hence, given P
∗(N)
τN from Equation (4.14), it is possible to solve

Equation (4.21) numerically for P
∗(N)
τN−1 and then work backwards iteratively for

P
∗(N)
τN−2 , . . . , P

∗(N)
τ1 .

4.2.3.2 General Solution for the nth Interruption

Following the same methodology as in the previous section, when the nth in-

terruption is available (see Fig. 2), if it is still optimal to wait, i.e., P
∗(N)
τn ≥

Pτn−1+Tn−1+h, then the maximised value of the option to exercise the nth inter-

ruption onward, discounted to time τn−1 + Tn−1 + h, is:

F (N)
n (Pτn−1+Tn−1+h) ≡ sup

τn−1<τn<τn+1

EPτn−1+Tn−1+h

[
e−ρ(τn−(τn−1+Tn−1+h))

×
{
Vn (Pτn

) − In + e−ρ(Tn+h)
EPτn

F
(N)
n+1 (Pτn+Tn+h)

}]
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⇒ F (N)
n (Pτn−1+Tn−1+h) ≡ max

P
∗(N)
τn ≥Pτn−1+Tn−1+h

(
Pτn−1+Tn−1+h

P
∗(N)
τn

)β {
anP

∗(N)
τn

−bnC − In + e−ρ(Tn+h)
E

[
F

(N)
n+1 (Pτn+Tn+h) |Pτn

= P ∗(N)
τn

]}
(4.22)

Taking the first-order necessary condition and simplifying the result yields:

P ∗(N)
τn

(β − 1)


an − e−ρ(Tn+h)

β − 1

∂E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

]

∂Pτn

∣∣∣∣∣∣
Pτn=P

∗(N)
τn




= β(bnC + In − e−ρ(Tn+h)
E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

= P ∗(N)
τn

]
) (4.23)

In Appendix M, we show that the conditional expectation of the (n+ 1)st inter-

ruption’s option given Pτn
= P

∗(N)
τn is calculated via the following equation:

E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

= P ∗(N)
τn

]
=
(
an+1e

α(Tn+h)P ∗(N)
τn

− bn+1C − In+1

+e−ρ(Tn+1+h)
E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn

= P ∗(N)
τn

])

×Φ
(
R(Tn + h, P ∗(N)

τn
, P ∗(N)

τn+1
)
)

+
(
an+1P

∗(N)
τn+1

− bn+1C − In+1

+e−ρ(Tn+1+h)
E

[
F

(N)
n+2(Pτn+1+Tn+1+h)|Pτn+1 = P ∗(N)

τn+1

])
eγ(Tn+h)

×
(
P

∗(N)
τn

P
∗(N)
τn+1

)β (
1 − Φ

(
R(Tn + h, P ∗(N)

τn
, P ∗(N)

τn+1
)
))

(4.24)

Having the information that after exercising the last interruption, there is no

interruption available at time τN + TN + h, i.e., F
(N)
N+1(.) = 0, and working back-

wards to time τn, we can solve this problem recursively. The now-or-never NPV

of exercising the nth interruption at the current electricity price, P0, can also be

calculated from the following equation:

NPV (N)
n (P0) = anP0 − bnC − In + e−ρ(Tn+h)

E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

= P0

]
(4.25)
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4.2.4 Approximate IL Contract Valuation

Since the exact valuation procedure in Section 4.2.3 does not yield closed-form

solutions, we approximate the conditional expectation of the (n + 1)st interrup-

tion’s option value at time τn + Tn + h given the information at time τn using

the conditional expectation of future electricity price given the information at

time τn, i.e., E(Pτn+Tn+h|Pτn
). This is the approach taken in Fleten et al. (2007)

when analysing sequential, lagged investment decisions in decentralised renew-

able power generation. We, thus, define the following maximised value function,

which must be solved for the approximate price threshold, P
∗(N)
τ ′

n
:

J (N)
n (Pτ ′

n−1+Tn−1+h) = max
P

∗(N)

τ ′n
≥Pτ ′

n−1+Tn−1+h

(
Pτ ′

n−1+Tn−1+h

P
∗(N)
τ ′

n

)β {
anP

∗(N)
τ ′

n
− bnC − In

+e−ρ(Tn+h)J
(N)
n+1

(
E

[
Pτ ′

n+Tn+h|Pτ ′

n
= P

∗(N)
τ ′

n

])}
(4.26)

Clearly, this approximate approach does not affect valuation of the last interrup-

tion, i.e., τ ′N = τN , P
∗(N)

τ ′

N
= P

∗(N)
τN , and J

(N)
N (.) = F

(N)
N (.). However, the remaining

approximate thresholds, {P ∗(N)

τ ′

1
, . . . , P

∗(N)

τ ′

N−1
}, are significantly higher than their

corresponding thresholds calculated in Section 4.2.3.2, {P ∗(N)
τ1 , . . . , P

∗(N)
τN−1}. The

reason for this increase is explained mathematically in Appendix N using Jensen’s

inequality. Moreover, in Appendix O, we show how to obtain the closed-form so-

lutions for the approximate price thresholds:

P
∗(N)
τ ′

n
=

β

β − 1

∑Sτ ′n

j=n e
−ρT

(n)
j−n (bjC + Ij)

∑Sτ ′n

j=n e
−(ρ−α)T

(n)
j−naj

, n = 1, . . . , N (4.27)

where T
(n)
0 = 0, T

(n)
k =

∑n+k−1
j=n (Tj + h) for k = 1, . . . , N−n, and Sτ ′

n
is either the

smallest value in set S = {n, n+1, . . . , N−1} for which the expected forward price

at time τ ′n + TSτ ′n
−n+1 given Pτ ′

n
= P

∗(N)
τ ′

n
is less than the (Sτ ′

n
+ 1)st interruption

threshold, i.e., E

[
P

τ ′

n+T
(n)
S

τ ′n
−n+1

|Pτ ′

n
= P

∗(N)
τ ′

n

]
= e

αTS
τ ′n

−n+1
P

∗(N)
τ ′

n
< P

∗(N)
Sτ ′n

+1, or N

if eαTs−n+1P
∗(N)
τ ′

n
≥ P

∗(N)
s+1 for any s ∈ S. Evidently, since the approximation

approach is much easier to calculate, it would be preferable to a retailer if it can
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capture most of the value of a multiple-exercise IL contract.

4.3 Numerical Examples

4.3.1 Data

Using the IL contract data provided by PG&E (2008b) and PG&E (2009), we

assume C = $60/MWh and N = 20 with each interruption option providing six

hours of 1 MW curtailment for a capacity payment of about $600.4 In order to

keep the limitation of occurring a maximum of one interruption in each day, we

let h = 1/365. The parameters of the electricity spot price process, which are

reported in Table 4.1, are estimated using the wholesale average annual electricity

prices, from 2001 to 2007, by North American Electric Reliability Corporation

(NERC (2008)), developed from the form EIA-861 (2008).

Table 4.1: Data
Parameter Value
σ 0.20
α 0.03
P0 ($/MWh) 50
C ($/MWh) 60
ρ 0.10
Tn (years) 6/8760
In ($) 600
h (years) 1/365

4.3.2 Single-Exercise IL Contract

We first solve the problem for a single-exercise IL contract in which the LSE has

one interruption opportunity. Using the results from Section 4.2.2, the optimal

threshold, the expected NPV of interrupting, and the optimal value of the con-

tract, which are graphed in Fig. 4.3, suggest that at the current electricity price,

interrupting is neither in-the-money nor optimal to be exercised immediately.

4We assume that the LSE has to pay compensation of Pfine = $100/MWh, which results in

a capacity payment of In =
∫ Tn

0

(
e−ρtH Pfine dt

)
= $599.99, n = 1, 2, . . . , N .
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On the other hand, a positive optimal value of the contract ($23.44) results in

a high option value of waiting ($683.41), i.e., the difference between the optimal

value and the now-or-never NPV of exercising the interruption, as well as a high

optimal threshold ($320/MWh).
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Figure 4.3: NPV and optimal value for a single-exercise IL contract

Fig. 4.4 indicates that uncertainty delays interruption because, intuitively,

with more uncertainty, we are more likely to wait for new information. Consis-

tently, Fig. 4.5 reveals that the optimal value of the contract is also increasing

with respect to σ, i.e., with more uncertainty, the contract is more valuable. As

we would expect, Figs. 4.4 and 4.5, respectively, demonstrate that when the

capacity payment is high, exercising a contract is delayed and its optimal value

decreases, which can be simply proven from Equations (4.8) and (4.9).

4.3.3 Two-Exercise IL Contract

Here, by adding another interruption to the single-exercise IL contract, we are

interested in calculating the threshold of the first interruption together with the

optimal value of the contract. From Section 4.2.3.2, we need to solve the problem

starting from the second interruption. The results for the second interruption are
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Figure 4.4: Optimal threshold of a single-exercise IL contract - sensitivity to the
volatility

the same as what we obtained in Section 4.3.2. In order to calculate the optimal

time of the first interruption, however, we have to solve Equation (4.23) when

n = 1, which is a non-linear function of P
∗(2)
τ1 . From Equation (4.24), we have the

conditional expected value of the second interruption:

E

[
F

(2)
2 (Pτ1+T1+h)|Pτ1 = P ∗(2)

τ1

]
=

(a2e
α(T1+h)P ∗(2)

τ1
− b2C − I2)P

(
Pτ1+T1+h ≥ P ∗(2)

τ2
|Pτ1 = P ∗(2)

τ1

)
+

(
a2P

(∗)
τ2

− b2C − I2
)
eγ(T1+h)

(
P

∗(2)
τ1

P
∗(2)
τ2

)β (
1 − P

(
Pτ1+T1+h ≥ P ∗(2)

τ2
|Pτ1 = P ∗(2)

τ1

))

(4.28)

Inserting Equation (4.28) into Equation (4.23), we can solve for P
∗(2)
τ1 numerically.

The results, which are graphed in Fig. 4.6 using the data in Table 4.1, reveal

that interrupting is not optimal immediately. Moreover, the thresholds of the

first ($319.47/MWh) and the second ($320/MWh) interruption are significantly

high, such that it is almost impossible to reach them in the near term, and the

difference between the thresholds is negligible because the option values of waiting
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Figure 4.5: Optimal value for a single-exercise IL contract - sensitivity to the
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for both interruptions are almost equal. Therefore, in the following sections, we

first do a sensitivity analysis by increasing the volatility and the minimum lag

between each two interruptions as well as decreasing the retail price of electricity

and the capacity payment. The altered data will be then used as the basis for the

sensitivity analyses to the volatility, the capacity payment, and the interruption

lag.

4.3.4 Multiple-Exercise IL Contract

In this section, we first provide the solutions using the results from Section 4.2.3.2.

Then, a comparison with the approximation approach and sensitivity analyses to

the volatility of electricity spot price, the capacity payment, and the interruption

lag are carried out.

4.3.4.1 Estimations

Using the actual data, Figs. 4.7 and 4.8 reveal that the difference between the

thresholds of the first and the last interruption is only $2/MWh and that exercis-
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Figure 4.6: NPV and optimal value for a two-exercise IL contract

Table 4.2: Altered data for sensitivity analysis
Parameter Value
σ 0.40
C ($/MWh) 55
In ($) 360a

h (years) 7/365

aSince the LSE has a limitation of one interruption each week, it pays less incentive to its
customers, i.e., we assume that Pfine = $60/MWh.

ing the first interruption is neither optimal nor in-the-money. On the other hand,

after altering the data, which are reported in Table 4.2, Fig. 4.7 shows that al-

though the first interruption is exercised at electricity spot price of $347.91/MWh,

the optimal threshold price of interrupting the last interruption is $357.93/MWh.

Interestingly, it can be seen that the optimal thresholds of the first nine inter-

ruptions tend to a value just below $348/MWh, i.e., even by adding more inter-

ruptions to this contract the optimal threshold of exercising the first interruption

does not lower than $348/MWh. Fig. 4.9 shows that although the contract is

currently in-the-money, it is not optimal to exercise the first interruption imme-

diately, and we need to wait until the price reaches the first threshold.
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Figure 4.7: Optimal thresholds of a twenty-exercise IL contract for the actual
and altered data

4.3.4.2 Comparison with the Approximate Approach

Using the results from Section 4.2.4, approximate optimal thresholds of the twenty

interruptions are calculated and graphed in Fig. 4.7. We can see that the ap-

proximate thresholds are higher than those calculated in Section 4.3.4.1. A loss

of about 1% ($20) in the optimal value of the contract is also observed after

applying the approximation approach (Fig. 4.10) because in the approximate IL

contract valuation, we use the expected future electricity price rather than the

spot price of electricity, which results in a less precise optimal value. The reason

for this reduction is also explained mathematically in Appendix N using Jensen’s

inequality.

4.3.4.3 Sensitivity Analysis to the Volatility (σ)

Reducing (increasing) the volatility, we show that the optimal thresholds signifi-

cantly decrease (increase); however, the difference between the first and the last

threshold becomes smaller (larger) (see Fig. 4.11). As discussed before, in Section

4.3.2, with more uncertainty, the LSE is more likely to wait for new information

in the future, such that after exercising the first interruption it is still optimal to
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Figure 4.8: NPV and optimal value for a twenty-exercise IL contract for the
actual data

wait before exercising the nth, n = 2, 3, . . . , N , interruption. Moreover, any de-

crease (increase) in the volatility, shifts the thresholds and their approximations

evenly down (up). Fig. 4.12 displays that the more the uncertainty, the higher

the optimal value of the contract.

Furthermore, in Fig. 4.10, we demonstrate that the percentage loss in optimal

value from the approximation approach is also increasing with respect to the

volatility because with high uncertainty, the expected future electricity price fails

to capture the behaviour of the spot price of electricity. This weakness of the

approximation is even more significant when the interruption lag is very high. As

a result, the loss from approximation becomes more critical for large interruption

lags. In effect, since {Pt, t ≥ 0} follows a GBM process, the total amount of

uncertainty is proportional to σ2(Tn + h). Thus, the greater the volatility or the

interruption lag, the worse the approximation method.

4.3.4.4 Sensitivity Analysis to the Capacity Payment (I)

As we would expect, Fig. 4.13 shows that a contract with higher capacity payment

is less likely to be interrupted. Changes in the capacity payment, however, slightly

affect the differences between the thresholds and their approximations, and for
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Figure 4.9: NPV and optimal value for a twenty-exercise IL contract for altered
data

both approaches, the thresholds shift up/down equivalently. Similarly, Fig. 4.14

reveals that modifications in the capacity payment have no impact on the loss in

the optimal value of the contract from approximation because both the optimal

value and its approximation decrease equivalently for any increase in the capacity

payment (see Fig. 4.15).

4.3.4.5 Sensitivity Analysis to the Interruption Lag (h)

On the other hand, by imposing more restrictions to the contract, i.e., increasing

the interruption lag, the contract becomes less valuable (see Fig. 4.16) and is

likely to be exercised earlier (see Fig. 4.17). This decrease in the optimal value

is, however, more critical when we approximate the value of the contract. There-

fore, when the interruption lag is very large, the approximation approach fails to

capture accurately the value of the contract; consequently the LSE may lose a

substantial amount of money from approximation (see Fig. 4.18). For example,

in a situation where only one interruption is allowed per month and the volatility

is high, up to 4.5% of the optimal value is lost. In contrast to the impacts of σ and

I on moving the thresholds for both approaches almost identically, changes in the
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Figure 4.10: Percentage loss in optimal value of a twenty-exercise IL contract from
approximation approach when P0 = $50/MWh (sensitivity to the volatility)

interruption lag spread the thresholds and their approximations because the last

threshold in both approaches is not affected by any changes in the interruption

lag (see Fig. 4.17).
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Figure 4.13: Optimal thresholds of a twenty-exercise IL contract (sensitivity to
the capacity payment)
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Figure 4.14: Percentage loss in optimal value of a twenty-exercise IL contract
from approximation approach when P0 = $50/MWh (sensitivity to the capacity
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Figure 4.15: Optimal value of a twenty-exercise IL contract and its approximation
when P0 = $50/MWh (sensitivity to the capacity payment)
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Figure 4.16: Optimal value of a twenty-exercise IL contract and its approximation
when P0 = $50/MWh (sensitivity to the interruption lag)
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Figure 4.17: Optimal thresholds of a twenty-exercise IL contract (sensitivity to
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Figure 4.18: Percentage loss in optimal value of a twenty-exercise IL contract
from approximation approach when P0 = $50/MWh (sensitivity to the lag)

4.4 Conclusions

In order to alleviate financial risk from the deregulation of electricity industry

around the world, recent financial instruments for management of supply and

demand, such as IL contracts, are of high importance to LSEs. In this chapter,

we take the perspective of an LSE that provides electricity to its consumers at

a fixed retail rate, while it purchases this electricity from wholesale electricity

markets. We first determine the optimal threshold price as well as the optimal

value of a single-exercise IL contract. Thereafter, a sequential nested decision-

making problem with lags is solved quasi-analytically. We also develop a simple

approximate IL contract valuation, which, in many cases, may capture most of

the value of the contract.

Using data provided by PG&E and NERC, our numerical examples suggest

that for the current spot price of electricity, a twenty-exercise IL contract is nei-

ther in-the-money nor optimal to be interrupted immediately. Moreover, the

difference between the thresholds of the first and the last interruption is not sig-
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4.4 Conclusions

nificant because the value of waiting in all interruptions is almost equal. Thus,

valuing each interruption separately from others would not have an important

impact on the optimal time of interrupting. Nevertheless, we show that with a

high volatility and large interruption lags, the difference between the first and

the last interruption threshold becomes more distinguished. Greater uncertainty,

however, delays the interruption because with more uncertainty, we wait longer

in order to receive new information in the future. On the other hand, greater

interruption lags reduce the optimal value of the contract, which results in an

earlier optimal time of interruption. We also reveal that the deterministic ap-

proximation captures most of the value of the multiple-exercise IL contract as

long as the volatility is low and the exercise constraints are not too severe.
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Chapter 5

Conclusions

After the liberalisation of the electricity industry, market participants have been

exposed to financial risks due to uncertain energy prices. Therefore, exploring

the behaviour of energy prices, such as highly unexpected spikes and stochastic

volatility, and optimal decision-making in energy projects have become main

issues in energy economics in many countries. In this thesis, we first provide a

comprehensive set of both linear and non-linear multivariate models for electricity

and gas prices and carry out a comparison study using UK electricity and gas

spot prices to evaluate the forecasting performance of the proposed models in

decision-making such as valuing a gas-fired power plant. We, then, pursue a

related line of research by taking the perspective of a coal-fired power plant

owner that may decide to invest in either FCCS or PCCS retrofits given uncertain

electricity, CO2, and coal prices, and develop an analytical real options model that

values the choice between the two technologies. Finally, we extend the use of real

options to an operational decision-making problem. We value a multiple-exercise

IL contract that allows an LSE to curtail electricity provision to a representative

consumer multiple times for a specified duration at a defined capacity payment

given uncertain wholesale electricity price from the viewpoint of the LSE. Here,

we will summarise the results of this thesis, discuss its limitations, and offer

directions for future research.
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5.1 Modelling Electricity and Gas Prices

5.1 Modelling Electricity and Gas Prices

In Chapter 2, using UK electricity and natural gas daily spot prices, we show that

the mean-reverting model for both logarithms of electricity and gas not only is the

best-fit linear model, but also has the best out-of-sample forecasting performance.

It is, however, not able to capture the high-value sudden spikes of energy prices.

Therefore, Markov regime-switching approaches and a mean-reverting stochastic

model are posited to improve upon this linear model. We then take the viewpoint

of an investor in a gas-fired power plant with operational flexibility in order to

compare the ability of linear and non-linear models in valuing the power plant

over the out-of-sample period. The study suggests that although the linear model

provides out-of-sample forecasts with the lowest ERMSE, the non-linear models

with stochastic volatility for logarithms of electricity prices perform better than

both the linear and the regime-switching models in terms of valuing a gas-fired

power plant. On the other hand, since the volatility of gas prices does not seem

to be stochastic, the model MRSV1 is chosen as the best model among both the

linear and non-linear models.

In this study, our data set is restricted to average daily spot prices, which

may result in losing the intra-day variation in price behaviour, e.g., the short-

duration spikes may actually occur in half-hourly prices rather than in daily

ones. Analysing the intra-day data, as in Karakatsani & Bunn (2008), would be a

sensible resolution to any possible misleading references resulted from this feature.

Moreover, a non-linear regime-switching model with time-varying parameters,

a study similar to Mount et al. (2005), may improve the weakness of regime-

switching models in capturing high-value spikes of electricity prices. It would

also be interesting if the proposed models in this study could be replicated in

other countries as well as for other commodity prices to see whether they would

produce similar results. Finally, since in a CO2-constrained environment, a gas-

fired power plant has to purchase permits for its CO2 emissions, further research

regarding the role of stochastic CO2 emissions permit prices as another source of

cost, affecting the value of the power plant, would be of great help.
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5.2 Carbon Capture and Sequestration Technology

5.2 Carbon Capture and Sequestration Technol-

ogy

From the viewpoint of a coal-fired power plant that has to decide whether to in-

vest, now or any time in the future, in FCCS and PCCS technologies separately,

in Chapter 3, using current market data, we show that investing in any CCS tech-

nology is not economically advisable in the near term. Then, supposing that the

plant owner has to decide between investing in either FCCS or PCCS technology

simultaneously, we introduce the required conditions under which the investment

region becomes dichotomous. Regarding these conditions, we propose an en-

hanced PCCS technology that leads us to value a postponing area where we wait

before investing in either technology. Unlike our analytical solution to the sep-

arate valuation, this mutually exclusive option value is solved quasi-analytically

because it depends on more than one stochastic variable. Our numerical examples

show that greater uncertainty delays the investment and makes the investment

option more valuable. However, the correlation between the two prices has an

opposite impact on the optimal boundaries, such that high positive correlation

between prices makes the waiting area narrower.

Although GBM processes are commonly assumed to be good models for energy

prices, as examined, e.g., in Pindyck (1999), they may not be suitable for CO2

permit prices. Moreover, using alternative stochastic processes for energy prices,

such as mean-reverting models, as in Abadie & Chamarro (2008a), may result

in different outcomes. Considering other possible options, such as the option

to suspend the CCS unit to allow venting or the option of switching from one

technology to another, may also affect the option value. Finally, a complete

model that accounts for the limited lifetime of the equipment, the time-to-build

problem, or the market competition such as in Paxson & Pinto (2005), would be

better able to capture the sequential decision-making challenges faced by a power

plant. The methods in this study can be extended to any similar utilities faced

with investing in alternative opportunities under uncertainty.

123



5.3 Multiple-Exercise Interruptible Load Contract

5.3 Multiple-Exercise Interruptible Load Con-

tract

In Chapter 4, we take the perspective of an LSE that provides electricity to its

consumers at a fixed retail rate, while it purchases this electricity from whole-

sale electricity markets. Given uncertainty in wholesale electricity spot price, we

solve a sequential nested decision-making problem with lags quasi-analytically

and develop a simple approximate IL contract valuation, which is much easier to

calculate and, in many cases, may capture most of the value of the contract. Using

the data provided by PG&E and NERC, we show that at the current spot price of

electricity, a twenty-exercise IL contract is not optimal to be interrupted imme-

diately and that with a high volatility and large interruption lags, the difference

between the first and the last interruption threshold becomes more distinguished.

Greater uncertainty, however, delays the interruption because with more uncer-

tainty, we wait longer in order to receive new information in the future. On the

other hand, greater interruption lags reduce the optimal value of the contract,

which results in an earlier optimal time of interruption. Finally, we reveal that

the deterministic approximation can be used instead of the exact valuation when

the volatility is low and the exercise constraints are not too severe.

The assumption of a GBM process for the spot price of electricity would be

either improved, e.g., by including jumps or spikes in the process, or replaced

by alternative stochastic processes, such as a mean-reverting model. Moreover,

a complete model that takes into account a fixed-term contract would be better

able to capture the value of the contract. This would, however, require a solution

approach based on finite differences. In such a contract, the interruptions are

likely to be exercised at lower price thresholds closer to the end of the contract.

Other possible options may also affect the optimal value of the contract, e.g.,

cancellation of the interruption once initiated would increase the value of the

contract, while advance notification as in Kamat & Oren (2001), may be in favour

of the consumer rather than the retailer.
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Appendix A

Seasonality Function: Estimation

Table A.1: Estimations of the coefficients of weekly seasonality

j γ
(E)
1j γ

∗(E)
1j γ

(G)
1j γ

∗(G)
1j

1 -0.0114 0.1118 0.0078 0.0714
2 0.0236 0.0197 0.0155 -0.0003
3 0.0170 0.0178 0.0000 0.0043
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Table A.2: Estimations of the coefficients of yearly seasonality
j γ

(E)
2j γ

∗(E)
2 γ

(G)
2j γ

∗(G)
2j j γ

(E)
2j γ

∗(E)
2 γ

(G)
2j γ

∗(G)
2j

1 0.0049 -0.1238 0.0703 -0.2608 91 0.0038 0.0030 0.0047 -0.0071
2 -0.0479 0.0210 -0.0664 0.0624 92 -0.0145 0.0010 -0.0099 0.0021
3 0.0241 0.0085 0.0172 0.0044 93 0.0037 0.0040 0.0002 0.0043
4 -0.0265 -0.0009 -0.0165 -0.0114 94 0.0004 0.0030 0.0025 0.0037
5 0.0004 -0.0133 0.0107 0.0056 95 0.0013 -0.0052 0.0076 0.0000
6 -0.0046 -0.0179 -0.0413 0.0006 96 0.0027 0.0038 0.0016 -0.0055
7 0.0116 -0.0010 0.0209 -0.0110 97 0.0045 0.0050 -0.0003 0.0033
8 -0.0179 0.0115 -0.0241 0.0065 98 0.0025 -0.0046 -0.0063 -0.0038
9 -0.0126 0.0108 -0.0151 0.0082 99 -0.0069 0.0054 0.0005 0.0046
10 0.0003 -0.0086 0.0142 -0.0036 100 0.0026 0.0008 -0.0016 -0.0014
11 -0.0122 0.0066 -0.0104 0.0036 101 -0.0018 0.0025 0.0017 -0.0025
12 -0.0273 -0.0220 -0.0184 -0.0095 102 0.0005 -0.0092 0.0024 -0.0010
13 0.0087 0.0094 -0.0019 0.0215 103 0.0058 0.0009 0.0061 0.0054
14 0.0219 0.0211 0.0297 0.0061 104 -0.0024 0.0096 -0.0022 -0.0074
15 -0.0097 -0.0367 -0.0282 -0.0363 105 -0.0019 -0.0089 -0.0034 -0.0046
16 -0.0230 -0.0011 -0.0131 -0.0098 106 -0.0012 -0.0052 -0.0019 0.0065
17 -0.0191 0.0205 -0.0270 0.0145 107 -0.0085 0.0061 0.0003 0.0054
18 -0.0075 0.0040 0.0227 0.0001 108 -0.0025 -0.0062 -0.0016 -0.0051
19 0.0264 0.0007 0.0189 -0.0140 109 0.0047 -0.0036 0.0073 -0.0005
20 0.0088 0.0027 0.0005 0.0030 110 0.0010 0.0075 -0.0009 -0.0077
21 0.0052 -0.0107 -0.0047 0.0005 111 0.0022 -0.0086 -0.0022 0.0008
22 0.0021 0.0001 0.0193 0.0058 112 0.0006 0.0002 -0.0050 0.0023
23 0.0024 -0.0019 -0.0177 -0.0084 113 -0.0029 0.0007 -0.0069 -0.0003
24 0.0096 0.0091 0.0167 -0.0058 114 0.0040 0.0079 -0.0002 0.0063
25 -0.0116 0.0032 -0.0110 0.0090 115 -0.0027 -0.0036 0.0019 0.0046
26 -0.0024 -0.0080 0.0024 0.0149 116 0.0052 -0.0012 -0.0011 -0.0068
27 0.0128 0.0009 0.0203 -0.0169 117 -0.0036 0.0026 0.0013 -0.0001
28 0.0004 -0.0112 0.0116 0.0000 118 0.0043 -0.0014 0.0006 0.0032
29 0.0059 0.0033 -0.0006 0.0079 119 0.0100 0.0024 0.0003 -0.0002
30 0.0090 -0.0005 0.0207 0.0054 120 0.0009 0.0024 -0.0039 0.0023
31 0.0012 -0.0093 -0.0037 -0.0062 121 -0.0054 -0.0040 0.0004 -0.0053
32 -0.0069 0.0034 0.0015 0.0079 122 0.0023 -0.0012 0.0021 0.0000
33 -0.0097 0.0040 -0.0148 -0.0074 123 -0.0037 -0.0052 -0.0049 -0.0007
34 0.0145 -0.0100 0.0171 -0.0054 124 -0.0007 -0.0054 -0.0007 0.0018
35 -0.0035 -0.0172 -0.0073 0.0023 125 0.0016 0.0005 -0.0014 -0.0012
36 -0.0293 -0.0010 -0.0267 0.0091 126 -0.0136 0.0024 0.0034 0.0007
37 0.0069 0.0103 0.0055 0.0041 127 0.0060 -0.0035 -0.0052 0.0038
38 0.0040 -0.0008 -0.0006 0.0100 128 -0.0064 -0.0015 0.0020 0.0051
39 0.0012 -0.0102 0.0099 -0.0096 129 -0.0067 -0.0021 -0.0048 -0.0029
40 -0.0087 0.0129 -0.0079 -0.0098 130 -0.0018 -0.0034 -0.0022 -0.0074
41 -0.0147 0.0007 -0.0038 -0.0006 131 -0.0001 0.0052 -0.0017 0.0012
42 -0.0032 -0.0109 -0.0014 0.0037 132 0.0002 -0.0021 -0.0043 0.0008
43 0.0011 0.0037 0.0077 -0.0004 133 -0.0007 0.0035 0.0058 0.0035
44 -0.0050 0.0041 0.0013 0.0010 134 0.0003 -0.0031 0.0039 0.0024
45 0.0061 -0.0006 0.0057 0.0054 135 0.0028 -0.0035 -0.0028 -0.0030
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Table A.3: Estimations of the coefficients of yearly seasonality (continued)
j γ

(E)
2j γ

∗(E)
2 γ

(G)
2j γ

∗(G)
2j j γ

(E)
2j γ

∗(E)
2 γ

(G)
2j γ

∗(G)
2j

46 0.0040 -0.0005 -0.0023 -0.0049 136 -0.0034 0.0062 -0.0024 0.0018
47 -0.0017 -0.0045 -0.0020 -0.0075 137 -0.0018 -0.0008 -0.0061 0.0042
48 -0.0090 0.0027 0.0019 -0.0035 138 -0.0017 -0.0007 -0.0024 0.0006
49 0.0123 -0.0093 -0.0013 0.0025 139 0.0035 0.0008 0.0032 -0.0072
50 0.0028 0.0012 0.0020 0.0062 140 0.0055 -0.0042 0.0009 0.0013
51 -0.0106 -0.0171 -0.0038 -0.0064 141 -0.0043 0.0025 -0.0057 -0.0048
52 -0.0346 -0.0166 -0.0169 0.0156 142 -0.0013 -0.0020 0.0065 -0.0007
53 -0.0021 0.0184 -0.0090 0.0022 143 0.0022 -0.0006 -0.0046 0.0011
54 0.0010 0.0005 -0.0009 -0.0105 144 0.0006 0.0035 -0.0039 0.0043
55 -0.0001 -0.0175 0.0040 -0.0014 145 -0.0060 -0.0037 -0.0017 -0.0004
56 -0.0030 -0.0023 0.0012 -0.0019 146 0.0055 0.0004 0.0000 -0.0006
57 -0.0122 -0.0012 -0.0019 0.0068 147 0.0059 -0.0026 -0.0019 -0.0020
58 0.0122 -0.0075 0.0110 0.0010 148 -0.0011 -0.0031 0.0015 0.0003
59 0.0057 0.0006 0.0011 -0.0016 149 0.0040 0.0078 0.0020 0.0050
60 -0.0116 0.0013 -0.0009 -0.0010 150 -0.0006 -0.0055 0.0030 -0.0015
61 0.0110 0.0210 0.0072 0.0083 151 -0.0009 0.0051 0.0009 -0.0034
62 0.0026 -0.0042 0.0008 -0.0020 152 0.0039 -0.0028 -0.0030 0.0001
63 0.0009 0.0019 0.0011 0.0025 153 -0.0003 0.0020 0.0011 0.0021
64 -0.0031 0.0020 -0.0048 -0.0061 154 0.0082 0.0020 0.0022 0.0001
65 -0.0082 -0.0030 0.0067 0.0055 155 -0.0041 -0.0090 -0.0045 -0.0021
66 0.0163 0.0050 0.0038 -0.0012 156 -0.0063 0.0061 -0.0046 0.0031
67 0.0084 0.0099 -0.0081 0.0000 157 -0.0015 0.0167 0.0024 0.0068
68 -0.0028 -0.0162 -0.0022 0.0002 158 0.0048 -0.0032 0.0014 0.0009
69 -0.0068 -0.0005 -0.0058 0.0130 159 0.0037 -0.0040 0.0027 0.0004
70 0.0000 0.0055 -0.0046 -0.0096 160 -0.0037 0.0032 0.0010 -0.0050
71 0.0084 0.0003 0.0036 0.0070 161 0.0032 -0.0086 -0.0038 -0.0033
72 0.0014 -0.0054 -0.0030 -0.0010 162 -0.0053 0.0028 0.0008 0.0016
73 -0.0034 -0.0035 -0.0001 0.0002 163 0.0052 -0.0002 0.0030 -0.0003
74 0.0076 -0.0029 0.0075 0.0015 164 0.0020 -0.0050 -0.0049 0.0016
75 0.0093 0.0003 -0.0014 0.0048 165 -0.0017 0.0049 -0.0015 -0.0018
76 -0.0023 -0.0075 -0.0053 -0.0058 166 0.0052 0.0027 0.0028 0.0014
77 -0.0069 -0.0020 0.0032 0.0013 167 0.0034 0.0048 0.0016 0.0012
78 -0.0033 0.0020 -0.0045 -0.0019 168 -0.0021 -0.0068 -0.0020 -0.0031
79 0.0014 -0.0022 -0.0023 0.0083 169 0.0023 -0.0073 -0.0018 -0.0012
80 -0.0021 -0.0015 0.0100 0.0065 170 -0.0034 0.0087 -0.0032 0.0029
81 -0.0086 -0.0023 -0.0076 -0.0019 171 -0.0046 -0.0034 0.0047 0.0010
82 0.0040 -0.0066 0.0016 -0.0065 172 0.0032 0.0021 -0.0007 0.0051
83 -0.0051 0.0042 -0.0016 -0.0001 173 -0.0009 0.0008 -0.0016 0.0009
84 0.0020 0.0041 -0.0104 0.0061 174 -0.0022 -0.0063 0.0038 -0.0035
85 -0.0071 0.0015 -0.0055 0.0027 175 -0.0033 0.0002 -0.0047 0.0033
86 -0.0040 -0.0057 0.0020 0.0030 176 -0.0002 -0.0044 -0.0005 -0.0011
87 0.0078 -0.0032 0.0004 0.0023 177 0.0020 0.0029 0.0007 0.0002
88 -0.0091 0.0077 -0.0034 0.0017 178 -0.0046 0.0098 0.0007 -0.0021
89 -0.0046 -0.0091 0.0056 0.0058 179 0.0010 -0.0047 0.0016 0.0031
90 0.0114 0.0016 -0.0005 -0.0052 180 0.0024 0.0058 0.0004 -0.0030
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Appendix B

Standard Errors

Table B.1: Standard errors of estimated parameters reported in Table 2.2
Parameters Model (1) Model (2) Model (3) Model (4)

Electricity σE 0.24 0.28 0.04 0.04
µE 1.48 0.52 0.52
κE 7.63

λEκE 21.53
ρσEσG 0.15 0.16 0.03 0.05

Gas σG 0.17 0.17 0.06 0.17
µG 0.69
κG 4.68 4.67 4.67

λGκG 8.43 8.41 8.41
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Appendix C

Diagnostic Tests

In order to verify essential properties of the residuals, i.e., uncorrelated random

variables with constant mean zero and constant variance, the quantile-quantile

plot of the standardised residuals and also the residuals versus the order of obser-

vations are graphed in Figures C.1 and C.2, which indicate that the residuals are

approximately normal with mean of zero and a roughly constant variance. More-

over, the chi-square goodness-of-fit tests of the standardised residuals against

the standard normal distribution reported in Table C.1 are consistent with the

normality of residuals.

Table C.1: Chi-square goodness-of-fit test
Model (1) Model (2) Model (3) Model (4)

Electricity X2a 35.5860 45.1298 47.3199 46.5964
df b 36 36 36 36
pc 0.4881 0.1415 0.0982 0.1111

Gas X2 a 49.4747 50.1140 47.8951 49.9333
df b 35 35 34 35
p c 0.0533 0.0470 0.0574 0.0487

aChi-square statistic
bDegrees of freedom = total number of cells - 3, cells with expected

counts less than 5 are pooled to neighbouring cells
cAlmost all p values are greater than 0.05 which means that the null

hypothesis of having normal residuals can not be rejected
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Figure C.1: Standardised residuals of logarithms of electricity prices
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Figure C.2: Standardised residuals of logarithms of gas prices
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Appendix D

Hamilton Filter

Here, we discuss the Hamilton-filter algorithm for a particular multivariate time

series, Equation 2.18, where the second term on the right-hand side of this equa-

tion follows an AR(1) process with normally distributed innovations as

[
Z

E(St)
t

Z
G(St)
t

]
=

[
φ

(St)
E Z

E(St−1)
t−1

φ
(St)
G Z

G(St−1)
t−1

]
+ W

(St)
t (D.1)

where Wt, conditional on information available at time t, is multivariate nor-

mally distributed with zero mean and the covariance matrix of Σ(St),

Σ(St) =

[
σ

2(St)
E ∆t σ

(St)
E σ

(St)
G ρ∆t

σ
(St)
E σ

(St)
G ρ∆t σ

2(St)
G ∆t

]
(D.2)

which is dependent on the regime state.

In order to apply the Hamilton filter, we need to combine Equations 2.18 and

D.1 into a single equation:

Yt =

[
α

(St)
E

α
(St)
G

]
+

[
φ

(St)
E 0

0 φ
(St)
G

]
(Yt−1 −

[
α

(St−1)
E

α
(St−1)
G

]
) + W

(St)
t , (D.3)
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where

Yt =

[
X

E(St)
t

X
G(St)
t

]
(D.4)

Hence, Yt, given {St = st, St−1 = st−1,Yt−1 = yt−1}, is multivariate normally

distributed with the probability density function

f(Yt|St = st, St−1 = st−1,Yt−1 = yt−1)

= 1
2π|Σ(st)|exp(

−1
2

(Yt − µt)
′Σ(st)−2

(Yt − µt))
(D.5)

where,

µt =

[
α

(st)
E

α
(st)
G

]
+

[
φ

(st)
E 0

0 φ
(st)
G

](
Yt−1 −

[
α

(st−1)
E

α
(st−1)
G

])
(D.6)

and Σ(St) is defined in Equation D.2.

Lemma 1 Using graph theory, we show that St is independent of {Yt−1, . . .,

Y0} given St−1, i.e., St⊥{Yt−1, . . . ,Y0}|St−1.

To make it easy, assume that t = 2; the result will be extended for each t > 2.

The directed acyclic graph (DAG) of this relationship is represented as:
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To determine the accuracy of S2⊥{Y1,Y0}|S1, after dropping all nodes that

are neither included in (S1, S2,Y0,Y1) nor ancestors1 of nodes in (S1, S2, Y0,Y1),

we convert the remaining DAG to a conditional independence graph:
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��
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@
@@�
��

Using the global Markov property, since S1 blocks all paths between S2 and

{Y1,Y0}, we can claim that S2⊥{Y1,Y0}|S1.

1Ancestors of a node are all the upstream nodes (i.e., we can get from ancestors to the node
by following the arrows).
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We must now calculate the conditional log likelihood function, l(Θ), and then

maximise it with respect to the unknown parameters, Θ.

l(Θ) = log(f(YT , . . . ,Y1|Y0,Θ)), (D.7)

where Θ = {p, q, α(0)
E , α

(1)
E , α

(0)
G , α

(1)
G , φ

(0)
E , φ

(1)
E , φ

(0)
G , φ

(1)
G , σ

(0)
E , σ

(1)
E , σ

(0)
G , σ

(1)
G , ρ}.

Although calculating the maximum likelihood estimates of these large num-

bers of unknown parameters is analytically impossible, we may find them numer-

ically. We can rewrite the conditional log likelihood function l(Θ) as

l(Θ) = log(f(YT , . . . ,Y1|Y0,Θ)) =
∑T

t=1 log(f(Yt|Yt−1, . . . ,Y0))

=
∑T

t=1 log
∑1

st=0

∑1
st−1=0 f(Yt, St = st, St−1 = st−1|Yt−1, . . . ,Y0)

=
∑T

t=1 log
∑1

st=0

∑1
st−1=0 f(Yt|St = st, St−1 = st−1,Yt−1, . . . ,Y0)

×Prob[St = st, St−1 = st−1|Yt−1, . . . ,Y0]

(D.8)

where,

Prob[St = st, St−1 = st−1|Yt−1, . . . ,Y0]

= Prob[St = st|St−1 = st−1,Yt−1, . . . ,Y0] × Prob[St−1 = st−1|Yt−1, . . . ,Y0]

= Prob[St = st|St−1 = st−1] (Using Lemma 1)

×∑1
st−2=0 Prob[St−1 = st−1, St−2 = st−2|Yt−1, . . . ,Y0]

(D.9)

is a recursive equation, which can be calculated for all t (from 2 to T ), with

the initial values of Prob[S1 = s1, S0 = s0|Y0] (for s1, s2 = 0, 1), which is simply

computable via the following equations together with the initial assumption of
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Π0 = Prob[S0 = 1|Y0].

Prob[St = 0, St−1 = 0] = p(1 − Π0),

P rob[St = 1, St−1 = 0] = (1 − p)(1 − Π0),

P rob[St = 1, St−1 = 1] = qΠ0,

P rob[St = 0, St−1 = 1] = (1 − q)Π0.

(D.10)

Substituting Equations D.5 and D.9 into Equation D.8, we are able to calculate

the likelihood function, l(Θ), numerically.
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Appendix E

Fitting the Variogram

In order to estimate the unknown parameters in Equation 2.33, we need to min-

imize the square error function S(Θ) with regard to the unknown parameters

Θ = {c, κe, σe}, where

S(Θ) =
k∑

j=1

(γE
j (Θ) − V E

j )2 (E.1)

where, k1 is the total number of empirical variograms which are considered in

the fit. In theory, it would be possible to find these least-square error estimates;

however, the presence of the local minimum makes it difficult to find the global

minimum. Thus, we first need to guess the most appropriate initial parameters

and then find the least-square error estimates.

As described so far (see Equation 2.31), the normalised increments of the data,

LE
n , can be written as

LE
n = ZE

n + log(γE) + log |ǫEn | (E.2)

1The choice of k is an important practical consideration, which is suggested by Journel &
Huijbregts (1978) as follows: assume that J = max{j : Nj > 0} denote the largest possible lag
to be considered in the fit; then fit only up to lags j for which Nj > 30 and 0 < k ≤ J/2.
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where the stochastic variable ZE
n is a mean-reverting process as follows

ZE
n = (1 − κe∆t)Z

E
n−1 + σe∆W

e
n (E.3)

Combining these two equations, we get

LE
n = φeL

E
n−1 + αe + ηe

n (E.4)

where

φe = 1 − κe∆t, (E.5)

αe = (1 − φe)(log(γE) − 0.63), (E.6)

and

ηe
n = 0.63(1 − φe) − φe log |ǫEn−1| + log |ǫEn | + σe∆W

e
n (E.7)

is a random variable with approximate mean and variance of 0 and 0.23(1+φ2)+

σ2∆t, respectively.2

Rewriting Equation E.4 in its expectation form, we have

E(LE
n |LE

n−1) = φeL
E
n−1 + αe (E.8)

which is a linear function and can be estimated using the least-square error

method. These parameters estimaties are then used as the initial parameters

in minimising Equation E.1.

2Using simulating, the approximately calculated mean and variance of log |ǫE
n | are −0.63 and

0.23, respectively.
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Appendix F

Cross-Variogram: Derivation of

Equation (2.40)

We proceed by first rewriting Equations 2.36 and 2.37 as follows:

ZE
t = e−κetzE

0 +

∫ t

0

e−κe(t−s)σedW
e
s (F.1)

ZG
t = e−κgtzG

0 +

∫ t

0

e−κg(t−s)σgdW
g
s (F.2)

Then we find:

E(ZE
t Z

G
t )

= e−(κe+κg)tzE
0 z

G
0 +

∫ t

0
e−(κe+κg)(t−s)σeσgρegds

= e−(κe+κg)tzE
0 z

G
0 + σeσgρeg

κe+κg
(1 − e−(κe+κg)t)

→ σeσgρeg

κe+κg
as t→ ∞,

(F.3)
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E(ZE
t+t′Z

G
t )

= E(ZE
t e

−κet′ +
∫ t+t′

t
e−κe(t+t′−s)σedW

e
s )ZG

t

= e−κet′E(ZE
t Z

G
t )

→ e−κet′ σeσgρeg

κe+κg
as t→ ∞

(F.4)

Similarly,

E(ZE
t Z

G
t+t′) → e−κgt′ σeσgρeg

κe + κg

as t→ ∞. (F.5)

We can now calculate the following:

E{(LE
n+j − LE

n )(LG
n+j − LG

n )}

= E{(log(σ(ZE
n+j)) + log |ǫEn+j| − log(σ(ZE

n )) − log |ǫEn |)

×(log(σ(ZG
n+j)) + log |ǫGn+j| − log(σ(ZG

n )) − log |ǫGn |)}

= E{(log(σ(ZE
n+j)) − log(σ(ZE

n )))(log(σ(ZG
n+j)) − log(σ(ZG

n )))}

+E{(log |ǫEn+j| − log |ǫEn |)(log |ǫGn+j| − log |ǫGn |)} (by independence1)

= 2E(log(σ(ZE)) log(σ(ZG))) − E(log(σ(ZE
n+j)))E(log(σ(ZG

n )))

−E(log(σ(ZE
n )))E(log(σ(ZG

n+j))) (by stationarity)

+2E(log |ǫE| log |ǫG|) − 2E(log |ǫE|)E(| log |ǫG|)

= 2E(ZEZG) − E(ZE
n+jZ

G
n ) − E(ZE

n Z
G
n+j) + 2cov(log |ǫE|, log |ǫG|)

= σeσgρeg

κe+κg
(2 − e−κej∆t − e−κgj∆t) + 2cov(log |ǫE|, log |ǫG|)

(F.6)

1We assumed that random variables {ZE
j , ZG

j } and {ǫE
j , ǫG

j } for all possible values of j are
independent.
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Appendix G

Argument on the Uniqueness of

the Solutions Obtained

The method of Adkins & Paxson (2010) used to obtain a solution for the real

option value appears successful but does not itself prove that the obtained solution

is unique. To prove uniqueness, standard techniques for such elliptic PDEs usually

rely on proof by contradiction (see Mattheij et al. (2005) for more details). Taking

the individual investment option problem solved in Section 3.2.3.2, if we assume

that the solution found W for the real option value is not unique and that a

second solution W̃ exists, then the difference φ = W−W̃ also satisfies the Bellman

equation (3.11). For illustration, we take a simpler form of the governing equation

(
F 2φF

)
F

+
(
C2φC

)
C
− µφ = 0 (G.1)

and assume that the free boundary for W is at F = F ∗(C) and the free bound-

ary for W̃ is at F = F̃ (C). Then, multiplying the governing equation by
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φ and integrating over the domain D, which is the region C > 0 and F >

max
(
F ∗(C), F̃ (C)

)
in which both W and W̃ are well defined, leads to

∫

max(F ∗,F̃ )

C2φφCdF +

∫

max(F ∗,F̃ )

F 2φφF dC

=

∫∫

D

µφ2 + C2(φC)2 + F 2(φF )2dCdF (G.2)

where the right-hand side obviously must be greater than or equal to zero and

the left-hand side is dependent only on the values at the free boundary; here,

the boundary conditions at F → ∞ and C = 0 are already accounted for in

the integration by parts by assuming φ → 0 is a suitable manner. The proof

of uniqueness then focuses on showing that this left-hand side cannot be strictly

positive leading to φ = 0 and, thus, W = W̃ everywhere. Adopting this approach,

it is trivial to show that two distinct solutions W 6= W̃ cannot have the same free

boundary, F ∗(C) = F̃ (C), as in that case φ and its first derivatives are zero on

the free boundary, and, hence, the right-hand side of (G.2) is also zero. Indeed,

for the case where say F̃ (C) 6 F ∗(C) everywhere and for a solution domain

of finite extent, a reasonable argument for uniqueness can also be constructed.

However, proving uniqueness via this approach for arbitrary F ∗(C) 6= F̃ (C) over a

solution domain of infinite extent is more difficult, and an adequate proof remains

currently under investigation.
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Appendix H

Characteristics of the Roots of

Equation (3.24)

For simplicity, we rewrite exponents a, b, and c in Equations (3.25-3.27) as follows:

a = (
1

2
σ2

F +
1

2
σ2

C − ρσFσC)K1 + (σ2
C − ρσFσC)K2 +

1

2
σ2

CK3

b = a+ (αF − αC)K1 + (−1

2
σ2

F + αF − 2αC)K2 − αCK3

c = (µ− αF )K1 − (αF − 1

2
σ2

F − 2µ)K2 + µK3

where

K1 = ((ǫF − ǫ
(j)
F )QF )2 > 0

K2 = −(µ− αF )(ǫF − ǫ
(j)
F )QI(j)F > 0
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K3 = (µ− αF )2(I(j))2 > 0

Next, it can be shown that c > a− b:

c− a+ b = (αF − αC)K1 + (−1
2
σ2

F + αF − 2αC)K2 − αCK3

+(µ− αF )K1 − (αF − 1
2
σ2

F − 2µ)K2 + µK3

= (µ− αC)(K1 + 2K2 +K3) > 0

(H.1)

We may now finalise the proof as follows:

c > a− b ⇒ b2 + 4ac > 4a2 − 4ab+ b2 = (2a− b)2 (H.2)

Thus,

−
√
b2 + 4ac < (2a− b) <

√
b2 + 4ac ⇒ (H.3)

b−
√
b2 + 4ac < 2a < b+

√
b2 + 4ac (H.4)

Therefore, η
(j)
1 > 1 and η

(j)
2 < 1. On the other hand, η

(j)
2 is not only less than 1,

but also less than 0 because b <
√
b2 + 4ac.
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Appendix I

Parameters of Equation (3.17)

Table I.1 provides the calculated parameters of Equation 3.17, {η(pccs), β(pccs),

C∗(pccs)(F ), A(pccs)}, for some values of F .
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F η(pccs) β(pccs) C∗(pccs)(F ) A(pccs) F η(pccs) β(pccs) C∗(pccs)(F ) A(pccs)

1 1.2919 -0.0091 48.15 7.4100E+10 26 1.3214 -0.1463 79.52 4.2098E+10
1.5 1.2929 -0.0135 48.77 7.2170E+10 26.5 1.3218 -0.1479 80.15 4.1879E+10
2 1.2938 -0.0177 49.40 7.0435E+10 27 1.3221 -0.1496 80.78 4.1665E+10
2.5 1.2947 -0.0219 50.02 6.8853E+10 27.5 1.3224 -0.1512 81.41 4.1456E+10
3 1.2956 -0.0260 50.65 6.7397E+10 28 1.3228 -0.1528 82.04 4.1253E+10
3.5 1.2964 -0.0300 51.27 6.6048E+10 28.5 1.3231 -0.1544 82.67 4.1055E+10
4 1.2973 -0.0338 51.90 6.4790E+10 29 1.3235 -0.1560 83.29 4.0861E+10
4.5 1.2981 -0.0376 52.53 6.3614E+10 29.5 1.3238 -0.1575 83.92 4.0673E+10
5 1.2989 -0.0414 53.15 6.2510E+10 30 1.3241 -0.1590 84.55 4.0488E+10
5.5 1.2997 -0.0450 53.78 6.1470E+10 30.5 1.3244 -0.1605 85.18 4.0309E+10
6 1.3005 -0.0486 54.41 6.0489E+10 31 1.3247 -0.1620 85.81 4.0133E+10
6.5 1.3012 -0.0520 55.03 5.9561E+10 31.5 1.3250 -0.1635 86.44 3.9961E+10
7 1.3020 -0.0554 55.66 5.8681E+10 32 1.3253 -0.1649 87.07 3.9794E+10
7.5 1.3027 -0.0588 56.29 5.7846E+10 32.5 1.3256 -0.1663 87.70 3.9630E+10
8 1.3034 -0.0620 56.91 5.7052E+10 33 1.3259 -0.1677 88.33 3.9470E+10
8.5 1.3041 -0.0652 57.54 5.6296E+10 33.5 1.3262 -0.1691 88.96 3.9313E+10
9 1.3048 -0.0683 58.17 5.5574E+10 34 1.3265 -0.1704 89.59 3.9160E+10
9.5 1.3054 -0.0714 58.79 5.4885E+10 34.5 1.3268 -0.1718 90.21 3.9010E+10
10 1.3061 -0.0744 59.42 5.4227E+10 35 1.3271 -0.1731 90.84 3.8864E+10
10.5 1.3067 -0.0774 60.05 5.3596E+10 35.5 1.3273 -0.1744 91.47 3.8720E+10
11 1.3073 -0.0802 60.68 5.2992E+10 36 1.3276 -0.1757 92.10 3.8580E+10
11.5 1.3079 -0.0831 61.30 5.2413E+10 36.5 1.3279 -0.1769 92.73 3.8442E+10
12 1.3085 -0.0858 61.93 5.1858E+10 37 1.3281 -0.1782 93.36 3.8308E+10
12.5 1.3091 -0.0886 62.56 5.1324E+10 37.5 1.3284 -0.1794 93.99 3.8176E+10
13 1.3097 -0.0912 63.19 5.0810E+10 38 1.3286 -0.1806 94.62 3.8047E+10
13.5 1.3102 -0.0938 63.81 5.0316E+10 38.5 1.3289 -0.1818 95.25 3.7920E+10
14 1.3108 -0.0964 64.44 4.9841E+10 39 1.3291 -0.1830 95.88 3.7797E+10
14.5 1.3113 -0.0989 65.07 4.9382E+10 39.5 1.3294 -0.1842 96.51 3.7675E+10
15 1.3119 -0.1014 65.70 4.8940E+10 40 1.3296 -0.1854 97.14 3.7556E+10
15.5 1.3124 -0.1038 66.33 4.8514E+10 40.5 1.3299 -0.1865 97.77 3.7439E+10
16 1.3129 -0.1062 66.95 4.8102E+10 41 1.3301 -0.1876 98.39 3.7325E+10
16.5 1.3134 -0.1086 67.58 4.7705E+10 41.5 1.3303 -0.1887 99.02 3.7213E+10
17 1.3139 -0.1109 68.21 4.7320E+10 42 1.3306 -0.1898 99.65 3.7103E+10
17.5 1.3144 -0.1131 68.84 4.6949E+10 42.5 1.3308 -0.1909 100.28 3.6995E+10
18 1.3148 -0.1153 69.47 4.6589E+10 43 1.3310 -0.1920 100.91 3.6889E+10
18.5 1.3153 -0.1175 70.09 4.6241E+10 43.5 1.3312 -0.1931 101.54 3.6785E+10
19 1.3158 -0.1197 70.72 4.5904E+10 44 1.3315 -0.1941 102.17 3.6683E+10
19.5 1.3162 -0.1218 71.35 4.5577E+10 44.5 1.3317 -0.1952 102.80 3.6582E+10
20 1.3166 -0.1239 71.98 4.5260E+10 45 1.3319 -0.1962 103.43 3.6484E+10
20.5 1.3171 -0.1259 72.61 4.4953E+10 45.5 1.3321 -0.1972 104.06 3.6387E+10
21 1.3175 -0.1279 73.24 4.4654E+10 46 1.3323 -0.1982 104.69 3.6293E+10
21.5 1.3179 -0.1299 73.86 4.4365E+10 46.5 1.3325 -0.1992 105.32 3.6199E+10
22 1.3183 -0.1318 74.49 4.4084E+10 47 1.3327 -0.2002 105.95 3.6108E+10
22.5 1.3187 -0.1337 75.12 4.3811E+10 47.5 1.3329 -0.2011 106.58 3.6018E+10
23 1.3191 -0.1356 75.75 4.3545E+10 48 1.3331 -0.2021 107.21 3.5930E+10
23.5 1.3195 -0.1374 76.38 4.3287E+10 48.5 1.3333 -0.2030 107.84 3.5843E+10
24 1.3199 -0.1393 77.01 4.3036E+10 49 1.3335 -0.2039 108.47 3.5758E+10
24.5 1.3203 -0.1411 77.64 4.2792E+10 49.5 1.3337 -0.2049 109.10 3.5674E+10
25 1.3207 -0.1428 78.26 4.2555E+10 50 1.3339 -0.2058 109.73 3.5591E+10
25.5 1.3210 -0.1446 78.89 4.2323E+10

Table I.1: Parameters of Equation (3.17) for some PCCS
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Appendix J

The Second-Order Sufficiency

Condition for the Optimal

Threshold, P ∗

Proposition. Let ψ(P ) =
(

P0

P

)β {aP − bC − I}. Then, the second derivative of

ψ(P ) at its critical point, P = P ∗ (Equation (4.8)), is negative, i.e., ψ′′(P ∗) < 0.

Proof. The first and the second derivatives of ψ(P ) are calculated, respectively,

as follows:

ψ′(P ) =

(
P0

P

)β (
β(bC + I)

P
− (β − 1)a

)
(J.1)

⇒ ψ′′(P ) =
−β
P

(
P0

P

)β (
β(bC + I)

P
− (β − 1)a

)
+

(
P0

P

)β (−β(bC + I)

P 2

)

=
−β
P 2

(
P0

P

)β

[(β + 1)(bC + I) − (β − 1)aP ] (J.2)
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After plugging P ∗ =
(

β
β−1

)
(I+bC)

a
into the second derivative, we have:

ψ′′(P ∗) =
−β
P ∗2

(
P0

P ∗

)β

[(β + 1)(bC + I) − (β − 1)aP ∗]

=
−β
P ∗2

(
P0

P ∗

)β [
(β + 1)(bC + I) − (β − 1)a

(
β

β − 1

)
(I + bC)

a

]

=
−β
P ∗2

(
P0

P ∗

)β

(bC + I) < 0 (J.3)

Since β and b are positive, ψ′′(P ∗) is negative.
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Appendix K

Sensitivity of a Single-Exercise IL

Contract Valuation to Volatility,

σ

Here, we show, analytically, that the optimal threshold and the optimal value of

a single-exercise IL contract are increasing functions of volatility, σ.

K.0.1 Optimal Threshold

Proposition. The optimal threshold of a single-exercise IL contract is an increas-

ing function of the volatility.

Proof. We first calculate the derivative of the optimal threshold, Equation (4.8),

with respect to σ, as follows:

∂P ∗

∂σ
=
β′(β − 1) − β′β

(β − 1)2

I + bC

a
=

−β′

(β − 1)2

I + bC

a
(K.1)
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where β′ = ∂β
∂σ

. Since β is the positive root of the characteristic quadratic equation

1
2
σ2β(β − 1) + αβ − ρ = 0, then, by taking the derivatives of the both sides of

this equation with respect to σ, we have:

σβ(β − 1) +
1

2
σ2β′(β − 1) +

1

2
σ2ββ′ + αβ′ = 0

⇒ β′ =
−σβ(β − 1)

1
2
σ2(β − 1) + 1

2
σ2β + α

< 0 (K.2)

Since β is greater than one, β′ is negative for any σ > 0. On the other hand, ∂P ∗

∂σ
,

Equation (K.1), is always positive, which proves that the optimal threshold is an

increasing function of σ.

K.0.2 Optimal Value

Proposition. The optimal value of the contract at the current electricity price,

F (P0), when P0 < P ∗, is an increasing function of the volatility, σ.

Proof. We define function W as follows:

W = ln (F (P0))

= ln

((
P0

P ∗

)β

{V (P ∗) − I}
)

= β ln

(
P0

P ∗

)
+ ln (aP ∗ − bC − I)(K.3)

We now let W ′ = ∂W
∂σ

and F ′ = ∂F
∂σ

:

W ′ =
F ′

F
= β′ ln

(
P0

P ∗

)
+ β

(
−

∂P ∗

∂σ

P ∗

)
+

a∂P ∗

∂σ

aP ∗ − bC − I

= β′ ln

(
P0

P ∗

)
+ β

(
−

−β′

(β−1)2

β
β−1

)
+

a −β′

(β−1)2
I+bC

a

a β
β−1

(
bC+I

a

)
− (bC + I)
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= β′ ln

(
P0

P ∗

)
+

β′

β − 1
+

−β′(I + bC)/(β − 1)2

(bC + I)/( β
β−1

− 1)

= β′ ln

(
P0

P ∗

)
(K.4)

⇒ F ′ = β′ ln

(
P0

P ∗

)
F > 0 (K.5)

Since β′ < 0, ln
(

P0

P ∗

)
< 0, and F > 0, F ′ is positive for any σ > 0, i.e., the

optimal value of the contract given the current price of electricity is less than the

optimal threshold is an increasing function of the volatility.
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Appendix L

The (N − 1)st Optimal Value

After inserting Equation (4.20) into the optimisation problem in Equation (4.16),

we have:

F
(N)
N−1(PτN−2+TN−2+h) = max

P
∗(N)
τN−1

>PτN−2+TN−2+h

(
PτN−2+TN−2+h

P
∗(N)
τN−1

)β {
aN−1P

∗(N)
τN−1

−bN−1C − IN−1 + e−ρ(TN−1+h)
[(
aNP

∗(N)
τN−1

eα(TN−1+h) − bNC − IN

)

×Φ
(
R(Tn−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)

+

(
P

∗(N)
τN−1

P
∗(N)
τN

)β (
aNP

∗(N)
τN

− bNC − IN
)

×eγ(TN−1+h)
(
1 − Φ

(
R
(
TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1

)))]}
(L.1)

Taking the first-order necessary condition yields:

β

P
∗(N)
τN−1

{
aN−1P

∗(N)
τN−1

− bN−1C − IN−1 + e−ρ(TN−1+h)

×
[
Φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)(

aNP
∗(N)
τN−1

eα(TN−1+h) − bNC − IN

)
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+
(
1 − Φ

(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
))(P ∗(N)

τN−1

P
∗(N)
τN

)β

×
[
aNP

∗(N)
τN

− bNC − IN
]
eγ(TN−1+h)

]}

=
{
aN−1 + e−ρ(TN−1+h)

[
Φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)
aNe

α(TN−1+h)

+
φ
(
R(TN−1 + h, P

∗(N)
τN , P

∗(N)
τN−1)

)

P
∗(N)
τN−1σ

√
TN−1 + h

[
aNP

∗(N)
τN−1

eα(TN−1+h) − bNC − IN

]
+ eγ(TN−1+h)

×
(
aNP

∗(N)
τN

− bNC − IN
)


(
P

∗(N)
τN−1

P
∗(N)
τN

)β −φ
(
R(TN−1 + h, P

∗(N)
τN , P

∗(N)
τN−1)

)

P
∗(N)
τN−1σ

√
TN−1 + h

+
(
1 − Φ

(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)) β

P
∗(N)
τN

(
P

∗(N)
τN−1

P
∗(N)
τN

)β−1






 (L.2)

It should be noted that φ(x) ≡ Φ′(x). Finally, simplifying Equation (L.2), we

obtain the following:

P ∗(N)
τN−1

(β − 1)
(
aN−1 + e−ρ(TN−1+h)aNe

α(TN−1+h)Φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
))

−
[
aNP

∗(N)
τN−1

eα(TN−1+h) − bNC − IN

]
φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)

× e−ρ(TN−1+h)

σ
√
TN−1 + h

+

(
P

∗(N)
τN−1

P
∗(N)
τN

)β [
aNP

∗(N)
τN

− bNC − IN
] e−(ρ−γ)(TN−1+h)

σ
√
TN−1 + h

×φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)

= β
[
IN−1 + bN−1C + e−ρ(TN−1+h)(IN + bNC)Φ

(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)]

(L.3)

Re-writing Equation (L.3), we have:

P ∗(N)
τN−1

(β − 1)
[
aN−1 + aNe

−(ρ−α)(TN−1+h)
(
Φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)
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−
φ
(
R(TN−1 + h, P

∗(N)
τN , P

∗(N)
τN−1)

)

(β − 1)σ
√
TN−1 + h


1 −

(
P

∗(N)
τN−1

P
∗(N)
τN

)β−1

eγ(TN−1+h)








= β
[
IN−1 + bN−1C + (IN + bNC)e−ρ(TN−1+h)

(
Φ
(
R(TN−1 + h, P ∗(N)

τN
, P ∗(N)

τN−1
)
)

−
φ
(
R(TN−1 + h, P

∗(N)
τN , P

∗(N)
τN−1)

)

βσ
√
TN−1 + h


1 −

(
P

∗(N)
τN−1

P
∗(N)
τN

)β

eγ(TN−1+h)






 (L.4)
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Appendix M

Conditional Expectation of the

(n + 1)st Interruption’s Option

Given Information at Time τn

The (n+ 1)st interruption’s option value, depending on the electricity spot price

at time τn + Tn + h, can take the form:

F
(N)
n+1(Pτn+Tn+h) =



an+1Pτn+Tn+h − bn+1C − In+1 + e−ρ(Tn+1+h)

×E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn+Tn+h

]
if Pτn+Tn+h ≥ P

∗(N)
τn+1

(
Pτn+Tn+h

P
∗(N)
τn+1

)β (
an+1P

∗(N)
τn+1 − bn+1C − In+1 + e−ρ(Tn+1+h)

×E

[
F

(N)
n+2(Pτn+1+Tn+1+h)|Pτn+1 = P

∗(N)
τn+1

])
otherwise

(M.1)

153



Therefore, the conditional expectation given information at time τn can be cal-

culated as follows:

E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

= P ∗(N)
τn

]
= (an+1e

α(Tn+h)P ∗(N)
τn

− bn+1C − In+1

+e−ρ(Tn+1+h)
E

[
E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn+Tn+h

]
|Pτn

= P ∗(N)
τn

]
)

×P
(
Pτn+Tn+h ≥ P ∗(N)

τn+1
|Pτn

= P ∗(N)
τn

)
+ (an+1P

∗(N)
τn+1

− bn+1C − In+1

+e−ρ(Tn+1+h)
E

[
E

[
F

(N)
n+2(Pτn+1+Tn+1+h)|Pτn+1 = P ∗(N)

τn+1

]
|Pτn

= P ∗(N)
τn

]
)

×eγ(Tn+h)

(
P

∗(N)
τn

P
∗(N)
τn+1

)β (
1 − P

(
Pτn+Tn+h ≥ P ∗(N)

τn+1
|Pτn

= P ∗(N)
τn

))
(M.2)

We have:

E

[
E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn+Tn+h

]
|Pτn

= P ∗(N)
τn

]

= E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn

= P ∗(N)
τn

]
(M.3)

Moreover, since E

[
F

(N)
n+2(Pτn+1+Tn+1+h)|Pτn+1 = P

∗(N)
τn+1

]
is independent of Pτn

, Equa-

tion (M.2) can, therefore, be re-written as follows:

E

[
F

(N)
n+1(Pτn+Tn+h)|Pτn

= P ∗(N)
τn

]
=
(
an+1e

α(Tn+h)P ∗(N)
τn

− bn+1C − In+1

+e−ρ(Tn+1+h)
E

[
F

(N)
n+2(Pτn+Tn+h+Tn+1+h)|Pτn

= P ∗(N)
τn

])

×Φ
(
R(Tn + h, P ∗(N)

τn
, P ∗(N)

τn+1
)
)

+
(
an+1P

∗(N)
τn+1

− bn+1C − In+1 + e−ρ(Tn+1+h)

× E

[
F

(N)
n+2(Pτn+1+Tn+1+h)|Pτn+1 = P ∗(N)

τn+1

])
eγ(Tn+h)

(
P

∗(N)
τn

P
∗(N)
τn+1

)β

×
(
1 − Φ

(
R(Tn + h, P ∗(N)

τn
, P ∗(N)

τn+1
)
))

(M.4)
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Appendix N

Approximate and Exact Value

Functions

Proposition. F
(N)
1 (P0) ≥ J

(N)
1 (P0) for any P0 < P

∗(N)

τ ′

1
.

Proof. Jensen’s inequality in the context of probability theory states that if

X is a random variable and g is a convex function, then E[g(X)] ≥ g(E[X]). By

letting g(.) = F
(N)
N (.) together with the information that for the last interruption

F
(N)
N (.) = J

(N)
N (.), we have:

E
P

∗(N)

τ ′
N−1

[
F

(N)
N (Pτ ′

N−1+TN−1+h)
]

≥ F
(N)
N

(
E

P
∗(N)

τ ′
N−1

[Pτ ′

N−1+TN−1+h]

)

≡ J
(N)
N

(
E

P
∗(N)

τ ′
N−1

[Pτ ′

N−1+TN−1+h]

)
(N.1)
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Since F
(N)
N−1(P0) is maximised at P

∗(N)
τN−1 (under the assumption P0 < P

∗(N)
τN−1), for

any P0 < P
∗(N)

τ ′

N−1
, we have:

F
(N)
N−1(P0) =

(
P0

P
∗(N)
τN−1

)β (
aN−1P

∗(N)
τN−1

− bN−1C − IN−1

+e−ρ(TN−1+h)
E

P
∗(N)
τN−1

[
F

(N)
N (PτN−1+TN−1+h)

])

≥


 P0

P
∗(N)

τ ′

N−1




β (
aN−1P

∗(N)

τ ′

N−1
− bN−1C − IN−1

+e−ρ(TN−1+h)
E

P
∗(N)

τ ′
N−1

[
F

(N)
N (Pτ ′

N−1+TN−1+h)
])

≥


 P0

P
∗(N)

τ ′

N−1




β (
aN−1P

∗(N)

τ ′

N−1
− bN−1C − IN−1

+e−ρ(TN−1+h)J
(N)
N (E

P
∗(N)

τ ′
N−1

[
Pτ ′

N−1+TN−1+h

]
)

)

= J
(N)
N−1(P0) (N.2)

The next-to-last inequality results from Jensen’s inequality, Equation (N.1). Un-

der the assumption F
(N)
N−1(P0) ≥ J

(N)
N−1(P0) for any P0 < P

∗(N)

τ ′

N−1
, we can then prove

that F
(N)
N−2(P0) ≥ J

(N)
N−2(P0) for any P0 < P

∗(N)

τ ′

N−2
. Working backwards to the first

interruption, it is proved that the optimal value of an N -exercise IL contract is

greater than its approximation, i.e., F
(N)
1 (P0) ≥ J

(N)
1 (P0) for any P0 < P

∗(N)

τ ′

1
.
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Appendix O

Approximate Price Thresholds

We solve the problem when N = 3. Since the last optimal price threshold can be

calculated from Equation (4.14), we have:

P ∗(3)
τ3

=
β

β − 1

b3C + I3
a3

(O.1)

Working backwards to the second interruption, which is available at time τ ′1 +

T1 + h, if P
∗(3)
τ ′

2
≥ Pτ ′

1+T1+h, then the LSE’s problem, Equation (4.26), can be

re-written as follows:

J
(3)
2 (Pτ ′

1+T1+h) = max
P

∗(3)

τ ′2
≥Pτ ′1+T1+h


Pτ ′

1+T1+h

P
∗(3)
τ ′

2




β {
a2P

∗(3)
τ ′

2
− b2C − I2

+e−ρ(T2+h)J
(3)
3

(
E

[
Pτ ′

2+T2+h|Pτ ′

2
= P

∗(3)
τ ′

2

])}

= max
P

∗(3)

τ ′2
≥Pτ ′1+T1+h


Pτ ′

1+T1+h

P
∗(3)
τ ′

2




β {
a2P

∗(3)
τ ′

2
− b2C − I2

+e−ρ(T2+h)J
(3)
3

(
eα(T2+h)P

∗(3)
τ ′

2

)}
(O.2)
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We now let M2 = eα(T2+h)P
∗(3)
τ ′

2
. Taking the first-order necessary condition and

simplifying the result yields:

P
∗(3)
τ ′

2
(β − 1)


a2 −

e−ρ(T2+h)

β − 1

∂J
(3)
3 (M2)

∂Pτ ′

2

∣∣∣∣∣
Pτ ′2

=P
∗(3)

τ ′2




= β(b2C + I2 − e−ρ(T2+h)J
(3)
3 (M2)) (O.3)

Here,

J
(3)
3 (M2) =





a3M2 − b3C − I3 if M2 ≥ Pτ3 ≡ P
∗(3)
τ3(

M2

P
∗(3)
τ3

)β [
V

(3)
3

(
P

∗(3)
τ3

)
− I3

]
otherwise

(O.4)

Therefore, Equation (O.3) can be solved for P
∗(3)
τ ′

2
using the two conditions in

Equation (O.4):

- If M2 < P
∗(3)
τ3 :

P
∗(3)
τ ′

2
(β − 1)


a2 −

e−ρ(T2+h)

β − 1
eαβ(T2+h) β

P
∗(3)
τ ′

2


P

∗(3)
τ ′

2

P
∗(3)
τ3




β

[
a3P

∗(3)
τ3

− b3C3 − I3
]



= β(b2C + I2 − e−(ρ−αβ)(T2+h)


P

∗(3)
τ ′

2

P
∗(3)
τ3




β

[
a3P

∗(3)
τ3

− b3C3 − I3
]
)

⇒ P
∗(3)
τ ′

2
(β − 1)a2 − e−(ρ−αβ)(T2+h)β


P

∗(3)
τ ′

2

P
∗(3)
τ3




β

[
a3P

∗(3)
τ3

− b3C3 − I3
]

= β(b2C + I2) − βe−(ρ−αβ)(T2+h)


P

∗(3)
τ ′

2

P
∗(3)
τ3




β

[
a3P

∗(3)
τ3

− b3C3 − I3
]

⇒ P ∗(3)
τ2

=
β

β − 1

b2C + I2
a2

(O.5)
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- If M2 ≥ P
∗(3)
τ3 :

P
∗(3)
τ ′

2
(β − 1)

(
a2 −

e−ρ(T2+h)

β − 1
a3e

α(T2+h)

)

= β
(
b2C + I2 − e−ρ(T2+h) (a3M2 − b3C − I3)

)

⇒ P
∗(3)
τ ′

2

[
(β − 1)a2 − e−(ρ−α)(T2+h)a3 + βe−(ρ−α)(T2+h)a3

]

= β
(
b2C + I2 + e−ρ(T2+h) (b3C + I3)

)

⇒ P
∗(3)
τ ′

2
=

β

β − 1

(b2C + I2) + e−ρ(T2+h)(b3C + I3)

a2 + e−(ρ−α)(T2+h)a3

(O.6)

Finally, for the first interruption, which is available at time 0, if it is still

optimal to wait, i.e., P
∗(3)
τ ′

1
≥ P0, then the following equation must be solved for

P
∗(3)
τ ′

1
:

P
∗(3)
τ ′

1
(β − 1)


a1 −

e−ρ(T1+h)

β − 1

∂J
(3)
2 (M1)

∂Pτ ′

1

∣∣∣∣∣
Pτ ′1

=P
∗(3)

τ ′1




= β(b1C + I1 − e−ρ(T1+h)J
(3)
2 (M1)) (O.7)

where M1 = eα(T1+h)P
∗(3)
τ ′

1
.

- If M1 < P
∗(3)
τ ′

2
(it is optimal to wait at time τ ′1 + T1 + h):

J
(3)
2 (M1) =

(
M1

P
∗(3)
τ2

)β [
V

(3)
2

(
P ∗(3)

τ2

)
− I2

+e−ρ(T2+h)J
(3)
3

(
E

P
∗(3)

τ ′2

(Pτ2+T2+h)

)]
(O.8)
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Substituting Equation (O.8) into Equation (O.7), we have:

P
∗(3)
τ ′

1
(β − 1)


a1 −

e−(ρ−αβ)(T1+h)

β − 1

β

P
(3)

τ ′

1


P

∗(3)
τ ′

1

P
∗(3)
τ2




β [
V

(3)
2

(
P ∗(3)

τ2

)
− I2

+e−ρ(T2+h)J
(3)
3

(
E

P
∗(3)

τ ′2

(Pτ2+T2+h)

)])

= β(b1C + I1 − e−(ρ−αβ)(T1+h)


P

∗(3)
τ ′

1

P
∗(3)
τ2




β [
V

(3)
2

(
P ∗(3)

τ2

)
− I2

+e−ρ(T2+h)J
(3)
3

(
E

P
∗(3)

τ ′2

(Pτ2+T2+h)

)]
)

⇒ P
∗(3)
τ ′

1
=

β

β − 1

b1C + I1
a1

(O.9)

- If M1 ≥ P
∗(3)
τ ′

2
and eα(T1+T2+2h)P

∗(3)
τ ′

1
< P

∗(3)
τ ′

3
(it is optimal to invest imme-

diately at time τ ′1 + T1 + h, but to wait at time τ ′1 + T1 + h+ T2 + h):

P
∗(3)
τ ′

1
=

β

β − 1

(b1C + I1) + e−ρ(T1+h)(b2C + I2)

a1 + e−(ρ−α)(T1+h)a2

(O.10)

- If M1 ≥ P
∗(3)
τ ′

2
and eα(T1+T2+2h)P

∗(3)
τ ′

1
≥ P

∗(3)
τ ′

3
(it is optimal to invest imme-

diately both at times τ ′1 + T1 + h and τ ′1 + T1 + h+ T2 + h)

P
∗(3)
τ ′

1
=

β

β − 1

(b1C + I1) + e−ρ(T1+h)(b2C + I2) + e−ρ(T1+T2+2h)(b3C + I3)

a1 + e−(ρ−α)(T1+h)a2 + e−(ρ−α)(T1+T2+2h)a3

(O.11)
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