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Abstract

A recently developed method for generating distributed, localized atomic polarizabilities
from the ab initio molecular charge density is used to assess the importance of the induction
energy in crystal structures of small organic molecules. Two models are first contrasted
based on large cluster representing the crystalline environment: one using the polarizability
model in which induced multipoles are evaluated in response to the electrostatic field due
to atomic multipoles; the other is a complementary procedure in which the same cluster is
represented by atomic point-charges and the molecular charge density is calculated ab 7nitio
in this environment. The comparable results of these two methods show that the
contribution to the lattice energy from the induction term can differ significantly between
polymorphic forms, for a selection of organic crystal structures including carbamazepine
and oxalyl dihydrazide, and 3-azabicyclo[3,3,1]nonane-2,4-dione. The observed charge

density polarization of naphthalene in the crystalline state is also reproduced.

This demonstrates that explicit inclusion of the induction energy, rather than its absorption
into an empirically fitted repulsion-dispersion potential, will improve the relative ordering
of the lattice energies for computed structures, and that it needs to be included in crystal
structure prediction. Hence, the distributed atomic polarizability model was coded into the
lattice-energy minimization program DMACRYS (which was developed as a Fortran90

recoding of DMAREL) to allow the induction energy to be calculated.
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Chapter 1. Introduction

1.1. Motivation: Computer Modeling of the Organic Solid state

The study and modelling of condensed-phase materials is a broad area of research with far
reaching applications; from understanding basic physical and chemical processes, to
simulating complex systems such as protein docking, to designing materials at the
molecular level for highly specific purposes. A challenging subset of this problem is the
field of predicting the crystal structures of organic molecules.! Crystal structure prediction
(CSP) aims to predict both the observed and as yet unobserved polymorphs of molecules,
in order to identify systems where a thermodynamically more stable structure may appear
to compete with metastable crystal in production or storage. This is very important in the
pharmaceutical industry because the dissolution rate, and hence bioavailability of a drug,
will vary with polymorph®. CSP may also be used to computationally screen molecules for
favourable solid-state properties, such as density of energetic materials’, prior to their

synthesis.

There are a variety of applications for the ability to correctly predict crystal structures of
small organic molecules. Sometimes there is not enough information available to solve a
crystal structure, either because the single crystal data available is poor, or even completely
unavailable if a suitable crystal cannot be grown. CSP can provide possible structures to
guide the solution of the structure from powder X-ray data. In other cases, identifying that
polymorphs exist with a predictive search can guide an experimental search for new
polymorphs, by suggesting which crystallization method might nucleate the first sample*.
Competing crystal forms can be a serious problem for pharmaceuticals, where drugs are

licensed to contain a specific polymorph as this determines the bioavailability and other
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physical properties. The anti-HIV drug Ritonavir is a perfect example of a very expensive,
high profile polymorphism problem.” A more stable polymorph suddenly appeared when
the drug was in production, and since they were no longer able to reliably manufacture the
licensed pharmaceutical form, the drug had to be reformulated. A computational search
might, in principle, have suggested the more stable structure during the drug development
phase. This could have helped the search for this polymorph; the appearance of form II
was linked to the presence of a degradation product as a solid impurity’. Hence, CSP
search is a very useful complement to the solid state characterization that is needed for

developing any organic material .

1.2. Progress in Crystal Structure Prediction

By starting with a simple molecular diagram, CSP can produce a number of possible crystal
structures by minimizing the lattice energy of thousands of trial configurations. If we
assume that the lattice energy predicts the relative thermodynamic stability, the point with
the lowest lattice energy (global minimum) will correspond to the most stable observed
crystal form. Any predicted structure within 5 k] mol™ of the global minimum is
sufficiently close in energy that it may represent an observable polymorph. In practice this
lattice energy landscape contains clusters of structures close to the global minimum that do
not represent experimental structures, and sometimes the global minimum does not

correspond to the known most stable form.

CSP can be successful at predicting crystal structures, as shown by the successes in the
Cambridge Crystallographic Data Centre (CCDC) blind tests.”” The most recent’ blind test
was particularly successful with each structure being correctly predicted by at least two

groups, while one group was able to correctly predict all four crystal structures'’. It is hard
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to assess the difficulty of predicting a given crystal structure from the molecular diagram, as
crystal energy landscapes can differ in the number and diversity of packing motifs within

the energy range of possible polymorphism, even between isomers'".

Two cases where the prediction of possible polymorphs with very different hydrogen-
bonding motifs lead to a coordinated experimental search are carbamazepine'” and 3-
azabicyclo[3.3.1]nonane-2,4-dione."” The known stable forms of these molecules are
comprised of dimer units held by two hydrogen-bonds in the first case, and a catemeric
(chain-like) structure in the latter. The first crystal structure predictions were that the
thermodynamic form of each would be comprised of catemers and dimers respectively, but
these were not found experimentally. Thus it is important to establish why these predicted
structures were not found, and this thesis contributes to showing that the relative stabilities

were insufficiently accurate in the initial predictions.

1.3. Approaches Needed to Improve Crystal Structure Prediction

There are many factors that should be considered when predicting which crystal structures
will be observed and which will not. Kinetics, and particularly nucleation, is a significant
issue as it is believed that the structure of the initial crystalline nuclei in solution will
determine the bulk structure. Competing rates of nucleation for different forms should be
a significant factor, which brings with it the issue of kinetics and solvent effects for micro
and nanoscopic particles. Since most CSP methodologies start with trial periodic lattices
which are subsequently relaxed, the question of whether a given lattice energy minimum

could actually be formed by some physical process is ighored.
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Even if the thermodynamically stable structure can be crystallized, current CSP methods
based on lattice energy are only predicting the most stable static perfect crystal at 0 K.
Factors such as entropy and zero-point motion at crystallization temperature are
completely neglected'*. Accurately modelling the thermodynamic free energy would surely
increase the reliability of CSP, but it is challenging and computationally expensive to
implement.”' Any model for these terms relies on the accuracy of the model for

intermolecular interactions, which is used to calculate the lattice energy.

1.4. Development of More Accurate Modelling of the Lattice Energies

of Organic Molecules

Since the method of identifying observable polymorphs is relying on correctly predicting
the relative lattice energies of the hypothetical structures, accurate models for the
intermolecular interactions are essential. A successful prediction may rely on differences of
less than a k] mol " between very different crystal structures. Some advances have been
made in the use of periodic electronic structure calculations to model organic crystal

%17 "although these periodic DFT calculations still require

structures quantum mechanically
a corrective dispersion term, and these calculations are very expensive. However, most

crystal structure modelling relies on a model intermolecular potential i.e. an analytical

model for the intermolecular forces.

Model intermolecular potentials usually explicitly model the electrostatic interactions and
the short-range repulsive and long-range attractive dispersion forces. The electrostatic
interactions are either modelled by atomic point charges or atomic multipole moments,
which have been derived from ab initio calculations of the charge density of the molecule in

isolation. Usually the model for all the remaining intermolecular interactions is derived by
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empirical fitting to reproduce a set of organic crystal structures and other properties, such
as heats of sublimation. "*** Although these empirical potentials are usually atom-atom
repulsion-dispersion potentials of the exp-6 functional form, assumed to be transferable
between different molecules, their accuracy is limited. Most critically the empirical fitting
will attempt to absorb all the approximations in the calculations, such as the neglect of
other contributions to the intermolecular forces, thermal expansion, etc etc.' The time
spent in parameterising these models is recovered by their transferability and the speed at
which they can be used in a periodic crystal lattice, or other large systems such as biological
processes where there may be hundreds of thousands of interactions to compute. If the
model intermolecular potential can be accurately determined for a specific molecule rather
than being generic to many systems, it would be much more accurate than the current

empirical models.

In addition to the repulsions, dispersion and electrostatic intermolecular forces, there is a
contribution due to the induction energy. The induction energy comes from the
polarization of the molecular charge density as it distorts from the ground-state
configuration of the isolated molecule in response to the surroundings, i.e. the presence of
other molecular charge densities nearby. This is difficult to include in model potentials
which have the assumption of pairwise additivity; i.e. that the interaction of a many-body
system is simply the sum of the interaction between all pairs of particles. The electrostatic
energy is strictly pairwise additive, but the induction energy is not because the fields due to
the neighbouring molecules can cancel to a very large extent. At present the induction
energy is absorbed into the empirical repulsion-dispersion potential, as are all non-
electrostatic terms (and indeed all electrostatic terms that are not adequately modelled by

the point-charges or multipoles with which the parameters were determined). This thesis
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aims to improve the accuracy of the calculation of the crystal lattice energies by studying

the induction energy in organic crystals.

1.5. Current Models for the Induction Energy

Polarization effects have been modelled for ionic systems of spherical ions for a long time,
where the strong electric fields mean that polarization effects are significant. This has been
achieved usually by the use of the shell model,” which treats the ion as two points
connected by a spring. In this model the stiffness of the spring is in effect an isotropic
polarizability tensor that determines how far the outer ‘shell’ site moves from the fixed
nucleus site, in order to describe an induced dipole. This simple model has been widely

25,26

used in the modelling of ionic systems™, and in recent times has been implemented into

force-fields for use in modelling water and biological systems®*".

Although the shell model has been used very successfully for a range of systems, it has two
main weaknesses. Firstly, it is unrealistic to describe the polarizability of the charge density
in the region of a covalently bonded atom in an isotropic manner. Charge density will tend
to move along bond axes and to regions where it is stabilised, such as delocalised n-systems
or electronegative atoms, and is less able to move perpendicular to the bonding plane. This
anisotropy will be influenced by the specific chemical environment, which brings forward
the second weakness of this model. If the assumption that atomic polarizability could be
modelled isotropically were sufficient, by what means could the spring constants be
determined? The fitting of empirical potentials to organic structures has runs into
problems of having ill-determined parameters. They may be fitted to experimental

observations either for specific systems or transferred from a more general dataset, in
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conjunction with some repulsion-dispersion model potential, and are rarely derived

computationally to explicitly describe the interaction.

A popular model of polarizability is the Applequist” model, which originally used isotropic
atomic polarizabilities that are semi-empirical and derived from a combination of
experimental and fitted values. This model can also be used with anisotropic
polarizabilities. However, it does suffer from several problems, particularly where it treats
atoms within a molecule as distinct particles which interact with one another through
multipole interactions. Bonded atoms are separated by such a short distances that the

multipole expansion is invalid, and must be corrected for by some empirical means.

Although polarizability models such as these have been used with some degree of success
for systems of ions and the smallest of molecules, it has largely been ignored in larger
simulations such as modelling crystal lattices. This is partly due to the difficultly in
accurately modelling the polarizability across a molecule. The error of using simple models
in complex systems like organic crystal structures could be greater than the differences in
lattice energy, making it more accurate to neglectit. The use of empirically fitted
potentials means that induction energy is already absorbed into the parameters that define
the model, in an average sense. As long as these potentials are used, any model of the
induction energy will include an unknown amount of double counting. There is also a high
computational expense in dealing with the polarization effect, since each site is polarized by
the field due to surrounding sites, which changes the fields within the structure. This in

turn requires the interactions to be recalculated, and so on until they converge.

An improved model would allow for anisotropically polarizable sites, be derived directly

from the molecular properties rather than fitted to available experimental data, and allow
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structures to be relaxed with polarization. A method has been published™* which allows
for anisotropic polarizability terms to be derived directly from a molecular properties
calculation, and may be used with a distributed multipole model. In addition, a scheme has

been developed™*

that allows a repulsion-dispersion model to be derived that is specific to
a system and excludes induction. This would mean that the entire intermolecular
interaction would be calculated with terms derived from the ab initio wavefunction. The
method is described briefly in section 2.4 and full details can be found in the referenced

material. Thus we now have a method of calculating distributed polarizabilities that could

be used in crystal structure modelling for organic molecules.

An evaluation of the importance of the induction energy has been made by the ‘Pixel’
method®. The semi-classical density sums SCDS-Pixel method uses numerical integration
over a crystal structure, in which the molecules are represented by the ab initio charge
density of the isolated molecule. The volume of the crystal structure is divided into units,
‘pixels’, to which are assigned properties relating to nearby atoms. Charge density is
allocated to these units, which interact to give the exact electrostatic energy,” and
polarizability may be modelled by distributing the atomic polarizability over pixels with
charge density associated with that atom.” Difficulty still comes from determining the
atomic polarizability, and how it ought to be distributed. The SCDS-Pixel method allows
the intermolecular interaction energies to be separated into individual components, and has
shown that induction is a significant contribution to the lattice energy in many organic
crystals. Although this method does offer accurate lattice energies, it does not readily allow
structural relaxation to minimize the lattice energy. Hence, it is timely to use distributed
polarizability models to confirm that induction energy could be a significant discriminator
between different organic crystal structures. Distributed polarizability models could then

be implemented into lattice energy minimization codes.
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1.6. The project

This PhD has been part of a collaborative project with Dr. Alston Misquitta at Cambridge.
Under the guidance of Professor Anthony Stone, Dr. Misquitta has developed a method
using SAPT(DFT) and Coupled Kohn-Sham theory”* to calculate frequency-dependent
distributed polarizabilities™*"*""** for small organic molecules. As stated in section 2.2.4
these polarizabilities may also be used to evaluate the dispersion interaction”. Part of the
project has been to facilitate the production of completely ab initio potentials where all
terms are derived from the molecular charge density’”*. My role has been to assess the use
of distributed polarizability models for organic crystals structure prediction. This required
modifying the DMACRYS code to include the distributed polarizabilities, and so calculate the

induction energy of a crystal lattice.

The main thrust of this thesis is to investigate the effects of including the induction energy
in crystal structure prediction, and to implement the model into the lattice energy
minimizer DMACRYS. Chapter 2 outlines the background of calculating interaction energies
for small organic molecules that are the target of CSP, and by describing the polarizability
model of Misquitta and Stone (WSM model). Chapter 2 also includes a summary of the
codes used to research and implement the WSM model. Chapter 3 demonstrates the effect
of using a high quality wavefunction, such as that used to determine the polarizability
model, on the electrostatic energy and therefore relative lattice energy of putative crystal
structures. An improved method™ of determining distributed multipoles from
wavefunctions that include diffuse Gaussian functions is tested, and leads to a change to
the default parameters of the distribution algorithm. Chapter 4 contains details of testing

the distributed polarizability model by using clusters of molecules to represent the crystal

27



environment, and compares the energies from these clusters using the distributed
anisotropic polarizability model with an ab initio calculation of a molecular charge density
surrounded by point charges. The agreement between these two different models gives us
confidence that the polarizability model can represent the charge density polarization of an
anisotropic field in a cluster of molecules and is worthwhile implementing into DMACRYS. 1
use a cluster model to study oxalyl dihydrazide, naphthalene and carbamazepine, and
demonstrate how including the induction energy can improve the relative rankings of
observed polymorphs and reproduce observed charge density polarization. In chapter 5, 1
describe how the rank 1 WSM model is coded in to DMACRYS and validate it against the
cluster models. Chapter 6 presents work where minima from a search for a
polyhalogenated compound used in the most recent blind test C,Br,CIFH,, are treated
using the implemented polarization model with a custom ab initio detived® repulsion-
dispersion potential from which induction effects have been excluded. This leads in to
chapter 7, which discusses the further research necessary to improve the devised induction

model, and to use it while relaxing crystal structures.
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Chapter 2. Theory of Intermolecular Forces

The computational study of intermolecular interactions brings with it the opportunity to
gain new insights into the physical world and the theories that attempt to describe it. It
also allows us to perform experiments using computers that will save huge efforts in
practical experiments to achieve. Intermolecular interaction models are used to simulate
systems such as liquids, nanotubes and protein docking. For crystal structure prediction,
intermolecular interactions are responsible for the thermodynamic stability of the lattice,
growth rates, mechanical stability and other properties of interest. If we can accurately and
reliably predict the properties of crystal structures, we can identify which potential
pharmaceuticals will be difficult to crystallize or which may suffer from converting to
polymorph with different bioavailability. The quality of the simulation is determined by
how accurately the interaction energies are modelled, but these interactions have
anisotropic and quantum mechanical components to them, some of which are not pairwise
additive, so the number of computations required may increase exponentially with system
size. Any simulation must be sufficiently large for meaningful results: molecular dynamics
in a biological system may require molecules with hundreds of atoms interacting in a
periodic system with tens of thousands of water molecules. This makes very high accuracy
in all areas very expensive in terms of CPU time, and so approximations are made which
reduce the simulation time at the expense of accuracy. For crystal structure prediction, we
make the approximation of an infinite lattice, but an interaction radius of 15 A is usually
sufficient for the electrostatic and repulsion-dispersion interactions. This is combined with
a Ewald sum for a periodic lattice, which efficiently accounts for the long-range

electrostatic interactions. Often, models are created for a specific type of simulation, e.g.
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enzyme docking or modelling ice, such that they are accurate for certain properties but
poorly reproduce others, and so a careful selection must be made when designing a

simulation.

This chapter describes the intermolecular interaction models used throughout this thesis.
The quantum mechanical origins of the energy are outlined in section 2.2, and a
formulation for the polarizability tensors in sections 2.2.3 and 2.5. This is followed by a
description of the model potentials used and, where relevant, how they are derived from
their quantum mechanical origins. This is done to establish the spherical tensor
formulation for the models for electrostatic fields and polarizabilities, described by Stone'
and used in this thesis to model the induction energy. Finally, the programs in which the

models are implemented and used for work in this thesis are described in section 2.6.

2.1. Modelling Intermolecular Forces

For an n-body system the interaction between the bodies comprises of many two-body
terms, plus three- and four- up to n-body terms. The many-body expansion of the

intermolecular potential may be written'

UR,R,, - R)=DUPR,R)+ DUR,,R,,R)+--
i<j i<j<k

1
+ YUPR,R,,R,). 2

i<j<--<n

In this expression, R, is the vector describing the position and otientation of molecule 7

and U is the n-body interaction potential of the system. This expansion is exact, but it is
not feasible to calculate all the terms and is only practical if it can be truncated at low order.
Indeed, most modelling truncates at second-order, making the pairwise additive
approximation, e.g. that the energy of three molecules A, B and C is expressed as a sum of

two-body interactions of the pairs AB + BC + AC. Some interactions, such as the
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electrostatic interaction, are strictly pair-wise additive, i.e. only contribute to the U @ term.
The repulsion and dispersion are approximately pairwise additive, whereas the induction
energy is not. Induction is a response of the molecular charge density to the electric fields
due to the surrounding molecules, which modifies the electric fields within the crystal to
cause a further response, and so on. This is implicitly a many-body interaction and is not

pairwise-additive.

Thus, the largest contributor to the lattice energy is usually the leading term,

ZU @(R,,R i), however in solids and liquids each molecule is surrounded by a

i<j

coordination sphere of molecules, whose fields contribute constructively and destructively
to produce the field experienced by the central molecule. In systems where the
electrostatic fields are strong, such as from ions, the #-body terms will not be negligible”
and the higher terms are required. In most organic solids we assume pairwise additivity,
and the induction is included in the empirically fitted model used to describe the short-
range repulsive and long-range attractive forces. By fitting the parameters of such a model
to reproduce experimentally observed properties, the overall effect of the many-body
forces can be reproduced although the ‘repulsion’ and ‘dispersion’ energies will not reflect
their proper interpretations from perturbation theory as they include all interactions not

modelled explicitly.

2.2. Physical Origin and Definition of Contributions

The interaction energy of a pair of molecules can be decomposed into physically distinct
contributions which then lend themselves to calculation with different theoretical models.
This decomposition is most easily seen through intermolecular perturbation theory,

sometimes known as the polarization expansion.
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2.2.1. Intermolecular Perturbation Theory
For a system of two molecules, A and B, the Schrodinger equation of the isolated molecule
Ais'
A A A

(HA-ER s -0, @
and expressed similarly for B. For the dimer, the Hamiltonian may be written

H=H"+H®+AH". 3)
Here the total Hamiltonian is the sum of the isolated Hamiltonians plus a perturbation,

H'. 'This contains the interactions expressed in atomic units:

ZZ——ZZ—+ZZ— Q)

a jea aj igp ﬁj i

where R ; is the distance between nuclei « and B (within molecules A and B respectively);

r; is the distance between nucleus o and electron j; likewise for 'y and r;; are the

separation of the electrons 7 and j (of molecules A and B respectively). In the absence of

the perturbation H' (i.e. 4 =0), the ground-state wavefunction for the dimer is
$o = dede with energy E, = ES + E¢. This is only valid at long-range because the

wavefunction is not antisymmetric with respect to electron exchange between A and B. In
this case, polarization theory is only asymptotically valid and the exchange and repulsive

terms that result in the repulsive wall will be missing from the description.

Using standard Raleigh-Schrodinger perturbation theory the wavefunction and the energy

3 . .
can be expanded” as the following series

=0+ Mg + A g+ ®)

E=E, +AEY +

pol

+ A’EQ 4+, ©6)
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where the interaction energy in polarization theory is defined as
B = Ep +Ep +Epg -, )
and
(H?+2AH")¢ = E4. ®)
The expansion can be grouped in orders of 1; H'9® = EP¢® and H'p@ = E@¢p?

etc., each of which can be examined separately from the others. In Rayleigh-Schrodinger

perturbation theory, the first order polarization energy is written in as

B =({do[H o) ©)
The first-order energy is the expectation of the ground-state wavefunction, which is
defined to be the electrostatic energy. The second order perturbation energy can also be

expressed in this notation:

¢A¢B H!¢A¢B 2
ey 1 (’EL\_E}”

k=0

(8005 [H 8008
’ z E(;B - EIB

10

, (10)
(8002 |Hjoroe )
éEO‘WEf—E,ﬁ—ElB

120

_F®@ (2)
- Eind,pol + Edisp,pol

where £ and /denote the quantum states of the monomer A and B respectively. The
second order energy contains the leading terms for the induction and dispersion energies.
Induction energy is the change in energy between the ground state charge density of
molecule A with a field from molecule B, expressed in terms of the excited states of A, and
vice versa. Dispersion is described in the limits only of excited states on both molecules,
arising from instantaneous correlation between fluctuating charge densities, thus the

perturbation expansion involves excited states in both molecules.
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2.2.2. Electrostatic Energy

The first-order energy has a physical interpretation that can be found by expressing it as the

expectation of the interaction operator

£, =g |1

—E®
¢0>_ Epol' (11)
This is the interaction between two charge densities, so can also be rewritten as an integral

: 3
over each of their volumes

1
Egt)al = IIPA(rl)mpB(rz)drldrb (12)
171

where the charge distribution p,(I;) for molecule A is given by the expression
pA(r):zZag(r_Ra)_pi(r) (13>

The Dirac delta function, & (I’ -Ry ), represents the contribution of the nucleus « at
position KR, with charge Z , and pi’ (r) is the electronic charge distribution of molecule A.
Thus (12) shows that Eélo)l can be defined by the interaction of charge densities of the

isolated molecules. This term is very orientationally dependent for non-spherical molecules

and so plays a major role in determining the structure adopted by the solid state.

2.2.3. Induction

As seen in equation (10), the term for the induction energy is part of Efﬂ and is given by

the expression

(2) _ (2)
Eind - Eind,poIA<—B + Eind,poIB<—A’

(14)
where E{3 5 gis the induced energy of A in the field of B, and sice versa (A <> B). Using

Rayleigh-Schrédinger perturbation theory this is expanded to
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I s S R
ind — EkA_EOA _Z EIB_EOB ,

k=0 10

which comprises the first two terms of equation (10). The first term involves the ground

state charge distribution of B that produces a field, causing a change in the charge
distribution of A (described by the excited states @), which interacts with the field to

provide a lowering of the energy. The second term is the same, but that it is the charge

density of B that responds to the field produced by the ground state of A.

In reality the effect does not stop at this level: it is intuitive that the change in the charge
density of A will result in a change in the field experienced by B, and hence the charge
density of B will change in response, changing the field experienced by A, and so on until
the effect of induction is converged. This effect would be instantaneous between all #
molecules and occur as the crystal was constructed. Each of these iterative interactions is
accounted for by increasingly higher orders in the energy expansion, but here the leading
term for the induction energy is only the initial interaction between one molecule in its
ground state and the perturbation of the other, as modelled by a superposition of excited

states.

Each region of the molecular charge distribution has a characteristic susceptibility to an
applied field which can be expressed in terms of a frequency-dependent density

susceptibility (FDDS):*

E}-EX
an(r,rho) =2y k0

(s
k=0 (Ef - E(;A)z _wz\

RO

(15)

Pa(r)|ds). (16)
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This describes the linear response to a frequency dependent perturbation, where

par) = 25 (r —r,) is the electronic charge density. For static polatizabilities, @ =0

acA

and the expression cancels to

(r)|¢a)

aA(r,r';0)=22<¢0 A (r)‘ZkA><¢|;AA
k=0 k — -0

, a7

and so the induced energy of A due to the field of B can be written’ as a double integral of

the molecular charge densities and the FDDS:

N \<¢o¢o\“\¢k¢o>\ Y NG TG NG P

E® —
ind, A«B oo E/.\ |r _rul

This relationship is developed into a model intermolecular potential in terms of distributed
polarizabilities in section 2.5. The major aim of this thesis is to test and implement this
model derived and tested by Misquitta & Stone for van der Waals dimers of small
molecules.”™ The implementation will allow the induction energy of crystal structures of

small organic molecules to be calculated and iterated to self consistency.

2.2.4. Dispersion!

Dispersion is a universal attractive force with a purely quantum mechanical origin, and
cannot be described by classical physics. It arises from the instantaneous correlation of
fluctuations in the charge densities. The zero-point motion of electrons in one molecule
creates a temporary dipole which induces a correlated dipole in the neighbouring
molecules. In terms of perturbation theory, this concept can be expressed by the equation
(8008 [ o008
s =2, E) Ef+EE-EP

k=0
10

U (19)
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Notice that in this expression the charge densities of both molecules are described by a
mixing of excited states, whereas only one of the molecules distorts for induction.
Equation (19) resembles the form of the induction energy (15), and hence could be
expressed as a product of the FDDS (16), except that the denominator contains terms for

both molecules. This problem can be solved by using the mathematical identity

1 27 AB
E_I 2 2\/ Q2 2 dv
A+B 7w (A" +Vv)(B°+V7)

(20)

used by Casimir and Polder’. Following the work of Misquitta, equation (19) can now be

written

U ¢O>da)

2% o (00 [H ) H 0 EG 5 ES(¢5 |H|4° ) (9°[H"

disp = 2 2
TG kpn0? (Elfo —602) my=0" (E|% —602)

(21)

:_iIaA(rl,rl';ia))aB(rz,l’z';ia))da)
2r

where Ef = E* — EZ'. Dispersion is therefore the product of the molecular

polarizabilities integrated over imaginary frequencies, which is a difficult concept that arises
from the mathematical derivation. The well-behaved nature of polarizabilities at imaginary
frequencies, which decrease monotonically from the static polarizabilities at @ = 0, to zero
as @ —> o means that the functions are easily evaluated with numerical quadrature

techniques'.

2.2.5. Exchange-Repulsion!

The exchange and repulsion energies are of opposite sign, but they both act at short range,
and are usually modelled together as a single repulsive function. The repulsion part comes
from the Pauli exclusion principle, which forbids electrons of the same spin to occupy the

same space. The exchange part comes from the indistinguishable nature of electrons that
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allows them to exchange between molecules. Long-range perturbation theory fails at short-
range when the charge distributions overlap due to the lack of correct antisymmetrization

in the wavefunction ¢, which neglects the indistinguishability. This can be corrected using
an antisymmetrizer, 4, in the perturbation theory, now called Symmetrized Rayleigh-
Schrédinger (SRS) perturbation theory’. The #th order correction to the energy in SRS is
defined as:

EM _M

KRS ) 22
(o] o)) “

and the #th order exchange energy is defined as the remainder of this and the polarization

energy, i.e.:

E(n)

exch

_ M (n)
- ESRS - Epol .

(23)

Further details may be found in Ref. °. The major part of the exchange energy appears in

E® . At second-order, the exchange analogues to the induction and dispersion energies
can be defined as: EQ), . and Eéfc)hfdisp. Higher-order terms are usually neglected.

2.2.6. Other Short-Range Terms

Additional interaction at shorter intermolecular distances are penetration, charge-transfer
and also a damping of induction and dispersion interactions. Penetration arises at short
range as the difference between the true electrostatic energy of the overlapping charge
distributions, as in (12), and the long-range model, such as distributed multipoles, that
neglects the extent of the charge distribution. It is additive, usually attractive except at very
short distances, and decays exponentially so is usually absorbed into the exchange-
repulsion terms for modelling. Charge-transfer describes the transfer of electron density
from high energy occupied orbitals on one molecule to the lowest unoccupied orbital of

another. This term is non additive and is always stabilising to the structure, otherwise the
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electron density would not transfer. It must be small or it would describe a form of
covalent bonding and so intermolecular perturbation theory would no longer be valid.
Damping is a corrective factor to account for the exchange-induction and exchange-
dispersion, which are the differences between calculating the induction and dispersion
interactions with exchange taken into account, and calculating them using the non-

expanded long range approximation.

2.2.7. Summary

At long range the intermolecular interaction energy comprises of electrostatic, dispersion
and induction terms, which can be modeled using the properties of the isolated molecule’s
charge density. At short range, the interactions are due to the overlapping molecular

charge densities and cannot be modeled analytically from perturbation theory.

When deriving model potentials to use in simulations, we can use these theories to get the
electrostatic term relatively easily as described in 2.3.2. This thesis is concerned primarily
with the evaluation of the induction energies using atomic polarizabilities"® of the type
described in section 2.4. The polarizabilities that are used for this are also used to calculate
dispersion®'’, and allow for model interaction potentials to be fitted to computational data
that are specific to a particular molecule, rather than using a large number of crystal

structures and fitting to experimental observations.
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2.3. Model Intermolecular Pair Potentials

2.3.1. Currently Used Empirically-Fitted Model Potentials

At the start of this project, the interaction model generally used by the Price group for
crystal structure prediction consisted of an electrostatic model from a routine distributed
multipole analysis (DMA, desctibed in 2.3.3) petformed on an MP2/6-31G(d,p)
wavefunction calculation of the isolated molecule, plus an empirical potential which
nominally represents the ‘repulsion-dispersion’ interaction but includes all other terms
which are absorbed into the pairwise additive approximation of using an atom-atom based

exp-6 function:

b
U(R,Q)Z z (AAK)%eXp(_LZBK)RWJ_%, (24)

1eM keN K
where 7 and £ are the atoms of molecules M and N, and tand k refer to the atom types of
7and 4. This ‘FIT” potential had been derived by fitting the parameters of the function
such that known crystal structures were reproduced in conjunction with the electrostatic
model'"'”. As such, all non-electrostatic interactions and the penetration energy are
absorbed into this functional form. This potential is limited to C,H,N,O atoms?, although
some terms for CI" and Br'* have been determined for use in some specific applications.
Hence the induction energy was included only in an average way into the model potential,

by the empirical fitting.

2.3.2. Electrostatic Models

Intermolecular interactions of organic molecules are usually dominated by the electrostatic

force, so there is a need to have a computationally efficient model of the molecular charge
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density that can represent the non-uniform distribution around the molecule. This is
usually done with multipole moments, which express a non-spherical charge distribution by

an expansion of charge separation.

2.3.2.1. Cartesian Definition of Multipole Moments'

Total charge is the zero-order multipole moment, defined as q = Za €, , where ¢, is the

charge on particle 4, including all nuclei as well as electrons. The first-order moment is the
dipole; the separation of two equal and opposite charges along a vector, such as in

hydrogen fluoride. This can be expressed similarly as':
Ao =28 (25)
a

where r, is the vector position of particle «. Being an operator, the expectation value can

be found in the normal way:

ta = (0|0g|8) = [ pnM)rg pn)dSr (26)

where o is a Cartesian axis x, y or z. The next in this series is a quadrupole, such in the

molecule N, which is defined as':
~ 3 1.
O, =Zea(§rarﬂ -l 5[4,} 27)
a
The quadrupole definition has two properties of note. Firstly it is traceless, so that

0, +0,,+0, =0. Secondly, it is symmetric with permutations of the indices

(0, =0,,) hence there are only 5 independent components. The next multipole,

octopole, is defined as eight charges arranged in a three-dimensional array. Higher order
multipole moments than this are outside of this implied three-dimensional analogy, but

moments of rank n can be generalised as
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0 0 o (1
(n)A = - 2n+1 - 28
Sapn =)' z or_or. or [ J (25)

aa ap av ra
This definition is not changed by any permutation of the suffixes, and is traceless for any
pair of suffixes. As such, a multipole moment of rank » has 2#+1 independent

components, the same as the number of spherical harmonics of rank 7.

2.3.2.2. Spherical Tensor Definition of the Multipole
Moments'

For many applications the spherical tensor formulation is more convenient to use than the

Cartesian.” The expansion of 1/r,, for interacting sites can be written in the form

ﬂ/;

1
r =1

= Zﬁ(_l)mcl,—m(e ,01)Cin (02, 9,) (29)
Im

In this expansion 7. and . are the smaller and larger of the two distances respectively, and

C are spherical harmonics. If the terms are defined asr, = A+ aand r,= B + b, where A,

B are the vectors describing the centre of mass of molecules A and B, and a, b are vectors

describing their particles relative to the centre of mass (see Figure 1), the expansion can be

rewritten as

o |

|R+b al =2 2 (DR (@=D)ln(R) (30)

where R

h-m

(t) and [, (1) are regular and irregular spherical harmonics, resepectively. This

expression is only valid for R> |a— b| . Using the standard addition theorem for spherical

harmonics, and by introducing the multipole moment operator’ Q,A(G) = z e,R, (@), the
acA

perturbation may be expressed in the following form using Wigner 3/ symbols:
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47'[80 acAbeB R“r‘b a|

S ((2|1+2|2+1)!j“2

47ng e (2,)!(2,)!

I [, 1, +I
x zea Rilrrh (a)z eb R12m2 (b)l I1+I2,m(R)(rn11 ? ! " Zj (31>

acA m, m
Ty )I{(2|1+2|2+1)!j“2

47ng o (2,)!(2,)!

I [, I;+]
X Q|A(G)Q|B(G) | |1+|2,m(R)(rr1]1 2o Zj

m, m

The superscript G in this expression refers to the fact that this is in the global coordinate
system. The molecular properties are usually defined prior to knowing its orientation in the
global axies, and these may be expressed in a local axis system fixed in the molecule by

means of the transformation

A0 => Q9D (@), (32)

for which € is the rotation between the global and local systems, and Dy, (€2) is the

Wigner rotation matrix for this rotation. The perturbation may be written in this local

frame, for which the superscript L is dropped:

| +I kK. —I-1,-1
ZZ( ! lelelzszszlszR R (33)

" s 0 1 gk

The distance dependence is given by R. The relative orientation of the two molecules A

12

1, term. These functions become the interaction tensors, T, and

and B is given by the §

are tabulated by Stone.'® The multipole moment operator still contains complex spherical

harmonics, but may be transformed to real functions using the identity

Q= Z X« Q « where X,  are the transformation coefficients. The perturbation may

then be expressed more simply as
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H'= thATtuA BQAUB > (34)
t

The interaction tensor T,*° is the spherical tensor form, and includes the relative
orientation of the local molecular axis systems. The subscripts have been condensed into a
single index, 7 or #, which take the values 00, 10, 11s, 11c, 20, 21s, 21c, 22c, ... . Where #and
u are 00, i.e. interacting charges, then T, is simply 1/R,;. For higher ranking multipoles

the tensor is more complex; for interacting dipoles it is

32y +Cyp
Tiap - R (35)

where I?is the directional cosine, the component o of the unit vector in direction from @
to b, expressed in the local axis system of @, and similarly for I’; . Cp is the dot product of

the unit vectors that define local axis systems for sites z and 4.

Substituting (34) into (11) leads us to an expression for the electrostatic energy in terms of
multipole moments that is:

S <¢0 ‘QAtATtuA BQE
=2 QT Q)
tu

b )
(36)

The electrostatic energy is therefore calculated by summing over the interaction between

the multipole moments.

Figure 1: Defining the position vector s of interacting molecules A and B (molecular centre of mass),

and chargesaand b within the molecules, relativeto a global origin.
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2.3.3. Distributed Multipole Moments!

It is possible to represent the electrostatic potential around a molecule by an expansion of
multipole moments about its centre. At long range this is exact, since the charge
distribution appears approximately spherical as the distance approaches infinity. At shorter
range the anisotropic nature of charge density is more apparent, which is not easily
represented by a central multipole expansion. A better representation is a multiple
expansion about several sites in the molecule, so as to represent, for example, the lone-
pairs on oxygen at one end of the molecule and a methyl at the end of a hydrocarbon chain
at the other, by different multipole moments on the oxygen and carbon sites, respectively.
This multi-site multipole description can be achieved with the distributed multipole
expansion, where the molecule is divided into discrete regions, usually each atom, each with
its own expansion. Such a scheme allows the electrostatic interaction of the multipoles to
be calculated for short intermolecular distances. In the central multipole expansion, a
sphere of divergence centred on the multipole site encompasses all of the electrons in the
molecule. Where these spheres overlap, as in most crystal structures due to the close
contacts, the multipole expansion is not valid, and is slowly convergent where the spheres
are in contact. With the distributed description, a sphere is centred on each multipole site
and has a radius determined by the charge distribution being represented at that site. This

allows molecules to be much closer and in a greater range of orientations without any of
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the spheres overlapping (Figure 2). This need for distribution to interaction sites fits in
very well with the atom-atom approach to the intermolecular potential. The interaction
sites, which are normally the nuclear sites, will be denoted 2 and 4 from here after, to be
consistent with traditional notation in the theory of intermolecular forces applied to pairs

of molecules.

Distributed moments may be determined in a number of ways, and may be derived from a

computational analysis of the charge density or by fitting to experimental data. However,

measuring multipole moments experimentally' ™" is challenging and the data is insufficient

to recommend any particular distribution of multipoles across specific sites'.

Figure 2: Spheresof divergencefor the (a) central and (b) distributed multipole models. The
molecular orientations are the same in each case, but in the central model the spheres overlap and
the multipole description does not converge, whereasthe spheresin the distributed model do not

overlap.

@) (b)

A systematic way to determine the distributed moments is by the distributed multipole

analysis (DMA) of Stone™. This approach uses the way in which we express the molecular
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wavefunction in terms of Gaussian functions, which are usually centred on the nuclei. The
charge density involves the sum of products of these functions, which are also Gaussian

functions centred on a point between the sites from which they are a product:

exp[-a(r —a)*]exp[-B(r -b)*] = exp{— aafﬂ (a- b)z} expl~(a +B)(r-p)°1, (37

where p is a point (xa+fb)/(x+8), about which the product is centred between the points
a and b which are the centres of the original functions, usually the atomic nuclei. A
multipole expansion can represent this function at p, and moved to the arbitrary site X with
the formula

%
L&+ m)l-m
Qu (X) = Z Z ( j(k B qj X Qq(PIR_mq(X—p), 38)

as used by Stone”.

The position to which the expansions are recentred at must be chosen by some means, and
one method is to simply move the moments to the nearest” multipole site (usually a
nucleus). This is very computationally efficient, but has been shown to be very dependent
on the basis set used. It will produce unphysical moments with increasing basis set size™
due to the presence of diffuse functions that may be used to describe special regions far
from the site about which the function is centred. A recent improvement to this method
has been to implement a real-space partitioning scheme that integrates the electron density
at points on a grid around the atoms™. This density due to the tails of diffuse functions is
then allocated proportionally amongst atoms to which it is nearby. This modified method
of determining multipoles is tested as my first investigation in chapter 3. Since the
development of the polarizability model requires larger basis sets with diffuse functions, it
is important for the multipole moments to be consistent with changes in basis set, and

physically relevant to the atomic type and local environment.
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2.4. Polarizability

The charge density around an atom or molecule is not static, but responds to external fields
that attract or repel the electrons. As well as multipole moments calculated for a molecule
with no external fields (static moments), moments can be calculated for the induced density
distribution due to a field. The induction energy is defined by (14) and (15) which can be
interpreted as induced moments on molecule A interacting with the static moments on

molecule B, and vice versa.

The advantages for using a distributed multipole-moment model for organic molecules
apply also to the polarizability. The anisotropic nature of the charge distribution is more
accurately described, as electrons have more freedom of movement in some regions of the
molecule than others. The Raleigh-Schrodinger perturbation expressions for the second-
order energy from (10) can written using the spherical harmonic multipole expansion' and

site-site polarizabilities by

(O Qv m(n [ Qv.10)
£ --Y —= i

=0 E,-E (39)
= _% zvtaatibvub
abtu

where the polarizability tensor is given by

o 5 OQIICE[0)+ (O mrir]0) w0

n=0 En - EO
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2.4.1. Calculation of Distributed Polarizabilities

The frequency dependent polarizabilities for real eigenstates are defined in (16) in terms of

the charge distribution of the whole molecules. If p,(r) and pg(r) are replaced by the

multipole moment operators QtA and QUB respectively, the frequency dependent
polarizabilities can be found by integrating over space using the frequency-dependent
density susceptibility (FDDS) from equation (106):

(@) = [[a(rro)QA Qs (r)drdr, (41)
The FDDS comes from the equations of coupled Kohn-Sham (CKS) theory™*, in the

form'

a(r,r'l@) = Y Cyiv (@)¢, (N, ()¢, (e, (r') . “42)

iv,i'v'
In this expression ¢, is a molecular orbital, with the subsctipts 7/ and i’ (» and »”) labelling

the occupied (and virtual) orbitals. C,, ;.. (@) is a coefficient defined by the electric and

magnetic Hessians of CKS theory””. Now equation (41) can be recast as

Lyt (@) = 3 Ciyyor (@) [ Qu (1), (AT [ Qe (1) oy, (1) (43)

where p,, = @@, , and the multipole moment operators have been replaced by their

equivalent of real spherical harmonics.

Some manner of partitioning scheme is required to obtain polarizabilities for individual

sites, and this is achieved by using density-fitting to expand the orbital products, p,, , in

terms of an auxiliary basis set { y} ={ 1%, 2",..}, where { ¥ ®} is a set of basis functions

centred on site @, etc. Hence the transition density is approximated by

Eiv(r) = Z zDiv,pxp(r)

a pea

44
M “
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where pa(r) is the contribution of the auxiliary functions of site @ to the sum, and D, pis

a coefficient determined by fitting.

When the density is partitioned in this way, the FDDS can be approximated similarly:

a(r,r'lo)=> a™ ('), (45)
ab
where
(o) = > Co@)x, )z, (), (46)
pea,qeb

and the coefficients are transformed as

Cpq (CO) = z Div,pciv,i v Di',v‘,q . (47)

iv,i'v'

By substituting (45) into (43), the distributed polarizability for sites (a,b) is

02 (@)= Y Cop(@)[Qulr ~a) 1, (NI Qe (b (r)dr.  (48)

pea,geb
To obtain a basis-independent and meaningful distribution scheme, a constrained density
fitting procedure® is used that forces auxiliary basis functions centred on a site to describe
the density local to that site only: an over-complete description of a system, using functions

on one site to describe regions at distant sites, is a known problem in quantum chemistry™.

2.4.1.1. Localized Polarizabilities

Distributed polarizabilities consist of many non-local terms that describe the response of a
wavefunction to a perturbation in one region, and the subsequent change elsewhere of the
charge density because of this. Calculation of the induction energy for a large system
involving these cross-site terms will be computationally expensive and, because each term
refers to specific sites in the molecule and their relation to each of the other sites, they

cannot be used as an approximation for other systems. By localizing these terms, each site
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has a polarizability that describes how it responds in the specific environment it is in, but

not explicitly linked to other atoms in the molecule.

It is possible to transform the cross-site terms so that they refer only to one site,
incorporating the response of the density to the field at that site, and that due to the
response of the site’s neighbours. One example of such a scheme has been developed by
Le Sueur and Stone”. This approach retains the overall molecular polarizabilities of the

molecule, although the convergence of the model is degraded when polarizabilities are

shifted.

The procedure works by representing the response at site » due to a perturbation at site 4’
by instead the using sites « and «’. The field at 4 is expressed by a Taylor expansion about

a, and the induced moments at 4’ by a multipole expansion about «*

% %
s a | (24D (2, +1)!
i, iy, = () {(2|b)!(2|a—|b)!} {(2|b.)!(2|a.—|b.)!} )

b
XWim tam, (Fa =T W m, me (Tar = T0) @, sy,

Wim (1) = (—1)”“(

I N
m—m m H_DR(l—l')(m-m')(r), (50)

where R, (I)is a regular sphetical harmonic. By choosing « = a’ the polarizabilities

b

b
albmo Hpmy: >

referring to two distant sites, can be removed and replaced instead with a set of

polarizabilities a’,, i.e. now referring to only one site. For this procedure to be

a
am, >
effective the polarizabilities should not be moved too far ( |r, — r,| must be small) to retain

the convergent properties of the multipole expansion, and restrictions must be placed to

ensure the total charge is conserved:

57



DOm0 =0. (51)

acA

These charge conservation rules are detailed by Stone”, and fully implemented into the
localization routines of ORIENT, which applies the procedure of Le Sueur and Stone®’ that
preserves the charge-flow polarizabilities, and additionally tests that they have indeed been
kept to. During the course of this thesis other localization methods have been developed

and implemented in the WSM scheme®.

Localizing the polarizabilities inevitably has the effect of reducing the accuracy of the
model. The final stage in the WSM method is to fine-tune the localized polarizabilities to
reproduce a set of point-to-point polarizability data generated by the SAPT(DFT)

calculation®,

2.4.2. Induced Moments and Induction Energy

By using the localised polarizabilities in a distributed multipole formulation, the induced
moment multipoles on a polarizable site can be calculated and these can then be used to
calculate the induction energy. The induced moment is the product of the electrostatic

tield and atomic polarizability
AQ! =aV?, 52)
and subsequently, the induction energy is the product of the electrostatic field and the

induced moments,

Eing :zz AQta ta' (53)

acA t

Solving these equations once will give the first-order induction energy.
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To recover higher order contributions then equation (52) must be solved again using
contributions to the field from both the static and induced multipole moments. The
calculation is iterated so that each molecule responds to each other, until the induced

moments converge and there is no further change in the induction energy.

2.4.3. Damping Close-Contact Interactions

The charge densities of individual molecules will overlap slightly in organic crystal
structures, especially where hydrogen-bonding gives rise to intermolecular distances that
are less than the sum of the relevant atomic van der Waals radii. In these instances there
will be some contribution to the interaction from exchange-induction, resulting in a
damping of the induction energy as calculated using the atomic multipoles and
polarizabilities. When applying the iterative procedure, the induced moments will be slow
to converge where the separation between sites is small, and in some cases will diverge
rapidly. A damping function is used in an attempt to compensate for the divergence of the
multipole expansion although little is known about damping functions for induction’. We
use a Tang-Toennies damping function, which has been used to damp multipole
expansions of the dispersion energy. Studies on molecules including water, formamide and
benzene show that it does not correct fully for the limitations of the multipole model,® but

no better form has been proposed. The Tang-Toennies damping function has the form®

fn(ﬁRab)=1—(Z (BR.) j p(-AR,). (54)

where 7 is the sum of the ranks of multipoles # and ». It has been effective in reducing the
singular behaviour of the induction energy when inter-site distances are particularly short.”

The damping expression is used in the calculation of the induced moments, using
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B =221, ,where | is the first vertical ionization potential of the molecule in atomic

units’.

The damping has to be applied in an atom-atom form using the parameter derived for the
whole molecule, which is a simplistic extrapolation from studies on small polyatomic
systems.” A damping parameter based on the specific atom-atom interactions would be
preferable, and could be implemented into the scheme described in this thesis if they could
be determined. This thesis is evaluating the induced moments and induction energy in
crystals of larger molecules than those used to develop the WSM distributed polarizability

model, including strong hydrogen bonding and halogen groups.

2.5. Non-Empirical Potentials

The rationale behind non-empirical potentials is to improve the quality of chemical
simulations by using functional forms and parameters that are derived from chemical
theory, rather than from experiment. As previously mentioned, empirical models such as
the Williams potential, will have absorbed the damped induction energy along with other
terms into the repulsion-dispersion functional form. Such potentials can be very effective:
they are quick to evaluate, the parameters come from a database of values, and for crystal

structure prediction there have been many successes using empirical potentials.

By moving to model the induction energy explicitly for organic crystals, it must be removed
from the generic repulsion-dispersion model. This cannot be done without re-determining
all of the parameters. It would also require an experimental way to validate the

contribution to the lattice energy due to induction. Alternatively, we can look to the theory

and use accurate ab initio calculations to develop functional forms and parameter sets for
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every contribution to the intermolecular potential. Ideally these would be determined for
each system studied. Using the specifically designed potential should give much more
accurate results than an empirical potential for a given system. Such potentials have been
used in the past for crystal structure prediction of chlorobenzenes®™, oxalic acid™ and of
some amides”', where the effects of induction have been assumed to be negligible when

comparing polymorphs.

2.6. Programs Used in this Thesis

The following subsections describe the main codes used for testing and development in
this thesis. Due to the collaborative nature of the research group, a number of other codes
are referred to in the text when describing the methods used to generate the data I then
work with. These codes are listed in Appendix A. Any subroutines or functions that I
have written or significantly modified, along with some utility codes I have created to

reformat the output of one program for input into another, are listed in Appendix B,

2.6.1. Cluster Calculations and Visualisation: ORIENT

ORIENT” is a program written to carry out calculations on systems of interacting
molecules, clusters and surfaces. It implements a site-site potential to calculate the
electrostatic energy using a sum over interacting multipole moments as in equation (36), up
to R®. ORIENT also implements an atom-atom exp-6 repulsion-dispersion potential, and
induction interactions using distributed multipoles and atomic polarizabilities described in
section 2.5, including damping. The program is designed to model small clusters of
molecules, and includes non-central forces and torques resulting from interactions.
Molecular properties are defined in a molecule-fixed axis system, and whole molecules and
their properties are translated and rotated about their centres of mass using Cartesian

coordinates and Euler angles to create systems and clusters. A full description of
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capabilities of ORIENT can be found on Stone’s website.”” Equations for energy, interaction
tensors, distributed properties and molecular rotation are given in Stone’s book.' A key
feature is that ORIENT already supports anisotropic, distributed atomic polarizabilities to
calculate induction energies, and to iterate the calculation. However, the code was only
intended for work with small clusters of molecules. Some modifications were made

ORIENT to allow the scaling up to the large clusters I have used in this thesis.

Throughout this thesis, ORIENT is used to calculate the interaction energy, including
induction if polarizabilities are provided, of large clusters of molecules generated from the
crystallographic cell. These clusters are used to validate the coding of the induction energy
into DMACRYS, by comparing the electrostatic interaction energies of the crystal and the

cluster approximation, and induced moments which arise in each case.

ORIENT also provides a facility to produce interactive 3-D plots of a van der Waals surface,
showing the electrostatic potential due to the distributed multipole model. Van der Waals

radii are defined as those in ref * and polar hydrogen sites (H-N and H-O) have a radius of
zero™. Plots of the electrostatic and induction energies, using a +1 point charge as a probe,

are produced in this way throughout this thesis.

2.6.2. Lattice Energy Minimization with Anisotropic Atom-Atom Potentials:
DMACRYS

DMACRYS, formerly DMAREL, is a lattice energy minimization code that has progressed

from working with small rigid polyatomics to complex molecular crystals. It is this code

that my work has been primarily concerned with adapting, so that induction energies for

molecular crystals may be evaluated. It works with rigid-body molecules in an orthonormal
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Cartesian axis system, using distributed multipole moments and an exp-6 repulsion-

dispersion model potential to calculate the lattice energy, forces and torques.

It takes as input SHELX or FDAT files that contain cell parameters and fractional
coordinates for atoms in the crystallographic asymmetric unit cell, as well as a set of
symmetry cards that relate to the crystal space group. This is interpreted by the utility
program NEIGHCRYS, which generates the input file for DMACRYS, including all molecules
generated by symmetry elements present in the cell, using a defined axis system. Rigid
molecules are defined from the atomic coordinates using a maximum length of a covalent
bond in the molecule, and the user defines the molecule-fixed axis system using three
atomic sites: two to give the x axis, and a third to define the xy plane, assuming that the z
axis will complete an orthogonal, right-handed system. Internally, the program defines that
the global z axis lies along the crystallographic ¢ axis, the global x axis is parallel to the
reciprocal « axis, and the global y axis is defined to give a right-handed orthogonal set.

The relation between the molecule-fixed axes, the crystallographic cell axes, and the global
internal axes is shown by Figure 4 page 70. Once the molecule-fixed axes are chosen any
molecular properties which depend on the axes (i.e. multipole moments and
polarizabilities) must be calculated in the same axis system centred about the molecular
centre of mass in order to be compatible. Where a molecule in the cell is generated by an
inversion operation, it is necessary that the right-handed axis system is maintained in order
to calculate the intermolecular interactions, forces and torques. The result of maintaining a
right-handed convention is that some molecular properties (i.e. multipole moments and
polarizabilities that are odd powers of z in the spherical tensor operator) must have a

change of sign for molecules generated by an inversion operator.
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NEIGHCRYS also collates the required terms for the exp-6 repulsion-dispersion potential
from a database. It is able to identify the atomic types by their bonding environment; for
the simple FIT* potential this is just the basic atomic type, except for hydrogen where it
distinguishes between H-O, H-N and H-C hydrogen atoms. It also includes the more
complex Williams (WILLO01)* potential, which has different types defined for more
elements, as well as shortening the covalent bonds to hydrogen by 0.1 A to correct for the
discrepancy between the measured position of the electrons by X-ray diffraction and the
actual position of the hydrogen nucleus. If neither of these schemes is sufficient to
distinguish different atom types, it is also possible to provide a customized list of atomic

types, which would be used for custom made or @b /nitio derived potentials.

Intermolecular interactions are calculated in direct space up to a cut-off distance (usually 15
A by default) using distributed multiple moments up to /=4 (hexadecapole) and repulsion
dispersion potential. Electrostatic interactions are summed up to the limit R” and long-
range electrostatic interactions, i.e. charge-charge, charge-dipole and dipole-dipole, are
summed over direct space within the cut-off sphere and also additionally subject to an
Ewald summation over reciprocal space, which includes the non-negligible contribution to

the energy from the long-range interactions.

DMACRYS calculates the non-central forces, torques, and second derivatives, which are due
to the multipole interactions. The forces and torques are transferred to the molecular
centres of mass and used to determine the strains on the rigid molecules, with the result of
determining translation or rotation of the molecules they may be subject to. The change in
the crystal structure is expressed as a vector, 8, which comprises of the six rotational and

translational components of each molecule in the unit cell, and six strain matrix elements.

64



Using this information it is possible to express the intermolecular lattice energy as a

function of a small change in the lattice parameters using a power seties:

U(r'):U(r)+6T.g+%6ToW06 (55)

where gis the vector of first derivatives, and W' is a matrix of second detrivatives, which
can be calculated analytically. Using this equation the displacement from the equilibrium is
estimated using & = —W ™ - g, which gives the search vector to a modified Newton-
Raphson algorithm that minimizes the lattice energy. For the minimization procedure the
second derivative matrix is only calculated periodically, and is updated using an algorithm
to save computation time. Once a stable minimum is found the matrix is recalculated
explicitly in cases where the derivatives are required for determining properties of the

structure, such as the £=0 rigid body phonon frequencies.

2.6.2.1. Ewald Summation

Lattice summations take the form of 1/1". Where n > 3 these sums are absolutely
convergent, otherwise they are only conditionally convergent, i.e. the result depends upon
the order in which the terns are summed and surface properties of the crystal. The
conditionally convergent sums consist of the charge-charge (n=1), charge-dipole (n=2) and
dipole-dipole (n=3) interactions, which are implemented in DMACRYS using Cartesian
coordinates, and the charge-quadrupole (n=3) interaction is also conditionally convergent

but is not included in the DMACRYS Ewald summation code.

The Ewald method uses a reciprocal space sum that is computationally more efficient. The
electrostatic potential at a point in space, t, due to an infinite lattice of point charges is

given by the expression:
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; (56)
+47r8O ] BO(‘rJ r‘)
where
A(k):{k—lz exp(—k*/4£%), (57)
1
Bo(u)z{a}erfc(gu), (58)
erfc(&u) = iﬁj; exp(—2)ds. (59)

In these formulae, N is the number of point charges in the unit cell, & is the Ewald
convergence parameter that determines the weighting of the reciprocal space part included

in the sum through the function A(k) , V', 1s the volume of the unit cell and k is the

reciprocal lattice vector. This system may be adapted for point charges and dipoles by

employing the operator
M =C -D -V. (60)

The application of this operator leads to the expression

VE(r)ZV:L iA(k)Z:‘:(Cj—iDj.k)exp(—ik-(rj-r))

o€ 0 k=0
, (61)
1 &
+4nsozj:(CjB°(‘ri 'r‘)_DJ (r 'r)Bl(‘ri r‘))
where Bl(‘r =T ‘) is derived from the recurrent formula
B (u)=i (2-1)B (u)+@exp(—§2u2) (62)
U2 -1 é\/; :

The energy of the system, per cell, is therefore
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G;i are scalar functions defined in **, and the final sum over ¢° is a correction for the self-

interaction of sites. The first sum, which is over the square of the modulus of the
reciprocal space terms, is difficult to factor out into individual contributions to the energy
at a site for the purposes of damping. Testing has shown (section 5.1) that the
contribution of the Ewald sum to the induction energy is small, and so the field

contributions due to charges and dipoles are summed over direct space only, as for the

higher multipole interactions.

2.7. An Explicit Example of Molecular Properties for Calculating

Electrostatic and Induction Contributions to the Lattice Energy

Figure 3: (E)-4-(Trifluoromethyl)benzaldehyde oxime, with the molecule-fixed axes shown.

Hs Ha2 H1
F3 C c/ N o/
Fo . 3——=\L2 1— W1
< \ /
C8-C4 UI_C{
/ \ / \
F1 Cs5—C H7
Hs He

I use (E)-4-(Trifluoromethyl)benzaldehyde oxime (ADEJUP” with the minor component
of the CF; disorder removed) (Figure 3) as an example of a small molecule with a large

degree of planarity, with a CF; group that places atoms out of the plane. Molecular
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properties were calculated by CamCASP using the PBE0O-AC/Sadlej charge density for the
experimental molecular structure, hence the atoms are not truly planar, and the method is
described fully in Chapter 4 and the references therein. The refined rank 1 polarizabilities

are shown in Table 1, tabulated to show only the 6 independent components.

The choice of axes places the ring in the xy-plane, defining the x-axis along C8 — C1 with
C3 to define the xy plane. As such the polarizabilities in x and y (11c and 11s) are the

dominant terms in the polarizability tensors. The crystal is in the P2,/c spacegroup, and
inversion operation requires some of the off-diagonal terms to undergo a change of sign,

which are italicised in Table 1.

The fluorine atoms lie along the x-axis. F1 is in the xy plane and has the greatest
polarizability in the y direction, then x. Of the off-diagonal terms, xy, i.e. along the bond
direction, is significantly larger than the xz or yz terms. For F2 and F3, the greatest
component is in the z-axis, reflecting their position above and below the plane of the
molecule, and so the zx and zy off-diagonal components are relatively large. The hydrogen
atoms also have relatively large xy terms since they are polarizable along their bond axis.
Most of the larger polarizability values can be rationalised by charge density moving along

the direction of covalent bonds.
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Table 1: Independent polarizability tensor componentsfor (E)-4-(Trifluoromethyl)benzaldehyde
oxime. Diagonal componentsare listed in thefirst three columns, followed by the off-diagonal

components. Those componentsthat undergo a sign change with inversion areitalicised.

Polarizability tensor components / ag>
a(10,10) a(l1c,11c) a(11s,11s) a(10,11c) o(10,11s) a(l1s,11c¢)
C1 3.12 17.27 12.99 0.52 -0.34 -6.5
Cc2 4.75 16.68 7.76 0.08 0.24 9.5
C3 4.44 19.36 7.89 -0.35 -0.11 -7.5
c4 2.77 18.83 9.39 -0.02 -0.65 0.3
C5 4.68 10.13 9.28 -0.08 011 5.4
C6 5.03 17.55 8.04 -0.09 -0.02 -3.2
C7 234 22.52 7.00 0.38 -0.17 -4.1
C8 3.94 294 4.56 -0.01 -0.04 04
o1 4.60 7.86 6.06 0.16 -0.06 -1.1
N1 4.93 18.55 7.04 0.72 -0.47 -35
F1 3.06 3.77 4.15 -0.05 0.08 -0.5
F2 4.64 391 3.53 0.72 0.57 0.1
F3 411 391 3.92 -0.37 -0.49 0.1
H1 1.06 112 1.02 -0.01 -0.02 0.
H2 257 1.67 2.66 -0.02 -0.13 -1.2
H3 1.84 -1.00 181 0.06 0.28 1.0
H5 1.85 0.93 2.23 0.05 0.15 -1.6
H6 217 -0.29 214 0.01 0.01 0.7
H7 213 -0.65 3.34 -0.32 -0.06 0.4




Figure4: lllustration of the various axes systemsfor the P2;/c structure of (E)-4-
(Trifluoromethyl)benzaldehyde oxime. The Cartesian global axis system isrelated to the
crystallographic axis system so the Z correspondsto ¢, X is parallel to bxc (and isnot along aas
$=99.3°) and Y completesa right handed orthonor mal axis system (for this monoclinic cell, Y is
parallel to b). The moleculein theinput asymmetric unit cell is coloured by element, the molecule
related by a 2-fold screw axiswith identical multipole momentsin dark green and the molecules
related by an inversion centre or glide plane which have symmetry-related multipole momentsin
red. Thelight green lines denote the screw axes, the orange balls show the inversion centres, and

the glide plane, in the ac plane, has been omitted for clarity.
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Chapter 3. Improving the Accuracy of Modelling the

Electrostatic Interactions

Modelling interactions between all charged particles in a many-body system is hugely
expensive computationally, and so atomic point charges or multipole moments are often
used. The accuracy of the model depends upon the distance between the interacting
particles, the number of expansions used and the quality of the original data from which
the model is derived. Where the particles are far apart the electrostatic potential arising
from each atom is approximately as if it were spherical and point charges may be as
accurate as more complex models. However at short distances the electrostatic potential
around the molecule changes rapidly and higher-order multipole expansions are required to
reproduce the potential accurately. When highly directional interactions are present in a
system, such as hydrogen bonds, then a high quality wavefunction is needed to accurately
describe the electron density at the interaction sites, but using large diffuse basis sets has
revealed a weakness in the traditional method of generating distributed multipoles'. This
chapter is an investigation into a new implementation of the Distributed Multipole Analysis

(DMA) that is designed to be more stable with large basis sets.

3.1. Distributed Multipole Analysis

The need to distribute the molecular multipole moments over many sites, usually nuclet,
rather than at a single site is discussed in chapter 2.3, where the DMA method is also
described. There are many ways in which multipoles can be determined. By starting with a
charge density, measured experimentally by X-ray techniques or calculated ab initio, various

partitioning schemes can be used to assign density to multipole sites. Mulliken Analysis
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uses the basis functions centred on each atom to determine the charge density associated
with that atom®. Being reliant upon the basis functions themselves this is very sensitive to
the choice of basis set, and although the multipole expansion may still be valid, the charges
are inadequate to describe the electrostatic potential around the atom. Another common
partitioning scheme used is Bader’s Atoms In Molecules’, where the charge density of the
molecule is divided into regions at zero flux in the gradient vector field of the electron
density. This scheme usually has the effect of defining complex shapes, but by being based

on charge density the method is relatively insensitive to the basis set.

Stone’s Distributed Multipole Analysis* is a systematic way to determine multipole
moments from an ab initio calculations. As described in chapter 2.3.3 this approach uses
the way in which we express the molecular wavefunction in terms of Gaussian functions
centred on arbitrary points. The functions are multiplied together, and expanded as a series
of multipoles which are then moved to the nearest defined multipole site. While this is
computationally very efficient, it becomes very unstable with large numbers of diffuse
functions’ as the distance increases between the charge density and the multipole expansion
that represents it. For the triple-C quality basis sets used in this thesis, many atoms ate
assigned physically meaningless charges greater than 1 in magnitude, and even the wrong
sign from what one would intuitively expect. An adaptation of the DMA method resolves
these problems by defining a method to determine distributed multipoles that converge

with basis set.
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3.2. A New Method of Distributed Multipole Analysis (DMA)

The GDMA program is an implementation of the DMA method"® used on the electron
density matrix computed by Gaussian’. A new version, GDMA2.1, has recently been
released’ that uses a grid-based numerical integration over real space in order to both give a
more physically intuitive description of each multipole site. The original method,
GDMA1.2, was defined in 1985°, and this chapter investigates the differences between the
original implementation and the new method implemented 20 years later. The basis set
dependence of the new version was investigated’ using carbon monoxide and formamide,
and this chapter supplements this by showing how the adjustable parameters affect the
multipoles and interaction energies of a larger system: hydantoin®. This molecule, in the
C2/c spacegroup, was used by the Cambridge Crystallographic Data Centre (CCDC) in the
2005 blind test’. I then present the case of how the changes in the DMA analysis affect the
relative lattice energies of a crystal structure search of carbamazepine, when higher quality

basis sets are used than usual for the Price group.

Figure5: The hydantoin molecule.
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3.2.1. GDMA 2.1

For non-diffuse functions the procedure is the same as outlined in section 2.3.3, since only
the diffuse functions are treated in a new way. A function is considered diffuse when the
exponents a,f in equation (37) ate less than a given value (4 is the value), and numerical
integration is applied over the space covered by the function. A grid of points is
constructed around the multipole sites over which the integration takes place. Each grid
point is connected to nearby multipole sites by weighting values assigned to it which
describes the connection of that point to nearby multipole sites, determined by distance
and the ‘radius’ parameters of the sites. When the electron density has been calculated for
a grid point, it is transferred to the nearby sites according to these weightings. In this way
the multipole moments evaluated at each site are a better reflection of the electron density
in the vicinity of that site, and as such the distributed moments are more in keeping with

chemical intuition.

3.2.2. GDMA Parametets

The implementation of the quadrature introduces several parameters. SWITCH determines
which functions are integrated, set by default to 4. Setting this to zero results in the same
multipole moments as calculated by GDMA 1.2, while using a large value of 100000,
therefore to reasonably include all core functions, produced multipoles that varied in the 5™
and 6" significant figures from the default setting. The calculation took significantly longer
by two orders of magnitude as more functions were integrated, so that a value of 4 is

probably optimal in most cases.

The integration grid cannot be finely adjusted, since the program automatically uses the

next grid size available if the entered values do not correspond to one of the programmed

77



sizes. Quadrupling or halving the default value produced variations of the multipoles in up
to the 3 significant figure but usually much less. The use of the integration scheme is
enough to implement the new method of the DMA, which is fairly insensitive to quality of
the grid or the choice of when to use the grid as long as the most diffuse functions are

treated with it.

3.2.3. Weighting to Atomic Sites

The grid points are weighted by their distance from nearby atoms and their RADIUS values.

By default each atom has a radius, ry>"™ of 0.65 A except for hydrogen sites which,

following an investigation outlined below, has r,‘j PMA = 0.325 A so as to attract less

electron density to these sites. In practice this radius parameter is not a length but is used
to define a ratio that weights the contribution of the electron density in regions of space to

nearby atoms.

Figure 6 shows the trend this causes in the electrostatic potential due to the moments

truncated at rank 0. The effect of the redistribution of charge density by the algorithm can

be seen; using >V = 0.30 A the oxygen sites are surrounded by negative potential and the

hydrogen sites at the bottom of the plots are positive, while using r;"" = 0.55 A the
hydrogen sites are more neutral and the oxygen sites are much less negative due to electron
being represented by large point charges on hydrogen sites. Charge decays with 1/r so the
distribution of charge across the sites will affect the convergence of the multipole

expansion if molecules are surrounded by hydrogen atoms carrying large charges.
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Figure 6: The electrostatic energy of a unit charge probe on the 1.5x van der Waals surface of hydantoin. A rank

4 multipole analysis using GbMA2.1 with varying valuesfor (S istruncated at rank 0, and the 3D surfaceis

probed with a unit point charge. The scaleis +60 kJ mol™.

Because intermolecular interactions in organic crystals can be short, less than the sum of
the van der Waals (vdW) radii, it is important that the multipole expansion does converge
rapidly. Table 2 lists the minimum and maximum potential on 1.5x vdW surface of a
truncated multipole expansion, and the difference from the rank 4 GDMA1.2 reference
surface. Examining the first column, it appears that the truncated charges can generate a

reasonable representation of the original rank 4 expansion if 15" is reduced from 0.65 A

to 0.30 A, with refinements given by including the higher ranking multipoles.
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Table 2: Therange of electrostatic potential valueson the 1.5x van der Waals surface of hydantoin,

in kJ mol™, when probed with a unit point charge. Therank 4 multipole expansion istruncated to

the stated rank, and the difference with the complete GDM A1.2 rank 4 expansion isgiven asa

per centage.

H radius Rank 0 Rank 2 Rank 4
min max min max min max

-37.965 47.732 -37.597 | 50.725 | -39.304 | 46.130
0.30 A

(-2.1%) (2.4%) (-3.0%) 8.7%) | (1.4%) | (-1.1%)

-35.444 40.485 -37.676 | 51.145 | -39.251 | 46.209
0.35 A

(-8.6%) | (-13.2%) | (-2.8%) 9.7%) | (1.2%) | (-0.9%)

-32.871 33.108 -37.781 51.250 | -39.225 | 46.261
0.40 A

(-15.2%) | (-29.0%) | (-2.6%) (9.9%) | (1.2%) | (-0.8%)

-30.220 43.531 -37.860 | 51.093 | -39.172 | 46.261
0.45 A

(-22.1%) | (-6.6%) (-2.4%) (6%) (1.0%) | (-0.8%)

-27.489 55.477 -37.965 | 50.751 | -39.146 | 46.209
0.50 A

(-29.1%) | (19.0%) (-2.1%) (8.8%) | (0.9%) | (-0.9%)

-24.653 67.738 -38.070 | 50.200 | -39.120 | 46.130
0.55 A

(-36.4%) | (45.3%) (-1.8%) (7.7%) | (0.9%) | (-1.1%)

-21.687 79.763 -38.149 | 49.491 | -39.094 | 46.130
0.60 A

(-44.1%) | (71.1%) (-1.6%) (6.1%) | (0.8%) | (-1.1%)

-28.067 91.551 -38.227 | 48.624 | -39.041 | 46.209
0.65 A

(-27.6%) | (96.3%) (-1.4%) (4.3%) | (0.7%) | (-0.9%)
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Table 3: The charge on atoms of hydantoin taken from an expansion up to rank 4, derived from an

M P2/6-31G(d,p) wavefunction calculation.

Version 01 01 N1 N2 Clt C2 C3 H1 H2 H3 H4
1.2 -0.76 ~ -0.81 -0.54 -0.59 1.06 097 -005 003 003 032 0.33
2.1

032 -032 039 039 034 032 097 -045 -044 -043 -0.42
(rSPMA=0,65)

2.1
-035  -038 -021 -0.13 025 020 0.09 007 007 018 0.20

(rSPMA=(.35)

The atomic charges taken from a rank 4 DMA are presented in Table 3 to illustrate how
the integration method with equal weightings produces undesirable terms. GDMA 1.2 gives
fairly large negative charges on the electronegative oxygen sites and slightly less for
nitrogen, while the two carbon atoms that are bonded to the oxygen are correspondingly
positive as are the hydrogen sites. H3 and H4 are bonded to nitrogen and are an order of
magnitude more positive than the C-H hydrogen sites. This is in line with our chemical
intuition. Compare this to the v2.1 charges with r"* = 0.65 and not only are the nitrogen
sites positively charged, but all of the hydrogen sites carry equal and significant negative
charges. This is clearly against chemical intuition and is undesirable even though the whole
expansion produced equivalent potential energy surfaces. By reducing the weighting of
hydrogen atoms when distributing the integrated electron density, the sign and magnitude
of the charges become chemically reasonable; indeed they may even be preferable since
assigning nearly unit charges to the oxygen and carbon sites in particular, as in the v1.2

method, may be considered to be unrealistic.
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Final evidence of the need to reduce the relative weight of hydrogen sites is displayed in
Figure 7 by means of the electrostatic potential on the 0.8x van der Waals surface. This is
very close to the atoms, but it highlights an important feature that can significantly affect
the interaction energy in certain geometries. The potential around the H-N proton, which
is at the top of the image, tilted towards the reader, is positive and strongest in the
direction along the N-H bond when using multipoles from GDMA1.2. Distributing the
electron density with equal weighting between sites results in a very different potential in
this region, which is now almost neutral along the N-H axis. Polar hydrogens such as this
are frequently involved in hydrogen bonding, which is a very short, highly directional
intermolecular interaction. Hydrogen bonding networks are often the main source of
electrostatic stability in crystal lattices where hydrogen-bonding donors and acceptors are
available, so it is important to accurately reproduce the potential in these regions. The
effect on interaction energies are discussed in the following section, while the importance

of accurately modelling these regions is further highlighted in section 3.4

Figure 7: Electrostatic ener gy of hydantoin rank 4 multipole expansion probed with a unit point charge, plotted

on the 0.8x van der Waals surface. The NH group istilted 45 degreestowardsthe viewer; (a) GDMA 1.2, (b) GDMA

2.1 13" = 0.65 A for all atoms, (c) coma 2.1 15°M* =0.35A. Thescaleis +/- 120 kj mol™
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3.3. Packing Interactions

3.3.1. Molecular Dimers in Crystal Geometries

The intermolecular interactions in the hydantoin crystal'’ can be divided into three groups:
inter-layer interactions due to the stacked nature of the layers; hydrogen bonding between

two adjacent molecules in the same layer; non hydrogen bonding interactions between two
adjacent molecules in the same layer. These are illustrated in Figure 8. For each of these

molecular arrangements, the electrostatic energy has been calculated for the pair and listed

in Table 4.

For the inter-layer interactions the shortest atom-atom distance between layers is 3.2 A
between nitrogen and oxygen, which greater than the sum of their van der Waals radii so it
is expected that the multipole expansion is reasonably converged. As such, the interaction

energies differ by ~1 % between versions 1.2 and 2.1.

Where the two molecules are hydrogen bonded the electrostatic energy varies more
significantly. An oxygen-nitrogen distance of 2.91 A is certainly less than the sum of van
der Waals radii; a region which has been seen to differ between the three electrostatic
models, particularly around the N-H protons (Figure 7). The original GDMA was designed
to optimise the convergence of the expansion, so in this region, by definition, it is the best
of the three models for calculating the energy. Hence improvement in GDMA2.1 model
should lead to better agreement with the GDMA1.2 calculated values. Changing the
hydrogen radius from the default slightly increases the magnitude of the interaction energy,

seen in Table 4.

83



Figure8: Close contacts between hydantoin moleculesin the crystal. (a) the separation between layers,
wherethe moleculesareinverted and rotated (red sphereisthe centroid); (b) the hydrogen bond motif
showing O---H 1.96 A and O---N 2.91 A; (c) non hydrogen-bonding close contact between O-*-CH, of 3.04 A

(b)

©

The non H-bonding energies reveal a huge relative error by using the optimised radius, and
the default value seems to be much better. This highlights the importance of judgement

when comparing the models, since although the value in the third column is more than
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three times that in the first, the difference is one third of a kilojoule, which can be tolerated

relative to the energy for hydrogen bonding.

Table 4: Electrostatic energies (kJ/mol) for hydantoin dimers.

GDMA 1.2 GDMA 2.1 GDMA 2.1

(H0.65A) | (H0.354A)

Inter-layer

-12.268 -12.389 -12.392
(Figure 8 a)
H-bonding
-52.727 -49.079 -54.311
(Figure 8 b)
Non H-bonding
0.157 0.170 0.533

(Figure 8 c)

3.3.2. Effect on Lattice Energies

The difference in energies seen in Table 4 is almost negligible for pairs of molecules, but
lattice calculations involved hundreds or thousands of such interactions. The effect of
varying both the DMA method and basis on the lattice energy of the crystal is shown in
Table 5. Using the original method, increasing the size of the basis set has the effect of
stabilising the lattice by 12 k] mol”. This is quite a significant increase, and the implications
to relative lattice energies of such an improvement in the model are described for
carbamazepine in the following section. As well as this increase, it is apparent that the
individual contributions to the total energy differ between the two basis sets by both order
of magnitude and sign, which is due to the increase in diffuse functions as described above.

Comparison between the GDMA1.2 and the default GDMA2.1 implementation, the latter has
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much greater stability in the component energies between basis sets, which is what version
2.1 was designed to achieve. However, for these multipoles there is a significant reduction

in the stability of the lattice which is due largely to an underestimation of hydrogen-

bonding interactions. When rs™™ is reduced to 0.35 A as indicated by examining the

potential energy plots in section 3.3.2, the component energies remain stable with basis set

and the total electrostatic energy matches that for GDMA1.2.

3.3.3. Conclusion

Having tested the new implementation of the GDMA method using hydantoin, it is clear
that there is one parameter for which it is very sensitive. The atomic radii, which are used
as a ratio to weight points on the grid to atomic sites, have a significant influence on where
the charge density is expanded about. By leaving all atoms to have an equal weighting, too
much charge density becomes associated with hydrogen atoms and this leads to unphysical
properties, such as negative charge on hydrogen atoms and positive charge on nitrogen
atoms. This is significantly improved by reducing the radius associated with hydrogen

atoms to be approximately half that of the other atoms. The code has been modified

GDMA
accordingly by the author so that " = 0.325, being half the default value of other sites,

and is used throughout the rest of this thesis.
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Table 5: DMAREL lattice energies of hydantoin in the experimental crystal structure, using different

electrostatic models, in kJ/mol.

GDMA
version 21 21
1.2

Basis (SOMA= (.65 | reMA= 0.35A

Set (MP2)
Intermolecular 6-31G(d,p) -83.045 6.555 -39.834
charge-charge
energy 6-311++G(2d,2p) -29.250 6.738 -41.946
Total charge-dipole 6-31G(d,p) 5.121 13.195 -18.822
energy

6-311++G(2d,2p) -45.454 14.149 -21.926
Total dipole-dipole 0-31G(d,p) 5.029 -64.906 4.538
energy

6-311++G(2d,2p) 2.863 -67.726 5.135
Higher multipole 6-31G(d,p) 1.160 -22.738 -17.536
interaction energy

6-311++G(2d,2p) -11.738 -30.113 -23.509
Total electrostatic 6-31G(d,p) -71.735 -67.894 -71.872
energy

6-311++G(2d,2p) -83.579 -76.952 -82.246
Total isotropic -25.022 -25.022 -25.022
repulsion-dispersion
energy

3.4. Effect of Basis Set on the Relative Lattice Energies of

Carbamazepine

A previous theoretical search for carbamazepine polymorphs® used an MP2/6-31G** basis
set to derive the electrostatic model. The observed crystal structures are based on

hydrogen-bonded dimers, and these were found to be reasonably low in energy by the
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original search. However the global minimum structure (ai8) was based on a hydrogen-
bonded chain-based structures. The original rigid-body search was followed by a
DMAFLEX'' minimization, in which the hydrogen-bonding protons were allowed to relax in
the crystal structure from their gas-phase positions. This procedure makes small changes
to a set of defined bond lengths, angles and torsions, and performs an ab 7nitio calculation
and GDMA analysis for the new structure. The modified molecule is pasted into the crystal
structure, which is allowed to relax as a rigid-body system until the code determines that
another conformational change is indicated. Following this procedure, the known forms of

carbamazepine were still ranked as less stable than un-observed chain-based crystal
structures. I performed a study on the 29 lowest energy structutes, using a triple-C quality

basis set for the distributed properties and the updated GDMAZ2.1 analysis, and present the

change in the relative energy in Figure 9.

The sensitivity to the quality of wavefunction used for the electrostatic model is seen by the
change of relative ordering of the minima. Dimer-based structures become preferred
instead of the catemeric structures. The unobserved catemer-based structures bf2, ai34 and
ab41 are relatively destabilized, whereas the dimer-based structures am7, fc3 and fc18 have
moved to become much more favourably ranked. In particular the structure am7, which
corresponds to the known thermodynamic form III, becomes the global minimum with the
new electrostatic model. The structure corresponding to form IV also becomes more
relatively stable than before, reducing the lattice energy difference between these
polymorphs. Thus, even prior to considering the induction energy in this work, the relative
ordering given by having a more accurate charge density as a basis for the electrostatic
model, shows that the known dimer structure is more stable than any hypothetical catemer

structure.
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Figure 9: Carbamazepinerelative crystal energies of the 29 lowest energy structuresfrom arigid
body search and then refined using DMAFLEX to generate the structuresused for thisplots.

Predicted known forms |11 and 1V areindicated.
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This result can be rationalised by examining the electrostatic potential energy surface of
carbamazepine at the region of the main intermolecular interaction. Figure 10 displays the
difference in the electrostatic potential energy between the two models, with a second
molecule drawn in the location of a companion molecule in the dimer configuration. A
surface is plotted that corresponds to the van der Waals surface scaled by 1.3 and with no
radius on the polar hydrogen sites. The more expensively produced charge density
generates a more negative potential at the point where the corresponding polar hydrogen
atom is found, and more positive in the region of the corresponding oxygen. The
difference is highly localised to this region to favour the dimer interaction, while many of
the other regions that appear different, work against the catemer structures by weakening
the attractive and strengthen repulsive electrostatic interactions. For instance, catemer

structures tend to involve the edges of the C; rings, which are now more positive, docking
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over the region above the molecule, which is also more positive and seen as a red blob in

Figure 10.

Figure 10: Differencein electrostatic potential with theory and basis set for carbamazepine, shown
in relation to a second molecule in the dimer-based interaction. The potential was calculated from
distributed multipole moments derived from the GAUSSIANO3 char ge density, and plotted using a
unit charge probe as E(PBEOQ aug-cc-pVTZ) — E(MP2/6-31G**). The surfaceisdefined by the van
der Waalsradii scaled by 1.3. The potential calculated from the PBEO wavefunction is more
negative whereit interactswith a polar hydrogen atom and mor e positive whereit interactswith an

oxygen atom, hence strengthening the inter molecular interation.

-0.25

3.5. Conclusions

As computing resources become more and more powerful the method used to calculate a
wavefunction for a small molecule may be improved, using more diffuse basis sets. By
doing so, as the electronic calculation is systematically improved the original method of
generating DMASs exhibits poor stability in terms of the multipoles produced. By treating

the more diffuse Gaussian functions differently and allocating charge to sites using a
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weighted grid, the derived multipoles exhibit much greater stability and convergence with

basis set than before.

There is a cost of this stability, which is the introduction of adjustable parameters in the
method. I have shown that the distributed multipoles are quite insensitive to the
parameters except for the RADIUS , which is used to determine the ratio of charge density
that is allocated to multipole sites. It makes intuitive sense that hydrogen atoms should not
attract density to them, since their electrons are engaged in a single covalent bond, and
representing large amounts of charge density by expansion on hydrogen atoms affects the
interaction energies. As a result of this investigation the default radius for hydrogen sites

has been changed by Stone from 0.65 A to 0.325 A in GDMA2.2",

By investigating the effect of using a better quality model of the molecular charge

distribution, it has been shown that the predicted relative lattice energies of carbamazepine
may be dramatically altered. This leads to an experimentally observed structure becoming
the most favourable, and structures based on the observed dimer motif are relatively more

favourable because important interactions are strengthened.

3.5.1. Future Potential Models

It is assumed that as the model intermolecular potential is improved, then crystal structure
prediction will become more successful at identifying observable polymorphs by
comparing relative lattice energies. Electrostatic interactions require good quality
calculations of the wavefunction and an efficient method to derive a multipole description.

GDMA2.2 allows us to generate physically plausible multipole moments that show
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systematic improvement with the basis sets that are required to calculate higher order

properties such as polarizability.

Other forces are presently described by an empirically fitted exp-6 repulsion-dispersion
model, and it is known that this pootly reproduces lattices held together by dispersive
forces between stacked aromatic rings. No other interactions, such as induction, are
explicitly modelled but instead are absorbed into the fitting of the exp-6 model. Expanding
the model to include induction, and therefore also to explicitly separating it from the
repulsion-dispersion model, should further improve the relative stability of observable
polymorphs. However, this also necessitates that a new repulsion-dispersion model is
derived so that induction is not double counted. A method of generating such a potential
has been derived by Misquitta and co-workers'”"". In the following chapter the induction
energy between different carbamazepine polymorphs is estimated using the WSM
polarizabilities, as part of an investigation into exactly which model should be coded into

DMACRYS.
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Chapter 4. Testing the Importance of Induction Energy for
Organic Crystal Structures

4.1. Testing the Importance of the Induction Energy

The Williams-Stone-Misquitta (WSM) method'” allows us to obtain distributed
polarizabilities from the ab initio properties of isolated molecules that are optimal at a given
rank. From comparisons with SAPT(DFT) induction energies of a variety of dimers,
ranging from HF to benzene,” we know that the damped WSM models are able to describe
not just the long-range induction energy, but also an induction energy at short-range, even
in the most testing area of hydrogen bonding contacts. These models result in errors of 2-
7% of the dimer interaction energy at typical contact distances. However, for condensed
phases the errors in total induction energy may be smaller than for van der Waals dimers
because of the large number of longer range interactions, for which the WSM models are
extremely accurate. Therefore, these polarizability models should give us a very powerful

tool for computing the induction energy of an organic crystal.

Another way of approximating the induced moments of the crystalline phase is by ab initio
evaluation of the molecular charge density, with the field of the surrounding molecules
represented by point charges. When done self-consistently, we obtain an electronic
response to point charge field model (SCERP), which does include some of the effects of
electron penetration, because the point charges are fitted to the electrostatic potential close
to the van der Waals® surface. This model is also limited by the accuracy that can be

attained by the point charge model.
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The WSM polarizability model has been validated for dimers against SAPT(DFT) energies.”
SCERP provides an independent test of the polarizability models in the condensed phase.
This paper uses these models to estimate the induction effects in a range of molecular
crystals. Our purpose is to establish whether the contributions are sufficiently important
that we should implement such models in the crystal structure modelling program

DMAREL."’

The aim of this chapter is to determine the importance of the induction energy in organic
crystal structures, particularly its relevance to the field of organic crystal structure and
polymorph prediction,” for which promise for aiding the design of new materials and the
selection of solid form for pharmaceutical development’ is severely compromised by

uncertainties in the estimation of relative lattice energies.

Four contrasting examples are considered for the effect of induction energy in their crystal
lattices. The methods used to calculate the term are described in sections 4.2.5 and 4.2.6.
The results are given in section 4.3 for the molecules naphthalene, oxalyl dihydrazide and
carbamazepine, for which the molecular structures are shown in Figure 11. The
naphthalene crystal is investigated as a non-polar system. Charge density studies’® have
shown a change in the electron distribution in the region of the C-H bond involved in a C-
H - interaction in the crystal structure. The other examples are all tests of the
differences in induction energy corresponding to different types of hydrogen bonding, as
the electrostatic fields involved in hydrogen bonding are amongst the strongest in crystal
structures of neutral organic molecules. The relative induction energies of the 5 different
polymorphs of oxalyl dihydrazide’ are examined because of the plurality of hydrogen
bonding geometries sampled, including one with a significant intramolecular component.
The relative induction energies for sets of experimentally observed and hypothetical crystal

structures of carbamazepine and 3-azabicyclo|[3,3,1]nonane-2,4-dione are computed, to
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investigate whether modelling induction could improve the prediction of relative lattice
energies of crystal structures based on doubly hydrogen-bonded dimers or chain motifs. In
both cases, the predictions that the two types of crystal structure were energetically
competitive inspired extensive polymorph screening studies to search for the alternative
motif.'""" For carbamazepine, all known polymorphs are based on a doubly hydrogen-
bonded amide dimer (although it does adopt a catemer in a solid solution'?), whereas the
catemer is marginally more stable according to current modelling.””™ On the other hand,
3-azabicyclo[3,3,1]nonane-2,4-dione adopts an imide catemer in all its solid forms, "'
although many of the participants in the 2001 international blind test of crystal structure

prediction'® predicted a dimer structure as more stable.

Figure 11: Moleculesused in thisinvestigation. (a) Naphthalene, (b) 3-azabicyclo[3,3,1]nonane-2,4-
dione, (c) carbamazepine and (d) oxalyl dihydrazide. Arrowsindicate angles which have been
refined by DMAFLEX, double arrowsindicate that two atoms independently have a torsion angle

defined along the same bond.
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4.2. Method

4.2.1. Approximating the Crystalline Environment Using Clusters

In order to show how the induction energy may be significant in distinguishing between
polymorphs, it was necessary to implement some model of the electrostatic fields
experienced by a molecule in a lattice structure, so that the WSM polarizabilities could be
used to determine the induced moments and therefore the induction energy. I achieved
this by modelling the lattice as a finite cluster of whole unit cells, where a central molecule

is polarizable.

The clusters are generated using the Crystal2Cluster tool, which generates the molecular
translation and rotation parameters to describe a cluster of the required size, for the crystal
structure of interest. Numerical experimentation has shown that a cluster in which a
central molecule is surrounded to at least 15 A in all directions is large enough to converge
the electrostatic energy of a molecule in the centre, to that of an infinite lattice calculation
using DMAREL. This typically means using a cluster of 5X5X5 unit cells. These clusters
were then used with the WSM polarizabilities using the ORIENT program, and also used in
the comparative SCERP scheme using Gaussian. These methods are outlined in the

following sections.

4.2.2. Choice of Crystal Structures and Cluster and Molecular Models

For our calculations we use centrosymmetric crystal structures, from which the clusters are
built. The crystal structure used for naphthalene was the 100 K X-ray structure.® The
molecular structure was optimized 7z vacuo at the MP2/6-31G** level, and then pasted into
the experimental structure by minimizing the RMS overlap of the carbon atoms. Finally

the crystal structure was relaxed to a lattice energy minimum using DMAREL with a
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distributed multipole model detived from a PBE0/Sadlej wavefunction calculation, and the
FIT repulsion-dispersion potential. The clusters used in the induction energy calculations

were of 5X5X5 unit cells.

For oxalyl dihydrazide, the five experimental crystal structures’ were refined to account for
the error in the X-ray determination of the proton positions that are important in the

¢ "This DMAFLEX refinement”’ optimized the

multiple hydrogen-bonds in these crystals.
lattice energy, including the MP2/6-31G** intramolecular conformational penalty, with
respect to the nine torsions shown in Figure 11, and the crystallographic cell parameters
and molecular positions using a distributed multipole model detived from an MP2/6-

31G** wavefunction calculation, and the FIT potential. The conformational differences

between the polymorphs are shown schematically in Figure 12 and in detail in Table 6.
The cluster sizes were 9X7X5 unit cells for o and €; 7X5X7 unit cells for y and §; and
9X5X9 unit cells for B polymorphs, to give suitable supetcells containing between 490 and

980 molecules that conformed to our requirement of 15 A of molecules surrounding the

polarizable molecule.

Figure 12: Thetwo major intramolecular conformations of oxalyl dihydrazide. The,y,8and ¢
polymor phs contain stretched intramolecular hydrogen bonds, indicated by a dashed line. The

torsion anglesfor all five polymorphsaregiven in Table 6.
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Table 6: The conformations of oxalyl dihydrazine within the modelsfor the polymorphsused in this

study, defined by the torsion anglesindicated in Figure 11

RMS? conformational details
polymorph
D o] 2O a0 [a0]eO] a0 [ 90 O] w0
o 0.207 | 160.04 | -85.67 | -179.29 | -7.45 | 85.77 | -160.30 | 180.24 | 6.31 | -179.55
g 0.588| -75.90 | 38.13 | 18531 | -3.95 | -42.95 | 71.37 | -182.86 | 0.76 | 181.40
Y 0.188| 7634 | 37.07 | -182.09 | -0.73 | 38.41 | -7227 | 17440 | 0.28 | -178.16
8 0.500| 9358 | -19.12 | 17727 | 376 | -93.09 | 19.88 | -176.54 |-1.790| 179.638
e 0.210| 97.60 | 1441 | -174.08 | -2.66 | 97.85 | -13.96 | 173.85 | 3.29 | -180.20
* Root mean square discrepancy of the 15-molecule coordination sphere between the experimental
and minimized crystal structure

The bicyclic structure of 3-azabicyclo[3,3,1]nonane-2,4-dione'” makes it essentially rigid,
therefore we used the 7 vacuo MP2/6-31G** optimized molecular structure. A set of 6 low-
energy crystal structures'' generated using this molecular conformation were considered to
represent a range of packing arrangements within 3 k] mol " of the global minimum lattice
energy. We also examined the minimum obtained by starting with the 297 K experimental
crystal structure'” and minimized with the same MP2/6-31G**/FIT model. The set of
structures include both the observed catemer and doubly hydrogen bonded dimer motifs in
a range of space groups. The 5X5X5 unit cell clusters contained 250, 500 or 1000

molecules.

For carbamazepine, we used 14 of the DMAFLEX" relaxed structures described in section
3.4 which had been low energy crystal structures in the rigid body search.'” These
structures covered a wide range of packing including those corresponding to known forms
III and IV. The carbamazepine clusters used in the polarizability calculations consisted of

5X5X%5 unit cells, and contained 250 to 1000 molecules.

101



4.2.3. Calculation of the Polarizabilities

The distributed atomic polarizabilities were calculated using the WSM method with the
recommended asymptotically corrected PBEO density functional and Sadlej basis set. For
naphthalene, oxalyl dihydrazide and 3-azabicyclo|[3,3,1]nonane-2,4-dione this was done for
the whole molecule, held rigid at the conformation from the crystal structure. However, the
carbamazepine molecule was too large for the WSM polarizability analysis due to
computational limitations, which included hardware, i.e. the amount of RAM available to
the machines at the time, software i.e. the size of the matrices on which the code code
could operate, and a different scheme was adopted for this molecule. The distributed
multipoles were calculated in GAUSSIANO3 using the non-asymptotically corrected PBEO
functional with the Sadlej basis set. The difference between the corrected and uncorrected
functionals is insignificant for the calculation of electrostatic energies using distributed
multipole moments, but the correction is essential for accurate polarizabilities. The
polarizabilities were constructed from two molecular fragments, indicated in Figure 13.
The geometries of the fragments were held rigid at the MP2/6-31** optimized geometry i
vacuo of carbamazepine, except the positions of the hydrogen atoms added in place of the
6-membered ring, which were optimized at the same level of theory. Although
polarizability is a molecular property, influenced by all sites, it has been necessary to make
the approximation of transferability for the polarizabilities calculated for these smaller
molecules to the larger structure. This approximation seems reasonable when comparing

the polarizabilities for sites between the two fragments, in Table 9 page 119.
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Figure 13: Fragments of carbamazepine used to calculateits atomic polarizabilities. Theatom
numbering isused to identify sitesin Table 9 page 119, and indicates the polarizabilities used for

the whole molecule.

H,oN™0 On

The WSM polarizability models used in this chapter are identified as: L1, comprised of
dipole-dipole polarizability terms only; .2, which is the .1 model plus dipole-quadrupole
and quadrupole-quadrupole terms; and 1.2/1, which is a mixed model where all atoms have

L2 terms except for hydrogen atoms, which are only represented by the L1 terms.

4.2.4. Calculating Induced Moments Using ORIENT Clusters

Once the supercell clusters have been generated and the polarizabilities calculated, an
induction energy calculation can be performed. This is done by using the distributed
multipole model for all molecules in the cluster, and by placing distributed polarizabilities
on the atomic sites if a molecule at the centre of the cluster. ORIENT is able to calculate
the electrostatic fields produced at each polarizable site by the surrounding molecules and
evaluate the resulting induced moments. This is only the first step, and to continue the
induced moments must be applied to all molecules in the cluster. Once this is done, the

electrostatic fields due to the modified multipole model, now polarized, are used to re-
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calculate the induced moments at the polarizable sites. This process is repeated until the
induced moments converge, which are then used to calculate the induction energy of the
crystal lattice. ORIENT implements the Tang-Toennies damping function, and unless stated
as ‘undamped’ the following parameters were used: oxalyl dihydrazide forms « 1.625; 3
1.667; 8 1.650; & 1.649; y 1.657; naphthalene 1.547; carbamazepine 1.510; 3-

azabicyclo[3,3,1]nonane-2,4-dione 1.674.

4.2.5. Calculating Induced Moments Using Self-Consistent Electronic

Response to Point Charges (SCERP)

SCERP is an alternative method of evaluating the effect of induction on the charge
distribution directly using the Gaussian03 ab initio package.” The CHELPG’ potential
derived charges, which are fitted to a grid of points between the van der Waals atomic radii
and 2.8 A from the nuclei, were obtained for the isolated molecule from an aug-cc-pVTZ
charge density with the PBEO functional. These charges were placed on all the atomic sites
in the cluster modelling the crystal, except the central molecule. This molecule was
described using aug-cc-pV'TZ basis functions, and a PBEO functional; the charge density of

the molecule within the field of the cluster was calculated. This polarized charge density

b b
was analyzed by GMDA2.2" to obtain a set of multipoles that correspond to Q/+AQ, ,

and hence the induced multipole moments (up to hexadecapole) obtained by subtraction of
the multipoles obtained from the in vacuo wavefunction. The potential derived charges of
the polarized charge distribution were then used in a further cluster calculation, and the

process repeated until the calculated induction energy had converged.

This method is more computationally expensive than using the multipole expansion, and
cannot be used for lattice energy minimization because there is no mechanism in place to

relax the arrangement of the cluster to simulate the infinite crystal lattice, but can be used
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for testing aspects of the polarizability model. The resources required are almost
independent of the number of charges used, and so very large clusters could be used to
check convergence with cluster size. Although the use of point charges to model
electrostatic field is relatively crude, they are used here to induce a second-order response
of the molecular charge density, and within the self-consistent nature of the process. A
comparison of the molecular electrostatic field for charges and multipoles is made below.
Penetration effects from the overlap of the charge distributions in the cluster are absent,
except in so far as they are included in the fitting of the potential derived charges to points

close to the molecule.

If the polar hydrogen sites are considered to have a van der Waals radius of zero,” the
region of interaction with surrounding nuclei in hydrogen bonding arrangement may be
approximated by the van der Waals surface scaled by 1.8. In Figure 14 I present a
comparison of the electrostatic field at this surface when calculated using multipole
moments or point charges, in terms of the norm of the difference vectors at 19814 points
on the surface for o oxalyl dihydrazide. The mean difference is 0.08 V/A (standard
deviation 0.04 V/A) which is less than 9 %, of the largest field, 0.92 V/A, with the
multipole moments. The highly localized nature of the error in the electrostatic field can
be plainly seen in Figure 14, as dark blemishes around the hydrogen sites. For both the o
and the € polymorphs these regions coincide with the shortest hydrogen bonds seen in any
of the crystal structures in this work, hence we anticipate the largest errors in our

calculations to be for these crystals.
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Figure14: Error in the electrostatic field around a oxalyl dihydrazide. The plot showsthe norm of
the differencein the electrostatic field vectors, calculated from distributed multipole moments and
point charges. The surfaceisthe van der Waals surface scaled by 1.8, which isaccessible by the

hydrogen-bonding protons. The maximum field difference displayed is0.226 V/A.
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4.2.6. Calculating the Induction Energy of a Crystal Lattice from

Induced Moments

This classical polarization model for the induction energy is"*'

Eind,d—clas(A) = %Z Z ZZAQta f(tu) (ﬁRab )Ttl?le? > (64)

acAB#AbeB tu
where the omission of the superscript on the LHS implies that AQ] are the converged

induced moments. If the damping function is set to unity, this equation is almost identical

to the expression for the electrostatic energy,

Eelectrostatic (A) = % Z Z Z (?ta-rtjb(?:J > (65)

acAB#AbeB tu
and this can be exploited to estimate the induction energy of the crystal using the routines
already implemented in DMAREL’ that evaluate this function and perform the lattice

summations.
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Equation (64) has only one molecule bearing just the induced moments interacting with the
electrostatic field of the rest of the crystal. This cannot be directly calculated by DMAREL,

which assumes that all symmetry related sites bear equal (or inverted) multipole moments.

However, substituting (Qt +AQ,/ 2) into equation (65) gives

a b
) ZZZ(Q:‘ #23 ]TS”(QE +%J

acAB=AbeB tu

A a—l— ab~b A bT ab~a A a-l— abA b
= %z ZZ Z(QtaTtL?bQ: n QT Q, n QT Q " QT AQ, 66)
acAB#AbeB tu 2 2 4
= Eelectrostatic (A) + Eind,d—class(A) + AEerror (A)

>

Thus, the induction energy can be calculated from three evaluations of the “electrostatic’

contribution to the lattice energy, one where all molecules have the distributed multipole

moments (Qt +AQ,/ 2) to get Egerosatic T Eind d_diass T AEqror » 2 second with distributed

multipole moments AQ, /2 to give AE,,,, , and a third using only Q, to give E ey ogaic -

All three evaluations use Ewald summation for the charge-charge, charge-dipole and
dipole-dipole terms, and sum all the other contributions in direct space for all molecules
whose centre of mass is within 15 A. There is no facility to include damping of the
electrostatic interactions in DMAREL, however the definition of the induction energy (64)
requires that the damping function is included for each iteration of the interaction of
induced and static multipole moments. The necessary damping is present for the iterative
procedure which evaluates the induced moments in the cluster, but is not applied in the
final energy calculation. This necessary approximation is made because of the current
limitations of DMAREL. This method of evaluating the induction energy can only be
performed at each given crystal structure, and cannot be used for optimizing the crystal

structure.
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4.3. Results

4.3.1. Effect of Iterations

The iteration procedure makes a significant difference to the calculated induction energy,
stabilizing the crystal. Figure 15 shows how the induction energy converges over 5 iterative
cycles, for three WSM models and SCERP. After only one iteration, the induction energy
is at least 10 kJ mol " less than the converged value in most of the examples. It is notable
that both the SCERP and polarizability induction models have very similar convergence
properties, agreeing with the observation from modelling small molecules, that around half
a dozen iterations are required for self-consistent polarization. The rank 1 model
converges rapidly, but higher-ranking polarizabilities do require damping. In practice,
Figure 15 shows that the infinite summation can be truncated, depending on the model, to
5-8 iterations, which is sufficient to achieve convergence within less than 0.5 kJ mol ™ for

the systems studied.
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Figure 15: Convergence of E; ;4 qas
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Induction is important not only for hydrogen-bonded systems. The crystal structure of

naphthalene has been previously analyzed for experimental evidence of induced changes in

the charge density.® The SCERP point charge model predicts an induction energy of —1.9

k] mol " for the 100 K experimental crystal structure, using the molecular geometry

optimized 7z vacno. Although small in absolute terms, this is 31% of the electrostatic

energy. A damped WSM2/1 polatizability model estimates the induction energy to be 25%

of the electrostatic energy. In comparison, the SCERP induction energy for oxalyl

dihydrazide polymorphs is 18—-38% of the electrostatic energy. Thus, in relative terms,
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even the charge density of naphthalene is significantly affected by the surrounding
molecules in the lattice. By analyzing the change in electrostatic energy due to the induced
moments interacting with a unit charge probe, we may indirectly observe the change in

charge distribution caused by the crystalline environment.

Figure 16: Induced electrostatic enetrgy sutface for naphthalene. The enetgy is calculated from the SCERP
model, for the van der Waals + 1.1 A surface that is accessible by short-contact nuclei. The atom numbering
system reflects the symmetry of contacts within the crystal structure, not of the isolated molecule. The energy

is calculated using a unit charge probe, and ranges from -5.23 kJ mol-1 to +6.82 k] mol-1.
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Figure 16 show a plot of the change in the electrostatic energy using the SCERP induced
moments, on the van der Waals plus 1.1 Angstrom surface that is sampled by the atomic
sites of the surrounding molecules. The anisotropic nature of the induction is clear. The
increased electrostatic potential around the C(4)-H bond, in contrast to the C(2)-H bond,
shows that the close contact with the 7 electron cloud of the surrounding molecules in the
crystal has significantly polarized this bond, as observed in the experimental charge

density.”
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4.3.3. Oxalyl dihydrazide

The RMSD* between the refined structures and the experimental crystal structures was

about 0.2 A for the a, y and € polymorphs and less than 0.6 A. for B and 8, for all non-

hydrogen atoms in a 15-molecule cluster (Table 6). The model for the € polymorph is
more dense that the experimental structure, resulting in one short N --'N distance of 2.73
A. A comparison of the intermolecular electrostatic energy for all of clusters of oxalyl

dihydrazide is within 0.5 k] mol " of the infinite lattice value, shown in Table 7.

Experimentally, it has been difficult to fully characterize the relative stability of these
polymorphs of oxalyl dihydrazide, due a self-reaction that takes place prior to melting,”
However, lattice-energy methods that only model the intermolecular repulsion, dispersion
and electrostatic forces, including the conformational energy differences from ab initio gas
phase calculations, predict that the lattice energy of the o form is approximately —110 k]
mol, whereas the other four forms range from —130 to =138 k] mol" (Table 7). Such a

large energy difference is considered to be outside the range of possible polymorphism.”
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Table 7: Intermolecular electrostatic and total lattice energy (kJ mol™) of oxalyl dihydrazide

polymor phs

E a AE P Eoysa ©

electrostatic intra

Cluster  DMAREL

o -157.27 -156.63 56.34 -110.219
B -128.34 -128.25 111 -138.326
y -127.65 -127.60 4.37 -135.729
o -122.77 -123.35 6.87 -130.216
e -148.53 -148.49 71.52 -137.778

* The electrostatic model used is distributed multipole moments derived from the PBEO Sadlej charge density;
b Intramolecular energy calculated at the MP2/6-31G** level, referenced to the energy of the 7 vacio
structure, optimized at the same level of theory; © Sum of the DMAREL electrostatic energy, exp-6 respulsion-

dispersion energy, and intramolecular energy.

By including a correction for the induction energy of the lattice, the predicted lattice energy
of the a form becomes comparable with that of the 3, ¥ and 6 polymorphs. It seems
apparent that modelling charge density polarization for polymorphs that exhibit different
intra- and intermolecular hydrogen bonding is important. This issue has been explored
further using electronic structure calculations on oxalyl dihydrazide and other polymorphic

0

16
systems.
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Table 8: Lattice parameters of oxalyl dihydrazide structuresused in thiswork, and their relation to

experimental values.

Lattice
parameter  DMAFLEX Abs diff® % diff
a alA 3.5158 -0.1063 -2.93%
b/ A 6.6530 -0.1792 -2.62 %
c/ A 9.1963 0.0669 0.73%
B/° 102.2718 2.9738 2.99 %
p aA 4.0455 0.2835 754%
b/ A 10.8263 -0.8257 -7.09 %
c/ A 4.9620 -0.6570  -11.69 %
B/° 90.9521 -1.8409 -1.98 %
y aA 5.0710 -0.0085 -0.17 %
b/ A 14.0052 -0.6627 -4.52 %
c/ A 6.9463 -0.0882 -1.25%
B/ 114.7818 0.6218 0.54 %
s aA 3.9710 0.3102 8.47 %
b/ A 13.2728 -1.2772 -8.78 %
c/ A 5.0628 -0.0018 -0.04 %
B/ 123.4397 4.4337 3.73%
e aA 5.1815 -0.1827 -3.41%
b/ A 3.7805 -0.0607 -1.58 %
c/ A 11.7785 -0.5406 -4.39 %
B/° 107.9730 -1.0260 -0.94 %

& Absol ute difference is DMAFLEX — experimental

The energies calculated using SCERP with WSM models are shown in Figure 17. Using

the SCERP model the a structure is stabilized the most, followed by €. The B3, y and &
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structures are stabilized less than the € form, but by similar magnitudes to one another.
Each of the WSM models follow the SCERP results except the L2 models, which find the
relative polarization of the structutes to be €>0>>f, v, 6. This deviation can be explained

by examining the crystal structures.

In these five polymorphs there are very short intermolecular contacts, the shortest being an
N --‘H-N contact in € of 1.77 A, with a N - N distance of 2.73 A, which are significantly
less than the sum of their van der Waals radii and somewhat less than their experimental
values, considerably increasing the uncertainty in the induction energies for this particular
polymorph. In the a form, the situation is better with N --‘H-N distances 1.83 and 2.80 A
respectively. For these two systems in particular, the effect of having higher polarizability
terms on the hydrogen sites is to give implausible induction energies when damping is not
included, but this is resolved by removing the higher terms on hydrogen, leaving only rank
1 polarizabilities on these sites. The other three forms all have X ---H distances greater
than 1.85 A and do not show divergence of the induction energy. The results relating to
oxalyl dihydrazide strongly suggest that an iterated, damped polarizability model, based on
L1 model or mixed L.2/L.1 model, agtees reasonably well with the self-consistent electronic

response to point charges method.
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Figure 17: Theinduction energy of oxalyl dihydrazide for various WSM polarizability schemes.
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4.3.4. 3-Azabicyclo[3,3,1]nonane-2,4-dione

3-Azabicyclo[3,3,1]nonane-2,4-dione presents several challenges in terms of our
polarizability calculations: the size of the molecule, in terms of basis functions required and
associated computational limits, as well as the volume of space to be sampled for the point-
to-point polarizabilities and the C2 symmetry in the molecule. Despite this, and the fact
that symmetry of the molecules is not explicitly enforced by SITUS at any stage, after

refinement and localization the resulting polarizabilities are reassuringly symmetric.
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Figure 18: Induction energiesfor 3-azabicyclo[3,3,1]nonane-2,4-dione. Thecrystal structuresare
ordered left-to-right by decreasing lattice stability, as calculated from the distributed static

multipole + empirical repulsion-dispersion potential.
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We find the induction energy for 3-azabicyclo[3,3,1]nonane-2,4-dione to be 33-36% of the
electrostatic energy, with good agreement between SCERP and the damped WSM models
(Figure 18). For the crystal structures considered, the induction energy varies by less than 3
k] mol”, but this is significant relative to the difference in lattice energies of these
structures calculated using a repulsion-dispersion model potential,”* which range from

—95.08 to —97.64 kJ mol .

Hence, more realistic modelling of the intermolecular interactions to include the induction
energy would certainly re-rank the structures. However, the observed chain-hydrogen
bonding motif is not favoured relative to many of the competitive dimer structures, and
there is no clear-cut correlation with the hydrogen-bonding motif. Hence, neglect of the
induction energy does not appear to be the only problem in modelling the relative stability

of crystal structures of 3-azabicyclo[3,3,1]nonane-2,4-dione. It may be that the empirical
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repulsion-dispersion potential does not model the interactions between these molecules
very accurately, or that there is some kinetic aspect to the crystal growth which is not

accounted for by the models used.

4.3.5. Carbamazepine

The rank 1 polarizabilities which were calculated for the fragments of carbamazepine in
Figure 13 are listed in Table 9. The environment of the carbon atoms 1-8 are largely the
same in each case, except for the spacial proximity to the nitrogen or oxygen of the imide
group. The polarizabilities reflect this by being very similar for all labelled atoms. There is
a change of sign in the off-diagonal terms which follow the rules for inversion shown in

Table 10.

4.3.5.1. Re-Ranking Due to Induction

Despite the additional assumptions, there is still reasonably good agreement in the relative
induction energies between SCERP and the damped L1 polarizability model, accounting
for an increase in stability of 10.5 — 18.2 k] mol” in the lattice energy. Both models find
that the dimer-based structures, and particularly the experimental forms III and IV, are
stabilized more by induction than the chain-based structures, and all hydrogen bonded
structures more than the structure (ab41) with no hydrogen-bonding (Figure 9). This is
significant, as the published crystal structure predictions' for carbamazepine found that a
structure with a hydrogen-bonded chain motif was more stable than the experimentally
known dimer based structures. Improving the modelling of the electrostatic energies by
using distributed multipoles from the better charge distribution used in the current work
also alters the relative stabilities, favouring the most stable observed polymorph form III.

Hence, more accurate modelling of the electrostatics and adding the induction clearly gives
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a significant energy lowering to the most stable dimer based structures, which is in accord

with experiment.
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Table9: Localized dipole-dipole polarizabilities derived from the two molecular fragmentsfrom

carbamazepine (Figure 13). Italicized valueswerenot used in the work.

CO fragment

NH2 fragment

Q.| 10 11c 11s 10 11c 11s
C1 10 | 840964 638059 -0.63136 | 832961 537695 -0.28298
1lc | 638059 182973 -0.18501 | 537695 18.7080 -0.88010
11s | -0.63136 -0.18501 14.3840 | -0.28298 -0.88010 12.5378
C2 10 | 940761 -6.11886 -0.96389 | 836570 527708 -0.96397
1lc | -6.11886 155801 0.23032 | 527708 15.0561 -0.64310
11s | -0.96389 0.23032 5.62917 | -0.96397 -0.64310 5.57362
C3 10 | 657784 354568 -0.05483 | 7.23791 3.32652 -0.12180
1lc | -3.54568 122044 -1.58251 | 3.32652 12.0866 1.86013
11s | -0.05483 -1.58251 10.5551 | -0.12180 1.86013 10.6218
C4 10 | 633095 -2.05589 -0.58270 | 591204 2.81588 -1.52775
1lc | -2.05589 8.83260 1.23153 | 2.81588 9.58192 -0.30910
11s | -0.58270 1.23153 13.1491 | -1.52775 -0.30910 12.7272
C5 10 | 8.09373 -4.58729 -0.46761 | 7.14971 4.31559 -0.94157
1lc | -4.58729 13.6670  0.56426 | 431559 132160 -0.38222
11s | -046761 0.56426 8.10629 | -0.94157 -0.38222 9.23846
C6 10 | 529561 -6.37881 -0.66653 | 6.18645 5.56108 -0.38540
11c | -6.37881 18.0670 -1.03093 | 556108 16.8127 -0.13428
11s | -0.66653 -1.03093 14.8632 | -0.38540 -0.13428 14.3687
C7 10 | 522380 -1.15772 -1.14327 | 5.69914 0.65990 -1.12674
1lc | -1.15772 14.6161  1.05936 | 0.65990 14.9953 -1.89426
11s | -1.14327 1.05936 10.8107 | -1.12674 -1.89426 10.2504
C8 10 | 863517 251614 479658 | 8.25499 096267 4.73088
1lc | 251614 9.14583 -0.91720 | 0.96267 9.45985 1.24418
11s | 479658 -0.91720 6.00270 | 4.73088 1.24418 4.97555
NO 10 | 532670 -0.79347 2.83959 | 4.96203 1.54720 3.07380
1lc | -0.79347 115588  0.88526 | 1.54720 11.5141 -0.89165
11s | 2.83959 0.88526 6.61628 | 3.07380 -0.89165 5.87135
N10 10 | 569640 -0.74738 1.34147 | 5.61351 -0.93765 1.34076
11c | -0.74738 8.04773 -2.45118 | -0.93765 6.18010 0.44634
11s | 1.34147 245118 5.52778 | 134076 0.44634 5.82469
O11 10 | 836953 1.78883 1.82821 | 7.49731 1.29836 0.99698
1lc | 1.78883 6.09074 1.02358 | 1.29836 8.08473 1.59716
11s | 1.82821 1.02358 7.80493 | 0.99698 1.59716 7.55187
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Figure 19: Induction energiesfor crystal structuresof carbamazepine. The structuresareordered
left-to-right by decreasing lattice stability, as calculated from the distributed multipoles described,
plus an empirical® repulsion-dispersion potential. Thelattice-energy range for the structures
shown is 16 kJ mol™. The horizontal line indicates the aver age induction energy with the SCERP

model to illustrate the discrimination of structural motifs by the polarizability model.
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4.4. Conclusion

4.4.1. How Important is the Induction Energy for Organic Crystals?

Two very different models for estimating the induced moments in organic crystals have
been compared: an ab initio response to an applied field due to point charges representing
the crystal environment, and the use of distributed polarizabilities in the field arising from a
distributed multipole representation of the surrounding molecules. The induction energy
contribution to the lattice energy, evaluated from these induced moments, is significant.
Over this diverse range of crystal structures, the models agree that the induction energy is
often between 20 — 40% of the electrostatic contribution to the lattice energy. This order of

magnitude is consistent with estimates of the induction energy relative to the electrostatic
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" using equally rigorous or better models for the

energy for small polyatomic molecules,”
induction energy, although often the polarization is not iterated to self-consistency. It is
also comparable with the modelling of the induction contribution to lattice energies of

neutral organic molecules derived by the PIXEL method,”™! where experimental atomic

polarizabilities are evenly distributed over the atomic charge density.

More importantly, for different known and predicted crystal structures that otherwise have
very similar lattice energies, the two models agree on the relative magnitude of the
induction energy. In the case of oxalyl dihydrazide, including the intermolecular induction
is essential for the calculated relative lattice energies to be consistent with the experimental
observation of the polymorphs. This is an extreme case, as the intermolecular induction for
the o polymorph compensates for the intramolecular hydrogen bonding in the other
conformational polymorphs. In the case of carbamazepine, the induction energy favours
the observed doubly hydrogen bonded dimer based structures over the hypothetical
catemer based structures. The differences in the induction energies of the low energy
computed structures of 3-azabicyclo[3,3,1]nonane-2,4-dione cannot be so simply ascribed
to the hydrogen bonding motif, but this reflects the relative weakness of the hydrogen
bonds for this imide, which forms a plastic phase.” In each of these comparisons of
known and hypothetical crystal structures, the differences in induction energies are small,
only a few kilojoules per mole, but this is sufficient to provide a significant reordering of
the relative stability of structures that are virtually equi-energetic according to models

which do not explicitly model the induction.

To correctly model crystal lattice energy, intermolecular potentials require a re-
parameterization of the entire repulsion-dispersion potential: adding the induction energy
to lattice energies calculated using an empirically fitted potential involves a high degree of

double counting. This is sufficient to lead to structures which are too dense if we attempt
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to minimize crystal structures with an induction term in addition to potentials which have
been empirically-fitted without the explicit inclusion of induction. It is also important that
the model for the induction can be readily implemented in a program that minimizes lattice

energies of organic crystal structure.

4.4.2. Practical Consideration for Using Polarizability Models in the Organic

Solid State

A local polarizability model can be implemented in lattice energy minimization packages
that use distributed multipole moments. It appears to be feasible to calculate WSM
polarizabilities from a reasonable quality ab initio charge density for quite large molecules,
with 3-azabicyclo[3,3,1]nonane-2,4-dione probably being the limit with current resources.
This is an acceptable limitation, given that the transferable polarizability model calculated
from fragments of carbamazepine gave reasonable results compared with the SCERP
calculations that used the complete molecule. Thus, it seems that transferable polarizability

models could be derived for use in modelling larger molecules.

The induction energy does depend on the order of the polarizabilities included. We have
noted some anomalous behaviour where rank 2 polarizabilities are used on hydrogen,
particularly when involved in short contacts within the crystal structure (most notably on
oxalyl dihydrazide €). Given the small amount of charge density associated with polar
hydrogen atoms, it seems reasonable that polarizabilities for these sites should be limited to
rank 1 for applications to dense systems. The differences between L2 and .1 WSM

models for the other atoms are comparable to those between them and the SCERP model.

The error in modelling charge overlap effects in particularly short hydrogen-bonding

geometries probably explains the larger variance with polarizability model observed in our
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oxalyl dihydrazide induction energies, relative to those for the 3-azabicyclo[3,3,1]nonane-
2,4-dione crystals which do not have such short contacts. The WSM polarizability model
does not account for any density overlap effects, and we have shown that damping is
required in order to avoid unreasonable energies for the shorter intermolecular contacts
found in hydrogen-bonded crystal structures. We have already shown” the agreement
between SAPT(DFT) induction energies and WSM models to be very good, and so the
WSM polarizability method of modelling the induction energy has a firm foundation. This
investigation has shown that damped polarizability models are also suitable for modelling
the induction energy in large clusters representing crystals, with many-body effects,

qualitatively different field anisotropy and short contacts.

We consistently find that the ab initio SCERP model falls midway between the I.1 and
L2/1L.1,WSM models, and that the relative ordering of the enetgies is consistent. The
SCERP model has also approximated the electrostatic field around the molecules (Figure
5), which does lead to significant errors in the hydrogen bonding region. Thus, we
conclude that we cannot at present model the induction energy more accurately than the
range indicated by the differences between the SCERP and the L1 and L2/1.1 WSM
models. However, it is clear that the induced moments will need iterating to self-

consistency (Figure 15).
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Chapter 5. Implementing the Polarizability Model in a Crystal

Structure Modelling Code

5.1. Introduction

Following the work done in chapter 4 to test the WSM model for calculating the effect of
polarizability in clusters of organic molecules, it is desirable to be able to use it when
calculating the crystal lattice energy with DMACRYS. This chapter describes how I have
implemented the L1 WSM model into the existing code, taking advantage of the program
features that already exist and adding the damping function. Results with systems such as
oxalyl dihydrazide and naphthalene, show that the dipolar polarizability model is worth
implementing for a wide range of organic systems. Extending the model to include
quadrupolar terms would dramatically increase the computational expense of the energy
calculation and require the additional separation and storage of the relevant field
contributions from the electrostatic energy summation. This is a fairly large task, but the

framework for it is in place alongside the dipole implementation.

It has been shown in chapter 4 that it is necessary to iterate the calculation of the induced
moments until the induction energy converges. Previously this has been performed using
large clusters of molecules generated from the crystallographic unit cell. The electric field
due to this cluster was evaluated at the atomic sites of one molecule in the central unit cell,
and polarizabilities on these sites give the corresponding induced moments. By means of a
script, these were captured from the output and added to the static moments on the
surrounding molecules so as to recalculate the electric field of the same physical structure

with updated multipole moments. The converged induced moments were then used to
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evaluate the induction contribution to the lattice energy. This procedure cannot be used to

minimize the lattice, however, and is only good for the induction at a single structure.

The iterative procedure has been coded into DMACRYS, which is described below in section
5.4, and calculates the induced moments to update the static multipoles internally. The
Tang-Toennies damping function, equation (54), used in the ORIENT cluster calculations in
section 4.3, has also been coded into DMACRYS. This damping function is not only used
for the induction, but is known to be effective in damping the dispersion interaction'.
There is the option to use this for completely ab initio potentials including damped

dispersion in the future.

The first step in using the WSM model is to be able to calculate the induction energy for a
static crystal lattice. The procedure was designed so it would be possible to optimize
crystal structures using numerical gradients for induction when using a non-empirical
potential. Aside from the lack of non-empirical potentials to avoid double counting the
induction energy, there are some technical issues that have hampered my attempts to relax

a crystal structure with induction, which are discussed in chapters 6 and 7.

5.2. Data Input and Inversion Symmetry

The input for the DMACRYS code is minimally changed when an induction calculation is
required, NEIGHIND requests an additional input file which contains the atomic
polarizabilities. The best practice is to calculate the distributed multipoles and
polarizabilities from the same wavefunction using CamCASP?, and they must be expressed
in the same molecular axis system to be input into DMACRYS. The format of the

polarizability file is directly related to the input file containing the multipole moments, and
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is purposefully generated by a similar set of procedures as the existing multipole file so as
to be consistent for the user. The polarizability input file for the first three atoms of the
blind test molecule XIII (Figure 23) are shown in Figure 20 as an example. NEIGHIND

matches up all of the properties for each atom and the output is a DMACRYS input file.

Figure 20: Example of the polarizability input file format. Each entry containsfour lines. Thefirst
line consists of the atom number, atom label, x y z Cartesian coor dinatesrelative to the molecular
centre of mass, and the rank of polarizabilitiesinput. Theremaining threelinesarethe lower

triangle of the symmetric polarizability matrix.

1 BrBR_1___ -0.957846 -5.432957 -0.000009 RANK 1
26.27810

0.00166 17.97020

2.04770 -0.00047 17.39480

2 BrBR 2 -0.958960 5.432649 0.000066  RANK 1
26.27810

0.00166 17.97020

2.04770 -0.00047 17.39480

3 CcL_1_ -3.895727 0.000047 -0.000040 RANK 1
17.30710

-0.00058 11.69060

-0.71240 0.00050 12.30990

When a molecule is generated by an inversion centre, some of the properties must undergo
a sign change so that the right-handed molecule-fixed axis system is preserved. NEIGHIND
already handles this for the multipole moments, changing the sign of those with an odd
order in the z-axis (e.g. Q,, = 2z, Q,;, = xz, Q,;, = yz, etc.). For the polarizabilities this is
also necessary, and I have ensured that those with an odd order in the z-axis are inverted.
The inversion matrix for dipolar and quadruplar polarizabilities is given in Table 10, where

the presence of a “—* in the dipolar terms correspond to the italicised columns in Table 1.
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NEIGHIND was programmed so it could process the quadrupolar polarizability terms

correctly, however DMACRYS has only been modified to use dipolar polarizabilites.

Table 10: Those polarizabilities, o, that require a sign changes when the moleculeisinverted

are marked by a dash.

Oliy Dipolar Quadrupolar
u t] 10 | 12c | 11s | 20 | 21c | 21s | 22¢ | 22s
10 - - — - -
&5 |11c | - - | -
(o]
o
[a) 11s - - -
20 - - -
21c - - - - -
K
S | 21s - - - - -
=
g |22¢c | - _ _
>
o
22s - - -

5.3. Calculating Electrostatic Fields

DMACRYS already contains code to maintain a list of molecules whose centres of mass fall
within a defined cut-off radius. This list is processed by the routine f r cnst such that all
pair-pair interactions within that range are summed over, to give the energy of the system.
The electrostatic interaction energy (36) for a pair of molecules is summed over the lattice
of molecules. By recasting the expression to use the electrostatic field at an interaction site

due to the surrounding molecules, we have the expression

Betat = % z Z QtaTn?b QE

acA tu

iBZ . (67)
— (Dtavt a

where V,? is the electrostatic field at site « of a2 molecule in the central unit cell. However,

dmarel was not designed to calculate the total field at each site in this way as part of the
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electrostatic energy summation. Separating the required data from the electrostatic energy,
so as to resolve the fields at sites due to all interactions, was a significant undertaking. The
fields are calculated at sites # due to all interacting multipoles, and are stored in the array
gfield as 10,11sand 11c components. The product of a field and a polatizability
tensor is an induced multipole, and the subsequent product of the induced multipoles with
the electrostatic field gives the induction energy as described in section 2.4. Future
implementation of rank 2 polarizabilities would additionally require the /=2 components of

the field at each site to be calculated and stored.

The equation for the induction energy (section 2.4.2) also uses the electrostatic fields:

E =20, AQYV?. (53)

acA t
By amending the routines that calculate the multipole interaction energies, the fields are

tabulated for each polarizable site during the normal lattice energy calculation.

The electrostatic terms are separated within the code, into charge-charge, charge-dipole,
dipole-dipole, and higher multipole interactions, which are summed up to the direct-space
cut-off. The terms up to dipole-dipole are also summed over an infinite lattice by using an
Ewald summation, except for the charge-quadrupole interaction which is always summed
in direct space instead of using the Ewald code in DMACRYS. As described in section
2.6.2.1, this summation in reciprocal space is for long-range interactions. The individual
contributions to the field due to reciprocal space are difficult to factor out from the Ewald
sum so that they may be damped appropriately, and it would be preferable to be able to

neglect them.
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Table 11: First order induced momentsfor a-oxalyl dihydrazide (see Figure 12) resulting from the

non-damped electrostatic field dueto 15 A direct space cut-off; and the same system using Ewald

summation.
Atom | Sum | Q10/ea, | Qlls/ea, | Qllc/ ea,
1 Direct 0.011733 0.027841 | -0.064738
Ewald 0.011770 0.027534 | -0.064475
o Direct | -0.014003 | -0.030117 0.065996
Ewald | -0.0147140 | -0.030442 0.066650
o1 Direct 0.066538 0.105565 | -0.086672
Ewald 0.066629 0.104710 | -0.086053
o2 Direct | -0.062365 | -0.106257 0.086981
Ewald | -0.062615 | -0.105935 0.087123
N Direct 0.110803 0.066820 | -0.154249
Ewald 0.1710960 0.062823 | -0.157660
N Direct 0.017572 | -0.055687 | -0.138902
Ewald 0.017930 | -0.057649 | -0.138539
N3 Direct | -0.020377 0.055590 0.132344
Ewald | -0.020762 0.057164 0.132390
N4 Direct | -0.109162 | -0.079153 0.156327
Ewald | -0.109361 | -0.075847 0.160176
i Direct 0.000954 0.012444 | -0.056538
Ewald 0.001106 0.012425 | -0.056680
o Direct 0.051501 | -0.037121 | -0.028993
Ewald 0.051946 | -0.037542 | -0.029196
3 Direct | -0.033412 0.016085 | -0.040690
Ewald | -0.033327 0.015819 | -0.040629
4 Direct 0.033850 | -0.016220 0.049477
Ewald 0.033781 | -0.016109 0.049504
s Direct | -0.055111 0.042221 0.034164
Ewald | -0.055567 0.042598 0.034572
H6 Direct 0.001429 | -0.010666 0.055076
Ewald 0.001284 | -0.010707 0.055373

The induced moments for a-oxalyl dihydrazide, calculated using the field from direct space
only and also including the reciprocal space contribution, and shown in Table 11. For the
tabulated induced moments, the difference in induction energy of the lattice is 0.2 kJ mol ",

and the converged induction energies using the two different summations come to -56.64
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and -57.12 k] mol, respectively. In this strongly polatized system the difference is less
than 1% of the induction energy, and for less strongly interacting molecules the difference
will be correspondingly less. Therefore the electrostatic fields used to calculate the induced
moments and induction energy are only summed in direct space, as Table 11 shows that

the reciprocal space contribution to the induction energy is negligible.

5.3.1. Damping

Some form of damping is required to account for the effect of orbital overlap on the
multipole expansion, and thereby prevent the model potential producing catastrophically
too short intermolecular contacts. The Tang-Toennies damping function (54) takes three
parameters: the sum of the angular momentum of the interacting multipoles (#), the
distance between the sites (R), and a damping factor (). The expansion allows for highet-
order multipoles to be damped by using the previous evaluation as a starting point. First
and second derivatives are easily evaluated at the same time, so this function can be used
for calculating numerical derivatives of the dispersion energy as part of the normal

minimization with analytical derivatives in the future.

= K
n kp(k-1) n k
fn’(ﬁR) _ _(Z k,B kF\: je—ﬁR +( (ﬁlj) jﬂe—ﬁR
N (k-2) - . (k-1) ©8)
0 k(k —1)8¥R2 i 0 KB<RKL ”
Ry SRR o f SO e
+(i (ﬂ:j) J Bl

The function is implemented in danpi ng. f 90; the functional part of the code is listed
in Figure 21
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Figure 21: Tang-Toenniesfunction in damping.f90, calculating damping function and its
derivatives efficiently, as an example of coding. The ‘case’ control structure meansit is

straightforward to add further damping functions as required.

scal =1
g=1.d0

sel ect case(typ)

case(0)
g=1.d0 ! Danpi ng
g1=0. dO ! First derivative
g2=0. dO0 ! Second derivative
case(1)

I Tang- Toenni es
if (new) then
I Starting from scratch
br=scal *r
ebr =exp(-br)
s=( 1. dO+br) *ebr
z=ebr*br
fn=1.d0
do k=2, n
fn=f n+1. dO
z=z*br/fn
S=s+z
end do
el se

! continuing fromprevious cal cul ation

do k=n0+1, n
fn=f n+1. dO
z=z*br/fn
S=s+z
end do
endi f
'z is now exp(-bR) *(bR)"n/n!
n0=n
g=(1.d0-s)
gl=scal *z
g2=gl*scal *(fn/ br-1d0)
end sel ect

Once implemented, damping is easily applied to the fields since the distance, R, and ranks

tu are readily available for each interaction, and the sum becomes
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VA= 3 (BRI QL 69)

acAB#AbeB tu

where V| is an array of field components # for which there is a polarizability tensor of that
order, for each atom 4. The normal summation of the energy already includes TtﬁbQB as

a term, with the orientation parts of the Ttﬁb tensor stored in a lookup table. Where the

tield is multiplied by a charge to calculate the electrostatic interaction energy, it is also
scaled by the damping function and summed into the total field at site @. The entire

procedure is described in the following section.

At present, molecules are given a single damping parameter, which is used for all types of
interacting atoms. It is likely that certain atoms or functional groups will need to be
damped differently, and this is discussed further in chapter 6. If a damping parameter can
be determined for individual atoms then this could be incorporated into the modified

atom-atom based code.

5.4. The Iterative Procedure to Achieve Induced Moments

The induced moments and induction energy are calculated for a fixed cell. For each set of
lattice parameters, the new i t er at € subroutine, which controls use of the induced
moments, calls the function that calculates the direct-space electrostatic sum. This allows
the electrostatic field to be captured as described above, and summed into a f i el d array
described by equation (69). Once the sum over interacting sites is complete, the

I t er at e routine proceeds to calculate the induced moments using equation (52) and the

induction energy by equation (53).

The iteration cycle is described more fully by the following series of steps:
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1. Sum the electrostatic field at each polarizable site, and store.
The new | t er at e subroutine calls f r cnst . This is the main subroutine that controls
the procedure of cycling over each atom-atom pair and calculating the interaction energy of
the multipole moments, and the relevant repulsion-dispersion potential. The electrostatic
tield at each site in the asymmetric unit cell is calculated for each interaction with multipole
moments on those sites. While the energy is summed, the field is stored in the gf i el d
array in the global coordinate system. If requested by the DAMP keyword, then the
danpi ng function is called with the atom-atom distance and the rank of interaction, and
returns a value by which the field is scaled before it is summed into the total.

2. Rotate the field from the lab frame to the local molecular frame.
Once this sum over interaction sites is complete, the stored fields are rotated to the local
molecular axis frame. This is a trivial step since the code has calculated the relevant
transformations which are used to rotate the multipoles for the electrostatic energy, and are
already available in the program. The electrostatic field is retained separately in
sfi el dl oc for later use, as it is multiplied with the induced moments to calculate the
energy.

3. Take the product of the field at each site with the corresponding

polarizability

The electric field components are multiplied with their corresponding polarizabilities so
that induced multipole moments are produced, following the equation AQ; = aA”.

These induced moments replace any previous induced moments, and are multiplied with
the original electrostatic fields stored in Sf i el dl ocC to give the induction energy using
equation (53).

4. Monitor the change in the induction energy
If the calculated induction energy has changed by greater than a preset tolerance, then the

new induced moments are summed to the original static moments. The tolerance by which
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the induction energy is tested is 10"’ k] mol". This is higher than the accuracy of the
polarizability model, however it is necessary to have this level of consistency in order to
reduce the noise of the potential energy surface for the numerical gradients calculation (see
section 7.2). If the energy change is less than the tolerance, then the procedure goes to
step 0.

5. Recalculate the field with induced moments

The newly calculated induced moments are summed to the original static moments,
AQF +Q/, which are then used to recalculate the electric fields at each site. The

procedure then returns to step 2.

6. Return the converged induction energy to the program
When the induction energy has converged within the tolerance level, the static multipole
moments are restored, and the value of the induction energy is returned to the calling

function.

The convergence of the induction energy is demonstrated in Table 12, which shows the
energy at each iteration for a series of closely related structures that are generated when the
code makes small, systematic changes to the lattice parameters to build the second
derivative matrix W (actually W™, see equation 55 and surrounding text). Further detail
about the numerical derivatives and the problems of minimizing the lattice are described in
section 7.2. Each column terminates when the energy change is less than the tolerance
setting. As expected, iteration of the energy is vital. The second iteration at search step 1
recovers 15 k] mol” more than the first step; around one third more energy. For the
structure at step 1 the energy has converged to within 0.05 k] mol " by the 7 iteration, and

has converged to 10" k] mol™ after 17 iterations.
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Where the starting induced moments are zero, it may sometimes require more than 200
iterations to converge the energy to this level of consistency. By using the induced
moments of a closely related structure as a starting point, subsequent calculations are able
to converge with fewer iterations. The effect of using the previous moments is seen by
looking along the top row of Table 12. The induction energies for steps 2-8 start at -56.63
k] mol" as a good approximation of the induction energy, and converge within a few
iterations. An example of where many more iterations are needed is shown by Table 13.
The e-oxalyl dihydrazide structure is a challenging one because of the short intermolecular
contacts that come about in the optimized lattice cell (section 4.3.3), and requires 110
iterations to converge the induction energy at the starting point. By using the converged
induced moments as a guess, the number of iterations needed is more than halved at each

subsequent step.
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Table 12: Induction energy (kJ mol™) for a-ODH, asan illustration of the conver gence behaviour

for 8 closely related structuresthat are automatically tried by DMACRYS when calculating the

numerical second derivatives.

Structure

Iteration 1 2 3 4 5 6 7 8
1 -39.585215 | -56.631929 | -56.632239 | -56.631577 | -56.631379 | -56.632032 | -56.631924 | -56.631739
2 -51.106391 | -56.631983 | -56.632307 | -56.631375 | -56.631429 | -56.632230 | -56.631807 | -56.631739
3 -54.852538 | -56.632014 | -56.632338 | -56.631285 | -56.631451 | -56.632298 | -56.631762
4 -56.025312 | -56.632014 | -56.632343 | -56.631240 | -56.631456 | -56.632334 | -56.631739
5 -56.428732 -56.632347 | -56.631235 | -56.631460 | -56.632343 | -56.631739
6 -56.559939 -56.632343 | -56.631226 | -56.631465 | -56.632347
7 -56.607075 -56.632347 | -56.631226 |  -56.631465 |  -56.632347
8 -56.622780 -56.632356
9 -56.628606 -56.632343
10 -56.630573 -56.632347
11 -56.631330 -56.632343
12 -56.631577 -56.632352
13 -56.631685 -56.632343
14 -56.631712 -56.632352
15 -56.631721 -56.632347
16 -56.631730 -56.632352
17 -56.631730 -56.632352

Table 13: Induction energy for e-ODH, showing the conver ged energy and number of iterationsto

achieve that

Step 1 2 3 4 5 6 7 8
# lrerations 110 35 25 46 31 46 40 4
Energy
(k] mol) | -30.662799 | -30.662673 | -30.662609 | -30.663232 | -30.662986 | -30.662609 | -30.662799 | -30.662799
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5.5. Validating Induced Moments and Energies

The implementation of the induction method may be validated by comparing the results
with those for alternative methods used in chapter 4. The ORIENT cluster model calculates
induced moments in response to the electrostatic field, which may be compared at each
iteration to the response calculated within DMACRYS. The induced moments can also be
used to calculate induction energies. There are limitations on the agreement between the
DMACRYS model and the previous cluster models, since there is a difference between the
infinite lattice system and the clusters comprised of unit cells. The clusters that I use for
comparison are generated using the SHELX file to determine the rotation angle, axis and
the translation of the centre of mass of the molecule, to reproduce their positions in unit
cells. As well as this source of numerical error in the atomic positions, there may be
molecules that lie on the boundary of the cut-off sphere that are included in one system
and not in the other, which account for the small differences between the methods.

However they are closely enough related for the comparison to be made.

Table 14 contains the induced moments as the first order response to the electrostatic field
of a-oxalyl dihydrazide, for which the atom numbering system is shown in . Most of the

variation is in the 4" decimal place, which is approaching the level of numerical accuracy.

139



Figure 22: Atom labelling system of oxalyl dihydrazide.
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Table 14: Induced dipoles (e ay) of a-ODH after 1 iteration within thelattice (DOMACRYS) and in a

cluster (ORIENT), without damping.

DMACRYS ORIENT

Quo/ ea, Quis/ ea, Quic/ ea, Quo/ ea, Quis/ ea, Quic/ ea,
C1 0.011733 0.027841 | -0.064738 0.011742 0.02842 | -0.065728
C2 -0. 014003 -0. 030117 0. 065996 -0.014138 -0. 029496 0. 066829
o1 0. 066538 0.105565 | -0.086672 0. 061098 0.101591 | -0.081531
(0 -0. 062365 -0. 106257 0. 086981 -0. 057212 -0.101727 0. 081499
N1 0.110803 0.066820 | -0.154249 0. 099745 0.054187 | -0.150971
N2 0. 017572 - 0. 055687 - 0. 138902 0.017378 -0.056653 | -0.137295
N3 -0. 020377 0. 055590 0.132344 | -0.020471 0. 057560 0.131122
N4 -0.109162 -0. 079153 0. 156327 -0. 097899 -0. 064956 0. 152779
H1 0. 000954 0.012444 | -0.056538 0. 001445 0.010895 | -0.052042
H2 0. 051501 -0. 037121 - 0. 028993 0. 046172 -0.031898 | -0.031174
H3 -0.033412 0.016085 | -0.040690 | -0.024848 0.005421 | -0.030516
H4 0. 033850 -0. 016220 0. 049477 0. 024728 -0. 005281 0. 037208
H5 -0. 055111 0. 042221 0.034164 | -0.050429 0.037843 0. 035788
H6 0. 001429 -0. 010666 0. 055076 0. 000807 - 0. 009004 0. 050602
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The RMSD of these two sets of moments is 0.00622606 e a,, i.e. the value of the multipoles
are very similar. The RMSD of the electrostatic potential on the 1.8x van der Waals surface
is only 1.14902 k] mol " over 6542 points probed with a unit point charge. In terms of the

induction energy of the crystal, using either the induced dipoles from that ORIENT cluster,

ot from DMACRYS are, for the first-order induced moments: -46.738 and -46.524 kJ /mol,

respectively.

This level of consistency is reassuring, but it is a requirement that it extends to the
converged case. Iterated moments are presented in Table 15, for which the lattice
induction enetgies are -68.572 and -68.951 kJ/mol. The RMSD for this set is 0.002078 ¢ a,
which remains very small after the two models have been through 18 iterations. By
including the same damping function with the ORIENT and DMACRYS models, the

converged moments (Table 16) have an RMSD of 0.001182 ¢ a,,
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Table 15: Induced dipoles (e ay) of a-ODH, converged within the lattice (DMACRYS) and within the

cluster (ORIENT), without damping.

DMACRYS ORIENT

Quo/ ea, Quis/ ea, Quic/ ea, Quo/ ea, Quis/ ea, Quic/ ea,
C1 0.018362 0.064135 | -0.090914 0.018548 0.067232 | -0.094800
C2 -0. 023106 -0. 070033 0. 097363 -0. 023010 -0. 068310 0. 095857
o1 0.103124 0.187303 | -0.111544 0.103864 0.191988 | -0.117050
(0 -0. 095326 -0.190748 0.114843 - 0. 095380 -0.191680 0. 115779
N1 0. 152781 0.112745 -0.218841 0. 154319 0.119672 | -0.217440
N2 0.022721 -0. 063155 -0.199107 0. 022053 -0.060430 | -0.201880
N3 -0. 026518 0. 061698 0.192909 | -0.026340 0. 062289 0. 193440
N4 -0. 154151 - 0. 136553 0. 228251 -0. 154700 -0.138400 0. 224000
H1 0. 001260 0.021134 | -0.082394 0. 001510 0.021708 | -0.082600
H2 0. 069163 - 0. 04537 -0. 041353 0. 068983 -0.044800 | -0.042190
H3 -0. 047535 0. 024607 | -0.057489 | -0.048340 0.025361 | -0.058400
H4 0. 049461 -0. 026494 0. 071455 0. 049731 - 0. 025800 0.071723
H5 -0.074888 0. 052702 0.048528 | -0.075550 0. 053434 0. 048593
H6 0. 002169 -0. 019630 0. 081400 0. 001977 -0. 019510 0. 080254
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Table 16: Induced dipoles (e ay) of a-ODH, converged within the lattice (DMACRYS) and within the

cluster (ORIENT), with damping.

DMACRYS ORIENT

Quo/ ea, Quis/ ea, Quic/ ea, Quo/ ea, Quis/ ea, Quic/ ea,
C1 0.017530 0.061483 | -0.091009 0.017607 0.062563 | -0.093027
C2 -0. 021599 -0. 063835 0. 092360 -0. 021879 -0. 063419 0. 093928
o1 0. 091855 0.174015 | -0.105187 0. 090396 0.174913 | -0.106627
(0 -0. 084091 -0.174770 0.104736 -0. 082753 -0.174987 0. 105613
N1 0. 135881 0.093419 | -0.206008 0. 133155 0.091212 | -0.206403
N2 0. 022221 -0. 062658 - 0. 192525 0. 021986 -0.063602 | -0.194171
N3 -0. 026030 0. 062960 0.183746 | -0.026283 0. 065672 0.186120
N4 -0.133749 -0.110020 0. 210508 -0. 132072 -0.107315 0.211238
H1 0. 001606 0.018114 | -0.073594 0. 001974 0.018479 | -0.073315
H2 0. 059657 -0. 037586 -0. 041705 0. 059813 -0.037666 | -0.042235
H3 -0. 035037 0.011577 | -0.043176 | -0.035068 0.010906 | -0.043310
H4 0. 035539 -0. 012000 0. 053124 0. 035499 -0.010982 0. 053326
H5 -0. 065670 0. 045553 0.047248 | -0.066112 0. 046162 0.047738
H6 0. 001628 -0. 016149 0. 071496 0. 001216 -0. 016307 0.071175

143




Table 17: The damped first order induced momentsfor (E)-4-(Trifluoromethyl)benzaldehyde

oxime. Theleft hand side of thetable are for the molecule, and theright hand side for the inverted

molecule.
Original molecule Inverted molecule

Quo/ ea, Quis/ ea, Quic/ ea, Quo/ ea, Quis/ ea, Quic/ ea,
Cc2

0. 001900 0.010471 0. 004350 - 0. 001900 0.010471 0. 004350
“ 0. 004145 0. 037103 0. 000295 | -0.004145 0. 037103 0. 000295
“ 0. 004613 0. 028232 0. 025668 | -0.004610 0. 028230 0. 025668
“ - 0. 005102 0. 001543 0. 020470 0. 005130 0. 001564 0. 020482
“0 - 0. 005617 -0. 043144 0. 050001 0. 005615 - 0. 043160 0. 050004
“ -0. 007941 - 0. 052190 -0. 028664 0. 007940 - 0. 052188 -0. 028663
0 -0. 001536 0.014712 | -0.015638 0. 001536 0.014712 | -0.015638
“ -0.001244 | -0.032281 0. 040536 0.001243 | -0.032288 0. 040537
o -0. 001912 0. 005281 -0. 001297 0. 001912 0. 005281 -0. 001297
" - 0. 000283 0. 008764 0.001113 0. 000283 0. 008764 0. 001113
" 0. 000450 0. 022173 0. 007918 - 0. 000450 0. 022173 0. 007918
o1 0. 008507 0.028989 | -0.036682 | -0.008497 0.028930 | -0.036587
f 0. 006383 0.001986 | -0.021279| -0.006383 0.001986 | -0.021279
i 0. 004007 0. 000322 -0.001893 - 0. 004007 0. 000322 -0.001893
v - 0. 003508 0. 002817 0. 010534 0. 003508 0. 002817 0.010534
i -0.008039 | -0.014863 0. 012644 0.008039 | -0.014863 0. 012644
e -0.004391 | -0.006741 | -0.011053 0.004391 | -0.006741 | -0.011053
o 0. 000304 0. 002133 0.017328 | -0.000304 0. 002133 0.017328
N - 0. 010543 0. 055466 0. 055495 0. 010606 0. 055194 0. 055628
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As a further test, I present data of (E)-4-(Trifluoromethyl)benzaldehyde oxime (Figure 3)
which was introduced in 2.7. The implementation must be able to correctly handle crystal
space groups that have an inversion centre, and this is proven by Table 17. The induced
moments for the enantiomers are calculated independently, so the tight agreement of the
moments and change of sign in the Q,, moment confirms that my implementation is
correct in this respect. The most strongly polarized atom is the nitrogen, in the Q,,, and
Q). directions, i.e. in the plane, because of its involvement in hydrogen bonding.
DMACRYS estimates the damped, first order induction energy to be —4.15 kJ mol” while an
ORIENT cluster calculation estimates —4.62 k] mol”. The converged induction energies are

estimated to be —4.86 k] mol” and —5.02 k] mol”, respectively.

5.6. Conclusions

Following the success of the WSM polarizability model that was tested in chapter 4, I have
implemented the induced dipole model into DMACRYS using an iterative method. With this
complete, it is now possible to routinely calculate the induction energy of a crystal structure
from the WSM polarizabilities available. The induction energy is converged to a high level

of consistency so that it can be used to calculate numerical derivatives of the lattice energy

with respect to the lattice parameters, which in principle will allow structures to be relaxed

with induction. For some technical reasons this is not yet feasible, and this is discussed

further in chapter 7.

I have compared the induced moments and induction energies from ORIENT clusters with
those calculated using DMACRYS, and shown that they are consistent within small error.
DMACRYS internally generates symmetry-related atomic positions in a periodic system. In

order to accurately predict the crystal lattice energy, adding the induction energy as I have
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described is not sufficient. Intermolecular interaction potentials are needed that do not
include any of the induction energy, otherwise an unknown amount of double-counting
will skew the results. Such a potential was created’ for the 2007 blind test, and in chapter 6
I present my part in testing and using that potential and a subsequent evaluation of the

induction energy of some crystal structures.
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Chapter 6. Crystal Structure Prediction with ab initio Potential

6.1. Introduction

The Cambridge Crystallographic Data Centre (CCDC) has held blind tests'™ in the
prediction of organic crystal structures to allow the community to assess their ability to
predict the observed (but unknown to the participants) structure starting with only the
molecular diagram. Each time the target molecules are presented in categories, such as
small and rigid or flexible, and are chosen to offer a selection of computational challenges.
In the most recent blind test (2007)* the target molecules included a poly-halogenated

benzene structure, Figure 23, identified as XIII.

Figure 23: Blind test molecule X111, CgBr,CIFH,

This system is challenging for several reasons. Firstly it is a small, planar, rigid molecule,
and such systems are often able to pack and stack in a large number of similar ways, and
can be disordered.” Such molecules often produce large numbers of related crystal

structures close to the global minimum®’ and so it can be very challenging to predict the

most stable structure. Secondly, it is well known that halogen atoms are anisotropic in their
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electron distribution®’, and so the model intermolecular potential should model the
anisotropy in the repulsive part of the potential. There is a lack of well tested anisotropic
atom-atom potentials, although potential parameters have been derived for the

10
chlorobenzenes.

The recent development of CamCASP"" allowed Dr Alston Misquitta to generate a custom,
anisotropic atom-atom intermolecular potential for XIII from the molecular charge
density."> My contribution to the crystal structure prediction was to prepare a suitable set
of crystal structures with an approximate potential, and then refine their relative lattice
energies using the custom anisotropic atom-atom potential. The potential was developed
with CamCASP for use with ORIENT, and I ensured it was correctly translated for use with
DMACRYS. At the time, we were unable to model the induction energy in DMACRYS, and so
the induction energy had to be omitted the model potential. Following the programming
of the induction into DMACRYS (Chapter 5), it became possible to use this system to test
whether the addition of the induction contribution would change the relative lattice
energies of some of the low energy structures produced in the search.”” Since the repulsion-
dispersion potential was generated from ab initio data, there would be no double-counting

of the induction energy in this case.

6.2. Conducting the search

As described in the related Letter'” the search strategy was to generate a large number of
approximate structures, and to reduce the number being considered by reminimizing them
with increasingly better model potentials. Two initial searches were conducted to give an
overview of the typical packing behaviour. One used MOLPAK," with DMA electrostatic

model from an MP2/6-31G(d,p) wavefunction computation and the FIT potential, and
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another using CrystalPredictor'* with a point-charge model and the Williams01 potential.
CrystalPredictor uses a number generation algorithm that should sample the packing space
more completely than MOLPAK, which generates initial structures by building a co-
ordination sphere that is dependent upon the crystalline space group being generated.
CrystalPredictor had not been used by the group for searches before and so it was
important to verify that it found all of the minima that MOLPAK does. The CrystalPredictor
search produced some 20,000 crystal structures with one molecule in the asymmetric unit
cell, before clustering of duplicated structures. Later analysis showed that all of the circa

3000 structures produced by MOLPAK were reproduced by this method.

When the CrystalPredictor data set was reminimized using the same multipole moments
and potential used for the MOLPAK search, and duplicates and transition state structures
removed, there were approximately 4500 stable minima remaining. The 266 structures
within 5 k] mol " of the global minimum were used to quickly assess the trial ab initio
potentials as they were developed and refined. The final potential was used to reminimize

the lowest 1200 unique minima to find the global minimum.

6.3. Overview of the ab initio Potential

The custom potential'> was created using CamCASP'" using the approach of deriving an ab
initio atom-atom potential described in a recent review."” The molecular geometry was
found by an # vacuo optimization of the MP2/6-31G(d,p) wavefunction using GAUSSIAN'®,
This geometry was held rigid throughout the investigation, and the planar C,, symmetry
was exploited in deriving the repulsion-dispersion potential. Molecular properties were
obtained using the asymptotically corrected'” PBE0" exchange-correlation function with

the Sadlej pVTZ"* basis set (as used for all the polarizability calculations in this thesis).
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The first ionisation energy, required by the asymptotic correction, was calculated by a delta-

DFT calculation using the PBEO functional in GAUSSIAN. This also provides the estimated
damping parameter B=1.635, using the relation in section 2.4.3. The DMA is used for the
electrostatic energy, and polarizabilities at imaginary frequencies, a(i a)), are used for the

. . . 21
C,, C,, Cq dispersion coefficients™ .

In order to fit the short range potential terms, a set of 1400 dimer geometries were
generated. At each geometry, SAPT(DFT) was used to calculate the total intermolecular

potential, as defined by**™®

~E® @ (2)
U~ Eelst (KS) + Eexch (KS) + Edisp,d (70)
These energies were used to parameterize an anisotropic atom-atom potential of the form

U :Gzzexp(_aab(Rab = P (Q24))) + DMA—Zangb/R6 . (71)

acAbeB

The anisotropy in the atom-atom repulsion, p, (€2,,), is a two term Legendre expansion

in the angles between covalent bond vectors and the atom-atom vectors. The form of this
expansion was determined by fitting the atom-atom overlaps between the molecules in the
set of dimer geometries. Then, using the assumption that the short range repulsion is
proportional to the total overlap between the molecules, the proportionality constants were
determined by fitting to the SAPT(DFT) interaction energies. In principle, the repulsive
term is modelling the exchange-repulsion and penetration energies. However, since the
dispersion term is an undamped C, approximating the damped C,, C,, C, dispersion, some
errors in this approximation are being absorbed into the repulsion term. Since this was the
first test of this approach to a completely non-empirical intermolecular potential, various
trial model potentials were generated with different methods of fitting the model potential
to the SAPT(DFT) energies during the course of the blind test. The complete method has
been published .
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6.4. The Crystal Energy Landscape

As the errors in the potential were reduced by fine-tuning the fitting procedure, the 266-

molecule test set was repeatedly reminimized until it was clear that further potential

refinements were unlikely to change the relative energies of the most structures. We had

intended to reminimize the full set of approximately 4500 structures with the custom

potential in case there were any large shifts in energy. Due to time pressure I took the

strategy of reminimizing structures in order of increasing energy from the global minimum.

After 1200 minimizations the energy gap between new structures and the global minimum

had reached 12 k] mol" and no lower energy putative structure were being sufficiently

stabilised to compete for submission as the experimental structure. The 10 lowest-energy

stable structures are listed in Table 18.

Table 18: Lattice detailsfor the lowest 10 unique structuresfrom the X111 search. Thethree

submitted structures are highlighted in bold. Thelowest in ener gy, af395, correspondsto the

experimental structure.

Label | Space | a(A) b (A) c(Ad) a(°) b (°) g (© Cell Lattice
group density energy
(g cm3) | (k] mol?)
af395 P2,/c 3.8052 13.7907 20.339 90 134.528 90 2.5171 -91.41
ab43 P-1 7.9509 11.4832 9.1399 | 80.861 101.55 | 35.362 2.4592 -90.71
af62 P2i/c 8.8629 6.7961 15.7847 90 54.773 90 2.4659 -90.2
af50 P2i/c 8.0542 6.7534 15.7693 90 113.105 90 24276 -89.69
db456 | C2/c 13.2885 8.9616 13.6942 90 72.475 90 2.4631 -89.39
xx646 | 1-4 20.2489 20.2489 3.7629 90 90 90 2.4826 -89.26
db59 C2/c 15.9934 9.1018 13.0163 90 124.606 90 24561 -89.25
db155 | C2/c 16.1883 6.7752 15.6994 90 68.004 90 2.3992 -88.65
af8 P2i/c 3.7882 13.5148 16.3292 90 113.459 90 24973 -88.64
db26 C2/c 17.8463 6.7696 15.9088 90 124.452 90 2.4169 -88.03
aq797 | P21212; 3.8222 13.5104 15.0057 90 90 90 24716 -88.34
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Figure 24: Two views of the overlay of the experimental (black) and predicted af395 (grey) crystal

structures of CeBr2CIFH2, taken from'. Thetwo structuresare hard to separate asthe overlay is

nearly perfect.

Figure25: Crystal energy landscape of XII1 after minimization using the custom potential

(excluding theinduction). The experimental form correspondsto the lowest energy predicted

structure.
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Although the crystal structure prediction methodology at the time did not include any
induction contribution, the experimental structures were successfully predicted with an
overlay of the 15 molecules shown in Figure 24 of 0.15 A. There were 35 structures within
5 k] mol " of the global minimum and 154 structures within 10 kJ mol (see Figure 25).
The experimental structure is clearly predicted to be the most stable in lattice energy,

although the next minimum is only 0.6 k] mol" less stable than it.

This success in predicting the known structure as the global minimum in the lattice energy
implies that the crystallization was under thermodynamic control, and that the order of the

free energies at the crystallization temperature is the same as at 0 K.

6.4.1. The Polarizability and Induction Energies of XIII

The distributed polarizabilities for XIII had been calculated as part of the derivation of the
dispersion coefficients. A comparison of the isotropic atomic polarizabilities of oxalyl
dihydrazide and XIII is given in Table 19, along with the total isotropic molecular
polarizabilities. The C-H carbon atoms in XIII are comparable in polarizability to the
CHNO atoms in a-oxalyl dihydrazide, but the other carbon atoms are significantly more

polarizable and overall XIII is twice as polarizable.

The damped induction energy when a unit point charge is positioned on the 1.8 times van
der Waals surface of XIII is shown in Figure 26. The induction energy is lowest near the
fluorine, -12.6 k] mol”, and particularly large above the plane of the ring, -70.0 k] mol™,
near the carbons bonded to chlorine and fluorine. By comparison, the induction energy of
o-oxalyl dihydrazide when probed over the same surface ranges from -25.1 to -53.9 kJ mol’

' i.e. it is not as polarizable as XIII. A casual inspection of Figure 26 may seem to imply
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that the bromine sites are not particularly polarizable, but bromine has a significantly larger
van der Waals radius other than the atoms in the molecule. Hence, other atoms in van der
Waals contact with bromine will have their nucleus within the surface plotted in Figure 26,

whereas other van der Waals contacts may be on or outside the surface.

The electrostatic contribution to the global minimum lattice energy is only 12% for the
experimental crystal structure of XIII. In addition, there are no strongly directional
electrostatic fields produced around XIII, as there would be around hydrogen-bonding

groups. Smaller electrostatic fields will limit the magnitude of induction in the crystal.

Table 19: Isotropic atomic and total polarizabilities of a-ODH, and XI11.

a-oxalyl dihydrazide (Chapter 4) (units 47¢ ,a3)

C1 C2 o1 02 N1 N2 N3 N4 H1 H2 H3 H4 H5 Ho Total

8.58 | 8.47 | 7.08 | 7.21 | 7.21 6.94 6.87 | 7.26 | 1.48 | 2.03 | 1.46 | 1.56 | 2.12 | 1.44 69.70

XIII (units 47g,a3)

Br | CI | F [CB)|CC)] CFH |Cca)]| H Total

20.55 | 13.77 | 2.77 | 12.65 | 1419 | 10.06 | 7.79 | 2.41 127.93

The SAPT(DFT) method was used to find the induction contribution to the dimer
interactions energies. For the 1400 geometries, the induction contributed typically around
3% and not more than 10% of the total interaction energy, which was negligible enough to
make the approximation of ignoring it for the fitting for the blind test. However, it is
substantial enough for the induction in crystals of XIII to be a good test of the later

implementation of the induction in DMACRYS.

It is now possible to evaluate the induction energy within crystal structures. The different
atom-atom contacts within the low energy structures could result in difference in the

induction energy that would change the order of stability. The success in the blind test
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would have been due to a cancellation of errors if another low energy structure was

reranked as the global minimum when induction was included.

Figure 26: Theinduction energy probed using a damped unit point charge on the 1.8x vdW surface
of XI11. Theenergy rangeisfrom -12.6 to -70.0 kJ mol™ The moleculeis orientated so that the Cl

atom is closest to the scale bar.

6.4.2. The Induction Contribution to the Lattice Energy of XIII Crystal
Structures

I have used DMACRYS to estimate the induction in some of the crystal structures whose

lattice energies are close to the global minimum, using a rank 1 WSM polarizability model

with a damping parameter of B = 1.635. The induction enetgy for the global minimum

and four other low energy structures are given in Table 20.
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Table 20: Lattice energy of the low-energy structures close to the global minimum, and their

additional stabilisation by induction energy.

Search Static Eina Number ORIENT
Code lattice (k] mol) of induction
energy DMACRYS energy
(k] mol) iterations (k] mol)
af395 -91.412 -8.10 284 -8.22
(minimum)
ab43 -90.707 -1.83 23 -1.89
db495 -89.385 1.29 26 -1.35
db59 -89.247 122 21 -1.29
af8 -88.643 226 177 -2.39

Although the induction energy seems to further stabilise the observed crystal structure,
these estimates may not be valid. The induction calculations only converged for these five
of the ten lowest energy structures considered. In order to investigate the convergence
problem, induction energy calculations were performed for the crystal lattice using
DMACRYS, and for a molecule within a cluster of unit cells using ORIENT. An example of a
successful convergence of the induction energy is given in Figure 27, which shows the
induction energy of the DMACRYS and ORIENT models of ab43. After only two or three
steps, it appears that the two systems are different, but this error is due to the slightly
different configurations: DMACRYS summed within a cut-off in the lattice, and ORIENT
using a cluster of unit cells. However, after a further few iterations the energies converge
to within 0.04 k] mol”. The first-order induced moments are also in good agreement

between the two methods, as shown in Table 21.

In contrast, Figure 28 shows the divergence of the induction energy for structure af62.
This structure is a valid lattice energy minimum using a good model for the intermolecular
forces, and we would expect the induction energy to converge to a similar value to those

shown in Table 20, not for it to approach infinity. In Figure 28 the ORIENT energies are
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the interaction of the induced moments with the previous iteration’s static plus induced
moments, so the disagreement with the DMACRYS energies is not a cause for concern. (The
additional calculations needed to calculate the induction energy in ORIENT were not
worthwhile performing for a clearly diverging system). Thus, the agreement between
DMACRYS and the ORIENT calculations implies that the non-convergence of the induction
energy is not a problem with the implementation into DMACRYS, but is a problem with the

model for the induction energy.

Figure 27: Theinduction energy for the X111 structure ab43. DMACRYS and ORIENT are equally

ableto model the induction energy, which convergesrapidly in this case.
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Table 21: First order induced moments of X111 system ab43, with damping, calculated with

DMACRYS and ORIENT. A right-handed axis system was used, wherethe x axisis defined along the
C(F)-C(ClI) direction and the xy-plane by thisaxisand C(Br).

DMACRYS ORIENT

Q10/ eap | Qlls/eap | 11c/ eag Q10/ eap | Qlls/ eay | Qllc/ eag

Br 0.00604 | 0.03266 | 0.01141 0.00576 0.03104 0.00866
Br 0.02971 0.02837 | -0.04715 0.02982 0.02855 |  -0.04346
cl 0.00644 | -0.00596 | -0.02509 0.00595 | -0.00791 |  -0.02694
F -0.00203 | -0.00735 | 0.00064 -0.00207 | -0.00770 0.00059
C®Br) | -0.00079 0.00272 | -0.02565 -0.00171 0.00286 |  -0.02668
CC) | 0.00204 0.00451 | -0.01621 0.00185 0.00521 | -0.01909
C®Br) | 0.00888 0.00626 | 0.01730 0.00926 0.00683 0.02091
CH) | 0.00540 0.00960 | 0.03974 0.00531 0.00914 0.03834
CE) | 0.00084 0.00391 | 0.02770 0.00088 0.00252 0.02898
CH) | -0.00275 0.00121 | -0.01967 -0.00241 0.00049 |  -0.01524
H 0.00835 0.00999 | 0.00404 0.00856 0.01049 0.00378
H -0.00893 | -0.00404 | -0.00284 0.00928 | -0.00407 | -0.00263

Figure 28: Induction energy for X111 minima af62, which diverges. The energy of the ORIENT
system isnot strictly Eind, which would require an additional calculation at each step. It does

exhibit the same convergence or divergence for systemsas Eind calculated by DMACRYS.
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The reason for the induction energy rising to infinity at a fixed geometry is because the
damping of the interaction is not sufficient. The damping model was developed using
small molecules containing C, H, N, O, but for XIII we are applying it to a larger system
and to some very different elements. Bromine, especially, is a large atom with significant
anisotropy in the shape of the charge density. As shown in Table 19 it is the most
polarizable atom listed, and the molecule as a whole has a large polarizability. Examination
of the induced moments in the ORIENT and DMACRYS calculations shows that it is the
bromine atoms that begin to be over-polarized; the exaggerated induced moments produce
stronger fields which eventually cause all sites to become over-polarized and the induction
energy approaches negative infinity, as in Figure 28. The Tang-Toennies damping function
has been used with a single molecule-based parameter, which was shown in Chapter 4 to be
effective for those system. Unlike other molecules I have studied, XIII has atoms from
four different rows of the periodic table, and it is plausible to propose that the damping

should depend upon the interacting atom types.

6.5. Conclusions

The prediction of the blind crystal structure was successful, using this entirely ab znitio
derived potential. As predicted, the induction energy was not crucial to predict the correct
structure, even though the molecule is quite polarizable, because of the weak electrostatic
forces between molecules. Although the interaction potential modelled the global
minimum as most stable by only 0.6 k] mol”, the experimental structure, af395, also
appears to probably be the global minimum when induction energy is also included. It is
interesting that the correct structure has much larger induction energy than the other low-

energy minima; this may be largely due to the greater density. However, it is so much
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greater than any of the other structures that it seems likely to be exaggerated due to a mild

form of the insufficient damping problem.

The blind test molecule CBr,CIFH,, contains atoms from four different rows in the
periodic table. This is sufficiently different from the small systems used to develop the
single-parameter damping model that the approximation of a single damping parameter for
a molecule is inadequate. Half of the low energy structures tested failed to converge the
induction energy, even though they were less dense than the global minimum and did not
appear to have any anomalous interactions. This exposes the weakness in the damping
model, however comparison of the WSM model with the SCERP in chapter 4 shows that it
is a reasonable approximation for the small organic molecules for which it was derived.
Hence, although this chapter confirms the validity of the programming of the induction

energy, the choice of XIII revealed problems with the damping model.
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Chapter 7. Conclusions and Future Work

7.1. Towards Modelling the Polarization of Organic Molecules within
Crystal Structures

The charge distribution of a molecule changes when other molecules are close by. The
development of the WSM polarizability model by Misquitta and co-workers'™ for
modelling the changes in the charge density by calculating induced multipole moments, is
a significant advance in our ability to quantify the stabilising induction energy. I have
started to apply this model for the polarization to organic crystals by testing them in a
range of structures (chapter 4), implementing it into a lattice energy minimization code
(chapter 5) and then used my implementation for further research into the induction
energy of a system where there was a suitable model potential (chapter 6). The
polarization of the molecular charge density in the crystal may be significant even for
molecules such as naphthalene, and our model qualitatively reproduces the
experimentally determined polarization effect (section 4.3.2). This effect has previously
been ignored in modelling organic crystals structures, with the isolated molecular charge
density being used as the model for the electrostatic forces, and the effects of induction
absorbed into empirically fitted repulsion-dispersion potentials. Using large cluster
calculations, I have shown that the induction effect can be significant and that WSM
models are effective for estimating the induction energy of a crystal structure. The rank
1 WSM model has been coded into DMACRYS, as results presented in chapter 4 suggest
that the dipolar model is effective at resolving the relative difference in induction

between polymorphs.
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Applications of the induction calculation are limited by the availability of non-empirical
potentials. As long as the induction energy is absorbed into an empirical model potential
there will be an unknown amount of double-counting that cannot be removed. This
prevents the accurate relative lattice energies from being determined, and also prevents
us from relaxing any crystal structures because of the extra attractive force from the
double counting. Before DMACRYS can be used to minimize crystal structures with
induction there are several areas that require research and development. Non-empirical
potentials need to be developed to evaluate lattice energies accurately. However, my
research (chapter 6) has shown that improvements to the damping model, which
represents the effect of the overlapping charge distributions on the induction, need to be

investigated to improve non-empirical potentials, and this is discussed below.

The investigations in this thesis have been for single lattice points only. Some
preliminary work has been done to relax structures with induction (section 7.2, below),
which highlights a problem with obtaining numerical derivatives of the induction energy

to the accuracy needed for crystal structure optimisation.

7.1.1. Inadequate Damping Model

It was shown in Chapter 6 that several structures of CBr,CIFH, (XIII) near the global
minimum of the search could not have their induction energies converged. In these
cases the induction energy would rapidly become large within a few dozen iterations, or
slowly accelerate towards infinite energy over 350 iterations until the program terminates.
This behaviour was attributed to the damping between bromine atoms being insufficient,

which causes the induced moments to increase rapidly in some of the crystals. A further

example of poorly converging induction was seen for the g-oxalyl dihydrazide system in
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Chapter 4.5.2, where the energy did converge to give anomalously large energies relative
to the other polymorphs and the SCERP results. In this case the problem was identified
as inadequate damping for the particularly short intermolecular contacts between
hydrogen-bonded NH groups. This behaviour has been consistent in both the ORIENT
clusters and DMACRYS lattice calculations, concluding that it is caused by ineffective

damping in those systems.

It is the damping that is the least rigorous part of the whole model for the induction
energy. The little research that has been done into damping induction suggests that the
Tang-Toennies function, more commonly used to damp dispersion interactions, is a
suitable approximation. Misquitta and Stone' note that it is unrealistic to expect a
universal damping function to account for the effects of both penetration and the
divergence of the multipole expansion, and that it will also depend on the sites involved,
as well as the possibility of ‘anti-damping’ at intermediate distances, where the truncated
series may need to be enhanced. There is also evidence that damping would need to be
to anisotropic.” However, the Tang-Toennies function appeared to be a good choice in
generating accurate potentials from small dimers.” It appeared to be suitable when using
dimers of small molecules to develop the WSM model, and has also been somewhat
effective for many of the crystal structures presented in this thesis. The halogenated
benzene compound, XIII from Chapter 06, is a notable exception. It is sufficiently
different from molecules used to develop the model that many of the low energy
predicted crystal structures did not have an induction energy that converges, due to
ineffective damping. The rest of the model potential is atom-atom based using
distributed properties, yet the damping has a single parameter based on the molecule as a
whole. It would be reasonable to expect the bromine-bromine interactions to require a

different level of damping from CH-CH interactions.
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I have implemented the single-parameter damping model, but changing this to have
cither different atom-atom damping parameters or changing the functional form is
possible with some further modification of the code. A recent study® into polatization
using clusters of water and glycine has shown that the current method of determining the
damping parameter using the first ionization energy is not optimal. By varying the
parameter they were able to reduce the errors in their calculations for a wide range of
clusters. For small molecules containing only CHNO atoms the present model appears
to be a reasonable approximation, however it is clear that determining what the damping

model should be will require a significant amount of research and development.

7.2. Minimizing Lattice Energies Including Induction using
Numerical Gradients

DMACRYS already has code to determine the derivatives of the lattice energy by numerical
difference, although for normal procedures it is done more efficiently using analytical
derivatives. I have attempted to use the numerical routines to allow crystal structures to

relax under the influence of induction.

The crystal phase space is defined by 6N + 6 lattice variables, where N is the number of
molecules in the asymmetric unit cell, consisting of 3 translational and rotational
variables for each molecule within the cell plus three lattice vectors and angles of the cell
itself. Normal lattice minimization uses analytical gradients and some analytical second
derivatives to construct the Hessian, which is then periodically updated”'’. An analytic
form for the derivatives of the induced moments and the fields is non-trivial because of

the iterative method. For this reason the derivatives are calculated numerically, which is
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handled by the f r cdi f subroutine that cycles over the lattice variables and calculates
the energy as each is perturbed about the starting point. During this cycle, the current
variable is perturbed by a small amount, A, and this change is applied to the lattice.

| t er at e is called to solve the induction energy for the new structure, then f r cnst
for the electrostatic energy as described in chapter 5.4. A further change by A is applied
and the procedure is repeated, until four structures close to the starting point have been
evaluated for the lattice energy. Using these four values the first derivatives are

approximated using the lattice energies of the four structures with the formula

oU 8- (El-E4)-E2+E3
OX 12-A )

(72)

The second derivatives are calculated in a similar way, by perturbing two lattice variables
at once. For each variable, all other variables up to the current one are passed over,
completing the triangle of the matrix for +1+1, +1-1, -1+1, -1-1, +2+2, +2-2, -2+2,-2-2
times the A along each of the two variables, and which are the energies E1-ES8,
respectively. The second derivates can then be approximated from these using the

formula

o _16-(E1+ E4—-(E2+ E3)) - (E5+ E8— (E6+ EY)) 73)
OXdy 48- A? '
Once the triangle has been completed, it is copied to complete the square matrix, giving

the full Hessian. From this point onwards the minimization can continue by updating

the Hessian using the techniques described by Fletcher.”"

7.2.1. Numerical Noise in the Potential Energy Surface

For the minimizer to function, the potential energy surface must be relatively smooth
and not contain any discontinuities, as this produces unphysical spikes in the numerical

derivatives. This requires very tight convergence of the induction energy to far more
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significant figures than physically reasonable. A convergence to a tolerance of 10° kJ
mol " has been found sufficient for the induction energy to change smoothly for small

changes in the lattice parameters.

A second source of discontinuities for all contributions to the lattice energy is the cut-off
used for summing the lattice energy over direct space. As the structure is relaxed,
molecules move in and out of the cut-off sphere, and the larger the radius of this sphere
the more molecules may lie on the boundary and move across it. Discontinuities are
introduced into the potential energy surface by the induction code when there is an
update of the nearest neighbour list used for the sum, where small changes to the
structure mean that the tiny interaction between molecules at the edge of the cut-off are
switched on and off abruptly. Figure 29 shows a plot of the first derivative (GD1) of the
lattice energy of the XIII minimum from chapter 5, with respect to the lattice parameters
in internal units, for the first 200 lattice perturbations. The large jumps in energy seen in
Figure 29 are the result of the inconsistent neighbour list. Considering that the
minimization starts from the search minimum that corresponds to the observed crystal,
the derivative should not be jumping by two orders of magnitude after as many as 140

steps.
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Figure 29: First derivative of the energy with respect to lattice parameters (GD1) for the XII1
minimum af395. Thefirst 200 points of a lattice minimization using induction are shown, with

the nearest neighbour list updated as normal.
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On the other hand, Figure 30shows the value of GD1 when the same structures is
minimized with a fixed neighbour list. The derivative quickly approaches zero as the
discontinuity is removed. By fixing the neighbour list to be constant the discontinuity
can be removed, but as the crystallographic cell changes the sphere of interaction will

become ovoid and the minimized structure will not be correct.
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Figure 30: First derivative of the energy with respect to lattice parameters (GD1) shown for the
X1 minimum af395. Thefirst 200 points of a lattice minimization using induction are shown,

wherethe nearest neighbour list iskept constant.
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The discontinuity in the energy from the use of a neighbour list has also affected other
codes relying on numerical gradients, such as DMAFLEX''. Unfortunately the handling of
the interaction list is a fundamental feature of the DMACRYS, and discussions with Dr
Maurice Leslie indicate that it would require significant restructuring of the minimization
routines to resolve. Several solutions have been proposed, such as implementing a spline
function for a region outside of the cut-off radius so that the interactions reduce
smoothly to zero; also adapting the cut-off so that it is not molecular centre of mass that
is a cut-off criterion, but that any molecule with atoms falling inside the sphere should be
included. These are also significant developments to the code that require thorough

development and testing.
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The issues of damping and lattice minimization will be the subject of further research
projects. This thesis has provided the assurance that modelling the induction energy in

organic crystal structures is an achievable and worthwhile research pursuit.

7.3. Conclusions

In this thesis I have demonstrated that it is possible to evaluate the induction energy
contribution to the lattice energy of organic crystals, using the WSM polarizability model.
This model has been developed from well founded chemically theory as part of a move
towards using fully ab initio derived intermolecular interaction models. I have compared
the results of the WSM model in clusters against the SCERP model, and found that they
agree on the relative stabilisation of different crystal structures due to the induction
energy. Although there is a question as to the accuracy of the absolute induction energy,
there is a need to implement the WSM model to at least the dipolar level so that the
effect of the induction energy on the relative stability of crystals can be evaluated. 1
believe the effect will be most pronounced where there are competing hydrogen-bonding
motifs between low energy structures, such as in the predicted low energy crystal
structures of carbamazepine and 3-azabicyclo|[3,3,1]nonane-2,4-dione (chapter 4). I have
also shown that competing inter and intramolecular hydrogen bonding options in oxalyl
dihydrazine can have a significant effect on the magnitude of the induction energy. In
cases where the molecules in low energy crystal structures have competing inter and
intramolecular hydrogen bonding options it is absolutely crucial to consider the induction
energy when comparing relative lattice energies. This has been confirmed by periodic a4
iniito calculations of oxalyl dihydrazide and o-acetobenzamine.”” Studies on co-crystals'
involve a greater number of options for intermolecular interactions where multiple

components have different functional groups and varying degrees of polarizability.
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Where competing low energy predicted structures sample a broad range of
intermolecular interactions, they are likely to benefit from having the induction energy

calculated more than where structures have broadly similar packing.

I have also demonstrated in chapter 6, and discussed above, that further research is
needed in to the induction model. Research needs to be done on how best to determine
the damping parameter for a molecule, if it should be dependent on atomic types which
are interacting, or if a different damping function entirely should be used. Such research
would increase the accuracy of the model and the range of systems for which it can be
confidently used. Since I have modified DMACRYS to calculate the induced moments, it
would be a relatively trivial matter to include additional functional forms of the damping,
and to implement atom-atom damping parameters, to allow this research to take place.
The future for crystal structure prediction is accurate models of the intermolecular
interactions that are based on our best theory. We now have the tools to explicitly
calculate the induction energy. In conjunction with the use of ab 7nitio derived custom
potentials developed alongside my own research, we are able to continue developing and
testing new interaction models to improve the scope and accuracy of organic crystal

structure prediction.

It is a natural requirement to be able to minimize lattices including the induction energy.
In order to do this, it is essential to have ab znitio derived potentials that exclude
contributions from induction, to use in conjunction with the WSM model. However,
there are several technical problems that are fundamental within the DMACRYS code,
some components of which were developed more than 15 years ago, that prevent us

from minimizing crystal structures right away, even with suitable potentials. While it is
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possible to do in principle, the discontinuities in the induction contribution to the lattice

energy described above will require a major restructuring of the code to overcome.

These issues will be the subject of future research projects, as they require a significant
amount of investigation and development. This thesis has laid the foundations of these
projects, by showing how important it can be to take account of the induction energy
when comparing the relative lattice energies of polymorphs, and implementing and

validating the model for calculating it into the lattice energy program DMACRYS.
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Appendix A: Acronyms and Program Names

The naming convention is that program names are listed in SMALL CAPS.

CAMCASP

Cambridge package for Calculation of Anisotropic Site
Properties

http://www-stone.ch.cam.ac.uk/programs.html#CamCASP

CCDC

Cambridge Crystallographic Data Centre

CRYSTAL2CLUSTER

A code written by Dr. Panos Karamertzanis, which can
generate clusters of molecules built from complete unit cells,
from the SHELX file. It can output atomic XYZ
coordinates, as well as the molecular centre of mass

translations and Euler angles used by ORIENT.

CRYSTALPREDICTOR

A code written by Dr. Panos Karamertzanis, used for crystal
structure prediction. It allows flexible molecules to be
modelled as a set of connected rigid fragments, and may be
used to predict structures in less common space groups and
with more than one molecule in the asymmetric unit. For
efficiency, it uses a point-charge model and is parallelized,
and was mainly used as a preliminary, but extensive, structure

search.

P.G. Karamertzanis and C.C. Pantelides, “Ab initio crystal structure prediction. 11.

Flexible molecules,” Mol.Phys., 105, 273-291 (2007)

CSP

Crystal Structure Prediction

DMA

Distributed Multipole Analysis

DMACRYS (formetly

DMAREL)

The crystal lattice energy minimization code, which assumes

rigid-body molecules, and uses distributed multipoles, Ewald
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summation and repulsion-dispersion potentials to model the
lattice energy. I have adapted the original code to include the
induction energy for a dipole-dipole polarizability model, to
use custom potential types for atoms, and model dispersion

using damped C; Cg C,, coefficients.

DMAFLEX,

DMAFLEXQUICK

Two related codes written by Dr. Panos Karamertzanis,
which interface with an ab initio package and DMACRYS to
include flexibility in the CSP search. Both codes extract rigid
molecules from DMACRYS, perturb pre-defined bond lengths,
angles and torsions, and then use this as a rigid molecule
input to DMACRYS. Both codes use first and second
derivatives of the crystal energy, considering inter- and
intramolecular energies, however DMAFLEX performs an ab
inito calculation each time the molecular structure is
perturbed, while DMAFLEXQUICK rotates multipoles and
extrapolates E, . if the changes are smaller than a defined

amount, making the process more computationally efficient.

FDDS

Frequency Dependent Density Susceptibility

GAUSSIANO3

An electronic structure program that predicts energies,

molecular structures and molecular properties.

GDMA

Gaussian Distributed Multipole Analysis: a code written by
Prof. A. J. Stone to perform DMA on the output of a
GAUSSIANO3 wavefunction calculation.

http:/ /www-stone.ch.cam.ac.uk/programs. html#GDMA

MOLPAK

The code used at the beginning of a CSP search to generate
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densely packed crystal structures with one molecule in the
asymmetric unit. It uses a set of geometrical rules to generate
crystal structures usually in 38 space groups, and a simple
point-charge and repulsion-dispersion model to efficiently

minimize them prior to using more accurate models.

NEIGHCRYS (formerly

DMACRYS)

A pre-processor for DMACRYS, collating the necessary input
files relating to the crystallographic cell and model potentials.
Its purpose is to check that the required input data are
complete and consistent, and to generate the crystallographic

cell from the asymmetric unit and symmetry operators.

NEIGHIND

A version of NEIGHCRYS, adapted to include the input of

distributed polarizabilities.

ODH

Oxalyl Dihydrazide

ORIENT

Program for carrying out calculations of interacting
molecules, using site-site potentials that include electrostatic,
induction, repulsion, dispersion and charge-transfer.

http:/ /www-stone.ch.cam.ac.uk/programs.html#Orient

SAPT(DFT)

Symmetry Adapted Perturbation Theory (Density Functional
Theory): an extension of SAPT that expresses the interacting
molecules in terms of Kohn-Sham orbitals and orbital

energies of DFT.

SCERP

Self Consistent Electronic Response to Point-charges

SHELX

A least-squared refinement program, used by
crystallographers to determine structures from single-crystal

diffraction. The SHELX °.res’ file is a standard way to record
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the cell parameters, fractional atomic coordinates and

symmetry operators that define a crystal structure.

WSM Williams-Stone-Misquitta model of distributed molecular
polarizability.
XII1 The identification code used for the 13" molecule in the

CCDC blind test for the polyhalogenated benzene |,3-

dibromo-2-chloro-5-fluorobenzene
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Appendix B: Programming Contributions

As well as shell scripts written to process the datasets of specific experiments, and minor

changes to codes to increase the memory allocation and array sizes, to fix bugs, or to

allow data to be passed between functions and subroutines, the following list describes

my main modifications and codes. The naming convention is that complete programs

are listed in SMALL CAPS, while subroutine and function names are listed in f i xed-

wi dt h | ower case.

iterate

A new subroutine in DMACRYS, which calls for the
electrostatic fields to be calculated at each polarizable
site, rotates the fields from the global axes to the
molecular local axes, and from this, calculates the
induced dipole moments due to that field, and the
induction energy. It subsequently recalculates the fields
due to the static and induced multipole moments, and
iterates this procedure until the induction energy

converges.

frcnst

The DMACRYS subroutine that calls the functions which
return the electrostatic energy for the multipole
interactions. A series of flags control whether any
derivatives are also calculated. This subroutine has been
modified to calculate only the energy while the induced

moments are being calculated, as well as to pass the array
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that stores the fields between the energy calculation

routines.

danmp

A new subroutine in DMACRYS, which calculates the
damping coefficient for a multipole interaction, based on
the supplied damping parameter, distance, and the order
of the multipoles. It implements only the Tang-Toennies
damping function, but may be trivially expanded to
include other damping functions if required, and also

used to damp dispersion interactions.

chquad, chhex,

octch, chdi

DMACRYS functions for calculating the multipole
interactions, which have been modified to include
reference to the induction energy calculation and calls to

the damping function.

i npal ph

A new subroutine to read the polarizability data from the

input file.

di recdanp

A new function for DMACRYS which calculates the

damped charge-charge interaction in direct space.

pai rvec

DMACRYS function that cycles through each of the
pairwise interactions and calls the required functions to
calculate the interaction energies of those pairs. This has
been modified to pass the stored fields between

functions.

fredif

DMACRYS subroutine originally written to calculate
numerical gradients for accurate crystal properties. It has

been heavily modified in an attempt to calculate
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numerical derivatives of the lattice energy including
induction so as to allow minimization of crystal

structures taking the induction energy in to account.

get cust A new NEIGHCRYS subroutine, which reads a file
containing custom atom labels and applies them to the

molecule so as to use a custom potential.

get pol A new NEIGHCRYS subroutine to read the atomic
polarizabilities, and match them to the symmetry

generated atoms.

GDMANEIGHCRYS A utility code based on GDMANEIGH, that accounts for

input of custom potentials and polarizabilities.

GDMA_FOR A utility code to facilitate automatic foreshortening of
covalent bonds of hydrogen, for use with the Williams

potential.

POL2NEIGH A utility code that combines the CAMCASP polarizability
output with the molecular geometry to produce a

formatted input file for NEIGHCRYS.

CROSSPOT A utility code to automatically generate atom-atom

coefficients for the exp-6 repulsion-dispersion potential.
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