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Abstract 
 
We explore ways of introducing Euclidean distances associated with street systems 
represented by axial lines into the two connectivity graphs based on points (or street 
junctions), and on lines (or streets), the so-called dual and primal representations of 
the space syntax problem. As the axial line is embedded in the connectivity graph 
between the points, for the dual problem the specification of Euclidean distance 
between points is relatively trivial but for the original syntax problem, this is 
problematic in that it requires us to find a unique point representation for each line. 
The key is to find the centroids of the lines (of sight or unobstructed movement) 
between the points on each axial line, and then to use these to form a weighted 
centroid of centroids. The distances between axial lines which form paths through the 
connectivity graph between streets, are then computed using these centroids as 
starting points for each line and routing distance through the street junctions.  
 
There are many issues involving interpretation of these measures. It might be thought 
that the longer an axial line, the more important it is. But by giving an axial line 
distance, this suggests that this is a deterrence to interaction, as in spatial interaction 
theory, with longer axial lines being individually less important, notwithstanding the 
probability that they are better connected within the overall street system. Clearly in 
many finer-scale morphologies, this assumption might not be tenable but the measures 
developed here can be easily adapted to various circumstances. What this focus on 
distance enables us to do is to treat a ‘mixed syntax’ problem where we are able to 
embed truly planar graphs into the axial map. This extends the technique to deal with 
systems not only comprising streets down which we can see, but also fixed rail lines, 
subway systems, footpaths and so on which currently are hard to handle in the 
traditional theory. We illustrate the extended theory for a pure syntax problem, the 
French village of Gassin, and a mixed syntax problem based on the grid of streets and 
underground railways in central Melbourne. In conclusion, we introduce the notion 
that proximity or adjacency at different orders might form more appropriate measures 
of syntax distance, the proximity of nodes to nodes and lines to lines in the dual and 
the primal being illustrated for both Gassin and central Melbourne. 
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1 Accessibility and Distance in Graphs  
 

Any set of relations between a well-defined set of objects or elements can be 

represented and visualized as graph comprising nodes or vertices – the elements, and 

arcs or links – the relations between them. In spatial systems, such graphs are often 

literal representations of elements and their relations embedded in Euclidean space 

represent crow-fly or shortest route distances between locations in space such as 

routes along streets or migration paths between regions. If we define the set of 

locations as }....,2,1,{ mj , then the relations between them are }{ jlρ  from which we 

can compute distances }{ jld  which are Euclidean in some sense. These distances are 

measures of proximity or nearness called accessibility, and the usual measure is to 

derive measures of composite accessibility for each location with respect to every 

other. As distance usually acts a deterrent to movement, these measures incorporate 

distance or some transformation thereof in inverse fashion, a typical measure of 

accessibility at location j , jV , being computed as ∑ −
l jlj dV 1~ . There is a long 

tradition of these kinds of representation in geographical science (see Haggett and 

Chorley, 1969) and in architectural systems (see March and Steadman, 1971). 

 

In general, the nodes of a graph need not be locations even in spatial problems, and 

thus they need not be embedded in geographical space. In such cases, the matrix of 

relations }{ jlρ  does not generate a distance measure in the Euclidean sense but 

defines a topological distance. For example, the representation of design problems in 

architecture by Alexander (1964) deals with topological graphs which relate to spatial 

problems but whose representation is based on relations between elements of the 

problem, not the space which it constitutes. In urban morphology however, the 

simplest graph-theoretic representations are firmly embedded within geographical 

space and although restrictive, these provide useful and easily visualizable map 

patterns of relative nearness or accessibility. There are, however, richer variants of 

urban morphology where relations are measured between elements located in 

geographical space but whose relationships are topological, not Euclidean measures 

of association. Space syntax is such as example (Hillier and Hanson, 1984; Hillier, 

1996).  
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Here streets which intersect at junctions or corridors in buildings linking rooms are 

usually defined in terms of ‘how far one can see’ or ‘how far one can move in an 

unobstructed manner’. The longer the street or line of sight, the more junctions it is 

likely to pass, with the number of such junctions being used to count the strength of 

relationship or accessibility to other streets. In this context, physical distance does not 

necessarily act as deterrent for it is the relative association of streets through their 

common junctions or intersections that provides a measure of distance. Streets are 

usually composed of more than two junctions whereas in the traditional geographical 

graph problem, a street is always anchored at two junctions and the measure of 

accessibility then depends on how far it is to other street junctions from a particular 

junction in question. Space syntax, however, computes accessibility in more abstract 

terms as a measure of how closely associated any two streets are based on how easily 

it is to connect them through lines of sight or unobstructed movement.  

 

It is difficult to relate these two types of problem for the traditional geographical 

problem involves a planar graph where accessibility is measured between nodes 

whereas in space syntax accessibility is measured between streets or lines. Lines then 

can be seen as forming the nodes of an association graph. To generalize this 

conception, in a complementary paper which ideally should be read before this one 

(Batty, 2004), we introduced a unifying framework where we articulated a generic 

problem of urban morphology in terms of the relations between any two sets rooted in 

Euclidean space. In terms of this characterization, these are junctions and their streets 

– points and lines – which can be represented by an n x m matrix ][ ija  where 

 



 ⇔

=
otherwise

jiif
aij ,0

1
  .     (1) 

 

}...,,2,1,{ ni  are now streets and }...,,2,1,{ mj  junctions/intersections where the sign 

⇔ means that a street is associated with a junction and vice versa. This is an entirely 

generic representation which can be extended to any form of urban morphology which 

specifies relations between two sets. The matrix ][ ija  also forms a graph but in this 
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case, it is a bipartite graph; if the two sets of elements can be rooted in Euclidean 

space, then they can also be represented as a network in such space. 

 

What this representation enables is a basic form which does not privilege any one set 

over the other. In this sense, we can study how the set }{i  relates to the set }{ j  or 

vice versa. If we look at the problem in terms of how streets }{i  relate to each other 

which is through }{ j , we have traditional space syntax where streets become the 

main focus. If we look at the problem in terms of how street junctions }{ j  relate to 

one another, then this is the traditional geographical graph problem. We call the first 

problem the primal problem and the second the dual problem. We introduced this 

framework in detail in the previous paper but we will briefly restate it below (Batty, 

2004). Mathematically neither is more important than the other although in practice, 

there may be very good reasons for preferring one form over the other. The primal 

problem thus examines relations between the streets in terms of the junctions, a key 

measure of which are the out-degrees of the bipartite graph, the number of junctions 

associated with each street, defined as 

 

∑=
j

iji al  .       (2) 

 

The dual problem examines the relations between the junctions in terms of streets 

whose key measure is the number of streets associated with each junction (the in-

degrees of the bipartite graph) given as 

 

∑=
i

ijj aρ  .       (3) 

However one of the main issues is that the traditional problem is not the dual of the 

space syntax problem for the matrix ][ ija  has a rather different structure for each. The 

syntax problem is less restrictive in that 2≥il  and 1≥jρ  while the geographical 

graph problem always constrains the number of junctions associated with a street to 2, 

that is 2=il  and 1≥jρ . 
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The meaning of these differences is illustrated in Figure 1(a) where for the traditional 

problem, we show a simple cross-shaped network as a set of five street nodes and four 

street segments. This is indeed a planar graph which we originally called the 

geographical graph problem. We also show the basic matrix ][ ija  for this graph 

alongside, from which it is clear that the number of junctions for each street is exactly 

two, that is 2=il . In Figure 1(b), we have aggregated the two street segments a and 

b to form one single line a′  and it is now clear that there are three junctions 

associated with this line. The ][ ija  matrix shown alongside now has only 3 lines but 

still five junctions: in raw physical terms there is no difference to the underlying street 

network but the space syntax problem produces an abstraction of this which is still 

coincident with the street map at its basic level. This abstraction is called an ‘axial 

map’ and its street components are ‘axial lines’. 

 

a traditional street network as a planar graph 

 

 
=][ ija  

 1 2 3 4 5 il  
a 1 1 0 0 0 2 
b 0 1 1 0 0 2 
c 0 1 0 1 0 2 
d 0 1 0 0 1 2 

jρ
 

1 4 1 1 1 8 
 

 
b the space syntax axial map 

 

 
 
=][ ija  

 1 2 3 4 5 il  
a’ 1 1 1 0 0 3 
c 0 1 0 1 0 2 
d 0 1 0 0 1 2 

jρ
 

1 3 1 1 1 7 

 
 

 
Figure 1: A Traditional Planar Graph-Street Network and a Space Syntax 

Representation 
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It is easy to guess the relative accessibilities in street maps such as those in Figure 1. 

For the traditional map and graph in 1(a), it is quite clear that the central junction or 

node 2 is the most accessible and that as each street line has the same relationship to 

any other, then the street line accessibility is the same for each. However accessibility 

is much more difficult to guess in the space syntax problem. As street a′  has three 

junctions and the other two only two each, a′  is the most accessible in that it relates 

directly to both streets. As the junction at the centre of the map is the same, then it 

seems likely that this node 2 is still the most accessible. We will however compute 

these relationships exactly, after we have examined the primal and dual problems and 

stated the various topological and Euclidean distances measures that we will work 

with here.  

 

In the next section, we briefly introduce the unifying framework (Batty, 2004) and 

then derive and restate the various topological distance measures associated with the 

primal and dual problem forms. We will then derive distance measures between the 

points and between the lines for any form of the generic matrix ][ ija  where 2≥il  

and 1≥jρ . In fact we can generalize the problem a little further to systems where 

lines have only one junction associated with them. But at some point in computing 

distance on a line, we need beginning and end points and although space syntax does 

deal with lines which have only one junction, other junctions must always be implicit.  

 

We will then examine a pure syntax problem where the streets are lines of sight and 

where the importance of a place clearly depends on how far one can see. We use the 

basic example developed by Hillier and Hanson (1984) and reworked by Peponis, et 

al. (1997), Batty and Rana (2004), Turner (forthcoming), and Carvalho and Batty 

(2004) for the French village of Gassin where we show that the topological and 

Euclidean measures of distance and accessibility produce entirely different patterns. 

We then discuss what we call a ‘mixed syntax problem’ which involves not only line 

of sight measures as axial lines but also lines of movement that do not have sight 

associated with them. This is the case where the technologies involved to move 

people are usually enclosed: trams, buses, and trains. We illustrate the problem for 

central Melbourne where the grid of streets lies on top of a heavy rail loop which is 
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underground. This provides us with another perspective on accessibility but it also 

shows how we can extend space syntax to deal with systems where many kinds of 

route and mode of transport define the morphology of the city. 

 

 

2 Primals and Duals: Space Syntax through Lines and Points 
 

The generic representation in the matrix ][ ija  allows us to look at the problem in two 

distinct ways: across each row or line in terms of a count of the points associated with 

each line, and down each column where each point is associated with a number of 

lines. These are the primal and dual problems respectively. The number of common 

points between any two lines forms a network of relations, a weighted graph, whose 

basic form is computed as 

 

∑=
j

kjijik aal   ,      (4) 

 

where ][ ikl  is the number of points in common for any two lines. In space syntax, this 

matrix is usually sliced to provide a binary form such that  

 



 ≠>

=
otherwise

kiif
Z ik

ik ,0
,01 l

  ,    (5) 

 

and this means that no weighting is given to the actual number of points that any two 

lines have in common: association or not thus depends on having at least one point in 

common. The total number of points in common with respect to all direct associations 

between one line }{i  and all other lines is calculated as 

 

∑=
k

iki ll
~   .      (6) 
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This out-degree can be seen as a measure of direct distance, the opposite of nearness, 

with respect to the line in question. As ][ ikl  is symmetric, then the in-degree 

ikik == ,~~
ll .  

 

This primal form is the classic space syntax problem with the measure of distance il
~ , 

the number of streets that lie one depth away from the street in question. The dual 

problem repeats all this logic on points rather than lines. The relationship matrix ][ jlρ  

is computed from ][ ija  as  

 

∑=
i

ilijjl aaρ   ,      (7) 

 

where jlρ  is the number of lines that points j  and l  have in common. The associated 

measure of direct distance based on the out-degrees is given as  

 

∑=
l

jlj ρρ~   ,      (8) 

 

and the same symmetry conditions on the in-degrees hold. ]~[ il  and ]~[ jρ  are two 

initial measures of distance just stated although these are really counts of volume, 

direct nearness, or adjacency, namely the number of points for each line, and the 

number of lines for each point – the number of points which a line has in common 

with all other lines, and the number of lines a point has in common with all other 

points. We now need to develop more refined measures of distance based on any pair 

of lines and any pair of points computed from the matrices ][ ikl  and ][ jlρ  

respectively. 

 

The distance measures which take account of all relationships in the graph are 

computed by deriving all the numbers of lines or points in common for successive 

path lengths through the two graphs. These graphs are always strongly connected by 

definition and thus successive path lengths – called step lengths –need only to be 

computed up to the number of lines or points in the system, no more, and usually the 
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shortest routes will be found well before this size is reached. We will demonstrate this 

computational mechanism for the primal problem involving the line matrix only, for 

the dual follows directly. The number of points in common for two steps through the 

graph from line i to line k is calculated as  

 

zk
z

izik lll ∑= 12   ,      (9) 

 

where ikik ll =1 , and the recursion on equation (9) for any step length 1+s  thus 

becomes 

 

zk
z

s
iz

s
ik lll ∑=+1   .     (10) 

  

At some point where ns ≤ , where n  is the number of lines in the matrix, this 

recursion will converge when all paths through the graph become positive, that is 

when 0>s
ikl .  

 

The first measure of distance ikd )(l  is based on step length and this is computed at 

each iteration of equation (10) as 

 

 00)( 1 =>= −s
ik

s
ikik andifsd lll  .   (11) 

 

This computation eventually converges and two measures of overall accessibility or 

proximity for each line i  can be computed from 

 

 ∑ −=
k

iki dd 1)()( ll  , and     (12) 

∑
=

k
ik

i d
d

)(
1)(ˆ
l

l  .      (13) 

 

These measures are likely to produce similar results for the inverse weightings differ 

only marginally. In the case where inverse distances are computed for each link ik  as 
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in equation (12), the inverse power (-1) could be varied and the theory of spatial 

interaction invoked in terms of the meaning of this scaling. 

 

There are many variants on these measures with different types of normalization often 

being applied. One which works directly with the number of paths through the graph 

and the number of points in common for each pair of lines, is based on a linear 

combination of the different sequential path length matrices ][ s
ikl  and weights these 

in such a way that successively longer step lengths get successively lesser weighting. 

This measure is defined as 

 

∑=
s

s
ik

s
ikd ll λ)(~  ,      (14) 

 

where if we set 10 << λ , each successive term in the sum in equation (14) assumes a 

lesser importance. In fact, λ  must be tuned so that each term in the series reduces in 

value with a typical value for λ  to be in the order of 0.05. The matrix ])(~[ ikd l  is 

symmetric and thus the in-degrees or out-degrees serve as equivalent measures. As we 

weight the measures in terms of a decreasing contribution of numbers of points on 

sequential paths, then the measure is already in accessibility form. An appropriate 

aggregate is thus 

 

 ∑=
k

iki dd )(~)(~
ll  ,      (15) 

 

which we called the weighted accessibility.  

 

We now have five measures of accessibility il , il
~ , id )(l , id )(l̂ , and id )(~

l  which 

are repeated for the dual as jρ , jρ~ , jd )(ρ , jd )(ρ̂ , and jd )(~ ρ . These were broadly 

the measures that we introduced in the previous paper where we built up the theory of 

the primal and dual space syntax problems (Batty, 2004). What we now intend is to 

explore how these topological measures can be augmented with measures based on 

Euclidean distance. The measures which we introduce in the next section are not 

meant as substitute for the topological measures but as a complement. In fact, 
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Euclidean distance is a somewhat different concept from the topology of relations 

between lines of sight which is in essence what space syntax is all about. However as 

the topological measures are close to geographical space for the starting point is the 

axial map based on its lines and points which are firmly embedded within this space, 

it makes sense to ask what implications a topological measure of distance between 

counts of lines and points embedded in geographical networks have for more 

traditional measures based on Euclidean space. Moreover we also need to explore 

what the best ways are of visualizing syntax relationships in terms of the primal and 

the dual are and to this end, an exploration of the properties of axial maps in terms of 

Euclidean distances is warranted. There are, nevertheless, many other measures of 

connectivity, distance, and adjacency, and by way of conclusion, we will explore 

measures of proximity recently introduced by Bera and Claramunt (2002). 

 

 

3 Euclidean Distance in Space Syntax Graphs 
 

We will assume as in space syntax that we are dealing with a geographical system 

which is composed of straight lines – axial lines or straight line segments between 

nodes for which have coordinates from which we can computer straight line distances. 

In fact our treatment easily extends to ‘curved lines’ which can be approximated at 

some level of resolution by finer straight line segments but we will not invoke such 

generalizations here. We will begin with the dual problem which is straightforward 

and for which we have coordinate pairs },{ jj yx  and },{ ll yx  for the points j and l 

defining a relevant line segment. Noting that the direct distance elements ][ jlρ  which 

define the primal graph, can only be equal to 1 or 0 for any line i between j and l, 

lj ≠  due to the fact that there can be no more than 1 line between any two points, 

then the direct Euclidean distance jld  is 

 

 [ ] 2
1

22 )()( ljljjljl yyxxd −+−= ρ   ,   (16) 
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where the self-distances jld  are clearly zero. Shortest routes between any points j and 

l can now be defined using the standard Dijkstra algorithm which in the form used 

here based on step lengths is formulated as follows: 

 

 { }zljzzjl
s
jl

s
jl dddthenandif +==> − min00 1ρρ   . (17) 

 

Recursion on equation (17) occurs until all step lengths in the graph become positive 

or until the number of iterations s  approaches the number of points m in the graph. 

 

In general, the matrix ][ jlρ  is different from that for a planar graph which we can 

write as ][ jlp . As a line can be associated with more than 2 nodes which is not the 

case in a planar graph, in the general case some elements of ][ jlρ  are positive and 

equal to 1 in contrast to ][ jlp  which is a more parsimonious structure as is clear from 

Figures 1(a) and (b). We defined a measure of the deviation from planarity in terms of 

the number of points associated with each line in the previous paper (Batty, 2004) as 

n
i i 2)( ∑=Ψ ll  but other measures based on the graph distances might be  

 

∑
∑ −

=Ψ

jl
jl

jl
jljl

p

pρ
ρ)(   and    

∑
∑ −

=Ψ

jl
jl

jl
jljl

pd

pdd
d

)(

)(
)(   , (18) 

 

where jlpd )(  is the measure of distance computed for the planar graph which is 

associated with the dual syntax graph (which can be easily pruned from ][ jlρ ). It is 

also possible to generate trip lengths as in spatial interaction theory from these 

distances. If we have a loading of trips or movement volumes }{ jlT  on each link, then 

the standard mean trip length for the system can be computed as  

 

∑
∑

=

jl
jl

jl
jljl

T

dT
T )(ρ   or     2)(

m

d
T jl

jl∑
=ρ    , (19) 
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where the second equation in (19) represents the case where the movements on each 

link are absent, hence set to unity.  

 

Trip lengths can of course be computed for each point or node simply by summing 

equations (19) over l  not j  or vice versa but the more appropriate measures are the 

inverse forms for the out-degrees of the distance matrix: the sum of the inverse 

distances, and the inverse of the sum of the distances with respect to each point. These 

are true Euclidean distance potentials defined as 

 

  ∑ −=
l

jlj de 1)(ρ  , and     (20) 

∑
=

l
jl

j d
e 1)(ˆ ρ  .      (21) 

 

These are measures of locational access. They could be weighted by the mass of the 

points as in traditional social physics and spatial interaction theory (Wilson, 1970) but 

in this context we will not confuse the problem. Note that the inverse sum in equation 

(21) is proportional to the inverse unweighted mean trip length associated with the 

location j . 

 

Euclidean distance measures for the primal problem are trickier in that we need to 

compute centroids associated with each axial line. In essence, an axial line can relate 

to more than 2 points and thus there is a centroid for every such line of sight 

associated with the line. For example in Figure 1(b), the axial line a′  is associated 

with three lines of sight from 1 to 2, from 2 to 3 and from 1 to 3. Thus it is logical to 

compute a centroid from these centroids using a simple averaging although again 

variable weighting might be considered. We first compute a centroid for each line of 

sight associated with the axial line i as 

 

 






+=

+=

2)(

2)(

ljilijijl

ljilijijl

yyaay

xxaax
 .     (22) 

 

These centroids need to be averaged and this is accomplished by 
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












−
=

−
=

∑

∑

>
≠

>
≠

jl
lj

ijl
i

jl
lj

ijl
i

mm
y

y

mm
x

x

2)1(

2)1(
  ,     (23) 

 

where the summations are over all pairs of points associated with the line in question 

which is equivalent to averaging the coordinates of all relevant points. 

 

This simple averaging could be augmented with differential weights if views along an 

axial line to different points reflected differing degrees of importance but here we will 

stick with the non-weighted form. We can now compute distance between any two 

axial lines as i  and k  by taking the distance from the centroid of line i, say, to the 

point which is common to the line k to which it is being linked. This distance is  

 

[ ] [ ]








−+−+−+−= 2
1

222
1

22 )()()()( kijikijiikik yyxxyyxxd l  , (24) 

 

due the fact that axial lines are straight. This operation could easily be generalized to 

non-straight lines by replacing them with finer scale straight lines and operating 

recursively on equation (24). As each line has a mass – that is, it has finite length – 

then it is possible to compute an intra-line distance, a self-distance which must be 

specified as  

 

[ ]
[ ]

2
1

22

2)1(
)()(

∑
>
≠ −

−+−
=

jl
lj

ljlj
ilijii mm

xxxx
aad  .   (25) 

 

In this paper, we will set 0=iid  as we follow the tradition of space syntax but other 

arguments can clearly be made for keeping this self-distance as a positive deterrent to 

mobility. 
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We are now in a position to compute the shortest routes between lines and we do this 

in exactly the same manner we did for distances between points which we illustrated 

in equation (17), that is 

 

 { }zkizzik
s
ik

s
ik dddthenandif +==> − min00 1ll   , (26) 

 

where convergence is guaranteed by the time ns = . We can now compute the line 

accessibilities from ][ ikd  in the form of the sum of the inverse or the inverse of the 

sum. Then in analogy to equations (20) and (21) 

 

 ∑ −=
k

iki de 1)(l  , and      (27) 

∑
=

k
ik

i d
e 1)(ˆ l  .       (28) 

 

All the other measures involving trip lengths which we noted in equations (19) apply 

and the lines can be weighted with trip volumes if required. However as in space 

syntax, we assume that this is not necessary for problems involving lines of sight, and 

all we require is an overall measure of line distance which we define as 

 

2)(
n

d
T ik

ik∑
=l  .       (29) 

 

We now have two more measures of distance to add to our arsenal. To illustrate the 

subtle differences in meaning of these measures, we have computed all of them for 

the dual and primal problems which emanate from the planar street network graph in 

Figure 1(a) and the axial street map in Figure 1(b). 

 

For the street network in Figure 1(a) which is a planar graph in terms of the dual 

problem formulation, where each line or street has exactly two points or junctions 

associated with it, the accessibilities of any point to any other is obvious by 

inspection. Point or node 2 is clearly the most central and in a commonsense way has 

the highest, while the four others have lower but equal accessibility. What we have 
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done is interpolated between these point accessibilities producing a surface in the 

time-honored way and this is shown in Figure 2(a). There are clear edge effects in 

such surfaces which are hard to control for but in general, the pattern of point 

accessibility varies inversely with distance from the central point for all measures, 

step-length measures, as well as those based on Euclidean distances. For the primal 

problem involving accessibility from any line to all others, each line would appear to 

have the same accessibility due to the nature of the symmetry. This indeed is the case 

as we show in Figure 2(b) where the pattern of accessibility is uniform over the entire 

space. Once again, this applies to all measures. In the planar street network case, it 

would appear from this simple example and from our intuition that all the measures 

co-vary with one another, notwithstanding differences in distribution.  

 

In terms of the syntax problem in Figure 1(b), here two of the lines in planar network 

case are collapsed into one, a′  being formed from a  and b . In this case intuition 

suggests that the point accessibility involving the nodes is much the same as before 

but as the two north-south lines c  and d  involve more step lengths to reach line a′ , 

then the two north-south nodes 4 and 5 are slightly less accessible in term of step 

lengths jj dd )(,)( ρρ  as Figure 2(c) shows. For the direct step lengths, weighted 

distance and Euclidean distance accessibilities jjjjj eed )(ˆ,)(,)(~,~, ρρρρρ , then the 

nodes have the same pattern of accessibility as the planar street network as Figure 2(e) 

shows. In terms of lines, the binary step length and weighted distance measures 

iiii ddd )(~,)(ˆ,)(,~
llll  show each line with equal accessibility [Figure 2(d)] in contrast 

to the other measures iii ee )(ˆ,)(, lll  where the merged line a′  is more accessible than 

the other lines c  and d  [Figure 2(f)]. This indicates that the number of lines of sight 

associated with a line like a′  does reinforce the importance of the line especially as 

this line is central to the morphology. However as we will see, this is not a 

straightforward issue as in systems where there are many short lines with some long 

ones dominating, then the pattern of Euclidean accessibility can be quite different 

from the step-length accessibilities. 
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 Planar Points/Junctions: Fig 1(a)  Planar Lines/Streets: Fig 1(b) 
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Figure 2: Accessibility Surfaces for the Primal and Dual Problems from the Simple 

Planar and Axial Maps shown in Figures 1(a) and 1(b) 
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Before we move to a realistic problem, it is worth noting the way in which surface 

distributions are produced from the point and line estimates. A technique of spatial 

averaging using a kernel which is centered over each cell in question, diffuses the 

value of that cell over a given search radius and does this until all the cells are filled in 

one pass. For a system of five nodes say, each value at each node is generalized this 

way with the diffusion being based on an inverse distance allocation from the points 

in question. The technique is stopped at the boundary of the system in this case where 

there is an abrupt cut-off, hence the skew introduced into the diffusion at the edge. 

Basically this could be controlled by putting the boundary further out and this 

diffusion would become smooth but we prefer to visualize this elementary problem in 

its most basic form. 

 

 

4 The Pure Syntax Problem: Applications Once Again to Gassin 
 

We are not going to repeat the data for Gassin because this has been reproduced in a 

number of papers as a benchmark example of space syntax. It was originally 

presented by Hillier and Hanson (1984), reworked by Peponis et al. (1997), Batty and 

Rana (2004), Turner (forthcoming), and Carvalho and Batty (2004). Nor will we 

generate all forms of syntax map for the primal and dual problems avoiding 

representing the weighted lines across the standard color range for the line 

accessibilities or pie charts for the measures of accessibility at each point. We will 

stick to the surface representations as these provide good impressionistic pictures of 

the variations in accessibility over the map of streets. For the primal maps, we will 

overlay the street line, and for the dual, the street junctions/points. 

 

We refer to Gassin as a ‘pure space syntax’ problem in that there was no intention in 

the original application of measuring accessibility in terms of Euclidean distance. 

Axial lines are lines of sight and the longer the line of sight, the more likely the line to 

intersect with other lines of sight at junctions. But the longer the line of sight, the 

longer the distance associated with that line. Although we will not set a measure of 

Euclidean distance for the relation of each line to itself [as identified above in 

equation (25)], a long axial line is given a centroid which reflects its length. All other 
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things being equal, it would be more distant, hence less accessible to other lines in the 

system. In contrast in terms of measuring nearness to other lines without taking 

distance into account, its length would not be a factor per se. However it would 

intersect with more lines, all other things being equal, and hence its accessibility to all 

lines would be greater. In Figure 1(b), this was not the case because the symmetry of 

the system and the equal distance of the elemental line segments ensured that the axial 

line was best connected in both step length and Euclidean distance terms. 

 

In Gassin shown below in terms of its axial lines in Figure 3, we have several long 

lines of sight but in general these are not in the area of the village where there is the 

greatest concentration of streets. Thus in terms of distances, the cluster of lines which 

mark the village core are very close to one another in distance terms and in general we 

might expect that accessibility computed between these lines would be much higher 

than that between the longer lines. As we will show, this indeed is the case and in 

Gassin, the space syntax interpretation is qualitatively different from that based on 

Euclidean distance. The same difference is reflected in the clustering of the street 

intersections which again reflects the clustering of the lines and as we have noted 

before (Batty, 2004), Gassin is close to planarity with 065.12 ==Ψ ∑ n
i il , hence 

the close association of street line accessibility with street junction accessibility.  

 

We have computed the seven distance measures for both the primal and dual 

problems and we show the correlations between them in Table 1. Those for the primal 

problem in Table 1(a) which deals with accessibility between the lines partitions very 

cleanly into two sets (which we show in bold and italic type). The measures based on 

step length which do not have any implication for Euclidean distances are highly 

correlated. The two Euclidean measures are highly correlated but the correlations 

between these two sets are low and negative. This effects the qualitative difference in 

what is being measured; lines of sight in Gassin do not correlate very well with the 

clusters of junctions that provide the most accessible central areas in terms of 

Euclidean distance. In terms of the dual problem, the points are more highly 

correlated but the same distinction exists between non-Euclidean and Euclidean 

measures. In fact for the raw out-degrees data, the correlations with all other measures 

are very low and this simply implies that the distribution of the out-degrees for the 
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points – that is the number of lines associated with each point is either 2 or 3 implying 

a step-like function.  

 

 (a) Line Access il  il
~  id )(l  id )(l̂  id )(~

l  ie )(l  ie )(ˆ l  

il  • 0.971 0.770 0.839 0.967 -0.088 -0.099

il
~   • 0.807 0.897 0.984 -0.094 -0.098

id )(l    • 0.973 0.810 -0.275 -0.272

id )(l̂     • 0.889 -0.223 -0.222

id )(~
l      • -0.122 -0.112

ie )(l       • 0.970 

ie )(ˆ l        • 
 

 (b) Point Access jρ  jρ~  jd )(ρ jd )(ρ̂ jd )(~ ρ je )(ρ  je )(ˆ ρ  

jρ  • 0.393 0.156 0.215 0.297 -0.092 -0.087

jρ~   • 0.792 0.900 0.984 -0.006 -0.085

jd )(ρ    • 0.973 0.806 -0.122 -0.169

jd )(ρ̂     • 0.912 -0.093 -0.151

jd )(~ ρ      • -0.060 -0.141

je )(ρ       • 0.949 

je )(ˆ ρ        • 
 

Table 1: Correlations between the Seven Distance Measures for Gassin 
 

We would expect all these differences to be reflected in the surfaces associated with 

the spatial distribution of these measures. In Figure 3, we show these for three of the 

accessibility measures which we consider are the best reflectors of the difference 

between the distributions, namely the step lengths id )(l  and jd )(ρ  which are the 

basic space syntax measures, the weighted distance measures id )(~
l  and jd )(~ ρ  which 

are alternative measures of the syntax, and the Euclidean measures ie )(l  and je )(ρ  

which measure accessibility over the physical network. The patterns shown in Figure 

3 bear out the differences that we suggested at the beginning of this section. The step 

length and weighted measures generate the same surfaces as those we illustrated in 

the previous but complementary paper (Batty, 2004) with any slight differences due to 

the fact that we use a narrower range of colors and a smaller exponent of spatial 
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averaging here. For both the primal and dual problems, we derive surfaces where the 

central axis of the village is the area where streets and their junctions are most 

accessible to each other with the west of the village more accessible than the north, 

south, or east [Figures 3(a) and (d), and (b) and (e)]. The Euclidean distance measures 

in Figures 3(c) and (f) produce a quite different picture. The most accessible street 

and their junctions are in the areas where the streets are shortest and the lines densest. 

These do not correlate with the longest lines of sight and this the picture is one where 

the clusters of high accessibility are broken up along the central axis but with a 

tendency towards highest accessibility in the south east of the village. This is about all 

we can say for Gassin: that space syntax is very different from the street distance 

accessibility and that this in itself is the basis of informed speculation as to how the 

visual quality of the town and the location of its key land uses, the movement patterns 

therein, all relate to these different measures of accessibility. 

The Primal Lines/Streets Problem The Dual Points/Junctions Problem 
(a) Step-Length Distance id )(l  (d) Step-Length Distance jd )(ρ  

(b) Weighted Distance id )(~
l  (e) Weighted Distance jd )(~ ρ  

(c) Euclidean Distance ie )(l  (f) Euclidean Distance ie )(ρ  

 
Figure 3: Key Accessibility Measures for the Primal and Dual Pure Syntax  

Analysis of Gassin 
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5 The ‘Mixed Syntax’ Problem: Systems with Overground and 
Underground Routes 
 

What we have in these two types of distance measure is a mix of accessibility indices 

based on lines of sight and physical travel distance. There are however many systems 

where travel is based not only on streets down which one can see but also on routes 

where one cannot see, as in underground railways, or even on routes where sight is of 

much lesser importance such as on buses or trams. To conclude this paper, we will 

apply these ideas to systems where we can easily define such mode differences which 

in turn reflect a mixture of axial lines based on lines of sight or unobstructed 

movement, and route segments which reflect planarity. Our application is to central 

Melbourne which is laid out on a grid but around which there is a heavy rail loop, 

buried underground. We show the axial map/planar route network in Figure 4 where 

we distinguish between the two types of route. There is a much denser morphology of 

routes in the CBD than we shown in Figure 4 and the central area is criss-crossed by 

surface level trams. But the really distinctive structure is the underground railway 

which connects to the street level at some 5 key stations. If one wishes to loop around 

the CBD, then the fastest way to do this and the shortest is using this railway, so it is 

certain that this will make an impact on accessibility if Euclidean distance is taken 

account of. If you want to see places within the CBD, then the long straight streets 

provide perfect axiality and thus the contrast between getting to a place fast and 

seeing the same place, immediately, could not be greater. 

 
 

Figure 4: The Street Grid for Central Melbourne with the Underground Rail Loop 
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 (a) Line Access il  il
~  id )(l  id )(l̂  id )(~

l  ie )(l  ie )(ˆ l  

il  • 0.993 0.899 0.938 0.994 -0.055 0.124
il

~   • 0.934 0.967 0.999 -0.098 0.100
id )(l    • 0.991 0.928 -0.170 0.039
id )(l̂     • 0.962 -0.143 0.070

id )(~
l      • -0.089 0.103

ie )(l       • 0.849 

ie )(ˆ l        • 
 

 (b) Point Access jρ  jρ~  jd )(ρ jd )(ρ̂ jd )(~ ρ je )(ρ  je )(ˆ ρ  

jρ  • 0.169 0.075 0.079 0.145 -0.012 -0.207
jρ~   • 0.916 0.944 0.999 -0.062 -0.193

jd )(ρ    • 0.996 0.922 0.057 -0.110
jd )(ρ̂     • 0.949 0.028 -0.129
jd )(~ ρ      • -0.059 -0.191

ie )(ρ       • 0.823
ie )(ˆ ρ        • 

 
Table 2: Correlations between the Seven Distance Measures for Central Melbourne 

 

In Table 2, we measure the correlations between the seven accessibility measures 

which we have computed for both the primal and dual problems. The structure of 

these bears a remarkable similarity to those in Table 1 for Gassin with the out-degree, 

step-length and weighted measures being highly correlated with one another in 

contrast to the Euclidean measures which in turn are highly correlated but not with the 

first set of measures. As the distribution of points in each line has greater variability 

than the distribution of lines over each point (the planarity measure is 033.1=Ψ  

which shows that the map is very nearly planar in these terms), these raw out-degree 

measures form the first set of dense correlations. In the dual problem however which 

involves the points, correlations between these out-degrees and the other two sets of 

measures are low. In short what we have here even before we begin to explore the 

spatial distribution of these measures, is consistency between the primal and dual in 

terms of a major difference between the step-length type measures and the Euclidean. 

Step-length measures which pick up syntax as nearness in terms of the way lines of 
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sight are close or far from one another, is dramatically different from the way lines 

and points are near to each other in terms of their physical distance. This is also clear 

from Figure 4 for the railway has few points of contact with the street system but its 

relative accessibility to the streets where it touches, is much higher than the more 

even distribution of street junctions and the lines that link these. 

 

We will examine the surfaces for our three key measures id )(l , id )(~
l  and ie )(l  in 

Figure 5 where we also show the basic out-degrees for the lines il  which are 

illustrated in terms of line thickness. Note how the railway has very few points for 

each of its lines/track. The patterns for step-length and weighted distance accessibility 

in Figures 5(b) and 5(c) generate the highest accessibility in terms of the nearness to 

different lines of sight, broadly in the centre of the CBD. The area to the south west of 

the physical center of the CBD map reveals a pocket of low accessibility – lines of 

sight with few common points, where the major grid is permeated by a couple of local 

narrower streets. However when we look at the Euclidean distance in Figure 5(d), the 

stations along the rail routes are pockets of lower accessibility because again at those 

points, there are much lesser number of lines of sight that you can reach.  

 

The dual problem which involves accessibility between points or street junctions is 

even clearer in its distinctions between the step-length distance and Euclidean 

measures. In Figure 6(a), we show the distribution of lines for each point as simple 

pie charts and this reveals that out of 93 junctions, there are only 5 which have more 

than 2 lines associated with them and in those 5 cases there are only 3 such lines. This 

indicates how close the network is in terms of planarity. The step-length measures in 

Figure 6(b) and the weighted measure in Figure 6(c) are highly correlated and both 

show that it is the station areas that have the lowest accessibility. This is because there 

are less points from which to see long vistas. In contrast, Figure 6(d) shows exactly 

the opposite: the stations are the high points of accessibility and form the heartland of 

the CBD where many roads intersect near to stations. In all cases however the areas 

on the very edge of the map have lowest accessibility as one might expect from the 

imposition of arbitrary boundaries on the problem.  
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 (a) Out-Degrees il  Line Thickness (b) id )(l  Surface 

 
(c) id )(~

l  Surface 
 

(d) ie )(l  Surface 

 
Figure 5: Line Accessibility Surfaces Based on the Out-Degrees (a), Step-Distances 

(b), Weighted Distances (c), and Euclidean Distances (d) 
 

A comparison of Figures 3 and 6 for Gassin and Melbourne is instructive for there are 

many interesting comparisons to explore further. The wealth of interpretations which 

come from these two types of distance measure suggest that the way forward involves 

many syntaxes, rather than one, with the consequent challenge that the diversity of 

indices and surfaces associated with such multiple syntaxes needs to be integrated. 

 

 

6 Proximity: Extending the Measures of Step-Length Distance  
 

The critical difference between space syntax and geographical graph representations 

involves the nature and meaning of distance in the two types of problem. In syntax, 

the starting point is a topological representation of relationships between streets as 

lines while in geographical problems the relationships constitute physical measures of 

distance between nodes. The fact that the two types of problem are rooted in the same 
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underlying geometry of the street system generates a confusion of purpose that has 

plagued all critical debate abut the meaning of space syntax since its inception. 

Although this and related papers are an attempt to clarify this difference, the fact 

remains that space syntax does not concern itself with geometric distance but simply 

with whether or not there is a relationship between two points or lines in space, not 

the physical distance between these points or lines. Thus proximity as it is measured 

in terms of adjacency in the bipartite graph, in the dual and primal topological graphs 

that are generated from the bipartite representation, or in the step-length distances that 

are generated from these graphs form the core analytical tools for dissecting the 

syntactical structure of urban space.  

 

There are however new measures of proximity being devised which appear to have 

important advantages over the traditional step-length distances in graphs. In spatial 

systems, a proposal by Bera and Claramunt (2002) depends on a subtle manipulation 

of the concept of adjacency which is based on weighted sum of a direct measure – 

whether or not a line (or point) is linked to another, and the commonality between the 

set from which the link originates and the set associated with the adjacent destination. 

We can use several measures to express direct adjacency such as that used earlier in 

equation (5) as 01 >= ikik ifZ l , otherwise 0=ikZ . We now need to extend this 

definition, notating it with respect to lines and points, and this equation (5) then 

becomes 

 



 ≠>

=
otherwise

kiif
Z ik

ik ,0
,01

)(
l

l ,  


 ≠>

=
otherwise

ljif
Z jl

jl ,0

,01
)(

ρ
ρ .    (30) 

 

We need to define the out-degrees (and in-degrees) of these measures for these define 

the size of the set associated with lines and points. From equation (30), then 

 

 ∑=
k

iki ZZ )()( ll ,   and   ∑=
l

ijlj ZZ )()( ρρ  ,  (31) 

 

where it is clear from our previous definitions that the in-degrees and out-degrees are 

symmetric due to the fact that kiZZ kiik == ,)()( ll  and ljZZ jljl == ,)()( ρρ .  
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(a) Out-Degrees jρ  Proportion Circles (b) jd )(ρ  Surface 

 
(c) jd )(~ ρ  Surface (d) ie )(ρ  Surface 

 
 

Figure 6: Points Accessibility Surfaces Based on the Out-Degrees (a), Step-Distances 
(b), Weighted Distances (c), and Euclidean Distances (d) 

 

The new measure can be defined for lines (points follow by analogy) as 

 

 ∑
Ω∈

−+=
iz i

zk
ikik Z

R
ZR

)(
)(

)1()()(
l

l
ll αα  ,   (32) 

 

where the two components on the RHS of equation (32) are weighted by the 

parameter 10 ≤≤ α . The first component is simply the adjacency index as defined in 

equation (30) which gives a unit link from i to k if a link from one element to an 

adjacent one exists. The second is a relative measure which compares the number of 

elements adjacent to the origin set iΩ  to those which are linked to the destination set 

associated with k. This is a little like a first-order clustering coefficient similar to that 

used to define clustering in small world graphs by Watts (1999). The weighted sum 

essentially compares the direct link between i and k to the number of common 

intermediate links between i and k through elements z which are common to i. If there 
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are few in common between i and k, then the measure will reduce in its impact where, 

for example, we have equal weighting. The weights themselves of course control the 

strength of the direct and indirect adjacencies.  

 

Bera and Claramunt (2002) show that this system of linear equations (32) has a 

unique solution for certain minimal constraints on the adjacency matrix (such as 

strong connectivity, for example). We have solved this system using iteration and for 

the size of problems involved here – Gassin with 41 lines and 63 points, and central 

Melbourne with 25 and 119 – the procedure is fast, taking no more than 20 iterations 

for the dual or the primal in each application. A key feature of the solution is that the 

resultant matrix of relative adjacencies ])([ ikR l  and ])([ jlR ρ  is not symmetric with 

the measure picking up the fact that the set of streets or junctions which are accessible 

from i to k is not the same as that from k to i. This however does not involve any uni-

directional links for essentially the basic adjacency graphs are not directed and this 

implies that we need to examine both the out-degrees and in-degrees of the relevant 

matrices. For lines (and points follow directly), these are defined as  

 

∑=
k

iki RR )()( ll ,   ∑=
i

kik RR )()( ll , and kiRR ki =≠ ,)()( ll . (33) 

 

In fact, we might expect these measures to be quite close to one another because the 

adjacent sets considered in the formula are only one step removed. This suggests that 

other measures incorporating higher-order adjacencies at larger and larger step lengths 

might be constructed. Although Bera and Claramunt (2002) do not extend their 

measures in this way, they do show how the measure can be weighted by variables 

that reflect geometric properties such as distance, perimeter, and area, thus suggesting 

as we do here, how Euclidean distance information might be handled. 

 

We have reworked the Gassin and central Melbourne examples with these proximity 

measures and we show the correlations between these and the seven measures used in 

Tables 1 and 2 in Tables 3(a) and 3(b) respectively. The same structure as we 

displayed in Tables 1 and 2 is revealed by this comparison in that the proximity 

measures have high correlations with all the traditional measures and low correlations 

with the Euclidean measures for the two examples, with respect to both the dual and 
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primal problems. As in the previous tests, correlations with the point distributions for 

the relative adjacency out-degree measures in both examples have low correlations 

because the out-degrees of the points have hardly any structure, reflecting the near 

planarity of each example. Correlations between the relative adjacency in-degrees and 

out-degrees are quite high and a more graphic demonstration of this is illustrated in 

the surface representations of these two measures shown in Figures 7(a) and (b)  for 

lines and points in Gassin and in Figures 8(a) and (b) in central Melbourne. 

 

Table 3(a) Gassin 
Line Access iR )(l  kR )(l  Point Access jR )(ρ  lR )(ρ  

il  0.868 0.887 jρ  0.165 0.222 

il
~  0.945 0.966 jρ~  0.953 0.982 

id )(l  0.862 0.852 jd )(ρ  0.831 0.818 

id )(l̂  0.949 0.941 jd )(ρ̂  0.928 0.918 

id )(~
l  0.938 0.952 jd )(~ ρ  0.985 0.989 

ie )(l  -0.175 -0.135 ie )(ρ  -0.040 -0.005 

ie )(ˆ l  -0.165 -0.123 ie )(ˆ ρ  -0.120 -0.091 

iR )(l  • 0.983 jR )(ρ  • 0.982 

kR )(l  0.983 • lR )(ρ  0.982 • 
 

Table 3(b) Central Melbourne 
Line Access iR )(l  kR )(l  Point Access jR )(ρ  lR )(ρ  

il  0.957 0.975 jρ  0.067 0.089 

il
~  0.975 0.993 jρ~  0.985 0.996 

id )(l  0.946 0.953 jd )(ρ  0.960 0.921 

id )(l̂  0.977 0.982 jd )(ρ̂  0.980 0.948 

id )(~
l  0.976 0.992 jd )(~ ρ  0.989 0.998 

ie )(l  -0.087 -0.127 ie )(ρ  -0.034 -0.050 

ie )(ˆ l  0.112 0.085 ie )(ˆ ρ  -0.167 -0.173 

iR )(l  • 0.987 jR )(ρ  • 0.989 

kR )(l  0.987 • lR )(ρ  0.989 • 
 

Table 3: Correlations between the Nine Measures for Gassin and Central Melbourne 
 

Figures 7 and 8 reveal that the relative adjacency measures in these two examples are 

near symmetric as might be expected in systems where surfaces are completely 
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covered by streets. In the applications discussed by Bera and Claramunt (2002) where 

there is real structure in terms of what is adjacent to what, between countries, for 

example, the lack of symmetry is much more significant but in these examples, this is 

not the case. In fact, what these proximity indices show is that the proximities of lines 

in the primal and nodes in the dual problem in Gassin are quite close, apart from the 

importance of the northern axis which is stronger in the primal than the dual. In 

Melbourne there is a little less correspondence between the primal and dual; the line-

based primal problem reveals proximity measures which are much more spread over 

the central area than in the case of the nodes in the dual where the north-south axes 

produce striations in the accessibility surface distorting the spread. Unlike the 

Euclidean distance measures, the position of the rail stations and their relative 

inaccessibility to the street system in terms of their remoteness to lines of sight 

explains the relative lack of proximity of these points within the central area. 

 

 

7 Conclusions: Next Steps 
 

What this paper has shown in quite graphic terms is that the accessibility measures 

associated with axial lines and their intersections are quite different from that which 

result from measuring physical distance between such points and lines. The two types 

of measure imply two different problems but the problems are only separate in 

conceptual terms because they are defined with respect to the same network of 

physical relations: the street network which contains the axial map. In the case where 

we have a pure syntax problem – where axial lines are defined solely with respect to 

lines of sight and where they are then used to interpret physical distance – we have 

two largely separable problems but with an ability to compare line of sight 

accessibility with accessibility based on physical distance, How these accessibilities 

interact with each other to produce the kind of morphologies that emerge in cities is 

part of the problematic as the theory of space syntax suggests that such accessibilities 

are instrumental in generating the forms that we see around us (Hillier, 1996). The 

question thus posed is: which accessibilities should we define to show that this is 

actually the way cities develop, is there combination of them that will achieve this, 

and what are these multiple accessibilities? 
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Figure 7: Relative Proximities for the Primal and Dual Pure Syntax  

Analysis of Gassin 
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Figure 8: Relative Proximities for the Primal and Dual  

Analysis of Central Melbourne 
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The mixed syntax problem complicates the picture even further. In this case it is not 

possible to see physical and topological accessibilities as being separable. The street 

network can be based on lines of sight, but there is always a part of the network which 

does not have lines of sight and where physical accessibility is paramount. How can 

one compare different step-length accessibilities with physical distance accessibilities 

when the actual routes defining such accessibilities are themselves mixed? Probably 

the answer lies in identifying different types of street network for different purposes 

and reorienting the analysis this way. The task remains however of integrating the 

measures that are derived for each problem in some way once they have been 

generated. This then constitutes the next challenge – to actually work out whether 

accessibility measures for the primal and dual problems can somehow be partitioned 

to be associated with Euclidean or with line of sight step-length distances. The 

challenge remains of how to generate different measures and use them where the lines 

and points involved are associated with one or the other or a mixture of these.  

 

Our digression into proximity measures which clearly correlate highly with traditional 

space syntax distances based on step length, reinforces the need to look at adjacency 

rather than geometric measures, and this suggests that the material of this paper far 

from providing the last word on distance in space syntax is just the beginning. So 

what began with some coherence about primals and duals, lines and points, has 

emerged into a debate about topological, Euclidean and proximity distances and a mix 

of these in systems where topology and physical distance are clearly all appropriate, 

but probably reflecting different purposes. It is these distinctions of purpose in 

characterizing urban morphology that future comparisons of distance and accessibility 

must address. 
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