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Abstract

The overall aim of the work presented in this thesis is to better understand the molecular

mechanisms underlying the progression of the meiotic division in mammalian oocytes.

The first goal of this project was to investigate the relative contribution of securin and

cyclin B1 to the control of the protease separase during the indeterminate period of

metaphase II arrest. I found here that although there are conditions in which either

securin or MPF can prevent chromosome disjunction, such as during meiosis I, securin is

the predominant inhibitor of separase during metaphase II arrest. Thus, CDK1

pharmacological inhibition as well as antibody inhibition of CDK1/cyclin B1 binding to

separase, both failed to induce sister chromatid disjunction. Instead, securin morpholino

knockdown induced sister chromatid separation, which could be rescued by injection of

securin cRNA.

I also examined the effect of CDK1 and MAPK activities on securin stability. Inhibition

of both kinases, but not either one alone, using roscovitine and UO126, induced the

premature destruction of securin during prometaphase of meiosis I. However, this effect

is not dependent on securin phosphorylation, given that mutagenesis of CDK1 and

MAPK phosphorylation sites on securin did not affect its stability.

Finally, I found that CDK1 and MAPK inhibition also causes the premature degradation

of other APC/C substrates, such as cyclin B1 and geminin. Interestingly, only the D-box
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containing substrates and not Ken-box substrates were subject to such effect. However,

this prometaphase I instability of the D-box substrates was apparently not mediated by

APC/CCdc20 or APC/CCdh1, given that Cdc20 was also targeted for destruction and

morpholino-knockdown of both Cdc20 and Cdh1 failed to rescue securin stability. Also,

the inhibition of SCF-TrCP using the dominant negative mutant of its F-box protein (-

TrCP) could not restore securin levels, suggesting it is not SCF-TrCP-dependent. Future

work will explore whether this effect could be attributed to activation of some meiosis-

specific APC/C co-activators or the core APC/C, which was recently reported of being

able to directly interact with the D-box containing substrates independently of Cdc20 and

Cdh1 (Passmore et al., 2003; Yamano et al., 2004).
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Chapter 1: General introduction

Sexual reproduction is the creation of new offspring by the fusion of haploid gametes to

form a diploid zygote. Gametes are generated from diploid primordial germ cells (PGC)

by the process of meiosis. The female gamete is usually large and non-motile and is

referred to as the egg (or ovum) (AUSTIN and Short, 1993). The male gamete, however,

is small and motile and is referred to as the sperm (or spermatozoon) (AUSTIN and

Short, 1993). Sexual reproduction has been favoured by evolution because it increases

genetic diversity among offspring and generates individuals with unique assortments of

genes inherited from both parents, therefore enhancing the reproductive success of

parents and the survival of offspring (Alberts et al., 2000; Campbell et al., 1999).

The experiments presented in this thesis investigate part of the regulatory mechanisms

underlying the progression of the meiotic division in mammalian oocytes. In order to

introduce the research presented here, I will first provide an overview of meiosis, the

process through which the haploid gametes are formed. Then, I will consider all the

events that give rise to the fully-grown female gamete (the unfertilized egg) as well as the

process of fertilization. Finally, I will provide a detailed description of the current

understanding of how the meiotic cell divisions are controlled and how the oocyte

segregates its chromatin in the first and second meiotic divisions.
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1.1. Overview of meiosis

The finding that gametes are haploid in chromosome number and DNA content, a state

that must therefore be achieved through cell divisions of an unusual kind, came from the

discovery that the roundworm gametes contain only 2 chromosomes, whereas the zygote

(the fertilized egg) contains 4 chromosomes (Van Beneden, 1883). This special type of

cell division is called meiosis, from the Greek meaning diminution (Alberts et al., 2000;

Van Beneden, 1883).

Meiosis is a unique process by which diploid germ cells (oogonia and spermatogonia)

reduce their chromosome number by half, therefore allowing a diploid number of

chromosomes to be reinstated at fertilization (AUSTIN and Short, 1993). It consists of a

single phase of DNA replication followed by two consecutive rounds of division, called

meiosis I (MI) and meiosis II (MII). During the first meiotic cell division, both the DNA

content and chromosome number is halved, through the segregation of the two replicated

homologs into separate daughter cells. In the second meiotic division, however, only the

DNA content is halved via the separation of the sister chromatids (AUSTIN and Short,

1993).

Both meiotic divisions are divided into prophase, metaphase, anaphase and telophase,

which are identical in purpose to their analogous mitotic sub-phases. Meiotic prophase I,

however, lasts longer and is more complex than the prophase of the mitotic cell cycle

(Alberts et al., 2000). It is characterised by the pairing of the two replicated homologs, a

process called synapsis, and the crossing over of non-sister chromatids leading to
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formation of chiasmata, which play a crucial role in holding homologous chromosomes

together during metaphase of the first meiotic division (Met I), therefore ensuring their

accurate segregation during anaphase I (Campbell et al., 1999). Chiasmata are also

important in rearranging genes via DNA exchange between the homologous

chromosomes. This is achieved during the process of homologous recombination, which

is initiated by the genetically programmed formation of double-strand breaks, hence

triggering the equivalent of DNA-damage repair using the homologous chromosome as a

template (Campbell et al., 1999). During this repair process, DNA can be exchanged

between the homologous chromosomal regions, leading to new combinations of DNA

within the chromosomes (Campbell et al., 1999). In some cases, no exchange happens

and the DNA is transferred from one helix, which remains unaltered, to the other helix,

therefore leading to gene conversion, which plays an important role in gene mutagenesis

and non-Mendelian inheritance (Campbell et al., 1999).

1.2. The mammalian ovum

The mammalian ovum, or egg, is a particularly fascinating cell, as it is the cell from

which all the cells in a new organism are derived. As the sperm contributes virtually

nothing to the new organism other than its chromosomes, the ovum has the difficult task

of supplying most of the material for the body of the embryo and providing for its

protection and maintenance during development (Campbell et al., 1999; Wilson, 1925).

In order to prepare for this service, the ovum goes through an extensive period of growth

during which it accumulates a large amount of cytoplasm, and in many cases becomes
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surrounded by membranes or other protective envelopes (Campbell et al., 1999; Wilson,

1925).

1.2.1. The structure of the mammalian ovum

The mammalian egg is structurally specialised for fertilization. It consists of a spherical

mass of cytoplasm, which is bounded by a plasma membrane and enclosed within a thick

glycoprotein envelope called the zona pellucida (ZP) (Bleil and Wassarman, 1980;

Dunbar et al., 1994). Beyond the zona pellucida, the egg is surrounded by a matrix of

granulosa cells, called the cumulus oophorus. The oocyte and granulosa cells are

interconnected via gap junctions, which are crucial in the maturation process of the

oocyte through metabolites and regulatory elements transfer between the two cell types

(Anderson and Albertini, 1976; Heller et al., 1981). Between the plasma membrane and

the zona pellucida is a fluid-filled space, the perivitelline space. Lying immediately

beneath the plasma membrane is a thin shell of actin-rich cytoplasm called the cortex.

Within the cortex are the cortical granules, which contain proteolytic enzymes and

mucopolysaccharides. These Golgi-derived structures play a crucial role in the egg’s

response to sperm penetration, especially preventing the entry of more than one

spermatozoon (polyspermy) (Barros and YANAGIMA.R, 1971; Gwatkin et al., 1973).

1.2.2. Oogenesis: from primordial germ cells to eggs

The process of gametogenesis in the female is known as oogenesis, and a developing egg

is called an oocyte (AUSTIN and Short, 1993). Unlike spermatogenesis, which is
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initiated in puberty and continues throughout the male adult life, oogenesis begins during

female embryonic life and ends months to years later in the sexually mature adult

(AUSTIN and Short, 1993). The details of oogenesis (timing of events) are different

between species, but the general stages are the same.

In mammals, oogenesis starts with the mitotic proliferation of the diploid primordial

germ cells, as they migrate to the developing ovary to become oogonia (Bukovsky et al.,

2005). Once they arrive to the gonads, the diploid oogonia begin to differentiate into

primary oocytes (Bukovsky et al., 2005). At this stage, the oocytes enter meiosis, and

become arrested in prophase of the first meiotic division for a period lasting from few

months (mice) to many years (humans), until the female becomes sexually mature at

puberty (Alberts et al., 2000; Bukovsky et al., 2005; Wolpert et al., 1998). After entry

into meiosis, the oocytes never proliferate again, therefore, the number of oocytes at this

embryonic stage is the total number of eggs the female mammal will ever have (Wolpert

et al., 1998). In humans, most of these oocytes degenerate before puberty, leaving about

400,000 out of an original 6 million (Wolpert et al., 1998).

Following entry into prophase I arrest, the primary oocytes begin to grow. During this

growth period, the oocytes undergo 300-fold increase in volume, accumulate a large

amount of proteins, mRNA, ribosomes, cortical granules and become surrounded by a

zona pellucida (Wassarman, 1988).
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At puberty, under the influence of hormones, the fully-grown primary oocytes can

resume the first meiotic division, a process known as meiotic maturation (Yanagimachi,

1994). At this stage of oocyte development, the nuclear (germinal vesicle - GV)

envelope breaks down (GVBD), the chromatin recondenses, the replicated homologs

separate and the oocyte divides asymmetrically to produce a large secondary oocyte (the

precursor of the egg) and a small first polar body (PB1) (Yanagimachi, 1994). During

oocyte maturation, meiosis proceeds directly to metaphase of the second meiotic division

(Met II) without intervening S phase and then arrests again, with chromosomes aligned

on the metaphase II spindle, until fertilization (Moore and Orr-Weaver, 1998). At

ovulation, the secondary oocyte (Met II-arrested oocyte) is released from the ovary to the

ampulla region of the oviduct (Runft et al., 2002). From this point the oocyte is fully

mature and ready for fertilization; as such it is defined as an egg.

1.2.3. Folliculogenesis: follicular growth

Each developing oocyte is contained within a follicle and is surrounded by layers of

granulosa cells. The ovarian follicle is the fundamental structure of the female

reproductive biology and the process of its maturation is referred to as folliculogenesis

(Gore-Langton and Armstrong, 1998; Yanagimachi, 1994). Folliculogenesis is a highly

regulated developmental sequence by which the female germ cell develops within the

somatic cells of the ovary and matures into a fertilizable egg (Knobil and Neil, 2006).

The growing follicles are usually classified in terms of their morphology, oocyte size and

granulosa cells number into primordial, primary, growing and pre-ovulatory follicles (or

Graafian follicles), from where oocytes are ovulated (Knobil and Neil, 2006).
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The process of follicular growth and oocyte maturation is mainly regulated by the

gonadotrophins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH),

which are both peptide hormones secreted by the anterior pituitary (Bukovsky et al.,

2005; Normann and Liteack, 1997; Yanagimachi, 1994). FSH stimulates granulosa cell

proliferation, estrogens biosynthesis and LH receptor expression (Normann and Liteack,

1997). LH, however, induces thecal androgens production, which in turn stimulates

estrogens production by the granulosa cells (Normann and Liteack, 1997). Follicular

estrogens feedback on both the hypothalamus and pituitary to trigger a sudden and

dramatic rise in the release of LH, the so-called “LH surge” (Normann and Liteack,

1997). The LH surge induces the pre-ovulatory maturation of the Graafian follicle,

which includes meiotic maturation of the oocyte accompanied by changes in the structure

of the Graafian follicle, to produce an ovulatory follicle consisting of a secondary oocyte

(Met II-arrested oocyte), surrounded by an optimum number of highly differentiated

granulosa cells and a large fluid-filled antrum (AUSTIN and Short, 1993). The antrum

divides the granulosa cells into two separate compartments: the cumulus cells that

directly surround the oocyte, whereas the outer layer consists of the mural granulosa cells

(AUSTIN and Short, 1993).

1.2.4. Ovulation

The ovulatory process in mammals is a distinct biological phenomenon that begins when

gonadotrophic hormones stimulate mature ovarian follicles and it ends when the follicles

rupture and release eggs into the oviduct (Knobil and Neil, 2006). It is currently believed
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that the ovarian follicle rupture at ovulation is caused by an acute inflammatory reaction

that involves the granulosa and theca cells, and which is induced by the ovulatory surge

in the gonadotrophins (Espey, 1980). This inflammatory response stimulates the

biosynthesis of proteases, which degrade the wall of the follicle and the extracellular

matrices within the ovarian connective tissue, resulting in rupture of the follicle and

release of the egg, which remains in the ampulla region of the oviduct until fertilization

(Espey, 1980).

1.2.5. Fertilization and egg activation

1.2.5.1. Fertilization

In mammals, the process of fertilization starts when the head of the sperm binds to the

zona pellucida, the glycoprotein envelope that surrounds the egg. Fertilization takes

place in the ampulla region of the oviduct, where the freshly ovulated metaphase II-

arrested egg is located. At this stage, the egg is encased within a zona and is surrounded

by a mass of cumulus cells, which are both physical barriers the sperm has to penetrate

before it can contact and fuse with the egg plasma membrane. To become competent to

overcome these vestments, the sperm must undergo two crucial events, known as

capacitation and acrosome reaction.

It was observed in 1951 that freshly ejaculated mammalian sperm were not competent to

fertilize eggs in vitro, unless they had spent a period of time in the female reproductive

tract (AUSTIN, 1951; Chang, 1951). The series of modifications the sperm undergoes
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while in the female uterus are referred to as capacitation (AUSTIN, 1952). During this

process the sperm acquires the following functional capabilities: to penetrate the cumulus

mass, to bind to the ZP and to undergo the acrosome reaction upon binding to the zona

(AUSTIN, 1952; Visconti et al., 1998). These are achieved through widespread changes

in the physiology and biochemistry of the sperm, including modifications of the plasma

membrane potential and composition, changes in the intracellular pH, alteration of the

metabolism and especially changes in the flagellar motility (Visconti et al., 1998).

Once capacitated, the next barrier the sperm encounters is the zona pellucida. As already

mentioned, the zona is a glycoprotein envelope which consists of three main

glycoproteins: ZP1, ZP2 and ZP3 (Bleil and Wassarman, 1980). ZP3 is a crucial protein,

as ZP3-knockout mice are not fertile and their oocytes lack zona (Liu et al., 1996; Rankin

et al., 1996). ZP3 serves as a receptor for species-specific binding of the sperm to the

zona, leading to the acrosome reaction in which the hydrolytic content of the acrosomal

vesicle is released by exocytosis (Florman and Wassarman, 1985; Wassarman, 1990;

Wassarman, 2005). The enzymes released include -N-acetylglucosaminidase and

acrosin, which facilitate the sperm penetration of the ZP through enzymatic dissociation

of its substances (Gilbert, 2006). In addition, the acrosomal reaction exposes proteins on

the sperm plasma membrane that mediate the binding and fusion of sperm and egg

membranes; a key player is the transmembrane protein Izumo (Inoue et al., 2005).

Accordingly, it was demonstrated that Izumo-knockout male mice are sterile, and an

antibody against human Izumo blocked the binding and fusion of human sperm with

zona-free hamster eggs (Inoue et al., 2005).
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1.2.5.2. Egg activation

Following sperm-egg membrane fusion, the egg initiates a series of processes that begin

development. These series of events, called egg activation, happen in the cytoplasm of

the egg upon fertilization and occur prior to the first cleavage (Knobil and Neil, 2006;

Runft et al., 2002). The events of egg activation can be divided into early events, which

occur within seconds of the sperm-egg fusion, and late events, which happen few hours

after fertilization (Knobil and Neil, 2006; Runft et al., 2002).

The early events of egg activation are the block to polyspermy, which is necessary to

prevent entrance of multiple sperms. In mammals, fertilization of the egg by only one

sperm is ensured by the cortical granule reaction (Ducibella, 1996). Upon sperm entry,

the cortical granules, which lie just beneath the egg plasma membrane, undergo

exocytosis and release their contents into the perivitelline space (Ducibella, 1996). The

released enzymes modify the ZP sperm receptors such that they are no longer

recognizable and able to bind sperm (Ducibella, 1996). In mouse, for example, the

cortical granules contain N-acetylglucosaminidase enzymes, which are capable of

cleaving N- acetylglucosamine from ZP3 carbohydrate chains. It has been demonstrated

that when N- acetylglucosamine residues are removed, ZP3 is no longer recognisable by

sperm (Miller et al., 1993a; Miller et al., 1993b). Exocytosis also results in the hardening

of the zona, making it more resistant to protease digestion during sperm penetration

(Gilbert, 2006).
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The late events of fertilization include resumption of the second meiotic division by the

Met-II arrested egg, leading to extrusion of one half of the chromatin within the second

polar body, leaving the egg in a haploid state (Runft et al., 2002). This is followed by

decondensation of the egg and sperm chromatin, which become surrounded by their own

nuclear envelopes, forming the female and male pronuclei (PN), respectively (Runft et

al., 2002). Within the PN, the first mitotic S-phase takes place to generate two copies of

each genome (Runft et al., 2002). Once the DNA has been replicated, the two pronuclei

are brought together in a process known as syngamy (Evans and Florman, 2002). This is

followed by the breakdown of the nuclear envelopes and recondensation of both

genomes, which then orient themselves on the first mitotic spindle, just prior to

undergoing the first embryonic cleavage (Evans and Florman, 2002).

Fertilization of the mammalian egg by sperm is associated with an explosive release in

cytosolic calcium (Ca2+), which spreads through the egg in waves (Stricker, 1999). These

Ca2+ oscillations are crucial for stimulating cortical granule exocytosis and activating the

egg to complete meiosis (Stricker, 1999). The cell cycle of the ovulated egg is

maintained transiently in the metaphase of the second meiotic division by the high

activity of the Maturation-Promoting Factor (MPF) (Jones, 2004; Madgwick and Jones,

2007; Mattioli et al., 1991). Loss of MPF is essential for the fertilized egg to resume its

meiotic division and to begin development. This is achieved through the Ca2+ signals,

which are transduced by calmodulin (CaM), which in turn associates with and activates

calmodulin-dependent protein kinase II (CaMKII) (Lorca et al., 1991; Lorca et al., 1993).

Activation of CaMKII results in the degradation of the regulatory subunit of MPF (cyclin
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B1) through the Anaphase-Promoting Complex/Cyclosome (APC/C), leading to MPF

inactivation (Lorca et al., 1991; Lorca et al., 1993). Having explained the structural and

cellular events around oocyte development and maturation, the following section will

focus on (i) the role of the two major kinases (MPF and MAPK) known to control oocyte

maturation, and (ii) how the APC/C-mediated proteolysis of the various regulatory

proteins co-ordinates cell cycle progression and chromosome segregation.
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Figure 1.1. Overview of oogenesis and folliculogenesis.

Oogenesis (left) starts with the mitotic proliferation of the primordial germ cell as it

migrates to the ovary to become oogonium. After a number of mitotic divisions, the

oogonium enters the prophase of meiosis I and differentiates into a primary oocyte. The

primary oocyte remains arrested in prophase I until the female becomes sexually mature.

At this point, under the influence of hormones, the fully-grown primary oocyte resumes

meiosis I to become a secondary oocyte, arrested at metaphase II. The egg is ovulated

and remains in the metaphase II stage until fertilization, when it gets activated and

resumes its second meiotic division. Each developing oocyte is contained within a

follicle, whose process of maturation, folliculogenesis (right), occurs in parallel to

oogenesis. The growing follicle is classified in terms of certain structural characteristics

(morphology, oocyte size and number of follicle cells) into primordial, primary, growing

and pre-ovulatory Graafian follicle, from where the secondary oocyte is ovulated

(www.tarleton.edu/ ~anatomy/oogenesis.html).
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1.3. Regulation of the meiotic cell cycle in oocytes

1.3.1. Maturation-Promoting Factor (MPF)

MPF is the universal M-phase kinase. It drives somatic cells into mitosis and eggs into

meiosis (Doree and Hunt, 2002; Jones, 2004; Masui, 2001; Pines, 1999). MPF was first

characterised by Masui and Markert in 1971 as an activity present in mature oocytes that

was able to induce nuclear maturation when injected into immature prophase I-arrested

frog oocytes (Doree and Hunt, 2002; Masui and Markert, 1971). It is a heterodimeric

protein, composed of a catalytic CDK1 (Cyclin-Dependent Kinase 1) subunit and a

regulatory cyclin B subunit (Doree and Hunt, 2002; Gautier et al., 1990; Lohka et al.,

1988; Pines and Hunter, 1989).

Cyclins were initially purified in marine invertebrate embryos by their ability to fluctuate

in a cyclical pattern along the cell division cycle (Evans et al., 1983). There are at least

three types of cyclin B (B1, B2 and B3) in mammalian cells. Cyclin B1 appears to be the

physiologically important regulator of MPF in oocytes, given that knocking out cyclin B1

in GV oocytes prevents their maturation (Ledan et al., 2001), and cyclin B1 knockout

mice are non-viable (Brandeis et al., 1998). Cyclin B2 knockout mice, however, are

viable and fertile (Brandeis et al., 1998). Whereas, cyclin B3 is absent from the ovarian

tissue (Lozano et al., 2002).

MPF is the master controller of many aspects of the cell cycle due to its ability to

phosphorylate a variety of substrates, such as: (i) histone H1, which has an important role
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in chromatin condensation during cell division, (ii) nuclear laminins, leading to nuclear

envelope breakdown and (iii) RNA polymerase II, explaining the inhibition of

transcription at the final stages of oocyte maturation and during cell division (Bradbury et

al., 1974; Cisek and Corden, 1989; Heikinheimo and Gibbons, 1998; Langan et al., 1989;

Peter et al., 1990).

In mitosis, MPF activity is required in order for cells to enter M-phase and its inactivation

is needed for mitotic exit. Meiotic division, however, is characterised by two peaks of

high MPF activity occurring during meiotic maturation and metaphase II arrest. Between

MI and II, MPF activity does not experience a mitotic like decrease, instead it undergoes

a transient decrease to about 50% of the original activity, therefore allowing completion

of the first meiotic division and a rapid reactivation of MPF that leads to direct

progression to MII (Jones, 2004; Madgwick and Jones, 2007; Mattioli et al., 1991). The

sustained high MPF activity during the metaphase II arrest is due to a cytoplasmic

activity termed cytostatic factor (CSF), which was also discovered by Masui and Markert

in 1971 (see section 1.3.6).
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Figure 1.2. Profile of MPF activity during mitosis and meiosis.

In somatic cells (top), MPF activity is required for cells to enter M-phase and its

inactivation is needed to exit mitosis. In contrast, meiosis (bottom) is characterised by

two peaks of high MPF activity occurring during meiotic maturation and metaphase II

arrest. Between MI and II, there is a transient decrease in MPF explaining the lack of

interphase during this period.
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The activity of MPF is highly regulated by mechanisms responding to cell cycle

progression, which include both CDK1 phosphorylation and cyclin B1 degradation. The

newly assembled MPF complex is usually maintained in an inactive state (termed pre-

MPF) via phosphorylation of its catalytic subunit (CDK1) at Threonine-14 and Tyrosine-

15 by the specific protein kinase, Wee1 (Gu et al., 1992; Lundgren et al., 1991;

McGowan and Russell, 1993). These phosphorylation events can be reversed by the

phosphatase cdc25, which causes an activating dephosphorylation of MPF at the same

sites (Gautier et al., 1991; Millar et al., 1991). Therefore, the balance in cdc25 and Wee1

activities governs the status of CDK1 phosphorylation and MPF activation.

In addition, the activity of MPF depends on the presence or absence of its regulatory

subunit (cyclin B1) during the cell cycle, explaining the periodic pattern of MPF activity

(Evans et al., 1983; Murray et al., 1989). Cyclin B1 is usually synthesised prior to cell

division and degraded at the metaphase-to-anaphase transition, allowing exit from M-

phase (Clute and Pines, 1999; Evans et al., 1983; Murray et al., 1989). It was shown by

Murray and Kirshner (1989) that cyclin B1 destruction was necessary for MPF

inactivation and M-phase exit, given that metaphase-arrested Xenopus egg extracts that

contain the non-degradable mutant of cyclin B1 (90-cyclin B1) block at metaphase with

high MPF activity following the addition of calcium (Murray et al., 1989). Cyclin B1

degradation at the onset of anaphase is triggered via ubiquitination by the APC/C, which

is an E3 ubiquitin ligase (see section 1.3.3) (Glotzer et al., 1991).
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1.3.2. MAPK signalling cascade during meiotic maturation

The c-Mos/MEK/MAPK/p90rsk cascade is another regulatory system that is universally

activated during meiotic maturation of vertebrate oocytes, and which functions in parallel

to and interacts with MPF in driving meiosis (Sun et al., 1999). c-Mos is a 39 kDa germ

cell-specific Ser/Thr protein kinase, which was first identified in cells transformed by

Moloney murine leukemia virus (Papkoff et al., 1982). It is the product of the proto-

oncogene c-mos, whose mRNA is stored as maternal information in the growing oocyte

and is only translated upon exit from the prophase I arrest (Gebauer and Richter, 1997).

c-Mos functions as a MAPK kinase kinase (MAPKKK), which directly phosphorylates

the MAPK kinase, MEK1 (Gebauer and Richter, 1997). Activated MEK1, in turn,

activates MAPK through dual phosphorylation on Threonine-183 and Tyrosine-185

(Crews and Erikson, 1992). MAPK, also known as Extracellular-Regulated Kinase

(ERK), exists as two isoforms in mammalian oocytes, ERK1 and ERK2 (Boulton et al.,

1991). The best-known downstream target of MAPK in oocytes is p90rsk, a 90 kDa

ribosome S6 kinase, which is activated by ERK via phosphorylation on Serine-369 and

Threonine-577 (Dalby et al., 1998).

Unlike MPF, whose activation is crucial for resumption of oocyte meiotic maturation in

all species studied so far, the timing and requirement for MAPK activation varies in

different organisms. In Xenopus and other lower vertebrate oocytes, several lines of

evidence suggest that MAPK activation is required for progesterone-induced MPF

activation and meiotic resumption. It was shown that microinjection of constitutively

activated thiophosphorylated MAPK or MEK into Xenopus oocytes leads to MPF
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activation and GVBD in the absence of progesterone (Haccard et al., 1995; Huang et al.,

1995). However, these events were inhibited upon microinjection of a MAPK

phosphatase or anti-MEK antibody (Gotoh and Nishida, 1995; Kosako et al., 1994).

Also, progesterone-induced GVBD is always accompanied by MAPK activation in vivo

(Posada and Cooper, 1992). It is believed that progesterone causes MAPK activation

through promoting c-Mos mRNA polyadenylation and translation, resulting in the firing

of the MAPK signalling cascade, followed by MPF activation and GVBD (Sheets et al.,

1995). Accordingly, microinjection of c-Mos triggers GVBD in a progesterone-

independent manner (Sagata et al., 1989a). Conversely, progesterone-induced MPF

activation and GVBD are prevented when the translation of c-Mos mRNA is inhibited by

microinjection of antisense oligonucleotides (Sagata et al., 1988). Taken together these

results confirm that progesterone-dependent stimulation of the c-Mos/MAPK cascade

plays an important role in initial activation of MPF and meiotic resumption in lower

vertebrate oocytes.

However, recent studies have challenged this idea, with the authors suggesting that

progesterone-induced GVBD does not require MAPK, and other MAPK-independent

pathways could trigger MPF activation. In agreement with this, it was reported that

inhibition of MAPK activity using the MEK inhibitor UO126 or by over-expression of

the MAPK phosphatase Pyst1, does not block MPF activation and GVBD upon

progesterone stimulation (Fisher et al., 1999; Smythe and Stricker, 2005). Nevertheless,

it is worth mentioning that in these cells although GVBD is not blocked, it is delayed and

meiotic maturation happens less efficiently (Fisher et al., 1999).
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In mammalian oocytes, the sequence of events differs with MAPK activation occurring

after GVBD. This indicates that the MAPK phosphorylation cascade is not required for

MPF activation and spontaneous meiotic resumption in mammals (Kalab et al., 1996;

Verlhac et al., 1993). Indeed, inhibition of MAPK activation by the MEK inhibitor

UO126 does not affect GVBD in mouse oocytes (Tong et al., 2003). Also, analysis of

oocytes from c-mos knockout mouse has shown that GVBD occurs normally, while no

activation of MAPK is detected in these cells (Hashimoto et al., 1994; Verlhac et al.,

1996).

Although these studies show that MAPK activity is not necessary for GVBD in frog and

mammalian oocytes, it is very important for the regulation of subsequent meiotic events.

In addition to its vital role in keeping the CSF arrest (Colledge et al., 1994; Hashimoto et

al., 1994), which I will discuss more later (see section 1.3.6), several lines of evidence

suggest that the MAPK cascade is also required for the maintenance of microtubules and

chromatin in the metaphase state during the MI to MII transition, when the levels of MPF

activity are low. It was reported that addition of MAPK to Xenopus interphase extracts

induces the shortening of the elongated microtubules (Gotoh et al., 1991), and

microinjection of anti-Mos antibody into mouse oocytes prevents the assembly of a

meiotic spindle (Zhao et al., 1991). Moreover, c-mos-/- mouse oocytes present abnormal

spindles with interphase-like elongated microtubules, and fail to keep the chromosomes

condensed at the MI to MII transition (Hashimoto et al., 1994; Verlhac et al., 1996).
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Figure 1.3. MAPK activity during meiosis in mammalian oocytes.

In spontaneous meiotic maturation of mammalian oocytes, MAPK activation occurs at

approximately 2 hours after GVBD and is inactivated at 6 hours following egg activation,

just prior to pronuclei formation. Between MI and II, unlike MPF whose activity drops

slightly, MAPK activity remains high and this is important for the maintenance of

microtubules and chromatin in the metaphase state.
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Besides MAPK involvement in the organization and maintenance of the metaphase

spindle, it is also important for the migration of the meiotic spindle to the cortex, leading

to asymmetric divisions in oocytes and extrusion of small polar bodies. Accordingly,

inhibition of MAPK leads to failure of spindle migration to the cortex, resulting in

extrusion of abnormally large polar bodies (Choi et al., 1996; Hashimoto et al., 1994).

Since, spindle migration to the cortex depends on actin microfilaments and not

microtubules (Al et al., 2008; Azoury et al., 2008; Sun and Schatten, 2006), then the

MAPK cascade might also control the actin-microfilament network.

Finally, there is also evidence associating MAPK with the spindle assembly checkpoint,

suggesting that in the absence of MAPK activity, Xenopus and mouse oocytes fail to

activate the SAC and to arrest the cell cycle at metaphase following microtubule

depolymerisation (Takenaka et al., 1997; Verlhac et al., 1996). It has also been reported

that MAPK is important for re-activating MPF after anaphase I (Gross et al., 2000; Taieb

et al., 2001), and its inactivation seems to be crucial for pronuclei formation following

fertilization (Moos et al., 1996).

1.3.3. The Anaphase Promoting Complex/Cyclosome (APC/C)

Cell proliferation in all eukaryotes depends on the E3 ubiquitin ligase activity of the

anaphase promoting complex/cyclosome (APC/C), which is primarily required for

mitotic/meiotic progression and exit (Peters, 2006). The APC/C is a 1.5 MDa protein

complex that performs its various functions by assembling chains of at least four

ubiquitin molecules on lysine residues in key regulatory proteins, such as cyclin B1 and
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securin, thus targeting them for degradation by the 26S proteasome (Peters, 2006). The

destruction of securin is important for activation of the protease separase, subsequently

allowing segregation of chromosomes (Madgwick et al., 2004; Terret et al., 2003). The

degradation of cyclin B1 is crucial for anaphase onset through MPF inactivation (Lorca et

al., 1993).

The vertebrate APC/C is composed of at least a dozen different subunits, most of which

were highly conserved throughout evolution and whose modification by genetic

manipulation leads to early lethality in every species examined so far (Baker et al., 2007;

Yoon et al., 2002; Zachariae et al., 1996; Zachariae et al., 1998b). APC/C-mediated

ubiquitination of its substrates requires the help of 3 main cofactors, in addition to its E3

ubiquitin ligase activity it needs a ubiquitin-activating enzyme (E1), a ubiquitin-

conjugating enzyme (E2), and a co-activator protein (Peters, 2006).

The transfer of ubiquitin to a target substrate is performed in three steps. First, ubiquitin,

which is a highly conserved 76-amino acids protein, is activated by E1 in a reaction that

requires ATP in order to create a high-thioester bond between the cysteine residue at the

enzyme’s active site and the glycine residue of ubiquitin (Ciechanover et al., 1981; Haas

et al., 1982; Hershko et al., 1981). The activated ubiquitin is then transferred to the

active site of the ubiquitin-conjugating enzyme (E2) (Hershko et al., 1983). Finally,

ubiquitin is transmitted to the side chain of a lysine residue on the target protein via an E3

ubiquitin ligase, such as the APC/C (Hershko and Ciechanover, 1998).
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Figure 1.4. Separase activation and MPF inactivation are required for M-phase exit.

At the metaphase-to-anaphase transition, APC/C targets cyclin B1 and securin for

proteolysis. Cyclin B1 destruction is crucial for MPF inactivation and anaphase onset.

However, Securin degradation is required for separase activation, and so sister chromatid

separation.
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Figure 1.5. The ubiquitin pathway.

The transfer of ubiquitin to a target substrate is done in three steps. First, ubiquitin is

activated by the ubiquitin-activating enzyme (E1) in a reaction that requires ATP. The

activated ubiquitin is then transferred to the active site of the ubiquitin-conjugating

enzyme (E2). Finally, an E3 ubiquitin ligase, such as the APC/C, transmits ubiquitin to

the target protein, therefore triggering its recognition and destruction by the proteasome.
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In addition to the core subunits, several co-activator proteins (non-core subunits)

transiently associate with and activate the APC/C during specific periods of the cell

cycle, and the best studied of these are Cdc20 (Cell division cycle 20) and Cdh1 (Cdc20

homologue 1) (Visintin et al., 1997). Cdc20 (also called fizzy in Drosophila) was initially

identified in a mutant form of budding yeast that had similar arrest phenotypes as cells

mutant for the APC/C subunits, and in Drosophila where the fizzy mutants failed to

degrade the mitotic cyclins (Dawson et al., 1993; Hartwell et al., 1970; Hartwell et al.,

1973; Sigrist et al., 1995). Similarly, Cdh1 (also known as fizzy-related in Drosophila)

was found to be required for the activity of the APC/C during late mitosis and G1 in

budding yeast, and for maintaining the low levels of cyclins during G1 in Drosophila

(Schwab et al., 1997; Schwab et al., 2001; Sigrist and Lehner, 1997; Visintin et al.,

1997).

These two co-activators are characterised by the presence of specific APC/C binding

sequence elements, known as the IR-tails (Isoleucine-Arginine dipeptide motifs) (Visintin

et al., 1997). They also contain WD40 domains (Tryptophan-Aspartate repeats) in their

C terminus, which fold into seven-bladed propeller like structures that are believed to

recognise the APC/C substrates by interacting with specific recognition elements, known

as D-box, KEN-box and CRY-box (Glotzer et al., 1991; Pfleger and Kirschner, 2000;

Reis et al., 2006b; Visintin et al., 1997). D-box (Destruction-box) recognition elements

contain the consenus amino acid sequence RXXLXXXN (Glotzer et al., 1991), whereas

the KEN-box is composed of a KEN amino acid sequence (Pfleger and Kirschner, 2000).

CRY-box, however, consists of the consenus sequence CRYXPS (Reis et al., 2006b).
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Different APC/C complexes associated with different co-activators tend to have different

substrate specificities. APC/CCdc20 recognises proteins that contain a D-box such as

securin and cyclin B1, whereas APC/CCdh1 is able to recognise proteins with either a D-,

KEN- or CRY-box such as securin, cyclin B1 and Cdc20 (Hagting et al., 2002; Visintin

et al., 1997).

1.3.3.1. Regulation of the APC/C during the mitotic cell cycle

In mitosis the APC/C is activated in prometaphase and remains active until late G1 but its

activity is tightly controlled by various mechanisms to ensure proper timing of

degradation of each of its substrates. Initial activation of the APC/C involves

phosphorylation of its various subunits by the mitotic kinases Plk1 (Polo-like kinase 1)

and CDK1, and the recruitment of Cdc20 (Hershko et al., 1994; Kraft et al., 2003).

However, premature APC/CCdc20 mediated ubiquitination of its substrates is prevented

through the association of Cdc20 with the early mitotic inhibitor (Emi1) (Miller et al.,

2006; Reimann et al., 2001). Also, via Cdc20 phosphorylation by CDK1 and MAPK,

resulting in Cdc20 recognition and inhibition by the components of the spindle assembly

checkpoint (SAC) (Chung and Chen, 2003).

.
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Figure 1.6. The APC/C recognition elements in cyclin B1, securin and cdc20

APC/CCdc20 and APC/CCdh1 recognise their substrates by interacting with different

recognition elements, most commonly D-box, KEN-box and CRY-box. D-box

containing proteins are targeted for destruction by either APC/CCdc20 or APC/CCdh1,

whereas, substrates with either KEN- or CRY-box are recognised by APC/CCdh1. The

residues numbers indicate the location of the destruction motifs within each APC/C

substrate in mouse.
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In prophase, Emi1 becomes phosphorylated by Plk1 and is targeted for destruction

through ubiquitination by SCF (Skp1/Cullin/F-box protein complex), which is another E3

ubiquitin ligase that is important in controlling the G1/S and G2/M transitions, whereas

the APC/C is required for mitotic progression and exit (Hansen et al., 2004; Moshe et al.,

2004). Upon Emi1 destruction, APC/CCdc20 becomes active against the early mitotic

substrates, such as Cyclin A and Nek2A (den Elzen and Pines, 2001; Geley et al., 2001;

Hames et al., 2001), but it remains inhibited by the components of the spindle assembly

checkpoint from prematurely targeting securin and cyclin B1 for degradation (Fang et al.,

1998; Rieder and Maiato, 2004; Yu, 2002).

The spindle assembly checkpoint is a surveillance mechanism, which ensures the fidelity

of chromosomes segregation through monitoring the state of their attachment to the

spindle microtubules (Kops et al., 2005; Rieder et al., 1994). It consists of a network of

proteins, and the key players include Bub1, Bub3, Mad1, Mad2, Mad3/BubR1, Mps1 and

Aurora B. These proteins localize to the tensionless-unattached kinetochores, the

structures that mediate the interactions between centromeric DNA and spindle

microtubules, hence activating the SAC signalling pathway (Rieder et al., 1995). This in

turn prevents anaphase onset and progression through the cell cycle via sequestration and

inhibition of the APC/C co-activator, Cdc20 (Fang et al., 1998; Rieder et al., 1994;

Rieder and Maiato, 2004; Yu, 2002). Therefore, the APC/C is incapable of ubiquitinating

securin and cyclin B1, whose destruction is crucial for M-phase exit.
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At anaphase onset, when all chromosomes achieve proper bipolar attachment to the

spindle, the SAC is turned off and Cdc20 is released to trigger APC/C activation (Mao et

al., 2003), which in turn targets securin and cyclin B1 for destruction by the proteasome,

thereby allowing resumption of the cell cycle, sister chromatids separation and exit from

mitosis.

Meanwhile, although Cdh1 levels are high, it is unable to associate with the APC/C due

to its phosphorylation by CDK1 (Jaspersen et al., 1999). Following MPF inactivation via

APC/CCdc20-induced degradation of cyclin B1, Cdh1 is dephosphorylated by the

phosphatase cdc14, thus allowing its binding and activation of the APC/C (Jaspersen et

al., 1999). APC/CCdh1 induces the destruction of several regulatory proteins, known as

the late mitotic proteins, such as Plk1 and the Aurora kinases, whose degradation allows

exit from mitosis and entry into G1 ( Castro et al., 2002; Lindon and Pines, 2004;

Littlepage and Ruderman, 2002; Stewart and Fang, 2005). Accordingly, it was recently

reported by Floyd et al (2008) that APC/CCdh1 is required for the assembly of a spindle

midzone at anaphase, and for normal timing of spindle elongation and cytokinesis

through targeting the Aurora kinsases for destruction (Floyd et al., 2008).

The activity of APC/CCdh1 continues through G1, where it targets Cdc20 and the mitotic

cyclins for destruction, therefore preventing their premature accumulation, and so

premature entry into S-phase (Prinz et al., 1998). Indeed, a study by Garcia-Higuera and

colleagues (2008) demonstated that mouse MEFs lacking Cdh1 exhibit a slow exit from

mitosis as well as a fast progression from G1 to S-phase (Garcia-Higuera et al., 2008). It
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was also found by the same group that inactivation of mouse Cdh1 results in embryonic

lethality due to placental insufeciency, which is believed to be arising from a failure of

placental trophoblasts to re-duplicate, a phenotype that is consistent with the role of Cdh1

in controlling DNA replication (Garcia-Higuera et al., 2008).

In late G1 and during S phase, Cdh1 also becomes subject to ubiquitin-mediated

degradation by the APC/CCdh1 and SCF, respectively (Benmaamar and Pagano, 2005;

Listovsky et al., 2004). It was demonstrated by Listovsky et al that addition of Cdh1 to

Xenopus interphase extracts, which have an inactive APC/C, activates it to mediate its

own destruction in a D-box dependent manner (Listovsky et al., 2004). Additionally, it

was shown by Benaamar and Pagano that inhibition of SCF during S-phase leads to Cdh1

accumulation (Benmaamar and Pagano, 2005).

However, recent work on the nuclear transport factors Rae1 and Nup98 has challenged

this view of APC/CCdh1 being only active in late mitosis and during G1 (Jeganathan et al.,

2005). It was found that mice with combined Rae1 and Nup98 haploinsufficiency exhibit

premature separation of sister chromatids and severe aneuploidies, due to unscheduled

APC/CCdh1-mediated destruction of securin during prometaphase (Jeganathan et al.,

2005). This study demonstrates that securin associates with the APC/CCdh1 during early

mitosis, but its destruction is delayed by the nuclear transport factors Rae1 and Nup98

until the metaphase-to-anaphase transition (Jeganathan et al., 2005).
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1.3.3.2. Regulation of the APC/C during the meiotic cell cycle

In meiosis, however, even less is known about the regulation of both APC/CCdc20 and

APC/CCdh1 in higher organisms and most of our understanding comes from yeast,

Drosophila and Xenopus. Cdc20, but not Cdh1, is believed to be the mediator of meiotic

exit in eggs of species described thus far (Chang et al., 2004; Lorca et al., 1998). In

Xenopus eggs, it was reported that Cdh1 is absent and is not expressed till the mid-

blastula transition stage, and that Cdc20 inhibition results in prevention of exit from

meiosis II upon egg activation (Chang et al., 2004; Lorca et al., 1998). Also in

Drosophila, it was demonstrated that Cdh1 is absent during the early syncytial stages of

embryogenesis, and it becomes functional only following cellularisation, where it targets

cytoplasmic cyclin B1 for destruction (Chang et al., 2004; Raff et al., 2002; Sigrist and

Lehner, 1997). Finally, Cdh1 knockdown using RNAi in C.elegans embryos does not

affect their development (Fay et al., 2002), whereas depletion of Cdc20 leads to

metaphase I arrest (Kitagawa et al., 2002).

In mice, on the other hand, Cdh1 is present during meiosis (Chang et al., 2004).

However, unlike mitosis, the activity of APC/CCdh1 precedes that of APC/CCdc20. Cdh1

appears to play an important role during prophase I and prometaphase I (Marangos et al.,

2007; Reis et al., 2006a; Reis et al., 2007). It was shown that APC/CCdh1 is required for

maintaining the prophase I arrest by suppressing the rise in cyclin B1 levels (Marangos et

al., 2007; Reis et al., 2006a). During this period, however, the activity of APC/CCdh1 is

restrained by Emi1, hence preventing complete depletion of cyclin B1 such that enough

pre-MPF is available in readiness for meiotic resumption (Marangos et al., 2007). This
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was reported by Marangos et al, who found that depletion of Emi1 through injection of

morpholino antisense oligonucleotides (morpholinos) in GV mouse oocytes delays entry

into meiosis I through inhibition of cyclin B1 accumulation (Marangos et al., 2007).

At GVBD, Emi1 is targeted for destruction through ubiquitination by SCF, resulting in an

increase in APC/CCdh1 activity (Marangos et al., 2007). Following germinal vesicle

breakdown and during prometaphase I, APC/CCdh1 targets Cdc20 for degradation in

preference to cyclin B1 and securin, thereby delaying the onset of APC/CCdc20 activity

and anaphase I (Reis et al., 2007). It was reported by Reis et al that injection of mouse

oocytes with Cdh1 morpholinos accelerates progression through meiosis I, resulting in

premature anaphase onset and chromosomes segregation, but non-disjunction of

homologs (Reis et al., 2007). Therefore, this delay in the onset of APC/CCdc20 activity

seems to be crucial in allowing more time for homologs to congress properly on the

metaphase I plate (Reis et al., 2007).

The rising levels of MPF activity during meiosis I eventually lead to inactivation of

APC/CCdh1 (Jaspersen et al., 1999), which then allows the accumulation of Cdc20.

APC/CCdc20 activity, however, remains on hold by the components of the SAC until

anaphase I onset, when it induces the degradation of securin and cyclin B1, thus

promoting homolog segregation and exit from meiosis I (Brunet et al., 2003; Homer et

al., 2005a; Homer et al., 2005b; Wassmann et al., 2003; Zhang et al., 2004).
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Between MI and II, MPF activity does not experience a mitotic like decrease; instead it

undergoes a transient decline to about 50% of its original activity, which is required for

the MI-to-MII transition and the return to metaphase II (Hashimoto and Kishimoto, 1986;

Hashimoto and Kishimoto, 1988; Madgwick et al., 2006; Madgwick and Jones, 2007;

Mattioli et al., 1991). This is achieved by the Emi1 homologue, Emi2, which limits

APC/CCdc20 activity, thereby allowing cyclin B1 stability and a return of MPF activity

(Madgwick et al., 2006; Ohe et al., 2007; Schmidt et al., 2004). In Xenopus and mouse

oocytes, it was found that depletion of Emi2 reduces cyclin B1 re-accumulation after

meiosis I, prevents entry into meiosis II and induces DNA replication (Madgwick et al.,

2006; Ohe et al., 2007).

Following entry into the second meiotic division and metaphase II arrest, APC/CCdc20 is

kept inactive by the components of SAC and CSF (Madgwick and Jones, 2007; Tunquist

and Maller, 2003). At fertilization, the Ca2+ oscillations that are transduced by

calmodulin, activate calmodulin-dependent protein kinase II and the phosphatase

calcineurin, leading to degradation of the components of CSF and activation of

APC/CCdc20 (Jones, 2005; Runft et al., 2002). This induces securin and cyclin B1

destruction, which in turn results in anaphase II onset and sister chromatid separation.

Following PB2 extrusion, APC/CCdh1 activity increases again and it remains high until

pronuclei formation in the 1-cell embryo (Chang et al., 2004). Having provided an

overview of the key players in the control of oocyte maturation, I will now focus on the

molecular mechanisms underlying the cell cycle transitions in meiosis in mammalian

oocytes.
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Figure 1.7. Profile of APC/CCdc20 and APC/CCdh1 activities during mitosis and

meiosis. (A) In mitosis, at the metaphase-to-anaphase transition APC/CCdc20 becomes

fully active, targeting securin and cyclin B1 for degradation, thus allowing chromosomes

separation. This is followed by APC/CCdh1 activation at telophase, which continues until

late G1, where it targets late mitotic proteins including Cdc20. (B) In meiosis, however,

APC/CCdh1 activity is present during prophase I arrest and prometaphase I. APC/CCdh1 is

first required for maintaining the GV arrest by suppressing cyclin B1 levels. However,

during this period, APC/CCdh1 is restrained by Emi1 to prevent complete depletion of

cyclin B1 such that enough pre-MPF is available for meiotic resumption. After GVBD

and during prometaphase I, APC/CCdh1 is active again, and targets Cdc20 for degradation

in preference to cyclin B1, therefore delaying the onset of APC/CCdc20 activity and

anaphase I. The rising levels of MPF activity eventually lead to inactivation of

APC/CCdh1 and Cdc20 accumulation. APC/CCdc20 activity, however, remains on hold by

SAC until anaphase I onset, when it induces securin and cyclin B1 destruction, thus

allowing homlog segregation. Following entry into meiosis II, APC/CCdc20 is kept

inactive during metaphase II arrest by the components of SAC and CSF. At fertilization,

APC/CCdc20 is active again, therefore promoting sister chromatids separation. This is

followed by APC/CCdh1 activation after PB2 extrusion, which continues until pronuclei

formation.
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1.4. The molecular mechanisms governing cell cycle transitions in

meiosis in mammalian oocytes

1.4.1. Prophase I arrest in oocytes

Following entry into meiosis, oocytes become arrested at prophase of the first meiotic

division for a period lasting from few months (mice) to many years (humans), until

puberty when the female becomes sexually mature. It is well established that this meiotic

arrest is maintained by the high levels of intra-oocyte cyclic adenosine 3’, 5’-

monophosphate (cAMP) (Conti et al., 2002). It is also known that mammalian oocytes,

in contrast to frog oocytes, when released from their follicles undergo spontaneous

meiotic maturation (Pincus and Enzmann, 1935). This, however, can be prevented by

addition of agents that raise intracellular cAMP, such as membrane-permeable cAMP

analogs, cAMP phosphodiesterase (PDE) inhibitors or adenylyl cyclase (AC) activators,

to the culture media (Cho et al., 1974; Conti et al., 2002; Dekel and Beers, 1978;

Olsiewski and Beers, 1983).

The high cAMP level that is required for the maintenance of the prophase arrest is

generated by the oocyte itself. This is achieved by way of a constitutively active G

protein-coupled receptor (GPR3) in the oocyte plasma membrane that stimulates a

heterotrimeric G protein of the Gs family, which in turn activates adenylyl cyclase to

cause an elevation of cAMP. Consistent with this idea, it was reported that oocytes from

GPR3 knockout mice fail to arrest at prophase I and undergo spontaneous meiotic

maturation within intact follicles and in the absence of LH stimulation (Mehlmann et al.,
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2004). Also, it was found that microinjection of a Gs blocking antibody into follicle-

enclosed oocytes causes exit from prophase I arrest (Mehlmann et al., 2002). Moreover,

AC3 deficient mice oocytes undergo GVBD within their follicles (Horner et al., 2003).

Taken together, these findings demonstrate the essential role of the GPR3/Gs/AC

pathway in the maintenance of the meiotic arrest.

In mammals, the somatic cells that surround the oocyte within the ovarian follicle are

also required for maintaining the GV arrest, as removal of oocytes from their follicles

causes spontaneous meiotic resumption due to the decrease in intra-oocyte cAMP levels

(Pincus and Enzmann, 1935; Vivarelli et al., 1983). This suggests that the surrounding

somatic cells also contribute to the maintenance of the elevated cAMP levels. Although

the exact mechanism is still under investigation, it is believed that this is achieved

through an inhibitory signal that diffuses from the follicular cells to the oocyte via gap

junctions (Bornslaeger and Schultz, 1985; Larsen et al., 1986; Racowsky et al., 1989;

Webb et al., 2002). Indeed, application of gap junction inhibitors to rat follicles causes a

decrease in intra-oocyte cAMP and meiotic resumption (Sela-Abramovich et al., 2006).

One possibility is that the signal that diffuses from the somatic cells into the oocyte is

cAMP itself. However, it was found that the amount of cAMP generated by the follicular

cells is insufficient to maintain the prophase arrest upon inhibition of cAMP generation in

the oocyte (Mehlmann et al., 2002; Mehlmann, 2005b). Recently, it was reported that the

inhibitory signal might well be cyclic guanosine 3’, 5’-monophosphate (cGMP), which is

produced by the follicular somatic cells and diffuses into the oocyte via gap junctions.

Once inside the oocyte, it is believed that cGMP maintains the prophase arrest through
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inhibiting cAMP hydrolysis by the phosphodiesterase type 3A (PDE3A) (Norris et al.,

2009; Tornell et al., 1990). Consistent with this hypothesis, intra-oocyte cGMP decreases

after removal of the oocyte from the follicle, and meiotic resumption is delayed upon

injection of cGMP into the oocyte (Tornell et al., 1990). Also, decreasing cGMP in

follicle-enclosed oocytes via injection of the cGMP-specific phosphodiesterase PDE9A,

causes PDE3A-dependant decrease in cAMP levels and meiotic resumption (Norris et al.,

2009).

The molecular mechanism underlying cAMP-mediated arrest in mammalian oocytes is

not fully understood. However, it is generally accepted that the main downstream target

of cAMP is Protein Kinase A (PKA), leading to its activation. Active PKA plays a

crucial role in the maintenance of the GV arrest, given that injection of PKA inhibitors

causes resumption of meiosis, and its over-activation blocks meiotic maturation

(Bornslaeger et al., 1986; Duckworth et al., 2002; Maller and Krebs, 1977). PKA-

mediated Prophase I arrest is believed to be achieved through prevention of pre-MPF

activation, via direct regulation of the kinase Wee1 and the phosphatase cdc25

(Duckworth et al., 2002; Han et al., 2005; Pirino et al., 2009). As mentioned before, the

newly assembled MPF is maintained in an inactive pre-MPF form through

phosphorylation of CDK1 at Thr-14 and Tyr-15 by Wee1 (Fattaey and Booher, 1997;

Mueller et al., 1995). These phosphorylation events can be reversed by cdc25

phosphatase, resulting in MPF activation and promotion of cell cycle progression

(Lincoln et al., 2002). It has recently been reported that PKA directly phosphorylates

both Wee1 and cdc25. In mouse oocytes, it was demonstrated that PKA-mediated
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phosphorylation of Wee1 enhances its kinase activity, and therefore ability to prevent

meiotic resumption through inhibition of MPF (Han et al., 2005). Phosphorylation of

cdc25 by PKA, however, leads to its inactivation. In frog oocytes, it was reported that

PKA-mediated phosphorylation of cdc25 results in its binding to 14-3-3 and

sequestration away from pre-MPF, hence inhibiting pre-MPF activation by cdc25 and

preventing exit from the prophase arrest (Duckworth et al., 2002).

1.4.2. Resumption of meiosis I

Mammalian oocytes remain arrested in prophase I until the preovulatory surge of LH

from the pituitary gland (Mehlmann, 2005a). LH stimulates meiotic resumption

indirectly, through acting on the mural granulosa cells in the outer region of the follicle

rather than the oocyte itself, since the LH receptors are only found on the mural granulosa

cells (Peng et al., 1991). The LH signal is then conveyed inward from the mural

granulosa cells, through the cumulus cells to the oocyte, where it causes a decrease in

cAMP levels. This consequently results in meiotic resumption through the inactivation

of PKA, and the subsequent activation of pre-MPF that is brought about via the inhibition

of CDK1 phosphorylation by Wee1 and the promotion of its dephosphorylation by cdc25.

Although, it is not completely understood how the action of LH on the somatic cells

decreases oocyte cAMP, two hypotheses (pathways) have been put forth. In the first

pathway, it is believed that LH causes the synthesis of EGF-like peptides by the follicular

cells, resulting in activation of the EGF receptors and the MAPK cascade in the somatic

cells (Norris et al., 2008). The active MAPK, in turn, triggers the closure of gap
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junctions throughout the somatic compartment via phosphorylation of connexin 43

(CX43), a major component of the somatic cell junctions (Beyer et al., 1989; Norris et al.,

2008; Okuma et al., 1996). The gap junction’s closure reduces the flux of cGMP from

the follicular cells to the oocyte, leading to a decrease in intra-oocyte cGMP levels

(Norris et al., 2009; Norris et al., 2008). This loss of cGMP allows PDE3A to consume

cAMP leading to meiotic resumption (Norris et al., 2009; Norris et al., 2008). Although

this pathway is sufficient to cause exit from the prophase arrest, another pathway that

does not involve the MAPK-dependent closure of gap junctions must exist, given that

inhibition of MAPK activation using UO126 prevents gap junction closure but not

meiotic resumption in response to LH (Norris et al., 2009). This suggests that the second

pathway can cause a decrease in oocyte cAMP levels and meiotic progression without

closure of gap junctions. Indeed, a recent work by Norris et al have demonstrated that

LH also decreases the level of cGMP in the somatic cells of the follicle, leading to a

decline in oocyte cGMP (Norris et al., 2009). This consequently results in PDE3A

activation, a decrease in intra-oocyte cAMP levels and meiotic resumption (Norris et al.,

2009).

Exit from prophase I arrest is also associated with a rapid increase in cyclin B1 synthesis,

although most species contain enough pre-MPF to initiate GVBD. The timing and

requirement for cyclin B1 synthesis varies between different species. In mouse, for

example, cyclin B1 translation is only enhanced following GVBD (Fulka et al., 1986;

Polanski et al., 1998). In Xenopus oocytes, however, cyclin B1 synthesis is a

prerequisite to GVBD. This was demonstrated by Sagata and co-workers, who showed
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that progesterone-dependent MPF activation and GVBD in Xenopus oocytes were

suppressed upon the expression of a dominant negative mutant of CDK1, which was

expected to bind cyclin B1 and to form inactive MPF complexes (Furuno et al., 1994).

This result indicates that de novo synthesis of cyclin B1 is required for MPF activation

and resumption of meiosis in Xenopus oocytes. This species-specific requirement for

cyclin B1 synthesis might be due to the difference in the ratios of CDK1/cyclin B1

between species. The concentration of cyclin B1 in GV-arrested mouse ooctyes is about

sevenfold higher than that of CDK1 (Kanatsu-Shinohara et al., 2000). In Xenopus

oocytes, however, cyclin B1 levels are fiftyfold lower than those of CDK1 (Kobayashi et

al., 1991). This suggests that in mouse oocytes most of CDK1 molecules are in

complexes with cyclin B1, and therefore protein synthesis is dispensable for meiotic

resumption. In Xenopus oocytes, on the other hand, cyclin B1 synthesis is necessary for

CDK1 activation and the onset of maturation, given that most of CDK1 is free.

In addition to cyclin B1 synthesis, meiotic resumption is coupled with the translation of a

pool of maternal mRNAs, which are stored in the GV oocyte with short poly (A) tails,

generally 30-50 nucleotides, and therefore are translationally repressed (masked)

(Richter, 1999). Upon release from the prophase arrest, those dormant mRNAs undergo

polyadenylation, the process by which the poly (A) tails are extended to 80-250 residues,

resulting in their unmasking and promotion of translation (Richter, 1999). One such

mRNA that undergoes this type of modification is the one encoding c-MOS kinase. It is

believed that PKA inactivation stimulates the polyadenylation of c-Mos mRNA leading

to its translation, and activation of the MAPK phosphorylation cascade in the oocyte
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(Dekel, 2005; Gebauer et al., 1994). As previously mentioned, although the c-

Mos/MEK/MAPK/p90rsk pathway is not necessary for exit from prophase I arrest, several

lines of evidence suggest that there is a link between MAPK cascade and pre-MPF

activation. It has been reported that MAPK activation slows the rate of CDK1

inactivation in Xenopus oocytes (Abrieu et al., 1997). More importantly, it was found

that p90rsk specifically associates with and phosphorylates Wee1 in vitro, decreasing its

ability to phosphorylate CDK1 (Palmer et al., 1998). These results suggest that, at least in

frog oocytes, the MAPK pathway is able to promote MPF activation through the

downregulation of CDK1 inhibitory phosphorylation by Wee1.

An additional potential contribution of the c-Mos/ MAPK cascade to MPF activation at

GVBD is through promoting the synthesis of its regulatory subunit, cyclin B1. It has

been demonstrated that there is a strong temporal correlation between MAPK activity and

cyclin B1 translation. It was found that de novo synthesis of cyclin B1 in c-Mos depleted

mouse oocytes is suppressed (Okeefe et al., 1991). Also, cyclin B1 mRNA

polyadenylation does not occur in response of progesterone if MAPK activity is inhibited

in frog oocytes (deMoor and Richter, 1997). All these results suggest that MAPK

activation is also required for the translation of cyclin B1 mRNA through promoting its

polyadenylation.

Following GVBD, the chromatin recondenses and the replicated chromosomes align

themselves on the metaphase plate of the first meiotic spindle, such that each pair of

homologous chromosomes is attached to opposite poles of the spindle. Therefore, at the
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onset of anaphase I, the homologs separate and half are lost from the oocyte during the

asymmetric cell division, which gives rise to a large secondary oocyte and a small PB1.

Without intervening S phase, the haploid oocyte proceeds directly to metaphase of the

second meiotic division and then arrests again, with chromosomes aligned on the

metaphase II spindle, until fertilization or parthenogenetic activation of the egg.

1.4.3. Metaphase II arrest in oocytes

To prevent parthenogenesis or completion of meiosis before fertilization, vertebrate eggs

are arrested at metaphase of meiosis II with high MPF by a cytoplasmic activity termed

cytostatic factor (CSF), which inhibits the APC/C from mediating cyclin B1 destruction

(Harper et al., 2002; Madgwick and Jones, 2007; Masui and Markert, 1971; Peters,

2002). Unlike MPF, CSF identity has never been completely resolved, despite their

simultaneous identification (Masui and Markert, 1971). CSF was first characterised by

Masui and Markert in 1971 as an activity present in mature Met II-arrested eggs that was

able to induce metaphase arrest when injected into dividing embryonic cells (Masui and

Markert, 1971). It was found that CSF activity accumulates during oocyte maturation, is

necessary and sufficient for metaphase arrest, and is inactivated during fertilization in a

Ca2+-dependent manner (Masui and Markert, 1971).

In frog and mammalian eggs, there is much evidence to suggest that the c-

Mos/MEK/MAPK/p90rsk pathway is an important component of CSF. It was found that

microinjection of c-Mos mRNA, active MAPK or active p90rsk in Xenopus embryos

induces a metaphase arrest (Gross et al., 1999; Haccard et al., 1995; Sagata et al., 1989b).
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Conversely, immunodepletion of c-Mos from Met II-arrested egg extracts causes a loss of

the cleavage-arresting activity in the injected embryos (Sagata et al., 1989b). Also, the

oocytes of c-mos knockout mouse, following “normal” progression through MI, they fail

to arrest at MII and instead they spontaneously activate and extrude a second polar body

(Colledge et al., 1994). Furthermore, treatment of Met II-arrested mouse eggs with the

MEK inhibitor, UO126, induces their parthenogenetic activation (Tatemoto and Muto,

2001; Tong et al., 2003). All these results suggest that the MAPK pathway is necessary

for the maintenance of the CSF arrest. However, it is unlikely to constitute the full CSF

activity and the most compelling evidence is that although the MAPK cascade has

already been activated before MI, it does not cause MI arrest (Fan et al., 2002). Also,

MPF inactivation at fertilization precedes MAPK inactivation, showing that MAPK

activity might be required for the establishment of the CSF arrest but its inactivation is

not necessary for the release from the MII arrest (Fan et al., 2002).

Recently, the egg specific protein Emi2 has been identified as the molecule directly

responsible for APC/C inhibition during CSF arrest in both Xenopus and mice (Schmidt

et al., 2005; Shoji et al., 2006). It has been proven that Emi2 satisfies the three historical

criteria for the molecular identification of CSF: (i) it accumulates during egg maturation

(Schmidt et al., 2005), (ii) it is necessary and sufficient for metaphase arrest, since Emi2

deficient oocytes fail to enter MII after completion of MI (Madgwick et al., 2006; Ohe et

al., 2007) and knocking down its activity in Met II-arrested eggs results in their

parthenogenetic activation (Shoji et al., 2006), and finally (iii) it is rapidly degraded in

response to Ca2+ signal (Liu and Maller, 2005; Madgwick et al., 2006; Rauh et al., 2005).
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Emi2 blocks APC/CCdc20 activity by directly binding to Cdc20, therefore allowing cyclin

B1 re-accumulation following the MI to MII transition, and so MPF reactivation, until

fertilization (Schmidt et al., 2005).

In frog eggs, the mechanism for establishment and maintenance of CSF arrest has just

been reported, with the authors proposing the existence of a link between the long-

standing CSF candidate c-Mos/MEK/MAPK/p90rsk pathway and Emi2 (Inoue et al.,

2007; Nishiyama et al., 2007a; Tung et al., 2005). This study shows that in Xenopus

eggs, Emi2 is directly phosphorylated by the kinase p90rsk resulting in recruitment of the

protein phosphatase 2A (PP2A) (Nishiyama et al., 2007a; Wu et al., 2007). PP2A in turn

dephosphorylates Emi2 at the MPF phosphorylation sites that would disrupt the

interaction between Emi2 and APC/CCdc20 (Wu et al., 2007). However, in contrast to

frog, the link between p90rsk and Emi2 is unlikely to exist in mammalian eggs, given that

constitutively active mutant forms of Rsk fail to induce the Met II arrest when injected in

dividing mouse embryos or mos-/- oocytes (Dumont et al., 2005). Moreover, eggs from

Rsk knockout mouse present normal CSF arrest (Dumont et al., 2005). Therefore, in

mouse eggs, p90rsk might not be the downstream target of MAPK that is responsible for

phosphorylating Emi2 during Met II arrest.

Upon fertilization of frog eggs, Emi2 is targeted for degradation. This is achieved

through the Ca2+ signals that are transduced by CaMKII, which in turn phophorylates

Emi2 and stimulates its association with the polo-like kinase, Plk1 (Hansen et al., 2006;

Liu and Maller, 2005; Lorca et al., 1993; Schmidt et al., 2005). This is followed by Plk1-
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mediated phosphorylation of Emi2 to generate a phosphodegron, which is then

recognised by the SCF-E3 ubiquitin ligase, resulting in polyubiquitination of Emi2 and

targeting for destruction by the proteasome (Hansen et al., 2006; Liu and Maller, 2005;

Rauh et al., 2005; Schmidt et al., 2005). The resultant Emi2 degradation unleashes the

APC/CCdc20 to initiate anaphase II and complete the second meiotic division (Hansen et

al., 2006; Liu and Maller, 2005; Rauh et al., 2005). This mechanism, however, has not

yet been confirmed in mammalian eggs. Although, mouse Emi2 was also found to

contain specific motifs for phosphorylation by Plk1 and CaMKII.

As well as CaMKII, the Ca2+-dependent phosphatase calcineurin was proven to be

involved in the exit from CSF arrest (Mochida and Hunt, 2007; Nishiyama et al., 2007b).

Recently, it was reported that inhibition of calcineurin in the presence of Ca2+, delays

cyclin B1 destruction and prevents exit from meiosis II (Mochida and Hunt, 2007;

Nishiyama et al., 2007b). Also, incubation of purified APC/C from CSF egg extracts

with calcineurin causes dephosphorylation of the APC/C core subunit (Apc3) and its co-

activator (Cdc20) (Mochida and Hunt, 2007). Therefore, these calcineurin-mediated

dephosphorylation events might be crucial for APC/CCdc20 activation and exit from CSF

arrest.

1.4.4. Resumption of meiosis II

Fertilization of the mammalian egg by sperm is associated with an explosive increase in

cytosolic Ca2+, which is both necessary and sufficient to trigger resumption of meiosis II

following the metaphase arrest (Stricker, 1999). The Ca2+ signal spreads through the egg
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in a wave, starting at the point of sperm entry. In contrast to frog, whose eggs have a

monotonic and short rise in Ca2+i upon fertilization, mammalian eggs display a series of

low frequency Ca2+ transients (oscillations) lasting for hours after sperm-egg fusion

(Jones, 2004). Ca2+ oscillations were first demonstrated in fertilized mouse eggs by

Cobbold and colleagues in the early 1980s (Cuthbertson et al., 1981; Cuthbertson and

Cobbold, 1985). Using the Ca2+ specific photoprotein aequorin they found that, the

fertilized egg generated a series of low frequency Ca2+ oscillations that lasted for several

hours. Ca2+ is released from the endoplasmic reticulum (ER), and its release is regulated

by ligand-gated ion channels. In other cells it is generally accepted that IP3 (inositol

1,4,5-triphosphate) is the major effector in releasing Ca2+ via the IP3 receptor (IP3R)

channel (Ayabe et al., 1995; Berridge et al., 2000; Miyazaki et al., 1993; Runft et al.,

2002; Streb et al., 1983), and that IP3 production is mediated by enzymes of the

phospholipase-C (PLC) family through PIP2 (phophatidylinositol-4,5-bisphosphate)

hydrolysis (Jones and Nixon, 2000; Nuccitelli et al., 1993). However, in eggs, the

mechanism of IP3 production via PLC has been a matter of controversy. In brief, two

hypotheses have been put forth. The first involves the binding of the sperm to a G

protein-coupled receptor on the egg plasma membrane, which results in the activation of

PLC, and so IP3 synthesis (Halet et al., 2003; Jones, 2005; Nuccitelli et al., 1993). The

most compelling evidence is that microinjecting mRNA of a G protein coupled-receptor

into pig eggs induces their meiotic activation (Kim et al., 1998; Nuccitelli et al., 1993).

The second hypothesis involves a soluble sperm factor that is introduced into the egg

upon fertilization (Halet et al., 2003b; Jones, 2005; Nuccitelli et al., 1993; Swann,

1990a). The sperm factor theory was initially derived from experiments by Dale and



61

colleagues in 1985 showing that microinjection of soluble cytosolic sperm extracts into

sea urchin eggs triggers the cortical reaction (Dale et al., 1985). This was further

supported by a study done by Swann, with the author proposing that injection of sperm

soluble factors into mammalian eggs results in fertilization-like Ca2+ oscillations (Swann,

1990).

Increasing evidence supports the latter of these scenarios, especially after the discovery

of the sperm-specific PLC isoform (PLC zeta / PLCζ), which was initially cloned from 

mouse testes library (Saunders et al., 2002).  It has been suggested that PLCζ is present at 

a sufficient concentration in the part of the sperm head that enters the egg first (Fujimoto

et al., 2004; Saunders et al., 2002).  It also has been reported that injection of PLCζ 

mRNA in mouse eggs generates Ca2+ oscillations very similar to those caused by sperm

upon fertilization (Saunders et al., 2002), whereas other PLC isoforms were unable to

stimulate such oscillations (Mehlmann et al., 2001).  Moreover, depletion of PLCζ from 

sperm extracts removed their ability to induce Ca2+ rise (Knott et al., 2005). Finally, a

recent study by Yoon et al also reported that human sperm lacking PLCζ is unable to 

initiate Ca2+ oscillations upon sperm-egg fusion, therefore leading to failure to activate

the egg and sterility (Yoon et al., 2008). All these reports definitely support PLCζ as the 

most likely sperm factor candidate; however its physiological importance at fertilization

and during early embryo development remains to be demonstrated.

Whatever the exact mechanism, Ca2+ signals are transduced by calmodulin, which in turn

associates with and activates calmodulin-dependent protein kinase II. Activation of
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CaMKII leads to degradation of cyclin B1 and securin through the APC/C. The resultant

cyclin B1 and securin destruction allows MPF inactivation and unleashes the protease

separase, to initiate anaphase and complete the second meiotic division (Lorca et al.,

1991; Lorca et al., 1993). In what follows, I will focus on the molecular mechanisms

underlying the regulation of separase activity, and on how cells ensure that cohesin

cleavage occurs at the right time and place, making possible the complete and accurate

distribution of their chromosomes.

1.5. Chromosome attachment and segregation

A fundamental aspect of cell division is the maintenance of genomic integrity through

accurate transmission of the duplicated genome into daughter cells. Errors in

chromosomal distribution lead to cells with supernumerary or missing chromosomes

(Hassold et al., 2007; Hassold and Hunt, 2001). The resulting aneuploidy is usually

associated with many cancers, and is also the leading cause of human birth defects (such

as trisomies), malformations of the embryo and spontaneous foetal abortions (Hassold et

al., 2007; Hassold and Hunt, 2001). In order to avoid chromosomal missegregation, the

products of DNA replication, the sister chromatids, are held together by the chromosomal

cohesin complex, which prevents them from drifting apart after synthesis (Nasmyth et al.,

2000; van Heemst and Heyting, 2000). This cohesion is also important in facilitating

DNA repair by homologous recombination throughout G2, and allowing chromosomes to

be aligned in the middle of the metaphase spindle and to be separated simultaneously at

anaphase onset (van Heemst and Heyting, 2000).
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1.5.1. Chromosome attachment: the cohesin complex

Newly replicated sister chromatids tend to remain linked by the cohesin complex from S-

phase until the metaphase-to-anaphase transition, when cohesion is dissolved (Nasmyth

et al., 2000; van Heemst and Heyting, 2000). This molecular glue, which is believed to

embrace both sisters in a ring-like structure, consists of five core subunits: two SMC

subunits that belong to the family of Structural Maintenance of Chromosome (Smc1 and

Smc3) and three non-SMC subunits (Scc1, Scc3 and Pds5) (Darwiche et al., 1999;

Guacci et al., 1997; Hartman et al., 2000; Losada et al., 1998; Michaelis et al., 1997;

Panizza et al., 2000; Sumara et al., 2000; Toth et al., 1999). The components of the

cohesin complex were first identified by genetic studies in yeast, in which they isolated

five genes whose mutagenesis caused premature sister chromatid separation and high

rates of chromosome loss (Michaelis et al., 1997; Panizza et al., 2000; Toth et al., 1999).

At anaphase onset, the resolution of sister chromatid cohesion is catalysed by the cysteine

protease, separase, which cleaves the Scc1 subunit (Uhlmann et al., 1999; Uhlmann et al.,

2000). Separase also triggers chromosomes separation during meiosis by cleaving the

Scc1 meiotic homolog (Rec8), which is believed to confer some specialized meiotic

purposes, such as formation of the synaptonemal complex, reciprocal recombination and

protection of centromeric cohesion (Deveaux and Smith, 1994; Klein et al., 1999; Lorenz

et al., 2004; Parisi et al., 1999). In plants and fission yeast, it has been reported that loss

of Rec8 results in disruption of the monopolar orientation of sister kinetochores, leading

to equational rather than reductional division during meiosis I, which cannot be rescued

by expression of Scc1 (Chelysheva et al., 2005; Watanabe and Nurse, 1999; Yokobayashi
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et al., 2003). This implies that the meiotic cohesin complex also plays a crucial role in

establishing the mono-orientation of the MI kinetochores.

1.5.2. Chromosome segregation: dissolving cohesion

In somatic cells and during mitosis, centromeric cohesin is lost at anaphase onset by the

protease separase (Uhlmann et al., 1999; Uhlmann et al., 2000; Waizenegger et al., 2000).

Cohesin bound to chromosome arms, however, is removed during early stages of mitosis

via the “prophase pathway” (Waizenegger et al., 2000). This mechanism does not

depend on separase-mediated Scc1 cleavage, but it does require the two mitotic kinases

Plk and Aurora B (Losada et al., 2002; Sumara et al., 2002). Accordingly, it was

demonstrated that Plk directly phosphorylates Scc1 and Scc3 in vitro (Sumara et al.,

2002). Also, phosphorylated cohesin when incubated with sperm chromatin associate

less efficiently to DNA than the non-phosphorylated one (Sumara et al., 2002).

Therefore, the release of the cohesin complexes during the prophase pathway might be

triggered by the phosphorylation of its two subunits (Scc1 and Scc3) by Plk. However,

the role of Aurora B in this process is less clear and requires further investigation.

In contrast to mitosis, during meiosis cohesins are lost in a stepwise manner and the

whole process is separase-dependent (Kudo et al., 2006; Lee et al., 2006). Removal of

cohesion from chromosome arms does not take place until anaphase I onset, hence

allowing homologs segregation during meiosis I (Lee et al., 2006). Whereas, centromeric

cohesin is only cleaved during anaphase II, leading to sister chromatid separation (Lee et

al., 2006).
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During meiosis I and mitotic prometaphase, protection of centromeric cohesin is achieved

by a specific cohesin protector, called shugoshin (Sgo), which means “guardian spirit” in

Japanese (Kitajima et al., 2004). Mammals have two shugoshin homologs, Sgo1 and

Sgo2, which are expressed in both somatic and germ cells. Nonetheless, Sgo1 is the key

protector of centromeric cohesin during mitosis, whereas the predominant role of Sgo2 is

during meiosis. Indeed, depletion of human Sgo1 causes removal of the whole bulk of

cohesin including the centromeric one during prometaphase, and knockdown of Sgo2 in

mouse oocytes results in loss of centromeric cohesion and separation of sister chromatids

by the time the oocytes enter metaphase II (Kitajima et al., 2004; Kitajima et al., 2005;

Lee et al., 2008; Llano et al., 2008; McGuinness et al., 2005; Tang et al., 2004).

Recruitment of shugoshin to the centromeric region of chromosomes is catalysed by the

SAC protein Bub1, which also promotes shugoshin association with the protein

phosphatase PP2A (Kitajima et al., 2005; Kitajima et al., 2006; Tang et al., 2004). The

Sgo/PP2A complex, in turn, induces the dephosphorylation of centromeric cohesin, thus

preventing its cleavage and dissociation from the chromatin (Kitajima et al., 2006; Riedel

et al., 2006). Accordingly, it was reported that purified Sgo/PP2A complexes are able to

dephosphorylate the cohesin subunits Scc1 and Scc3 that have been phosphorylated by

Plk in vitro (Kitajima et al., 2006). Also, inactivation of PP2A in yeast and mouse

oocytes causes premature sister chromatid separation and higher rate of aneuploidy (Lee

et al., 2008; Mailhes et al., 2003; Riedel et al., 2006). At anaphase onset, the Sgo/PP2A

complex is displaced away from the centromeres as a result of the microtubule pulling
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tension generated across the sister kinetochores, therefore allowing phosphorylation of

the centromeric cohesin by Plk, which seems to be crucial for cohesin cleavage by

separase (Gomez et al., 2007).

1.5.3. Separase

1.5.3.1. Structure and function of separase

Separase was initially identified in a mutant form of fission yeast, in which cell division

occurs in the absence of nuclear division, causing the cut (cell untimely torn) phenotype

(Hirano et al., 1986). Separase homologs exist in most if not all eukaryotes examined so

far, and its name varies from one organism to another: CUT1 in fission yeast, ESP1 in

budding yeast and separin/separase in human (Hirano et al., 1986; Mcgrew et al., 1992;

Nagase et al., 1996).

Separases are generally large proteins of 150-230 kDa, and only a C-terminal domain

seems to be conserved amongst them. This conserved domain, the separin domain,

contains the signature motif for the cysteine endopeptidases of the CD-clan subclass, a

superfamily of proteases that also includes the caspases, which are involved in

programmed cell death (Aravind and Koonin, 2002; Uhlmann et al., 2000). The N-

terminal region of separase, however, does not show obvious conservation between

species (Hornig et al., 2002). This large region is believed to be the site of interaction

with separase’s binding partner, securin (Hornig et al., 2002).
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Figure 1.8. Cohesin cleavage during mitotic and meiotic cell divisions.

(A) In somatic cells and during mitosis, cohesin complexes bound to chromosomes arms

are removed during prometaphase via the prophase pathway, which involves Plk and

Aurora B-mediated phosphorylation of cohesin. Centromeric cohesin, however, is

protected from prophase dissociation by the Shugoshin/PP2A complex. At anaphase

onset and as a result of the displacement of the Shugoshin/PP2A complex, centromeric

cohesin is destroyed by separase, leading to sister chromatid separation. (B) In contrast

to mitosis, during meiosis cohesin is lost in a stepwise manner and the whole process is

separase-dependent. During meiois I, only cohesion from chromosomes arms is lost,

while centromeric cohesin is protected by Shugoshin/PP2A, therefore only allowing

homologs separation at anaphase I. In meiosis II, the Shugoshin/PP2A complex is moved

away from the centromeres vicinity, thus resulting in centromeric cohesin cleavage by

separase and sisters’ segregation during anaphase II.
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In yeast, it was reported that esp1 mutants fail to dissociate Scc1 from their chromosomes

and are completely defective in sister chromatid separation, whereas in the wild type cells

Scc1 suddenly disappears from the chromosomes at anaphase onset (Ciosk et al., 1998;

Michaelis et al., 1997). Also, it was demonstrated that budding yeast and human

separases are capable of cleaving Scc1 in vitro, and the Scc1-derived peptide inhibitor

binds the active site of yeast separase (Uhlmann et al., 2000; Waizenegger et al., 2000).

These observations confirm the hypothesis that separase triggers chromosomes

segregation through removal of cohesin, which solely relies on Scc1 cleavage. Indeed,

separase recognises and cleaves the Plk-phosphorylated Scc1 at two distinct sites, each

with an arginine residue (Uhlmann et al., 1999). Mutation of either site does not abolish

the cleavage of Scc1, whereas simultaneous mutation of both arginines does, leading to

lethality (Uhlmann et al., 1999).

The universal role of separase in triggering anaphase and chromosomes segregation

through cohesin cleavage is an irreversible step, once executed it cannot be undone. This

suggests that separase must be highly regulated by surveillance mechanisms that allow its

activation and progression of the cell cycle into anaphase only if the cells are sure that

their DNA is damage-free and chromosomes are properly attached to the spindle

microtubules.

1.5.3.2. Separase regulation

The best-known regulator of separase is securin, which is a functionally conserved

protein, although there is little conservation of its primary amino acid sequence except for
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the presence of D-box and KEN-box motifs (Ciosk et al., 1998; CohenFix et al., 1996). It

was originally identified in budding yeast as Pds1, whose depletion results in precocious

separation of sister chromatids and increased rates of chromosome loss (Ciosk et al.,

1998; Yamamoto et al., 1996). Securin, also known as the product of the pituitary

tumour-transforming gene (PTTG) in vertebrates, CUT2 in fission yeast and PIM in

Drosophila, binds to and inhibits separase for most of the cell cycle, but at metaphase

onset it is targeted for degradation via ubiquitination by the APC/C, thus unleashing

separase (Funabiki et al., 1996a; Funabiki et al., 1996b; Leismann et al., 2000; Pei and

Melmed, 1997; Stratmann and Lehner, 1996).

In fission yeast and Drosophila, securin is essential for chromosomes disjunction and its

absence leads to impairment in separase activity and failure in separating sister

chromatids, suggesting that securin must be more than a simple inhibitor of separase

(Funabiki et al., 1996b; Jensen et al., 2001; Leismann et al., 2000). Indeed, it was

recently reported that securin inhibits the proteolytic activity of separase in a 2-fold

manner (Funabiki et al., 1996a; Hornig et al., 2002). While inhibiting separase, securin is

able to promote the spindle localization of the protease, and securin destruction then

promotes the full activation of separase at anaphase (Hornig et al., 2002; Kumada et al.,

1998). The specific architecture of the separase-securin complex is believed to be at the

origin of this dual mechanism of regulation. Securin binds to both the N and C terminus

of separase leading to their separation and therefore preventing them from inducing an

activating conformational change at the protease active site (Hornig et al., 2002). Upon

securin degradation at anaphase onset, the N and C terminus are free to interact and
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therefore to induce the conformational change that is necessary for the activation of

separase (Hornig et al., 2002).

Many studies have demonstrated the importance of securin degradation for normal

anaphase. In frog eggs, it was demonstrated that over-expression of non-degradable

securin results in failure to separate chromosomes (Zou et al., 1999). A similar

phenotype was observed in human somatic cells upon the expression of stable securin

(Hagting et al., 2002). However, despite its crucial role as an inhibitor of separase, it is

not essential for viability of budding yeast, and for maintaining cohesion in mammals

(Waizenegger et al., 2002; Yamamoto et al., 1996). It also has been reported that securin

knockout mice are viable and fertile, and human cultured cells lacking securin execute

mitosis normally (Huang et al., 2005; Waizenegger et al., 2002). This suggests that other

securin-independent mechanisms must contribute to the control of separase. Regulation

of phosphorylation of the Scc1 subunit of cohesin (Rec8, in meiosis) could be one such

mechanism (Holland and Taylor, 2006; Waizenegger et al., 2002). Shugoshin-dependent

protection of centromeric cohesin could be another mechanism (Kitajima et al., 2004).

Also, recruitment of cyclin B1 by phosphorylated separase is an additional mechanism.

It was reported that CDK1-mediated phosphorylation of separase is required for the

stable binding of CDK1 to separase via its regulatory subunit cyclin B1, leading to

inhibition of both protease and kinase (Gorr et al., 2005), which seems to be crucial for

PB1 extrusion and exit from meiosis I in mouse oocytes (Gorr et al., 2006). In vitro and

in vivo studies showed that non-degradable cyclin B1 blocks anaphase and chromosomes

separation, which could be rescued by mutating the CDK1 phosphorylation sites in
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separase (Chang et al., 2003; Herbert et al., 2003; Stemmann et al., 2001). Also,

incubation of separase with CDK1 leads to separase inactivation despite the absence of

securin (Gorr et al., 2005). CDK1 and securin are unable to bind separase

simultaneously; therefore the loss of one inhibitory mechanism is expected to be

compensated by the other. Indeed, a recent study demonstrated that ES cells lacking

either the securin- or CDK1-separase inhibition mechanism maintained sister chromatid

cohesion (Huang et al., 2005).

Finally, vertebrate separase itself undergoes auto-cleavage at anaphase (Papi et al., 2005).

The consequences of this cleavage in mitosis have just been described, with the authors

suggesting that the cleaved separase acts positively to induce entry into the next mitotic

cell cycle (Papi et al., 2005). This is believed to be achieved through promoting the

destruction of the kinase Wee1, therefore leading to pre-MPF activation during late G2

(Papi et al., 2005). This hypothesis, however, remains to be tested during the meiotic cell

cycle.
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Chapter 2: Materials & Methods

2.1. Materials

Female MF1 mice were obtained from Harlan (UK). Mouse oocyte collection and

culture equipment was from VWR (UK), unless stated otherwise. All chemicals were

purchased from Sigma-Aldrich (UK), unless noted otherwise. Antibodies were obtained

from AbCam (UK). All antisense morpholinos (MO) were designed by Genetools

(USA).

All chemicals used were tissue culture or embryo-tested grade where appropriate.

2.2. Methods

2.2.1. Mouse oocyte collection and culture

2.2.1.1 Collection of germinal vesicle oocytes

Germinal vesicle (GV) oocytes were collected from 4-6 weeks old MF1 mice

(Harlan). The females were superovulated by intraperitoneal injection of 7.5IU of

pregnant mares’ serum gonadotrophin (PMSG) (Calbiochem), which mimics

endogenous FSH. Mice were killed by cervical dislocation at 46-48 h after

PMSG injection. The ovaries were removed and immediately transferred to

dissection medium, consisting of M2 medium (Table 1) supplemented with 1µM

milrinone or 200µM IBMX, in order to keep the oocytes arrested at the GV stage.

The cumulus-enclosed oocytes were isolated by mechanical perforation of the

ovaries with a 27-gauge needle. The cumulus masses were removed by repeated
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mouth-pipetting, using narrow-bore glass Pasteur pipettes. Following few rinses

in drops of dissection medium, the oocytes were ready for further use.

2.2.1.2 Collection of metaphase II-arrested eggs

For collection of Met II eggs, 4-6 weeks old MF1 mice were superovulated by

intraperitoneal injection of 7.5IU of PMSG, followed 46-48 h later by 5IU of

human chorionic gonadotrophin (hCG) (Calbiochem), which has strong homology

with LH. Mice were killed by cervical dislocation at 13-15 h after hCG injection.

The oviducts were removed and immediately transferred to M2 medium. The

oviducts were then placed in M2 medium containing 300IU/ml hyaluronidase.

The cumulus-enclosed Met II eggs were released using fine forceps to tear the

oviducts. Following a brief exposure to hyaluronidase (maximum 5 min), the

cumulus cells were removed. The denuded Met II eggs were then washed in M2

medium and ready for further manipulations.

For bench handling, microinjections and imaging experiments, GV and Met II oocytes

were cultured in M2 medium. For longer-term incubation, the oocytes were cultured in

minimum essential medium (MEM) (Gibco) supplemented with 20% of foetal bovine

serum (FBS) (Invitrogen), 60µg/ml penicillin and 50µg/ml streptomycin in a 5% CO2

humidified incubator at 37ºC (Lab Impex Research). To keep the GV oocytes arrested,

the culture media (M2 or MEM) was supplemented with 1µM milrinone or 200µM

IBMX. For parthenogenetic activation of eggs, the Met II-arrested oocytes were

incubated in Sr2+ medium (Table 2).
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Table 1: Composition of M2 culture medium

M2 was used for oocytes collection and short term culture. This is a modified Kreb’s

Ringer solution with some of the bicarbonate substituted with Hepes buffer.

Component Concentration (mM)

NaCl 94.66

KCl 4.78

CaCl2.2H20 1.71

KH2.PO4 1.19

MgSO4.7H20 1.19

NaHCO3 4.15

Hepes 20.85

Na Lactate 23.28

Na Pyruvate 0.33

Glucose 5.56

BSA 4.00g/l

Penicillin G. K salt 0.06g/l

Streptomycin sulphate 0.05g/l

Phenol Red 0.01g/l
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Table 2: Composition of Sr2+ medium

Sr2+ medium was a used for parthenogenetic activation of eggs. This is a Ca2+-free M2

medium with CaCl2.2H20 replaced by SrCl2. BSA was added right before usage.

Component Concentration (mM)

NaCl 94.66

KCl 4.78

SrCl2 10

KH2.PO4 1.19

MgSO4.7H20 1.19

NaHCO3 4.15

Hepes 20.85

Na Lactate 23.28

Na Pyruvate 0.33

Glucose 5.56

BSA 4.00g/l

Penicillin G. K salt 0.06g/l

Streptomycin sulphate 0.05g/l

Phenol Red 0.01g/l
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2.2.2. Microinjection and imaging

All microinjections of GV and Met II oocytes were done in M2 medium (± milrinone or

IBMX) on the heated stage of an inverted microscope (Leica DM IRB, Leica, Wetzlar,

Germany). Borosilicate glass capillaries (outer diameter 1.5mm and inner diameter

0.86mm) with an inner filament (Harvard Apparatus Ltd) were used to make

microinjection pipettes using a micropipette puller (Model P-97, Sutter Instrument,

USA). The micropipettes were then backfilled with approximately 1µl of injection

solution, and inserted into oocytes using the negative capacitance overcompensation

facility on an electrophysiological amplifier (World Precision Instruments, UK); while

cells were immobilised with a holding pipette (Hunter Scientific). This procedure

ensures a high rate (>90%) of oocytes survival and a low rate (<1%) of Met II oocytes

parthenogenetic activation. A precise injection volume (2-5% of the total oocyte volume)

was achieved by using a Pneumatic PicoPump (World Precision Instruments). The

volume of the oocyte is approximately 250pl.

Brightfield and epi-fluorescence images were recorded using a (20 X 0.75 NA) objective

and a Princeton Instruments MicroMax interline cooled CCD camera (Roper Scientific,

Buckinghamshire, UK). Filters sets were used as appropriate for the fluophore being

studied. Hoechst staining, for example, was examined using a UV filter set at BP 330-

380 nm for excitation, DM 400 nm and LP 450 nm for emission. Whereas, GFP and YFP

tagged proteins were imaged using a fluorescein isothiocyanate (FITC) filter set at BP

450-490 nm for excitation, DM 510 nm and BP 520 nm for emission. Metamorph (MM)

and metafluor (MF) software 6.1 (Universal Imaging Corp, PA, USA) were used for
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image capture (control of the filter and shutter settings) and data analysis. Eggs were

imaged every 10-20 minutes to minimise photobleaching and photodamage. Also, to

accurately measure multiple oocytes within a single image, it was important to correct the

illumination variation across the field of view. This was done using the Metamorph’s

“Reference Image” command, which allows the acquisition of a background image with

the same experimental conditions as the sample image (wavelength and exposure time)

but with a closed-shutter. The background was then subtracted from the experimental

image, therefore improving quantitative accuracy and overall throughput.

2.2.3. Western blotting

Oocytes were washed in phosphate-buffered saline (PBS) with 1% polyvinylpyrrolidone

(PVP) solution and frozen in 5X sample buffer (0.06M Tris/HCL at pH 6.8, 2% sodium

dodecyl sulphate (SDS), 10% glycerol, 0.025% bromophenol blue and 5% 2-

mercaptoethanol). The samples were then boiled at 95ºC for 5 min using a heat block

(QBT2, Grant) and briefly centrifuged at 8,000Xg (MSE, Micro Centaur, Sanyo, Japan).

Proteins were fractionated at 200mV for 50 min on an X Cell II™ blot Module

(Invitrogen) and power pack (Power Pac 300, BioRad); using 10% NuPage Bis-Tris pre-

cast gels (Invitrogen) with mopholinepropanesulphonic acid (MOPS) running buffer

(Invitrogen). Coloured standard markers (Kaleidoscope, BioRad) were also loaded on

the gel. Following electrophoresis, proteins were blotted onto polyvinylidened fluoride

membranes (PVDF) for 1h30min at 100mV. The PVDF membranes used were pre-

rinsed in 100% methanol, washed in water and then placed in blotting buffer (25mM Tris
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buffer, 192mM glycine, 20% methanol). Following blotting, the membranes were

saturated with 5% non-fat dry milk in blocking buffer (10mM Tris, 100mM NaCl and

0.1% Tween-20) at room temperature for 1h and incubated with primary antibody (Table

3) overnight at 4°C. After the overnight incubation, membranes were washed in blocking

solution without milk for 1 h with buffer changed every 15 min, then incubated with anti-

rabbit/mouse horseradish peroxidise (HRP)-linked secondary antibody (Table 4) for 1h at

room temperature. Finally, membranes were washed again in blocking buffer for 1h with

continuous change of buffer.

Standard enhanced chemiluminescence (ECL) techniques (Amersham Biosciences) were

used to detect the protein-bound HRP-labelled secondary antibodies according to the

manufacturer’s instructions. The membranes were incubated in ECL detection solution

mixture (40:1), wrapped in Clingfilm and exposed to Hyperfilm (Amersham

Biosciences). The exposure time depended on the strength of the signal.
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Table 3: Primary antibodies used in this study.

Primary antibody Species Concentration
Manufacturer

&
catalogue number

Anti-securin Mouse 1:1000 AbCam (ab3305)

Anti-cyclin B1 Mouse 1:400 AbCam (ab72)

Anti-Cdh1 Mouse 1:200 AbCam (ab3242)

Anti-Cdc20 Rabbit 1:200 Santa Cruz (sc-8358)

Anti-PLK1 Rabbit 1:500 AbCam (ab14209)

Anti-actin Mouse 1:2500 Millipore (MAB1501R)

Table 4: Secondary antibodies used in this study.

Secondary antibody
Concentration

Manufacturer
&

catalogue number
Goat anti-mouse 1:5000 BioRad (170-6516)

Goat anti-rabbit 1:5000 BioRad (172-1019)

2.2.4. Chromosome spreads

Chromosome spreads were prepared by the air-drying technique, which involves swelling

eggs, fixing them on slides and staining them with Giemsa. Eggs’ swelling was done

through incubation in a dish filled with 1% trisodium citrate for 7-10 min. The eggs were

then placed onto clean microscope slides and immediately fixed by dropping onto them
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one drop of freshly prepared fixative, 3:1 (Methanol:glacial acetic acid), from a height of

at least 2 cm to avoid premature fixation by vapour. Following fixation, the

chromosomes were spread by gentle mouth blowing, and left to dry overnight. The slides

were then incubated for 5 min in 5M HCL, washed with running distilled water and

stained with 9:1 (Gurr buffer:Giemsa). Finally, the slides were rinsed in Gurr buffer (pH

6.8 - BDH) and left to dry.

C-spreads, however, were prepared by treating the fixed oocytes with 0.2M HCL for 1 h,

and then incubating the slides in a freshly prepared aqueous solution of 4% barium

hydroxide at 37°C for 30 seconds. This was followed by a subsequent incubation in 2 x

standard saline citrate (SSC; 0.3M sodium chloride/0.03M trisodium citrate) at 60°C for

1 h, and Giemsa staining for 15 min. Slides were rinsed in distilled water following each

step.

To visualise the chromatin, the slides were applied to a microscope (TE300, Nikon). (20

X 0.75 NA) objective was used to find the chromatin and (100 X 0.75 NA) oil immersion

lens was used to count the chromosomes and to record brightfield images of the spreads,

as previously described.

2.2.5. H1 kinase assay

MPF (CDK1-cyclin B) activity can be measured in vitro by its ability to phosphorylate

histone H1. Five oocytes collected in 2µl of PBS were transferred in 3µl of storing

solution (10µg/ml leupeptin, 10µg/ml aprotinin, 10mM p-nitrophenyl phosphate, 20mM
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β-glycerophosphate, 0.1mM sodium orthovanadate and 5mM EGTA), and immediately

frozen on dry ice. After three thaw-freeze cycles, 2 x concentrated kinase buffer

[60µg/ml leupeptin, 60µg/ml aprotinin, 24mM p-nitrophenyl phosphate, 90mM β-

glycerophosphate, 4.6mM sodium orthovanadate, 24mM EGTA, 24mM MgCl2, 0.2mM

EDTA, 4mM MOPS, 0.6mM ATP, 2mg/ml histone H1 (HIII-S from calf thymus,

Sigma) and 0.25mCi/ml [32P] ATP] was added to the samples. This was followed by 30

min incubation at 30°C. The reaction was then stopped by addition of 2 x SDS-sample

buffer (0.125M Tris-HCL, 4% SDS, 20% glycerol, 10% mercaptoethanol, 0.002%

bromophenol blue). The samples were then boiled at 95°C for 3-5 min, analysed by 10%

SDS-PAGE gel at 7V for 18h (Table 5), which was followed by autoradiography.

Autoradiographs were imaged using Fuji Bas-1000 phosphorimager system and analysed

with TINA 2.0 software.

Table 5: 10% SDS-PAGE gel

The stacking gel was applied to the separating gel following solidification

Separating gel 10%

40% acrylamide 24ml

2% Bis-acrylamide 13ml

1.5M Tris-HCl pH8.8 25ml

10% SDS 1ml

10% APS (1g/ml) 500µl

TEMED 50µl

Water ↑ 100ml

Stacking gel 4%

40% acrylamide 3ml

2% Bis-acrylamide 1.5ml

0.5M Tris-HCl pH8.8 7.5ml

10% SDS 300µl

10% APS (1g/ml) 150µl

TEMED 30µl

Water ↑ 30ml
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2.2.6. Protein knockdown using morpholino antisense oligos

To better understand the role of securin, cdc20 and cdh1 in the control of meiosis, I have

decided to deplete them using morpholino oligonucleotides (MO) (Table 6).

Morpholinos prevent protein translation by binding to their complementary sequences in

the 5’ untranslated region of target mRNA, therefore blocking access of the translation

initiation complex. Unlike other antisense oligos (e.g. siRNA and sDNA), morpholinos

are completely stable to nucleases, non-toxic, water soluble and have very long-term

activity. Those criteria are due to key structural features, with morpholine rings replacing

the ribose sugars in the DNA bases (A, T, G and C) and non-ionic inter-subunit linkages

replacing the anionic phosphates (www.gene-tools.com). To achieve very high sequence

specificity, morpholinos tend to be 20-25 bases long, which assures strong and specific

binding to their complementary target sites. Like all gene knockdown reagents,

morpholinos were actively delivered into GV oocytes through microinjection. The

oocytes were then cultured for 24 h in MEM supplemented with milrinone or IBMX, in

order to keep them arrested at the GV stage. To resume maturation, the oocytes were

incubated in MEM following release.
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Table 6: Morpholinos used and their sequences.

2.2.7. Preparation of RNA for microinjection

2.2.7.1. Bacteria transformation and plasmid DNA purification

To propagate a plasmid carrying the gene of interest, 10pg-100ng of plasmid

DNA was transformed into 50µl of TOP10 chemically competent E.coli cells.

The cells were then incubated on ice for 30 min, followed by a brief heat-shock

for 30 seconds at 42C before being placed back on ice for 2 min. 250µl of pre-

warmed S.O.C. medium (GIBCO) was then added to the cells, which were further

incubated for 1 h at 37C. The transformation reaction was then spread on agar

plates containing 100µg/ml ampicillin and incubated overnight at 37C. After the

incubation, single colonies were picked and grown overnight at 37C in LB

medium (Sigma) containing 100µg/ml ampicillin. The cells from the overnight

culture were then collected by centrifugation for 5 min at 10,000Xg and the

plasmid DNA was purified using QIAprep Spin Miniprep Kit (QIAGEN)

according to the manufacturer’s instructions. Finally, the presence of the plasmid

DNA within the collected sample was confirmed by agarose gel electrophoresis

Morpholino Sequence (5’ → 3’) Concentration

Securin MO GATAAGAGTAGCCATTCTGGATTAC 1.5mM

5MM-securin MO GATAACACTACCGATTCTCGATTAC 1.5mM

Cdh1 MO CCTTCGCTCATAGTCCTGGTCCATG 3.0mM

Cdc20 MO CGGTCTCAAACACCAAGTGCGGCAT 3.0mM
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and its concentration was measured using NanoDrop spectrophotometer (ND

1000, Thermo Scientific).

2.2.7.2. Synthesis of RNA

Plasmid DNA used in this thesis contained T3 RNA polymerase promoter site and

therefore mMESSAGE mMACHINE T3 Ultra kit (Ambion) was used for RNA

synthesis. The template DNA was first linearised with the restriction enzyme sfiI,

analysed on agarose gel and purified using QIAquick Gel Extraction Kit

(QIAGEN) according to the manufacturer’s instructions. After linearization, the

plasmid DNA was incubated with T3 RNA polymerase enzyme mixture, reaction

buffer and ribonucleotides for 3 h at 37°C. This was followed by addition of 1µl

of TURBO DNase, which removes the template DNA, and further incubation at

37°C for 15 min. Once the reaction was completed, RNA poly(A) tailing was

done by adding the tailing reagents (E-PAP enzyme, E-PAP buffer, MnCl2 and

ATP solution) to the mMESSAGE mMACHINE T3 Ultra reaction and incubating

it at 37°C for 90 min. Finally the RNA was purified and cleaned up from the

transcription reaction using RNeasy Mini Kit (QIAGEN) according to the

manufacturer’s instructions. The recovered RNA was then run on agarose gel and

quantified using NanoDrop spectrophotometer (ND 1000, Thermo Scientific),

before being aliquoted into 1 µl aliquots and stored at -80C until further use.
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2.2.7.3. Agarose gel electrophoresis

Agarose gel electrophoresis was used to check the size and quantity of purified

DNA or RNA. 0.8% agarose gel was prepared by mixing 0.4g of agarose powder

with 50ml of 1 x Tris-acetate-ethylenediaminetetracetic acid (EDTA) (TAE

buffer) (Promega). The mixture was boiled in a microwave oven until the agarose

powder has completely dissolved. 10mg/ml of ethidium bromide was then added

to the agarose-TAE buffer, and poured into a gel casting apparatus (BioRad).

Once the gel has set, it was placed in a BioRad mini-sub filled with 1 x TAE

buffer. The DNA and RNA samples mixed with loading buffers (DNA blue

loading dye and RNA formaldehyde loading buffer) were loaded onto the gel

alongside a 1kb DNA ladder (Promega) as a molecular weight indicator. The gel

was run for 20-30 min at 100V using a BioRad Power Pac 300, and finally

visualised on a UV transilluminator (TFX-20M, Vilber Lourmat).

2.2.8. Site-directed mutagenesis

Site-specific mutation and amino acid substitution in a plasmid carrying the gene of

interest was done using the QuikChange II site-directed mutagenesis kit (Stratagene).

This system utilises a double-stranded DNA vector with an insert, two mutagenic

oligonucleotide primers and a high fidelity PfuUltra DNA polymerase. The

oligonucleotide primers were carefully designed using Stratagene’s web-based

QuikChange primer design program (www.startagene.com/qcprimerdesign); such that

each primer was complementary to the opposite strand of the vector and carried in the

middle the desired mutation, which was flanked by 10-15 bases of correct sequence on

http://www.startagene.com/qcprimerdesign
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both sides (Table 7). The mutagenesis was done in three steps, according to the

manufacturer’s instructions. Briefly, the first step was to synthesise the mutant strand,

which required oligonucletoide primers extension by PfuUltra DNA polymerase during

temperature cycling (Table 8). This was followed by Dpn I endonuclease treatment for

1h at 37C to digest the methylated parental DNA template and to select for mutation

containing synthesised DNA. Finally, the plasmid DNA carrying the desired mutation

was transformed into XL1-Blue supercompetent cells and purified using Miniprep DNA

purification system (section 2.7.1). To confirm the presence of the mutation, 50ng/µl of

plasmid DNA together with sequencing primer (Table 9) was sent to UCL scientific

support services for sequencing. The mutant plasmid DNA was then used as template for

RNA synthesis (section 2.2.7.2).



87

Table 7: Mutagenic primers

Table 8: Cycling parameters for site directed mutagenesis

* Plasmid used in this study was 4.6 kb long; therefore it required 5 minutes at 68C per

cycle.

Primer Orientation Sequence (5’ → 3’)

Forward GCCTTAGATGGGAGATCTGAAGTTGCAGCACCACGTTTTGG
Securin T43A

Reverse CCAAAACGTGGTGCTGCAACTTGAGATCTCCCATCTAAGGC

Forward GCTGGGCCCCCCTGCACCTGTGAAGATGCCC
Securin S165A

Reverse GGGCATCTTCACAGGTGCAGGGGGGCCCAGC

Forward CCTGTGAAGATGCCCGCTCCACCATGGGAATCC
Securin S171A

Reverse GGATTCCCATGGTGGAGCGGGCATCTTCACAGG

Forward GCCTTACCTAAAGCTACTGCAAAGGCTTTGGGAACTGTCSecurinDM

RXXLAXXL Reverse GACAGTTCCCAAAGCCTTTGCAGTAGCTTTAGGTAAGGC

Forward GCTACTGCAAAGGCTGCGGGAACTGTCAACAGAGCSecurinDM

AXXLAXXA Reverse GCTCTGTTGACAGTTCCCGCAGCCTTTGCAGTAGC

Segment Temperature Time Cycles

1 Initial denaturation 95C 30 seconds 1

Denaturation 95C 30 seconds

Annealing 55C 1 minute

2

Extension 68C

5 minutes (1

min/kb of plasmid

length)*

16

3 Hold 37C -- 1
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Table 9: Sequencing primer

2.2.9. Statistical analysis

All t-tests are two-tailed and based on two samples (unpaired) with similar variance. All

error bars represent standard deviations (SD).

Table 10: P values and their statistical significance.

P value Significance Symbol

>0.05 Not significant NS

0.01-0.05 Significant *

0.001-0.01 Very significant **

<0.001 Extremely significant ***

Primer Sequence (5’ → 3’)

Sequencing primer GGAAAATGGAGAACCAGGCACCC
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Table 11: Reagents used in this study.

Reagent Concentration Function

Milrinone 1 M Inhibition of GVBD

IBMX 200 M Inhibition of GVBD

SrCl2 10 mM Parthenogenetic activation

Hoechst 10ng/ml Staining of the Chromatin

Roscovitine 50 M CDK1 inhibitor

UO126 50 M MEK1 inhibitor

MG132 50 M Proteasome inhibitor

Cycloheximide 10 M Protein synthesis inhibitor
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Chapter 3: Securin and not MPF regulates sister chromatid

disjunction during meiosis II in mouse eggs.

3.1. Introduction

On completion of the first meiotic division, the mammalian oocyte enters the second

meiotic division and becomes arrested at the Met II stage until fertilization. This arrest is

due to the cytoplasmic activity, CSF, which stabilizes cyclin B1 by inhibiting the APC/C

(Tunquist and Maller, 2003). At fertilization, the sperm-triggered Ca2+ oscillations induce

CSF inactivation, which in turn results in the stimulation of the APC/C, followed by

cyclin B1 and securin targeted destruction by the proteasome (Runft et al., 2002). The

degradation of cyclin B1 is necessary for MPF inactivation, hence release from the

metaphase II arrest and completion of meiosis II. Securin destruction, on the other hand,

is required for separase activation and sister chromatid separation at anaphase II.

During metaphase II arrest, which might last several hours, the egg has the difficult task

of ensuring the continued attachment and bi-orientation of the sister chromatids. This is

very important, because any premature loss of sister chromatid cohesion might lead to

aneuploidy, which is the leading cause of human birth defects (such as trisomies),

malformations of the embryo and spontaneous foetal abortions (Hassold and Hunt, 2001).

The maintenance of the pairing of sister chromatids during metaphase II arrest is

achieved through inhibition of separase, the protease that is responsible of cleaving the

cohesin complex, which holds chromatids together (Petronczki et al., 2003).
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It is well established that separase is regulated by two mechanisms, securin and

CDK1/cyclin B1 (Ciosk et al., 1998; Petronczki et al., 2003; Zou et al., 1999). They both

bind to and inhibit separase for most of the cell cycle until anaphase onset, when securin

and cyclin B1 are targeted for destruction via ubiquitination by the APC/C. Securin

inhibits separase by binding to both separase’s N and C terminus, therefore preventing

them from inducing an activating conformational change at the protease active site

(Hornig et al., 2002). MPF, on the other hand, only binds to CDK1-phosphorylated

separase via its regulatory subunit, cyclin B1, leading to the reciprocal inhibition of both

protease and kinase (Gorr et al., 2005; Holland and Taylor, 2006; Stemmann et al., 2001).

The two inhibitory mechanisms are mutually exclusive at the molecular level, given that

separase only binds one inhibitor at a time (Gorr et al., 2005). This implies that the loss

of one inhibitory mechanism could be compensated for by the other, and activation of

separase would require the loss of both mechanisms. Indeed, during the first meiotic

division of mouse oocytes separase activity is regulated by both securin and cyclin B1,

and proteolysis of both proteins is required for separase activation and homologue

disjunction (Herbert et al., 2003). This was demonstrated by over-expression of either

non-degradable D-box-truncated form of cyclin B1 (90-cyclin B1) or non-degradable

D-box mutated variant of securin, which were shown to inhibit both homologue

disjunction and polar body formation (Herbert et al., 2003). However, the relative

contribution of securin and cyclin B1 to separase inhibition and sister chromatid

attachment during the metapahse II arrest is not fully understood. Although, it was

reported that following fertilization sister chromatid separation was blocked upon over-
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expression of either 90-cyclin B1 or D-box mutant securin (Madgwick et al., 2004).

These observations, however, fail to give any context to the importance of securin and

cyclin B1 in the inhibition of separase, especially since sister chromatid separation

eventually occurs at later stages in the 90-cyclin B1 injected eggs (Madgwick et al.,

2004).

This study is set out to examine what controls separase during the metaphase II arrest of

mouse oocytes. I used the CDK1 inhibitor roscovitine and an antibody designed to block

the interaction of MPF with separase (Gorr et al., 2006), to demonstrate that separase is

not regulated by MPF during the metaphase II arrest. Instead, securin knockdown using

an antisense morpholino induces sister chromatid separation, which could be rescued by

injection of securin cRNA. Therefore, securin and not CDK1/cyclin B1 regulates

separase activity during metaphase II arrest.

3.2. Results

3.2.1 Exogenous cyclin B1 and securin show equal stability during Met II arrest

To determine the relative contribution of cyclin B1 and securin to separase inhibition

during the Met II arrest, I performed timelapse fluorescence measurements of oocytes

injected with cRNA constructs for yellow fluorescent protein (YFP) tagged cyclin B1

(cyclin B1-YFP) or securin (securin-YFP) during maturation, from GV to Met II arrest.

The measurements demonstrated that both proteins gradually accumulated during meiosis

I, declined at the time of PB1 extrusion, then increased again following entry into meiosis
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II (Fig. 3.1A, B). To establish whether cyclin B1 and securin are equally stable during

the Met II arrest, I calculated the mean rate of their re-expression in eggs two hours after

PB1 extrusion (Fig. 3.1C). There was no statistical difference between cyclin B1 and

securin fluorescence rises following entry into meiosis II. These results suggest that

exogenous cyclin B1 and securin are equally stable during metaphase II arrest.

3.2.2 Endogenous cyclin B1 and securin expression varies after PB1 extrusion

Having shown the equal stability of exogenous cyclin B1 and securin during Met II

arrest, I went on to examine the changes in the endogenous proteins using Western

blotting. An equal number of oocytes at different maturation stages and following arrest

at Met II, were blotted for cyclin B1 and securin (Fig. 3.2A). Similar to their YFP-

labeled constructs, cyclin B1 and securin levels increased during maturation, reaching

their highest point at metaphase I. This was followed by a period of intense degradation,

ending with PB1 extrusion. However, following polar body extrusion very marked

differences in the re-establishment of endogenous cyclin B1 and securin were observed.

Cyclin B1 levels rose significantly, and went on to reach similar levels to those observed

during metaphase I (6 h post release). In contrast, securin levels failed to recover and

remained at levels near those at PB1 extrusion (Fig. 3.2A, B). The securin band in the

Met II lane was not visible in the first blot (n=20), however it was observed when the

number of eggs was doubled (n=40) (Fig. 3.2C). Also, endogenous securin was lost

upon activation of eggs using Sr2+-containing medium, which mimics the sperm-triggered

Ca2+ release (Fig. 3.2C).
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Fig. 3.1. Exogenous cyclin B1 and securin synthesis rates during meiotic maturation.
Cyclin B1-YFP (A) or securin-YFP (B) were microinjected into GV oocytes, which were
then matured in culture. YFP fluorescence readings were recorded at the times shown
during oocyte maturation and following extrusion of the first polar body (PB1).
Brightfield images were also captured at the same times to determine when PB1
extrusion occurred (arrow). (C) Comparison of cyclin B1-YFP and securin-YFP
fluorescence levels in eggs two hours after PB1 extrusion. There was no statistical
difference between fluorescence levels (t-test). To allow comparison between eggs of
YFP fluorescence levels after PB1, fluorescence at time t (Ft) were all normalized with
respect to the minimum fluorescence obtained, which invariably corresponded to when
the PB1 was extruded (Fmin, plotted as a dashed horizontal line). YFP fluorescence was
plotted as Ft/Fmin × 100.
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Fig. 3.2. Endogenous cyclin B1 and securin expression varies after polar body

extrusion. (A) Western blot of oocytes (n = 20 per lane) for cyclin B1 and securin during

GV arrest, at the times indicated in hours during maturation relative to milrinone wash

out, immediately following PB1 extrusion or during Met II arrest at 14 h. (B)

Densitometric analysis of Western blots from three independent experiments. The results

are mean ± s. d. Cyclin B1 levels rise appreciably following PB1 extrusion, however

there is little change in securin. (C) Western blot of eggs for securin (n = 40) with or

without incubation in Sr2+ containing medium for 3 h. In panels A and C actin was used

as a loading control.
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3.2.3. CDK1 inhibition does not induce sister chromatid separation

During the Met II arrest, low securin and high cyclin B1 levels suggest that at this stage

separase could be either inhibited by CDK1/cyclin B1, or by the low levels of securin.

To further investigate this, I decided to disturb CDK1 activity in the Met II-arrested eggs

using the CDK1 pharmacological inhibitor, roscovitine. This inhibitor was chosen

because it was previously reported to be able to induce egg activation and PB2 extrusion

(Gorr et al., 2006; Phillips et al., 2002). In agreement with this, within half an hour of

exposure to roscovitine, the eggs started to demonstrate signs of parthenogenetic

activation through PB2 extrusion, although this happened at lower rates and in some eggs

over a longer timeframe than Sr2+-treated eggs (Fig. 3.3A, B). Many of the roscovitine-

treated eggs attempted to extrude PB2, however the extrusion was transitory and the polar

body ended up being reabsorbed (Fig. 3.3C). Unexpectedly, in addition to the transitory

polar bodies, when the chromatin of the roscovitine-treated eggs was labelled with

Hoechst dye, I found that sister disjunction was aberrant. In some eggs all the chromatin

mis-segregated into the PB2 (Fig. 3.3D), in others it ended up stretched between the egg

and PB2 (Fig. 3.3E). The Hoechst real time observations were further confirmed by

chromosome spreads, which showed that sister chromatids remained attached in the

roscovitine-activated eggs (Fig. 3.3F). On the other hand, in the control Sr2+-activated

eggs, anaphase was readily observed and it was always coupled with equal segregation of

the chromatin between the egg and PB2 (Fig. 3.3G).
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Fig. 3.3. CDK1 inhibition does not induce sister chromatid separation. (A) Rates of

PB2 extrusion in Met II eggs following incubation in Sr2+ containing medium, or addition

of roscovitine; assessed at 7 h. (B) Timing of PB2 extrusion following addition of

roscovitine or Sr2+, plotted as a cumulative percent of the total number of eggs extruding
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a PB2. Some eggs were slower in extruding a PB2 following roscovitine addition than

Sr2+. (C-E) Brightfield and Hoechst images of eggs following addition of roscovitine at

the times indicated. Note the abnormal events associated with roscovitine addition: a

transitory extrusion of a polar body (C), an egg in which all the chromatin enters the

polar body (D, circle); a cut phenotype in which chromatin is stretched between the egg

and PB2 (E, arrow). (F) Chromosome spread of a roscovitine treated egg showing

attached sister chromatids (n = 25). (G) Brightfield and Hoechst images of eggs

following Sr2+ addition at the times indicated. Note that anaphase appears normal with

chromatin visible in both the PB2 and the egg (arrow).  Scale bars 20 μm (C-E, G); 

10 μm (F). 
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3.2.4 Inhibition of separase-CDK1 binding fails to induce sister chromatid

separation

Inhibition of CDK1 led to parthenogenetic stimulation of eggs but it could not induce

sister chromatid separation, suggesting that during Met II arrest, MPF activity is not

responsible for inhibiting separase. To further confirm this, I decided to use a more

specific approach, an antibody that blocks the interaction of MPF with separase (Gorr et

al., 2006; Phillips et al., 2002). This antibody, called anti-CBD antibody, was raised

against the two known cyclin B1-biniding determinants of mouse separase (amino acids

1120-1134 and 1340-1354). Injection of the anti-CBD antibody into eggs did not disrupt

the Met II arrest, as assessed by Hoechst staining, and failed to induce sister chromatid

separation, as judged by chromosome spreads (Fig. 3.4A, B). However, it remained

possible that the anti-CBD antibody is only effective at preventing the interaction

between MPF and separase prior to their mutual binding. To verify that this antibody is

indded capable of dissolving the separase/MPF complex, I decided to inhibit homologue

disjunction by injecting the cRNA for the non-degradable 90 cyclin B1 into GV

oocytes, which were then allowed to mature in culture. These oocytes went as far as Met

I and then arrested again with paired homologues, as reported previously (Herbert et al.,

2003). Interestingly, injection of the anti-CBD antibody, but not control IgG, induced

homologue disjunction, as assessed by chromosome spreads (Fig. 3.4C, D). However, no

PB1 was extruded, and this is attributed to the high MPF activity, which is unaffected by

the antibody (Gorr et al., 2006). These results are consistent with the ability of the anti-

CBD antibody to dissolve preformed MPF-separase complexes.
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Taken together, both the roscovitine and the anti-CBD antibody data demonstrate that

MPF is not responsible for inhibiting separase activity during Met II arrest.

3.2.5 Securin Knockdown induces sister chromatid separation

Having shown that MPF is not the inhibitor responsible for regulating separase during the

Met II arrest in mouse eggs, I went on to investigate whether it is the low levels of

securin that inhibit separase activity. Therefore, I performed knockdown of securin

expression in oocytes using a securin antisense morpholino (securinMO). Microinjection

of securinMO in GV oocytes, which were then kept arrested for 24 h, dramatically reduced

securin levels. The control 5 base mismatch securin morpholino (5MM-securinMO),

however, had no effect (Fig. 3.5A). GV oocytes that were depleted of securin by this

protocol, alongside control morpholino-injected oocytes, were cultured for 14 h and then

assessed for their abilities to extrude PB1 and to align chromatin on Met II spindle.

There was no difference between both groups in the ability to extrude PB1 (Fig. 3.5B).

However, when the chromatin of the securinMO-injected eggs was examined using

Hoechst staining, I noticed that it was dispersed throughout the cytoplasm. In contrast,

the chromatin was perfectly aligned on the Met II plate in the 5MM-securinMO injected

oocytes (Fig. 3.5B, C). To determine if the status of chromatin observed in the securin-

knocked down oocytes was due to a lack in sister chromatid pairing, chromosome spreads

were performed. In the control morpholino-injected oocytes, the sister chromatids were

perfectly attached, as assessed by Giemsa staining and C-banding (Fig. 3.5D).
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Fig. 3.4. Inhibition of separase–CDK1 binding fails to induce sister chromatid

separation. (A) Assessment of Met II status in eggs injected with anti-CBD antibody, as

judged by alignment of chromatin on a Met II plate (arrow). The antibody had little effect

on chromatin. (B) Chromosome spread of an anti-CBD antibody injected egg (n = 6) at

3 h after injection showing attached sister chromatids (one chromatid is magnified in

inset). (C, D) Chromosome spread of an oocyte arrested at Met I by injection of Δ90-

cyclin B1, which is then further injected with either control IgG (C, n = 7) or anti-CBD

antibody (D, n = 8) and incubated for 3 h. IgG injection had no effect on homologues,

which remain attached; however the anti-CBD antibody caused separation of

homologues. (Insets show a magnified bivalent or dyad). Scale bar 20 μm (A), or 10 μm 

(B–D).
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Unexpectedly, spreads performed on the securinMO-injected oocytes showed that

although homologues and sister chromatids were attached before PB1 (Fig. 3.5E),

following PB1 extrusion sister chromatids were separated, which was further confirmed

by C-banding (Fig. 3.5F).

To certify that the lack in sisters pairing, which occurs as a result of securin knockdown,

was not due to an off-target effect, I decided to rescue the phenotype by injecting securin

cRNA into securinMO-injected oocytes, just before their release. This rescue is made

possible by the fact that exogenous cRNA lacks the 5’ UTR that is targeted by the

morpholino. Spreads performed on these oocytes showed that securin cRNA rescued the

loss of sister attachment in securinMO-injected oocytes, and this was further confirmed by

C-banding (Fig. 3.5G).

3.2.6 Securin knockdown during Met II arrest induces sister chromatid separation

The above data show that securin knockdown induces sister chromatid separation in

oocytes that had extruded PB1, but not in those yet to extrude PB1. To ensure that sister

chromatid disjunction happens during meiosis II, I performed knockdown of securin

expression in eggs already arrested at Met II. Therefore, freshly ovulated Met II eggs

were collected at 12 h post hCG, microinjected with either 5MM-securinMO or securinMO

and examined 12h later for attachment of sister chromatids. Western blots confirmed that

12 h of culture following securinMO injection was enough to cause a dramatic decrease in

securin levels, whereas the 5MM- securinMO had no effect (Fig. 3.6A).
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Fig. 3.5. Securin knockdown induces separation of sister chromatids. (A) Western

blot for securin in GV arrested oocytes, n = 0–50 per lane, cultured for 24 h following

injection of securinMO or 5MM-securinMO as indicated (n = 3). SecurinMO but not its 5

base mismatch control morpholino caused a large knockdown in securin expression

(estimated 80%). (B) Percentage PB1 extrusion rates in oocytes injected with either

securinMO or 5MM-securinMO as in panel A, assessed at 14 h following milrinone

washout. All eggs extruding a PB1 were stained with Hoechst and categorised as having

an intact Met II spindle (solid bar) or chromatin that was dispersed in the cytoplasm

(open bar). (C) An example of a brightfield and Hoechst image in an egg that had been

injected with the morpholinos indicated and matured as in panel B. The arrow shows a

normal Met II plate which was prevalent in the 5MM-securinMO injected oocytes, while

chromatin is dispersed in the oocytes injected with securinMO. (D–G) Chromosome

spreads and associated C-banding (D, F, and G, inset) in oocytes at either 7 h (E) or 14 h

(D, F and G) following microinjection of either 5MM-securinMO (D) or securinMO (E-G).

In panel G securin cRNA was further microinjected into oocytes immediately before

maturation was induced. Scale bar 20 μm (C) and 10 μm (D–G).  
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Chromosome spreads performed on these eggs revealed that most (86%) of the control

morpholino injected eggs kept their sister chromatids attached (Fig. 3.6B, C), whereas

the majority (71%) of securinMO-treated eggs showed a mixture of attached and

unattached sisters, with complete disjunction evident in some eggs (Fig. 3.6B, D).

Finally, to confirm that securin knockdown using morpholino does not affect MPF

activity and that sister chromatid disjunction is only caused by the loss of securin, I

performed H1 kinase assay on securinMO-injected eggs, along with control morpholino-

injected, non-injected and roscovitine or Sr2+-treated eggs. Both roscovitine and Sr2+

induced a big decrease in the H1 kinase activity of the treated eggs. However, there was

no difference between the non-injected and the morpholinos-injected eggs in their H1

kinase activity, suggesting that securinMO does not affect MPF activity (Fig. 3.6E). Taken

together, these results demonstrate that only securin and not MPF is required for

continued attachment of sister chromatids during Met II arrest in mouse eggs.

3.3 Discussion

In vertebrates, it is well established that separase is controlled by two mechanisms,

securin and MPF (Ciosk et al., 1998; Petronczki et al., 2003; Zou et al., 1999). These two

inhibitory systems are mutually exclusive at the molecular level, such that if one goes

missing the other one can compensate for it (Gorr et al., 2005; Herbert et al., 2003).
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Fig. 3.6. Securin morpholino induces sister chromatid separation in Met II eggs. (A)

Western blot for securin in Met II eggs, n=40 per lane, cultured for 12 h following

collection or injection with either securinMO or 5MM-securinMO. SecurinMO but not its

control morpholino caused a large knockdown in securin expression. Actin was used as a

loading control. (B) Percentage of eggs having separated (black bars) or attached (white

bars) sister chromatids following microinjection of either 5MM-securinMO or securinMO

and culture for 12 h. (C) Chromosome spread of a 5MM-securinMO injected egg,

demonstrating attached sisters. (D) Chromosome spread of a securinMO injected egg in

which all of the sister chromatids had undergone disjunction. (E) MPF activity in 5 eggs

per lane, following injection with 5MM-securinMO, securinMO, no injections (no inj.) and

incubation with either roscovitine or Sr2+. MPF activity was assessed after 12 h of

culture, and normalized with respect to the non-injected eggs. Scale bar 10 m (C, D).
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This mutuality has been proven in many systems including eggs, where we already know,

by over expression of non-degradable constructs for either cyclin B1 or securin, either

mechanism has the capacity to prevent sister chromatid separation upon egg activation

(Madgwick et al., 2004). These observations, although important in implicating separase

in sister chromatid disjunction, fail to give any context to the relative contribution of

securin and cyclin B1 to the inhibition of separase during Met II arrest in eggs, especially

that sister chromatid separation eventually occurs at later stages in the non-degradable

cyclin B1-injected eggs (Madgwick et al., 2004).

The experiments described in this study show that even though endogenous and

exogenous securin and cyclin B1 display similar profiles of expression during meiosis I,

very marked differences were observed following PB1 extrusion. While the exogenous

constructs show equal re-accumulation and stability during Met II arrest, the endogenous

securin failed to recover and remained at levels near those at PB1 extrusion. This failure

in securin recovery can only be attributed to the limited rates of the protein re-synthesis

rather than degradation, given that Emi2 inhibits the activity of the APC/C at this time

(Liu and Maller, 2005; Rauh et al., 2005; Shoji et al., 2006; Tung et al., 2005).

The lack of appreciable securin re-accumulation after PB1 extrusion suggests that

CDK1/cyclin B1 could be the predominant inhibitor of separase during Met II arrest.

Interestingly, preventing the interaction of CDK1/cyclin B1 with separase,
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pharmacologically using the CDK1 inhibitor roscovitine or directly by injection of an

anti-CBD antibody, failed to induce separase activation and sister chromatid separation.

Roscovitine was specifically chosen because of its reported ability to induce PB2

extrusion (Phillips et al., 2002). Indeed, addition of roscovitine induced egg activation

and PB2 extrusion, although the metaphase-to-anaphase transition was always abnormal.

In many of the roscovitine-treated eggs PB2 extrusion was transitory, indicating that

roscovitine is able to induce higher rates of PB2 extrusion than those reported in Fig.

3.3A, but they were missed because of the transitory effect. The same phenotype was

reported during meiosis I in mouse oocytes expressing non-degradable securin (Herbert

et al., 2003), and it is believed that the inability of those oocytes to completely extrude

polar bodies is due to failure in formation of a central spindle structure, which is

necessary for proper cytokinesis (Mollinari et al., 2005). Although the decrease in CDK1

activity was clearly inducing the initial events of cytokinesis, it failed to induce sister

chromatid separation. Instead, I observed a variety of defects all associated with lack of

sister disjunction. In some eggs all the chromatin mis-segregated to the PB2. In others it

ended up stretched between the egg and PB2, which is reminiscent of the cut phenotype

that happens when cells carrying a mutant form of separase or expressing non-degradable

securin fail to induce separation of sister chromatids even though they undergo

cytokinesis (Funabiki et al., 1996). Failure of roscovitine in inducing sisters disjunction

could be attributed to the fact that this pharmacological inhibitor, while it inhibits CDK1

activity, it is unable to dissolve the pre-formed CDK1/cyclin B1-separase complexes.

However, given that CDK1-mediated phosphorylation of separase is required prior to
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CDK1 binding, and separase dephosphorylation is readily observed during passage

through mitosis (Herbert et al., 2003; Stemmann et al., 2001), I assume that roscovitine

should be able to reverse the association of CDK1 with separase, at least in the presence

of the cellular phosphatases.

The lack of efficacy for CDK1 in inhibiting separase during Met II arrest was further

confirmed using a more specific approach, the anti-CBD antibody, which prevents the

interaction of CDK1/cyclin B1 with separase (Gorr et al., 2006). Injection of the

antibody into eggs had no effect on neither metaphase II arrest nor sister chromatid

attachment. In contrast, the anti-CBD antibody induced homologue disjunction in Met I-

arrested oocytes that were pre-injected with the non-degradable Δ90 cyclin B1, 

confirming its ability to dissolve the pre-formed MPF-separase complexes. Interestingly,

even though the antibody was able to cause homologue segregation in these oocytes, it

was unable to induce cytokinesis and PB1 extrusion. This can only be attributed to the

sustained MPF activity, which is unaffected or even increased in the presence of the

antibody, given that MPF binding to separase was proven to induce inhibition of both

kinase and protease (Gorr et al., 2005). Taken together all these data confirm that MPF is

not required for the continued attachment of sister chromatids during Met II arrest.

In contrast, a securin antisense morpholino injected either into GV oocytes, which were

then allowed to mature, or into Met II-arrested eggs, induced sister chromatid separation.

This effect was specific since it was not observed with the control morpholino, and could

be rescued by injection of securin cRNA into the securinMO-treated ooytes. Interestingly,
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securin knockdown only induced chromosomes separation following PB1 extrusion and

not during meiosis I. This suggests that securin is the predominant inhibitor of separase

during Met II arrest, whereas during meiosis I a second mechanism that is securin-

independent is involved in regulating separase activity. Indeed, it was reported that

during the first meiotic division separase is regulated by both securin and MPF, and loss

of both systems is required for separase activation and homologue disjunction (Herbert et

al., 2003).

Also, a recent study by Marangos and Carroll (2008) reported the existence of

competitivity between the APC/C substrates, such that excess in securin levels is

important for the stabilization of cyclin B1 and hence progress through MI (Marangos

and Carroll, 2008). So, it remained possible that sister chromatid disjunction, which has

occured upon securin knockdown, was also attributed to a drop in MPF activity as a

result of cyclin B1 targeted destruction by the APC/C in the absence of securin.

However, this was unlikely since there was no difference in MPF activity of either

securinMO or 5MM-securinMO injected eggs, which further proves that only securin is

required for separase inhibition and continued attachment of sister chromatids during Met

II arrest in mouse eggs.

In conclusion, this study demonstrates that although there are conditions in which either

securin or MPF can prevent chromosome disjunction, such as during meiosis I, securin is

the predominant inhibitor of separase during the indeterminate period of Met II arrest.

The low levels of securin during meiosis II were proven to be sufficient for regulating
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separase activity, therefore it would be interesting to investigate what other functions

securin might have during meiosis I, given that its levels at this stage were much higher

than those observed during Met II arrest. It will also be worth to examine if the

maintenance of securin levels present problems for ageing eggs in keeping sister

chromatids attachment. Moreover, it would be interesting to investigate the mechanisms

behind separase regulation in eggs from securin knockout mice, given that securin

inactivation was only found to cause sub-fertility in those mice (Wang et al., 2001). It

would also be crucial to further confirm the results obtained in this chapter using

additional securin morpholinos and CDK1 inhibitors.
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Chapter 4: MPF and MAPK are required for inhibiting
premature destruction of securin during prometaphase of
meiosis I.

4.1 Introduction

As already mentioned in previous chapters, securin is the best-known regulator of the

protease separase. It is a functionally conserved protein, although there is little

conservation of its primary amino acid sequence, except for the presence of D-box and

KEN-box motifs. Hence, allowing its targeted destruction by the APC/C at the

metaphase-to-anaphase transition, which in turn triggers chromosomes separation

through activation of separase (Ciosk et al., 1998; CohenFix et al., 1996; Funabiki et al.,

1996; Uhlmann, 2001).

Securin was originally identified in budding yeast as Pds1, which is important but not

essential for sister chromatid disjunction (Ciosk et al., 1998; CohenFix et al., 1996). Its

depletion does not cause lethality but results in precocious separation of sister chromatids

and increased rates of chromosome loss (Yamamoto et al., 1996). In contrast, securin of

fission yeast (Cut2) and Drosophila (PIM) are essential (Funabiki et al., 1996a; Funabiki

et al., 1996b; Leismann et al., 2000; Stratmann and Lehner, 1996). Their absence leads

to impairment in separase activity and failure in separating sister chromatids, suggesting

that Cut2 and PIM must be more than simple inhibitors of separase (Funabiki et al.,

1996b; Jensen et al., 2001; Leismann et al., 2000). Indeed, fission yeast securin, for

example, was proven to be required in promoting spindle localization of separase

(Kumada et al., 1998). In Drosophila and fission yeast, non-degradable PIM and Cut2
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cause the cut phenotype (Funabiki et al., 1996b; Leismann et al., 2000), whereas budding

yeast with non-degradable Pds1 arrests in M phase (Clarke et al., 1999; Gardner et al.,

1999).

Vertebrate securin was first described as the product of the pituitary tumour-transforming

gene (PTTG), which is over-expressed in several neoplasms, including the pituitary ones

(Pei and Melmed, 1997). It has subsequently been identified as securin due to its ability

to bind and regulate separase (Leismann et al., 2000; Zou et al., 1999). The oncogenic

nature of PTTG over-expression is believed to be caused by defective sister chromatid

separation, resulting in aneuploidy, which is one of the main criteria in tumour

development. Accordingly, it was demonstrated that human cell lines expressing non-

degradable PTTG exhibit the cut phenotype (Zur and Brandeis, 2001), whereas those

lacking PTTG show high chromosome loss and abnormal anaphases (Jallepalli et al.,

2001). Also, PTTG knockout mice, although they are viable, the females are sub-fertile

and their embryonic fibroblasts display aberrant chromosome morphology, aneuploidy

and prolonged G2 and M phases (Mei et al., 2001; Wang et al., 2001).

The crucial role of securin in preventing premature activation of separase and

maintaining chromosome attachment until anaphase onset, suggests that it must be highly

regulated by mechanisms responding to cell cycle progression. Indeed, in addition to

being expressed in a cell-cycle-dependent manner, peaking in M phase and getting

destroyed at anaphase onset (Nabti et al., 2008; Ramos-Morales et al., 2000), during the

course of this study it has been reported that securin is subject to another layer of
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regulation, phosphorylation. This was demonstrated by Holt et al (2008), who found that

MPF-dependent phosphorylation of securin near its D-box motif reduces its rate of

ubiquitination by the APC/C in budding yeast (Holt et al., 2008). Securin

phosphorylation, however, can be reversed by the phosphatase Cdc14, whose activation

requires separase activity (Holt et al., 2008). Therefore, at anaphase onset and due to

accumulation of APC/C activity, some securin is destroyed, leading to activation of

separase. This in turn results in Cdc14 activation, more securin being targeted for

degradation and more separase getting active (Holt et al., 2008). Accordingly, these

findings suggest the existence of a positive feedback loop that makes separase activation

more switch-like, therefore increasing the abruptness of anaphase and sister chromatid

separation (Holt et al., 2008). It also has been suggested in other studies that securin

interacts with and is a substrate of MAPK (Pei, 2000), although the significance of such

interaction on securin stability and function as a separase regulator is still unknown.

I found here that inhibition of both MPF and MAPK, but not either one alone, induces

premature destruction of securin during prometaphase of meiosis I. Also, securin

stability could be rescued through inhibition of the proteasome or cellular phosphatases.

However, mutations of the three candidate phosphorylation sites of MPF and MAPK had

no effect on securin stability. Therefore, MPF and MAPK-mediated stability of securin

during prometaphase I could not be brought about through its phosphorylation and may

be mediated via an indirect mechanism.



114

4.2. Results

4.2.1. Securin undergoes a gel-mobility shift at the GV to MI transition.

In somatic cells, it was reported that securin is phosphorylated upon entry into the M-

phase (Ramos-Morales et al., 2000). At the exit from prophase arrest and upon entry into

meiosis I, mouse securin also undergoes a gel-mobility shift, which is suggestive of

phosphorylation (Fig. 4.1). This shift was noted in numerous earlier studies but has not

yet been investigated (Marangos and Carroll, 2008; Nabti et al., 2008).

4.2.2. Inhibition of both MPF and MAPK induces premature destruction of

endogenous securin.

The transition from prophase arrest to MI is driven by an increase in CDK1/cyclin B1

activity. After GVBD, there is also an increase in MAPK activity. Therefore, to

determine whether the observed mobility shift of securin at the GV to MI transition was

indeed caused by phosphorylation and if this is catalysed by CDK1 and MAPK, the

activity of both kinases was inhibited using the pharmacological inhibitors, roscovitine

and UO126, respectively. The oocytes were exposed to the drugs between 3-5 h after

release from GV arrest. Western blots performed on these oocytes demonstrated that

inhibition of both CDK1 and MAPK results in a loss of the band shift (Fig. 4.2.A), as

well as a decrease in the levels of securin (Fig. 4.2A, B, C). However, inhibition of

either kinase alone did not affect securin levels, which remained as high as those

observed in the non-treated MI oocytes (Fig. 4.2.B, C).
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Fig. 4.1. Securin undergoes a gel-mobility shift at the GV to MI transition. Western

blot of oocytes (n=20 per lane) for securin during GV arrest and MI (at 5 h post release

from IBMX). This blot is representative of three independent experiments.
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These results indicate that the band shift observed at the GV to MI transition could be

due to securin phosphorylation, and suggest that this might be catalysed by CDK1 and

MAPK. Furthermore, CDK1 and MAPK activities seem to be required for accumulation

of securin during prometaphase I.

4.2.3. Inhibition of both MPF and MAPK induces premature destruction of

exogenous securin.

Simultaneous inhibition of CDK1 and MAPK induced a decrease in the levels of

endogenous securin. To further investigate this, I performed timelapse fluorescence

measurements of oocytes injected with the cRNA construct for green fluorescent protein

(GFP) tagged securin (securin-GFP) during maturation in the presence or absence of

roscovitine and UO126. The measurements demonstrated that in the inhibitors-treated

oocytes, securin destruction occurs prematurely (at around 3 h post GVBD) (Fig. 4.3.A,

C), whereas in the control non-treated oocytes, securin degradation starts much later (at 7

h post GVBD) (Fig. 4.3.B, C). Taken together, these results further confirm that CDK1

and MAPK activities are required for securin stability during prometaphase of meiosis I.

4.2.4. Proteasome and phosphatase inhibitors restore securin levels.

Next, it was important to examine whether the observed decrease in securin levels

required the 26S proteasome. Therefore, the oocytes were further incubated with the

proteasome inhibitor (MG132).
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Fig. 4.2. Inhibition of MPF and MAPK induces premature destruction of

endogenous securin. (A) Western blot of oocytes (n=20 per lane) for securin during GV

arrest, MI, and MI following incubation with roscovitine and UO126 (MI+R+U). (B)

Western blot of oocytes (n=20 per lane) for securin during GV arrest, MI, and MI

following treatment with either roscovitine (R), UO126 (U) or both roscovitine and

UO126 (R+U). (C) Densitometric analysis of the Western blot in panel B. The results

are mean ± s. d. from three independent experiments. MI is set at 100%. The asterisks

represent a value significantly different from control (the MI value) at **P (0.001-0.01).

In panels A and B, all MI samples were collected at 5 h post release from IBMX, and

drug treatment was performed between 3 and 5h. Actin was used as a loading control.
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Fig. 4.3. Inhibition of MPF and MAPK induces premature destruction of securin-

GFP. Representative traces of oocytes injected with securin-GFP. The oocytes were

injected at the GV stage and then matured in culture in the presence (A) or absence (B) of

roscovitine and UO126 (R+U). The fluorescence readings were recorded at the times

shown during oocyte maturation. In panel A, the drugs were added at 1 h post GVBD

(red arrow). (C) Time of onset of securin-GFP destruction in the inhibitors-treated

oocytes (R+U) and non-treated oocytes (control). The peak of the graph was taken as a

marker for the start of destruction. The results are mean ± s. d. from three independent

experiments. The asterisks represent a value significantly different from control at **P

(0.001-0.01).
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Western blot performed on these oocytes showed that MG132 restores securin levels to

the MI levels, suggesting that the decrease in securin levels upon CDK1 and MAPK

inhibition is due to 26S proteasome-mediated destruction (Fig. 4.4.A, B). Moreover, the

protein phosphatase 1 and 2A inhibitor (okadaic acid) also rescued securin levels (Fig.

4.4.A, B), and oocytes incubated with the phosphatase inhibitor were less efficient at

destroying securin-GFP at the metaphase-to-anaphase transition when compared to

oocytes in control conditions (Fig. 4.4.C), which suggest that securin stability during

meiosis I may depend on its phosphorylation status.

4.2.5. Prometaphase I securin stability does not depend on the phosphorylation

status of the three MPF and MAPK sites.

Having shown in the previous experiment that okadaic acid treatment prevents the

premature destruction of securin when CDK1 and MAPK are inhibited, I went on to

investigate whether the possible phosphorylation of securin by those two kinases

increases its stability. Examination of the amino acid sequence for mouse securin using

the Scansite program (http://scansite.mit.edu) showed six consenus motifs for MPF

phosphorylation and five for MAPK phosphorylation. However, since securin stability

requires the activity of either MPF or MAPK, only the sites that can be phosphorylated

by either kinase were chosen for mutagenesis (Fig. 4.5.A). Therefore, I created a Phos-

mutant of securin in which the three-shared sites (T43, S165 and S171) were substituted

for alanine residues, thus preventing them from becoming phosphorylated.
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Fig. 4.4. Proteasome and phosphatase inhibitors restore securin levels. (A) Western

blot of oocytes (n=20 per lane) for securin during GV arrest, MI, MI following

incubation with roscovitine and UO126 (R+U), and MI after treatment with either

MG132 or okadaic acid (OA) in addition to roscovitine and UO126. All MI oocytes were

collected at 5 h post release from IBMX, and drug treatment was performed between 3

and 5 h. Actin was used as a loading control. (B) Densitometric analysis of Western

blots from three independent experiments. The results are mean ± s. d. MI is set at

100%. The asterisks represent a value significantly different from control (the MI value)

at **P (0.001-0.01). (C) Representative traces of oocytes (from two independent

experiments) injected with securin-GFP at the times shown during maturation, in the

presence (n=10, red) or absence (n=10, black) of okadaic acid. The arrow indicates time

of okadaic acid addition.
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Timelapse fluorescence records of oocytes injected with cRNA constructs for GFP

tagged Phos- securin (Phos- securin-GFP) or wild type securin (securin-GFP)

demonstrated similar expression profiles and stability during oocyte maturation (Fig.

4.5.B). However, since these measurements represent the balance between protein

synthesis and destruction, it remained possible that the changes in destruction are masked

by the rates of synthesis. To exclusively monitor protein destruction, the oocytes were

incubated in the presence of cycloheximide to inhibit protein synthesis while monitoring

the levels of securin-GFP. This also failed to reveal any difference in the behaviour of

the non-phosphorylable mutant and wild type securin during prometaphase I (Fig. 4.5.C).

These data suggest that in mouse oocytes, the phosphorylation of securin at the three

MPF and MAPK sites may not underlie the changes in its stability when MPF and

MAPK are inhibited.

4.2.6. Phos- mutations do not affect securin function.

Next, I wanted to investigate whether the Phos- mutations had any effects on securin

function. In the previous chapter, I have shown that securin is the main inhibitor of

separase during Met II arrest, and that securin morpholino knockdown during this period

resulted in chromatin misalignment, due to sister chromatid separation. However, this

phenotype could be rescued by injection of securin cRNA in the morpholino-treated eggs.

Therefore, to test whether the non-phosphorylable securin mutant was also capable of

rescuing this phenotype, Met II-arrested eggs were co-injected with securinMO and the

cRNA for either Phos- or wild type securin. The eggs were then assessed for their

chromatin status by Hoechst staining 12 h following the microinjections.
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Fig. 4.5. The phosphorylation status of securin at the three MPF and MAPK sites

has no affect on its stability during prometaphase I. (A) A schematic diagram of

mouse securin showing the relative position of CDK1 and MAPK phosphorylation sites

to the APC recognition motifs and the separase inhibition domain. (B) Representative

traces of oocytes (from two independent experiments) injected with either Phos- securin-

GFP (n=15) or wild type securin-GFP (n=13) at the times shown during maturation. (C)

Representative traces of oocytes (from two independent experiments) injected with either

Phos- securin-GFP (n=12) or wild type securin-GFP (n=12) at the times shown during

maturation, in the presence of cycloheximide (CHX).
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As reported previously, the chromatin in the morpholino-treated eggs was misaligned and

this phenotype could be rescued by injection of wild type securin (Fig. 4.6.A, B). More

importantly, injection of the Phos- securin mutant in the securinMO-treated eggs also

rescued sister chromatid attachment, as judged by the proper alignment of the chromatin

(Fig. 4.6.A, B). Taken together, these results suggest that securin phosphorylation at the

three MPF and MAPK sites was not critical for its function as a separase inhibitor.

4.3. Discussion

It is well established that securin plays a crucial role in ensuring the faithful segregation

of chromosomes through regulating the activity of the protease separase. For that reason,

securin is highly regulated by mechanisms responding to cell cycle progression. In

mitosis, as well as meiosis, this is mainly achieved through the control of its expression,

which is done in a cell-cycle-dependent manner, with securin peaking in M-phase and

getting destroyed at anaphase onset (Nabti et al., 2008; Ramos-Morales et al., 2000),

therefore allowing separase activation and chromosomes separation (Ciosk et al., 1998;

CohenFix et al., 1996; Funabiki et al., 1996b; Uhlmann, 2001). Recently, however, and

during the course of this investigation it was reported by Holt et al (2008) that

phosphorylation could provide an additional layer of regulation. According to this study,

MPF-dependent phosphorylation of securin near its D-box motif reduces its rate of

ubiquitination by the APC/C in budding yeast (Holt et al., 2008). More importantly, this

additional regulatory mechanism seems to be conserved, as it was also observed in

human PTTG and Drosophila PIM (Holt et al., 2008).
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Fig. 4.6. Phos- mutations do not affect securin function. (A) Percentage of eggs with

dispersed (white bars) or perfectly aligned chromatin (black bars) following

microinjection of securinMO alone, securinMO and the cRNA for either Phos(-) or WT

securin, or no injections (no inj.). The eggs were assessed for their chromatin status by

Hoechst staining at 12 h following microinjections. (B) Representative images of the

eggs described in panel A.
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In previous experiments, it was noted that upon entry into meiosis I, mouse securin

undergoes a gel-mobility shift, which is suggestive of phosphorylation (Marangos and

Carroll, 2008; Nabti et al., 2008). To test this hypothesis, the two major M-phase

kinases, CDK1 and MAPK were inhibited using the pharmacological inhibitors,

roscovitine and UO126, respectively. The inhibition of both kinases induced a loss of the

band shift, which suggests that the mobility-shift observed at the GV to MI transition

could be due to securin phosphorylation, and suggests that this might be catalysed by

CDK1 and MAPK. Interestingly, inhibition of both kinases, but not either one alone, also

induced a decrease in the levels of endogenous securin and premature destruction of

exogenous securin during prometaphase I, indicating that the activity of either CDK1 or

MAPK might be required for the accumulation of securin during meiosis I.

The decrease in securin levels upon inhibition of both kinases was proven to be caused by

its destruction rather than inhibition of synthesis, given that the proteasome inhibitor

MG132 restored the levels of securin. More importantly, the phosphatase inhibitor,

okadaic acid, also prevented the premature degradation of endogenous securin during

prometaphase I, and stabilised the levels of exogenous securin at the metaphase-to-

anaphase transition. These findings imply that okadaic acid protects securin when CDK1

and MAPK are inhibited. There are a number of possible explanations for such effect.

First, securin destruction may be dependent on the phosphorylation of one of the

components of the degradation machinery. Alternatively, it may be that the

phosphorylation of securin results in increased stability, as reported by Holt et al 2008.
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To further investigate the latter hypothesis, the three candidate sites for MPF and MAPK

phosphorylation were substituted for alanine residues, thus preventing them from

becoming phosphorylated. Two of the sites (S165 and S171) are situated within the

separase inhibition domain, whereas the third site (T43) is near the D-box motif. Securin

mutants carrying single alanine substitutions at the three sites individually were as stable

as the wild type securin (results not shown). Also, the triple alanine securin mutant failed

to reveal any difference in its behaviour when compared to the wild type securin. These

results are not consistent with the study by Holt et al, who found that securin

phosphorylation near its D-box motif reduces its rate of ubiquitination by the APC/C,

hence promoting its stability (Holt et al., 2008). Therefore, in contrast to budding yeast,

human and Drosophila, in mouse oocytes securin phosphorylation and in particular at the

three MPF and MAPK sites may not underlie the changes in its stability.

Having shown that the Phos- mutations had no effect on securin stability, I went on

investigating whether the phosphorylation of securin upon entry into M-phase was

important for its function as a separase inhibitor. In budding yeast, it was reported that

securin phosphorylation by MPF is required for its binding to separase and promoting the

nuclear localization of the protease (Agarwal and Cohen-Fix, 2002). Moreover, it is well

established that securin interacts with separase through its carboxy (C) terminal domain,

and mutations within this domain would modulate securin ability to bind separase

(Agarwal and Cohen-Fix, 2002; Hornig et al., 2002). Therefore, it was important to

determine whether the triple alanine securin mutant, which carries two mutations in the

separase-binding domain, maintained its function as a separase inhibitor. Indeed, the
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mutant was able to rescue the chromatin misalignment in securinMO-injected eggs,

suggesting that the phosphorylation status of securin in general and of residues S165 and

S171 in particular does not affect its function. These results, although they are not

consistent with earlier observations, they agree with a study by Boelaert et al (2004),

which demonstrated that mutagenesis of the conserved residue S165 does not influence

human PTTG stability and function, even though it affects its transforming ability

(Boelaert et al., 2004).

In summary, the experiments reported here demonstrate that although the inhibition of

MPF and MAPK induces the premature destruction of securin during prometaphase of

meiosis I, the stability of securin during this period is not dependent on the three

phosphorylation sites for MPF and MAPK, as proven by the mutagenesis experiments.

Therefore, it would be interesting to determine what causes such premature destruction of

securin in the absence of MPF and MAPK. It will be worth examining whether this

effect is due to activation of the APC/C, whose activity is well known to be modulated by

its phosphorylation status (Hershko et al., 1994; Kotani et al., 1998; Kraft et al., 2003). It

will also be important to confirm these results using additional inhibitors of MPF and

MAPK. Finally, it will be interesting to investigate the reasons behind securin

phosphorylation upon entry into meiosis I, other than regulating its stability and function

as a separase inhibitor.
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Chapter 5: MPF and MAPK are required for inhibiting
premature destruction of the APC/C D-box substrates during
prometaphase of meiosis I.

5.1. Introduction

The initiation of anaphase and exit from M phase in both mitotic and meiotic divisions

depend on the E3 ubiquitin ligase activity of the APC/C, which ubiquitinates key cell

cycle regulators, such as securin and cyclin B1. Therefore, targeting them for destruction

by the proteasome at the metaphase-to-anaphase transition (Clute and Pines, 1999;

Herbert et al., 2003; Zur and Brandeis, 2001). As a key driver of the cell cycle, the

activity of the APC/C is subject to many regulatory mechanisms, mainly through direct

binding to co-activators, which confer substrate specificity during specific periods of the

cell cycle. The best-studied co-activator proteins are Cdc20 and Cdh1 (Visintin et al.,

1997a).

In meiosis, it is well established that Cdc20, but not Cdh1, is the mediator of the meiotic

exit in eggs of species described thus far (Herbert et al., 2003; Salah and Nasmyth, 2000).

In mammals, however, Cdh1 has been shown to play a more predominant role during

prophase I (Marangos et al., 2007; Reis et al., 2006a), prometapahse I (Reis et al., 2007)

and following PB2 extrusion (Chang et al., 2004). In mouse oocytes, APC/CCdh1 is

required for preventing unscheduled entry into M-phase by suppressing the levels of

cyclin B1 (Marangos et al., 2007; Reis et al., 2006a). During prometaphase I, however,

APC/CCdh1 targets Cdc20 for destruction thereby delaying the onset of APC/CCdc20
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activity and the onset of anaphase, until correct assembly of the MI spindle (Reis et al.,

2007).

Because of their essential role for the activity and specificity of the APC/C, the regulation

of Cdc20 and Cdh1 is also important. During mitosis, Cdc20 is mainly regulated through

the control of its expression, which is done in a cell-cycle-dependent manner, with Cdc20

peaking in M-phase and getting destroyed in G1 (Fang et al., 1998; Prinz et al., 1998).

Another level of regulation is through association with different inhibitors, such as Emi1

and SAC proteins (Fang et al., 1998; Miller et al., 2006; Musacchio and Salmon, 2007;

Reimann et al., 2001a; Reimann et al., 2001b; Yu, 2002). Cdh1, however, while subject

to similar levels of control as APC/CCdc20, is also inhibited through phosphorylation by

MPF (Jaspersen et al., 1999; Zachariae et al., 1998a), as well as binding to numerous

inhibitors, including Emi1 and the nuclear transport factors Rae1 and Nup98 (Jeganathan

et al., 2006; Miller et al., 2006; Reimann et al., 2001b).

The core-subunits of the APC/C are also subject to regulatory phosphorylation during

mitosis. However, unlike Cdh1, APC/C phosphorylation by CDK1 and Plk1 is required

for its activation and association with Cdc20 (Hershko et al., 1994; Kotani et al., 1998;

Kraft et al., 2003). Accordingly, it was demonstrated that phosphatase treatment of

mitotic APC/C in vitro prevents its activity, whereas addition of CDK1 stimulates it

(Lahavbaratz et al., 1995). Moreover, Cdc20 also gets phosyphorylated upon entry into

mitosis. However, unlike the APC/C core-subunits, this CDK1 and MAPK-dependent

phosphorylation of Cdc20 is not required for the activity of the ligase, although it is

necessary for the recognition and inhibition of the co-activator by the components of the
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SAC. This was demonstrated by Chung and Chen (2003), who found that

phosphorylation deficient mutants of Xenopus Cdc20 are insensitive to the spindle

checkpoint signal and unable to associate with its components (Chung and Chen, 2003).

In meiosis, unlike mitosis, the mechanisms of APC/C regulation are as yet largely

unexplored, especially during the prolonged period of prometaphase I. In this study, I

show that inhibition of MPF and MAPK induces premature destruction of the APC/C D-

box substrates but not Ken-box substrates. This prometaphase I instability of the D-box-

containing substrates was apparently not mediated by APC/CCdc20 or APC/CCdh1, given

that Cdc20 is also targeted for destruction and morpholino-knockdown of both Cdc20 and

Cdh1 failed to rescue securin stability. Also, the inhibition of SCFβ-TrCP using the

dominant negative mutant of its F-box protein (β-TrCP) could not restore securin levels,

suggesting it could not be SCFβ-TrCP-dependent. Therefore, this effect may be attributed

to activation of another APC/C co-activator or the core APC/C, which was recently

reported of being able to directly interact with the D-box containing substrates

independently of Cdc20 and Cdh1 (Passmore et al., 2003; Yamano et al., 2004).

5.2. Results

5.2.1. Inhibition of MPF and MAPK induces premature destruction of the APC/C

D-box substrates.

In the previous chapter, I have demonstrated that inhibition of both CDK1 and MAPK

induces the premature destruction of securin during prometaphase I. To determine

whether this phenotype was specific to securin, the stability of other APC/C substrates,
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such as cyclin B1 and geminin, was investigated. Cyclin B1 and geminin were chosen

because, similar to securin, they both accumulate during the cell cycle and are targeted

for destruction at the metaphase-to-anaphase transition by the APC/CCdc20 in a D-box-

dependent manner. Cyclin B1 stability was examined using Western blotting, whereas

geminin was tested using timelapse fluorescence measurements, due to the lack of the

anti-geminin antibody in the lab. Interestingly, Western blots performed on MI oocytes

that were treated with roscovitine and UO126 demonstrated that cyclin B1 is also subject

to the premature degradation upon CDK1 and MAPK inhibition (Fig. 5.1.A, B).

Moreover, timelapse fluorescence measurements of oocytes injected with the cRNA

construct for GFP tagged geminin (geminin-GFP) during maturation showed that in the

control oocytes, geminin destruction starts at 6 h post GVBD; whereas in the inhibitor-

treated oocytes it starts significantly earlier, at around 3 h post GVBD (Fig. 5.1.C, D, E).

Taken together, these results suggest that in addition to the premature degradation of

securin, inhibition of CDK1 and MAPK also induces the premature destruction of other

D-box substrates of the APC/C, including cyclin B1 and geminin.

5.2.2. Inhibition of MPF and MAPK does not induce premature destruction of

Ken-box substrates.

Having shown that the APC/C D-box containing substrates (securin, cyclin B1 and

geminin) are prematurely targeted for degradation in the absence of CDK1 and MAPK

activities, it was important to address whether this was the case for PLK1 and the D-box

mutated variant of securin (securinDM), two substrates that rely on the KEN-box for

destruction.
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Fig. 5.1. Inhibition of MPF and MAPK induces premature destruction of cyclin B1
and geminin. (A) Western blot of oocytes (n=30 per lane) for cyclin B1 at MI in the
presence or absence of roscovitine and UO126 (R+U). The oocytes were collected at 5 h
post release from IBMX, and drugs treatment was performed between 3 and 5 h. Actin
was used as a loading control. (B) Densitometric analysis of Western blots from three
independent experiments. The results are mean ± s. d. MI is set at 100%. (C)
Representative traces of oocytes (n=20, from three independent experiments) injected
with geminin-GFP at the times shown during maturation in the presence of roscovitine
and UO126. The drugs were added at 1 h post GVBD (red arrow). (D) Representative
traces of oocytes (n=17, from two independent experiments) injected with geminin-GFP
at the times shown during maturation, in the absence of the inhibitors. (E) Time of onset
of geminin-GFP destruction in the inhibitors-treated oocytes (R+U) and non-treated
oocytes (control). The peak of the graph was taken as a marker for the start of
destruction. The results are mean ± s. d. The asterisks represent values different from
controls at **P (0.001-0.01).



133

Surprisingly, Western blots performed on the inhibitor-treated and non-treated MI

oocytes showed no significant difference in the levels of PLK1 between both groups (Fig.

5.2.A, B). Next, I performed timelapse fluorescence measurements of oocytes injected

with cRNA constructs for GFP tagged wild type securin (WT securin-GFP) or securinDM

(securinDM-GFP) during maturation, in the presence or absence of roscovitine and

UO126. The recordings demonstrated that wild type securin was destroyed in both the

inhibitor-treated and non-treated oocytes (Fig. 5.2.C, D, E). Although, as reported in the

previous chapter, the onset of securin degradation in the treated oocytes occurs

prematurely (at 3 h post GVBD), whereas in the non-treated oocytes, securin destruction

starts 2 h later (at 5 h post GVBD) (Fig. 5.2.C, D). Interestingly, securinDM was stable

throughout oocytes maturation and failed to be destroyed in the presence or absence of

the drugs (Fig. 5.2.C, D, E). To ensure that securinDM stability during MI is real, the

destruction rates of both mutant and wild type securin were monitored in GV-arrested

oocytes, which were incubated in the presence of cycloheximide to inhibit protein

synthesis. SecurinDM contains a functioning Ken-box and therefore can only be targeted

for destruction by APC/CCdh1. Indeed, the readings demonstrated that during the GV-

arrest, when APC/CCdh1 is active, securinDM is destroyed, although its destruction was

much slower than the wild type securin (Fig. 5.2.F), presumably due to the presence of a

single KEN-box rather than a KEN- and D-box. Taken together, these results further

confirm the necessity of the D-box for the APC/CCdc20-mediated degradation of securin at

the metaphase-to-anaphase transition, and suggest its requirement for the efficient

destruction of securin by APC/CCdh1. More importantly, the D-box seems to be

indispensable for the premature destruction of securin upon MPF and MAPK inhibition.
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Fig. 5.2. Inhibition of MPF and MAPK does not induce premature destruction of
PLK1 and securinDM. (A) Western blot of oocytes (n=20 per lane) for PLK1 at MI in
the presence or absence of roscovitine and UO126 (R+U). The oocytes were collected at
5 h post release from IBMX, and drugs treatment was performed between 3 and 5 h.
Actin was used as a loading control. (B) Densitometric analysis of Western blots from
three independent experiments. The results are mean ± s. d. MI is set at 100%. (C)
Representative traces of oocytes (from three independent experiments) injected with
either WT securin-GFP (n=11) or securinDM-GFP (n=11) at the times shown during
maturation, in the presence of roscovitine and UO126. The drugs were added at 2 h post
GVBD (red arrow). (D) Representative traces of oocytes (from two independent
experiments) injected with either WT securin-GFP (n=11) or securinDM-GFP (n=11) at
the times shown during maturation, in the absence of the inhibitors. (E) Representative
images of the oocytes analysed in panel D at the times shown during maturation (h post
GVBD). Scale bar 20 μm.  (F) Representative traces of oocytes injected with either WT
securin-GFP (n=12) or securinDM-GFP (n=12) at the times shown during GV-arrest, in
the presence of cycloheximide (CHX). These results are representative of two
independent experiments.
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5.2.3. Premature destruction of securin is not APC/CCdc20-dependent.

Inhibition of MPF and MAPK induced premature destruction of the D-box containing

substrates only and not Ken-box substrates, suggesting that APC/CCdc20 is likely to be the

mediator of this effect. To test this hypothesis, the levels of Cdc20 in the roscovitine and

UO126 treated MI oocytes were examined by Western blotting. Interestingly, inhibition

of both kinases also induced the premature degradation of Cdc20 (Fig. 5.3.A), which

suggests that the instability of the D-box substrates upon MPF and MAPK inhibition

could not be brought about via the activation of APC/CCdc20. To further investigate this,

Cdc20 morpholino (Cdc20MO) was utilised to deplete oocytes of Cdc20. The morpholino

was injected in GV-stage oocytes, which were kept arrested for 24 h. These oocytes were

then released, cultured for 5 h in the presence of roscovitine and UO126 and assessed for

their securin levels using Western blotting. There was no significant difference in the

levels of securin between Cdc20MO-injected and non-injected oocytes in the presence of

the inhibitors (Fig. 5.3.A, B), which provides further evidence to suggest that securin

instability upon MPF and MAPK inhibition may not be APC/CCdc20-dependent. Next, it

was important to to confirm the effeciency of the Cdc20 morpholino at inhibiting the

activity of APC/CCdc20, given that the Cdc20 blot was hard to replicate due to problems

with the antibody. This was done through testing the abilitiy of the morpholino to block

oocytes at MI, since it is well established that the APC/CCdc20 is the mediator of the MI

exit. Therefore, the morpholino was injected into GV-stage oocytes, which were kept

arrested for 24h, released and then assesessed for PB1 extrusion at 14 h post realease.

Indeed, all the Cdc20 morpholino-injected oocytes blocked at MI and failed to extrude

PB1, whereas 54% of the non-injected control oocytes extruded PB1 (Fig. 5.3.C), which
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suggests that the Cdc20 morpholino is efficient at inhibiting APC/CCdc20 activity and

further confirms the previous findings.

5.2.4. Premature destruction of securin is not APC/CCdh1-dependent.

Having shown that the premature degradation of the D-box containing substrates could

not be mediated by APC/CCdc20, the role of APC/CCdh1 was investigated. Firstly, the

levels of Cdh1 in roscovitine and UO126 treated MI oocytes were examined by Western

blotting. Unexpectedly, inhibition of both kinases induced a significant increase in Cdh1

levels, which were approximately twofold higher than those observed in the control MI

oocytes (Fig. 5.4.A, B). Next, it was important to determine whether the stabilisation of

Cdh1 levels upon MPF and MAPK inhibition was responsible for APC/CCdh1 activation

and hence the premature destruction of securin. Therefore, oocytes were depleted of

Cdh1 using Cdh1 morpholino (Cdh1MO). The morpholino was injected into GV-stage

oocytes, which were kept arrested for 24 h. These oocytes, alongside non-injected

oocytes, were then released, cultured for 5 h in the presence of the inhibitors and assessed

for their Cdh1 and securin levels using Western blotting. The morpholino successfully

decreased Cdh1 levels to about 25% of those observed in the inhibitor-treated but non-

injected oocytes. Nevertheless, the low level of securin in the treated oocytes was not

affected by the depletion of Cdh1 (Fig. 5.4.C, D).
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Fig. 5.3. Premature destruction of securin is not APC/CCdc20-dependent. (A) Western
blot of oocytes (n=20 per lane) for Cdc20 and securin at MI, and MI following
incubation with roscovitine and UO126 (R+U) in the presence or absence of Cdc20
morpholino (Cdc20MO). Oocytes were collected at 5 h post release from IBMX, and drugs
treatment was performed between 3 and 5h. Actin was used as a loading control. (B)
Densitometric analysis of Western blots from three independent experiments. The results
are mean ± s. d. MI is set at 100%. Asterisks indicate values significantly different from
control (the MI value) at **P (0.001-0.01) and ***P < 0.001, whereas NS represents
values not significantly different at NSP > 0.05. (C) Rates of MI arrest and PB1 extrusion
in Cdc20MO-injected (n=33) and non-injected oocytes (n=26).
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To further confirm the efficiency of the Cdh1 morpholino at inhibiting the activity of

APC/CCdh1, the morpholino was injected into GV-stage oocytes, when APC/CCdh1 is

known to be active. These oocytes, alongside non-injected oocytes, were kept arrested

for 24 h, and then assessed for their securin levels using Western blotting. The levels of

securin in the morpholino treated oocytes were twofold higher than those observed in the

control GV oocytes, suggesting that the Cdh1 morpholino was efficient at inhibiting

APC/CCdh1 activity (Fig. 5.4.E, F). Taken together, these results suggest that securin

instability upon CDK1 and MAPK inhibition could not be mediated by the APC/CCdh1.

5.2.5. Combined morpholino-knockdown of Cdc20 and Cdh1 induces more

destruction of securin.

In the previous sections I have demonstrated that depletion of either Cdc20 or Cdh1

failed to rescue the premature destruction of securin upon CDK1 and MAPK inhibition.

Next, I decided to deplete the oocytes of both co-activators. Therefore, Cdc20 and Cdh1

morpholinos were simultaneously injected into GV-stage oocytes, which were kept

arrested for 24 h. These oocytes, alongside non-injected oocytes, were then released,

cultured for 5 h in the presence or absence of roscovitine and UO126 and assessed for

their securin levels using Western blotting. Unexpectedly, simultaneous knockdown of

Cdc20 and Cdh1 induced an increased destruction of securin, whose levels were

significantly lower than those observed in the non-injected oocytes, in the presence or

absence of the inhibitors (Fig. 5.5.A, B). These data raise the possibility that neither

APC/CCdc20 nor APC/CCdh1 mediates the premature destruction of securin upon MPF and

MAPK inhibition, and that additional factors may be acting.
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Fig. 5.4. Premature destruction of securin is not APC/CCdh1-dependent. (A) Western

blot of oocytes (n=20 per lane) for Cdh1 at MI in the presence or absence of roscovitine

and UO126 (R+U). (B) Densitometric analysis of the Western blot in panel A. The

results are mean ± s. d. from three independent experiments. (C) Western blot of oocytes

(n=30 per lane) for securin and Cdh1 at MI, and MI following incubation with

roscovitine and UO126 (R+U), in the presence or absence of Cdh1 morpholino (Cdh1

MO). (D) Densitometric analysis of the Western blot in panel C. The results are mean ±

s. d. from three independent experiments. In panels A and C, all MI samples were

collected at 5 h post release from IBMX, and drugs treatment was performed between 3

and 5h. In panels B and D, MI is set at 100% and the asterisks indicate values

significantly different from controls (MI values) at *P (0.01-0.05), whereas NS represents

values not significantly different at NSP > 0.05. (E) Western blot of oocytes (n=20 per

lane) for securin and Cdh1 at the GV stage, in the presence or absence of Cdh1

morpholino. (F) Densitometric analysis of the Western blot in panel E. GV is set at

100%. Actin was used as a loading control.
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Fig. 5.5. Combined knockdown of Cdc20 and Cdh1 induces more destruction of

securin. (A) Western blot of oocytes (n=20 per lane) for securin at MI in the presence or

absence of roscovitine and UO126 (R+U), and MI following microinjection with Cdc20

and Cdh1 morpholinos in the presence or absence of the inhibitors. MI oocytes were

collected at 5 h post release from IBMX, and drugs treatment was performed between 3

and 5h. Actin was used as a loading control. (B) Densitometric analysis of Western blots

from three independent experiments. The results are mean ± s. d. MI is set at 100%.

Double and triple asterisks indicate values significantly different from control (the MI

value) at **P (0.001-0.01) and ***P < 0.001. Single asterisk represents two significantly

different values at *P (0.01-0.05).
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5.2.6. Premature destruction of securin is not SCF-TrCP-dependent.

Having shown that the premature destruction of securin in the absence of CDK1 and

MAPK activities could not be caused by APC/CCdc20 or APC/CCdh1, I went on to

investigate whether this effect was due to activation of the second major E3 ubiquitin

ligase, SCF (Skp1/Cullin/F-box protein). The possible involvement of SCF in the

premature destruction of securin was tested through inhibition of its activity, using the

dominant negative mutant of its F-box protein (-TrCP) (Guardavaccaro et al., 2003;

Marangos et al., 2007). The cRNA construct for the mutant -TrCP (-TrCP) was

microinjected in oocytes at GVBD, in order to avoid any interference with meiotic

resumption. These oocytes, alongside non-injected oocytes, were cultured for 5 h in the

presence or absence of roscovitine and UO126, and then assessed for their securin levels

using Western blotting. There was no significant difference in the levels of securin

between -TrCP-injected and non-injected MI oocytes (Fig. 5.6.A, B). More

importantly, the mutant in the inhibitor-treated oocytes failed to rescue securin levels,

which remained as low as those observed in the non-injected oocytes that were also

treated with roscovitine and UO126 (Fig. 5.6.A, B). These results suggest that the

targeted destruction of securin upon CDK1 and MAPK inhibition may not be SCF-TrCP-

dependent.
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Fig. 5.6. Premature destruction of securin is not SCFβ -TrCP-dependent. (A) Western

blot of oocytes (n=20 per lane) for securin at MI, MI after treatment with roscovitine and

UO126 (R+U) and MI following microinjection with the cRNA for β-TrCP, in the

presence or absence of the inhibitors. All MI samples were collected at 5 h post release

from IBMX, and drugs treatment was performed between 3 and 5 h. Actin was used as a

loading control. (B) Densitometric analysis of Western blots from three independent

experiments. The results are mean ± s. d. MI is set at 100%. Asterisks indicate values

significantly different from control (MI value) at *P (0.01-0.05), whereas NS represents

values not significantly different at NSP > 0.05.
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5.3. Discussion

In meiosis, APC/CCdc20 ubiquitinates cyclin B1 and securin to induce anaphase onset and

chromosomes separation. More recently, it was shown that APC/CCdh1 is required for

maintaining the GV arrest by suppressing the levels of cyclin B1 (Marangos et al., 2007;

Reis et al., 2006a). Also, during prometaphase I, APC/CCdh1 targets Cdc20 for

destruction thereby delaying the onset of APC/CCdc20 activity and the onset of anaphase

(Reis et al., 2007). In contrast to mitosis, the meiotic mechanisms of APC/C regulation

are as yet unexplored, especially during the prolonged prometaphase I.

This study was set out to examine what causes the premature destruction of securin

during prometaphase I in the absence of MPF and MAPK activities. In the previous

chapter, I have demonstrated that securin stability is unlikely to be dependent on its

phosphorylation state, as determined by the mutagenesis experiments. Here, I found that

inhibition of both kinases also induces the premature degradation of other APC/C

substrates, suggesting that this effect might be due to activation of the APC/C.

Interestingly, only the D-box containing substrates, such as cyclin B1, geminin and wild

type securin were subject to destruction when MPF and MAPK were inhibited. The Ken-

box substrates, however, were not prematurely targeted for degradation. For example,

securinDM, which only contains a functioning Ken-box, was stable throughout the cell

cycle and failed to be destroyed not only at the metaphase-to-anaphase transition, but also

during prometapahse I in the presence of MPF and MAPK inhibitors. These findings

further confirm the requirement of the D-box for the APC/CCdc20-mediated degradation of
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securin at the metaphase-to-anaphase transition, and also suggest its necessity for the

premature destruction of the APC/C substrates upon MPF and MAPK inhibition.

The targeted destruction of the D-box containing substrates and not Ken-box substrates

implies that APC/CCdc20 is a likely candidate for driving degradation in the absence of

MPF and MAPK activities. Surprisingly, examination of the levels of Cdc20 in the

presence of the inhibitors revealed that Cdc20 was also targeted for destruction,

suggesting that APC/CCdc20 is not responsible of the premature degradation of the D-box

substrates. This result, however, needs to be considered preliminary because due to

technical problems with the antibody, the Cdc20 Western was difficult to replicate. The

non-involvement of APC/CCdc20 in the premature destruction of the D-box substrates was

further confirmed by Cdc20-morpholino knockdown, which failed to rescue securin

stability upon MPF and MAPK inhibition.

It is well established that vertebrate Cdc20 does not contain a D-box, and in mammalian

oocytes APC/CCdh1 mediates its destruction through two independent degrons, the Ken-

box and CRY-box (Pfleger and Kirschner, 2000; Reis et al., 2006b). Also, in contrast to

Cdc20, the inhibition of MPF and MAPK stabilized the levels of Cdh1. Therefore, due to

the absence of the Cdh1 inhibitor, MPF, the high levels of Cdh1 may be responsible for

enhancing the prometaphase I activity of APC/CCdh1, thus making it capable of targeting

the destruction of other substrates rather than just Cdc20. Nevertheless, Cdh1

knockdown using antisense morpholino failed to rescue the premature destruction of
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securin upon MPF and MAPK inhibition, suggesting that this phenotype is not

APC/CCdh1-dependent.

Additionally, simultaneous knockdown of both Cdc20 and Cdh1 induced an increase in

the destruction of securin during prometaphase I in the presence and absence of MPF and

MAPK inhibitors. These results, further suggest that Cdc20 and Cdh1 may not be

necessary for the premature destruction of the D-box substrates upon MPF and MAPK

inhibition. There are a number of possible explanations for this unexpected result: (i)

another ubiquitin ligase may be active, (ii) the core APC/C may have upregulated acivity

and (iii) the existence of other APC/C co-activators, which may be meiosis-specific and

only become active when Cdh1 and Cdc20 are depleted.

Therefore, I turned to investigate the possible involvement of SCF (Skp1/Cullin/F-box

protein). SCF was chosen in particular because: (i) it is the second major E3 ubiquitin

ligase that is responsible of driving the meiotic cell cycle (Guardavaccaro et al., 2003);

(ii) its action is tightly coupled to the phosphorylation status of its substrates

(Guardavaccaro et al., 2003; Skowyra et al., 1997; Watanabe et al., 2004), and more

importantly (iii) it is active during early meiosis, when securin and the other D-box

substrates are targeted for destruction (Guardavaccaro et al., 2003; Marangos et al.,

2007). Interestingly, inhibition of SCF using the dominant negative mutant of its F-box

protein, -TrCP (Guardavaccaro et al., 2003; Marangos et al., 2007), also failed to

rescue the premature degradation of securin, indicating that this effect is not SCF-TrCP-

dependent.
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Taken together, all these findings suggest that the instability of the D-box substrates upon

MPF and MAPK inhibition might well be due to activation of the APC/C independently

of its two major co-activators. However, it is not entirely clear how such activation may

take place. The core APC/C with APC10/Doc1 acting as a D-box receptor is one

possibility. Accordingly, it was recently reported that the D-box substrates could bind

directly to the core APC/C in the absence of Cdc20 and Cdh1 (Passmore et al., 2003;

Yamano et al., 2004). Such interaction is believed to be important in enhancing the

processivity of the D-box substrates ubiquitination through increasing the affinity of the

ligase towards its substrates (Carroll and Morgan, 2002). Also, it was found that

mutagenesis of APC10/Doc1, the only APC/C subunit thus far implicated as a D-box

receptor, not only decreases the binding of the D-box substrates to the APC/C in vitro,

but also reduces the efficiency of the ligase in targeting the destruction of its substrates in

vivo, thus delaying the mitotic cell cycle (Carroll et al., 2005).

Also, it is well established that the phosphorylation of the APC/C is required for its

activation and association with Cdc20, through which the ligase is mainly regulated

(Hershko et al., 1994; Kotani et al., 1998; Kraft et al., 2003). Therefore, it may be

possible that in the absence of MPF and MAPK activities, the lack of association with the

co-activator protein unleashes the core APC/C to target the destruction of the D-box

substrates. This may explain the increase in securin destruction when Cdc20 and Cdh1

were simultaneously depleted in the presence and absence of MPF and MAPK inhibitors.
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Alternatively, other APC/C co-activators, which are normally repressed by Cdh1 and

Cdc20, may be involved. Meiosis-specific activators have been identified in many other

organisms including yeast and flies (Asakawa et al., 2001; Blanco et al., 2001; Chu et al.,

2001; Cooper et al., 2000; Jacobs et al., 2002). These co-activators are expressed

exclusively during meiosis and have unique roles that are outside the functions of Cdc20

and Cdh1. In Drosphila, for example, the fizzy-like protein (cort) is only transcribed

during oogenesis, and its knockout results in eggs that are terminally arrested at Met II

(Chu et al., 2001; Lieberfarb et al., 1996; Page and OrrWeaver, 1996; Pesin and Orr-

Weaver, 2007). Although, cort is present throughout meiosis alongside Cdc20, it only

becomes active during meiosis II or meiosis I upon Cdc20 depletion (Pesin and Orr-

Weaver, 2007; Swan and Schupbach, 2007). This suggests that during meiosis I, the

activity of cort is some how repressed by Cdc20. Therefore, the same may be happening

in mouse oocytes. So, in the absence of MPF and MAPK activities, the lack of

phosphorylation of the APC/C and hence lack of association with Cdc20, may promote

its activation by another Cdc20-like activator, which targets the D-box substrates for

destruction by the proteasome.

In conclusion, the experiments reported here demonstrate that during prometaphase I,

either the activity of MPF or MAPK is required for inhibiting the premature onset of the

APC/C, thereby allowing the accumulation of the D-box containing substrates, such as

securin and cyclin B1. This is believed to be achieved through the recruitment of Cdc20,

which restrains the activity of the ligase during prometaphase through association with

different inhibitory proteins, such as Emi1 and the components of the SAC. So, in the
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absence of both MPF and MAPK activities, the APC/C is no longer phosphorylated and

unable to recruit Cdc20. The loss of Cdc20 may paradoxically lead to unrestrained

APC/C activity as a result of a loss of inhibition. However, it is not entirely clear how

this activation may take place. The core APC/C with APC10/Doc1 as a D-box receptor is

one possibility. Alternatively, this may be due to activation of some meiosis-specific

APC/C activators, which are normally repressed by Cdc20 and Cdh1 and become active

only when the two major co-activators are depleted.

Further work is needed to determine which, if any, of these mechanisms explains the

findings described above. In the future, I am planning on using the dominant negative

mutant of the APC10/Doc1 subunit to test if interfering with the binding of the D-box

substrates to the core APC/C would rescue the premature destruction of securin and the

other substrates upon MPF and MAPK inhibition. Additionally, It would be interesting

to examine if other meiosis-specific Cdc20-like co-activators exist in mouse oocytes and

if so their roles in controlling the meiotic cell cycle. It will also be important to

determine whether inhibition of MPF and MAPK induces the oocytes to arrest at Met I or

to exit the M-phase and enter interphase, given that those oocytes fail to extrude PB1

(data not shown). Finally, it will be crucial to establish if inhibition of both kinases also

induces premature separation of chromosomes via separase activation, since its two main

inhibitors (securin and cyclin B1) are targeted for destruction.



149

Chapter 6: Conclusions

The main aim of the experiments presented in this thesis is to better understand how the

cell cycle is controlled during meiotic maturation of mouse oocytes. In what follows, I

will summarise and discuss the main findings of the thesis.

Mammalian oocytes enter the meiotic cell cycle during the female embryonic life and

become arrested in prophase of the first meiotic division for a period lasting from few

months (mice) to many years (humans), until sexual maturity (Alberts et al., 2000;

AUSTIN and Short, 1993; Bukovsky et al., 2005; Wolpert et al., 1998). At puberty and

under the influence of hormones, these prophase I-arrested oocytes resume the first

meiotic division, enter the second meiotic division and become arrested at the Met II

stage until fertilization (Yanagimachi, 1994). During metaphase II arrest, the egg has the

difficult task of ensuring the continued attachment of the sister chromatids, which is very

important because any premature loss of cohesion might lead to aneuploid embryos upon

fertilization of the egg by a sperm. The maintenance of the pairing of sister chromatids

during this period is achieved through inhibition of the cohesin-protease, separase.

In vertebrates, it is well established that separase is controlled by securin and MPF, which

are mutually exclusive at the molecular level, such that if one goes missing the other one

can compensate for it (Ciosk et al., 1998; Gorr et al., 2005; Petronczki et al., 2003; Zou et

al., 1999). Although, this mutuality has been proven in many systems including meiosis I

in mouse oocytes (Herbert et al., 2003; Petronczki et al., 2003). I found here that securin
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is the predominant inhibitor of separase during meiosis II (Chapter 3). Thus, inhibition

of CDK1 activity in Met II-arrested eggs using roscovitine failed to induce sister

chromatid separation, even though it induced cytokinesis and PB2 extrusion (Fig. 3.3).

Moreover, antibody inhibition of CDK1/cyclin B1 binding to separase also failed to

promote sister chromatid disjunction (Fig. 3.4). Instead, securin morpholino knockdown

induced sisters’ separation, which could be rescued by injection of securin cRNA (Fig.

3.5, 6).

Chromosomes segregation upon securin knockdown only occurred following PB1

extrusion and not during meiosis I (Fig. 3.5), which further confirms the mutuality of

securin and MPF activities during the first meiotic division. Therefore, it would be

interesting to investigate why such mutuality only exists during meiosis I and not meiosis

II, especially that securin levels at this stage are much lower than those observed during

meiosis I (Fig. 3.2). Thus, it will also be worth examining whether securin might have

other functions during the first meiotic division, when its levels are significantly high

(Fig. 3.2). Indeed, it was reported by Mrangos and Carroll (2008) that the high levels of

securin during prophase I arrest are important for preventing excessive loss of cyclin B1

and thus allowing progression through MI, by competing with cyclin B1 for APCcdh1

binding sites (Marangos and Carroll, 2008).

Moreover, it will be crucial to investigate if the maintenance of securin levels present

problems for ageing eggs in keeping sister chromatids attachment, given that the maternal

age effect was proven to be stronger for meiosis II errors when compared to meiosis I
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non-disjunctions. For example, it was estimated by Yoon et al that the risk of MI errors

causing trisomy 21 increases by 10-fold when comparing 25 year-old women to women

over 40 years of age, whereas the same comparison for meiosis II errors shows a 60-fold

increase (Yoon et al., 1995).

Fig. 6.1. Mechanisms of separase regulation during meiosis I and II. During

meiosis I, early cleavage of cohesin and premature separation of chromosomes is

prevented by both MPF and securin, which play equal roles in inhibiting the protease

separase. During meiosis II, however, securin is the only inhibitor of separase.

Meiosis I

MPF/Securin Securin

Separase

Chromosomes disjunction

Cohesin Cleavage

Meiosis II
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As already mentioned in previous sections, securin is the best-known regulator of

separase and therefore it is highly regulated by mechanisms responding to cell cycle

progression. In addition to being expressed in a cell-cycle dependent manner, peaking in

M phase and getting destroyed at anaphase onset (Nabti et al., 2008; Ramos-Morales et

al., 2000), during the course of this study it has been reported that securin is subject to

another layer of regulation, phosphoryaltion (Holt et al., 2008). This was demonstrated

in yeast by Holt et al (2008), who found that securin stability during mitosis relies on its

phosphorylation by MPF near the D-box motif (Holt et al., 2008). Securin

phosphorylation was also observed upon entry into meiosis I in mouse oocytes (Chapter

4). This phosphorylation was proven to be catalysed by both MPF and MAPK (Fig. 4.2).

I also found that inhibition of these two kinases induces the premature destruction of

securin during proemetaphase of meiosis I (Fig. 4.2, 3). However, although these results

are consistent with earlier observation, this effect is not dependent on phosphorylation of

securin, given that mutagenesis of CDK1 and MAPK phosphorylation sites on securin

did not affect its stability (Fig. 4.5). Therefore, it would be worth examining the reasons

behind securin phosphorylation upon entry into meiosis I, other than regulating its

stability and function, given that securin mutagenesis also had no effect on securin’s

ability to inhibit separase (Fig. 4.6).

In a separate investigation, I found that CDK1 and MAPK inhibition also induces the

premature degradation of other APC/C substrates, such as cyclin B1 and geminin (Fig.

5.1). These findings suggest that this phenotype is not securin-specific and might be due

to a general activation of the APC/C, whose activity is well known to be modulated by its
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phosphorylation status (Hershko et al., 1994; Kotani et al., 1998; Kraft et al., 2003).

Interestingly, the D-box containing substrates only and not the Ken-box substrates were

subject to such effect (Fig. 5.1, 2), implying that APC/CCdc20 could be the mediator of this

phenotype. Surprisingly, the prometaphase I instability of the D-box substrates was

neither APC/CCdc20 nor APC/CCdh1-dependent, given that Cdc20 was also targeted for

destruction and morpholino-knockdown of Cdc20 and Cdh1 failed to rescue securin

stability (Fig. 5.3, 4). I also examined the possible involvement of the second major E3

ubiquitin ligase, SCFβ-TrCP. However, the inhibition of SCF using the dominant negative

mutant of its F-box protein (β-TrCP) could not restore securin levels, suggesting it is

not SCFβ-TrCP-dependent (Fig. 5.6).

Therefore, this effect could be attributed to activation of the APC/C independently of its

two known co-activators. It is well established that APC/C phosphorylation is required

for its activation and association with Cdc20, through which the ligase is mainly

regulated (Hershko et al., 1994; Kotani et al., 1998; Kraft et al., 2003). Therefore, it may

be possible that in the absence of MPF and MAPK activities, the lack of association with

the co-activator protein unleashes the APC/C to target the destruction of the D-box

substrates. However, it is not entirely clear how this activation may take place. The core

APC/C with APC10/Doc1 as a D-box receptor is one possibility (Fig. 6.2).

Alternatively, this may be due to activation of some meiosis-specific APC/C activators

(Fig. 6.2), which are normally repressed by Cdc20 and Cdh1, and become active only

when the two major co-activators are depleted.
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Future work is needed to determine which, if any, of these two hypotheses explains the

findings described above. Therefore, I am planning on genetically modifying the only

APC/C subunit thus far implicated as a D-box receptor (APC10/Doc1), and investigating

its effect on securin stability in the absence of MPF and MAPK activities. It will also be

crucial to test whether the recruitment of the co-activators by the APC/C restrains its

ligase activity from prematurely targeting the destruction of the D-box containing

substrates. Moreover, It would be interesting to examine whether other meiosis-specific

Cdc20-like co-activators exist in mouse oocytes and if so their roles in controlling the

meiotic cell cycle. Finally, it will be worth examining whether the sustained-high

activity of MAPK throughout the meiotic cell cycle plays any role in restraining the

activity of the APC/C when MPF activity is low during the cell cycle transitions.
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Fig. 6.2. The activity of MPF and MAPK is required for accumulation of the APC

D-box substrates during MI. (A) In the presence of MPF and MAPK, the APC

becomes phosphorylated, therefore promoting its association with Cdc20 and other

inhibitory factors, such as Emi1 and the components of SAC. Binding of the inhibitors to

APC/CCdc20 prevents it from becoming active and prematurely targeting the D-box

substrates for degradation. (B) In the absence of MPF and MAPK, the APC is no longer

phosphorylated and therefore incapable of recruiting Cdc20 and the inhibitors. As a

result, the APC becomes active and prematurely targets its D-box substrates for

destruction. The degradation of these substrates could be: (1) mediated by the core APC

with the APC10 subunit acting as a D-box receptor, or (2) through another co-activator,

which only binds to and activates the APC in the absence of MPF and MAPK.
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