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Abstract 

The progress of neuroscience is limited by the instrumentation available to it for 

studying the brain. At present, there is a serious instrumentation gap between 

functional Magnetic Resonance Imaging (fMRI) of whole brains and the microscopic 

scale functional imaging possible with today’s optical microscopes and 

electrophysiology techniques, such as patch clamping of individual neurons. This 

thesis describes the development of a new extension to optical microscopy that 

enables refocusing within 25 microseconds rather than the large fraction of a second 

possible by moving the sample or objective. The system is capable of refocusing a 

laser beam that is monitoring activity in 3D samples of live brain tissue 300 times 

faster than previously possible. This will make practical a new type of optical 

functional imaging for studying small sub-networks of neurons containing up to about 

30,000 neurons at up to 30,000 sub micrometre sized monitored points of interest per 

second. The thesis describes the development of a detailed design for a new type of 

3D scanner that uses Acousto-Optic Deflectors (AODs) to diffractively deflect and 

focus an intense laser beam beneath a conventional microscope objective. The 

fluorescence of calcium sensitive dyes in live neurons is used to monitor action 

potentials conveying signals between neurons. The optical and systems engineering 

problems and design trade-offs involved are discussed in detail. The results of 

extensive computer modelling are described and innovative solutions to several key 

optical physics based engineering problems are explained. The practical problems 

found in building a prototype machine incorporating these innovations are described 

and the encouraging first operational results from the machine reported.  
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Glossary 

AFL    Absolute Frequency Limit; the first miniscan drive algorithm described 

graphically in Figure 2.24 for setting miniscan start and stop drive frequencies 

based on predefined absolute frequency limits. 

AOD    acousto-optic deflector 

AOL     acousto-optic lens 
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AOLM   acousto-optic lens microscope 

DOE      diffractive optical element 

FOV       field of view 

FWHM   full width half maximum  

neuronal processes  the dendrites or axons of a neuron 

HWP       half wave plate  

PMT    photomultiplier tube  

psf       point spread function:  the 3D distribution of optical energy (or 2-photon 

excitation) at the focus of a lens 

OFL    Optimised Frequency Limit: an algorithm of optimising the pairs of drive 

frequencies for the AODs on each axis to maximise efficiency and minimise 

efficiency variation during a miniscan 

RF        radio frequency 

ROI       region of interest  

telecentric relay    an optical system, usually a pair of lenses that relay an input image 

to an output field .It has the property of constant magnification independent of 

z position.  

voxel       the 3D equivalent of a 2D pixel , a ‘volume pixel’ 
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Chapter 1   Introduction and background 
 

The slowness of mechanical refocusing of conventional optical microscopes severely 

limits the speed at which they can form images of 3D objects. This thesis describes 

the design, development and testing of a prototype ‘Acousto-Optic Lens Microscope’ 

(AOLM) aimed at overcoming some of these longstanding limitations.  The 

motivation for developing the AOLM system was the desire to extend the use of laser 

microscopy in order to fill the ‘instrumentation gap’ in neuroscience in available 

techniques for functional imaging of the brain in three dimensions at high speed.   

 

There are approximately 1011 neurons in the brain. They communicate by sending 

electrical signals known as action potentials along the complex branching axons. 

These are short pulses about 1ms in duration and typically have an amplitude of up to 

100mV. They occur at rates from 0-1 kHz.  There is currently no instrument capable 

of both imaging and identifying individual neurons from a 3 dimensional volume of 

brain tissue and recording activity from many neurons in parallel at sufficiently high 

speed to detect the millisecond timing of individual action potentials. Partly as a result 

of this, we are far from understanding how cortical networks carry out the information 

processing that presumably allows an animal to form its ongoing impression of the 

outside world and pursue its goals in the environment. Such an instrument is therefore 

highly desirable for neuroscience to make more progress in understanding how the 

neural networks forming the brain encode and process information.  

 

In the longer term, it is highly likely that understanding the spatio-temporal coding 

and processing mechanisms of the brain will open up entirely new ways of 

understanding disorders of the brain and lead to new treatment for a wide range of 

mental disorders. 

 

This chapter discusses the biological objectives for developing the AOLM ,  describes 

the principle of operation of 2-photon microscopy, introduces acousto-optic scanning 

and the concepts that allow scanning and focusing to be extended into the third 
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dimension, outlines the target specification  for the AOLM and summarises the state 

of the art of 3D AOD deflection systems at the start of the project. 

 

 

Biological objective – Understanding how the brain process 

information in its neural networks 

The mammalian brain is by far the most complex information processing and decision 

making system in the known universe. Neuroscience has been attempting to 

understand the structure and functional mechanisms of the brain for over 100 years 

(Cajal 1911). Tremendous progress has been made, first in identifying that individual 

cells (neurons) are the key unit of processing, classifying the structure  and  form of 

many different types of neurons and more recently in understanding the remarkable 

biochemical complexity of even the smallest parts of individual neurons (Nicholls 

2001).The direction and pace of neuroscience is, to a large extent, determined by the 

instruments available for monitoring and imaging the brain at the relevant physical 

scale. Many of the key improvements in understanding have been made by using 

instrumentation with higher capabilities than previously available.  Before discussing 

improved instrumentation, consider first the instruments available today to study the 

various levels of the hierarchical structure of the brain. 
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Figure 1.1 Summary of the hierarchical view of brain structure as it is understood today 

indicating the main techniques used for their study at each level. EEG is electroencephalography, 

the use of sensitive electrodes distributed across the scalp, fMRI is functional Magnetic 

Resonance Imaging. 

 

 

Figure 1.1 summarises the hierarchical view of brain structure as it is understood 

today and indicates the main techniques used for their study. At the scale of whole 

brains, studies of loss of function from brain injury or surgery and anatomical 

dissection are used to determine structure and its relationship to function. The 

functioning of live whole brains can be best studied today using the 

electroencephalograph (EEG) and functional Magnetic Resonance Imaging (fMRI) 

instruments (Jezzard 2001). Such instrumentation, using computerised tests on 

humans have been invaluable for identifying (or confirming) the function of the 

different regions of the brain. It has, at a very high level, even provided some 

evidence as to what algorithms are being used by the brain for the decision making 

process involved (Daw and Doya 2006).  
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At the ‘network of neurons’ hierarchical level, electrophysiological techniques 

involving sensitive amplification of extracellular electric potentials and currents are 

often used. These use fine metallic electrode tips to record signals up to a few mV at 

bandwidths up to 10 kHz.  Multi-electrode arrays have been inserted into the brains of 

awake behaving animals  and have yielded important information (Huxter, Burgess et 

al. 2003). A disadvantage of such techniques is, however, that it is difficult to be sure 

which neurons are generating the signals being measured and how they are 

interconnected (Buzsaki 2004).  

 

At the ‘neuron’ hierarchical level, the most precise electrophysiological technique in 

widespread use today uses glass tipped pipette electrodes with tips of the order of 1 

μm diameter. Using optical microscopy and precision micromanipulators, these can 

be used to record electrical potentials and currents from individual neurons using a 

technique known as ‘patch clamping’ (Hamill, Marty et al. 1981). These techniques 

have progressed from being used on cultured neurons to in-vitro use on acute slices of 

live brain tissue from animals such as mice that have been killed up to a few hours 

previously (Edwards, Konnerth et al. 1989).  More recently the use of patch clamping 

has been extended to in-vivo use on live animals, under anaesthetic (Margrie, Brecht 

et al. 2002). 

Signal Processing in the neural networks of the brain 

The way in which information is represented, processed and stored in the brain is very 

far from being understood, however many generic details are known. For instance, the 

features of sensory inputs can be encoded as distinct spatiotemporal patterns of firing 

neurons in the cortex. In vivo recordings from different areas of the cortex show that 

only a small fraction of the neurons in a network are active in response to a particular 

sensory stimulus feature, implying that the ‘population code’ representing the 

stimulus is ‘sparse’(Vinje and Gallant 2000; Margrie, Brecht et al. 2002; Brecht, Roth 

et al. 2003; Olshausen and Field 2004; Kerr, de Kock et al. 2007). This temporal 

sparseness is believed, in part at least, to be because sparse population codes are the 

most energy efficient (Levy and Baxter 1996; Attwell and Laughlin 2001). 
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Temporal and spatial sparseness of action potentials and the regions of 

interest on neurons where the signal can be monitored 

From the perspective of monitoring the action potentials in the neural tissue the 

temporal sparseness of action potentials is a considerable problem, with individual 

neurons firing at rates from very small fractions of 1 Hz up to about 1 kHz, often in an 

unpredictable and very ‘bursty’ manner. In the worst case therefore, in order to 

monitor every action potential in every neuron in a volume of tissue, it is necessary 

that every neuron is monitored at least every millisecond.   

 

Naturally, as a result of the temporal sparseness, at any particular time only the order 

of 1% to 10% of neurons are firing action potentials. From the perspective of 

monitoring the action potentials in the brain, the parts of neurons that can be 

monitored are also spatially very sparse. This is particularly true if it is desired to 

monitor the action potentials at high bandwidth (>kHz sampling rates). This is 

because the action potentials themselves are confined to the 10nm thick membranes of 

the neuron cell walls. For electrical monitoring, part of the cell wall must be contacted 

by a probe or patch clamp and the part of the cell that is in practice usually easiest to 

contact is the neuron cell body. These are in the range of 5-30 μm in diameter and 

usually separated by several cell diameters. The rest of the space is filled with other 

types of non neuronal cells and tissue and a high density of the sub micron diameter 

branching tree like ‘axons’ (output fibres from the neuron bodies) and ‘dendrites’ 

(input fibres to the cell bodies).  Dendrites and axons form the complex networks that 

link the cell bodies to each other via electrochemical ‘synapses’ between them. They 

can be any length from a few μm up to many mm. Thus in general, it is necessary to 

use optical microscopy with the order of 1 μm precision micromanipulators for 

adjusting position of electrical monitoring probes for >1 kHz monitoring speed of 

individual neurons.  

 

If optical techniques are used for monitoring (see Chapter 2) then again, for high 

speed 100 Hz -1 kHz monitoring rates, the monitoring position needs to be chosen for 

each neuron with the order of 1 to 5 μm precision. For slower speeds, 10s to 100s of 
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ms, whole cell bodies can be optically monitored which may be up to 20-30 μm  

across.  

 

In conclusion, the high speed monitoring of the signals that propagate between 

neurons in live brain tissue and as such represent a key aspect of how neurons process 

information can only be monitored with instrumentation capable of high precision in 

time and 3D space. The signals themselves are temporally very sparse (typically 1ms 

long separated 1ms to 10s of seconds). The regions of interest on the neurons for 

monitoring the signals at high speed are spatially very sparse,  being sub micron up to 

a few μm in dimension separated by up to many 10s of μm. 

Functional Imaging of neurons in networks: current limitations and why this 

is an important problem to solve 

The main limitation of current cellular level electrophysiological instrumentation 

techniques is that it is very difficult indeed to patch more than a few cells at a time in 

parallel, thus it is currently very difficult to determine, in parallel, the millisecond 

timing of action potentials of more than three or four identified cells of the cortex.  

This is important because there is increasing evidence that in different parts of the 

brain not only the rate, but also that the precise timing (Huxter, Burgess et al. 2003; 

Montemurro, Rasch et al. 2008) of action potentials within bursts of action potentials 

from distributed groups of neurons, convey more information than the average burst 

rate. There is already widespread evidence that network oscillations at a wide variety 

of frequencies play a significant role in synchronizing signalling of information from 

one part of the brain to another (Buzsaki 2006 ). There are also examples where the 

evidence strongly suggests that the phase of an action potential, that is its time within 

the cycle of some larger scale network oscillation, carries significant information. 

 

Perhaps the most well known example of the importance of precise timing or phase 

within an oscillation carrying significant information is the evidence from electrodes 

in awake behaving rats. Extra cellular electrodes placed in the hippocampus show that 

certain cells, referred to as ‘place cells’, fire with a rate that reaches a maximum at 

certain unique positions within a 2D environment. Other place cells have maxima 

elsewhere in the environment forming a type of map. The phase of firing of  these 

‘place cells’ within the 10Hz theta oscillations of the hippocampus varies 
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progressively as the rat moves through the spatial position that causes the cell to fire 

fastest (Huxter, Burgess et al. 2003). The theta oscillation is an oscillation of the 

hippocampus network and is measured using an electro-encephalogram. They showed 

that the time of firing with respect to this oscillation and the firing rate are dissociable 

and can represent variables such as the animal’s location within the ‘place field’ and 

its speed of movement through the field. The firing of place cells must be a necessary 

part of the rat’s internal cognitive map of the outside world. Other detailed studies 

(Jeffery 2007) show  that the so called ‘place cells’ that the tips of the multi-electrode 

array happen to be close to, not only fire as a result of place but also apparently in 

response to other modalities of input and even ‘internal brain state’ so that the 

evidence suggests that the brain’s representation of external reality is not coded into 

the firing of individual neurons, but into spatio-temporal patterns of firing of neurons 

distributed across a region of, or perhaps indeed across the whole, brain.  

 

 

Some recent additional evidence from multi-electrode arrays, monitoring the precise 

timing of action potentials of the detached retina of a salamander whilst controlled 

sequences of images are projected onto the retina, show that the relative timing of 

action potentials from nearby ganglion cells carries significantly more information 

than can be carried by rate alone.(Gollisch and Meister 2008). There is also evidence 

from multi-unit recording in the primary visual cortex of anaesthetised macaques, that 

shows that that spike timing with respect to local field potential (LFP) conveys 50% 

more information than the spikes themselves.(Montemurro, Rasch et al. 2008)  

 

A key issue is whether there is some general principle or pattern to the ‘population 

codes’ or ‘spatio-temporal patterns of action potentials’ that communicate information 

from one part of the brain to another. Is there a generic code for the precise spatio-

temporal patterns of action potentials propagating in bundles of axons between one 

part of the brain and another? The alternative, that it is that the precise timing is 

random and it is only the overall rate of action potentials that is significant, is looking 

less likely as more accurate evidence is gathered from different parts of the brain.  
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Figure 1.2 Schematic diagram to illustrate the regions of operation of different types of 

functional imaging of the brain available or demonstrated in 2005/6.  The vertical scale is the 

number of selectable  neurons the instrument can study (green),  the number of neurons in the 

finest resolution ‘voxel’ of the instrument (blue), and the number of separate regions of interest it 

can monitor (red). The horizontal axis represents the fastest timescale that the instrument can 

work at.  The experimental performance of  3 examples of 2D optical functional imaging systems 

based on 2-photon microscopy are also plotted.1)(Kerr and Denk 2008), 2) (Salome, Kremer et al. 

2006),3) (Sabatini and Regehr 1996) (DiGregorio and Silver 2001) 

 

Unfortunately, there is at present an ‘instrumentation gap’ in equipment capable of 

measuring the millisecond timing precision of multiple neurons. The instrumentation 

gap can perhaps be best visualised using the large range logarithmic-scale schematic 

diagram illustrated in Figure 1.2. The vertical scale shows numbers representing the 

important performance parameters of the instrument i.e.; the maximum total number 

of neurons it can image, the number of neurons in a maximum spatial resolution 

‘voxel’ and the number of separate regions of interest it can monitor in parallel in its 

functional mode, a voxel is the 3D equivalent of a 2D pixel, a ‘volume pixel’. The 

horizontal axis represents the maximum speed at which the functional information can 

be gathered. At the network of neurons level, the ideal neuroscientists ‘cerebroscope’, 

( the instrument hypothesised by philosophers and psychologists for measuring brain 

state) would be able to monitor the action potentials over the whole range of scales up 

to the whole human brain (1011 neurons) firing at  0 Hz to 1 kHz as indicated by the 
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pale blue shaded region of interest.  Present day instruments fall many orders of 

magnitude short of this goal. The fMRI machine can indeed measure whole brains, 

but its finest spatial resolution of a few cubic mm corresponds to at least 106 neurons 

and its fastest time resolution is a few seconds. The maximum number of separate 

regions of interest it can monitor in parallel is thus at most 105. The horizontal red line 

on Figure 1.2 indicates that there is no advantage in slowing the response of the fMRI 

machine below a few seconds, the maximum number of regions of interest is still 

limited by the spatial resolution to 105 voxels.  For fast measurements, patch clamping 

can monitor at up to 10 kHz (or more), but to date it has only been used to record 

from single neurons in vivo. 

 

As will be described in the next section of the introduction in more detail, the 

development of 2-photon laser scanning microscopy (Denk, Strickler et al. 1990) has 

partially filled this instrumentation gap by allowing imaging of calcium in neuronal 

populations in vivo at sub-micrometer resolution deep within tissue (Zipfel, Williams 

et al. 2003; Helmchen and Denk 2005). The rapid rise (1ms – 100ms ) and slow decay 

20ms to seconds) of fluorescent dyes that monitor calcium concentration near the cell 

membrane after each action potential, can be used to monitor action potential timing 

in neurons with precisions ranging from ms to seconds depending on experimental 

conditions.  

 

The conventional 2-photon microscopes mostly used to date have provided high 

spatial but low temporal resolution maps of cortical activity, allowing receptive fields 

to be mapped with cellular resolution (Ohki, Chung et al. 2005; Kerr, de Kock et al. 

2007; Sato, Gray et al. 2007). Although current methods can detect a single action 

potential evoked calcium transient (Kerr, Greenberg et al. 2005; Yaksi and Friedrich 

2006), and can therefore reliably identify cells that respond to a particular sensory 

stimulus, they currently do not have the temporal resolution to determine how such 

sensory information flows through networks or is encoded in the spike times of 

neuronal assemblies. These microscopes use galvanometer mirrors for XY scanning.  

The momentum and limited frequency response of the mechanical movement of the 

mirrors is not well suited to collecting signals from the spatially sparse regions of 

interest on particular neurons in the tissue, so there is a practical limit on the number 

of neurons that can be imaged. The point by point serial nature of 2-photon imaging 
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leads to the number of neurons that can be imaged that is approximately inversely 

related to the speed at which each neuron is monitored. The experimental limits in 

2005/6 for such 2-photon 2D scanning 2-photon microscopes are shown by the 

numbered data points on Figure 1.2. Typically galvanometer scanning microscopes 

can monitor up to 30 neurons in a frame at 10Hz (Kerr and Denk 2008). The number 

of neurons is primarily limited because the 2D scanning only sections a single plane 

of neurons. For 300 μm square scan area, this is unlikely to contain more than 30-50 

active neurons that can be monitored in the L2/3 cortex often studied (Ohki, Chung et 

al. 2005). Furthermore, because of the repetitive raster scanning, and the sparsity of 

the points of interest in the 2D plane, a large fraction of time is spent mapping regions 

where nothing of interest is happening. The frame rate is limited to about 10Hz. 

(Imaging time 100ms). Faster monitoring can obtained by reducing the scan area of a 

galvanometer scanning system, until at 1kHz rates it is only possible to scan along 

one line, maybe straight or a 2D Lissajous figure, typically only 1-3 neurons (Sabatini 

and Regehr 1996; DiGregorio and Silver 2001). 

 

Also indicated on the schematic diagram is a point (2) showing the approximate 

performance of 2D 2-photon microscopes that use acousto-optic deflector (AOD) 

based deflection systems (Iyer, Losavio et al. 2003; Iyer, Hoogland et al. 2006; 

Salome, Kremer et al. 2006). As described in more detail in the next section, these 

deflect the laser beam using diffraction from an acoustic travelling wave. AOD 

deflectors enable the focused laser point to jump discontinuously from one region of 

interest to another in a particular 2D plane and gather light from the most active parts 

of particular neurons at a much higher duty cycle than is possible with the continuous 

movement of the galvanometer based scanning. These experimental results were for 

sampling points on one neuron with 5 regions of interest and 5 separate neurons 

respectively. There are, however, considerable practical difficulties in using AODs to 

their best advantage which will be discussed in more detail in chapter 3. 

 
 

In summary therefore, at the start of the PhD, three properties of neural networks 

posed a considerable, and unsolved, technical challenge: (1) neurons are spatially 

distributed in 3D space, (2) signalling events are brief (action potentials ~ 1ms) and 

flow through networks rapidly and (3) only a small fraction of neurons (typically ~1-
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10%) are usually active at once. As indicated in Figure 1.2, in 2005 there were no 

demonstrated techniques capable of imaging, identifying and monitoring the 

functionality of 3D networks of neurons in the large region of spatial and temporal 

resolution between fMRI and patch clamping of individual neurons. The objective of 

this PhD was thus to develop an instrument with this capability. 

 

2-photon Microscopy – principles, and limits to speed and 

duty cycle. 

Basic principles  

Figure 1.3 illustrates the basic principle of 2-photon fluorescence microscope. (Denk, 

Piston et al. 1995; Zipfel, Williams et al. 2003; Helmchen and Denk 2005).  Unlike 

conventional fluorescence, where the energy of the single excitatory photon must be 

greater than the energy of the emission photon, two photon fluorophores can absorb 2 

photons at a time of half the energy normally required in order to excite an internal 

state of higher energy than the emission wavelength. The excited state then decays 

both non-radiatively and radiatively, giving off a photon of fluorescence at the 

fluorophore emission wavelength Figure 1.3 a). Thus the emission wavelength, 

typically in the red or green depending on the type of fluorophore molecule, is shorter 

wavelength than the excitation wavelength. The primary advantage of using this type 

of fluorescence for microscopy of brain tissue is that this allows the excitation 

wavelength to be in the near infrared, typically 700-1000nm wavelength. At these 

wavelengths absorption, damage and optical scattering are many times less than if the 

excitation is in the blue or ultra violet range Figure 1.3 b). This enables 2-photon 

microscopy to be used for imaging up to 1mm deep in brain tissue, about an order of 

magnitude greater than with blue excitation.  
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a b c

 

d

 
Figure 1.3 Diagrams from  Zipfel (Zipfel, Williams et al. 2003) to illustrate the principles of 

operation, a-c) and system layout d) of the 2-photon microscope.  a) Two photon excitation of a 

fluorophore occurs when the incoming long wavelength light intensity is so high that it absorbs 

two photons to excite an energy level in the molecule that normally would require a single photon 

of half the wavelength. The fluorescence emission is then at a shorter wavelength than the 

excitation wavelength. b) The near infra red excitation laser light is focused down through the 

tissue to form high intensity at the focus despite some scattering shown. c) The green emitted 

fluorescence is collected and projected onto sensitive detectors by the objective (and maybe 

condenser lens). d) As the focused spot is scanned in a raster pattern by the computer controlled 

galvanometer mirrors, the faint detected signal is amplified by photomultiplier tubes (PMTs) and 

plotted at the correct position on a computer screen to form the image.  
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Two photon excitation requires two photons to arrive at the same time at the 

fluorescent molecule. This only occurs with any significant probability under 

extremely intense illumination. The Titanium-Sapphire laser is the widely preferred 

source for such systems. This laser can emit 1-3 W average power in the wavelength 

range 700-1000 nm. By using mode locking of the laser cavity, all the output energy 

is concentrated into a stream of ultra short pulses of light in the range 70-140 fs long, 

at a rate of around 80 MHz (1femto-second = 10-15 s = one millionth of a 

nanosecond). This time compression concentrates the light intensity by a factor of 

about 105 thus increasing the probability of 2 photons arriving together at the 

fluorophore by 1010. At the speed of light, these Ti-sapphire laser output pulses are 

only about 30 μm (or 35 wavelengths) long. Such short pulses therefore also have a 

relatively broad spectral width because of Heisenberg’s uncertainty principle. The 

typical spectral width for 800 nm Gaussian laser pulses of 100 fs FWHM (full width 

half maximum) is 10.6 nm. As will be discussed in chapter 3,  this broad spectral 

width has significant consequences for the use of diffractive optical devices such as 

acousto-optic deflectors. In the 2-photon microscope, the intensity of the laser light is 

further enhanced by the spatial convergence as it approaches the focus of the 

objective in the specimen (Figure 1.3c). Photons can arrive at the focus at over 1024 

photons/s. This is a high enough rate to elicit sufficient 2-photon fluorescence, that 

sensitive photo detectors can monitor the signal and reconstruct the 3D image of 

fluorophore emission (Figure 1.3 d).  

 

A typical 2-photon microscope layout is shown in Figure 1.3d). Galvanometer mirrors 

scan the beam, usually in a raster pattern. The sensitive photomultiplier tubes (PMTs) 

pick up a light signal that is proportional to the photon detection rate of the 

fluorescence (shown as green). A master computer that controls the drive signals to 

the galvanometer mirrors, and therefore knows microsecond by microsecond where 

the focal spot is focused is therefore able to reconstruct the 2D image of the object 

being scanned beneath the objective. For imaging in 3D after each 2D frame in the 

XY plane, either the objective or the specimen is moved along the Z axis and a new 

XY plane scanned. An important aspect of 2-photon microscopy is the fact that as 

emission is proportional to light intensity squared, the 2-photon emission is only 
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emitted for a very small region around the focal point in all three XYZ directions. 

Because emission rate falls off as the square of intensity, very little 2-photon light is 

emitted from the unwanted region of the incoming laser beam above the focus. This 

‘self sectioning’ ability of 2-photon systems means that the extra complexity and light 

loss of confocal light detection systems (Wilson and Carlini 1984; White, Amos et al. 

1987; Wilson and Carlini 1987; Wilson 1990; Amos and White 2003) is not 

necessarily needed for 2-photon system, except if the very highest spatial resolution is 

a dominant requirement.  

 

At the focus of the Ti sapphire laser beam a sub micron volume of the neural tissue is 

thus excited by the intense laser light. The amount of short wavelength 2-photon 

fluorescence then depends on the density of fluorescent dye molecules in this excited 

volume and the 2-photon conversion efficiency of these molecules. 

 

Fluorescent dyes for functional optical imaging 

Different fluorescent dyes are used for different applications. For instance, for 

showing the structure of individual neurons by infusion of dye from a patch clamp, 

one of the common dyes to use is Alexa594.  For functional optical imaging, there is 

choice of using membrane voltage sensitive dyes and Calcium sensitive dyes. The 

action potentials of neurons are usually measured by measuring the electrical potential 

across the cell membrane. Voltage sensitive dyes (Antic and Zecevic 1995; Nelson 

and Katz 1995; Tsutsui, Karasawa et al. 2008) are lipophylic dyes that dissolve in the 

membrane of a cell and respond rapidly (less than 10 μs) to the membrane potential. 

However voltage sensitive dyes in practice have a poor signal to noise ratio resulting 

from the small change in fluorescence with voltage (ΔF/F< a few %). This 

necessitates wide field monitoring of the signal of large numbers of neurons 

(Petersen, Hahn et al. 2003; Ferezou, Bolea et al. 2006). Also, unfortunately to date 

no one has succeeded in developing a satisfactory voltage sensitive dye that operates 

with 2-photon excitation so that it can be used at high speed in deep tissue.  

 

Calcium sensitive dyes (Lev-Ram, Miyakawa et al. 1992; Stosiek, Garaschuk et al. 

2003) change fluorescence intensity in response to changes in calcium concentrations 

inside the cells. One of the important biochemical changes that occur as part of the 
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complex sequence of events at the membrane is a sudden increase in calcium 

concentration. This is a result of the influx of calcium at voltage gated calcium ion 

channels (Hille 2001). Calcium, which is toxic to cells at high concentration and 

hence actively pumped out of cells, is widely used at very low concentrations for 

internal biochemical signalling on a wide range of timescales. Particular dyes have 

been developed which monitor calcium concentration, becoming more efficient 2-

photon fluorophores as calcium concentration increases. By injecting or diffusing 

such dyes into neurons it is possible to monitor action potentials indirectly by 

monitoring the fluorescence.It has been shown (Sabatini and Regehr 1999) 

(DiGregorio, Negrete et al. 2000; Higley and Sabatini 2008) that, with care to collect 

fluorescent photons efficiently, and for total collection times of the order of 8-20 μs 

per voxel, it is possible to obtain sufficiently high signal to noise ratio to reliably 

monitor the timing of action potentials down to millisecond resolution.  

 

To date, the calcium sensitive dyes are proving more practical for optical functional 

imaging of small networks of neurons than voltage sensitive dyes. One significant 

factor is that the calcium sensitive dyes invariably have a slow decay response (tens to 

hundreds of ms) compared to the rise in fluorescence immediately after the action 

potential (approximately 1ms with optimised dyes). This gives the calcium response 

an integrating or ‘memory’ response which aids the detection of action potentials as 

soon as the system sampling interval at a ROI is greater than the approximately 1 ms 

time of one action potential.  

 

 The fluorescent signal increases as the square of laser intensity, so it is also necessary 

to have sufficient laser power at the point of focus. Typically, at least 2.5 mW average 

power would be necessary at the focus in the specimen; this corresponds to the order 

of 1 MW/cm2 at the focus. These figures are important to bear in mind when 

designing the overall system. 
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2D vs. 3D – number of addressable neurons that can be chosen for 
optical functional imaging 

Perhaps the most important limitation of nearly all conventional optical microscopes, 

including laser scanning 2-photon microscopes, is that they are designed to image in a 

single focal plane(X-Y).  

 

100 μm

a b

c d

 
Figure 1.4 functional optical imaging of the brain using conventional two photon microscopy. 

The images show a) a 400×400×400 μm region of the visual cortex of a rat.  b) Measured calcium 

sensitive fluorescence images from particular neurons showing how the calcium level over many 

10s of seconds is affected by the excitation on the rats retina. In the cortex, particular neurons 

are sensitive to image edges orientated in particular directions as indicated by the different 

colours. c) A typical 2D section that took the order of 1 second to collect. d) Regions of interest, 

particular neuron bodies sensitive to particular orientations as indicated by their colour. 

Modified from (Ohki, Chung et al. 2005).  
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One of the limitations this causes are illustrated by Figure 1.4 (Ohki, Chung et al. 

2005) which shows how 2-photon calcium imaging was used to analyse the structure 

of the orientation sensitivity of neurons in the visual cortex of a rat in 3D. Typically, 

high resolution 2D raster scanning takes at least the order of 1 second for each 2D 

plane, leading to minutes of elapsed time for full 3D scans.  The 3D block of rat 

cortex imaged in the figure has 300 μm sides and contains the order of 1000- 3000 

neurons that can be imaged. A single 2D plane on the other hand contains only 30 to 

50 neurons that are bright enough (well enough aligned with the 2D plane) for 

functional imaging as shown in the 2D sections.  It is therefore clearly desirable that a 

machine for optical functional imaging should not only be able to point in 2D, but 

also in 3D. It is also extremely likely that it will be difficult, if not impossible, to 

correctly interpret the nature population coding in neural tissue from purely two 

dimensional data. The networks themselves are 3D and it is very likely that 

population codes themselves are 3D spatial plus temporal codes. 

Options for high speed 3D focusing 

Several approaches have been proposed that allow rapid functional imaging in 3D and 

higher speed random access point measurements. These include sinusoidal 

displacement of the objective lens with a piezoelectric driver (Gobel, Kampa et al. 

2007), the use of deformable mirrors (Zhu, Sun et al. 1999) and lenses (Oku, 

Hashimoto et al. 2004), two conjugate objective lenses with a piston mirror 

(Botcherby, Juskaitis et al. 2007), the use of many fixed optical fibres in 3D (Rózsa, 

Katona et al. 2007) and AODs for focusing and scanning (Reddy and Saggau 2005; 

Reddy, Kelleher et al. 2008).   
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Figure 1.5 3D 2-photon microscope using an oscillating microscope objective driven by a piezo-

electric actuators to scan up to 250μm along the Z axis at up to 10Hz. (Gobel, Kampa et al. 2007). 

a) conventional 2 photon microscope with b) approximately sinusoidally driven XY deflection 

mirrors and a 10Hz Z oscillating objective lens. Note c) the 3D spiral path carefully computed to 

pass through the maximum number of cell bodies in the minimum time and d) image of one 

complete cycle of laser spot movement in a fluorescent dye solution.  

 

 One of the first to be successfully demonstrated was  (Gobel, Kampa et al. 2007). In 

addition to rapidly scanned XY plane galvanometer mirrors, the system uses an 

oscillating microscope objective driven by a piezo-electric actuators to scan up to 250 

μm along the Z axis at up to 10Hz. Illustrations from (Gobel, Kampa et al. 2007) 

showing the apparatus and results are reproduced here in Figure 1.5. Note that after 

initial raster scanning of the whole volume of tissue, the path of the laser spot is pre-

calculated to cross as many of the cell bodies forming the ROIs in the tissue as 

possible. The complex 3D spiral closed loop motion enabled them to monitor up to 

90% of the target cells in a 250 μm cube of tissue with an overall imaging time per 

3D ‘frame’of 100ms.  As the neuronal bodies being studied were quite large, despite 

the long path the laser spot was programmed to take through 3D space, the laser spot 

was in cell bodies of interest for about 5% of the total scan time. Experimentally the 

paper reports results for functional imaging of up to 500 neurons within the 250μm 
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cube of tissue at 10Hz this is about a factor of 10 higher than possible with a 2D 

scanner.  

An interesting recently reported system with the potential for much more rapid 

refocusing in Z is the piston mirror system  (Botcherby, Juskaitis et al. 2007). 

Although this is still a mechanical system it has the potential for operation at speeds 

up to around 1kHz cycle time as it uses a light weight piston mirror that sits in air at 

the focus of an auxiliary objective. There is thus no need to move the objective. By 

matching the angular convergence of the auxiliary objective so that it matches the sine 

and the Hershel conditions with the main water immersion objective, a high degree of 

correction of the spherical aberration that would otherwise limit the Z displacement of 

a high NA remotely focused objective has been demonstrated. I include further 

discussion on the prospects for such 3D scanning systems in the discussion of chapter 

six. 

 

In the final part of the introduction I introduce the basic concepts for pointing 

scanning and focusing in 3D using AODs and how such a system can be optically 

coupled into a microscope.  

 

Introduction to AODs for scanning, pointing and focusing 

Principle of operation of AODs 

An acousto-optic deflector is a transparent crystal made of a material with a refractive 

index that varies rapidly with mechanical stress such as compression or tension. If a 

sound wave propagates through such a crystal, the peaks and troughs of the wave 

produce a moving optical refractive index grating. A diagram of such a device is 

shown in Figure 1.6. A piezo-electric transducer converts an electrical signal to a 

travelling ‘curtain’ of sound waves in the crystal. The curtain propagates across the 

crystal locally modulating the refractive index in a pattern that mimics the electrical 

input. The modulated refractive index in turn modulates the phase of the incident laser 

beam propagating approximately at right angles to the sound wave through the 

crystal. This causes diffraction of the laser beam. For a simple sine wave input signal 

at a frequency acf , the total angular deflection of the beam is given by (Xu and Stroud 

1992):- 
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V
f0λφ =                                                equation 1.1 

Where oλ = optical wavelength in free space 

            acV = acoustic velocity in the crystal 
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Ultrasonic transducer

φ
 

Figure 1.6 Bragg diffraction from a travelling ultrasonic sound wave in an Acousto-Optic 

Deflector (AOD). The red incoming arrows represent the laser light. The transducer on the left 

converts the incoming radio frequency electrical signal into a shear mode sound wave in the 

transparent tellurium dioxide (TeO2) crystal. This travels at about 600m/s across the 15mm 

aperture crystal in only 25μs. The laser light is diffracted off the refractive index variations 

indicated by the vertical black lines which represent regions of higher compression from the 

sound wave peaks. Changing the drive frequency changes the angle of diffractionφ . 

 

For near infrared and visible operation the crystal is often made of Tellurium Dioxide 

(TeO2), an unusual anisotropic crystal with one of the highest known efficiencies for 

coupling light and sound waves. The structural anisotropy of the crystal causes 

unusual but useful variations in the speed of both light and sound as a function of 3D 

direction of propagation in the crystal.  

 

There are two possible modes of operation of AODs, the first, known as Raman–Nath 

(Xu and Stroud 1992) has a thin curtain of sound and operates like a 2D surface relief 

grating. This diffracts light into a whole series of diffraction orders (-n...-1 0 1 ...+n). 

The angle of incidence of the light is not critical, but the efficiency in any particular 
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diffraction order is low because of the multiple orders of diffraction. The second 

mode of diffraction is known as the Bragg mode, shown in Figure 1.6.  The sound 

wave has significant thickness in the direction of propagation of the light wave (the 

thickness is approximately equal to the length of the acoustic transducer in this 

direction and is illustrated by the vertical length of the black line sound wave peaks in 

the diagram). This means that the diffraction is from a 3D stack of high or low index 

sheets i.e. diffracting from a 3D structure like X rays diffracting off the planes of a 

crystal. This also means that for the optimum laser input direction the diffraction is 

concentrated into one particular diffractive order, usually the first (-1) order at a very 

high efficiency, theoretically approaching 100% at particular acoustic drive powers. 

Note that undiffracted light that propagates straight through the crystal is referred to 

as zero order light and may need to be suppressed to avoid unwanted interference. 

Note also from this equation that, in contrast to a galvanometer mirror used as an 

angular deflector that the deflection of the laser beam is directly proportional to its 

wavelength.  Thus, higher wavelength components of light will be deflected by more 

than lower wavelength components. This causes a serious chromatic aberration effect 

to be discussed in chapter 3.  

 

Forming a spherical lens with AODs   

 It is well known (Xu and Stroud 1992) that if the drive frequency of an AOD 

is ramped rapidly, the delaying effect of the acoustic wave propagating across the 

crystal causes divergence or convergence (‘focusing’) of the laser beam.   

 

Assume the acoustic wave is ramped such that its frequency increases or decreases 

with time linearly, by giving it the form: 

 

              atftf acac += )0()(                         equation 1.2 

 

Where a is the ramp rate and is measured in MHz per second.   
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Chirped u/s wave 
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focal point  D

 
Figure 1.7 Diffraction from a chirped RF drive waveform which produces the ultrasonic (u/s) 

wave propagating to the right across the crystal, note acoustic wavelength (distance between 

vertical black lines) is smaller on the right of the crystal because the RF drive frequency in this 

case is decreasing with time. Chirping the drive frequency at a linear chirp rate produces a 

perfectly circular wavefront with a radius of curvature D. Note that in 3D, the lens formed is 

cylindrical bringing light to a line focus at the focal point with line perpendicular to the page in 

this diagram 

 

Figure 1.7. shows the situation where the chirp rate a is negative.  As the angle of 

diffraction is proportional to the frequency of the acoustic wave, those parts of the 

laser beam that are deflected by the high-frequency portion of the acoustic wave will 

be deflected more than those parts which are diffracted by the low frequency portion.  

It can be seen that the effect is to focus the laser beam at a position in the direction of 

the dotted arrow in the figure.  The distance D to the focal position in the vertical 

direction is given by (Xu and Stroud 1992): 

 

 
a

V
D ac

0

2

λ
=                                                            equation 1.3 

 

As is also illustrated in Figure 1.7 and Figure 1.8a, the acoustic wave moves to the 

right at the acoustic wave velocity Vac.  The focus created by the converging laser 

beam will therefore also move to the right at the acoustic velocity.  Therefore single 
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AODs can be only used to focus a laser to a position that moves at the acoustic 

velocity Vac and the focal distance is strictly determined by the chirp rate. For this 

reason, the focusing effect of AODs was usually regarded (Xu and Stroud 1992) as an 

unwanted side effect in most practical applications. The fact that the focusing only 

occurs in one direction means that it introduces astigmatism into the laser beam which 

then can only be optically corrected for one particular scan rate. 

 

The range of acoustic frequencies that may usefully be propagated through the crystal 

is limited because the diffraction efficiency drops rapidly outside the design range of 

the AOD.  Figure 1.8b shows the frequency of the acoustic wave as it varies with time 

and Figure 1.8c shows the frequency of the acoustic wave as it varies with distance.   
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Figure 1.8 a) Cylindrical lens with the focal point is moving at the speed of sound to the right. 

b&c) two diagrams plotting drive frequency vs. time b) against time at fixed spatial position , 

c)against space at a fixed time. Note the drive frequencies have to be kept within the high 

efficiency drive bandwidth of the AOD. 

 

As can be see from Figure 1.8b, it is necessary to keep the frequency of the acoustic 

wave between the limits fmin and fmax.  It is therefore not possible to indefinitely chirp 

the frequency of the acoustic wave and, once the frequency reaches fmin, it is necessary 
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to reset the frequency to fmax such that the chirping can continue.  This creates a “saw-

tooth” graph in Figure 1.8b.  A similar saw-tooth pattern occurs in Figure 1.8c, but it 

is reversed because the frequencies present in the acoustic wave on the right-hand side 

of the crystal represent frequencies at an earlier time point than the frequencies 

present in the acoustic wave at the left-hand side of the crystal.  For commercial TeO2 

AODs, typical values for fmin are 50-60 MHz and typical values for fmax are 90-100 

MHz. These frequency limits cause the maximum continuous total scan time to be 

limited to Tsmax= (fmax- fmin)/ a . Because it is necessary to wait one AOD fill time for 

the reset discontinuity to propagate right across the crystal before gathering data from 

the focused laser spot, there is a limited duty cycle: 

 

( ) maxmax TsAODfillTsleMaxDutyCyc −=                                equation 1.4  

 

This reduces as the absolute value of ramp rate a increases becoming zero when 

Tsmax reduces to the AOD fill time. Thus there is a maximum ramp rate and resultant 

shortest focal length determined by the AOD physical parameters. 

 

 
Figure 1.9 Dynamic cylindrical lens with stationary focus. This is the  first proposed and 
demonstrated system for producing a stationary focus beneath a pair of AODs  with counter 
propagating sound waves (Kaplan, Friedman et al. 2001). Note that for a stationary focus the 
wave front curvature induced by the two AODs must be equal so that the lensing effect is split 
equally between the two AODs. 
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Kaplan (Kaplan, Friedman et al. 2001) showed for the first time how to make use of 

two AODs in series to cancel out the lateral movement of the focal spot and 

dynamically control the Z focus of the laser beam. The basic principle is illustrated in 

Figure 1.9.  In this configuration, a second AOD crystal and ultrasonic transducer is 

utilised and the ultrasonic waves in the AODs propagate in opposite directions.  In 

Figure 1.9 the upper AOD has an ultrasonic wave propagating from the right to the 

left and the lower AOD has an ultrasonic wave propagating from the left to the right.  

The first AOD deflects the input laser beam to become a converging laser beam with 

the (virtual) focal spot moving from the right to the left. The chirp on the second 

AOD is such that it doubles the convergence of the beam and exactly compensates for 

the movement of the focal point of the laser beam so that the resultant (real) focus is 

stationary. 
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Figure 1.10  An AOD pair acting as a cylindrical lens that can focused over an XZ field of view as 

indicated by the red arrows. This is called the Inverted Bragg Configuration (IBC). It not only 

produces a stationary focal spot, but also cancels out the chromatic aberration at the centre of 

the field of view. This is so called because unlike in the Kaplan configuration of the previous 

figure, the Bragg diffraction of the counter-propagating waves is inverted in the two AODs.  

 

  Neglecting the separation between the AODs, the distance to the stationary focus is 

therefore half the distance to the focus of a single AOD and is given by: 

 
a
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=                                                                   equation 1.5 
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 By modulating the ramp rate a at high speed, Kaplan was able to demonstrate the 

shifting of a focus along the Z axis at up to 400 kHz without any X displacement. He 

pointed out that by shifting the frequency separation of the ramps as illustrated in 

Figure 1.10 1 that the X position could be controlled at will. Finally, as these AODs 

only focus in one 2D plane (the XZ plane) they produce a line focus perpendicular to 

the plane of the page (in the Y direction). To solve this, he suggested that two more 

AODs should be added, rotated 90 degrees about the Z axis, so that the input laser 

beam could be focused independently in the YZ plane to a point in 3D as illustrated in 

Figure 1.11. The four AODs can equally well produce diverging wavefronts.  

 

 

Front view
Side view (rotated 
90 degrees to left)
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Figure 1.11 Spherical acousto-optic lens with stationary focus. It uses four AODs interleaved as 

shown here to convert the two cylindrical lenses formed by the XZ and YZ pairs of AODs to 

form a dynamic spherical lens that can bring light to a focus anywhere within its 3D field of view. 

 

                                                 
1 Note the slightly different configuration of AODs used by Kaplan in figure 1.9 and by us in 
subsequent figures, this will be discussed in more detail in chapter 2. 
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Figure 1.12 a subsequent lens system can be used to bring the converging or diverging light from 

an Acousto Optic Lens (AOL) to a real focus either above or below the natural focus of the lens. 

 

To use these capabilities in a real system, a subsequent lens system (Figure 1.12) is 

used to bring converging, plane or diverging wavefronts to a real focus at different Z 

positions. The four AODs thus form an Acousto-Optic Lens (AOL) that enables a 

stationary focused point to be produced anywhere in a 3D volume of space limited by 

the field of view of the system and that can jump from any position to any other 

position at speeds only limited by the AOD fill time.  

 

Proposed overall system layout 

To couple the AOL into a two photon microscope, the image formed by the first lens 

after the AODs is relayed using a sequence of telecentric relays that include the tube 

lens and objective of the microscope as the final telecentric pair. This is illustrated in 

Figure 1.13. A telecentric relay is an optical system, usually a pair of lenses that relay 

an input image to an output field. It has the property of constant magnification 

independent of the Z position of the object and image. I discovered this was important 

in my first Matlab geometric optic models (not shown) of  AODs coupled to lens 

systems which showed that unless the relays were telecentric the X, Y and Z 
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magnification varied with the Z focus of the AODs.  Referring to Figure 1.13, if there 

was only one relay made with two lenses of focal length f1 and f2, then if the first 

image is a distance f1+Z1 from lens 1, the lenses are separated by f1+f2 and the 

image 2 is at a distance f2-Z2 as shown, then the demagnification in the XY plane of 

the focal position within the field of view of image 1 is f1/f2 and demagnification in 

the Z direction is (f1/f2)2. So, as an example, if f1/f2 = 20, the field of view of the 

image 1 focus might be 5mm in X and Y and 120 mm in Z. This would be 

demagnified to 250 μm in X and Y and 300 μm in Z. In a real system there are several 

telecentric relays whose magnification is multiplicative.  
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Figure 1.13 Microscope relay optics. The first image after the AOL is a real focal spot focused a 

distance Z1 above the natural focal plane of the tube lens by the converging action of the AOL as 

illustrated. This focused spot can be anywhere in the field of view of the AOL plus its first lens. 

This spot is then relayed through optics to a high numerical aperture but much demagnified field 

of view beneath the objective lens. Shown here for illustration the tube lens and objective are 

treated as a telecentric relay. Telecentric relays relay the field of view without Z axis changes in 

magnification as explained in the text. 
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Summary of objectives and challenges 

Target specification 

In conclusion to this introduction, it is useful to summarise the target specification of 

the system agreed at the start of the PhD after initial consideration of the neuro-

scientific requirements, the basic properties of AODs, and feasible system layouts: 
• Image with better than  

   1×1×2 μm XYZ resolution  

   in a 250×250×250 μm volume of tissue 

   corresponding to 7.8 million voxels 

 

• Focus laser beam to 30 different randomly chosen XYZ locations per 

millisecond 

• To be able to image with sufficient signal to noise ratio for the detection of the 

millisecond range timing of individual action potentials monitored by Calcium 

sensitive dye. 

• Note the Ti:Sapphire typical maximum operating range is 700 to 1000 nm. It 

should be possible to use the system at any chosen wavelength in order to 

match particular dyes. 

 

Summary of the state of the art for 3D AOD deflectors at the start 
of the PhD and primary challenges 

In 2001, (Kaplan, Friedman et al. 2001) had demonstrated that 2AODs could be used 

to scan a 2D line focus in the XZ plane at up to 400 kHz and proposed that the 

principle could be extended to focusing a 3D point focus anywhere in a 3D volume. In 

2004 (Silver 2004) proposed combining such a scan system with a 2-photon 

microscope to make a 3D optical functional imaging system as described above. In 

2005 (Reddy and Saggau 2005) independently published a proposal for a similar 3D 

system and demonstrated 2D AOD focusing in the XZ plane (not 3D focusing as 

implied in the abstract). 
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Some of the challenges that needed to be overcome in order to use AODs as the 

primary deflection system in a 2-photon microscope are discussed in (Reddy and 

Saggau 2005). These, and others, are described in detail in the following chapters, in 

abbreviated summary however they are: 

• AODs cause chromatic aberration because, unlike galvanometer mirrors, the 

deflection angle is function of wavelength (equation 1.1). Since the ultra short 

(100fs) pulses of Ti-Sapphire lasers inherently have a broad spectrum as a 

result of Heisenberg’s uncertainly principle, deflected focused spots have 

increasing chromatic aberration as deflection angle increases. 

• AODs also introduce a high temporal dispersion so that, unless pre-

compensated, temporal dispersion spreads the 100fs pulses necessary for high 

2-photon efficiency into pulses many times longer and greatly reduces 2-

photon efficiency.  

• AOD efficiency is a strong function of incident and diffracted angle and hence 

modulates light efficiency as a function of scan position in the field of view. In 

particular the acceptance angle of standard commercial AODs is very narrow. 

This needs controlling and compensating. 

• The use of telecentric relays between AODs proposed in (Reddy and Saggau 

2005) makes the AOL sub-system very spread out ( >1m optical path length ) 

and makes it impractical to change wavelength of the laser source easily.  

• When remotely focusing a high numerical aperture microscope objective by 

adjusting the convergence or divergence of the back aperture light beam, as 

proposed here using the AOL, spherical aberration is introduced that will limit 

the focusing range. This effect increases rapidly at high NA. 
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Summary of chapter 1 

This chapter starts by describing the ‘instrumentation gap’ in neuroscience that the 

AOLM is aimed at reducing, it then describes the current state of the art of 2-photon 

microscopy for biology and in particular why it is so suitable for neuroscience. 

Today’s 2-photon microscopes however suffer from the same slow mechanical Z axis 

refocusing problem as all previous microscopes. The chapter then describes the state 

of the art of high speed acousto-optic lensing in 2005/6, introduces the layout of the 

proposed high speed 3D 2-photon microscope. It concludes by outlining the target 

specification for the AOLM agreed early in the PhD and outlines the primary 

challenges in using acousto optic lenses in a 2-photon microscope.
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Chapter 2  Initial design considerations 
AODs are not widely used in 2-photon microscopes for good practical reasons. 

Despite their high speed and high precision of deflection angle, the problems of 

chromatic aberration, temporal pulse dispersion and variable diffraction efficiency, to 

name but three, have discouraged their use. Throughout the period of the work this 

thesis describes we have had numerous discussions on the relative merits of different 

approaches. Most papers describing the various types of deflection system have a 

qualitative justification of the choice of deflector /focusing technology.  

 

Before considering the design options for an AOD based system, the first section of 

this chapter is intended to semi-quantitatively analyse the differing deflection 

bandwidth requirements of scanning and pointing mode systems. This makes the 

benefits of the choice of a pointing mode system very clear for high resolution optical 

functional imaging with small ‘sparse’ regions of interest in comparison to the total 

scan dimensions. It also shows that in comparison with presently available mechanical 

alternatives, AOD based deflection systems are much better suited to pointing mode 

deflection applications. 

 

The topics covered in the remainder of this chapter are the derivation of the field of 

view of the microscope from the physical properties of the AOD, a description of the 

problems caused by using telecentric relays between AODs and a novel solution 

based on a compact configuration of AOL and  the derivation of the equations for 

pointing and scanning using the compact AOL configuration. 

Choice of deflection system: Scanning, pointing and the 

sparsity problem 

The problem and defining the limiting factors 

It is often difficult to compare the relative merits of different techniques for optical 

functional imaging based on 2-photon microscopy. For instance, for 2D systems, how 

do you compare a resonant galvanometer deflection system that might be able to scan 

at 10 or even 20 kHz with an AOD deflection system with a 25 μs fill time that can 

point at 30 kHz to different regions of interest? This section aims to clarify the 
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problem by defining the separate factors that limit the speed at which two photon 

functional imaging can be performed and deriving the relationships between them. 

These limiting factors are, the minimum data collection time per ROI (region of 

interest), TROI , the bandwidth of the deflection system BD  and the spatial sparsity of 

the regions of interest within the scan volume SS. The following section defines these 

terms in more detail and discusses the specification of different systems:- 

 

Minimum data collection time per region of interest TROI. For each neuron or part 

of a neuron that is being monitored it is necessary to collect a certain number of 

photons in the brighter fluorescent state of fluorophores in order to obtain a high 

enough signal to noise ratio to measure the timing with a specified degree of precision 

(Gobel, Kampa et al. 2007). Evidence from our own experiments (unpublished) on 

calcium dyes in solution and from observations of the results of many others on 

different 2-photon microscope rigs suggests that the rule of thumb is that TROI needs 

to be 10 to 20 μs to get adequate signal to noise ratio for single shot monitoring of 

action potentials. This obviously limits the maximum number of regions of interest 

that can be monitored per unit time to 1/ TROI = 50-100,000 ROIs per second = 50-100 

ROIs/ms. Since 2-photon fluorescence increases as the square of illumination 

intensity, you might expect that TROI could be reduced by a factor of 4 by doubling the 

illumination power, however in practice there are saturation and photo-damage effects 

that limit how far TROI can be reduced. 

 

Bandwidth of the deflection system BD. If you plot the displacement in space of the 

focal point of the laser microscope system vs. time you get a time series or continuous 

signal that can be analysed in terms of its bandwidth. This bandwidth is the deflection 

bandwidth required to make the laser spot follow that path.   

 

Spatial sparsity of the regions of interest within the scan volume SS. This is 

defined as the width of the linear scan dimension of the instrument’s scan volume WS 

divided by the average width WROI of each region of interest i.e. how many average 

ROIs fit across the scan frame. By definition therefore SS = WS / WROI 
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The duty cycle of a functional optical imaging system 

We have classified two modes of deflection vs. time: scanning mode and pointing 

mode. In the scanning mode the laser spot moves through the regions of interest at a 

rate close to the average scanning speed of the spot through each scanning cycle. The 

spot displacement in a particular spatial dimension vs. time can be saw tooth as in 

raster scanning, or approximately sinusoidal as in spiral or Lissajous figure scanning. 

In pointing mode the laser spot is caused to dwell approximately stationary in each 

region of interest before transiting as rapidly as possible to the next region of interest. 

 

  The duty cycle of a functional optical imaging system is the percentage of time it 

spends in regions of interest compared to the total elapsed time.  This is clarified in 

Figure 2.1 for the scanning mode. The displacement vs. time plotted here is roughly 

sinusoidal so that the bandwidth required of the deflection system is only BD =1/ TC 

where TC = cycle time. 
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Figure 2.1 Schematic diagram showing one cycle of a one dimensional scanning system that  is 

scanning a focused laser spot along a line and back again.  There are five short regions of interest 

along this line indicated in grey. When the laser spot is in a region of interest it is collecting 

photons of interest from any luminescence there. Marked in green is whether the photons are 

from a region of interest or not.  The duty cycle is the percentage of ‘Yes’ time compared to total 

time. 

For randomly positioned regions of interest the approximate average scanning mode 

duty cycle DSp = NROI / SS where NROI is the number of regions of interest ( to check 
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this equation consider if NROI = SS  then the all the scan area would be full of regions 

of interest and the duty cycle would be 100%).  The key point to note here is that as 

the sparsity increases, so the duty cycle reduces in proportion.  

 

 

WROI

WS  
Figure 2.2 Schematic diagram showing how in two dimensions  approximately sinusoidal 

displacement vs. time on each axis results in approximately elliptical paths being traced in space.  

The precise dimensions of the green elliptical path were chosen to pass through the 3 target 

regions of interest (ROI)s shown in red. An ellipse can be always be found to pass through any 3 

randomly positioned ROIs. This is not possible for 4 or more ROIs. 

 

It is slightly more complicated to understand the effect of sparsity on duty cycle for 

approximately sinusoidal displacement in 2 or 3 dimensions. (Gobel, Kampa et al. 

2007) have developed fast algorithms for computing fastest possible approximately 

sinusoidal spatial paths vs. time through randomly placed ROIs in 3D space given 

defined displacement bandwidths in each dimension. They point out that for randomly 

positioned ROIs it is always possible to calculate the dimensions of an ellipse that 

passes through each of 3 points. For more than 3 points this is not possible, although 

occasionally it will happen that 4 or more do lie on the same ellipse.  This is 

illustrated for two dimensions in Figure 2.2.  This means that algorithms for passing 

through the largest possible number of randomly positioned ROIs in the minimum 

time can only average slightly more than 3 ROIs per cycle where the cycle time is the 

inverse of the highest frequency within the displacement bandwidth.  
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To estimate how duty cycle varies with the number of points in the target area, 

consider a square of side WS containing 3 ROIs. The ROIs are on a grid of Ss × Ss. 

Note that Ss= WS/WROI. The 3 ROIs are randomly positioned as illustrated in Figure 

2.2 (red squares) with the approximately elliptical path going through all three ROIs. 

Consider a circle of diameter 0.7 × length of the side of the square. This is 

approximately the same circumference as the average path length of an ellipse 

through any three randomly chosen ROIs, averaged over many ellipses.  It is clear that 

the size of the ROI is inversely proportional to SS. Simple geometry shows that the 

duty cycle in this scanning mode DSc is given by:  
 

s
Sc SD   7.0

3
π= .                                                                             equation 2.1 

 

If you now assume that for each region of interest you wish to collect data for the 

minimum time required to obtain a good signal to noise ratio TROI then the duty cycle 

has a direct effect on the imaging time it takes to collect one data point from each 

region of interest and form one spatial image for one time point. The imaging time 

Timg is 

 

SROIROI
Sc

ROIROI
img STND

TNT    73.0 ==                                        equation 2.2 

 

Where NROI is the number of regions of interest being scanned. 

 

Similarly the sinusoidal scan frequency FS, which is approximately one third of the 

average ROI sampling rate of the system RS is given by: 

 

( )sROI

s
s ST

RF   73.0
1

3 ==                          equation 2.3 

 

Since the  dimensions of neuron bodies  range from 5-30  μm and the dimensions of 

neuronal processes range from say 0.3 to 3 μm an optical functional imaging system 

with a 300 μm field of view width has a spatial sparsity ranging from 10  to 1000 
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corresponding to duty cycles from 13% down to 0.13%. and imaging times per ROI 

varying from 73 μs to 7.3ms.  (based on TROI = 10 μs) 

 

Note that this derivation shows, that in the scanning mode, beyond a certain 

minimum, the scanning speed of a scanning mode system is not an important 

parameter. The system is not ‘scan speed’ limited, it is ‘photon collection rate’ 

limited. It is now the spatial sparsity that is important. Here, in this ‘photon limited’ 

case I have assumed that the scanning speed is reduced so that it takes TROI to pass 

through each ROI so that sufficient photons are collected that the signal to noise ratio 

is obtained in a single pass through all the ROIs. The system could be driven faster, 

but then it would have to make multiple passes through each ROI to build up the 

signal to noise ratio and the total imaging time Timg would be the same. 

 

 For high speed optical functional imaging with Calcium sensitive dyes it is important 

to note that the smaller parts of the neuron show much the fastest response. This is 

because as calcium diffuses away from its source (the membrane in this case) its time 

response slows down as in any diffusion process. The calcium can also often cause 

secondary calcium release from stores within the cell body. For the fastest response 

therefore it is important for the imaging system to be able to select the smallest 

possible regions of interest and therefore operate at high sparsity.  This is therefore 

clearly a serious problem for any scanning mode optical functional imaging system 

that is aimed at imaging many neurons in millisecond imaging times. 
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Pointing Mode rather than scanning mode solves the sparsity – 
duty cycle problem 
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Figure 2.3 Schematic diagram of a pointing mode deflection system which accurately controls 

displacement vs. time to jump from one region of interest to another.  The green line indicates 

whether the system is collecting photons from a region of interest or not.  The red dots are 

inserted to illustrate the minimum set of sample points that would be necessary for defining 

deflection vs. time and hence calculating the bandwidth requirement of the deflection system.  

 

To solve the sparsity-duty cycle problem the obvious solution is to ‘stare’ (i.e. focus 

the laser spot ) at a particular ROI for a time preferably greater than or equal to TROI 

with a stationary spot, then jump to the next region of interest as rapidly as possible. 

This however requires a much higher deflection bandwidth. This is illustrated in 

Figure 2.3 which shows deflection vs. time for a pointing mode system monitoring the 

same set of ROIs as Figure 2.1.  The laser spot dwells in each ROI for a time TD and 

then jumps in a transit time TTr = TC-TD to the next ROI.  

 

The duty cycle in the pointing mode DPt = TD/TC = TD/(TD+TTr) and is not dependent 

on sparsity.  This gives the pointing mode a very large advantage over scanning mode 

as sparsity increases. This is illustrated in Figure 2.4. In this case, for the pointing 

mode the parameters chosen are TD = 16μs, TTr = 24 μs resulting in a 40% duty cycle 
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irrespective of sparsity. These figures are typical of those we expected to use for an 

AOD in pointing mode. 
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Spatial Sparsity WS/WROI  
Figure 2.4 A comparison of the duty cycle vs. spatial sparsity for the scanning mode (blue) and 

the pointing mode (red).  For the pointing mode TD = 16μs ,  TTr = 24 μs. 

 

For the fastest possible sampling rate in the pointing mode, without reducing the 

photon collection time below TROI, TD = TROI.  Therefore The optimum sampling rate 

Rs:  

 

( )TrROIROI

Pt
s TTT

DR +== 1     equation 2.4 

 

This sets the optimum sampling rate for a pointing system with a given transit time. 

 

The total imaging time Timg in the pointing mode is therefore: 

 

( )TrROIROIimg TTNT +=                 equation 2.5 
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To calculate the bandwidth requirement of the deflection trace in Figure 2.3 it is 

necessary to take the Fourier Transform of the deflection vs. time curve. Nyquist’s 

sampling theorem (Landau 1967) states that to sample a perfectly bandwidth limited 

signal it is necessary to sample at twice the frequency of the limiting bandwidth. The 

corollary to this is that the pointing mode deflection signal must have frequency 

components up to half the frequency defined by the closest sampling points on either 

side of the transit shown in red dots 1/(2TTr).This is easy to understand intuitively 

from the figure as I have shown each pointing region linked by a half sine wave to the 

next. The frequency of the full sine wave would thus be 1/(2TTr). Thus the minimum 

bandwidth requirement for a deflection system operating in the pointing mode is 

approximately given by: 

 

Tr
D TB 2

1=                 equation 2.6 

 

Furthermore the fact that the spot must stay pointing within the ROI and not drift 

implies that the frequency response of the deflection system must be flat down to low 

enough frequencies that there is no sag during the duration of the spot within the ROI. 

It also must not oscillate in position, this implies that the upper part of the frequency 

response above BD must be well damped, i.e. decaying gently with no resonance.  

 

 

 



 49

D
ef

le
ct

io
n

D
ef

le
ct

io
n

Frequency

Sampling rate 
RS = DSc/TROIFS=RS/3

Max sampling 
rate

1/TROI

Sampling rate 
RS = 1/(TROI+TTr)

a)

b)
BD= 1 /(2TTr)

Moves down with 
increasing sparsity

 
 
Figure 2.5 The required deflection frequency response for a) the scanning mode and b) the 

pointing mode.  In order to reproduce the required approximately sinusoidal deflection vs. time 

curves in the scanning mode either the red or green frequency responses would be satisfactory. 

The green curve corresponds to a resonant scanner. The pointing mode shown in b) for the same 

ROI sampling rate RS requires the wide flat frequency response shown in blue 

 

The required frequency response of scanners for the pointing mode and scanning 

mode are compared in Figure 2.5. Figure 2.5a shows the required scanning mode 

frequency response for the scanning mode. For TROI of 10μs, the maximum possible 

sampling rate with a sparsity of 1 (corresponding to all points being of interest) is 100 

kHz. The duty cycle reduces this rate to 13 to 0.13 kHz for sparsities of 10 to 1000 

respectively. The required sinusoidal scanning frequency is therefore reduced to the 

range between 4.3 kHz to 43 Hz.  If the deflection waveform is sinusoidal, then a 

resonant scanner can be used with a frequency response as indicated in green. If the 

waveform is saw tooth as in raster scanning then a carefully designed control system 

is needed to give the required linearity and a frequency response greater than FS with 

smoothly damped higher frequencies to suppress any mechanical resonance of the 

deflector (Brown 2009), as shown in the red curve. 

 

As shown in Figure 2.5b the required frequency response for the pointing mode is 

much more demanding. Taking for example a region of interest pointing time TROI of 
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10μs and a transit time between ROIs TTr of 10μs -25μs , the duty cycle is 50% to 

28% and the cycle time Tc = 20μs to 35 μs.  The bandwidth BD required of the 

deflection system is BD =1/2 TTr which is 50 kHz to 20 kHz. 
 

Suitability of galvanometer and AOD deflectors for pointing and 
scanning 

The fastest resonant galvanometer mirror scanners operate at up to 10 kHz, 

(exceptionally 20 kHz) (Brown 2008) whereas the fastest well controlled 

galvanometer mirrors for raster scanning have a 4 kHz mechanical resonance but are 

electronically linearised and damped to have about 1 kHz damped overall frequency 

response (Brown 2009) similar to the red line in Figure 2.5a).  

 

Acousto-Optic scanners on the other hand have a typical transit time (AOD fill time) 

of 4 to 25 μs (Xu and Stroud 1992) and are naturally suited to precise steady, drift 

free,  pointing simply by keeping the deflection frequency constant. 

 

Given these facts and the analysis I have just derived it is clear that unless non 

resonant wide bandwidth precision controlled mechanical deflectors can be developed 

with bandwidths of 20 kHz or more, 20 times those available today, there is little 

chance of using mechanical galvanometer based scanners for pointing mode 

deflection for high speed 2-photon calcium fluorescence optical functional imaging of 

multiple neurons with sparse regions of interest at kHz rates. Galvanometers are best 

suited for scanning mode. 

 

From a deflection bandwidth and stability of pointing perspective AODs, on the other 

hand, are well suited to both scanning and pointing. They do however have other 

drawbacks such as chromatic aberration and a lower transmission efficiency which 

varies with deflection angle. These drawbacks have restricted their use to niche 

applications where the characteristics of AODs are of paramount importance.  
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Figure 2.6 Relationship between the number of regions of interest that can be monitored by an 

optical functional imaging system using the pointing mode or the scanning mode and the time 

taken to image all those ROIs. In all cases the total dwell time in each region of interest TROI is 

8μs. Note this assumes laser power is adjusted with imaging depth to compensate for tissue 

scattering loss, pointing mode transit time is 25μs.  The sloping black dashed line shows the 

maximum number of ROIs that could be monitored with infinite deflection bandwidth (zero 

transit time between ROIs).The vertical and horizontal dashed black lines pick out particular 

imaging rates for comparison. The scanning mode results are for 3 different spatial sparsities Ss.  

The horizontal green arrows indicate the approximate number of neurons that are selectable 

(NSN) for high speed imaging in a volume of rat cortex 250×250×250μm (3D) and 250×250μm 

(2D). (Ohki, Chung et al. 2005) 

 

The results of this section are summarised in the plot of Figure 2.6 which compares 

the number of regions of interest that can be chosen for monitoring by an optical 

functional imaging system in either the pointing mode or the scanning mode as a 

function of the total imaging time. (i.e. the time for the laser spot to monitor all the 

ROIs once and return to the first ROI). So for 1ms imaging time (vertical dashed line) 

the pointing mode is able to monitor 30 ROIs, whereas the scanning mode with a 

sparsity of 100 is only able to monitor 1.8 ROIs. At the 100ms imaging time (vertical 
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dashed line) these figures are 100 times greater at 3000 and 180 respectively. Thus 

AOD based pointing mode systems are much better for optical functional imaging of 

brain regions where the spatial sparsity of the regions of interest necessary to obtain 

millisecond response times is high. Any mechanical deflection system would need 20 

kHz bandwidth and a wide flat frequency response with no resonances to compete 

with an AOD of 25 μs AOD fill time for the pointing mode application. 

How scanning and pointing will be used in practice to maximise 
the performance 

 

 
Figure 2.7 Diagram to illustrate the pointing mode in 3D. On the left is a computer graphic of 

neurons in 3D with bright regions to indicate the chosen regions of interest. On the right, part of 

a Zemax ( http://www.zemax.com) diagram of light rays coming to different foci in 3D beneath a 

microscope objective. Image of neurons with permission (Peter Clevestig)   

In order to use such a 2-photon functional optical imaging machine to it maximum 

advantage it is envisaged, as illustrated in Figure 2.7 that the tissue to be imaged is 

first imaged slowly in 3D with a full raster scan to understand the anatomy. Regions 

of interest are then selected for functional imaging with the pointing mode so that the 

functional imaging can take place at the fastest possible rate for the number of ROIs 

chosen. The system therefore needs a deflection and focusing system capable of both 

scanning the full 3D volume of tissue in the minimum possible time and subsequently 

pointing to the chosen regions of interest at high speed in 3D. Because of proposed 

http://www.zemax.com/�
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capability for a 4 AODs to point scan and deflect in 3 dimensions (Kaplan, Friedman 

et al. 2001), and the requirement to monitor small regions of interest with a sparsity SS 

= 250μm/1μm = 250 ,  AOD technology was chosen for this application. 

 

Choice of Acousto Optic Lens configuration 
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Figure 2.8  comparison of the a) Kaplan configuration (Kaplan, Friedman et al. 2001) and b) 

Inverted Bragg Configuration (IBC).  Note in both cases the sound waves of each AOD pair are 

propagating in opposite directions (black arrows) AODs with the light diffracting towards the 

transducer (black rectangle) are in the -1 Bragg diffraction order, those diffracting away from 

the transducer are in the +1order. In a) the undiffracted zero order beam is at a considerable 

angle to the diffracted bem and is absorbed by baffles. In b) each AOD rotates the diffracted 

plane of polarization 90 degrees. This makes it possible to remove the unwanted zero order 

undiffracted light with a polarizer. The half wave plate is to ensure the polarization of the 

diffracted light from the first AOD is rotated 90 degrees so that it will couple into the second 

AOD. Wanted light beams are labled X or Y ‘polarised’. 

 

In  Kaplan’s published design(Kaplan, Friedman et al. 2001) (Figure 2.8a.) The upper 

AOD diffracts light in the +1 diffractive order (defined as the 1st order diffracted wave 

diffracted AWAY from the transducer), and the lower AOD is thus -1 diffractive 

order (diffracts towards the transducer). In general because of the different diffractive 

order, for high performance, a different detailed design of AOD may be necessary for 

AOD2 and AOD 1. 
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An alternative configuration is shown in Figure 2.8b. We call this the Inverted Bragg 

Configuration (IBC) because the Bragg gratings that form the active element of the 

AODs are inverted with respect to one another, with both gratings diffracting in the -1 

order. The IBC is most simply implemented with identical AODs by rotating AOD2 

180 degrees about the Z axis with respect to AOD1 .The following table summarises 

the relative merits of these two configurations. 

 

•           Kaplan 

Configuration 

• Inverted Bragg 

Configuration (IBC) 

• Requires an extra component 

(grating or prism) to compensate 

for spatial chromatic dispersion at 

mid point of field of view. 

• self compensating at mid point 

• Works with any AOD • Requires AODs that rotate 

polarisation 90 degrees 

• Unwanted undiffracted (zero 

order) light must be geometrically 

arranged to hit baffles 

• Polarisers required to cut out 

unwanted zero order undiffracted 

light.  
 

Table 2.1 Comparison of Kaplan (Kaplan, Friedman et al. 2001)and IBC configuration of AODs  

As has pointed out in the literature (Reddy and Saggau 2005) (subsequent to our 

independent understanding) the IBC is naturally self compensating to spatial 

chromatic aberration caused by the AODs. When the drive frequencies to the two 

AODs are equal and the focal spot is at the centre of its field of view both the 

deflection and the chromatic aberration caused by the AOD diffraction (equation 1.1) 

are naturally cancelled out to zero irrespective of the spectral width of the laser. As 

will be discussed in chapter 3, the residual ‘magnification chromatic aberration’ 

becomes proportionately larger as net deflection of the spot from the centre of the 

field of view increases. The chromatic aberration of the Kaplan configuration is 

cumulative because the deflection angles add rather than subtract and hence there is 

large aberration that must be pre-compensated with another prism or grating. It is 

however easy to suppress the residual zero order mode light in this configuration with 

a simple baffle. The IBC only works with AODs that rotate the plane of polarisation 

by approximately 90 degrees so that polarising sheets can be used to absorb the 
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unwanted zero order mode light and transmit the wanted diffracted light. This is not a 

problem because the highest efficiency AODs are anisotropic TeO2 devices which 

rotate the diffracted plane of polarisation. For these reasons we chose to develop our 

AOL based in the inverted Bragg configuration. (Note, In Figure 2.8b a ½ wave plate 

is also included because, with two AODs both deflecting in the same plane as shown, 

the polarisation of the diffracted wave must be returned to the input polarisation of the 

next AOD. For the X1, Y1, X2, Y2 configuration we are implementing, ½ wave 

plates would not be necessary if the polarisation was exactly rotated by 90 degrees by 

diffraction. (See chapter 3- Design of AODs  for more detail on this.)  

 

 

 Design of the complete AOLM: the starting point 

 

Our starting point for the design of the overall acousto-optic lens microscope was 

simply to combine 4AODs in series to form an acousto optic lens following the 

principles described (Kaplan, Friedman et al. 2001) and relay the beam into a 

microscope as shown in Figure 1.13 .   

 

The first problem this poses became obvious once I tried to design the AOL using 

simple geometric optics. Because of the significant thickness of the AODs it is 

impossible in practice to put the diffractive gratings of the AODs sufficiently close 

together along the Z axis that the equation given by (Kaplan, Friedman et al. 2001)  

and reproduced in equation 1.5  results in a stationary laser spot. This is because these 

equations assume zero optical distance between the AODs. An initial search for 

suitable AODs revealed that all high performance AODs are several cm thick with the 

curtain of sound waves bisecting the crystal at a steep angle. They are not at all like 

the idealised thin devices shown in the diagrams of chapter 1. (Their detailed design is 

described in Chapter 3). If spaces of several centimetres are introduced between the 

AOD gratings the wavefront curvature changes between the AODs and the 

cancelation of sideways movement of the focal spot would not be accurate.  

 

Initially, to solve this problem, I designed 1:1 telecentric relays that project the image 

of one AOD onto the next AOD. This means that three relays are needed between the 
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four AODs as well as subsequent relays into and through the microscope. We have 

also made the decision to project the image from the AOL via the galvanometer 

mirrors of the microscope in order to test whether the AOL can be an additional 

feature to an otherwise standard commercial microscope. In order to achieve this it is 

necessary to design optics that relays the image of the output face of the last AOD of 

the AOL to form a conjugate image on the galvanometer mirrors with the correct 

demagnification to just fill the galvanometer mirrors. (4:1 demagnification in our 

case).  

 

In a commercial 2-photon microscope the subsequent field lens and tube lens form a 

conjugate image of the galvanometer mirrors on the back aperture of the microscope 

objective. This relay is usually magnifying so that for instance the 3mm aperture of 

the galvanometers is expanded up to the 8 or 9 mm back aperture entrance pupil of a 

water immersion microscope objective. The complete optical train of this first design 

is shown in Figure 2.9.  
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Figure 2.9 Initial design for the overall optical system layout of the microscope. The additional 

telecentric  relays numbered 1,2,3 between the AODs forming the AOL are to ensure zero 

effective optical distance between one AOD grating and the next as assumed by  Kaplan in 

deriving equations 1.3 to 1.5 for a stationary focal point. Relay 4 and 5 demagnify the conjugate 

image of the last AOD onto the galvanometer mirrors and then magnify the image onto the back 

aperture of the microscope objective lens. By varying the drive to the AOL, the focal point can be 

focused or scanned through any point within the octahedral field of view. 

 

Note that I have labelled the telecentric relays as 1-5 with a pair of lenses for each 

relaying the output aperture of one element on to the input aperture of the next. 

Equally well I could have labelled the pairs of lenses starting with the last lens of 

relay 4 and the first of relay 5 and the last lens of relay 5 and the microscope objective 

as two telecentric relays relaying the first real focused image formed by the AOL, via 

a second after the microscope field lens to the final focus spot beneath the objective. 

The design of the relay optics is thus a sequence of interwoven telecentric relays. The 

final field of view of the microscope is shown as the octahedral shape beneath the 

objective. This octahedral shaped field of view is what you expect for AODs with all 

four frequency drive bandwidths equal. This is because in the natural focal plane of 

the objective lens (Z2=0 in Figure 1.13) the bandwidth limits can be used entirely for 

X or Y displacement. As the AOL focus increases or decreases above or below the 

natural focal plane so more and more of the available bandwidth is used up by the 
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ramps applied to the AODs. When the maximum ramp rate (and Z displacement) is 

reached, there is no bandwidth left for X or Y displacement.  

 

Derivation of field of view of microscope from AOD RF 

frequency limits and AOD physical parameters 

Whilst designing the microscope, particularly when discussing the design with end 

users, the issue often came up of what microscope objective to use with what NA and 

subsequently what is the optimum relay lens magnification on to the back aperture. 

These discussions can get quite confusing and there is often a tendency for the end 

user to assume for instance that it is the objective magnification that determines the 

field of view and that NA can be independently adjusted by adjusting relay 

magnification. Of course geometric optics is not like that; you can deduce from the 

optical sine theorem(Hecht 2001) that as you vary the magnification of an image the 

NA is inversely related to the magnification. This applies equally to field of view, 

which is the image of all the possible points the laser can be deflected to focus upon. 

In view of this, I decided to derive the equations for the 3D field of view of the 

AOLM purely in terms of the AOD physical characteristics (maximum scan angle and 

aperture) and the effective NA the final focused point. Providing there are no 

apertures limiting the NA between the last AOD and this focus then the details of all 

the intervening optics are irrelevant. The design trade off between NA and field of 

view is then clear and can be made independently of all the degrees of freedom for the 

design of the intervening optical train. 
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Figure 2.10 a) Parameters relating the actual focal length of a water immersion lens Fact to 

aperture width W and its  numerical aperture NA=n sin θ. The refractive index of water, shown 

in blue is n =1.33. b) Diagram to show how the apparent focal length which determines the lens 

magnification is 1/n times the actual focal length in water.  The dotted lines represent the 

externally apparent path of the rays. 

 

Derivation of 3D field of view of AOLM 

Referring to Figure 2.10 a) and starting from the basic definition of numerical 

aperture beneath a water immersion lens NA= n sin θ and Pythagoras’ theorem it is 

straight forward to deduce that: 
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Where: 

actF = Actual focal length in water of the focusing lens 

W   = full width of lens aperture fill by incoming laser light from AODs 

n     = refractive index of water = 1.33 

NA  = effective numerical aperture of final focal spot 

Because of the transition from water beneath the final objective to air above, the 

apparent magnification of the lens is increased by n, the refractive index of water, and 

its externally apparent focal  length appF  is 1/n times actF the actual focal length in 
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water. This is illustrated in Figure 2.10 b). It is the apparent focal length that is 

calculated if the tube length of a microscope is divided by its magnification on the 

barrel of the objective. 
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Figure 2.11a) Diagram to illustrate how the X or Y field of view is calculated from the fact that 

the maximum total angle of scan of the beam is 4s where s is the semiscan angle of the AODs. 

Note that now the input beam width defines the effective NA of the lens. It does not matter if the 

objective has a larger aperture with a higher NA written on the barrel. The dotted lines represent 

the path of the rays with the AOL set at Z=0 and maximum deflection in X. b) Diagram to show 

how the equations for the axial field of view are calculated by considering that the maximum 

convergence (or divergence) between the extreme edges of the AODs is 2s+2s as shown focusing 

on the upper point of the octahedral field of view. The dotted lines in this figure show the paths of 

the incoming rays focusing on the very top of the octahedral scan volume. 

 

The simplest combination of the four AODs of an AOL with such a water immersion 

lens is shown in Figure 2.11. The maximum scan angle of either of the 2 pairs of 

AODs in the X or Y direction is 4s where s is the maximum semiscan angle of one of 

the AODs. To be clear, 2s is the angle one AOD deflects light through if its drive 

frequency is changed from fmin to fmax. Inspection of the diagram Figure 2.11 b) shows 

the input rays on both sides of the lens maximally deflected to the left by an angle 2s. 

Combining this with equation (2.7) results in : 
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Where xyF = the X or Y direction field of view that the laser spot can scan over 

beneath the lens in its natural focal plane.  

 

Figure 2.11b) shows how the maximum displacement of the focal spot along the Z 

axis can be deduced from the difference between the axial focal position at Z=0 for 

zero chirp diffractive gratings and the axial position when the gratings are maximally 

chirped, with converging deflection at the edges of the AOD aperture of 2s. The basic 

paraxial equation relating object to image distance for a lens with the image in a 

medium of refractive index n is(Hecht 2001): 
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1
                                                 equation 2.9 

Where u= -W/4s is the distance of the object from the lens (with the correct sign 

convention), v is the distance of the image from the lens (in water) and f is focal 

length of the lens (in water). 

Combining this equation with equation (2.7) and rearranging gives; 
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Where zF  is the maximum distance it is possible to scan in along the Z axis. 
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Figure 2.12 Diagram that demonstrates that the field of view is independent of the intermediate 

optics because the equations are all in terms of the product Ws, the AOD aperture times the 

semiscan angle.  This product is constant.  

 

The final Figure 2.12 relating to this derivation illustrates why this expression is 

independent of how the light is relayed from the AODs to the final objective. It shows 

an additional telecentric relay between the AOD and the objective. This is marked 

with different values of W and s, w and S. However, providing there are no restricting 

apertures, the optical sine theorem (Hecht 2001) determines that Ws = sW. Since the 

equations (2.8) and (2.10) for the field of view only contain the product Ws it is clear 

that the expressions are indeed independent of the intermediate optics. 

NA vs. field of view 

Equations (2.8) and (2.10) can now be used to study the design trade offs of the 

system. Figure 2.13 shows how the X and Y field of view varies as a function of the 

NA for s = 3, 6 and 9 mrad semiscan angles and W=15 mm AOD aperture width. This 

AOD width was chosen  to be as large as reasonably practical given that we did not 

want it too large for commercial manufacture  or for its AOD fill time is to exceed 24 

μs so that it still enables data collection time TROI = 9 μs at 30 kHz sampling rate. 
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Figure 2.13 Theoretical plot of the field of view in the X orY plane from an AOD of width 

W=15mm and semiscan angles ‘s’ as marked.   Also shown on the diagram is the magnification of 

an Olympus objective lens that would have that particular effective NA with the 8mm diameter 

back aperture projected image of the last AOD. 

 

Marked along the NA axis are the magnifications of three different objective lenses 

that would give that NA for a projected image of the AODs on their back aperture of 

8mm diameter. Note that although it is easy to get a greater than the target 250 μm 

XY field of view with these scan angles this is only at low NAs(e.g. beneath a 20X 

objective with 8mm back aperture fill). Since 2-photon fluorescence intensity 

increases rapidly as NA increases (because of the smaller point-spread function at the 

focus), the optimum overall design is likely to be at least 0.7 NA, maybe more.  We 

therefore need large aperture acousto-optic devices capable of giving high efficiency 

over a large scan angle. To achieve 250 μm octahedral field of view (FOV) beneath a 

NA = 0.8 objective (a normal NA for galvanometer based 2-photon imaging) would 

require AODs that remained high efficiency over an angular range of approximately 

+/-9mrad per AOD  (9 mrad semi-scan angle). This is very challenging as discussed 

in the next chapter. 
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Figure 2.14 Comparison  the way in which axial field of view and XY field of view vary with NA. 

The black line shows the axial (Z) field of view has an approximately inverse square relationship 

of axial field of view. The blue line is FXY, the XY plane field of view. W= 15mm s= 4.35mrad. 

 

In the Z direction, the field of view is an even more dramatic function of NA as 

shown in Figure 2.14 which compares the Z field of view with the XY field of view as 

NA varies. In this case the semi-scan angle is fixed at s = 4.35 mrad and W = 15mm. 

In this case it requires NA be reduced to about 0.7 to obtain a 250 μm FOV to the tips 

of the octahedral FOV. Reducing the NA to about 0.55 doubles the FOV to 500 μm 

because of the approximately inverse square law relationship. For NA= 0.8 the 

octahedral Z field of view is 180 μm, therefore to achieve 250 μm the semi-scan angle 

needs to be increased to at least 6 mrad. To cover a 250 μm cube, rather than 

octahedron (as implied by the target specification), at NA = 0.8, would require the 

maximum angular scans were increased outside this range, to about 12 mrad.  

However, even if the AOL can deflect high optical power across this large Z field of 

view, 2- photon performance may be limited by aberrations to the point spread 

function as discussed in the following chapters. This and several other relevant other 

factors all need to be understood to optimise the overall design. The conclusion of this 
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section is that for a large (15mm) aperture AOL to achieve a 250 × 250 × 250 μm 

cubic FOV at NA= 0.5 requires a semi-scan angle of just less than 6 mrad, however, 

the required semiscan angle is a strong function of the NA of the final beam so that 

for instance to achieve this FOV at NA= 0.8 requires a semi-scan angle of more than 

12 mrad. 

 

Problems caused by using telecentric relays in the AOL 

As mentioned earlier in this section, in order to produce stationary spot at a large 

value of the Z axial focus using Kaplan’s equation (equation 1.5) it is necessary for 

the optical separation between the gratings forming the AOL to be zero. To achieve 

this, in the initially proposed system layout shown in Figure 2.9 the AODs forming 

the AOL are each linked by telecentric relays.  
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Figure 2.15 Top and side view of the first design of AOL showing the transverse deflection of the 

beam as it propagates. The drive on all four is AODs at the centre frequency. The vertical and 

horizontal displacement ΔX and ΔY of the last AOD with respect to the first alters by 8mm for a 

wavelength range of 700 to 900nm. 

 

Early in the project it was realised that this arrangement of telecentric relays would 

make it very difficult to change the system wavelength without several hours of 

careful realignment of the optical train linking the AODs. The reason for this is 

illustrated in Figure 2.15 which shows the optical train of the AOL in more detail in 

both side view and plan view. Each AOD is separated by a ‘4f’ telecentric relay. The 
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total length of each relay is four times the lens focal length which for 15mm aperture 

AODs would probably be chosen to be at least f = 100 mm. This is in order to keep 

the lens NA sufficiently low for readily available lenses to be adequate quality for 

diffraction limited imaging. The total length of the AOL is thus 1200mm.  The AODs 

must be aligned so that the input and output beams of each AOD are at the optimum 

efficiency when the AODs are driven at their centre frequencies. The configuration is 

such that when all AODs are driven at their centre frequencies the light beam is 

deflected sideways and then upwards in the first two AODs. The deflection is then 

cancelled out exactly in the next two AODs so that there is no net deflection and the 

output beam is parallel to the input beam. This output beam is then carefully aligned 

and launched into the relays leading to the microscope. The problem arises when you 

wish to change the laser wavelength.   It is straight forward to show by repeated use of 

equation 1.1 for the deflection angle of the AOD that the total sideways or vertical 

displacement of the input beam is given by:   

ac

ac

V
fYX

λν
×≅Δ=Δ 8                  equation 2.11                      

where  acν  in this case is the acoustic drive frequency 

Despite the fact that the AODs we finally chose had centre frequencies as low as acν = 

35MHz, the wavelength dependence of equation 2.11 means that both the sideways 

and vertical alignment of the  output beam with respect to the input beam changes by 

8mm even for a restricted range of wavelengths 700 to 900 nm. We could not see a 

practical mechanical solution to this problem. On adjusting the laser wavelength, not 

only would the Bragg angle of each AOD have to be fine tuned, (not too difficult to 

automate), but the lateral and vertical displacement of the AODs would need to be 

altered by up to 8 mm and some arrangement made to either the input or output beam 

positions to accommodate the changes in displacement.  This is clearly a serious 

practical issue which we believed if not solved would probably cause this type of 

microscope to be impractical or very expensive for commercial production. 
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Figure 2.16 Diagram to illustrate the advantage of the proposed compact configuration of AODs 

reducing wavelength realignment to a much more manageable 1mm.  The dashed line represents 

the deflection of the central ray of the AOL at the extreme short wavelength end of the range and 

the solid line the axis at the long wavelength extreme. 

 

Novel and practical compact configuration for the AOL 

In order to solve the problem of large lateral shift with wavelength, I decided to 

explore the feasibility of a compact design of AOL. This simply aligns the AODs 

axially with no intermediate lenses so that the overall length of the AOL is reduced to 

the thickness of 4 AODs plus any air gaps, intermediate polarisers etc. The compact 

configuration of AODs is compared with the original relay design in Figure 2.16. If 

the total length of the AOL between the first and last AOD grating could be kept 

below about 150 mm it seemed plausible that no lateral movement of the >15mm 

aperture AODs would in practice be necessary to compensate the now less than 1mm 

displacement of the beam axis over the wavelength operating range. Changing 

wavelength would involve only very small computer controlled adjustments of AOD 

Bragg angle. This mechanically simple solution of course causes complication in the 

opto-electronic drive system. The equations that Kaplan derived are no longer 

accurate.  
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Figure 2.17 Diagram of the complete optical layout of the system as we implemented in the first 

prototype. This uses the compact configuration of Acousto-Optic Lens so there are no telecentric 

relays between each AOD and the next.  PMT stands for photomultiplier tube. 

 

Figure 2.17 shows a diagram of the complete system with the telecentric relay 

replaced by the AODs in the compact configuration. Apart form the greater 

practicality for wavelength changing, the optical train is over a metre shorter than the 

original design and uses six less lenses. 

Derivation of equations for pointing and scanning in the 

‘compact configuration’ AOL 

To derive the correct equations for driving the compact configuration of AOL, it is 

necessary to understand its properties in some detail. I used a diagrammatic geometric 

optics approach as this gave me the best understanding of how the multi stage 

dynamic lens system works and the resulting physical intuition to solve the problems 

that arose at each stage of the design. At a later stage I have made extensive use of 

Zemax (http://www.zemax.com/ ), the well known computer software for modelling 

optical systems. This is better for modelling physical reality in more detail and 

gaining understanding and minimising the optical aberrations in the system. In the 

following sections I derive the new equations for driving the AOL, not just for 

http://www.zemax.com/�
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pointing at a particular point in 3D space (which we refer to as the pointing mode), 

but also for scanning at the highest possible speed in 3D space by the 3D equivalent 

of the conventional TV raster scan. This later mode of operation we refer to as the 

‘miniscan mode’ for reasons that will become obvious. 
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Figure 2.18 Geometric arrangement of optical wavefronts and the drive parameters required for 

use with the compact configuration  of AOL. a) definition of distances and focal lengths of 

converging waves from AODs, b) showing how as the sound wave in the top AOD progresses to 

the left it causes the deflection angle at X=0 to increase. However the angle of deflection at X=0 

on AOD2 is greater according to the geometrically derived equations in the text. c) shows how the 

ramp rates of AOD 1 must be less than the ramp rate of AOD2 if the resulting focused spot is to 

be stationary.  

Deriving equations for the Pointing mode 

Consider first the case of AOD1 and AOD2 as shown in Figure 2.18a). These are 

being driven respectively with chirped waveforms: 

taff c 11 +=        equation 2.12 

taff c 22 +=        equation 2.13 

 

 Frequency drive 1f   is causing a curvature on the wavefront because its drive is 

chirped. The distance between the AODs is 1d  and the distance to the focus of the 

converging wave of AOD1 is '
1d .  Now, referring to Figure 2.18b consider a time t = 0 

when the diffracted wave from a position x = 0 on AOD1 is precisely vertical down 

the Z axis, passing through position x=0 on AOD2. Now consider a time tΔ  later 

when the frequency of the ramp is shifted by taf Δ=Δ 11   so that the angle of 

diffraction changes by a fixed amount 1θΔ  then the focus of the converging beam is 
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displaced in the – X direction as shown. At the fixed point X=0 on AOD2, the angle 

of the ray passing through that point on its way to the focus shifts by 2θΔ  as shown. It 

is clear by simple geometry that:  
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                                      equation 2.14 

Thus if you wish to cancel the rotation of the incoming wave from AOD1 at AOD2 in 

order to keep the diffracted wave from AOD pointing at the same focal position the 

rate frequency shift of AOD2, 2a  needs to be greater than 1a . (For this IBC 

configuration, increasing the frequency of both AODs causes cancellation not 

addition of the angular deflection). The ratio of the frequency shift rates is the same as 

the ratio of the angles of deflection in the diagram. Therefore: 
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These ramp rates are illustrated in Figure 2.18c which shows frequency vs. time for 

the two AODs driven to produce a stationary focal spot plotted as X deflection vs. 

time underneath.  In order to calculate the specific drive equations for a particular 

desired focal spot distance '
2d  , we use equation 1.3 defining the distance to the focus 

for a given ramp rate and the fact the curvature of the wavefront entering AOD2 is 

doubled by the additional curvature induced to keep the direction of focus stationary 

simple rearrangement of the equations shows that:  
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 These equations are those needed for setting up and controlling the 

microscope as they give the drive parameters in terms of the distance '
2d from the 

final face of the final AOD to the point of focus of the AOL. In these equations, d1 is 

always a positive value.  The values of '
2d , a1 and a2 are positive for converging rays 

for the +1 diffraction order shown in Figure 1.12 a and negative for diverging rays as 

shown in Figure 1.12 c.   

 

 It is apparent that if d1 is made to be zero then a1 equals a2.  This is the 

assumption used in Kaplan’s equations.  Note that in the equations and analysis 

above, the distances are apparent optical thicknesses.  If further optical components 

are interposed between the AODs, such as half wave plates and polarisers, then the 

apparent optical separation needs to be calculated by taking into account the refractive 

index of such additional components.  Also, the refractive index of the AODs 

themselves needs to be taken into account.  This can be done by assuming that the 

acoustic wave enters and leaves the AOD at its thickness-midpoint such that the 

apparent optical distance d1 is equal to the distance in air between the AODs plus half 

the thickness of AOD1 divided by its refractive index plus half the thickness of AOD2 

divided by its refractive index.  When the two AODs are identical, then the value d1 

equals the distance in air plus the thickness of the AOD divided by its refractive 

index.  
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Figure 2.19 Sequence and orientation of four AODs  forming an AOL. They are labeled, and 

distances are defined for the equations of the compact configuration.  Note the interleaved 

numbering of AODs 1 and 2 and 3 and 4 so that it is clear from the equations that the equations 

for the XZ plane and YZ plane are essentially the same. 

  

These principles can be extended to a system which uses four AODs to focus in the 

X,Y and Z dimensions.  Figure 2.19a) and b) show two orthogonal views of a four 

AOD system.  The third and fourth AOD3 and AOD4 are interleaved with AODs 1 

and 2 as shown, the distance between AOD3 and AOD4 being d3 and the distance 

from AOD4 to the focal point being '
4d .  The ramp rates for the third and fourth AODs 

can be calculated in a similar way as for the first and second AODs.  Very similar 

equations apply:- 

 

a
V

d4

2

42
=

λ '
                                              equation 2.20 
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4 32
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                              equation 2.21 
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'
                            equation 2.22 

 

 AOD1 and AOD2 focus in the chosen X-Z plane whilst AOD3 and AOD4 

focus in the Y-Z plane.  The distances '
2d  and '

4d  are such as to ensure that the final 

focus is the same in both planes. Any error will cause astigmatism.  As noted earlier 

the actual distances between the AODs and the optical thickness of any intervening 

components, as well as the AODs themselves, needs to be taken into account when 

determining d1,d2,d3, '
2d and '

4d . 

Depending on the exact configuration used, further fine tuning may be applied to 

achieve an exactly stationary spot.  The equations above are based on the simplified 

assumption of AOD crystals having surfaces that are perpendicular to the direction of 

propagation of the light.  It is possible to manufacture the AODs with slightly angled 

faces (and there are practical reasons to do exactly this) and this can cause errors that 

result in a small residual movement of the focal position.  These residual movements 

can be corrected by small adjustments to the ratio of ramp rates a1/a2, a2/a4.  These 

corrections can either be found experimentally or by building a more accurate optical 

model using a commercial programme like Zemax.  When such angled faces are used, 

typical corrections are much less than +/-2% to the ramp rate of each AOD.  

Similarly, small corrections may be applied to the ratio of the X ramp rate to the Y 

ramp rate to fine tune the astigmatism of the focus.  This is equivalent to adjusting the 

ratio of '
2d  to '

4d  so that the Z value of the focal position in the X-Z and X-Y planes is 

the same.  These fine tuning corrections may be a function of the Z position of the 

focal spot and can readily be built into the algorithms that compute the ramp rate of 

the AODs before each scan. 

 

It is clear from the derivation that in theory the compact configuration of AOL can be 

used to achieve a stationary focal point at any chosen value of Z within the field of 

view. The control equations need now to be extended to calculate the precise start and 

stop frequencies of each frequency ramp, how to adjust these to cause particular X 

and Y deflection and how to adjust the frequency ramp rates to not only point at a 

particular spot but also to scan in the XY plane to build up a raster image at the fastest 

possible rate. This requires precise control of X and Y plane scan rate at a fixed Z 
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plane. The fact that the AODs have a limited operating frequency range and the 

frequency ramp rates for Z focusing are high, also means that it is often necessary to 

reset the drive frequencies to the other side of the operating frequency range. It is 

therefore necessary to understand how to offset the drive frequencies without causing 

any X or Y movement of the focused spot and restart an interrupted scan.   

 

I have found these issues quite complex during the development and have had to 

correct implemented control software more than once because of my initial lack of 

clarity on the issue of resetting pairs of AOD drive frequencies to maintain precise 

knowledge of the pointing position vs. time of the focused laser spot. Recently I have 

developed a graphical way of understanding this very multidimensional problem. This 

is illustrated in Figure 2.20.  
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Figure 2.20 A graphical way to analyse drive frequencies applied to the XZ pair of AODs. The 

common mode ratio (or gradient) shown blue is the gradient in frequency space that produces no 

movement of the focal spot. The orthogonal differential mode gradient (shown in red) produces 

only X deflection of the spot with no common mode deflection.  

 

For the case of XZ deflection and focusing with AOD1 and AOD2 as discussed 

above, the drive frequencies fav2 and fav1 can be plotted on the X and Y axes of a 

graph as illustrated. These ‘f average’ symbols represent the frequency at the centre of 

the AOD at the particular time being considered. As the ramp rates a1 and a2 are 



 75

linear in both time and space, the frequencies at the centre are the spatial averages of 

the frequencies currently in the AOD aperture and in turn determine the average 

deflection angle of the AOD. Referring to Figure 2.20, any pair of average 

frequencies can be represented on this plot by a point in the fav2 , fav1 plane.  A 

gradual or step change in the pair of drive centre frequencies can be represented by a 

vector lying in the plane. Its direction determines what happens to the focal spot 

position. If fav2 and fav1 are changed with a differential gradient marked as common 

mode drive gradient Rcomm, there is no change in the position of the spot. Common 

mode drive frequency change is defined as change where the ratio of the frequency 

changes is : 

1
'
2

'
2

2

1

2
2

dd
d

fav
favRcomm +

=
Δ
Δ

=                    equation 2.23 

Notice that this ratio of frequency change is exactly the ratio of ramp rates that gives a 

stationary focal spot at a distance '
2d  from the last AOD. It has a fixed value for any 

particular chosen Z focal plane. For a stationary focal spot, if you plotted the two 

frequencies at the centre of the two AODs as they varied with time, they would move 

along a line parallel to the vector shown. It also implies that it does not matter what 

pair of frequencies you start the ramp at as long as they are on this common mode 

deflection line, the focal spot will always be at the same position.  

 

The converse applies to the differential mode line on this plot defined by: 

1
'
2

'
2

2

1

2
2

dd
d

fav
favRdiff +

−
=

Δ
Δ

=                     equation 2.24 

Changes in this direction produce changes in X position of the focal spot with no 

changes in common mode frequency difference. Its gradient is by definition -1 times 

the common mode gradient.  Referring to Figure 2.20 and Figure 2.21 , in fav2,fav1  

frequency space the vectors Rcomm = [1, Rcomm ] and Rdiff  = [1, Rdiff ] (where vectors 

are shown in bold and scalars in normal type face) can be used as the unit vectors of a 

2D basis. Any vector in this plane can be analysed in terms of its common mode and 

differential mode basis vector components. 
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Figure 2.21 Showing how any pair of frequencies (P red star) or difference in pair of frequencies 

vector can be analysed into common mode (blue) and differential mode components (red). Bold 

text refers to a vector, normal text to a scalar. The dotted blue line represents all pairs of 

frequencies between the AOD drive limit frequencies that point in the same direction as the point 

P.  Driving the AODs repetitively up this line and jumping back to the lower position 

corresponds to the sawtooth of frequencies required to focus on a spot in the same lateral offset 

(X) that static frequency pair at P would point. The rate of shift along the line determines the 

focus (Z). The Green vector direction combines a large common mode with a small differential 

mode and steady movement along this line produces fixed Z focusing and relatively slow X 

translation of the focal point. 

 

The red point ‘P’ represents a particular fav2, fav1 coordinate. This can equally well be 

represented by the vector equation 

 

[ ] [ ] diffcomm RR ×+×+= BA,ff,favfav cc21                     equation 2.25 

 

Where fc is the centre frequency of the AOD drive range and A and B are the scalar 

multipliers for the unit vectors pointing in the commR   and diffR  directions as illustrated 

by the red and blue arrows on the figure. The blue dotted line through the point ‘P’ 

with a gradient commR  (scalar) is the line of all the other points that equally well would 
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point at the same position. Using this plot it is now obvious that for repeated pointing 

at the same position in 3D space that point P points at, without the drive frequencies 

going outside the high efficiency regions of the AODs, the ramps must repeatedly 

start at the pair of frequencies defined by the lower left end of the dotted blue line and 

stop at the top right end. In jumping back to the start, there is no shift in the position 

the AODs are pointing at.   

Figure 2.21 also shows a green line representing a time sequence of [fav2, fav1 ] 

coordinates. These can also be analysed into their diffBA RRcomm ×+×   pairs as 

shown in red and blue. In this case the green line is the drive to produce a focused 

beam with a small differential component that means the spot is slowly moving in the 

X direction (shown in red). The common mode scan rate in time determines the Z 

focal plane (and the precise direction of the commR and diffR unit vectors on this plot.) 

as shown in blue and red.   

 

Deriving algorithms for the scanning mode 

 To build up a three-dimensional image of a semi transparent sample (such as 

brain tissue), it is useful to be able to follow a raster scan with the focal point along a 

predetermined path through the sample.  The most commonly used raster scan is to 

move the focal point in the X direction, keeping the Y and Z values constant, to then 

increment the Y position by some small amount, to perform another scan in the X 

direction and so on until a two-dimensional grid of scans is achieved. The Z direction 

is then incremented and another two-dimensional grid is scanned until a three 

dimensional volume has been built up. This type of raster scanning, illustrated in 

Figure 2.22, is much faster than building up an image by using the pointing mode to 

sequentially address every point. The pointing mode takes one AOD fill time plus one 

data collection time (dwell time) to take data from each point. With 25 μs AOD fill 

time and a typical 4 μs dwell time this process takes nearly 4 minutes in the pointing 

mode for the 7.8 million voxels2 that our target system is capable of resolving. With 

raster scanning many data points are gathered for each AOD fill time by moving the 

focused spot over sequential voxels at a rate of 1 dwell time per voxel. As the raster 

scans increase in length so the total scan time reduces asymptotically towards the 

                                                 
2Number of voxels in a 250μm cube divided by a 1×1×2 μm voxel: 250×250×250/2= 7.8125 million 
voxels,  
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limit of one dwell time per voxel which is about 30 seconds for 4 μs dwell time 

scanning the full 3D volume.  

 
 

Z

X
Y
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AOD Y1

AOD X2

AOD Y2

Raster scan

 
Figure 2.22 An acousto-optic lens forming a raster scan of a 2D plane. The bold converging red 

lines represent the laser beam converging towards a focus. The straight dashed red lines indicate 

the path traced by the focal point (red star). The curved dotted red lines show the spot scanning 

with time from left to right starting with the furthest line. 
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Figure 2.23 Diagram to illustrate AOD X1 and AOD X2 drive frequencies vs. time for part of a 

sequence of miniscans deflecting in X and focusing a focal spot at a constant Z plane across one 

line of a raster at fixed Y value. The pair of green lines corresponds to a single vector in the 

frequency space diagram (next figure). The red line shows that there is no X deflection in the fly-

back period between the end of one data gathering sequence and the beginning of the next. 

 

 Consider now the drive frequency sequence necessary to scan a focal spot 

along the maximum possible distance in the X direction without exceeding the drive 

frequency limits of the AODs. Figure 2.23 shows the AOD centre frequencies plotted 

against time whilst scanning in the X direction. In order to produce the required 

focusing in Z the ramp rates on both AODs are high. Since there is a limited 

frequency range, it is not possible to do a single scan right across the maximum 

possible X scan range. The scanning process therefore has to be broken up into a 

sequence of ‘miniscans’. Two of these miniscan frequency traces are plotted in the 

figure showing the transition between them. The maximum and minimum drive 

frequencies for the AODs are defined by the limiting frequencies where the efficiency 

drops below say 80% of the peak efficiency.  

 

It takes one AOD fill time for the sound wave to fill the AOD aperture so that data 

recording can begin, and the time at which a particular frequency reaches the mid 

point of the AOD is half the AOD fill time after it was transmitted by the transducer. 

Recording of fluorescence data from a full AOD is therefore only possible for 
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frequencies sent by the transducer more than half an AOD fill time from either the 

beginning or end of the frequency ramp. This further reduces the available frequency 

range as shown by the inset bold dotted lines on the figure. The total time from the 

end of data gathering of one miniscan to the start of data gathering of the next is thus 

the AOD fill time plus any ‘flyback’ time for electronically resetting the drive 

frequencies.  

 

The key point in developing an algorithm for calculating the precise start and stop 

frequencies of each miniscan is that the position of the focal spot at the start of the 

first voxel of a new miniscan must be in exactly in the same position as the it was at 

the trailing edge of the last voxel of the previous miniscan.  This is illustrated in the 

lower part of the figure in red. The frequency offsets 1fΔ   and 2fΔ   must therefore be 

in the exact ratio commR . 
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Figure 2.24 Diagram illustrating the full sequence of miniscans making up one full X scan The 

green arrow correspond to the green pair of drive frequencies shown vs. time on the previous 

figure. As the green vector has a small differential mode component it is scanning as well as 

focusing at a particular Z plane. This is shown by the red differential mode lines.  The frequency 

limits for data collection have to be inset with respect to the efficiency limits because data can 

only be gathered from full AODs. The common mode (blue dashed) fly-back lines ensure that 

when data gathering starts again in the next miniscan it does so from the same position.  

 

Figure 2.24 illustrates in the fav2  fav1 plane how the fastest possible X scan is built up 

by a sequence of miniscans. The green arrows show the path in this frequency space 
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of the two drive frequencies at the centre of the AODs. The blue common mode 

dashed arrows show how the frequencies are reset from the end of one data gathering 

sequence to the beginning of the next. The start and stop frequencies of the miniscans 

are then defined by extending these ramps out to the drive frequency limits as shown. 

Note that as in the pointing mode, the precise direction of the blue common mode unit 

vector and the red differential mode unit vector are dependent on the chosen focal Z 

plane according to equations 2.23 and 2.24. It is hoped that these two graphical aids 

give a good understanding of how the algorithms for computing the precise miniscan 

drive frequencies work.  

 

It is now a fairly simple extension of the equations already derived to calculate the 

full equations for each important parameter:  

 

The X scan rate tδδθ  is set at a rate so that it takes one dwell time to scan across one 

voxel. This is done by defining the semiscan angle of the AODs ‘s’, Nvox, the 

number of voxels in the scan, typically 100 to 500 and the dwell time of the focal spot 

as it scans across each voxel.  

 

 
DwellTimeNvox

s
t ×

=
2

δ
δθ                                      equation 2.26 

 

It is also assumed that the Z focal distance of the AOL, '
2d  is also predetermined, so 

that the common mode offset frequency ratio commR  is also fixed. These assumptions 

give a set of simultaneous equations that can be solved to give the following equations 

for the precise ramp rates (a1, a2) of AOD1 and AOD2 in the desired form: 
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 These equations apply where there are two AODs for focusing in the X-Z 

plane or, as shown in Figure 2.19, when there are four AODs.  In this case, the 
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angular scan rate δθ/δt is that measured about the AOD2 (which is third in the 

diagram!).  The apparent rate as measured about the last AOD4 can be obtained by 

multiplying this scan rate by '
4

'
2 dd .  

 Referring to Figure 2.19 the appropriate equations for the Y-Z plane are found 

in a similar manner.  Here, φ  is the angle as measured from the fourth AOD4. 
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This information taken together is the basis for the initial set of algorithms I 

developed in Matlab to pre-compute the sequence of ramps for all four AODs to 

either 3D scan or point to a sequence of points of interest chosen from within the 

scanned 3D volume. We later came to refer to these algorithms as the Absolute 

Frequency Limit (AFL) algorithms because they are based on the assumption that in 

order to keep the AOD efficiency high, each AOD must at all times stay within the 

absolute frequency limits set for the AODs. In chapter 4 we develop new algorithms 

that scan a larger volume at high efficiency by optimising the frequency limits 

independently for each miniscan. 

 

Figure 2.25 shows a schematic diagram of the complete prototype with the computer 

control system that drives the AODs using the Matlab code based on these equations 

and the compact configuration AODs. With the exception of the prechirper, the other 

components of the complete 2-photon microscope are generally similar to those of a 

standard 2-photon microscope although the drive electronics for the AODs and image 

reconstruction is somewhat more complex than the galvanometer equivalent.  The 

data acquisition from the photomultiplier tubes is precisely synchronised with the 

drive to the AODs so that for each data gathering timeslot (typically 1 – 4 μs long) the 
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computer is able to insert into the computer memory the measured light intensity at 

the 3D coordinates of the voxel that the AOL is pointing to during that time. The 

prechirper is included to compensate for the effect of the high chromatic dispersion of 

TeO2 which otherwise spreads out the Ti-Sapphire laser pulses in time and greatly 

reduces 2-photon emission efficiency. (Reddy, Kelleher et al. 2008) 
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Figure 2.25 Diagram of the complete prototype .system with the compact configuration AOL and 

computer drive and acquisition electronics 

 

Summary of chapter 2 

This chapter starts by developing a clear technical argument justifying the choice of 

acousto-optic deflectors for the type of high performance optical functional imaging 

we wish to be able to do. The choice of acousto-optic lens configuration is then 

discussed and a first design of the overall AOLM described. The equations for the 

field of view of the microscope are then derived from basic geometrical optics in a 

form that clarifies the relation ship between the basic AOD performance parameters 

and the final system performance. The practical problems that would be caused by 

changing source wavelength using the first AOLM design are then described and a 

novel ‘compact configuration’ of AOL proposed. This compact configuration requires 

that new basic radio frequency (RF) drive equations are derived for pointing and 

scanning. These are derived in the final two sections. 
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Chapter 3      AOD Design, aberrations and first      
assembly of AOL 

Design of AODs  

Acousto–optic device technology is complex but well documented and mature 

(Goutzoulis, Pape et al. 1994);(Xu and Stroud 1992). It is used today by a relatively 

small number of specialist manufacturers. At visible and near infra red wavelengths 

the most widely used material for AODs is Tellurium Dioxide (TeO2 ). This is 

because of its strong interaction between light and sound waves in the crystal and 

good manufacturablity. The physics of optical and acoustic propagation in this crystal 

is mathematically very complex because its class 442 crystal symmetry is not only 

uniaxial birefringent but also optically active(Xu and Stroud 1992) p13. When the 

electric field of the light wave displaces electrons in the crystal not only do they get 

displaced linearly, but also they gyrate slightly inducing a magnetic field component 

as well as the usual electric displacement field. This means that the solution of 

Maxwells equations for light propagation in the crystal involve tensors of rank 3.  

 

A standard uniaxial birefringent crystal (e.g.calcite) has two refractive indices, 

ordinary and extraordinary. Light coupled into the crystal will in general couple into 

both the ‘eigenmodes’ corresponding to these two different refractive indices and 

propagate separately. ‘Eigenmodes’ or ‘normal modes’ are the natural modes of 

propagation of light in the crystal. They are the only modes which propagate 

unchanged: all other modes are made up of a mixture of these two eigenmodes. The 

polarisation states of the two eigenmodes are orthogonal, and dependent on the 

precise direction of propagation.  The refractive indices are represented on a 3D 

surface which represents the inverse of the phase velocity of light in the crystal as a 

function of direction within the crystal Figure 3.1. Ordinary waves, or ‘o-waves’, have 

the same speed in all directions and therefore the index surface is a sphere. The index 

surface of the extraordinary ‘e-waves’ is ellipsoidal with the same index as the o-

waves only along the crystal axis. In order to explain the design of AODs with greater 

clarity I have used Matlab 3D graphics to show the index and wave vector surfaces in 

3D. The index data is from (Xu and Stroud 1992). 
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Figure 3.1 The 3D index surface of TeO2 at a wavelength of  0.8 μm showing refractive index as a 

function of light propagation direction in 3D space based on data and equations from (Xu and 

Stroud 1992).  Consider a light wave with its phase velocity vector stretching from the origin 

X,Y,Z =0 (intersection of three black lines) to the index surface.  The XY and Z axes are the 

crystallographic axes. a) View of the complete index sphere showing the optic axis in the Z  <001> 

direction. The pairs of blue latitude and longitude lines show in 3D where the inner ‘ordinary’ 

surface and the outer ‘extraordinary’ surface lie. For clarity ¾ of the inner index sphere has been 

shaded gray to hide the latitude and longitude lines on the far side of the sphere. The <110> 

direction is also shown as this is the direction of minimum sound wave velocity and is close to the 

propagation direction of the usual acoustic wave in the crystal. b) Close up of the latitude and 

longitude lines around the ‘north pole’ (optic axis) of the sphere. The upper set of latitude and 

longitude lines lie in the extraordinary index sphere and the lower set in the ordinary. The inner 

latitude circle corresponds to all light waves travelling at 3 degrees off the 001 optic axis.  The 

outer circle corresponds to 10 degrees off the optic axis. The index of both surfaces is purely a 

function of this latitude angle. For clarity the difference between the ordinary and extraordinary 

indices has been exaggerated at the optic axis. The maximum difference in indices occurs at the 

equator for light propagating at 90 degrees to the optic axis 

 

As shown in Figure 3.1, for TeO2 which is a positive uniaxial crystal the extraordinary 

waves have higher refractive index (slower speed of light) around the equator of the 

ellipsoid. The additional complication with TeO2 is that even along the optic axis the 

e and o index surfaces do not touch. The o-surface is slightly depressed in the Z [001] 

direction and the e-surface is slightly raised. This is because the crystal structure has a 

slightly spiral structure (chirality). This causes a problem with operating AODs with 
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light propagating close to the optic axis. Within about 10 degrees of the axis there is a 

transition from linear polarisation to circular polarisation on axis and at intermediate 

angles the eigenmodes are elliptical. This is illustrated in Figure 3.2.  

Ordinary 
waves left 
handed

Extraordinary 
waves right 
handed

 
Figure 3.2 Polarisation ellipsoids illustrating the state of polarisation of the two eigenmodes of 

TeO2 as propagation direction varies close to the optic axis (vertical black line). The blue lines 

are the same pairs of latitude and longitude lines showing the two index surfaces as in figure 3.1. 

The circular blue pair of lines corresponds to the 3 degree off axis latitude line shown in figure 

3.1. Ordinary eigenmodes are all left hand polarised (green) and the extraordinary  (higher 

index,  or ‘slow’ ) waves are all right hand polarised ellipses (red). Exactly on axis the waves are 

circularly polarised 

 

 The e-wave in standard left handed crystal TeO2 has a slightly higher index (slow 

wave) than the o-wave. If you launch linearly polarised light along the 001 crystal 

axis of TeO2 it splits into two equal intensity  propagating circular waves, the right 

handed e-wave and left handed o-wave (red and green circles on axis in Figure 3.2). 

At the exit to the crystal these interfere to produce a linearly polarised light wave, but 

its polarisation has rotated because of the difference in phase velocity of the 

eigenmodes. At 800 nm this optical activity produces 48.5 degrees of rotation per mm 

of crystal (Xu and Stroud 1992), p620. As the propagation angle off axis increases so 

the ellipticity of the eigenmodes increases rapidly so that by 4 degrees off axis at 

800nm wavelength the polarisation is nearly linear with only 15% ellipticity.  Note 

that the red extraordinary wave always has the long axis of its polarisation ellipse 

aligned radially to the optic axis and the ordinary mode is aligned circumferentially. 
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Figure 3.3 The ellipticity varying from 1 (circular polarisation) to 0 (linear polarisation) as wave 

vector angle off the optic axis θ increases. Also shown is the intensity of  an eigenmode when 

excited by external linear or circularly polarised light as a function of off axis angle θ . Modified 

from (Yano and Watanabe 1974). The red line shows intensity of light coupled into an eigenmode 

from linearly polarised incident wave with its long axis of ellipticity parallel to the incident 

polarisation as a function of off optic axis angle θ.   

 

  Figure 3.3 modified from (Yano and Watanabe 1974) plots the ellipticity varying 

from 1 (circular polarisation) to 0 (linear polarisation) as wave vector angle increases.  

As shown in the figure, coupling efficiency into the eigenmodes from pure linear or 

pure circular polarisation waves varies rapidly with ellipticity. Coupling with high 

efficiency into significantly elliptical or circular polarisation from linear requires 

careful use of waveplates which increase optical system cost and complexity 

(Fukumoto, Kawabuchi et al. 1975).  The red line shows that coupling from (and to) 

linearly polarised external waves is better than 95% providing the off axis angle θ is 

greater than 4 degrees and the linear polarisation is aligned to the long axis of the 

ellipse. This may require no waveplates if the alignments are fortuitously correct or 

one half wave plate to adjust the linear polarisation direction. 

 

The remarkably high figure of merit for TeO2 was found by (Uchida and Ohmachi 

1969). It was however (Warner, White et al. 1972) who first pointed out that unusual 

index surfaces of TeO2 could be used to make a deflector with a much lower 

operating power than any previous AOD. These devices operated with incident and 
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diffracted waves propagating within a few degrees of the optic axis with light close to 

circular polarisation. This is illustrated in Figure 3.4.   This figure is now a wave 

vector diagram rather than an index surface diagram. Wave vectors diagrams are 

widely used for AOD design (see Figure 3.10 for definition of wave vectors). The 

laws of quantum mechanics determine that within a precise amount of uncertainty, the 

momentum vector (proportional to wave vector) of the incident wave, plus the 

momentum vector of the acoustic wave equals the momentum vector of the diffracted 

wave. The additional constraint is that the optical wave vectors must lie on the 

appropriate index surface. Since wave vector magnitude is proportional to the material 

index, the index surfaces on a wave vector diagram are the same shape as on an index 

surface diagram. 

 
Figure 3.4 Wave vector diagram of an early experimental AOD similar to (Warner, White et al. 

1972) showing incident and diffracted optical wave vectors (black arrows) coupled with an 

acoustic wave vector (red arrow) . The axes (not shown) here represent wave number. (The 

number of waves/cm in the material . This is proportional to index). The acoustic wave is 

propagating very close to the <110> direction (see figure 3.1). The insert shows that the right 

hand incident light wave vector is an extraordinary wave with its polarisation shown as the red 

ellipse above. The output wave vector is an ordinary wave (green ellipse). 

 
Note that this acoustic vector is closely tangential to the ordinary index wave number 

surface that the diffracted output wave moves along as drive frequency is varied. This 

means that even for a fixed direction input optical wave vector and fixed direction 

acoustic wave, a wide range of output angles can be obtained with only a small error 

between the sum of the incident and acoustic waves and the diffracted vector which 
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must be on the ordinary index wave number surface. This is the primary reason that 

the device has high efficiency over a wide drive frequency range. 

 

There are two problems with this design of AOD however. Firstly, as the acoustic 

frequency is varied in order to vary the length of the red acoustic wave vector and the 

direction of the diffracted optical wave vector, the output wave polarisation ellipticity 

changes rapidly with output angle.  Secondly, as shown in Figure 3.5 at high acoustic 

drive levels there is an unwanted secondary optical coupling.   

 

 
Figure 3.5 Wave vector diagram of an AOD with output wave vector on the optic axis.  Insert : 

At high acoustic drive power a secondary optical coupling occurs to the symmetrically placed 

extraordinary index surface on the far side of the optic axis via the same acoustic wave (dashed 

red vector and it produces a wasted secondary output diffracted light wave (dashed black wave 

vector). This produces a sharp dip in AOD efficiency at the mid band known as the mid band 

degeneracy dip. 

 
However, the problem reported in Warner is that when the output vector  is as shown 

on axis there is a second order coupling possible between the acoustic wave vector 

and the extraordinary index surface as shown. At high drive power this second order 

coupling produces a sharp ‘mid-band degeneracy’ dip in efficiency. 
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Standard AOD design 

It was (Yano, Kawabuchi et al. 1975) who  first proposed the ‘acoustically rotated’ 

design of TeO2 deflector widely used today.  

 

Direction of crystal rotation

 
 
Figure 3.6 Wave vector diagram of an ‘acoustically rotated’ design of AOD. (Yano, Kawabuchi et 

al. 1975). It is known as acoustically rotated because, compared to earlier designs, in 

manufacture, in order to polish the AOD surfaces, the crystal has been rotated in the direction 

shown by the blue arrow which is in a plane including the acoustic wave vector. In this case the 

incident extraordinary wave vector is more than 4 degrees off the optic axis and hence is nearly 

linearly polarised (red ellipse). The output vector is even further off axis (green ellipse). The 

dashed red arrow shows where secondary acoustic wave vector would couple. Because of the 

acoustic rotation, this vector is far from intersecting the extraordinary index surface and hence 

there is a negligible midband dip. 

 

 

 The wave vectors of Yano’s acoustically rotated AOD is shown in Figure 3.6. 

Typically the crystal is rotated by about 5 degrees so that the incident and diffracted 

polarisations both become nearly linearly polarised (and hence easy to couple to with 

high efficiency) and the mid band degeneracy does not occur because, as shown by 

the extended dashed red line, the extraordinary index surface is no longer in the right 

position to couple to a single added wave vector.  For these reasons the acoustically 

rotated AOD design is the most common form of TeO2 AOD.  
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There is however a price to pay. Note in Figure 3.6 that the acoustic wave vector now 

no longer lies very close to the <110> direction. It too has been rotated by about five 

degrees with respect to the crystal axes. In order to understand the effect this has on 

acoustic wave propagation it is necessary to understand the acoustic equivalent of the 

optical index surface which is known as the acoustic slowness surface. 

 

a

b c

 
Figure 3.7 Acoustic wave propagation in TeO2., modified from ((McLoed)) illustrating the 

remarkable anisotropy of acoustic wave propagation. a) The 3D acoustic wave vector surfaces 

(slowness surfaces) show that in the shear mode the velocity slows to 616 m/s in the <110> 

direction but speeds up rapidly for angles away from <110>. As the acoustic vector is tilted off 

the 110 direction, the energy in the acoustic beam walks off at an angle about 11 times greater 

than the phase velocity tilt angle.  So, as shown in b) and c), a 2.6 degree phase velocity tilt angle 

produces a walk off angle of 27 degrees. Diffraction is also enhanced remarkably as can be seen 

by the wide diffraction edge fringes at the edges of the computed acoustic diffraction propagation 

pattern in diagram c).  

 

Figure 3.7 a) shows the acoustic slowness surfaces for TeO2. It has three possible 

acoustic polarisations. The shear mode has a remarkably slow speed of propagation 
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(616m/s) along the <110> direction. This is largely responsible for the high acousto 

optic figure of merit of the material. However as tilting the acoustic wave vector 

causes a rapid increase in propagation speed this results in the  unusual anisotropic 

walk off propagation of acoustic shear waves with wave vectors near the <110> 

direction b)and c). For the five degree acoustically rotated crystal the walk of angle of 

the acoustic wave is 55 degrees. This results in the top view of a standard AOD 

oriented for horizontal deflection as shown in Figure 3.8. 

 

 

High efficiency 
scan angle 
+/- 20 mrad

Acoustic Poynting
Vector 55 degees

<001>

Acoustic 
phase 
vector angle 
5 degrees

Optic Axis<110> Incident wave vector
Diffracted wave vector

Acoustic transducer  
Figure 3.8 Top view of a standard commercial Acousto–Optic Deflector oriented for horizontal 

deflection showing the typical 5 degree acoustic rotation of the polished crystal faces with respect 

to the <110> and <001> crystal axes. For the acoustic wave this results in a 55 degree walk-off 

angle (Poynting Vector).    The acoustic wave is shown by the thin black horizontal lines 

propagating in a very skew ( 55 degree off axis) direction as it leaves the acoustic transducer at 

the bottom left of the figure. The thin vertical black arrow shows the direction of the normal to 

the acoustic transducer ( and hence the acoustic wave fronts) and shows that the acoustic wave 

vector is angled at 5 degrees to the <110> crystal direction. The thick black near horizontal 

arrows show the typical input optical and diffracted optical output wave directions along with 

typical output scan angle. The red arrow highlights the <001> direction of the crystal optic axis 

referred to in later figures. 

 
Figure 3.8 shows a slightly idealised view of the top view of a standard commercial 

AOD oriented for horizontal deflection. The acoustic and optical wave vectors can be 

compared to the 3D wave vector diagram in Figure 3.6.  The only confusing point is 

that the acoustic wave vector direction in Figure 3.8 is shown 180 degree rotated and 

not to scale with the optical wave vectors for compactness and clarity of the figure. 
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This design of AOD is optimised for maximum high efficiency scan angle often 

greater than +/- 20mrad.(1 degree = 17mrad). The high walk off angle results in the 

crystal being approximately 3 times longer than the optical aperture of the crystal  

(32mm long for 9mm aperture is a widely used commercial design.) 

Optic 
Axis tilted at 5 
degrees

Entrance face 
viewed normal to 
the facet

Side view showing
transducer

Sound wave 
tilted at 55 
degrees

Optic axis
approximately 
normal to 
facet 

a

b c

join

 
Figure 3.9 3D engineering orthographic projections of a practical commercial AOD. The dashed 

lines indicate where a 2D paper drawing could be folded around the 3D AOD.  The AOD surfaces 

are a) top surface (for a horizontal plane deflector), b) front entrance surface, c) side view 

showing the transducer as a rectangle near the front entrance face.  The face of the AOD 

opposite the acoustic transducer is polished at an odd angle and bonded with acoustic absorbing 

bond to a heat sink. The odd angle of this surface causes any unwanted reflected acoustic wave to 

bounce around inside the crystal harmlessly until dissipated. The red arrow shows the three 

projections of the optic axis. For this standard AOD design, viewed from the direction normal to 

the facet (b), the tilt of the optic axis appears horizontal so the extraordinary incident wave is 

horizontally polarised and the ordinary diffracted wave is vertically polarised.  

 

In order to understand the input and output polarisations of an AOD, it is useful to be 

able to picture the direction of the optic axis within the AOD so that polarisation can 

be related to the polarisation diagram of Figure 3.2. For the standard acoustically 

rotated AOD, the nearly linear polarisation horizontal polarisation of the input and 

and nearly linear polarisation of the output optical waves is easy to understand from 

the 3D orthographic engineering drawing view of Figure 3.9. The orthogonal linear 

input and output polarisations are convenient and practical as no extra components are 

needed to make an XY deflector pair. The 90 rotation of the X output polarisation is 
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ideal to feed into the 90 degree rotated Y deflection crystal. Such pairs are used for 

2D scanning laser beam applications such as laser TV projectors and industrial and 

military laser pointing and scanning systems. 

 

Acceptance angle limitations of AODs 

It is apparent from diagrams such Figure 1.12 that for the AOLM application the input 

acceptance angle of the AOD would ideally be as large as the output scan angle so 

that it was unlikely that the standard AOD design, highly optimised for a fixed input 

beam would be the best solution. In my initial contact with manufacturers I found that 

the details of the AOD design are, as you might expect proprietary, and that getting 

access to people with sufficient design knowledge to make a custom design is 

difficult. In order to be able to have knowledgeable discussions with the 

manufacturers I decided to develop a computer model of the diffraction efficiency of 

an AOD based on the wave vector model using the equations given in (Goutzoulis, 

Pape et al. 1994). 

 

Results of modeling of commercially available AODs 

Figure 3.10 shows a detailed wave vector diagram of an AOD and the equations for 

the magnitude of the wave vectors.  
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Wave vector model of AOD performance 
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Figure 3.10 Wave vector model of acousto-optic deflector. The black optical incident and 

diffracted optical waves  have indices as defined in the figure.  As the acoustic drive frequency is 

varied so the length of the acoustic wave vector varies (red vector). Its direction is fixed by the 

angle of the acoustic transducer.  The blue optical diffraction vector always meets the output 

wave vector on the ordinary index surface. As the drive frequency varies so the diffracted output 

wave angle 2φ  varies over the range indicated by the dotted line.  

 

I found that by using the standard design and putting the angular acoustic beam width 

as an unknown variable I could reproduce the characteristic double peaked efficiency 

curve given by manufacturers. 



 96

7.5
8

8.5
9

9.5
10

10.5
11

x 10
7

0.115

0.12

0.125

0.13

0

0.2

0.4

0.6

0.8

1

Drive Freqency (Hz)

Simulation of one axis of AA XY 400 

Incident light direction (rad)

D
iff

ra
ct

io
n 

ef
fic

ie
nc

y

Limiting Factor

 
Figure 3.11 Computer model of  a standard commercial AOD using equations from (Goutzoulis, 

Pape et al. 1994). Each different coloured line shows the coupling efficiency vs. drive frequency 

for a particular angle of incidence of the input light beam.  The double headed arrow labelled 

limiting factor highlights the fact that the narrow range of permissible angles of incidence is a 

limiting factor in AOLM system design.  

 

 This curve of efficiency vs. drive frequency is shown in the 3D plot of Figure 3.11. 

The bold green curve matched the published efficiency curve of an AA 

Optoelectronic SA XY400 device. As the acoustic drive frequency in Figure 3.10 is 

varied the length, but not the direction, of the red acoustic vector changes. It is clear 

that for the chosen acoustic vector direction there are two drive frequencies where the 

acoustic vector exactly coincides with the ordinary wave vector surface and results in 

maximum efficiency. In between those two frequencies the acoustic vector is not 

exactly matched to the diffracted optical vector in the 001 direction. This produces a 

dip in efficiency between the two peaks because the larger the mismatch the greater 

the drop in efficiency. Outside the two maxima the index surface moves away rapidly 

and coupling efficiency drops rapidly.  The overall shape of the curve depends on 

how rapidly efficiency drops with acoustic angle mismatch; that in turn depends on 

the angular spectrum of the acoustic wave. That depends on the diffraction pattern of 

the acoustic wave leaving the transducer. The acoustic angular spectrum is, as you 

might expect from standard diffraction theory, inversely related to the length of the 

transducer in the <001> direction. The correct equation allowing for the anisotropic 

acoustic propagation is given in (Goutzoulis, Pape et al. 1994).  When I adjusted the 



 97

acoustic angular width to match the efficiency curve (green plot in Figure 3.11) I 

found that the input acceptance angle shown in Figure 3.12a) was only 3 mrad, much 

smaller than the desired target of 6-12 mrad. I showed simply by increasing the 

acoustic angular width that the acceptance angle could be increased to 10mrad as 

shown in Figure 3.12 b.  
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Figure 3.12 Computed efficiency plots showing a) a rotated view of the computed and fitted 

efficiency plot of the standard commercial AOD from the previous figure. This shows more 

clearly that the input acceptance angle is only 3 mrad and b) the effect of increasing the angular 

spread of the acoustic waves in increasing the acceptance angle. 

 
However the problem with doing this is that it would require a 3.3 fold reduction in 

transducer length in the 001 direction. This would reduce the acoustic to optical 

interaction length by the same proportion and require that the acoustic power be 

increased by a large factor to compensate. I found in conversation with the 

manufacturers that large aperture AODs were already using several Watts of acoustic 

drive power and that heating and non-linear acoustic effects prevented the increase in 

acoustic drive by a significant factor. At constant acoustic drive power, the equation 

for efficiency vs. transducer length is given in (Goutzoulis, Pape et al. 1994). By 

fitting to commercial data at one point I produced the efficiency curve vs. transducer 
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length plot of Figure 3.13. 
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Figure 3.13 Plot of diffraction efficiency for an AOD model with approximately 3W of drive 

power showing how efficiency drops as the input acceptance angle increases. Increased 

acceptance angle is achieved by decreasing the length of the acoustic transducer in the direction 

of propagation of the optical beam. The decreased length reduces the length of the acoustic to 

optical interaction in proportion so the coupling efficiency drops. 

 
This figure shows that there is strong conflict between high efficiency and large input 

acceptance angle and that this is one of the most important design trade-offs in the 

overall system design. 

 
 

 

The effect of high acoustic wave walk-off angle on AOD focusing 
aberration (coma)  

Before progressing with designing and procuring AODs I was very concerned about 

another aspect of the standard AOD design, namely the large walk off angle of the 

acoustic wave. For the deflection of an input beam into a parallel output beam by a 

fixed or slowly scanning drive frequency it is clear that the large acoustic walk off 
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angle has no particularly adverse effect apart from increasing crystal thickness. For 

the AOL application however where a chirped RF drive causes a lensing effect it is 

well known that if you tilt the plane of a focusing or defocusing  lens it produces the 

aberration known as coma in the focal spot.  

 

To study this effect I built a series of models using the Zemax (zemax.com) optical 

design program which is well suited to this type of investigation. In preliminary 

studies I found that even a 45 degree walk off angle could produce an 8 wavelength 

path length difference aberration under strongly focusing conditions. Since we would 

like to form a diffraction limited spot this implies that the target wavefront path length 

difference across the aperture should be less than a quarter wavelength. I investigated 

ways to improve the aberration by tilting the output facet of the AOD, but although 

this greatly reduced the coma, it introduced severe practical difficulties such as 

unwanted deflection of the beam and a new source of chromatic aberration from the 

prism shaped AOD crystals. I then studied Zemax models of a 20 degree walk off 

angle and found that it was a very great improvement and that for scan angles in the 

range I then studied, (up to AOD semiscan angle of 3 to 5 mrad) that it was quite 

possible to get diffraction limited imaging of focused spots with 90% Strehl ratio. The 

Strehl ratio is the ratio of the peak intensity of a point spread function to the 

maximum theoretical intensity if the optics were perfect diffraction limited optics. I 

therefore focused attention on discussions with manufacturers aimed at getting an 

AOD with only a 20 degree acoustic walk off angle. This would mean requiring the 

acoustic rotation of the crystal to be reduced to 2 degrees. 

Design of crystals with reduced acoustic rotation to minimise 
acoustic walk off angle 

This section describes the custom design of an AOD with a 20 degree walk-off angle. 

(Young, Ho et al. 1990) describe how a low acoustic walk–off angle AOD can be 

achieved whilst keeping the optical waves sufficiently off axis to have at least 80% 

linearly polarized eigenmodes. It is achieved by rotating the crystal at right angles to 

the ‘acoustic rotation’ direction by more than 3 degrees as shown in Figure 3.14.  
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Figure 3.14 3D wave vector diagram for a custom AOD. The main figure is rotated about the 

vertical optic axis compared to earlier figures so that it is clear that the 3 degree ‘optical rotation’ 

of the crystal axis with respect to the wave vectors is rotation about the horizontal <110> axis. It 

is called optical rotation because, in contrast to acoustic rotation (Figure 3.6) it does not alter the 

angle of the acoustic wave with respect to the <110> direction. In the inset the upper and lower 

complete blue latitude circles are, (as in previous figures) in the extraordinary and ordinary wave 

vector surfaces respectively and are 3 degrees and 10 degrees from the  optic axis. The longitude 

lines have been made semitransparent in order to highlight the new pair of blue ‘great circles’ 

that the input and output wave vectors touch. These are also in these wave vector surfaces and 

are optically rotated 3 degrees about the 110  axis. The incident wave vector has only 2 degrees of 

‘acoustic rotation’ but 3 degrees of ‘optical rotation’ so that the input and output optical wave 

vectors are more than 4 degrees to the optic axis and hence predominantly linearly polarised. 

The red and green ellipses indicate the approximate polarisation states of the incident and 

diffracted eigenmodes. 

 
For our custom design we chose a 3 degree ‘optical rotation’ in addition to a 2 degree 

‘acoustic rotation’. The resulting AOD design is shown in Figure 3.15 and Figure 3.16 
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Figure 3.15 3D engineering drawing of the custom designed crystal. The red line is the projection 

of the optic axis on each view.  a) top view of crystal oriented for horizontal deflection. The optic 

axis is normal to the entrance face. The side face of the crystal with the transducer is polished so 

that its normal is at 2 degrees to the <110> so that the acoustic wave walks off at 20 degrees as 

shown b) entrance face showing that in contrast to the standard acoustically rotated crystal 

(Figure 3.9) projection of the optic axis is vertical not horizontal and so that the input and output 

polarisations are as shown by the red and green ellipses.  c) side view showing transducer and the 

3 degree optical rotation.  

 

Figure 3.15 shows the basic optical and acoustic orientations of the crystal. The 

acoustic wave walks off at 22 degrees whilst the optical rotation results in the input 

extraordinary wave requiring approximately vertical polarisation as shown. 

 

Figure 3.16.shows that we also varied the transducer length depending on whether the 

crystal was to be used as the first AOD of the pair, in which case we wanted 

maximum efficiency irrespective of input acceptance angle, or wider acceptance angle 

at the expense some loss of efficiency (see Figure 3.13). 
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a)                                                      b)   
Figure 3.16  Top view of the custom designed AODs using optically rotated crystal alignment. We 

chose wide (4mm) transducers for the first crystal of each XZ or YZ pair as we wished to 

maximise efficiency and the input acceptance angle was not relevant. For the second transducer 

of each pair we chose 1.8 and 2.4 mm transducers adjacent to one another so that we could 

electrically switch between the two to experimentally determine the optimum trade off between 

efficiency and acceptance angle. (2mm shown here for simplicity). The input and output 

acceptance angles and scan angles we expected are shown in the diagram. 

 

Expected performance from computer models 

The normalised efficiency of the custom AODs is calculated using the equations for 

the refractive indices of the ordinary and extraordinary waves as a function of 

acoustic and optical rotation angle given in (Young, Ho et al. 1990), and a wave 

vector mismatch model for coupling efficiency (Goutzoulis, Pape et al. 1994). The 

results are plotted in Figure 3.17  



 103

 
Simulation of AOD efficiency 
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Figure 3.17 predicted efficiency of our custom designed AODs using the equations given in 

(Young, Ho et al. 1990). The horizontal axis is the AOD drive frequency. The vertical axis is the 

angle of the incident light. This is plotted it in terms of the drive frequency ‘fdr’ to a proceeding 

AOD. The coloured contours are therefore the normalised efficiency expected from the second 

AOD with the drive to the first AOD at the frequency defined on the vertical axis. a) is modelled 

assuming a 3.6mm transducer length, b) a 1.8mm transducer length. In both AODs the incident 

light angle was adjusted to centralise the efficiency plot with a 35MHz centre frequency. Note the 

normalised efficiency is 1 at maximum irrespective of the absolute efficiency at this drive. The 

plots do not therefore show the reduced absolute efficiency of the narrower transducer. 

 

 In Figure 3.17 the horizontal axis is the AOD drive frequency. These plots are 

therefore the normalised efficiency expected from the second AOD with the drive to 

the first AOD at the frequency defined on the vertical axis. The plot is then in the 

same format as Figure 2.22 and therefore can be used for computing the best miniscan 

drive parameters for focusing in a particular plane.  a) is modelled assuming a 3.6mm 

transducer length, b) a 1.8mm transducer length. Note that the narrower transducer 

allows approximately twice the drive frequency range for the first AOD before the 

efficiency drops to a particular level. This is a direct measure of the increased 

acceptance angle of the narrower transducer.  Design work of this type gave us 

confidence that the optically rotated design could be a satisfactory basis for the 

deflectors for the AOLM. It also gave us a basis for a mathematical model of the 

complete system that we used for overall system design optimisation. This is 

discussed at the end of this chapter after first discussing the main fundamental 

limitations and aberrations of the AOD microscope which also needs to be understood 

to make such a model at least approximately realistic. 
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Chromatic aberration of AODs, its effect on point spread 

function and a novel proposed solution 

The chromatic aberration caused by AODs and why it is a problem 
for 2-photon microscopy 

Figure 3.18 shows a diagram of an XZ AOD pair in the AOLM. As discussed in 

Chapter 1, the spectral width of the ultra short pulses from a  Ti-Sapphire laser are at 

best transform limited with a typical spectral width of 10.6nm for 100fs pulse stream 

at 800nm centre wavelength. The basic equation (1.1) for deflection shows the 

deflection is proportional to wavelength.  The AOD therefore acts as a spectrometer 

as well as a deflector. Instead of focusing the light to a diffraction limited point, the 

point spread function (psf) is stretched with the short wavelength components of the 

light at the inner (less deflected) edge of the psf and the long wavelength components 

at the outer edge. As illustrated in the figure, the chromatic aberration is a 3D effect 

with the red component deflected through larger angles than blue and hence for 

converging light being more strongly focused as well as simply deflected through a 

larger angle off axis.  

AOD2

AOD1

 
Figure 3.18 Diagram to illustrate the severe chromatic aberration of AOD deflectors. Since the 

basic equation for the diffraction angle of an AOD is proportional to wavelength, the longer 

wavelength components of the laser input beam are diffracted through larger angles.  

 
In order to calculate the effect of these and other aberrations on the 2-photon point 

spread function it is first necessary to understand how the 2-photon point-spread 

function can be computed and measured. 
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Derivation of resolution of microscope in terms of the point 

spread function (psf) of the focal spot across the field of view 

The beam waist of the Ti-Sapphire laser light coming to a focus beneath a water 

immersion objective is illustrated in Figure 3.19.  
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Figure 3.19 Diagram to illustrate the laser beam focusing beneath a water immersion objective 

lens, how it forms a single photon illumination beam waist (in red) and a two photon beam waist 

(in green). Also shown are fluorescent beads is randomly scattered in 3D by mixing in an agar 

gel. Experimental measurements of 2-photon point spread function (psf) are made by scanning 

the focal spot over the beads. Since the beads are much smaller than the emission or illumination 

wavelength, ( 0.2 μm cf 0.5μm or 0.8μm respectively), the experimental psf ,which is the 

convolution of the real psf with the bead dimensions, is only slightly larger than the real psf. 

 

 

 The total fluorescence is found by integrating this fluorescence over the complete 

volume near the focus. The 3D shape of the 2-photon point spread function (psf) can 

be calculated and if saturation effects are ignored, the 2-photon excitation is 

proportional to the square of the illumination optical intensity at each point in the 

volume.   As shown in green in Figure 3.19, this beam waist is therefore appreciably 

smaller in dimensions than the Ti-Sapphire single photon beam waist (shown in red). 

The detailed theory for such calculations is complex ((Higdon, Torok et al. 1999)), 

however for the present purposes a sufficiently accurate model can be obtained by 
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using the approximations given by (Zipfel, Williams et al. 2003) who give equations 

for the dimensions of Gaussian approximations to the 2-photon excitation point 

spread function. These are given in terms of the Full Width Half Maximum (FWHM) 

dimensions in the XY plane and parallel to the Z axis. The 3D dimensions are 

inversely related to NA in a similar manner to the way 3D FOV is related to NA. At 

NA= 0.8 at 800nm wavelength, the theoretical psf in the XY plane is 0.37 μm FWHM 

and in the axial, Z direction the Gaussian fit to the 2 photon psf is 1.89 μm FWHM. 

In order to measure the psf of a 2-photon microscope it is standard practice to use sub 

wavelength fluorescent beads. As we wanted to measure this resolution not in one 2D 

plane, but across the whole volume of the field of view we dissolved beads in an agar 

gel as shown diagrammatically in Figure 3.19. The microscope is then driven to scan 

focal spot across the beads in 3D as indicated. The collected fluorescence data is then 

used to reconstruct the image which is the convolution of the actual psf with the 

intensity profile of the bead concerned.  In the XY plane, at Z=0, I have assumed that 

the simplified equation for the radial length of the measured psf is then given by the 

convolution of the Gaussian approximation to 2-photon diffraction spot intensity 

distribution, the Gaussian approximation to the chromatic aberration intensity 

distribution, and the Gaussian approximation to the bead dimensions.:- 
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               equation 3.1 

Where w is the FWHM of the 2-photon psf as given in (Zipfel, Williams et al. 

2003), λ is the laser wavelength, λΔ  is the FWHM of the spectral width of the laser, r 

is the radius of the psf from the centre of the field of view and b the Gaussian 

equivalent FWHM of the bead . The middle term in this expression ⎟
⎠

⎞
⎜
⎝

⎛ Δ
λ
λ

2
r   is the 

chromatic aberration component of the convolution. It is proportional to the radius of 

the psf from the centre of the field of view because at the centre there is no chromatic 

aberration and proportional to the FWHM of the spectral width divided by the 

absolute wavelength because the AOD is acting as a spectrometer with deflection 

linearly propotional to wavelength . The factor of 2  reduction in chromatic 

aberration width takes into account the squaring of the Gaussian intensity distribution 

by the 2-photon luminescence non-linearity.  At very large chromatic aberration, so 
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that the diffraction spot width w and bead dimension b are negligible equation 3.1 

approximates to ⎟
⎠

⎞
⎜
⎝

⎛ Δ
λ
λ

2
r  which is, as expected, a Gaussian with a FWHM 21  times 

the proportional spectral width of the laser spectrum times the  radius of the psf from 

the perfect compensation point . The use of convolution for adding optical 

aberrations, rather than linear addition is standard optics (Salome, Kremer et al. 2006; 

Otsu, Bormuth et al. 2008).  The effect of this chromatic aberration in the Z=0 plane 

is illustrated in Figure 3.20. 

 

lr
 

Figure 3.20 The effect of chromatic aberration on the psf  across the Z= 0 (natural focal plane) of 

the microscope according to equation 3.1.  r is the radial distance from the centre of the field of 

view and l the FWHM Gaussian  fit to the long axis of the elliptical point spread function. The 

long axis is always aligned radially. 

 

In the Z axial direction a similar argument results in the equation of the effect of 

chromatic aberration on the width d of the Z psf predicted by (Zipfel, Williams et al. 

2003) of :- 
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                equation 3.2 

Where z is the axial displacement of the psf from the centre of the field of view.  

In this equation I have included the effect of spherical aberration SA which is 

expected to dominate over chromatic aberration for large NA microscope objectives 

(Keller 1995) 

 

Note that these equations predict that both the Z and XY components of chromatic 

aberration are simply proportional to the distance from the centre of the field of view 

where chromatic aberration is cancelled out to zero. The chromatic aberration is 

therefore radial in 3D space with the chromatic elongation a maximum along the 3D 

radial direction. It is a 3D form of ‘magnification chromatic aberration’, that is to say 

the aberration can be simply characterised by saying that the long wavelength image 
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is larger than the short wavelength image. This type of magnification chromatic 

aberration is well known in 2D as it produces coloured fringes around high contrast 

objects in cheap binoculars (Hecht 2001). It is obvious to consider if there are any 

optical means to correct for this aberration. I initially considered a wide variety of 

schemes based on single dispersive lenses that counteracted the chromatic aberration 

of the Acousto-optic lens. I found with all these schemes however that it might be 

possible to compensate the XY chromatic aberration in one particular 2D plane, but 

because the additional dispersive lens itself produced a large axial chromatic 

dispersion, it was impossible to compensate the field of view centred on zero axial 

chromatic aberration at the natural focal plane of the objective. 
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Novel proposed solution using diffractive optical elements in a 
telecentric relay 

I eventually discovered a solution to the chromatic aberration problem, whilst the 

solution is not perfect, it goes a long way to solve the problem.  

Object

Projected 
Image  1

Dispersive 
lens with 
dF/dλ
strongly 
negative

Dispersive 
lens with 
dF/dλ
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positive

Projected 
Image  2

 
Figure 3.21 Concept of chromatic aberration correction in 3D using highly dispersive lenses in a  

telecentric relay configuration. Consider a hemispherical object with a point object at is centre of 

curvature as shown on the left. The lens projects an image of this object as shown. If the lens has 

a high negative dispersion of focal length with wavelength the longer wavelength components 

shown in red produces a smaller image closer to the lens than the shorter wavelength components 

( i.e. the red image is less magnified and nearer than the blue). If you then place a second 

dispersive lens, this time with a positive dispersion of focal length with wavelength, this magnifies 

the blue image less than the red. Because of the  positioning of  the red and blue projected images 

1, it is clear with the correct magnitude of dispersion for lens two , the red and blue hemispheres 

of image 2 can become concentric again. Overall the dispersive telecentric relay formed by the 

pair of lenses magnifies the longer wavelengths less than the shorter wavelengths, but produces 

no linear axial chromatic dispersion at the centre of the field of view. This is the opposite of the 

chromatic aberration beneath the objective of the AOLM with no compensation and therefore a 

promising candidate for correcting the inherent aberration of the AOLM. Note that for clarity 

this diagram does not show the extra stretching in Z that the image would experience if  it were 

actually magnified as shown here.  

 

Consider Figure 3.21 . In order to compensate for the chromatic aberration produced 

by the AOLM it is necessary for the compensating optics to project the aberrated field 

of view with a lower 3D magnification for the long wavelength light than the short 

wavelength light. In addition there must be no introduced chromatic aberration at the 

centre of the field of view. The solution I came up with involves the use of two highly 

dispersive lenses forming a telecentric relay. The first lens has a negative dispersion 
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of focal length vs. wavelength so that the long wavelength component of the image is 

closer to the lens and less magnified than the short wavelength component. Thus 

although it is starting to correct the magnification aberration, it has introduced a large 

axial aberration. This is evident from considering the shape of a 3D projected image 

of a hemisphere and central point in red (long wavelength) and blue (short 

wavelength). The large axial displacement of both images at projected image 1 is 

typical of the problem caused by single dispersive lens correction. The second 

telecentric relay lens continues to magnify the longer wavelengths by less than the 

short, but this is despite its positive dispersion of focal length with wavelength. This is 

because the longer wavelength image 1 is further away from the second lens than the 

short wavelength image. The positive dispersion is chosen to exactly compensate the 

axial dispersion at the centre of the field of view so that, at all wavelengths, the centre 

of the sphere is imaged onto the same point in projected image 2. The compensator 

then has magnified the long wavelength component less than the short wavelength 

and the magnification chromatic aberration is centred on the natural focal point 

representing the centre of the field of view. To a first approximation therefore this 

compensator has the opposite chromatic aberration to the AOL and can be used as a 

compensator.  

 

Models of 3D aberration field 

To evaluate the performance of this new proposed method of correcting the 

magnification chromatic aberration of diffractive optical elements such as the AOL, I 

developed a Matlab model based on geometric optics that calculates the projected 

field of view at two wavelengths representing the upper and lower wavelengths of the 

FWHM Gaussian fit to the spectral width of the laser. This gave a direct measure of 

the chromatic aberration in XY and Z. The model also calculates the field of view for 

given fixed scan angle limits and computes the total number of resolvable voxels 

(NRV) the microscope can image in 3D. This number of resolvable voxels is based on 

voxels of dimensions equal to the XY and Z FWHM dimensions of the psf at that 

point in 3D space calculated from equations 3.1 and 3.2. The voxels are only counted 

as part of the NRV if the energy density at the voxel is above a preset 2-photon 

threshold (1 MW/cm2 in these calculations). The NRV is thus a useful overall figure 

of merit for such a 3D microscope. The dimensions of each resolvable volume in the 
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field of view are computed using the equations above.   The model however does not 

include the effect of spherical aberration which for a high NA final objective would 

almost certainly mask the chromatic effects calculated here at large values of Z 

(Higdon, Torok et al. 1999) . The computed number of resolvable voxels is then 

plotted as a function of the strength of the chromatic aberration correction as shown in 

Figure 3.22. The parameter C is a dimensionless parameter which is a common 

multiplier to the dispersion of each lens as defined in the figure.  

C
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Figure 3.22 Diagram to define and illustrate the effect that varying the compensation factor C 

has on the number of resolvable voxels (NRV) it is possible to scan in 3D. The model computes 

the size of the psf and the power density for certain assumed laser power and optical train losses. 

It sets a threshold below which it assumed the power density is too low for two photon excitation. 

As the dispersion compensation improves so the psfs get smaller over a larger scan volume and 

the total number of resolvable points increases.   

 

The results show that the best compensation factor lies between 1 and 2 and that a 

four fold increase in the number of resolvable volumes is achievable. Note that this 

model assumes that irrespective of the scan angle the optical power out of the 

objective is constant (20mW in this case). The model does not take into account the 
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fact that large scan angles will reduce the power because wider acceptance angle 

lower efficiency AODs will be required. Nevertheless, the model can be used to 

understand the physics of the compensator by plotting how power density at the focal 

spot, which is reduced by chromatic aberration, varies across the 3D field of view. It 

is also possible to visually plot the direction in 3D space of the chromatic aberration. 

The results for C varying from 0-2 are shown in the next 4 figures. 
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Figure 3.23 Calculated chromatic aberration vector field and its effect on optical energy density 

for the case of no chromatic aberration compensation (C=0). The figure is a vertical cross section 

through a volume of just over 250 μm cubed representing the scan volume beneath an NA =0.8 

lens with 6mrad AOD semiscan angle. The dashed white line represents the sides of the cubic 

scan volume. The effect on a) the power density of the point spread function assuming a fixed 

total power after the objective, but power density varying because of the effect of chromatic 

aberration on the psf area at the focus. Note the size of the 1MW/cm2 orange power density 

contour is much smaller than the scan volume. If this is the two photon threshold the machine 

will only be useable inside this contour. In b) the blue points indicate the position of the focus for 

an array of scan positions at the short wavelength end of the Ti-Sapphire laser spectrum and the 

red tails the relative length and direction on the XZ plane of the chromatic aberration. Note that 

the chromatic aberration vector is always pointing radially away from the centre of the FOV. 

The number of resolvable detection volumes (NRV) is 11 million in this case. 
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Figure 3.24 The same plot as the previous figure but with a compensation factor set to C=1. Note 

the much shorter ‘quiver tails’  on the plot of chromatic aberration relative magnitude and 

direction. Note also that for this compensation factor there is perfect compensation of the axial 

(Z) chromatic aberration across the whole field of view, but the XY plane aberration is only half 

compensated. This results in vertical power density contour lines in a). Note however that 

1MW/cm2 contour lines include a much larger percentage of the volume and therefore the NRV 

is much larger at 32.5 million.  
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Figure 3.25 a) contour and b) chromatic aberration quiver plot for C=1.7. Note that the quiver 

plot shows slight over compensation in Z, (quiver tails pointing inward) and under compensation 

in the XY plane (small quiver tails pointing out at the very edge of the FOV). This compensation 

factor is however close to optimal. Note that the 1MW/cm2 contour lines are completely outside 

the 250 μm cube and this results  in maximising the number of resolvable voxels (NRV= 42 

million) . 
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Figure 3.26 a) power density contour and b) chromatic aberration quiver plot for C=2. Note that 

the quiver plot shows over compensation in Z, (quiver tails pointing inward) but perfect 

compensation in the XY plane. The compensation factor is however slightly larger than optimal. 

Note that the 1MW/cm2 contour lines are just on the edge of the 250 μm cube and this results  in 

the number of resolvable voxels (NRV= 37 million) . 

 

To understand the effect of this chromatic aberration correction in more detail, 

consider Figure 3.23 to Figure 3.26. These show vertical 2D XZ sections through the 

3D field of view using the Matlab model to generate a) power density plots and b) 

‘quiver diagrams’ that show the direction and relative magnitude of the chromatic 

aberration for an array of points covering the whole field of view. The blue points are 

the centres of the psfs at the short wavelength end of the FWHM of the laser 

spectrum. The end of the red lines represent the chromatic aberration to the long 

wavelength end of the spectrum. Note that the graphics exaggerate the absolute length 

of the aberration for clarity; however across each figure the relative length of the 

quiver vectors is accurate. Note that in Figure 3.23 which shows the case of zero 
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compensation, the aberration is, as expected, radial away from the centre of the field 

of view and gets larger in proportion to the distance from the centre.  

 

Figure 3.24 shows the same plot but the compensation factor C=1. This shows perfect 

axial (Z) compensation but under compensates in the X (and Y) plane. Figure 3.25 

shows the case of using a compensation factor C=1.7 to compensate the AOL induced 

chromatic aberration. The quiver diagram shows that there is slight over 

compensation of the chromatic aberration in Z that causes the longer wavelength (red) 

quiver tails to point inwards at large absolute values of Z focus, and that in the X (and 

Y) direction there is slight under compensation with the red quivers still pointing 

away from the centre of the field of view at large absolute values of  X. Overall 

however the shorter quiver tails in the compensated case shows that there is 

substantially less chromatic aberration over the whole field of view so the volume of 

each psf is smaller and the power density higher. There are therefore a greater number 

of resolvable points.  

 

Figure 3.26 for C=2 shows perfect compensation in the X (and Y) planes but over 

compensates in the axial direction. The conclusion from these results is therefore that 

the new design of chromatic aberration compensator can increase the number of 

resolvable volumes by a large factor (around four for this field of view and 2-photon 

energy threshold setting). However it is not perfect, being able to produce perfect 

axial correction for C=1 or perfect XY plane compensation for C=2 and with an 

intermediate optimum that maximises the NRV. The reason for these results is not 

difficult to understand. The corrector works by varying the magnification of the 

projected image rapidly with wavelength. For any lens system the axial magnification 

is the square of the linear magnification therefore the proportionate rate of change of 

axial magnification with wavelength is twice the value of its proportionate rate of 

change of tangential magnification. However, the aberration we are correcting from 

the AOL system has equal proportionate change of magnification in all 3D radial 

directions. It is tempting to deduce from this that is impossible to perfectly correct the 

chromatic aberration of the AOL in all three directions. (I would like to be proved 

wrong on this). 
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As it appears impossible to get perfect chromatic aberration compensation it seems 

very likely that any practical compensator will need to have adjustable compensation 

for instance for imaging fields of view with different shapes. Deep columnar objects 

would prefer C=1 and wide shallow objects would prefer C=2, generally in between, 

intermediate C would be optimum. A practical compensator must also be able to 

compensate despite the laser wavelength varying over its whole operating range say 

700-900 nm or 1000nm. This puts quite strong constraints on the design of practical 

optics.  

Design of a practical chromatic aberration corrector 

This section describes how an aberration corrector based on these principles can be 

designed given the constraints that it is necessary to operate over a wide wavelength 

range, (at least 700-900nm) and that it is desirable to be able to adjust the 

compensation factor C over the range 1-2. 
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Figure 3.27 First design of a practical compensator using diffractive optical elements (DOEs) 

combined with plano-convex or concave lenses of opposite sign and strength so the correction 

plate has no focusing power and can therefore be moved along the Z axis to vary the value of 

compensation factor C without affecting the  image relay effect of the rest of the compensator 

optics. This however only works well at one wavelength 

 
The first design I considered is shown in Figure 3.27. This splits up the function of the 

telecentric relay into two non dispersive standard relay lenses and introduces the 
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compensating chromatic aberrations by the use of separate compensation plates. 

These plates are designed so that at the central operating wavelength, e.g.850nm, the 

diffractive optical lens element (DOE) of which it is formed is exactly compensated 

by a conventional non dispersive lens so that it has no optical power. The first 

compensator plate has a positive (converging) DOE and a negative (concave) 

conventional lens. The second plate is the opposite way round as shown. The path of 

longer and shorter wavelength components of the laser light is indicated by the red 

and blue dotted lines in the figure. The higher NA and hence smaller magnification of 

the longer wavelength components is apparent after the final lens. 

 

The advantage of the compensator plates is that the compensation factor C can be 

varied over a wide range simply by adjusting the separation of the compensator plates, 

without needing to adjust the position of any of the other optical components. This is 

fine, but what if you wish to alter the centre wavelength? If you change nothing else, 

the magnification of the output beam diameter over the input beam diameter increases 

rapidly with increasing wavelength (and vice versa). To compensate for this at 

different centre wavelengths, it is necessary to make the outside converging  

telecentric relay lenses either replaceable, with a different focal length for each 

wavelength, or to use  telephoto lenses with adjustable focal length as shown in 

Figure 3.28.  

 



 118

D3 D4

L=lens
D=DOE
s=separation
d= diameter

s3s1 s2 s4 s5

d1
d3 (=d4)

At mid wavelength range, the compensator plates have zero power and 
the effective focal length of zoom 1= that of zoom 2 = s3

 
Figure 3.28 Diagram of the final design of zoom compensator which replaces each of the outside 

telecentric relay lenses with a pair of  weaker  telephoto lenses which by adjusting their 

separation  and position with respect to the compensator plates can compensate for the  changes 

in strength of the diffractive optical elements DOEs as the centre wavelength of the laser is 

adjusted over the 700-900nm range 

 

Using straight forward equations derived from a geometric optics model of the system 

it is possible to design a system that will operate over 700-900nm wavelength range 

and a compensation factor range of 1-2, at constant output /input beam diameter 

magnification of 1, simply by adjusting the axial separations of the lenses s1 to s5. 

The detailed equations can be found in our patent ((Kirkby, Silver et al. 20.03.2008)) 

and are summarised by the MatLab plots of Figure 3.29. 
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Figure 3.29 Plots for calculating a) the required effective focal length of telescopic lens 1 and 2 

and the required separation of the DOEs in the previous figure as a function of wavelength and 

b) the focal length and distance to the first lens of a telephoto lens as a function of the separation 

of the telephoto lens pair (each 125mm focal length).  

 

These designs formed the basis of the DOEs and lenses we bought in order to test the 

benefit of this kind of chromatic aberration correction. The key issue to determine 

experimentally is whether the chromatic aberration correction components give 

sufficient benefit to 2-photon efficiency to overcome the optical losses introduced by 

the additional optical components. The diffractive optical elements (DOEs) we 

purchased from Silios (silios.com) have about 80% transmission efficiency each so 

there is a 36% loss from these two elements alone. 

 

 

 

Temporal dispersion of AODs 

Magnitude of temporal dispersion in TeO2 and why it is a severe 
problem for 2-photon microscopes 

The large thickness of AODs has been a significant disincentive for the use of AODs 

in 2-photon microscopy because it causes a large chromatic dispersion effect on the 

pulse width of the pulses from the Ti-Sapphire lasers. Chromatic dispersion is 

measured in units of fs2/m. The effect of all the lenses in a typical 2-photon 

microscope is to produce about 13,000 fs2/m dispersion which spreads the 100fs 

pulses of the laser to about 300fs width. This is not too much problem as there is 
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usually plenty of laser power spare so that reduction in 2-photon fluorescence 

intensity can easily be compensated by increased laser power.  

 

 Each centimetre of thickness of TeO2 produces 6300fs2/m of dispersion at 700nm 

wavelength. Four conventional 9mm aperture, 30mm long AODs (Figure 3.30a) 

therefore produce 76,000 fs2/m of dispersion that broadens Ti-Sapphire laser pulses 

well into the picosecond pulse width range and increases the laser power required for 

2-photon luminescence by a large factor (3-10 times depending on initial pulse 

width). Even the thinner custom designed AODs (Figure 3.30 b) that we have chosen 

for this application have 38,000 fs2/m dispersion, enough to spread the 100fs laser 

pulses to 1.5 ps  pulse width as shown in Figure 3.31a . As the power budget for our 

3D microscope is marginal anyway, we decided that it was important to compensate 

for the AOD dispersion (and if possible the remaining microscope dispersion) so that 

pulse length at the specimen can be kept as short as possible and 2-photon sensitivity 

maximised. 
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Figure 3.30 Comparison of thickness of a) a typical standard commercial AOD for deflection 

(typically 9mm aperture) and b) the optically rotated design used here only 15mm thick for a 

15mm aperture. 

Compensation for temporal pulse dispersion using a prechirper 

The way in which a prism based prechirper precompensates the pulse leaving the 

prechirper so that after traversing the AODs the pulse is restored to close to its 

original pulse length is explained in Figure 3.31b. 
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Figure 3.31 The effect of chromatic temporal dispersion on a 100fs pulse of light at 800nm 

wavelength with and without precompensation. In a) there is no compensation for the high 

dispersion caused by the total thickness of the 4 AODs (60mm in our prototype system). As the 

pulse has a transform limited spectral width of 10.6nm, the different wavelengths travel at 

different speeds through the highly dispersive TeO2 of the crystals. The longer wavelength 

components travel faster and arrive first, spreading the overall pulse width to 1.5 ps, (fifteen 

times longer). The prism based prechirper b) uses prisms made of  fused quartz and polished at 

the Brewster angle for minimal reflection of correctly polarised light. The prism pair has 

anomalous (negative) dispersion to refract the short (blue) components of the spectrum along a 

shorter optical path than the longer wavelength (red) components. Although on the diagram it 

appears that the red light goes through a shorter path, this is its physical path length. The optical 

path length of the red light is actually longer because it passes through a much larger length of 

the high refractive index prism material. The pulse length of the pulse exiting the prechirper is 

1.5ps, but it has its short wavelength (blue) components first. When this pulse traverses the four 

AODs the AOD dispersion is balanced by the pre-compensation and the pulse width of the 

emerging pulse is returned to a figure close to the original 100fs.  

 

Few commercially available prechirpers exceed 15,000 fs2/m compensation. My 

colleague3negotiated with APE Berlin (http://www.ape-berlin.de/index_engl.html) 

and bought a customised prism based prechirper with folded optics that is capable of 

up to 56,000 fs2/m compensation, enough to pre-compensate for our four customised 

AODs and the microscope optics. Today it would be impractical or at least 

                                                 
3 Srinivas Nadella carried out the design and choice of manufacturer for the prechirper. 

http://www.ape-berlin.de/index_engl.html�
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uneconomic to obtain a pre-chirper that would precompensate for the much longer 

standard AODs so that the ability to prechirp is dependent on using the custom design 

AODs with a small walk off angle and much reduced thickness. Thus the practicality 

of incorporating a prechirper into the AOLM is an important second benefit of the 

custom AOD design. 

Models of overall system design and resulting Target 

Specification for AODs sent to prospective manufacturers  

This section discusses how the design information given in this chapter was combined 

together in a model of the overall system and used to make a choice of the key aspects 

of the specifications of the AODs. 

Model of overall system  
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Figure 3.32 A nomogram aimed at enabling the optimum design of AOD transducer length to be 

chosen for the second AOD in each XZ and YZ pair. This is computed by a Matlab model of the 

power losses in the complete optical train. Starting with the a range of laser output powers listed 

on the left and estimating the losses for each optical element, the power available at the focus can 

be estimated and plotted in the solid lines. The required power can be estimated from existing 

experimental data, we estimated 15mW for optical functional imaging at the centre of the FOV. 

At the edges, more power will be required because of aberrations.  
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Based on the models of the AODs and expected point spread functions described 

earlier in the chapter, I was able to make models of the complete system that could be 

used to help with choice of the AOD design. A nomogram to help with such choice is 

shown in Figure 3.32.  

 

This plots the expected optical power at the focus of the objective as a function of the 

semi-scan acceptance angle of the second AOD in each pair for a range of laser output 

powers. The model works by first assuming the total losses of all the other 

components in the system. This is quite problematic as there are a large number of 

optical components in series and by varying the assumptions made about the losses of 

each component it was possible to vary the overall transmission of the system from 

less than 1% to 10%. In this figure I have assumed 3% overall transmission excluding 

the loss of the 2 AODs whose efficiency alters as the acceptance angle is varied. The 

dashed lines on the plot then show the required power at the focus for sufficient two 

photon fluorescence for optical functional imaging. This is also quite problematic to 

estimate. As there is heavy scattering in brain tissue the depth that the laser beam can 

penetrate is dependent on the power available, so in that sense the more power 

available the better as it will allow imaging to a greater depth. Based on the power 

levels found to be required for 2D optical functional imaging (Koester, Baur et al. 

1999; Hopt and Neher 2001; Oheim, Beaurepaire et al. 2001) and personal 

communication with my colleagues4 we decided that a reasonable target would be 15 

mW at the centre of the field of view. This power level would have to increase at the 

edge of the field of view to allow for the effect of aberrations on psf size.  

This plot shows that it is reasonable to aim for an acceptance angle from the second 

AOD of each pair in the range 3-5mrad. It also shows that if you increase the 

acceptance angle even slightly beyond this figure the power falls off rapidly and there 

is the danger that there will be too little power for 2-photon fluorescence anywhere in 

the field of view. A second way of plotting the results from this model is shown in 

Figure 3.33 which shows the predicted number of resolvable volumes (NRV) as a 

function of the designed acceptance angle. 

                                                 
4 Emanuelle Chaigneau and Tomas Fernandez-Alfonso 
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Figure 3.33 Predicted performance of the complete system in terms of the total number of 

resolvable voxels (NRV) as a function of the semiscan angle chosen for the second AOD of each 

pair. The ‘threshold intensity’ for two photon emission is taken as 1MW/cm2. The dashed black 

lines are with compensation factor C=0 and the coloured lines are with C=1.7. Each plot 

represents a different optical power available from the laser. Today’s commercial lasers deliver 

about 3W of power, but the level is increasing with time. 

 

 The figure plots the number of resolvable voxels for a range of laser output powers 

both with and without chromatic aberration compensation. This shows very clearly 

the precipitous drop in NRV if the AOD is designed with too large an acceptance 

angle. This is slightly artificial as it is based on the assumption of a sharp threshold 

optical intensity below which there is no 2-photon emission. A more correct model 

would take into account that 2-photon efficiency is dependent on the square of optical 

intensity, so what would actually happen is that the speed of gathering photons would 

drop as the square of intensity, not quite such a precipitous cliff as shown.   
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Discussion: Model of design trade-offs affecting system power 
budget shows achieving full target specification difficult 

 

These results showed fairly early in the project that achieving the desired overall 

performance was going to be difficult. The field of view calculations showed that with 

the initial assumptions about the frequency drive limits of AODs we needed at least a 

semi-scan acceptance angle of 6mrad from the second AOD of each pair in order to 

achieve a 250μm cube scan volume beneath an NA=0.8 objective. The power budget 

nomogram, Figure 3.32, showed that with a 3W laser and reasonable estimates of 

optical system losses that it was risky to order AODs with more than 3-5 mrad 

acceptance angle. On the other hand the NRV plot of Figure 3.33 shows that 

providing the chromatic aberration correction is implemented it is possible to reach 6 

mrad scan angles with laser powers up to 12W or alternatively by paying careful 

attention to minimize the optical losses of every component in the system. (The best 

commercially available lasers have 3-4 W output powers today, but these figures are 

increasing slowly year by year.)  

 

For our first AODs we decided to hedge out bets and order AODs for the second of 

each pair with two different transducer widths so that we could switch electrically 

between the two and choose the optimum experimentally.  We prepared the 

specifications as shown in Table 3.1 and Table 3.2. We were cautious on acceptance 

angle and specified a minimum of 3 mrad semi-scan acceptance angle for the 

narrower of the two transducers on the second AOD of each pair and 1.5 mrad for the 

first transducer. The AOD s that were delivered had acoustic transducer lengths of 

approximately 3.6mm on the first AOD of each pair and 2.4 and 1.8mm for the two 

transducers on each of the second AODs of each pair. 
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Requirement Specification  for AOD X1 and AOD Y1 

Model No: 45035-15-2/3DEG-.8 See G&H quotation 7th June 2006 No 20060607/01 

 
Device/Parameter Minimum Comment 
Acousto–optic Deflector   
Configuration of use Two deflectors, one for  

for each X & Y axis 
 

Aperture size 15 × 15mm   
Depth of AOD crystal (light path 
physical length) 

15mm max expected  

Centre frequency 35 MHz Must be same as 
AODs X2 & Y2 

Deflection angle range5 +/- 2.9 mrad More preferred 
but not critical 

Frequency Range 35 +/- 2.11 MHz More preferred 
but not critical 

   
Resolution/time-BW prod 100  
Wavelength Range 750-880nm  
Transmission 95%  
Incident angle range +/- 1.5 mrad Not critical 
Diffraction Efficiency 750nm6 90%  
Diffraction efficiency  850nm 85% worst case  
Polarisation Lin/Parallel/perp  
Material TeO2  
Speed of sound determining 
deflection angle at a particular 
frequency 

619 m/s Must be same as 
AODs X2 & Y2 

Acoustic walk off angle 20 degrees  
Acoustic Drive power 3W  
Reliability > 2000hrs at full power  
Table 3.1 Requirement specification for the first AOD of each pair  

                                                 
5 With respect to incident beam measured in air for one AOD 
6 Over full range on incidence and deflection angles for one AOD  
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Requirement Specification  for AOD X2 and AOD Y2 

Model No: 45035-15-2/3DEG-.8-2TR  See G&H quotation 7th June 2006 No 20060607/01 
 
Device/Parameter Minimum with 

transducer 1 operating 
Minimum with 
transducer  2 
operating 

Acousto–optic Deflector with 2 
transducers for selectable 
acceptance angle 

  

Configuration of use Two deflectors for each 
X & Y axis 

 

Aperture size 15mm x 15mm 15mm x 15mm 
Depth of AOD crystal (light path 
physical length) 

16mm max  16 mm max 

Centre Frequency and bandwidth 35MHz 35MHz 
Resolution/time-BW prod 100 50 
Wavelength Range 750-880nm 750-880nm 
Transmission 95% 95% 
Deflection angle range7 +/- 2.9 mrad minimum +/-1.5mrad 
Incident angle range +/- 2.9 mrad minimum +/-1.5mrad 
Diffraction Efficiency 750nm8 75% worst case 90% 
Diffraction efficiency  850nm 65% worst case 85% 
Polarisation Lin/Parallel/perp Lin/Parallel/perp 
Drive frequency and range 35 +/-2.11 MHz 35 +/-1.05 MHz 
Material TeO2 TeO2 
Speed of sound determining 
deflection angle at a particular 
frequency 

619 m/s 619 m/s 

Acoustic walk off angle 20 degrees 20 degrees 
Acoustic Drive power 8W 4W? 
Reliability >2000hrs at full power >2000hrs at full 

power 
 
 
Table 3.2 Requirement Specification for the second AODs of each pair 
 
 

                                                 
7 With respect to incident beam measured in air for one AOD 
8 Over full range of incidence and deflection angles for one AOD  
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Evaluation of the AODs 

This final section of the chapter describes some of the problems we experienced in 

assembling the AOL and how we solved them to assemble our first working AOL. 

 

Once we had received delivery of the four custom designed AODs we tried to 

evaluate their performance compared to the specification. At this stage we had not 

appreciated the fact discussed earlier in the chapter, that the input polarisation for the 

extraordinary wave is approximately vertical rather than horizontal as in nearly all 

standard AODs. As a result, we repeatedly kept exciting the wrong input and output 

modes with unsatisfactory efficiency vs. drive frequency functions. We were 

concerned that perhaps the crystals were not oriented properly in the correct 2 degrees 

acoustic rotation and 3 degrees optical rotation. After helpful discussion with the 

manufacturer Gouch and Housego (www.goochandhousego.com ) we made detailed 

measurements of the AOD crystal orientation which confirmed that the crystals were 

indeed correctly oriented and gave us a clear experimentally based understanding of 

both the orientation of the long axis of the input wave polarisation ellipsoid and the 

long axis of the output polarisation ellipsoid. The next section discusses these 

measurements.   

http://www.goochandhousego.com/�
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Measurements of AOD crystal orientation  

Figure 3.34 to Figure 3.38 shows the main results of a set of experiments we did to 

test whether the AODs were correctly oriented and to understand the optimum input 

and output polarisations. To date we have not purchased quarter wave plates so our 

experiments have all used linearly polarised input laser light and (Thorlabs) linear 

polarisation analysers for measuring polarisation. This means that there are some 

losses in coupling to the elliptically polarised eigenmodes. Since the ellipticity is 

expected to be 23% for the input wave and 19% for the output wave corresponding to 

approximately 88% and 94% coupling respectively to linear polarisation at centre 

frequency we judged that this loss could be ignored in the early stages of 

development. (Estimation based on Figure 3.3). Note therefore that the linear 

polarisation directions shown in the next four figures are actually the direction of the 

long axis of the polarisation ellipsoid. 

 

Polarisation 
analyser

Semi 
conductor 
laser (linearly 
polarised)

Microscope 
objective

Crystal on 
rotary stage

Fringe 
pattern

a b

 
Figure 3.34 a) Apparatus for measuring the orientation of the optic axis in an AOD. b) 

photograph of the screen showing the polarisation fringes. The white solid line cross shows the 

normal to the facet whilst the dashed arrow show the expected theoretical direction of 

missorientation of the optic axis with respect to that facet. The fact that the fringes are normal to 

this dashed arrow confirms that the crystal axis is misoriented in the correct direction. Other 

measurements (not shown) confirmed that the tilt of the optic axis within the crystal was indeed 

the required 3 degrees within the measurement accuracy (0.2 degrees) 

 

Figure 3.34 shows the apparatus we set up to measure the orientation of the crystal 

axes of the AODs. A diverging linearly polarised visible light beam is made by 

transmitting the collimated red light beam from a semiconductor laser pointer into a 

10x microscope objective. This diverging beam was passed into the front face of the 
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AOD crystal and a polarisation analyser placed after the crystal. A pattern of fringes 

was then projected onto a paper screen. We carefully marked on this screen the 

position of the normal to the facets (using reflections off the facet). The diverging 

beam monitors a range of propagation directions in the crystal. Within the crystal the 

light is propagating in the two eigenmodes whos index difference increases with 

increasing angular radius from the optic axis. The dark fringes correspond to angular 

directions of equal path length difference between the two eigenmodes. These 

therefore form circles around the direction of the optic axis. 

 

Figure 3.34 to Figure 3.38 show results for AOD X1 which deflects light horizontally. 

A top view of this crystal showing the computed direction of the maximum efficiency 

input and output beams at 35MHz drive frequency is shown in Figure 3.35.  

Input angle=1.94 degrees

Output angle=4.69 degrees

2 degrees
= 34 mrad [110]

Calculated path of light wave at 
35 MHz =centre frequency

Acoustic Poynting Vector 22 degees
Acoustic wave vector 2 degrees

[001]

Top View

 
Figure 3.35 Top view of the custom AOD showing the precise angles of incidence and diffraction 

at its 35MHz centre frequency, (from manufacturer and confirmed by the wave vector model 

illustrated in Figure 3.10)  

 

The input beam is orientated at 1.94 degrees to the optical axis and the output beam at 

4.8 degrees, the orientation within the crystal is reduced by a factor n, where n is the 

refractive index. Figure 3.36 shows why the vertical misorientation of the 

foreshortened view of optic axis rotates clockwise as the crystal is rotated to view 

exactly along the input or output directions.  
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Entrance face 
viewed normal to 
the facet

Side view showing
transducer

From the direction 
normal to the facet, 
the tilt of the optic 
axis appears vertical 
so the extraordinary* 
wave is vertically
polarised

Optic axis  rotated 
3 degrees relative 
to input and output 
facets

From the 1.94 
degree input 
direction, the 
apparent tilt of the 
optic axis appears to 
rotate about 16 
degrees in a 
clockwise direction.

Crystal rotated 1.94 degrees  
Figure 3.36 illustration of how the foreshortened projection of the crystal axis viewed from 

normal to the entrance facet appears to rotate by 16 degrees clockwise as the viewing angle is 

rotated by 1.94 degrees to align with precise direction of the maximum efficiency input beam. 

Thus the extraordinary wave is polarised in this 16 degree rotated direction. This is found to be 

the input linear polarisation that gives the highest efficiency from the AOD.  

 

The equation for the angle of rotation based on small angle geometry is:- 

( )vh narctan φφθ =  where hφ = external horizontal misorientation and vφ is the 

internal optical rotation which in this case is vertical. Using this equation we expect 

16 degrees and 35 degrees respectively for the rotation of the apparent misorientation 

of the crystal axis viewed along the 1.94 degree  input  and 4.8 degree output 

directions respectively. Figure 3.37 and Figure 3.38 show how this calculation is 

nicely confirmed by the observation of the fringes with the crystal rotated about the 

vertical axis to correspond to the 1.94 degree input direction and 4.8 degree output 

direction respectively.  
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Figure 3.37 a) Approximate angle of input linear polarisation for maximum efficiency, b) Fringe 

pattern with the viewing angle rotated horizontally 1.94 degrees, parallel to the input beam 

direction for the wanted highest efficiency input mode. In theory the input polarisation is tilted 

by 16 degrees clockwise (dashed white line). The fact that this line is close to normal to the fringes 

shows a good match to experiment. This direction corresponds to the long axis of the elliptical 

extraordinary wave eigenmode. 

 

AOD X1AOD X1

Theoretical 
tilt of optic 
axis = 35 
degrees

Theoretical 
tilt of optic 
axis = 35 
degrees

a b

 
Figure 3.38  a) approximate directions of the long axes of the input(solid blue) and output 

(dashed blue) linear polarisations of the input and output beams for maximimum efficiency at 35 

MHz drive frequency.  b) polarisation fringes viewed from 4.8 degrees to the normal (parallel to 

the output beam), showing that they are rotated by the theoretically expected 35 degrees.  

 

 

The fact that the fringes are always at right angles to the calculated apparent external 

misorientation of the axis confirms that the theory and the construction of the crystal 

is correct in this respect. As we expect the input polarisation to be in the extraordinary 

mode, the highest efficiency linear input polarisation is expected to be parallel to the 
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solid blue arrows shown on Figure 3.37 a) and Figure 3.38 a) and the output 

polarisation in the ordinary mode parallel to the dashed blue arrows in Figure 3.38 a).  

We found that understanding the optimum input and out put polarisations of the 

AODs is essential in order to assemble the compact configuration of AODs with all 

four AODs operating in the correct mode. After each AOD we placed a polariser 

orientated as expected to maximise output from this 4.8 degree ordinary index 

eigenmode. Half wave plates (Thorlabs) were placed before each AOD so that the 

input polarisation can be adjusted to correspond to that required for the 1.94 degree 

input extraordinary eigenmode.  
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Building and aligning the compact configuration 

Photographs of the first design of the compact configuration are shown in Figure 3.39 

and Figure 3.40. 

 
Figure 3.39 Photograph of the first design of mounts for the four AODs of the compact 

configuration9. The gold metallic transducer contacts can be seen on the side and top of AODs X1 

and Y1 respectively 

                                                 
9 Mechanics by Alan Hogben and Duncan Farqueharson of the UCL Biociences workshop. 
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Figure 3.40 Close up photograph of AOD X1 showing the transducer more clearly. In the lower 

part of the picture the RF impedance matching coils can be seen. 

 

The length of the whole AOL is appreciably less than 30cm. The figures show how it 

is quite practical to place the AODs within 50 -60 mm grating to grating spacing as 

required to avoid large lateral movement when changing wavelength. This is still true 

in later design which include semi circular supports for a rotatable polariser and half 

wave plate (HWP) after each AOD. We have found that using the correct input and 

output polariser and half wave plate positions it is straight forward to align all four 

AODs in a few hours work. Initially, for each AOD in turn the preceding HWP is 

adjusted to give the correct input polarisation, and a polariser after the AOD set to the 

correct output angle.  The Bragg angle is then adjusted for maximum output power at 

35 MHz drive. The input and output polarisations are then fine tuned (usually only a 

few degrees) to maximise efficiency. 

Summary of chapter 3 

In this chapter I have explained the design principles of conventional commercially 

available acousto-optic deflectors and the reasons this design is unsuitable for our 

application. The design of an ‘optically rotated’ AOD is explained which enables the 
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acoustic walk off angle to be reduced from 55 to 20 degrees. Its performance is 

modelled.  The problems caused by the large chromatic aberration of AOD deflectors 

are explained and a novel method of minimising this aberration across the 3D field of 

view is proposed and its performance modelled. Models of the overall AOLM system 

are used to choose the optimum design parameters for the customised AODs we 

purchased. The problems we encountered in first assembling the four AODs into the 

acousto optic lens are explained and experiments to confirm that the AODs crystals 

are correctly aligned and polished are described. 
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Chapter 4     Drive electronics, control systems and 
development of new drive algorithms   

 

This chapter starts with a system level description of the complete AOLM and its 

control system and drive electronics. The chapter then discusses the drive algorithms, 

measurements of XY efficiencies of the 4 AODs and the derivation of the new 

‘Optimised Frequency Limits’ (OFL) drive algorithms. These OFL algorithms reduce 

the variation in diffraction efficiency with drive frequency and allow a much larger 

volume to be imaged. 

System architecture 

As described in chapter 1, the purpose of developing the AOLM, is not just to develop 

and prove the principle of operation of the microscope, but also to develop a good 

user interface. The microscope can then be used by a neuroscientist who’s expertise 

and first aim is studying new brain physiology, not sorting out arcane problems with 

microscope control software or the user interface. This is a very challenging task. 

Many person-years of effort go into developing testing and debugging the control 

systems of commercial microscopes.  

 

In order to construct a prototype AOLM we needed to define an overall control 

system and choose both the software and hardware components of the system. A 

simplified view of the overall system architecture is shown in Figure 4.1. This 

diagram is in the usual system engineer’s format in which the architecture is broken 

up into a set of functional modules. The first part of the system design is then to 

define the interfaces between the modules so that each module can be developed and, 

if necessary, modified internally without affecting the rest of the system. The 

Integrated Microscope Control System (ICMS) is a software control system running 

on a high performance PC (Dell Precision 690 www.dell.com ). The PC controls and 

interfaces with a set of National Instruments (www.ni.com ) driver and data 

acquisition boards (two boards NI PCI 6115 and NI PCI 6713 are sufficient for the 

basic instrument). These in turn communicate with the peripherals such as the 

galvanometers, the optical shutters and Pockel’s cell for laser intensity control (not 

shown), the photomultiplier tube (PMT) detectors and preamplifiers. Figure 4.1 shows 

http://www.dell.com/�
http://www.ni.com/�
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the interfaces between each functional module labelled with the initials of the 

adjoining units.  

 

We initially tried to use Matlab (www.mathworks.com ) software to control the 

system hardware, but found that the Labview (www.ni.com ) graphical language 

developed by National Instruments  for controlling its specialised driver and data 

acquisition boards to be faster and easier. Matlab (www.mathworks.com) on the other 

hand is very well suited for the development of algorithms using a C like 

programming language that is particularly optimised for rapid processing of large 

multi-dimensional matrices and it has an excellent graphics user interface.  

 

 
Figure 4.1.  The overall system configuration.  The functional blocks of the system are on a white 

background whilst the interfaces, labelled with the initials of the functional blocks they interface 

between, are highlighted in yellow.  The peripherals, the Acousto-optic deflectors (AODs), the XY 

galvanometers (Galvos) and photomultiplier tubes (PMTs) on the right hand column are each 

controlled via separate sub units in the middle column. The master control system is the 

Integrated Microscope control System that uses a PC. 
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http://www.mathworks.com/�
http://www.ni.com/�
http://www.mathworks.com/�
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The heart of the system is the AOD control and driver functional units. The user 

interface and computation of the necessary AOD drive records takes place in the 

IMCS and interfaces to the AOD driver electronics via the IMCS-AODD interface. In 

the first prototype, this was physically a set of four RS232 links that link the PC to the 

AOD Driver unit. The AOD driver unit synthesises and amplifies the radio frequency 

(RF) waveforms used to drive the four AODs via the AODD-AOD interface. This is 

physically a set of 50 ohm RF cables with separate cables to control the RF switches 

that control which of the transducers are being used on the second of each pair of 

AODs. The next section describes how these subsystems work together functionally. 

AOD drive using intelligent Direct Digital Synthesis (iDDS) of 

RF waveform  

A search for driver electronics suited to AODs led to the early choice of the Isomet 

(www.isomet.com) intelligent Direct Digital Synthesiser (iDDS) for driving the 

AODs with linearly ramped RF drive. We ruled out the use of analogue driver 

systems because we wanted to be able to randomly jump from one ramp rate to 

another in a couple of microseconds and needed very high precision of start frequency 

and ramp rate so that the pointing was accurate. The analogue alternative of Voltage 

Controlled Oscillators (VCOs) are difficult to specify to such high precision if the 

frequency modulation waveform is wide bandwidth and not repetitive. A top level 

view of how the IMCS controls the iDDS in order to drive the AODs to produce a 

particular pointing or scanning sequence is shown in Figure 4.2. 

http://www.isomet.com/�
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Figure 4.2. How the ICMS controls the iDDS to deflect the laser beam in a particular pointing 

mode sequence. Using the user interface software, the user specifies the pointing mode, the 

pointing position sequence and duration of each dwell in the region of interest.   The Matlab and 

NI sofware converts this into a set of instruction records and transmits the data to the AOD 

driver system. This uses an Isomet (www.isomet.com ) intelligient Digital Synthesiser (iDDS -

yellow background) that generates the radio frequency waves in a ramp sequence from the sets of 

sequential records loaded into its memory. At the users command the ramp sequences are 

triggered by a trigger sequence from the NI driver board. 

 

It uses a direct digital synthesis (DDS) RF driver chip set (Analogue Devices Inc. 

http://www.analog.com) that performs the synthesis of the RF waveforms. Originally 

the Isomet iDDS system combined the DDS chip with a memory and trigger system 

so that either a single frequency could be produced or an arbitrary sequence of RF 

tones could be produced in rapid sequence. This could be used to generate linear 

ramps if each frequency step and time interval was constant. This ‘Image’ mode was 

however very memory intensive so that it was only possible to load up a few ramps 

into memory before the memory was full and would require reloading. We needed a 

new mode of operation that was much more efficient on memory and triggering. In 

consultation with us, Isomet developed a new mode of operation that only loaded in 

the start frequency, stop frequency, ramp rate and amplitude for each ramp. This 

enabled just over 4,000 ramps to be stored in the initial version (20,000 in the latest 
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http://www.isomet.com/�
http://www.analog.com/�
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version). The waveform is in fact still made up of a sequence of equal small changes 

in RF frequency at equal time intervals so that an approximation to a linear frequency 

ramp can be obtained. Note, however, that once triggered, and in the ramp of a 

particular miniscan  (see Figure 2.23 for description of a miniscan), no changes to 

ramp rate or drive amplitude can be made.  

 

In the pointing mode the IMCS computes and sends a set of iDDS records from the 

PC to each of the iDDS units via an RS232 link (the latest version with 20,000 

records uses a higher speed USB link). Once loaded into memory, these records can 

be triggered as often as is wished using the trigger sequence generated and stored at 

the same time as the iDDS records. This is controlled by the Labview user interface.  

Algorithms for pre-computing RF drives to produce the 

required laser focus and scan patterns 

In order to develop the Matlab algorithms and code for controlling the microscope I 

first developed a simplified simulation of the entire system.  

 

Pointing mode algorithms 

I developed algorithms for the pointing mode based on the assumption that the drive 

frequency limits to the AODs were simply the drive frequencies at the centre of the 

AOD range +/- the frequency required for one semiscan angle ‘s’. Working from the 

equations 2.17 to 2.30 that I had derived for the ramp rate and centre frequency of 

each ramp and the specifications for the iDDS I first specified the various terms that 

were needed for the computation:  

 

Dwell voxel     DV(p) a voxel where the laser is to dwell 
Voxel number in a sequence                         p   (as in Dwell Voxel (p), DV(p)) 
3D Coordinates of DV(p)   X(p), Y(p), Z(p) 
Data clock time period                                    Tdc 
Data clock number                                          n  (time into ramp = n× Tdc) 
Dwell Time      Td(p) (must be an integral multiple of 
Tdc) 
AOD filltime                                                   Tft (integral number of data clock times) 
Start frequency of Ramp for AOD X1 etc. fsx1(p), fsx2(p), fsy1(p) and fsy2(p) 
Ramp rate for AOD X1 etc.   ax1(p), ax2(p), ay1(p), and ay2(p) 
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Given a chosen sequence of points in 3D space as shown in Figure 4.3. the drive 

frequencies vs. time of each AOD can be calculated as plotted in Figure 4.4.  
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Figure 4.3 chosen points in 3D space of dwell voxels DV(1:5) in a five point pointing mode cycle 

(PMC). The pointing mode cycle is the sequence of regions of interest that are monitored 

repetitively to build up the luminescence intensity vs. time for each point. 
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Figure 4.4 The RF drive for the first two Dwell Voxels of a Pointing mode cycle (PMC). a) Drive 

frequency vs. time for AODs X1(blue) and X2(green) showing limits to AOD drive frequency 

range (red dashed lines). b) Drive frequency vs. time for AODs Y1(blue) and Y2(green) showing 

limits to AOD drive frequency range (red dashed lines). c) Trigger pulses; lower trace the PMC 

trigger, upper trace the Dwell Voxel ramp trigger. Note the Dwell time on a voxel can vary, in 

this case programmed to increase dwell time with z depth. The first voxel has a large negative 

value of the chirp rate and focuses at large negative value of Z. The separation between the X1 
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and X2 ramps and the Y1 and Y2 ramps determines the X and Y coordinates of the voxel 

respectively. 

 

The trigger voltage vs. time is also calculated in a data file prepared for each 

dataclock time of the pointing mode cycle. Two cycles of  a five point pointing mode 

cycle are shown in Figure 4.4. A separate file is prepared that lists for each time slot n 

whether the photomultiplier tube output should be stored and if yes, which voxel in 

3D space the output represents. In operation this data is passed onto the Labview code 

for control of time sequence reconstruction for each point that the laser addresses 

during the Pointing Mode Cycle. 
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Figure 4.5 Drive frequency vs. time for two of the AODs showing the triggers for two pointing 

mode cycles. 

Figure 4.5 shows RF drive frequency vs. time for two pointing mode cycles over a 

total time of 350 μs. In practice, for optical functional imaging over longer time 

periods, the pointing mode cycle is simply repeated as many times as necessary and 

the  fluorescence intensity data from  the dwell time of each ramp is independently 

plotted against time for each of the five Dwell Voxels. 

Algorithms for scanning 

The first algorithm I developed for scanning is illustrated in Figure 4.6 to Figure 4.9. 

First the operator chooses the Z plane to be scanned. In this case the normalised Zn = 

0.3 (where Zn varies from -1 to +1 from lower to upper point of the octahedral scan 

volume (See description of  Figure 2.9 for explanation of octahedral field of view)) It 

is possible to scan a small area of the Z plane by specifying zoom and centre of zoom 

coordinates. In this case at zoom =1 the maximum area that can be scanned without 

exceeding the specified drive frequency limits is first computed as indicated by the 

blue octahedral limits shown in Figure 4.6.  
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Figure 4.6 A 3D view of the way in which the AODs scan an XY plane in this case at Z=+0.3.  The 

blue octahedron represents the theoretical limits of the pointing ability of the laser spot (based on 

the assumption of fixed frequency limits for the AODs). Red voxels are the start of miniscan. 

Blue voxels are the end. The Matlab computer program that generated this plot is based on the 

equations derived in the last section of chapter 2. It calculates each miniscan so that the number 

of voxels it scans in each miniscan is maximised without any of the AOD start or stop frequencies 

going out of the assumed AOD high efficiency drive frequency range (The Absolute Frequency 

Limit Algorithm). This is why the miniscans nearer the middle of the field of view are longer 

than those at the edges and this distinctive miniscan pattern is produced. 

 

A set of miniscans is then computed to carry out the fastest possible overall scan at 

the specified dwell time per voxel, (typically 0.1 to 4 μs). The number of voxels in 

each miniscan is much larger nearer the centre of the field of view than at the edges 

because of the frequency limits. This leads to the distinctive miniscan pattern shown 

in Figure 4.6 by the red and blue dots.  
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Figure 4.7 Ramp time of each of the 824 miniscans plotted against miniscan sequence number for 

the same Z plane (Z voxel number 66) shown in the previous figure. The minimum ramp time is 

28 μs corresponds to the AOD fill time (24 μs)plus one voxel dwell time (4μs). This minimum 

ramp time only occurs for miniscans around the edges of the image, the maximum ramp time (88 

μs) occurs in the middle of the image where the full AOD bandwidth can be used for ramping to 

produce Z displacement rather than static separation of ramps for X or Y deflection. The 

intermittent short ramps near the middle of the frame of view correspond to short miniscans at 

the beginning or end of X scans.  

 

Figure 4.7 shows how, for this Absolute Frequency Limit (AFL) scanning algorithm, 

the 824 miniscans forming the overall sequence are longer in the middle of the overall 

scanning time than at the edges.  
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Figure 4.8 Start and stop frequencies of AOD X1 vs. miniscan sequence number showing in this 

case that the frequencies are all within the absolute frequency limits of 32.5 to 37.5 MHz. 

 

The start and stop frequencies for each miniscan for the drive to the X1   AOD are 

shown in Figure 4.8. This diagram shows that close to the middle of the field of view 

the long miniscans each use up nearly the whole bandwidth between the frequency 

limits, but that near the edges the scans are much shorter because one of the other 

AODs (not shown) hits its limits. 
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Figure 4.9 shows the X voxel number(red), Y voxel number (blue) and minscan number/10 

(green) for each of the 824 miniscans. The X axis is the data acquisition time slot number, each 

time slot is 4 microseconds. This data is used to assign the concurrently acquired light intensity 

data to the appropriate X Y and Z coordinates of the Voxel. 

 

Figure 4.9 shows the pre-computed voxel X and Y coordinates vs. data time slot 

number. Without recalculating or reloading the miniscan record data, the LabView 

code can use the trigger file and XY coordinate data of this figure to scan repetitively 

in ‘Livescan’ mode to semi continuously image the same set of voxels and present the 

image in real time on screen. The repetitions are usually averaged over multiple 

frames to improve signal to noise ratio. 

 

Once this pointing and scanning software was completed we were able to make the 

initial evaluation of the microscope performance reported at the beginning of chapter 

five. The algorithm just described in this section was the absolute frequency limit 

(AFL) algorithm which produces an octahedral field of view and variable length 

miniscans. However more recently we have developed an improved understanding of 

the real limits to the drive frequencies of the AODs and developed a new algorithm, 

the optimised frequency limit (OFL) algorithm, that scans a larger volume using the 
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same AODs. The experimental and conceptual basis of this is described in the next 

two sections.  

 
 

Measurements of X1 -X2 and Y1-Y2 diffraction efficiency plots 

Whilst we were gaining understanding of the way in which the complete acousto-

optic lens (AOL) system operates we made many measurements of the individual 

AOD efficiency vs. drive frequency. They showed high efficiency over at least the 30 

to 40MHz drive frequencies corresponding to 6.5 mrad semiscan deflection angles for 

a fixed input angle. These plots are however not sufficient to model the complete 

AOL performance as it is the input acceptance angle of the second AOD in each pair 

that is actually the main limitation of the system. It is in practice quite difficult to 

make accurate high speed measurements of the input acceptance angle of an AOD 

without using another AOD in front of it to make accurate fine deflections of the input 

beam.  In order to solve this difficulty, we have found it most useful in practice to 

measure the performance of the complete AOL and use this information to deduce the 

performance of each AOD. The only difficulty with this approach is that it is 

impractical to measure the optical power levels in between the AODs because there is 

insufficient space to place a large area detector there. The measurement obtained of 

overall AOL efficiency is the product of the efficiency of all four AODs in series. 

This potentially introduces uncertainty as to the root cause of any particular 

behaviour. However from a system perspective this is the performance that it is most 

important to understand. The measurement we have recently found most useful is to 

plot efficiency vs. X1 and X2 drive frequencies for fixed Y1 and Y2 drive frequencies 

(and vice versa). We have automated the data collection procedure for this 

information using LabVIEW code. 
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Simulation of AOD efficiency 
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Figure 4.10 contour plot of efficiency of complete Acousto–Optic Lens (AOL) as a function of the 

drive frequencies to AODs X1 and X2 whilst AODs Y1 and Y2 are driven at 35MHz fixed 

frequencies. The contours are normalised 2 photon efficiency measured by scanning the focused 

spot through a fluorescent plastic slide (Chroma Technology Corp http://www.chroma.com/). 

The peak normalised intensity is 1 at the centre of the red contour, each contour is a step of 0.1. 

Super imposed on the plot is a diagram to illustrate the computation the a new miniscan 

algorithm (the Optimised Frequency Limit (OFL) Algorithm) does to maximise efficiency for 

each miniscan. The blue crosses represent the pair of differential mode drive frequencies (see 

Figure 2.21 for theory) required to give the required X deflection at the centre of the miniscan 

(12 miniscans are computed here). The blue diagonal lines through each blue cross are the 

common mode drive frequencies that give the same X deflection in the Z=0 plane. The red 

crosses represent the point on each common mode line where the miniscan centre will have the 

highest efficiency. This pair of drive frequencies is chosen for the centre voxel of the miniscan.  

 

http://www.chroma.com/�
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Simulation of AOD efficiency 
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Figure 4.11 contour plot of efficiency of complete Acousto–Optic Lens (AOL) as a function of the 

drive frequencies to AODs Y1 and Y2 whilst AODs X1 and X2 are driven at 35MHz fixed 

frequencies. The contours are normalised 2 photon efficiency measured by scanning the focused 

spot through a fluorescent plastic slide (Chroma Technology Corp http://www.chroma.com/). 

The peak normalised intensity is 1 at the centre of the red contour, each contour is a step of 0.1. 

Super imposed on the plot is a diagram to illustrate the computation the new (OFL) miniscan 

algorithm does to maximise efficiency for each miniscan. The blue crosses represent the pair of 

differential mode drive frequencies (see Figure 2.21 for theory) required to give the required Y 

deflection at the centre of the miniscan (100 independent deflections are computed here, one for 

each line of the vertical scanning and used repeatedly for each miniscan making up a particular 

Y full scan). The blue diagonal lines through each plotted blue cross are the common mode drive 

frequencies that give the same Y deflection. The red crosses represent the point on each common 

mode line where the miniscan centre will have the highest efficiency. This pair of drive 

frequencies is chosen for the centre voxel of that Y full scan. 

 

The contour plots of 2-photon efficiency, measured right through the completed 

microscope are shown for X1, X2 drive frequency parameters in Figure 4.10. These 

are measured at high speed by scanning the X2 drive frequency over the full plotted 

range, and dividing the range into 100 pixels at 4 μs/pixel and stepping X1 by one 

hundredth of its full range after each line. There is a small correction on plotting the 

X2 frequency against its drive frequency data point to allow for the fact that the 

http://www.chroma.com/�
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frequency at the centre of the AOD lags behind the frequency at the transducer by half 

the AOD fill time times the X2 ramp rate.  

 

Note that this contour plot shows that useful 2-photon efficiency (to the blue 0.2 

normalised 2-photon efficiency contour) can be obtained for X2 drive frequencies 

varying from 27 to 44 MHz corresponding to 11 mrad semiscan angle,  whereas the 

frequency range for  AOD X1 is only 31 to 38MHz corresponding to a semiscan angle 

of 4.5 mrad. Since we know that the high efficiency deflection angle of AOD X1 is 

much larger than 4.5 mrad semiscan angle we can surmise (but not prove from this 

plot) that the reason for the limited range of high efficiency X1 frequencies is the 

limited acceptance angle of AOD X2. Figure 4.11 shows the same type of plot for the 

2-photon efficiency of AODs Y1 and Y2, with X1 and X2 at fixed frequency. This 

shows similar results but not such high efficiency at the lower end of the Y2 

frequency range. This may be caused by non optimal Y2 alignment.   

 

Both these plots can be compared with the theoretical plots for AOD1, and AOD2 

efficiency in Figure 3.17 b. It is not surprising that the 2-photon efficiency falls off at 

high and low frequencies compared to theory because 1) the theoretical model does 

not include the limited bandwidth of the RF transducer and 2) chromatic aberration 

causes 2-photon efficiency to fall off as the net deflection (differential drive 

frequency) increases. However it is clear that the experimental results include a cyclic 

component to efficiency vs. frequency plots that is not present in the theoretical 

model. The expected single ridge of high efficiency is split into a series of rounded 

hills separated by dips. Peaks and dips are separated by 4 MHz in X1, X2, Y1, but not 

apparent in Y2. As the peaks and dips are all separated by approximately equal 

frequency differences, it suggests that there is some form of cyclic interference effect 

causing this. The reason for this is not yet certain. A possible explanation is that the 

theoretical model used for Figure 3.17 is inadequate in ignoring the fact that the 

linearly polarised light entering the AODs will excite not only the wanted 

extraordinary mode (94% efficiency; see discussion concerning Figure 3.38) but also 

the unwanted ordinary mode (6%). At the grating these will interfere in an optical 

path length dependent manner that depends on the angle of incidence of the 

propagating wave because the differential optical path length is dependent on the 

refractive index difference between ordinary and extraordinary waves. This will 
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produce peaks and troughs in AOD efficiency caused by the same effects that cause 

the interference effect in Figure 3.34 to Figure 3.38.  This theory is consistent with the 

apparent lack of any ‘cyclic interference’ on efficiency vs. AOD Y2 drive frequency 

as the output from that AOD does not couple into any more AODs. More 

experimental work is needed to confirm or refute this theory. However, these cyclic 

interference effects are relatively small, the most significant aspect of the results is 

that it points the way to scanning much larger volumes using new drive algorithms, as 

explained in the next section. 

 

Derivation of new drive algorithms 

These measurements, together with the understanding of common mode and 

differential mode frequency drive which we had derived in chapter 2, Figure 2.20 to 

Figure 2.24 showed us how we could develop new drive algorithms. These can 

overcome the limitations of the fixed drive frequency limits we based our first 

pointing and scanning algorithms upon. The original algorithm we now refer to as the 

Absolute Frequency Limit (AFL) algorithm as it operates by simply initially 

specifying the maximum and minimum drive frequencies it is permissible to drive any 

of the four AODs. The new Optimised Frequency Limit (OFL) algorithm uses the 

algorithm described graphically and in the captions to Figure 4.10 and Figure 4.11 to 

maximise the overall diffraction efficiency at the centre of each miniscan. This also 

minimises the variation in efficiency from voxel to voxel within each miniscan.  It is 

clear in both these plots that it is possible to drive the second AOD of each pair over a 

much wider range of frequencies than the first AOD and still find combinations of 

drive frequencies that give high efficiency. As will be shown in the results of chapter 

5, this enables the scan volume to change from the octahedral shape described so far 

to a cuboid of more than three times the volume. 
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Summary of chapter 4 

 

This chapter describes the drive electronics, control systems and system architecture 

of our prototype system. It describes how the concepts and equations for pointing and 

scanning developed in chapter 3 are converted into Matlab and labVIEW software, 

and how this software is used by the overall PC based integrated microscope control 

system. It then describes how intelligent digital synthesizers are used to drive the 

AODs and the software and hardware necessary to control the timing of the RF drive 

signals, the photomultiplier tube data collection and reconstruction of images. The 

final two sections describe how high speed measurements were made of the overall 

AOL diffraction efficiency vs. the X1,X2 and Y1,Y2  AOD drive frequency pairs for 

XZ and YZ deflection. Based on this data, and the theory developed in chapter 2, a 

new algorithm to optimize the AOD frequency limits for each miniscan is explained.  
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Chapter 5    Experimental results: AOL and AOLM 
 

In this chapter I summarise the main experimental results we have obtained at various 

key stages of the development of the complete AOLM. The results are approximately 

in chronological order, except the results of point spread function measurements 

which are presented after the latest field of view and imaging experiments. This is so 

that the comparison of the field of view between the old AFL and the new OFL 

algorithms is clearer. 

 

Measurement of speed of refocusing of the AOL 

The first measurement we made on first assembling the AOL was to measure the 

speed at which the dynamic lens could focus. Figure 5.1 shows a view of the AOL 

followed by a 500mm lens and a single silicon detector 3mm diameter (Thorlabs 

model PDA36-EC) ,http://www.thorlabs.de/  shielded by a pinhole 30 μm in diameter. 

The detector has 1- 10MHz bandwidth depending inversely on the gain of the built in 

preamplifier. As there is plenty of signal we used low gain and thus had 5-10 MHz 

bandwidth. 

 

Silicon detector and pinhole

 
Figure 5.1 Photograph of the first assembled compact configuration of the AOL showing a silicon 

detector and pinhole in the distance following a f = 500mm lens. 

 

http://www.thorlabs.de/�
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To test random access pointing of the AOL across the field of view we needed a 

minimum of 3 detectors and used pellicle beam splitter to project the focused spot 

onto one or other of the pinholes without the detector interfering with the light to the 

other detectors. This is illustrated in Figure 5.2a. The pinholes were axially separated 

by -40, 0 and 40mm from the natural focal plane of the lens and positioned arbitrarily 

in the XY plane.  
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Figure 5.2 a)Experimental set up and b) results from initial ‘pointing mode’ tests showing it 

possible to randomly focus on any one of the three pinhole detectors and jump from pinhole to 

pinhole at 30kHz. The pinhole size of 30 μm is designed to match the diffraction limited spot size 

of the beam. The black dotted lines in the set up diagram represent beam splitters. The pinholes 

are separated by up to 80mm axially and are positioned arbitrarily in the XY plane. All are 

within the field of view of the AOL with following 500mm lens.  

 

The correct ‘ramp’ drive frequencies for the pointing mode for each position in the 

field of view were formed by using a grid pointing algorithm I had developed to point 

sequentially an array of points in 3D space. The brightest pointing voxel was then 

chosen for each pinhole detector for ‘random access’ pointing testing. We found that 

using the grid pointing algorithm we could distinguish from the time sequences of 

pointing in say a 5x5 grid of miniscans whether there was any residual unwanted 

movement of the spot with time. I had incorporated parameters ‘movex’, ‘movey’ and 

‘astig’ into the program which fine tuned the ratios of X1:X2 drive frequency ramp 

rate, Y1:Y2 drive frequency ramp rate and mean X:Y drive frequency ramp rate 

respectively. Adjusting these eliminated drift of the spot in X and Y and corrected any 
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astigmatism respectively. These parameters did not have to be adjusted outside the 

range 0.98 to 1.02.   

 

Figure 5.2b shows the results colour coded red, blue and green so that the detector 

signal can be seen for all three detectors in parallel. The sequence of pointing mode  

‘ramps’  was then programmed to cycle round the three detectors in a range of 

‘random’ orders and then repeat the original miniscan to check that there were no 

hysteresis or memory effect problems. The results show, that random access pointing 

and focusing in 3D was possible at 30 kHz total sample rate.  

 

Since the time for any new acoustic waveform to fill the 15 mm aperture AOD is 

AODfill = 24 μs and we expected to gather data from the region of interest (ROI) for 

approximately a further TROI =9 μs, we expected that in use it would be feasible to 

jump from ROI to ROI at 1/33 μs= 30 kHz. Demonstrating this experimentally was an 

important first feasibility demonstration. 

 

Examination of the blue and red traces (Z= +40mm and -40mm respectively) show 

that there is a sloping top to the light pulses into the detectors not apparent at Z=0 

(green) trace. The apparent higher amplitude of the red and blue traces is a result of 

turning up the preamplifier gain more on these traces as there was less light and only 

step changes in gain were possible. Note the slope of the top of the blue and red traces 

is opposite in direction. After careful checking of the responses of adjacent voxels to 

check that there was no significant movement of the spot during this time,  we 

concluded that these slopes resulted from changes in the overall efficiency of the 

AOL as the frequencies of all four AODs are scanned rapidly down in frequency  

(Z=+40mm) or up in frequency(Z=-40mm). This was the first measurement of the 

effect we now refer to as ‘patternation’ because it causes a patterning artefact on 

images using scanning mode. This effect is discussed further in this chapter and the 

next. 

Correction of temporal dispersion 

After confirming that the AOL was operating as expected we10 aligned the necessary 

telecentric relays and mirrors to project the image of the last AOD onto the back 

                                                 
10 The work in this section was carried out by K M N Srinivas Nadella. 
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aperture of the objective lens of the microscope so as to form the complete optical 

path of the AOLM system as shown in Figure 2.17 . The next step was to adjust the 

temporal dispersion compensation system described at the end of chapter 3 (Figure 

3.31). In order to do this we used the Femtocontrol (http://www.ape-berlin.de ) and 

Carpe Autocorrelator multipath unit inserted in the laser beam just after the laser itself 

and an autocorrelation monitoring head after the final objective. We then adjusted the 

prechirper to minimise the measured pulse length after the objective. The results are 

shown in Figure 5.3. 
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Figure 5.3 Experimental measurements of the laser pulse width at various positions through the 

system. The laser itself emits a stream of 100fs pulses (red). If this is passed through the complete 

system without the use of the prechirper the pulse width increases to 1.52 ps as measured beneath 

the final objective lens (blue). When the prechirper is introduced it stretches the pulse first in a 

negative direction so that when it subsequently propagates through the microscope it emerges 

after the final objective with only 115fs pulse width (green). 

 

 The results were very satisfactory. The pulse length on leaving the laser is 100fs, 

without any prechirper the large dispersion of the AODs and microscope optics 

spreads the pulse with to 1.52ps. The prechirper compensates well and reduces the 

pulse length back to 115fs after the objective. 

http://www.ape-berlin.de/�
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Early 3D Imaging results using the AOLM 

This section describes the main results we obtained when we first tested the complete 

AOLM, the ‘pattternation’ effects of variation of AOD efficiency on the image 

quality, and how we found that the field of view could be increased considerably and 

patternation reduced by changing from the absolute frequency limit (AFL) algorithm 

to the new optimised frequency limit (OFL) drive algorithm. 

 

300 
micro 

metres

 
Figure 5.4 The complete field of view beneath an NA=0.47, 20X objective for the normalised Z 

range from -0.8 to +0.8 in steps of 0.2 and a semiscan angle s=4.3.  The image is formed by          

2-photon imaging with the beam scanning across a plastic luminescent slide (Chroma 

Technologies), above which has been placed a 42 μm pitch hexagonal electron microscope grid 

made of copper. This forms the hexagonal shadow pattern on the luminous background and 

allows the field of view to be measured accurately. The original AFL (absolute frequency limit) 

scanning program was used. For each 2D image plane the stage was moved mechanically to bring 

the image into focus at the Z focal plane defined by the AOD focal setting (Z axis).   

 

 One way of viewing the field of view and scan uniformity  for the microscope driven 
by the AFL (absolute frequency limit) algorithm is shown in Figure 5.4 which shows 
the complete field of view beneath a 20X objective with an under-filled back aperture 
that resulted in an effective NA of 0.47.  The measurements are for the normalised Z 
range from -0.8 to +0.8 in steps of 0.2. The overall pyramid shape and the large field 
of view are apparent beneath this 20X objective. Note that in the non Zn = 0 scan 
planes the miniscan pattern is very visible. We refer to this artefact as patternation. It 
is caused by variations in the 2-photon luminescence during the individual miniscans 
and is caused by changes in AOD efficiency with scan angle. It is most obvious in the 
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Zn = +0.2 plane where it can be seen in the wide miniscans near the centre of the field 
of view. The fluorescence is brightest at the right hand (trailing edge) of each 
miniscan. We have tried several approaches to solving the patternation problem. The 
most successful without altering the drive frequency algorithms was to monitor the 
light intensity variation of the particular miniscan pattern using an optical tap11 on the 
scanned laser beam and large area silicon detector, and then use this monitored signal, 
suitably amplified and inverted, to modulate the Pockels cell of the microscope in 
anti-phase with the intensity variations. By adjusting the details of the transfer 
function of the amplifier, gain, offset, non-linearity etc, it was possible to minimise 
the observed patternation when the same scan pattern was reused. This produced our 
best early images of pollen grains at a variety of focal planes as shown in  
Figure 5.5. This figure is arguably showing clear images of pollen grains using AOD 

focusing at larger axial displacement than any others published to date. Nevertheless, 

careful examination of the images away from the Z=0 plane shows that there is still 

significant evidence of the miniscan pattern. It was very difficult to find one set of 

modulation parameters that compensated the patternation accurately over the whole 

field of view. However, before refining the techniques for compensating for 

patternation we decided that it was important to implement the Optimised Frequency 

Limit (OFL) algorithm so that for each miniscan we had chosen the drive frequency 

combination that gave the peak AOL diffraction efficiency and that that the peak 

efficiency would occur at the centre of each miniscan thus minimising the overall 

change in efficiency along the length of the miniscan.  

20X NA=0.640X NA= 0.8

215 µm
ZAOD

0 µm

-173 µm

44 µm

ZAOD

0 µm

-34 µm

-80 µm

144 µm

 
 

                                                 
11 The optical tap is formed by an 8% reflection 92% transmission pellicle set with its normal at 8 
degrees to the main light path 
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Figure 5.5 Images of pollen grains using Pockels Cell modulation of the laser intensity to 

minimise patternation effects.  The ZAOD is the measured displacement of the focal plane of the 

objective by the AOL. This has been compensated by moving the equator of the pollen grain into 

clear focus by adjusting the height of the objective lens. These images used the original AFL dive 

algorithm and modulated Pockel’s cell patternation compensation. The change in XY plane 

magnification with Z position results from imperfect adjustment of the telecentric relays 

connecting the AOL to the microscope. When the relay lens spacing is not perfect the relay is not 

exactly telecentric and this effect occurs. 

 

Progress towards solving the patternation problem and 

extending the usable field of view 

The progress we have recently made towards solving the patternation problem and 
towards significantly increasing the field of view is illustrated in Figure 5.6 and  
Figure 5.7. 
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Figure 5.6 Comparisons of field of view beneath a 40X NA=0.8 objective using a) AFL (absolute 

frequency limit) scan algorithm with s= 6 mrad, b) AFL scan algorithm with s=12 mrad but 

zoom=2. c) OFL (optimised frequency limit) scan algorithm described in chapter 4, with a 

programmed semiscan angle of  6mrad. The field of view in each image 180μm (the electron 

microscope grid is 42 μm pitch).  
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Figure 5.6a) shows what happens if the semiscan angle, s, is increased to 6 mrad in 

order to increase the field of view beneath an NA=0.8, 40X objective using the old 

AFL algorithm. The characteristic programmed octahedral shape can be seen with 

very small scan area at large Z displacements in order to avoid the AODs going 

beyond their frequency limits. Note that the patternation in this image is much more 

pronounced than in Figure 5.4 because s = 6 rather than 4.3 mrad so the AODs in each 

miniscan are allowed to scan a larger frequency range. At both ends of each miniscan 

for Z= +37.5μm and -42.5μm the intensity of the 2-photon image drops significantly.  

 

The image set in Figure 5.6b shows how the old AFL algorithm can be used to 

overcome the field of view (FOV) limits by doubling the scan angle limits and 

specifying zoom=2. This doubles the size of the octahedral FOV, but truncates the XY 

dimensions to the same 180 μm. It was this measurement that first showed that us 

high efficiency could be obtained over a large scan area at large axial displacements. 

The patternation with these conditions is however very severe because at the 

beginning and end of each miniscan the AOD frequency deviations are very large and 

the AODs are in very low efficiency regions. This produces the severe patternation 

shown at Zn = +/- 65 μm (There is no em grid on this set of images).  

 

The results of the new OFL (Optimised frequency limit) algorithm set for the same 

XY scan coverage are shown in c). Note that the OFL scan algorithm is showing 

approximately constant scan area and clear images of the em grid over a 160μm axial 

range.  The fading of intensity at the edges of the field of view is presumably caused 

by the severe chromatic aberration at these large XY deflections as well as reductions 

in the AOL efficiency. 
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Figure 5.7 Magnified comparison of images from the previous figure, a) using the old absolute 

frequency limits (AFL) algorithm and b) using the new optimised frequency limits (OFL) scan 

algorithm. Both images measured at Z=-42.5 μm 

 

A magnified view comparing images from the AFL and OFL algorithm at Z=-42.5 

μm are shown in Figure 5.7.  It is clear that good progress has been made in both 

extending field of view and in reducing patternation. However the OFL algorithm 

here is in its very first version (only just completed at the time of writing). The length 

of each miniscan is the same across the whole scan area and is a preset variable. 

These images have been set with individual voxels being the miniscan length which 

gives the slowest but least patternated images.  

 

The slight tartan pattern on the image is caused by the fact that we used no drive 

amplitude or Pockel’s cell compensation to the change in efficiency which occurs 

when the algorithm jumps from one high efficiency maximum to another as seen in 

Figures 4.10 and 4.11. Similarly we have made no attempt to compensate for change 

in efficiency across the field of view caused by variation in peak efficiency of each 

miniscan.  

 

The field of view for the OFL algorithm compared to the AFL algorithm, for the same 

scan dimensions at Z = 0 is cuboid rather than octahedral and thus has approximately 
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3 times larger scan volume depending precisely on the limits to Z scan caused for 

instance by loss of resolution. This larger cubic field of view and reduced patternation 

is clearly a very useful basis for adding further improvements in the near future.  

Latest Results with OFL algorithm for extending field of view 

In order to test the limits of field of view and to obtain a first view of the image 

quality across the whole field of view with the new OFL algorithm a series of 

measurements were made on electron microscope (em) grids that had been coated 

with dye by immersion and drying three times in fluoroscein solution (Abbey Color). 

Fluoroscein is a fluorescent dye that works well with 2-photon excitation. The field of 

view was measured beneath 20X, 40X and 60X objectives. Note that these 

measurements were taken after the improvements to the precision of the AOD mounts 

described in the following section on point spread function measurements. 

Experimental results using a Fluorescent Grid 

The next three figures, Figure 5.8 to Figure 5.10 show the results for these three 

objectives with the OFL algorithm set for 3,6 and 9mrad. 
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Figure 5.8 Images of a fluoroscein (AbbeyColor) coated electron microscope grid beneath a 20X 

objective with a nominal effective NA of 0.5. This uses the new OFL algorithm at semiscan angles 

s = 3, 6 and 9 mrad. Before taking each image, the grid is brought into focus by moving the grid 

with respect to the objective and noting the axial displacement required. The full image width 

and axial (Z) focal plane displacements shown are the experimental measurements for each 

image. The variations in background black density in these images is a result of manual contrast 

adjustments to individual images prior to combining them in this figure and has no great 

technical significance. 
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Figure 5.9 Images of a fluoroscein (AbbeyColor) coated electron microscope grid beneath a 40X 

objective with a nominal effective NA of 0.8. This uses the new OFL algorithm at semiscan angles 

s = 3, 6 and 9 mrad. Before taking each image, the grid is brought into focus by moving the grid 

with respect to the objective and noting the axial displacement required. The full image width 

and axial (Z) focal plane displacements shown are the experimental measurements for each 

image. The variations in background black density in these images is a result of manual contrast 

adjustments to individual images prior to combining them in this figure and has no great 

technical significance except, as you might at  expect at higher NA where spherical aberration 

effects become more significant, the extreme displacement images are inherently lower contrast 

to start with. 
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Figure 5.10 Images of a fluoroscein (AbbeyColor) coated electron microscope grid beneath a 60X 

objective with a nominal effective NA of 1. This uses the new OFL algorithm at semiscan angles   

s = 3,6 and 9 mrad. Before taking each image, the grid is brought into focus by moving the grid 

with respect to the objective and noting the axial displacement required. The full image width 

and axial (Z) focal plane displacements shown are the experimental measurements for each 

image. The variations in background black density in these images is a result of manual contrast 

adjustments to individual images prior to combining them in this figure and has no great 

technical significance except, as you might at  expect at higher NA where spherical aberration 

effects become more significant, the extreme displacement images are inherently lower contrast 

to start with. 

 

 

The results shown in Figure 5.8 to Figure 5.10 are all at a number of voxels of Nvox = 

200 covering the whole field of view in each case. At this resolution it appears to the 

eye that the imaging quality is not varying very significantly over the whole field of 

view for all three semiscan angles s = 3, 6, 9 mrad.  At s = 9 mrad, it is interesting to 

note that for the 40X NA= 0.8 lens the field of view comes close to covering the 

target field of view of 250×250×250μm. 

 



 168

Close examination of the figures shows additional points. In all cases the brightness of 

the images fades towards the edges of the field of view particularly for s = 9mrad. The 

fading is least for the 20X objective and most for the 60X objective. This is 

presumably because of the effect of chromatic (and maybe other types of) aberration 

increasing at the edges of the FOV in each XY plane in addition to any drop off in 

AOL efficiency. It will be very interesting to repeat these measurements with the 

chromatic aberration correction in place.  It is noteworthy that the image quality is not 

dramatically reducing at least at this voxel density (200 x 200 voxels in this image) 

with the large axial range tested. It is perhaps surprising that spherical aberration has 

not degraded the high axial displacement images much more significantly. More 

detailed high resolution images and point spread function measurements are needed to 

clarify this issue.  

 

Another point worth noting is that there is a small increase in XY plane magnification 

as the axial focus is changed from maximum negative to maximum positive. The 

lateral magnification is 9% greater at normalised Z = +1 compared to Zn=0 and 9% 

smaller at Zn = -1. This is a small effect compared to that visible in Figure 5.5.  This 

shows that there is still a lack of exact telecentricity that can be corrected by further 

adjustment of the position of lenses in the telecentric relays between the AOL and the 

objective. Prior to this measurement we adjusted telecentricity using the AFL 

algorithm and we had insufficient FOV at large axial displacement to give sufficient 

accuracy of the magnification to notice this small residual degree of lack of 

telecentricity. 

Comparison of measured 3D field of view (FOV) with theory 

These measurements on fluorescent grids included measurements of FOV and axial 

displacement for all values of normalised axial displacement Zn = -1,-0.8..., step = 

+0.2,  ..., 1.0 for all semiscan angles s = 3,6,9 mrad.  

 

It is useful to compare these experimental measurements of field of view with the 

theoretical derivation of Chapter 2. The theory shows that in the idealised perfectly 

telecentric model the XY plane and axial ‘Z’ field of view are dependent on the AOD 

width ‘W’ and semiscan angle  ‘s’ and the effective NA of the AODs viewed from the 

final focus. If the telecentric relays linking the AOD to the objective are not perfectly 
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adjusted then NA varies with Z focal plane and a more elaborate theoretical model is 

needed to correctly fit the nonlinearity of Z displacement vs. ‘Zn’ (the normalised Z 

displacement used for calculating the AOD drive parameters.) 

 

We first measured the width of the projected image of the final AOD on the back 

aperture of the objective lens. Within the accuracy of our measurement, the telecentric 

relay chain magnifed the 15mm AOD aperture by 0.6 to 0.66 times giving a projected 

back aperture width of 9-10mm.  If the exact focal length of the water immersion 

objective is known, this back aperture width can be used with the basic equation  

NA=n sin(θ) to calculate the effective NA of the objective relevant for calculating 

FOV.  

 

The three water immersion objectives we used in these tests were Olympus 20X, 

NA=0.95, 40X, NA=0.8, and 60X, NA= 0.9. The Olympus Website 

(http://www.olympusmicro.com ) states that the focal length of the objective is their 

standard microscope tube length, 180mm, divided by the objective magnification. 

Using this information with the projected width of the AODs at the objective back 

aperture allows the effective NA of the AOLM to be calculated for each objective.  

Assuming W = 9mm, the calculated figures are 20X, NA=0.47, 40X, NA=0.80, 60X, 

NA=1.0. The fact that the effective NA of the AOLM at 60X is larger than the actual 

NA (1.0 cf. 0.9) simply means that the physical back aperture of the 60X objective 

will cut off the outer edge of the projected AOD aperture. That is to say the objective 

is slightly over filled. This was confirmed by checking the actual physical back 

aperture of the lens was 7.3 mm as calculated for NA=0.9. Note that it is the effective 

NA calculation that is relevant to FOV calculations as the physical aperture will not 

change the angles of the incoming rays, just cut off rays at the outer edge of the cone 

and thus reduce image brightness and resolution. 

 

In Figure 5.11.The theoretical plot of XY field of view (blue lines) at semiscan angles 

of 3, 6 and 9 mrad  of  Figure 2.13 is compared to the actual field of view 

measurements at these calculated values of effective NA (red dots).  

 

http://www.olympusmicro.com/�
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Figure 5.11 Experimental measurements of X (and Y) field of view (red dots) plotted for 

comparison with the theory of equation 2.8 and Figure 2.13. (solid blue lines) the theoretical plot 

shows that the FOV for a particular scan angle is inversely related to the objective NA. W= 

15mm. Also shown on the diagram is the magnification of the Olympus objective lenses we 

evaluated. Data points have been added at NA =0.47, NA=0.8 and NA=1.0 as these are the values 

of effective NA of the AOLM  that give the best fit and are also consistent with a projected width 

of the AOD image on the back aperture of the objective of  9.0 mm. 

 

It is clear from these results that assuming W = 9mm, there is very good agreement 

between the theoretical and experimental XY plane field of view at Z=0 using all 

three objectives at all three semiscan angles.  

 

 The results for axial displacement are plotted in Figure 5.12 and compared to the 

theory from equation 2.10. In this case, using the same set of effective NA values for 

plotting the comparison of theory with experiment, the fit was not so good. The fit is 

much better assuming W = 9.8mm which results in NA = 0.50, 0.84 and 1.03 for the 

20X, 40X and 60X objectives respectively.  
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Figure 5.12 Experimental measurements (red dots) of the Z axis displacement as a function of 

normalised focusing parameter Zn for three final objectives. The solid black line is the 

theoretical displacement calculated by equation 2.10 for the NA= 0.50, 0.84 and 1.03 for 20X, 40X 

and 60X objectives respectively. These values of NA are consistent with a projected width of the 

AOD image on the back aperture of the objective of  9.8mm. For each objective the displacement 

is calculated and experimental results plotted for semiscan angles, 3, 6 and 9 mrad.   

 

So the comparison between theory and experiment of  Figure 5.11 and Figure 5.12 

both show good fit of theory to experiment assuming that the width of the projected 

image of the AOD on the back aperture lies in the range 9-10mm consistent with the 

limited accuracy of our experimental measurement.  

 

However the best fit is found assuming W= 9.0mm for the XY plane field of view and 

W = 9.8mm for the axial field of view. This is a 9% discrepancy. I am confident that 

this discrepancy is simply caused by the imperfect telecentricity of the relays linking 

the AODs to the back aperture.  The 9% increase in magnification when the 

normalised Z parameter Zn is increased by 1 apparent in Figure 5.8 to Figure 5.10 is 

obviously caused  by a diverging field of view; the magnification of the final image 

produced by the microscope reduces as the focal plane of the AOLM moves away 
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from the  objective lens. This divergence will also cause the field of view at Zn = 0 to 

be greater than it should be and a nonlinearity in Z displacement vs. Zn. This 

divergence would certainly cause discrepancies in the best fit values of W between 

XY plane and axial Z measurements using the telecentric equations that are similar to 

those observed here.  

 

It is clear that the next stage of work in this area is to repeat the experiment with more 

accurate adjustment of the exact telecentricity and perhaps to derive the precise field 

of view equations under conditions of non exact telecentricity and refit the data 

presented here. 

 

From the perspective of the overall project however these results nevertheless confirm 

that the theory is accurate within 9%, and that the new OFL algorithm scans the beam 

over a field of view that is close to the target 250×250×250 μm for semiscan angle s = 

9 mrad beneath an objective with approximately 0.8 effective NA. As expected from 

the chromatic aberration theory, there is significant fading of 2 photon imaging 

brightness at the edges of the field of view.  
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Latest results of OFL algorithm for pollen grain imaging over 

a large axial range 

To get a first view of the image quality at higher zoom over the much larger axial 

ranges possible with the OFL algorithm we took images of pollen grains with the 

AOLM focusing covering the range of normalised Zn = -0.8, 0, 0.8. The results are 

shown in Figure 5.13 and Figure 5.14 for semiscan angles of s = 6 and 9 mrad 

respectively. 
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Figure 5.13 Images of pollen grains with the new OFL algorithm for 40X and 60X lenses. Pollen 

grain axial position adjusted so that an equatorial section is taken in each case. Figures 

correspond to the axial displacement of the focus of the AOLM from the natural (Zn=0) plane. 

Semiscan angle s = 6 mrad, Nvox = 100, No. of frames = 16, Zn = 0.8, 0, -0.8. Zoom adjusted to 

give 40-45 μm square image size. 
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Figure 5.14  Images of pollen grains with the new OFL algorithm for 40X and 60X lenses. Pollen 

grain axial position adjusted so that an equatorial section is taken in each case. Figures 

correspond to the axial displacement of the focus of the AOLM from the natural (Zn=0) plane.  

Semiscan angle s = 9 mrad, Nvox = 100, No. of frames = 16, Zn = 0.8, 0, -0.8. Zoom adjusted to 

give 40-45 μm square image size. 

 

 

These results show the spines of the pollen grains moderately clearly over more than a 

250 μm axial range beneath the 40X NA=0.8 lens and more than 120 μm axial range 

beneath the 60X NA=1.0 lens.  

 

This is very encouraging as it implies that the XY plane psf is probably sub micron in 

dimensions over this large axial range even at NA=0.8. If confirmed by bead 

measurements this is an important aspect of meeting the target specification. The 

tartan patternation is again caused by jumps between high efficiency regions using the 

OFL algorithm. So, although there is further work to do to minimize patternation, the 

OFL algorithm with no correction or compensation appears to be successfully 

optimizing the frequencies for all four AODs so the miniscan reaches maximum 

brightness possible at the centre voxel of each miniscan.  
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The OFL algorithm is therefore a good basis to start controlling spot intensity to 

minimize patternation.   It is also clearly worth while to now carry out detailed point 

spread function measurements with this arrangement. We have not been able to do 

this prior to PhD thesis submission so the psf data in the next section is earlier data 

using the old AFL algorithm. 

 

Measurements of point spread functions (psfs) – comparison 

with theory and the development of new crystal mounts 

This section describes the experimental measurements we have made on the point 

spread function of the microscope. The results of this section were obtained before we 

developed the OFL algorithms and for Figure 5.15 to Figure 5.19 before we upgraded 

the precision of the crystal mounts. The results in this section are considered 

chronologically in order to explain how we understood the main aberrations we 

observed in our first point spread function measurements.  It explains why we 

introduced the new crystal mounts, reports first psf measurements with the new 

mounts, and finally, why these measurements showed even more strongly the 

necessity of developing the OFL algorithm. 
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Figure 5.15 An example of an experimentally measured XY plane section through the beam waist 

of the 2-photon point spread function (psf) beneath a NA=0.8 40X lens. The red line is the full 

width half maximum (FWHM) of an elliptical Gaussian intensity distribution that is a least 

squared error fitted to the experimental distribution. This psf was measured close to the centre of 

the field of view at Zn=0 using 0.2 μm fluorescent beads. The full width half maximum of the psf 

is 0.49 by 0.51 μm. This compares to the theoretical value of  0.42 μm using equation 3.1 and 

assuming the bead had a Gaussian profile of FWHM 0.2μm. 

 

 

In order to measure the point spread function (psf) of the microscope and compare the 

results with theory, we used the techniques and equations described in Chapter 3 

‘Derivation of resolution of microscope...’.  

 

Fluorescent beads were dissolved in agar so that beads could be found at sufficient 

density all over the field of view. Each bead was measured by imaging at high zoom 

factor over a stack of Z planes usually at least 30 Z planes deep covering about 2-3 

times the depth of an individual axial point spread function. We empirically adjusted 

the agar bead density so that there were between two to five beads visible in any XY 

plane at sufficiently high zoom to get eight or more voxels between the FWHM points 
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of the approximately Gaussian intensity distribution. This is to get sufficiently high 

number of good quality single beads to be able to unambiguously measure their psf 

dimensions and to ensure that the measurements are above the Nyquist sampling limit 

and not subject to sampling errors. All psf measurements to date have been done with 

the old AFL algorithms.  

 

At high zoom and strongly focusing or defocusing Z planes there are still many 

miniscans in the field of view, so it is important to carefully adjust the fine tuning 

parameters ‘movex’, movey’ and ‘astig’ to minimise any psf astigmatism and ensure 

that the miniscans line up precisely and a good quality image of the cross section of 

the experimental psf can be reconstructed.  

 

It is also important to be able to accurately measure the dimensions of the psfs. We 

started using commercially available curve fitting routines, but soon found that they 

were slow and did not quite measure what we were interested in. I have therefore 

developed MatLab code that measures the key parameters. I made this code 

progressively more and more automated as the labour involved in analysing large 

volumes of data became more and more apparent to me. 

 

Figure 5.15 shows the experimentally measured psf of a 0.2 μm fluorescent bead 

close to the centre of the field of view of a 0.8NA, 40X objective. The red line is the 

full width half maximum (FWHM) of a Gaussian elliptical function least squared 

fitted to the experimentally measured data. It is important to fit with an elliptical 

rather than circular Gaussian function so that psfs suffering from astigmatism and 

chromatic aberration can be measured. In this case the psf is very nearly circular and 

close to 0.5 μm in diameter. This is slightly larger than the theoretically expected 

(equation 3.1) experimental value of 0.42 μm for this NA (0.8) and bead size (0.2μm). 
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Figure 5.16 A composite image of nine psfs distributed across the XY plane at Z=0 on a grid of 

pitch 52μm centred at X = Y = 0. Note that as expected the chromatic aberration is 

approximately radial and centred on X = Y = 0. The minimum psf width for these is in the range 

0.43 to 0.59 micrometres, the maximum for the psfs on the X and Y axes away from X = Y = 0 is 

in the range 0.58 to 0.71 μm (c.f. 0.59 μm in theory from equation 3.1) whilst the diagonal corner 

psfs have maximum FWHM in the range 0.64 to 0.78 μm (c.f. 0.74 μm in theory from equation 

3.1). 

 

The next measurements we made were of the psfs in the XY plane at Z = 0. Figure 

5.16 shows that the experimental results have approximately the theoretically 

predicted shape and orientation of chromatic aberration induced lengthening of the 

psfs as radius from the centre of the FOV is increased. These measurements were on 

the standard microscope with no chromatic aberration correction. The theory used for 

the comparisons described in the caption is from chapter 3, Figure 3.20, equation 3.1. 
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Figure 5.17 First experimental measurements (red dots) of the Z psf as a function of Z 

displacement from the natural focal plane of the lens.  The results are for a 40X lens at NA=0.8 

with semiscan angle s= 4.3 mrad using the AFL algorithm for scanning. The solid blue line is the 

calculated Z psf according to equation 3.2 assuming there is chromatic aberration but no 

spherical aberration. The dashed blue line is the theoretical axial chromatic aberration alone 

with FWHM spectral width of 10.6 nm for the laser spectrum.  

 

The first axial (Z) direction psf measurements we made are shown in Figure 5.17.  

The laser was scanned using the AFL algorithm which has an octahedral field of view 

with the greatest Z depth along the X,Y= (0,0). The red dots are the experimental 

results from least squares fitting to the Z profile of the average intensity across an XY 

region of interest of approximately 0.7 x 0.7 μm centred on the highest intensity point 

of the distribution. The Z-stack bead images were chosen visually from those 

recorded as representative and artefact free.  

 

The results show less than 4 μm Z psf over a Z depth of about 80 μm. The 

comparison of the results with the theory show only one of the points, a Z= -20 μm is 

on the theoretical line, with the  Z psf increasing rapidly over the +/- 40 μm from the 

minimum. The increasing Z psf with focusing away from the minimum, in this case, 
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cannot be explained by chromatic aberration. The theoretical Z psf depth, plotted as 

the solid blue line is the convolution of the psf at the centre of the field of view with 

the theoretical chromatic aberration plotted by itself as the dashed line below. 

 

Initially we assumed the discrepancy must be the spherical aberration from the 

objective. However careful examination of the Z stacks showed that the psfs in fact 

had the classic symptoms of astigmatism. That is to say, as the XY plane cross section 

of the focal spot is scanned through the focus, although there is a minimum circular 

radius at the focus, there are axially displaced elliptical foci that have narrower short 

axis radii equally spaced in Z on either side of the circular focus. The ellipses are 

orthogonal to one another in the XY plane.  This residual astigmatism, after 

electronically correcting for any astigmatism perpendicular and parallel to the X axis 

using the ‘astig’ fine tuning parameter, was at 45 degrees to the X and Y axes. The 

astigmatism increased approximately linearly with distance of the AOL Z focal plane 

from the natural focal plane at Z = 0, and changed sign at Z = 0.  

 

We spent several months identifying the cause of this astigmatism and eliminating it. I 

will summarise the main steps here, but not show all the details as we eventually 

proved experimentally that the astigmatism could be reduced below our current 

experimental measurement capability simply by much more precise orthogonal 

alignment of the deflection axes of each AOD crystal.  

 

Briefly I found by modelling the system in Zemax that I could reproduce these details 

of the astigmatism by simply assuming that the crystals were axially misaligned by 

spiral rotation about the Z axis of each AOD in turn by angles of up to a couple of 

degrees or so. Initially I had several potential theories as to the cause of the 

experimentally observed astigmatism, including potential subtle effects caused by 

different optical path lengths for light taking left hand as opposed to right hand spiral 

paths through the AOD crystal. (Zemax does not have the capability to model optical 

activity). I ‘invented’ and tested in Zemax, a way of compensating for the varying 

astigmatism with Z focus position. Using Zemax modelling I proved that a pair of 

optician’s astigmatic test lenses could compensate the AOD twist induced 

astigmatism for all AOL  Z focal planes. I ordered suitable lenses and inserted them in 

one of the existing telecentric relays and remeasured the Z psfs. After carefully 
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aligning the weak astigmatic lenses we could minimise, but not completely eliminate 

the astigmatism for all Z focal planes of the AOL. The resulting psfs are shown in 

Figure 5.18. They are measured both in the XY plane and along the Z axis as a 

function of position along the Z axis at X,Y= (0,0). 

 
Figure 5.18 First automated measurement of XY and Z psf FWHM dimensions beneath a 40X 

NA=0.8 lens. Units are all μm . All measurements are made close to the Z axis X,Y=(0,0). The 

upper trace is long (red) and short (blue) axis of the 2-photon beam waist ellipse plotted against 

the Z axis coordinate of the bead concerned.  For the Z axis the red dots are Z psf FWHM 

averaged over a region of interest of 10×10 pixels centred on the bead, the blue dots are averaged 

over the central 2×2 pixel region. The semiscan angle is 4.3mrad using the old AFL scan 

algorithm. These results show less than 0.6×0.6×3.5 μm psf over the central 100μm depth of field. 

The AODs were not perfectly axially aligned and the dominant astigmatic aberration limiting Z 

psf in the previous figure had been compensated to some extent by weak astigmatic correction 

lenses. 

 

These results were encouraging as they showed it was possible to get less than 

0.6×0.6×3.5 μm psf resolution over 100 μm of Z depth beneath an NA=0.8 lens and 

that the residual astigmatism of the AOL could be at least approximately post 

compensated. 
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Figure 5.19 New mounts for the AODs with independent fine control of axial (Z axis) rotation 

about the centre of the crystal using the brass lead screw visible underneath the main frame. 

Rotation about the horizontal  X axis uses the next half frame in whilst rotation about the Y axis 

to control the Bragg angle has a course manual setting about the clamped support mount just 

above the brass lead screw, and a fine lead screw control close to the crystal and not visible 

here12.  

 

We had, however, also set in motion the alternative improvement to the AOL design 

which was to introduce a fine axial angle control to each AOD. This is mechanically 

quite difficult to do, because we wanted the rotation about all three axes centred on 

the crystal.  A photograph of the new mounts with independent lead screw controlled 

axial (Z axis) rotation about the centre of the crystals is shown in Figure 5.19. Each 

AOD can be rotated by up to +/- 4.5 degrees about the Z axis and clamped into the 

chosen position. Fine angle adjustment about the X and Y axes is also straight 

forward. 

                                                 
12 Mechanics by Alan Hogben and Duncan Farqueharson of the UCL Biosciences Engineering model 
shop. 
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We re-assembled the compact configuration of the AOL using an additional stage 

added to the protocol for aligning each AOD. After optimising the Bragg angle, a lens 

is used to project the zero order (undeflected) and -1 order (wanted deflected) mode 

spots onto a screen with precision radial angle alignment marks. The axial angle of 

the AOD is fine tuned so that these two spots are either exactly horizontal (for X 

deflectors) or vertical (for Y deflectors).  

 

With these new mounts and this new protocol in place we find that the residual 

astigmatism is below the limits we can observe or measure. No astigmatic corrector 

lenses are now necessary to get non astigmatic point spread functions throughout the 

field of view.  
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Figure 5.20 Automated psf measurements of the AOL with improved axial alignment of each 

AOD to minimise astigmatism. All beads lie close to the Z axis X,Y=(0,0). These data were taken 

with the old AFL scan algorithm at s=8.7 mrad and zoom 32. In the upper plot the red points are 

the maxima of the fitted ellipses and the blue points the minima. Note that several of these points 

are unrealistically narrow and have fitted to narrow patternation induced artefacts in the 

images. In the lower plot, the red points are Zpsf averaged over 10×10 voxels in the XY plane and 

the blue points Zpsf averaged over 2×2 voxels 
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Figure 5.21 Automated psf measurements of the AOL with improved axial alignment of each 

AOD to minimise astigmatism. This set of data was one of four sets of data taken at the corners 

of a 100 μm XY square, this one at XY coordinates (-50 μm, 50 μm). In the upper plot the red 

points are the maxima of the fitted ellipses and the blue points the minima. Note that several of 

these points are unrealistically narrow and have fitted to narrow patternation induced artefacts 

in the images. In the lower plot, the red points are Z psf averaged over 10x10 voxels in the XY 

plane and the blue points Zpsf averaged ove 2×2 voxels 

 

 

Automated point spread function measurements from across a larger field of view 

than previously possible were made using the new AOL with this improved precision 

axial alignment of the AODs. The results are shown in Figure 5.20 and Figure 5.21. 

The bead psf image results were taken with the old AFL algorithm at semiscan angle s 

= 8.7 mrad and zoom 32. As in Figure 5.6b), the combination of large scan angle and 

the AFL algorithm caused very strong patternation effects similar to those in Figure 

5.6b). I could nevertheless use the automated psf analysis program to give an 

approximate idea of the true psf dimensions, this time over a cuboid , rather than an 

octahedron shaped volume of dimensions of greater than XYZ= 100×100×180μm. 

The results along the Z axis close to X,Y= (0,0) are shown in Figure 5.20 and close to 

the X,Y = (52 μm,52 μm) in Figure 5.21. Taken together the data suggested that the 
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psfs, which are without any chromatic aberration correction, are less than 1x1x4 μm  

over a cubic region of approximately XYZ=100×100×100 μm.  

 

There are however some caveats. The automated psf data analysis was not as reliable 

as in the first set of automated measurements shown (Figure 5.18) due to difficulties 

with the automatic filtering of the data at the higher zoom factors used and with the 

patternation effects from the old AFL scan algorithm. This is obvious in XY plane 

data on both figures which show anomalously small minimum psf widths (blue 

points). These were caused by the interfering patternation rather than being of any real 

physical significance. Nevertheless, the apparent shift of the minimum Z psf width at 

the edge of the cube to Z = -30 to -40 μm was approximately reproduced at the other 

3 corners of the XY square but not at the centre (X,Y= (0,0)) as shown in the previous 

figure. This may be a real physical effect, and clearly more accurate measurements 

are needed in order to understand such effects. These will be carried out shortly with 

the new OFL algorithms. 

 

Prior to carrying out further measurements on the psfs of beads, my colleagues have 

carried out the biological tests of the microscope reported in the next sections. These 

are aimed at determining whether the performance in real biological tissue is as 

expected from the microscope design. 

First images of neurons  

Together with my colleagues Tomas Fernandez –Alfonso and Srinivas I have chosen 

the data available that best summarises the performance of the prototype in the 

application for which it is intended. The data was gathered during 2008/2009 in brief 

periods between the various measurements and modifications to the microscope and 

software described in the previous parts of this results Chapter. All the results in this 

section are from before the introduction of the OFL algorithm. 
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Figure 5.22 a) Z projection of a pyramid cell from a 3D stack of 50 images spanning 10-135 μm 

deep in layer 2/3 of the cortex of a mouse. Scan parameter s=4.3mrad. The cell is patch clamped 

and filled with intracellular solution that includes 200μM Alexa594 and 0.1mM EGTA.  b) image 

to show that the microscope has sufficient power and resolution to image individual spines on one 

of the dendrites at a tissue depth of 115 μm.  c) Image demonstrating it is possible to image 

individual spines even with the AOL focusing set at 57 μm below the natural focal plane of the 

lens.  

 

The striking image of a patch clamped layer 2/3 pyramid cell from the cortex of a 

mouse shown in Figure 5.22 was the first to prove that the microscope had sufficient 

optical power transmission and resolution to image through a slice of brain tissue up 

to 135 μm thick and show enough resolution, even with 57 μm of AOLM focusing to 

pick out individual spines on the dendritic arbour. 
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First measurements of action potentials  
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Figure 5.23 Action potential detection from 6 positions on a layer 2/3 pyramidal neuron cell body 

50μm deep in a 400 μm thick slice of brain tissue taken from the barrel cortex of a mouse. a) full 

field of view of cell body with patch clamp containing 0.1μM EGTA, 200μM Fluo4, 40μM Alexa 

594 in solution.  b) Magnified view of cell body showing the 6 different regions of interest (ROIs) 

selected for optical functional imaging. c) Electrical patch clamp measurements of action 

potential train (red) and raw data from six optical functional imaging traces from the six ROIs.  

Data collection time per ROI TROI= 4μs AOD cycle time TC= 36μs. Data collection rate per ROI = 

4.6kHz. d) Raw data trace averaged over 6 data collection points with a sliding window. 

Experimental work by (Fernandez-Alfonso) and (Srinivas) 

 

Figure 5.23 shows one of our first tests of optical functional imaging carried out on a 

layer 2/3 pyramid neuron in an acute slice from the cortex of a mouse. On this 

occasion the dye that perfuses the cell from the patch clamp includes Fluo 4 which is 

a calcium sensitive dye. After imaging, Figure 5.23a, the patched cell body, six 

separate regions of interest (ROIs) were chosen Figure 5.23b. The cell was then 

briefly electrically depolarised using the patch clamp in order to drive its membrane 

above the threshold necessary for it to start generating action potentials 

spontaneously. As can be seen from the red trace Figure 5.23c, a sequence of 5 

electrically measured action potentials resulted, separated by 40ms from one another 

(25Hz). In the cell body the action potentials allowed short bursts of opening of the 

voltage gated calcium channels and the resulting rapid rise in calcium concentration  
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was picked up by the sudden step up in number of fluorescent photons collected in 

each data collection time TROI= 4μs. The sampling rate at each ROI is 4.6 kHz or one 

sample every 216 μs. The fluorescence plots represent relative fluorescence compared 

to the background fluorescence and are plotted in terms of ΔF/F, the relative change 

in fluorescence compared to the average background.   The calcium ion influx is 

much faster than its removal from the cytoplasm (Kerr and Denk 2008), so the 

calcium concentration decays much more slowly than it rises. In fact it only decays a 

few tens of percent before the next action potential arrives and boosts the calcium 

concentration again. The step rises in calcium concentration are clearly visible even in 

the raw data shown in grey. The detailed sawtooth waveform is much clearer Figure 

5.23d when this data is averaged by a 6 data point sliding window. Note that there are 

significant variations in the magnitude of the calcium response in different monitoring 

positions in the cell body.  

 

A major aim of these experiments was to determine whether it was possible to obtain 

millisecond accuracy of the timing of the action potentials from the calcium 

fluorescence data. Figure 5.24 shows an analysis of fluorescence data from 3 of the 

ROIs on a similar experiment.  
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Figure 5.24 Rise times of calcium fluorescence at three different positions in a layer 2/3 cell. Rise 

times estimated by curve fitting to fluorescence data from  ROI 2 near apical dendrite in tapered 

part of cell body about 3 μm wide,  ROI 3 in dendrite 3 μm from cell body, ROI 4 in dendrite 35 

μm from cell body. Experimental work and data analysis by  

 

On this occasion the ROIs were distributed more widely, not only in the cell body, but 

also along the dendrite. To most accurately deduce the start of the action potential 

Tomas has found that fitting the data to a single exponential rise with double 

exponential decay works well.  

 

The data in the table show the 10-90 rise times varying in the range 1-2ms. Despite 

this variation Tomas has found that the 10% rise point on average matches the 

electrical transient of the action potential best. (Note the early rise of the theoretical 

exponential line has a small curvature added for improved matching). The ΔAP time 

is the error between the electrical and optical action potential time measured in this 

way.  This data and other data he collected show that sub millisecond action potential 

timing can be routinely measured in this way. The experiments in Figure 5.24 were all 

carried out in the natural focal plane of the lens at Zn =0.  

 

In order to test whether the AOLM operated equally well over a range of focal 

distances the experiment was repeated on a single cell measuring the electrical and 

optical action potential timing in three different focal planes. This was done by 
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moving the cell axially between measurements and keeping the monitoring spot 

position constant as close as practically possible`. The results are shown in Figure 

5.25 

 

 

 
 
Figure 5.25 Test to determine if action potentials can be monitored equally well at different AOL 

axial Z focus settings. a) AOLM focused at -40μm, b) focused at the natural focal plane, c) 

AOLM focused 40 μm above it s natural focal plane. In each case the cell body was moved axially 

so that the same region of the soma near the apical dendrite was used for monitoring Calcium 

fluorescence. The red trace is the electrical membrane potential measured with the patch clamp, 

the grey data is the Calcium fluorescence data, the orange data is the same measurement with 

data averaged over 10 trials, and blue fitted to an exponential rise and exponential fall equation. 

 

 

The results show remarkable consistency of signal levels, signal to noise ratio and a 

variation of action potential timing of less than a quarter of a millisecond  over a focal 

range of 80 μm (albeit for only 3 samples).  

 

Taken together these first optical functional imaging results show that the AOLM is 

capable of optically monitoring calcium levels in ROIs at close to 30kHz whilst either 

random access sampling in the XY plane or changing the focus of the AOL in the 
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axial direction over an 80 μm range . It has sufficient signal to noise ratio to monitor 

action potential timing from neurons with sub-millisecond precision. Note however 

that since the Z focusing experiment was on the same ROI on the same neuron in 

order to check consistency of signal to noise with change of focus, the depth of tissue 

that the beam was focusing through was not changing with the AOL focus. The next 

biological experiments (yet to be carried out) will be aimed at combining these 

capabilities to determine the volume (and particularly the depth range) over which it 

is possible to maintain sufficiently high signal to noise ratio whilst carrying out true 

3D random access monitoring of ROIs.  

Summary of chapter 5 

This chapter describes the main experimental results to date of the complete AOLM. 

It starts by showing that the AOL can randomly refocus in 3D at 30kHz and that the 

prechirper pre-compensates for the AOL and microscope temporal dispersion 

sufficiently well that the pulse width is only increased from 100fs at the laser to 115 fs 

at the specimen. 3D imaging results are shown for the AOLM using the original 

absolute frequency limit scan algorithm. The problem of patternation is described and 

progress towards solving it with the optimized frequency limits (OFL) algorithm 

reported. It is shown that the OFL enables high efficiency scanning over more than a 

200 μm cube at 0.8 NA. Measurements of the microscope point spread function show 

better than 1x1x4 μm resolution over a cubic region of approximately 

XYZ=100×100×100 μm. These measurements are without the proposed chromatic 

aberration correction. Finally we report on our first images of neurons, and functional 

imaging of multiple regions of interest on individual neurons which we stimulated to 

fire action potentials. The signal to noise ratio is sufficiently high to enable 

millisecond time resolution of action potentials to be achieved whilst changing the 

AOL focus over an 80μm range.
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Chapter 6       Conclusions and Discussion 

Summary of main achievements  

This thesis outlines the theoretical and experimental work that I have carried out 

during the development of a prototype high speed 3D 2-photon microscope based on 

AODs. This development arose from initial proposal that 4 AODs could be used to 

form a high speed dynamic lens (Kaplan, Friedman et al. 2001)  and the target 

specifications that my supervisor proposed for high speed 3D optical functional 

imaging in neuroscience.  

 

I have analysed deflection bandwidth requirements for the type of 3D ‘pointing mode’ 

system we require and the results show that AODs have a large advantage over other 

existing technologies. I have studied the limitations of AODs that have largely 

prevented their widespread use in 2-photon microscopy to date. I have invented 

solutions to several of the key problems and proposed a detailed design for a 

prototype microscope. A key design advance was to use customised AODs with a low 

acoustic walk off angle. A novel compact configuration for the 4 AODs will 

substantially reduce the practical difficulties of changing operating wavelength. I have 

modeled the AOL design and derived the new RF drive frequency control algorithms 

necessary for the compact configuration. I have proposed and analysed a novel 

solution for minimizing the serious chromatic aberration inherent to the use of 

diffractive devices such as AODs. 

 

We have built a prototype machine and demonstrated many of the key aspects of the 

target performance. Experimental clues from the prototype and deeper understanding 

of the complex multidimensional optical physics determining the relationship between 

the RF drive parameters and the overall acousto-optic lens diffraction efficiency has 

led to the extension of the RF drive frequency control algorithms to give a substantial 

increase the field of view and improvement of the uniformity of light transmission 

during scanning. These enable the laser beam to be scanned over a volume close to 

the 250μm cube of the target specification at a numerical aperture NA = 0.8. We have 

demonstrated that the prototype AOLM can achieve 30 kHz random access sampling 

of multiple regions of interest on neurons in live tissue. Moreover, the SNR is 
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sufficiently good to detect individual action potential-evoked calcium transients with 

fluorescent dyes and to determine their timing with millisecond resolution. These 

specifications and results represent a significant improvement over current 

technologies for functional optical imaging.  

 

Comparison of AOLM with other recent approaches for optical 

functional imaging 

There have been several interesting papers published during the development of this 

AOLM. I have divided them up for discussion into those using AOD technology and 

those using different technology to achieve similar aims. 

AOD-based imaging approaches 

The first proof-of-principle demonstration of high speed 3D 2-photon optical 

functional imaging using AODs was published by Peter Saggau’s group (Reddy and 

Saggau 2007; Reddy, Kelleher et al. 2008)  They describe both what they call 

‘structural imaging’ and ‘random access’ imaging of individual neurons over volumes 

of tissue of  XYZ= 200×200×25μm beneath a nominal NA=1, 60X objective. They 

describe imaging pollen grains and measuring psfs over a focusing range of up to 

50μm, but report substantial drop off in 2-photon power for Z displacement greater 

than ±25 μm. This compares to our results of 150×150×130 μm scan volume shown 

in Figure 5.10 for a very similar13 NA=1, 60X lens and very similar back aperture fill 

diameter.  They attribute their limited depth of scan to the use of conventional narrow 

input acceptance angle commercial AODs and advocate the use of customized wide 

acceptance angle AODs in future. There are, however, other substantial differences in 

the system they describe and the system we have developed.  In particular their use of 

commercial AODs means that the walk off angle of the AODs they were using was of 

the order of 55 degrees rather than the 20 degrees of our customized design. It seems 

possible that coma arising from this large walk off angle limited their ability to image 

at more than ±25 μm from the natural focal plane.  

 

                                                 
13 The back aperture fill ‘W’ for the Reddy microscope is 9 mm AOD aperture ( from manufacturer) 
divided by 1.2 :1 telecentric relay = 7.5mm., Our microscope has 15mm x 0.6= 9mm back aperture fill 
from data in chapter 5, ‘Comparison of measured field of view with theory’ This is then apertured by 
the 7.3mm physical back aperture of the 60x microscope. 
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The fact that (Reddy, Kelleher et al. 2008) could scan laterally over XY=200×200 μm 

beneath a NA=1, 60X objective compared to our 130×130 μm is perhaps because they 

used a narrower spectrum (Mira,HP Coherent) laser with 200fs pulse length. In 

principle this should have a transform limited spectral width of  5nm spectral width, 

half the spectral width of ours. In the paper they said it had ~10nm spectral width, if 

so then the pulses were not transform limited. The long pulse length and possibly 

narrower spectrum minimised the temporal dispersion of their system. This was 

important because they decided that the large temporal dispersion of their standard 

commercial AODs which were each 30mm long was so large that it was impractical 

to compensate with a prechirper. As a result, their 200fs laser input pulses were 

stretched to 1.8 ps length in passing through the microscope. This pushes up the 

power required for 2-photon imaging substantially ( a factor of 3 in theory) and 

necessitated the use of optical powers at the back aperture of the objective of 40-

100mW compared to about 4- 20 mW for scanned  imaging in our microscope or 

other conventional 2-photon microscopes with normal 200-300 fs pulse length at the 

specimen. 

 

At no point in any of their published papers do Reddy and Saggau explain their 

control algorithms. It is not clear whether they have developed the miniscan concept, 

indeed it might well be that doing so would be very difficult with the less precisely 

controlled analogue voltage controlled oscillators they used to control drive frequency 

of the AODs. It is possible therefore that their ‘structural imaging’ mode is actually 

the same as the pointing mode and that they spend 14 μs of AOD fill time (for their 

9mm aperture AODs) for every approximately 4 μs of data collection dwell time. If 

true, this would make structural imaging with their microscope much slower than ours 

in the miniscan mode. Another difference between the Reddy and Saggau system and 

ours is that they do not use the compact configuration of AODs, they have not 

discussed either the impracticality of changing wavelength with the long telecentric 

relays they use to relay the image of one AOD to the grating of the next. 

 

Examination of the methods section reveals that the recordings of action potential 

evoked calcium transients (Reddy, Kelleher et al. 2008) were low pass filtered at 

50Hz to achieve a good SNR. This is somewhat surprising as the noise in their traces 

is comparable to our traces, which were only filtered at 1kHz (Figure 5.23 etc.). 
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Comparing the Reddy and Saggau results with those reported in this thesis gives us 

confidence that although we did not publish first, our design is a significant advance 

on their publication and much closer to a useable high speed 3D 2-photon microscope 

for optical functional imaging. 

 

During the course of the work reported in this thesis there was one other 3D 2-photon 

AOD based microscope paper published (Vucinic and Sejnowski 2007) This, as 

discussed in (Reddy, Kelleher et al. 2008)  is a fast 3D scanning scheme using 2 

AODs that only changes focus in the Z direction as a result of fast X or Y scanning. It 

is not a pointing mode system and, as acknowledged by the author, suffers from poor 

duty cycle at high sparsity as I described in more detail in the first section of chapter 

2, ‘Choice of deflection system’. Lastly, (Kremer, Leger et al. 2008) report on a high 

performance 2D AOD system for optical functional imaging. They report a large 

aperture (13mmAOD) that is capable of scanning over more than 40 mrad scan angle. 

This compares to the 36 mrad = 4 x 9 mrad semiscan angle for our system (Figure 

5.9). They also report on the detailed space time frequency measurements of the point 

spread functions of this system using a measurement system known as ‘FROG’.  It 

would be very interesting to carry out similar measurements on the psfs of our system 

in order to understand combination of spherical and chromatic aberrations that 

presumably limit the psfs of our system at large AOL Z focusing. 

Other Technologies  

 

Liquid crystal phase modulator technology has also been applied to diffractive 

imaging applications. One of these technologies developed by Holoeye 

(www.holoeye.com ) has been used for an interesting approach to optical functional 

imaging of many neurons in parallel. At present the results reported are for two 

dimensional imaging only, although programmable diffractive elements such as the 

Holoeye system can focus in the third dimension as well. Nikolenko (Nikolenko, 

Watson et al. 2008) reported on a 2D system that used a Holoeye SLM based phase 

modulator to focus or ‘beam shape’ its total diffracted power onto the bodies of many 

10s of neurons in cortical tissue in parallel. They then used a CCD camera to monitor 

all the cells in parallel at 60Hz. They were able detect the changes in calcium 

concentration in individual cells following individual action potentials. They do not 

http://www.holoeye.com/�
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say the time precision they could achieve but it looks in the order of 100ms from the 

data they present. 

 

A separate paper (Brendon, Volodymyr et al. 2009)  from the same group reports on 

speeding up conventional raster scanning by using diffractive optical elements to form 

an array of beamlets for 2D 2-photon imaging with a parallel array detector such as 

CCD or photomultiplier tube array. As most conventional 2-photon microscopes have 

plenty of laser power to spare, this is clearly a simple way of speeding up data 

acquisition. This is related to the TriM Scope from LaVision Biotec  which uses up to 

64 2-photon laser beams to  parallelise and speed up scanning, and the emitted 

fluorescence is imaged onto a fast CCD camera, which can run at 100Hz. This has 

been used extensively for imaging network activity in slices (Crépel, Aronov et al. 

2007). As the authors acknowledge, it will not be suitable for deep tissue 3D imaging 

as scattering will cause crosstalk between data acquisition channels and there is much 

less power spare in deep tissue  in the microscope because of laser scattering losses. 

The results they report demonstrate the expected speed up in data acquisition but also 

appear limited to about 100ms time resolution for action potential detection. 

 

An interesting recently reported mechanical system with the potential for much more 

rapid refocusing in Z than any previous mechanical focusing system is the piston 

mirror system  (Botcherby, Juskaitis et al. 2007). It has the potential for operation at 

speeds up to around 1kHz cycle time as it uses a light weight piston mirror that sits in 

air at the focus of an auxiliary objective. There is thus no need to move the objective. 

By matching the angular convergence of the auxiliary objective so that it matches 

both the sine and Hershel conditions with the main water immersion objective, a high 

degree of correction of the spherical aberration that would otherwise limit the Z 

displacement of a high NA remotely focused objective has been demonstrated. 

Clearly this system will only operate in the scanning mode in the Z direction, its 

deflection bandwidth is not high enough to be considered for the pointing mode. 

However, if for instance, it was hybridised with XY deflectors operated in the 

pointing mode, then providing half the ROIs in each  Z plane are monitored before 

moving down to the next  Z plane and the other half on the cyclic return of the Z 

plane in the return direction, then, assuming a fairly uniform distribution of neurons in 

the Z direction, it is possible in principle to obtain a duty cycle close to that of a full 
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3D pointing mode system up to a sparsity in the Z direction SS =  1/2TROIRS. This 

corresponds to a sparsity of 50 for RS=1 kHz  Z scan rate and TROI = 10μs. This means 

that the focal spot would on average move 5μm in the data collection time TROI if the 

Z scan depth was 250μm.  For 100 Hz rates the sparsity would be 500 and the laser 

spot would only move 0.5 μm in  TROI = 10 μs. This is probably sufficiently small not 

to matter in comparison to a Z psf of 2 μm.  
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Figure 6.1 The relationship between number of regions of interest and imaging time for pointing 

mode and scanning mode. Black dashed line shows the expected relationship for a hybrid 2D 

AOD – piston mirror system. In all cases the total dwell time in each region of interest TROI is 

8μs. The pointing mode transit time is 25μs.  The sloping black dashed line shows the maximum 

number of ROIs that could be monitored with infinite deflection bandwidth (zero transit time 

between ROIs). The vertical and horizontal black lines pick out particular imaging rates for 

comparison. For the scanning mode results are for 3 different spatial sparsities Ss.  The 

horizontal green arrows indicate the approximate number of selectable neurons (NSN) for high 

speed imaging in a volume of rat cortex 250×250×250μm (3D) and 250×250μm (2D). (Ohki, 

Chung et al. 2005) and 500×500×500μm for Saccade scanning in 3D (our extrapolation). 
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Figure 6.1 shows the expected relationship between the number of regions of interest 

that the Hybrid 2D AOD – piston mirror system can monitor and the imaging speed 

Rs superimposed on the pointing mode scanning mode relationship plot presented 

earlier in Figure 2.6.  This plot shows that the combination of a pointing XY deflector 

mode (e.g. 2D AOD scanner) and the piston mirror is well worth considering as a 

competitor to the AOLM system described in this thesis. If, for instance, it was 

possible to design such a system so that it delivered higher optical power to the back 

aperture of the objective and it gave smaller axial psfs over a larger field of view and 

the end user was happy to trade off faster cycle time and random access ability in Z 

that the AOLM system offers, then it may be a good option. For example, if the 

system is monitoring 1000 neurons or more, then for TROI =10μs, the sampling rate of 

individual neurons is more than 10ms with either system. In this case, if it does not 

matter what order the neurons are scanned in the Z direction, and, if the neurons are 

distributed fairly uniformly in Z, then the performance of the AOLM would be similar 

to a hybrid piston and 2D AOD scanner. The decision of which choice was best would 

then be made in terms of comparison of Z psf dimension and field of view which may 

be better for the piston mirror solution.  

 

It is clear from this analysis however that if high sparsity is wanted at  kHz sampling 

rates, the region above 100Hz imaging rate where the AOLM and hybrid 2D – piston 

mirror solution deviate in Figure 6.1,  then, the hybrid 2D AOD- piston mirror 

solution will not be able to compete with the AOLM solution.  

 

Status of results to date 

The results presented in chapter five are very much work in progress as our priorities 

have been driven in various phases between improving understanding, improving 

performance and obtaining preliminary results  for demonstrating the progress to date. 

At each stage of these development cycles, there have been dramatic improvements in 

performance. We are still far from reaching the full potential of the acousto-optic lens 

microscope (AOLM). In particular, it was only at the beginning of 2009 that we 

realised the potential for new drive algorithms to significantly improve the size and 

shape of the high efficiency field of view from octahedral to the enclosing cuboid. At 

the time of writing, the new optimized frequency limits (OFL) algorithms have only 
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been working in their initial form for a few weeks and have been used to demonstrate 

the improvements to field of view described in chapter 5, Figure 5.6 to Figure 5.11. 

We have postponed re-measuring the point spread functions ( psfs) across the full 

field of view and measuring the chromatic aberration correction whilst we completed 

the biological test results reported in Chapter 5.   

 

Performance of the prototype AOLM 

In chapter 5, Figure 5.6 to Figure 5.11, I presented results showing that the prototype 

AOLM is capable of scanning and pointing with sufficient power and resolution for 2-

photon imaging of test grids that covers approximately a 200μm cube. The field of 

view matches that predicted theoretically to within 7%. There is however noticeable 

fading at the edges of the field of view (Figure 5.7) which is likely to be at least in 

part caused by the theoretically expected chromatic aberrations. The new OFL drive 

algorithm is essential to achieving this large scan volume without the serious 

patternation problems of the Absolute Frequency Limits (AFL) algorithm. The results 

of point spread function (psf) measurements of beads indicate, but do not prove, that 

the present microscope is capable of imaging with better than an XYZ resolution of 

1×1×4 μm over a 3D cube of 100×100×100 μm. This is without chromatic aberration 

correction and is therefore approximately as expected from the theory in chapter 3,  

‘Derivation of resolution of microscope..’. The results also show that the AOLM is 

capable of imaging the structure of neurons in live acute slices of mouse brain cortex 

to a depth of over 100 μm. Moreover, spines on dendrites, which are of the order of 1 

μm in size, can be resolved even with over 50 μm of AOL focusing. 

 

Experiments using the AOLM for optical functional imaging of a single neuron at 4.6 

kHz sampling rate per region of interest (ROI) and 4 μs sample collection time shows 

that individual action potential-evoked calcium transients can be detected clearly with 

a high signal to noise ratio (SNR). This was maintained when the AOL focus was 

varied over an 80 μm range. These recordings allowed the timing of individual action 

potentials to be inferred from the rising phase of the calcium transients with a 

precision of approximately 1ms. These results show that the performance of the 

prototype AOLM is sufficient for high spatio-temporal optical functional imaging and 

this can be improved further given that the dwell time can be increased to 8 or 16 μs. 
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It should, however, be noted that despite altering the AOL focus by over 80μm, the 

optical functional imaging results reported here were all carried out at about 40-50 μm 

tissue depth. The signal to noise ratio will reduce exponentially with tissue depth as a 

result of optical scattering. The next (yet to be carried out) optical functional imaging 

experiments will be the first time we have tested true 3D random access optical 

functional imaging and it will be very interesting to see how performance varies with 

tissue depth. 

Further Work: improving image patternation and aberration of 

the psf  

Throughout the project the problems caused by the variation of efficiency of AODs 

with scan angle have been amongst the most difficult to understand and correct. I 

have developed increasingly sophisticated MatLab models of individual AODs and 

modeled what should happen when four AODs are concatenated to form the AOL. 

Each AOD needs a three dimension plot to map its efficiency vs. drive frequency and 

input incident angle, four dimensional if, as I have recently done, you calculate using 

the large signal efficiency rather than the usual low acoustic drive model known as the 

Born approximation (Xu and Stroud 1992). Calculating the overall efficiency of the 

AOL thus becomes at least a 12 or 16 dimensional problem.  

 

The variations of efficiency with drive angle cause problems by introducing unwanted 

variations in 2-photon efficiency, for instance when scanning during a miniscan. This 

causes patternation. In principle, this could be corrected for either by independently 

controlling the incident laser power to the AOL or by post processing the image. 

Since post processing the image would cause variations in noise level with position, 

we prefer to find a solution to the problems of controlling the laser power so that the 

spot intensity does not vary along a miniscan or between miniscans.  

 

Comparison of Figure 3.17, the theoretical efficiency plot of an X1,X2 AOD pair over 

the f1,f2 drive frequency space with the experimental plot of  Figure 4.10 and Figure 

4.11 shows that the experimental plots have peaks and troughs of efficiency every 4 

MHz  in a cyclic manner. This cyclic efficiency variation with frequency is not shown 

by my model and therefore must be caused by a physical effect that I have not 

included. As discussed in Chapter 4, it is plausible that this could be an effect of 
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variation of the eigenmode polarization with propagation angle in the crystal 

analogous to the cyclic interference fringes we utilized to precisely measure the 

crystal orientation in Figure 3.34 to Figure 3.38. If this is correct then we may be able 

to minimise the effect by more accurately adjusting the state of polarization between 

the crystals so that light is launched into the crystal with the optimum polarization to 

couple into the correct elliptical extraordinary eigenmode. There will then be no 

optical power in the orthogonal mode to cause the cyclic interference effect.  Such an 

optimisation would require the use of additional quarter wave plates between each 

crystal.  

 

 

Even with this improvement it is clear that during each miniscan there will be 

significant variation of intensity of the 2-photon focused spot with time along the 

scan. The new OFL algorithm has successfully enabled each miniscan to find 

maximum efficiency possible for the middle voxel of each miniscan (data not shown). 

I now need to develop algorithms that not only compensate for the change in 

efficiency when the OFL algorithm jumps from one peak efficiency in f1,f2 frequency 

space to another, but also modulates either an external Pockel’s Cell or the acoustic 

drive intensity during a miniscan to give constant efficiency equal to the maximum 

possible at the ends of each miniscan. Unfortunately, it is of course necessary to level 

down the peaks of intensity to match the troughs, this makes it particularly important 

to find ways to minimize the troughs in f1, f2 frequency space, perhaps by the use of 

additional quarter wave plates. 

 

We have experimented with three ways to implement such laser spot intensity control 

in the scanning mode: 

1. Scan a uniformly fluorescent sample and measure the intensity variation vs. 

time during the scan, then implement a separate intensity control via a 

Pockels Cell that inverts the measured intensity modulation and hence 

compensates the AOD induced variation. This method was used for the pollen 

grain images in Figure 5.5. This method is, however, very tedious as it 

requires measurement of the 2-photon intensity in a uniform fluorescent 

medium for every different scan frame you might wish to use.  



 202

2. Measuring the transmission efficiency, inverting the signal and using a 

Pockels cell to correct for intensity variations. This was achieved by tapping 

off ~8% of the diffracted light in the AOL output with a pellicle set with its 

normal at 8 degrees  to the beam (to avoid polarization effects) and 

monitoring its intensity with a large area (3 mm diameter) high speed silicon 

photo diode. This signal is then used to form a ‘single photon’ brightness 

image of the particular scan frame, and by comparing the local single photon 

intensity to the average intensity, a correction signal was generated for 

modulating the Pockel’s Cell in antiphase with the local intensity variation. 

This method worked well on occasions but it was very difficult to identify the 

cause when it failed to work well. 

3. Develop a mathematical model of efficiency vs. drive frequencies for the 

AOL, so that the compensation drive can be computed at the same time as the 

scan drive parameters are calculated. We have tried this method with the old 

absolute frequency limit (AFL) algorithm, but our mathematical model of the 

complete system was too inaccurate to be satisfactory. 

 

Part of the problem was that with the old AFL drive algorithm, the variations in 

intensity that the compensation mechanism was trying to correct for were too large. I 

hope that the fact that the middle voxel of any miniscan is always the brightest will 

make the minor parabolic correction to intensity vs. time much more tractable with 

the new OFL algorithm. The fact that the algorithm has independent external control 

of the length of each miniscan makes the prospects of success much higher. As stated 

in the figures concerned, the images presented in this thesis using the new OFL 

algorithm are all with only one voxel miniscan length to minimize patternation 

effects. 

 

The second major problem that requires further work involves optimising the point 

spread function across the field of view, by minimizing chromatic and spherical 

aberration. The measurements of the psf we have made show that, at least in the XY 

plane at Z=0 chromatic aberration causes the psf to be lengthened in a radial direction 

centred on the centre of the field of view (See Chapter 3,  ‘ Derivation of resolution of 

microscope’). The chromatic aberration itself increases in proportion to the spectral 

width of the laser and the radial distance from the centre of the field of view. My 
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Matlab models (Figure 3.23) show that in 3D the chromatic aberration remains radial 

with the aberration vector pointing out radially from the centre of a sphere. The 

magnitude of the chromatic aberration is equal to the FWHM of the laser spectral 

width divided by its wavelength times the radial distance to the centre of the FOV. 

For our current laser (Spectra physics Mai Tai, www.newport.com ) the spectral 

width is 10.6nm causing chromatic aberration of 1/80 of the deflection of the focus 

from the centre of the FOV resulting 1 μm of chromatic aberration at 80 μm radius 

from the centre of the field of view. Our experimental measurements at 52 μm and 75 

μm radius were consistent with the expected aberration (Figure 5.21). It is not 

therefore surprising that the 2-photon imaging brightness falls off rapidly towards the 

edges of the 200 μm cube imaged using the fluorescent grids in Figure 5.9. 

 

There are two potential ways to minimize chromatic aberration, reduce the spectral 

width of the laser, or implement the magnification chromatic aberration compensation 

described in Chapter 3 ‘Designing a practical chromatic aberration corrector’. There 

are two leading brands of Ti-Sapphire laser the Spectra Physics ‘MaiTai’ 

(www.newport.com ) that we have used here and the Coherent ‘Chameleon’ 

(www.coherent.com ). The Spectra physics laser has a pulse width of 100fs and the 

Coherent 140fs. The spectral widths are inversely related to the pulse length at 10-

13nm and 5-6nm respectively. Since 2-photon efficiency reduces with increasing 

pulse length it is not obvious which laser is the better for 2-photon imaging. In view 

of the strong effect of chromatic aberration limiting the FOV in the AOLM we have 

developed it is obviously worth while to experiment with the narrower laser spectrum 

Coherent laser and find out whether it gives the approximate doubling of the linear 

dimensions of FOV in the XY plane that might be expected for the predicted 

reduction in chromatic aberration. 

 

We have purchased the lenses and diffractive optical elements (DOE)s for the 

chromatic aberration compensator (DOEs from www.silios.com ) shown in Figure 

3.28. We have checked that the DOEs have better than 80% transmission efficiency. 

Even so, the loss of the compensator will be at least 40%. The questions we need to 

determine experimentally are whether the chromatic aberration compensator works as 

designed, and if so whether the benefits of improved field of view are out weighed by 

http://www.newport.com/�
http://www.newport.com/�
http://www.coherent.com/�
http://www.silios.com/�
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the insertion loss of the compensator. This latter point depends on whether there is 

spare laser power for the measurements that are being made.  

 

Once the chromatic aberration is minimized with one or both of the strategies above, 

the dominant form of aberration is likely to be spherical. Spherical aberration will 

increase with distance from the natural focal plane and with the NA lens. For 

functional imaging applications where a large axial range of focus is required, we 

intend to restrict the NA of the system to 0.7-0.8. This will be achieved by under 

filling high NA objectives, allowing the full NA to be used for light collection.  

 

We have very little evidence of what the spherical aberration will be at large Z 

displacements when using the new OFL algorithms. The XY plane images of pollen 

grains Z displaced by +/- 133mm beneath an NA=0.8 40X lens in figure 5.14 seem 

remarkably clear and crisp. It is difficult to believe that there is enormous axial 

spherical aberration, but proof is required from direct psf measurements 

 

 

Prospects for meeting or exceeding target specification with 

the current design 

Implementation of the improved patternation control, a narrow spectrum 2-photon 

laser and the chromatic aberration compensator, is predicted to increase the effective 

X-Y field of view to at least 200x200 μm and perhaps in excess of the target 250×250 

μm whilst maintaining the lateral PSF dimension below 1μm. I am much less 

confident about meeting the target of a 2 μm axial psf over a 250 μm  focusing range. 

It seems likely from results to date that it will only be possible to achieve a <4 μm 

axial psf over this range. This is important because the functional imaging signal can 

be contaminated by signals arising from surrounding extracellular tissue collectively 

known as the neuropil14, reducing the SNR (Gobel, Kampa et al. 2007). Nevertheless, 

the first experimental optical functional imaging signals we have from the 80 μm Z 

depth range are encouraging in this respect (Figure 5.25). These results show that 

signals with the largest SNR arise from the large proximal dendrite close to the soma 

                                                 
14 Neuropil is made up of a high density of axons and dendrites from other neurons.  
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of pyramidal neurons in mouse cortex. This region, where the soma tapers into the 

dendrite, is about 10 μm wide, large enough to completely surround even a 4 μm axial 

psf. These results suggest that we can get results with the present psf without 

contamination from the neuropil. 

 

Our priorities now are to complete biological test results for publication, introduce 

patternation control into the OFL algorithm, re-measure and fine tune the psf without 

chromatic aberration compensation and then make first measurements of whether the 

chromatic aberration compensation works as designed and improves the overall 

microscope performance. Finally we will test the system, with and without chromatic 

aberration control but with a narrower spectrum laser. 

Patents, proposed new hybrid ‘3D Saccade scanning’ 

microscope and prospects for commercial exploitation 

During the course of the work described in this thesis we have filed two patents 

(Kirkby, Silver et al. 20.03.2008; Silver, Kirkby et al. 2009) The first, which has 60 

diagrams, covers all the key ideas described in chapter 2 and 3 on the compact 

configuration, AOD design and compensating for the chromatic aberration of AODs, 

The second covers a concept we name as saccade scanning. It is worth outlining here 

as it is aimed at combining the benefits of mechanical scanning with AOD pointing. 

The idea is simply to combine a 3D AOD pointing mode system in series with 

galvanometer and/or piston mirror mechanical scanning.  The idea is to not just use 

the AOD system to point in a steady direction but in each region of interest to control 

the AOD 3D scan velocity to exactly compensate the movement of the mechanical 

system for the duration of the data gathering time period TROI . Thus in each ROI the 

3D AOD motion briefly cancels the 3D mechanical movement. In this way, a high 

spatial sparsity SS can be achieved whilst benefitting from the larger low aberration 

field of view of mechanical scan systems. We refer to such systems as saccade 

scanning systems as they move from region of interest to region of interest in a series 

of small jumps in a similar way to the way the eye saccade scans a scene. It is 

possible that a high performance ‘Rolls Royce’ optical functional imaging system 

based on the concepts of this Thesis would thus combine all the benefits of 

mechanical scanning systems with those of the AOLM.  In principle, assuming that 

the piston mirror system could indeed be made to work with low losses and low 



 206

aberrations at 100Hz or higher, then such a saccade scanned system might well be 

able to cover a volume of 500×500×500 μm and thus achieve high sparsity optical 

functional imaging of up to 24000 neurons as indicated by the maximum number of 

selectable neurons (NSN) for 3D saccade scanning on Figure 6.1. Unlike the hybrid 

piston mirror 2D AOD system described in the previous section, the performance 

would not drop off at high frame rate, but equal that of the AOLM up to the highest 

speeds (i.e. follow the thick solid red line of Figure 6.1).  

 

The filing of the Patents was funded by UCL business and there are plans to invite 

selected commercial manufactures to demonstrate the system as soon as we are 

confident that such a demonstration would properly represent the capabilities of the 

technology. The technology we have developed still appears to have fundamental 

advantages over all other known technologies for high speed 3D optical functional 

imaging at high spatial sparsity, (see Chapter 1, ‘Temporal and spatial sparseness of 

action potentials...’). If the target specification can be met, then there is every reason 

to believe that there will be high demand for a 2-photon microscope with these 

capabilities from the neuroscience community. We have already demonstrated many 

of the key aspects of the design and the particular technologies we have chosen to 

develop all seem reliable, reproducible and hence manufacturable. There are, 

therefore, good prospects that the right company could make a success of developing 

an optical functional imaging instrument based on this technology. 

Potential for improving AOLM performance through the 

further development of control electronics and algorithms 

As described in chapter 4, the current prototype microscope pre-computes the 

scanning and pointing mode data up to 20,000 miniscans before loading the data 

records into the memory of the iDDS digital synthesiser that drives the AODs with the 

correct radio frequency (RF) signals. At present these signals are limited to a 

sequence of linear ramps with defined start frequency, duration and RF ramp rate. 

Each AOD pair can therefore only act as a dynamic cylindrical lens.  There are 

several reasons why an upgrade to the control system will improve AOLM 

performance. These include the following: 

1. Increasing the bandwidth for uploading data between the computer and iDDS 

memory will speed up use. If the computation and loading time can be made 
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shorter than an individual miniscan, then a system that adapts the scan 

parameters in response to the image in real time can be made. This would 

open up many new applications including automated tracking of active 

neuronal signals and compensation for movement of live tissue etc. This latter 

capability is likely to be very important at high spatial sparsity for in-vivo 

imaging as pulsating blood vessels and breathing cause significant tissue 

movement in live animals. 

2. If the mathematical function describing RF frequency vs. time during a 

miniscan can not only include the first order linear ramp rate term as today, 

but also higher order, parabolic, cubic and sinusoidal etc. terms, then this 

introduces the possibility of not only correcting lens and tissue induced 

aberrations but also of making the spot scan in any direction in 3D, including 

the axial direction. With linear ramps imaging in Z requires refocusing 

between miniscans because the Z plane is fixed during any miniscan. 

 

During 2008, two final year undergraduates, under the supervision of Dr John 

Mitchell of UCL Electrical Engineering Department carried out a very successful 

project to develop and demonstrate such a system based on Field Programmable Gate 

Array (FPGA) technology. From October 2009 it is planned for a PhD project to 

extend this work. 

In conclusion, this thesis describes the design and development of an Acousto-Optic 

Lens Microscope (AOLM) for optical functional imaging of live brain tissue from 

initial conception through several stages of development. Each stage has involved 

understanding key problems, inventing and implementing the solutions in a prototype 

microscope, and evaluating the results. The performance of the microscope has 

improved at each stage and is confidently expected to improve still further. The 

results are promising, both in terms of 3D field of view, resolution of the point spread 

functions across the field of view, and from the sub millisecond temporal resolution 

for monitoring action potentials in our first optical functional imaging tests on mouse 

cortex. Indeed, we are now not too far from our initial target performance of kHz 

optical functional imaging over a 250μm cube of brain tissue and are significantly 

ahead in several important respects of any published data. These results suggest that 

our AOLM technology will be suitable for widespread use in the neurosciences and 

that it will soon be time to seek partners for commercial exploitation. 
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