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& One-Dimensional Wires
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The samples used in this work are of higher
quality than in Molenkamp 1992.

The internal oscillator of the digital lock-in was
used to apply the heating current at frequency f'= 32
Hz. The thermovoltage V,'** was measured by the
same lock-in at a frequency 2f, after being pre-
amplified.

The electrons in the heating channel are heated above the
lattice temperature 7, by passing a current /,; through the
electron gas. The electron-electron scattering rate is much
faster than all other rates, and so electrons in the heating
channel equilibrate at a local temperature 7}, >7).

The wafers were fabricated from a wafer
grown by molecular beam epitaxy. The 2DEG
is 100 nm below the sample surface, with a
carrier density of 3x10'! cm? and a mobility
of 5x10° cm?/Vs.

The voltages on the split-gates were applied by a
digital-analog converter (not shown in the drawing).

We modify the device of Molenkamp 1992 by introducing a
closed electron box, whose temperature 7, is measured from
the thermopower in the linear regime of constrictions B and C COMPUTER
(Appleyard 1998). I
The electrons in the closed box have a well-defined

temperature and for a given [, it produces larger
thermovoltages than the more open structures. The
temperature 7}, is determined by the heat balance equation:
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KA(T — Thor) = (6B + 6)(Thor — T1) + Qel—ph

The three split-gates have a gap 0.5 pm long
and 0.65 pm wide, and form a 6 pm x 10 pm
box containing about 2x10° electrons.

where the last term on the right is the heat lost through
electron-phonon interaction.
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The measurements were performed by fixing the gate voltage for S 4 y=1ua 4 B — For G, < 2¢%/h the Wiedemann-Franz law is violated:
constrictions B (the thermometer) and C (the reference), while Q J 5 &’é * G, ~0.7(2¢’/h), know as the “0.7 structure”;
sweeping the voltage for 4. At low temperatures (7 < 0.5 K) the °3 i . (}A ~e/h.
electml}-phonon.mteractmn is qe;llglbly small, therefore the variation E Gy . *,f This is more evidence that the single electron picture breaks down
of I}, is determined by the variation of x. E2 b e e 1 below 2e2/h. However, a theoretical explanation is still lacking.
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2z = not fixed. We define a thermally derived conductance (Chiatti 2006): v, ’
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