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Abstract 
 

This chapter argues that the representational basis of GIS largely avoids 
even the most rudimentary distortions of Euclidean space as reflected, for 
example, in the notion of the network. Processes acting on networks which 
involve both short and longer term dynamics are often absent from GI 
science. However a sea change is taking place in the way we view the 
geography of natural and man-made systems. This is emphasising their 
dynamics and the way they evolve from the bottom up, with networks an 
essential constituent of this decentralized paradigm. Here we will sketch 
these developments, showing how ideas about graphs in terms of the way 
they evolve as connected, self-organised structures reflected in their 
scaling, are generating new and important views of geographical space. 
We argue that GI science must respond to such developments and needs to 
find new forms of representation which enable both theory and 
applications through software to be extended to embrace this new science 
of networks. 
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1. Spatial Relations and GI Science 
 
If we unpack the term ‘geographic information science’, it is immediately clear that its 
reference to ‘geography’ is simplistic. This is the geography of locations not relations. It 
is the geography of place in an absolute sense, represented by points, lines and polygons 
which enable attributes to be associated with these geometric objects, attributes which 
are largely unordered. Moreover, in terms of the word ‘system’, GIS does not have any 
of the connotations of general systems theory which is the study of basic elements and 
their interactions, of their parts and wholes, with the whole being ‘more than the sum of 
the parts’ (von Bertalanffy, 1968). Interactions – relations – are also key to systems. The 
system in GIS does not refer to the geographical system but to the way information is 
organised and only in this sense, can relations be found, based on ways in which raw or 
processed data is represented in relational fashion: how points, lines, and polygons are 
ordered geometrically to aid efficient processing and visualisation, rather than implying 
order to the geography which GIS purports to represent. 
 
These limitations to GIS are perfectly understandable given its history and purpose. But 
in an era when the ‘system’ in GIS is being translated into ‘science’, and in the light of 
rapid developments in systems theory in many fields which are changing the focus to 
bottom-up dynamics as the generator of more aggregate spatial order and pattern, the 
inability of GIS to embrace spatial relations, interactions, and their connectivity is 
posing a major barrier to its continued development. The rapidly developing science of 
networks is predicated not on the representation of static structures per se but on 
processes of change occurring on and within such structures. This problem of an 
appropriate representation lies at the very heart of GIS. If GIS is to be useful in 
articulating and operationalising contemporary geographical theory, it must not only 
incorporate relations. It must enable such representation to be focussed on processes 
rather than structures for the emerging logic of how many kinds of system – from rivers 
to central places, from natural ecologies to cities as built forms – is one which espouses 
any form of equilibrium, treating evolution as processes in which relations and 
interactions are never at rest. 
 
In this chapter, we will outline this network view, drawing our examples mainly from 
cities and their transport but alluding to many other kinds of spatial system. There is 
currently a sea change occurring in how geographical systems are being articulated. 
Many systems appear to function from the bottom-up in contrast to the top-down ways 
in which such systems have been traditionally conceived (Holland, 1996). Ideas of how 
structures emerge in time are central to such theories with such structures being 
conceived as networks of components which exist through their self-organisation rather 
than being directed by any hidden hand. In the social sciences, cities, societies, 
economies are all being reworked in these terms. In the physical and biological 
sciences, ideas about networks and interactions embedded within intrinsically dynamic 
processes of change are gaining wide currency. These are part of the move to define 
new theories of complexity but they extend to the treatment of all systems which are 
far-from-equilibrium which, it turns out, embrace the majority of geographical systems 
that GIS intends to represent. Getting such ideas into GIS is thus an enormous challenge 
for it is much easier to see GIS as providing some convenient form of visualization, data 
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storage and manipulation technology rather than a vehicle on which to make 
contemporary geographical theory applicable and practicable. 
 
We should also note that by identifying networks of interactions and relations as having 
a central place in contemporary geography, this necessarily involves the temporal 
dimension. Traditional GIS is largely atemporal, representing locational structures at a 
single point in time. In so far as time has been involved, such systems simply represent 
a series of cross-sections in comparative static manner, with little functionality or 
science being developed to deal with processes that link these cross-sections through 
their temporal evolution. The problems posed by these limits on our use of traditional 
GIS for the study of networks become clear when we begin our discussion of ways in 
which geographic information scientists have attempted to adapt and extend GIS to 
embrace interactions. As we shall see, such extensions are invariably ad hoc, treating 
interactions between locations at a snapshot in time, often using GIS simply as a means 
to visualize resultant relational structures. GIS is not well adapted to treating 
interactions although its tool box nature does allow various plug-ins to be developed 
that deal with networks. However our main purpose here is to illustrate how new views 
of networks need to be incorporated within GIS and this means new forms of 
representation in time as well as space.  
 
We thus turn to the emerging network paradigm and sketch its key components, 
illustrating how important the idea of evolution is to our understanding of locations and 
their relations. There is a strong spatial theme in all this which involves the unifying 
force of scaling. Many networks scale in time as well as space and this uniformity can 
be exploited in building a spatial science of networks. Although these ideas can be 
easily demonstrated in traditional geographic applications, we turn to two popular 
examples of these developments: ideas about the scale of networks in the form of small 
worlds which have local properties which generate global pattern, and notions about the 
way networks mirror ways in which systems such as the world wide web, grow from the 
bottom up, in cyberspace which can be mapped onto the Euclidean space which is the 
world that GIS represents. Here we will challenge GI science to deal with network 
representations that are intrinsically dynamic, scale with both space and time, and which 
map onto different kinds of geometries, other than the Euclidean, suggesting that this is 
a major challenge in our quest for re-presenting GIS. 
 
 
2. Spatial Interactions at the Cross-Section 
 
All proprietary GIS reach out to represent spatial interactions in some manner although 
the way such relations are handled is simplistic and ad hoc. GIS software which 
essentially is concerned with manipulating layers of map objects is focussed almost 
entirely on representing such map objects layer by layer and any processual simulation 
that occurs between these objects is largely confined to ways in which layers are related 
and manipulated. This rather specific view of process tends to discriminate against 
representations of the spatial world in which objects interact with one another across 
space (and through time) in contrast to ways in which the attributes of any object 
interact with each other in space which is what map layer and map algebra approaches 
emphasise. 
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This problem is seen quite distinctly in the failure of transportation to be represented 
appropriately in GIS. This area, called GIS-T, has never really taken off. The recent 
book by Miller and Shaw (2001) which is as good a summary of the state-of-the-art in 
GIS-T as there is, reveals that GIS, in terms of its software, is largely peripheral to the 
transportation modelling, forecasting, and planning processes. Although shortest route 
problems have been configured within some GIS software, these have been mainly used 
for more partial planning problems such as location-allocation modelling which lies 
outside the mainstream of transportation planning. GIS has largely been influenced by 
transportation geographers dealing problems of facilities location and the software that 
has been developed is unable to embrace the fully-fledged transportation planning 
process which still revolves around the four stage modelling process of trip generation, 
distribution, modal split and assignment. GIS at best is used in a supportive role, for 
organising data inputs and outputs to and from more mathematically-based software and 
of course for visualisation. What at first sight appears to be a synthesis of transport and 
GIS turns out to be a recasting of traditional and new transportation planning 
technologies under the general banner of GIS in its interpretation as GI science, by GIS 
scientists rather than transportation engineers. 
 
The limits to GIS in dealing with transport are seen most widely in problems of 
visualising interactions. Because GIS software is not well adapted to dealing with 
anything other than area or point locations, it has proved difficult to develop programs 
within GIS for displaying flows between locations, for example, which are the stock in 
trade of transport modelling. Desire line diagrams and assigned flows to networks are 
rarely a feature of visualization in GIS. For example, de Jong and van Eck (1996) have 
developed specific software for enabling such flows to be represented. Their 
FLOWMAP software plugs into various GIS packages (http://flowmap.geog.uu.nl/); it 
is focussed entirely on a range of problems involving the direction and volume of 
movement relevant to everything from migration to road traffic, and is designed to 
exploit standard GIS packages from which the various inputs and outputs used in 
visualising such flows are taken. 
 
These peripheral attempts to develop GIS in the context of transportation treat such 
systems as static networks. Other software systems which deal with networks in cities 
such as the street oriented analysis based on graph accessibility, a technique which is 
called space syntax, do not relate to GIS at all. In space syntax, the topology of street 
segments is used to build up a picture of accessibility at the very local level (Batty, 
Dodge, Jiang, and Smith, 1999). Distance is not a feature of these systems in any 
explicit fashion for it is topology and porosity of the networks that is the main concern. 
Space syntax is the only urban-architectural-based graph theoretic system 
operationalised to the point where software is available but as land use and related area 
and point location data is not a central feature of such systems, the visualization 
capabilities of GIS are not widely used in applications. There have been attempts to 
develop such graph theoretic analysis within GIS where indices of street segment access 
are the focus (Jiang, Claramunt and Batty, 1999) and where the analysis is linked to 
viewsheds (Batty and Rana, 2002) but in these examples, GIS is once again peripheral 
(see http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm). Such software has 
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been used largely because its plug-ins and extensions enables various kinds of spatial 
analysis and 3D visualization to be accomplished with relative ease. 
 
The third example which involves interaction and networks within GIS is a rather new 
development, very much in the spirit of other chapters in this book. Okabe (2003) 
argues that for many spatial problems, the kind of homogeneous spatial landscape 
where every point and area has the same intrinsic importance is often a gross 
simplification of the reality under scrutiny. Many features and objects locate with 
respect to a landscape which is a network. Indeed one of the arguments of space syntax 
is that streets or lines of sight are more important to understanding how activities locate 
than are areas, plots, or viewsheds. In short, the notion of developing spatial analysis on 
a network is gaining widespread interest. In such characterizations, what might appear 
to be a random distribution of activity in Euclidean space is often seen as being highly 
ordered on a network. What is random on a network is often highly ordered in 
Euclidean space and there are many other possibilities in between that differentially 
combine different networks and planar spaces. Okabe’s (2003) software – SANET – 
Spatial Analysis on a NETwork – has been developed for such problems. Again, such 
software is compatible with GIS for visualization purposes but stands independently of 
the representational basis of conventional GIS which does not have the flexibility to 
embrace these news kinds of order that rely on the connectivity of point locations,  
rather than point patterns per se. 
 
We should not give the impression that GIS software engineers have been unable to 
adapt their software to embrace ideas about networks. Much of what exists is dictated 
by the market place where network applications are considerably less prominent that 
location-based projects. However, GI scientists have not in general developed their 
science to embrace the idea of the network. Where this has occurred it has been 
peripheral to the mainstream and where there is real momentum for network 
applications as in transport, GIS has not responded. Systems for such planning focus 
much more on analysis and simulation than on representation. All this however is 
changing. The idea of the network and more particularly the evolution of networks is a 
science in the making, and this will force us to re-present GIS. Devising a GI science on 
the basis of a landscape of changing relations is likely to lie at the heart of this field in 
the coming years. 
 
 
3. The Network Paradigm 
 
In the last quarter century, there has been an enormous shift in the way we explain large 
scale systems in the physical and social sciences. Classical science proposed a model of 
the world which was essentially reductionist in form where it was assumed that systems 
could be understood from the top down, by gradually disaggregating behaviour to ever 
finer scales, in the faith that what had already been explained at higher levels was 
always consistent with new explanations at the lower levels. However wide experience 
in many fields suggests that systems do not appear to get any easier to understand 
through blind application of the reductionist principle and it is now widely regarded that 
some synthetic, bottom-up characterization is essential in grasping the way large scale 
systems function and evolve. In one sense, this break in thinking might be said to be one 
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which shifts the baseline from physics to biology where growth and evolution rather 
than structure is now the prime concern. But the shift is much wider for as human 
systems and societies have evolved over the last 50 years, it has become increasingly 
apparent that societies function from the bottom up and that top-down control can never 
effectively manage or control the problems that such systems manifest. 
 
At the heart of this shift from a centralised to decentralised view of systems, is the idea 
that, in Adam Smith’s terms, there is no ‘hidden hand’ guiding evolution. Systems 
function from the bottom up, where local action often motivated by purely local gain, 
gives rise to more global order. Indeed complexity theory which is another dimension of 
this concern for decentralized explanation, argues that it is this uncoordinated, relatively 
non-ordered basis for local action that gives rise to the kind of global order that we see 
around us. Indeed, most systems that survive, depend on their functioning at the local 
level adapting to produce resilient structures which are then reflected in a relative global 
order. In this sense, the structures that emerge cannot be explained without recourse to 
the dynamics of local action. Moreover any order that is generated must be maintained 
and this requires energy. Order in fact is the equilibrium that we see around us although 
as it requires much energy to sustain it, then this order is hardly an equilibrium based on 
least effort. It is in fact an order which is far-from-equilibrium in the traditional terms of 
classical physics and it is this that makes the focus on processes which reach, maintain 
and evolve these structures so essential to this new science. 
 
One of the key signatures of complex systems is in the fact that many patterns repeat 
themselves at different spatial and temporal scales. If we focus on spatial scales for the 
moment, then simple processes which generate growth at the most local level, when 
applied uniformly in building up structures from the simplest seed location, generate the 
same pattern at successively larger scales. Such order across scales which is marked by 
spatial self-similarity is said to be scaling and the structures that result are fractals. One 
of the best examples is the tree-like structure that shows similarity at all scales from the 
tiniest branches to the entire network. Dendritic patterns such as rivers and transport 
systems in cities which both grow at the local level to ‘service’ their surrounding space 
in the most minimalist fashion, provide excellent examples of growth processes that 
scale, are never in equilibrium in the traditional sense, and require the same continual 
operation of basic local rules or codes to maintain their structure.  
 
There are many models which have been developed to simulate such processes, and the 
current fascination in urban growth modelling with cellular automata mirrors a concern 
for generating urban patterns from the bottom up. These models are not quite network 
models in that they are concerned with generating local development in restricted 
neighbourhoods around already developed sites but the rules that are used routinely and 
repetitively tend to give rise to structures which in their idealised form are dendritic, 
reflecting the transport of energy between developed cells which together define the 
growing urban structure or city. These patterns fill space at various densities producing 
spatial order which is fractal, self-similar on all scales or within a restricted range of 
scales relevant to the phenomena in question. These models are essentially based on 
local diffusion where the diffusion in question is land development configured so that 
the various developed sites are always connected. Network representations in such 
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models although implicit, do indicate the way in which formal networks underlie such 
complexity. 
 
These kinds of process change the representation quite radically once formal relations 
between their objects are involved. In fact proper representation of this kind of 
complexity is through the notion of relations embodied in networks with their 
interactions formed by processes which operate over such networks. The main focus in 
network science is no longer on searching for patterns in structures which, in fact, are 
developed satisfactorily enough in some GIS software through well established 
algorithms which generate shortest routes, but on the way such networks change and 
evolve. An essential measure of how such systems evolve is through the way various 
elements are connected. We will sketch two emerging models. The first is a model 
where the number of objects which form the network remains fixed but the connections 
between these objects evolve or change. The second model developed in the next 
section, is where the number of objects and their connections change through time. The 
first model does not deal with growth in the size of the system but with the growth or 
change in the number of links – the connectivity of the system. The interest in this kind 
of model is the effect of the change in the number of links on how complex – or how 
connected – how accessible if you like – the system might become. The second model 
examines this too but is also concerned with the distribution of objects in terms of the 
strength or otherwise in their competition for new links, as new objects are introduced 
into the system. The latter is more general than the former. 
 
We need some formal definitions to make sense of this problem. We first index an 
object by its node number i . We call each node 1=in  if it exists and 0=in  if it does 
not and thus there are ∑= i inn  fixed nodes in the system. An arc between any two 

nodes is defined as 1=ija  if nodes i  and j  exist or 0 otherwise with the total number 

of nodes in the system ∑= ij ijaa . From these definitions, the average connectivity of 

the system is given as na /  which varies from zero where no nodes are connected, to n  
where every node is connected to every other. In-degrees – incoming arcs into any node 
– and out-degrees – outgoing arcs from any node – are defined respectively as 

∑= j iji aa  and ∑= i ijj aa . Where an arc is symmetric in that it exists in both 

directions jiij aa = , then the in-degree of its node is the same as its out-degree. Let us 
now imagine a situation in which there are a fixed number of n  nodes which we can 
consider as places or locations with a population. Initially there are no connections 
between any of these places. This might represent a world in which there is subsistence 
agriculture where there is no economic cooperation whatsoever. Gradually connections 
are made between places as farmers come to see that some form of exchange is useful. 
Let us then introduce one link at each time period gradually adding links between the 
farmers until ultimately everyone is connected to everyone else. This is a process that 
generates significant change that in every sense is surprising. The best way to show this 
is to take a simple example and in Figure 1 we show a process where 12 locations – 
nodes – become connected, one by one, until all 12 nodes are connected to one another. 
The way we add links is one at a time and we choose them randomly. In terms of the 
average connectivity na / , this increases linearly but if you measure the average travel 



 8

distance in the network taking each link as a distance of unity, then what happens is that 
quite suddenly, the average distance drops as nodes become more connected.  
 
Essentially the probability of finding a shortest path between two nodes increases 
rapidly as more nodes are connected gradually. In short, from a situation where most 
people have to traverse several nodes to get from i to j , then suddenly it becomes 
easier to go from i to j  by ever shorter routes. In the limit when all nodes are connected 
to each other, the average distance is unity and everyone can reach everyone else in one 
step. This might be pictured as the evolution of a transport network where more and 
more links are built as the society gets richer and people want to travel more. But if 
those financing the transport network realise that you can achieve the same by simply 
adding more capacity to the routes, then it is possible that once everyone can reach 
everyone else either directly or indirectly,  no more links would be built and thus a kind 
of critical level of connectivity might be reached. In this sense, we might picture the 
evolution of the transport network as being self-organised to this critical level. 
 
In Figure 1, we show several stages of network construction for a system composed of 

12=n  nodes. In Figure 2, we also show a graph of the number of arcs used to connect 
nodes (out of a total of 662/)1( =−= nna  for 12 nodes where we do not count the self 
connections from i  to i ) and the average distance travelled. Because up to a given 
level, some nodes are not reachable from any other, then with a small number of nodes, 
the average distance in the graph is infinity. To get over this problem, we assume that 
when we begin, the average distance to go anywhere from anywhere is equal to 12 
units. When two nodes are connected, then the arc distance for the nodes in question is 
equal to 1 and then the average distance reduces quite rapidly. What actually happens is 
that quite suddenly we reach a threshold where every node is connected to every other 
directly or indirectly and then the average distance travelled from any node to any other 
stabilises. This is the critical threshold. After this, adding more links does not change 
the average distance very much. What happens to our hypothetical 12 node network is 
shown in Figure 2 where we also plot the graph of the average distance. Note how it 
stabilises when the network reaches 17 links at which point it becomes strongly 
connected. In fact the network can have a total of 66 two-way links, the ratio of network 
density varying in the same way as the number of arcs or connectivity. 
 
What we are seeing here is an increase in complexity where we use not connectivity but 
average distance as a measure of complexity or order. There comes a critical point like a 
phase transition where a threshold is crossed and the system becomes connected. This is 
a qualitative change before which the system is not connected, beyond which it is. 
Beyond this threshold, average distance does not change very much and there is no 
further qualitative change. It is the threshold that is of interest and this is often referred 
to as a state of self-organised criticality. The physical analogy is based on phase 
transitions, the easiest of which to understand are transitions from ice to water and water 
to air, from a liquid to a solid to a gas. Freezing or boiling points are thus critical 
thresholds because once they are reached and passed, the nature of the system changes 
dramatically. But these states are not self-organised because systems do not remain or 
maintain themselves on the boundary or at the edge of these transitions. The idea of a 
self-organised criticality or self-criticality as Bak (1996), the inventor and populariser of 
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Figure 1: Increasing Connectivity in a 12-Node Graph 
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Figure 1 continued 

 
 

 
 

Figure 2: Link Density, Connectivity and Average Path Length 
Note the breakpoint threshold at around 17 Links 
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the terms calls it, is one where the dynamics keeps the system at the critical state in 
most situations through a combination of local actions which never combine to breach 
or pass the threshold needed to initiate such a radical change. Such radical changes can 
in fact take place in self-organised critical systems but then the system would move to 
another state, another regime where its fundamental structures and processes are 
assumed to act rather differently. Technological change sometimes leads to such 
fundamental transitions and for city transport, we might see the changes in connectivity 
as reflecting such technological shifts. A similar demonstration is given by Kauffman 
(1995) and summarised by Batten (2000). The problem is also related to percolation in 
networks where gradual increases in connectivity can suddenly lead to dramatic changes 
in percolation as the network connects up. Clearly the movement of fluids through 
porous media is a basic application but so too are diffusion problems such as forest 
fires. 
 
We need to summarise what all this means. In essence, what we are saying is that 
systems become more complex as they accumulate interactions. In a system where 
interactions take place between objects, as the number of interactions grows as the 
square of the number of objects, then complexity increases according to this power law. 
However what critical thinking is all about is identifying thresholds and limits to such 
increasing complexity. Systems do not have undifferentiated complexity as they grow; 
they add links selectively and they optimise. Other examples that illustrate how such 
growth in complexity self-organizes are traffic density based on the number of cars on a 
highway; as their density increases, after a certain point they are all interacting with 
each other and  queues and jams form whereas when traffic density is light, they barely 
interact with each other. Another example of how accumulated interactions lead to 
qualitative changes in state, to critical thresholds. 
 
There are some clear examples where this kind of evolution in networks has taken place 
despite the fact that the model is a somewhat idealised schematic of how real systems 
develop. It is difficult to think of a world in which there are no connections, for 
example, although there are situations usually caused by political constraints where well 
developed networks are separated. A good example is in the division of Berlin between 
east and west which almost entirely separated the transportation network structure for 
over 40 years following World War 2. When the Berlin Wall came down, the city was 
reconnected. Simple accessibility analysis based on the importance of different street 
segments has been developed by Desyllas (1999) where he shows how the average 
distance between the two halves of the city changes dramatically in 1990 when people 
were once again free to move over the whole network. An image of this change based 
on before and after street accessibility in the centre of Berlin is shown in Figure 3. A 
second example is longer term and more qualitative and this relates to social transitions. 
The word transition has been most widely used in the social sciences to describe the 
change in the way populations reproduce themselves – the demographic transition – and 
the way they locate themselves in cities – the urban transition. There is an assumption 
that such transitions are smooth without any clean breaks or thresholds which disrupt 
this smoothness. But historically there is a sense in which the breaks have been very 
sharp – almost bifurcations from earlier established paths, and there is some speculation 
that the process of urbanisation is composed of a series of abrupt transitions. The 
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Berlin 1989 Before Unification 
 

 
 

Berlin 1999 After Unification 
 

 
Figure 3: Accessibility in Berlin: Before and After the Wall is Demolished 

 
The colours indicate the street segment accessibility illustrating a massive increase in the central area 

after the wall is demolished. The scale for accessibility varies from high –  red through yellow to green to 
low – blue 
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movement from nomadic existence to settled agriculture about 10000 BC is one such 
transition, the formation of the first cities in 3000 BC or so another. The collapse of 
ancient civilisation and the ensuing dark ages is a reversal while the revival of trade in 
the early Middle Ages and then the Renaissance yet another. Finally the Industrial 
Revolution is the most recent with some speculation that the ongoing transition to a 
Post-Industrial society is another. 
 
In some senses, this kind of punctuated equilibrium is reminiscent of phase transitions. 
Whether or not the notion that civilizations are held at some sort of threshold – a level 
of criticality – is speculation but there is some sense in which balance is reached. Quite 
clearly transitions and criticality are issues which are scale dependent in both space and 
time, and this is an issue of profound important in applying these ideas. It is worth 
quoting from an early paper on these ideas as applied to urban development. Iberall and 
Soodak (1987), referenced in Johnston (2001) describe the process by which Europe 
underwent a transition,’… not unlike that between H2O molecules changing from the 
fluid state of water to the crystallized state of ice: for centuries the population is liquid 
and unsettled – and then suddenly a network of towns comes into existence, possessing 
a stable structure that would persist more or less intact until the next great 
transformation in the nineteenth century during the rise of the industrial metropolis.” 
(Johnston, 2001, page 110-111). 
 
 
4. The Unifying Force of Scaling 
 
Our first demonstration of scaling relates to the paths that exist in a graph as its 
connectivity increases. At the critical threshold when the graph becomes strongly 
connected, that is when it first becomes possible to move from any node to any other, 
paths in the network exist on all scales. Like many mathematical demonstrations, the 
proof is long winded but a sketch of what happens at this point is easy to make. As the 
network becomes more and more connected by adding one link at a time, then more and 
more paths of different lengths exist with shorter paths clearly being more frequent than 
longer paths. As the threshold is reached, the frequency distribution of these paths 
implies that paths of different lengths exist on all scales, that is, that the relationship 
between the number and length of paths decreases according to a power law which is 
the hallmark of scaling. At this point the system is fractal but beyond the threshold, the 
frequency distribution becomes degenerate in that when the graph is completely 
connected, all path lengths are the same – all are of any length and thus the distribution 
is no longer scaling as an inverse power but is uniform. This kind of characteristic 
essentially implies that only at the point of criticality – at the threshold – is the system 
complex. Before that point it has little order but beyond that point it is disordered in an 
entirely different way with no structure whatsoever. Although we cannot demonstrate 
this here, different levels of connectivity imply different kinds of order with four classes 
of order being identified for different levels of connectivity as implied in Wolfram’s 
(2002) work on cellular automata. 
 
As we have already implied, this model of network evolution is rather artificial. For 
example in cities, it is most unlikely that a city exists which is anything but ordered, 
meaning that the notion of cities existing which have simplistic order – with 
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connectivity less than that at the threshold, and cities with the kind of uniformity which 
exists beyond the threshold – must be hypothetical. It might be argued that the world is 
getting more complex and in some characterisations of urban evolution, it might be 
useful to establish the current city as the baseline, compare cities in history with this, 
and thus extract their increasing connectivity and changing order. But what is more 
likely is that any city always exists at some critical threshold and that this threshold 
changes qualitatively as technology changes. Mediaeval cities were indeed connected to 
one another but the connectivity was different in form from the industrial city. The post-
industrial city will still have order on all scales but this is likely to have a different form 
from the industrial city, being based on multiple technologies of communication rather 
than the few technologies that characterise earlier city forms. Nevertheless although our 
first model is limited in direct applicability, it is still a useful metaphor for establishing 
the idea of evolving networks and it illustrates that connected cities where the 
connections are just enough to make the city coherent and workable, imply scaling, in 
contrast to hypothetical cities with too few links or too many which do not display the 
same levels of complexity. 
 
Our second approach to networks is somewhat different in that our concern is with the 
overall properties of a growing network rather than the more static view of its 
connectivity. To explore these properties, we need to focus on the frequency 
distributions of the size of the nodes that make up these networks, where we will define 
the size of a node in terms of its in-degrees (or out-degrees). We refer to the frequency 
of a node in terms of its in-degrees, say, as )(aN  where this is the number of nodes – 
frequency of nodes – with in-degree of size a . If we consider the distribution of these 
frequencies, in a graph whose arcs have been formed randomly, this distribution is 
Poisson but in many networks which reflect competition in space and time, there is 
considerably more order with such distributions following a power law. In short, what 
we see in the real world are numbers of nodes which vary inversely with the number of 
links that are associated with them. In other words, we see very many nodes with hardly 
any links at all but a few, very significant nodes with an extremely large number of 
links. Thinking now of frequency as probability, then the typical density function for 
networks in urban space and cyberspace is λ−aaN ~)(  where λ  is the rate at which the 
density falls off as size of the node increases. It is often easier to work with cumulative 
distributions and the one that is favoured here is the complementary or counter 
cumulative defined as 1~)( +−>= λaaANr  which is in effect the Pareto distribution. 
This is the distribution of the number of nodes greater than size a  which is the rank )(r  
of the node(s) in question. The rank-size distribution popularized for city systems and 
word frequencies by Zipf (1949) is based on a simple manipulation of this as 

)]1/(1[~ λ−
rar  where ra is now the in-degree associated with the node ranked r . 

 
This is a classic scaling which has been found in many different kinds of systems where 
there is differential growth and competition between the system elements. The best 
known examples of such scaling exist for incomes, city size distributions, and word 
frequencies, all credited with observations and models first proposed over one hundred 
or more years ago (by Pareto, Estoup, and Auerbach respectively). In the last decade, 
there has a been flurry of work associating rank-size scaling with other human systems 
such as scientific citations, company size, and productivity while quite recently these 
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ideas have been applied directly to networks (Barabasi, 2002). The world wide web has 
been the most significant focus but other kinds of system such as social networks, food 
webs, cell networks, and the transport of energy, information, and people have all been 
shown to scale in this way: clear evidence of course for systems that grow from the 
bottom up.  
 
We will show evidence of such scaling below but our concern is for plausible models of 
network growth that gives rise to such scaling. Many such models exist, all of them 
based on simple stochastic processes that generate growth through the addition of new 
objects that connect to existing objects in some preferential manner. The basic model 
goes back to Yule in the 1920s but was first properly formalised by Simon (1955). 
Essentially this model when applied to network growth is based on two key 
assumptions. The process of growth adds one new node for each time period and thus 
the growth of the system in terms of the total number of nodes n  is directly proportional 
to time t . When a node is added, there is a probability ρ  that it attaches itself to any 
node in the system and there is complementary probability ρ−1  that it attaches itself to 
nodes in proportion to the number of in-degrees that they already have; that is, this 
probability is proportional to the product of the number of nodes )(aN  and their in-
degrees a , )(aaN . We can formalise this as follows. An increase in the in-degree of 
nodes )(aN   is defined as [ ]taNaaN )1()1)(1()1( −−−+− ρρ  while there is 
corresponding decrease in the nodes [ ]taaNaN )()1()( ρρ −+ . This occurs for all nodes 
in the system other than the new node )0(N . It generates a differential equation that 
defines the change in the in-degree of any node as 
 

1,)]()1()1)[(1()]()1([)(
≥

−−−−−−−
= a

t
aaNaNaaNaN

dt
adN ρρ  

 
whereas the appropriate equation for the new node 0=a  is  
 

t
N

dt
dN )0(1)0( ρ

−=  . 

 
If we now argue that in the steady state, 0/)( =dtadN , these two equations can be 
manipulated accordingly. The recurrence which is established by the steady state then 
implies that the distributions of the in-degrees must satisfy a power law for the steady 
state to hold. In fact in terms of the counter cumulative or rank-size, it is easy to show 
that this is equivalent to )]1/(1[~ ρ−−ar . This treatment follows Mitzenmacher (2003) who 
provides a clear review of how these ‘preferential attachment’ models, the term coined 
by Barabasi (2001), are equivalent to Simon’s (1955) model and are strongly related to 
the other stream of models used to generate the rank-size distribution which are based 
on multiplicative or proportionate effects. Albert and Barabasi (2002) provide a useful 
summary of how these models are linked to those we examined in the last section where 
the number of nodes are fixed and where the focus is on connectivity, and those of the 
next section where the focus is again on systems where the nodes are fixed but where 
the interest is on the particular structures that such networks display.  
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To conclude our discussion, it is worth noting that city size distributions can be 
generated using at least the metaphor of this network model. It is however hard to 
identify the kinds of connections that would be necessary to show how cities grow in 
this manner. In terms of physical transport, there are limits on the way cities grow in 
that transport links are fashioned so that they link many settlements at once. In a sense, 
although not random, the idea that there are more and more physical links from all cities 
to those further up the rank hierarchy is simply not feasible in physical terms. To show 
how cities grow in terms of networks, we probably need to look at information flows 
which are not physical in the traditional sense. If we were to assemble all the kinds of 
links that cities make with one another in terms of government, business, social 
networks and so on, then this is likely to show the requisite scaling. We do not have 
data to show this here but what we can do is examine some of the scaling of in-degrees 
and out-degrees between 180 countries with respect to the hits generated through web 
pages. This is based on measuring the hits made to each of the domain names – country 
domains where we have excluded US domain names which we cannot unambiguously 
associate with that country. This, we realise is a crude picture but it does reveal scaling 
as we illustrate in Figure 4 for the in-degrees and out-degrees for the countries in our 
data set. The data was produced using the AltaVista search engine (Shiode and Batty, 
2000). 
 
The relationships in Figure 4 deviate from pure scaling suggesting that the underlying 
probability distribution is more likely to be lognormal than a power function. In fact this 
is generally the case for many distributions in that the power function is usually a good 
approximation for the fat or heavy tail, in this case, the upper left region of the 
distribution. In fact for distributions where the variance of the frequencies is large, then 
the power function is a good approximation whereas in this example, where the 
distributions of in-degrees and out-degrees is clearly still changing rapidly, the variance 
is not as large as it will ultimately be and the approximation at this stage is less good. 
What this means is that we need to be very careful in studying evolving networks which 
clearly have not reached any steady state. Indeed all scaling models rely on finding a 
distribution at the steady state and comparing this with an actual distribution which is 
unlikely to be in the steady state. This is the Achilles heel of network science in that we 
do not have much idea about how actual networks grow although we are ready to make 
assumptions about their equilibrium form. Much remains to be done on their dynamics 
and this is what makes the area so challenging. 
 
 
5. Small Worlds and Wide Webs 
 
So far we have looked at macro properties of evolving networks in terms of connectivity 
and scaling but we have not looked at structure. Although the rekindling of a scientific 
interest in networks can be linked to complexity theory and the emergence of 
decentralized thinking as a major force in science, it is also due to the resurrection of a 
long standing problem in sociology involving so-called ‘small worlds’. The term small 
world was first used by Milgram (1967) in a popular article in Psychology Today in 
which he reported the results of an experiment of sending letters to unknown targets in 
very different geographical locations in terms of the number of intermediaries need to 
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Figure 4: In-degrees and Out-degrees associated with Country Name Domains from the 
Alta Vista Search Engine, April 1999. 

 
 
pass from the points where the letters originated, to the targets. He found that the 
average number of individuals through which such letters would need to pass before 
they reached their target was around 6. From this, he speculated that the average number 
of links in the social network to reach anyone from anywhere was of this order. To 
enable this, he directed the sender to a particular target who they did not know by 
asking them to send the letter to someone who they thought was closer to the target than 
they were, with the instruction that that person was to send it on to an even closer target, 
and so on until the letter arrived. The fact that it only took six steps was evidence of the 
fact that the world was much ‘smaller’ than had been imagined, although it has 
subsequently been noted that a person six steps removed from one, is still a lifetime and 
a continent away (Watts, 2003). 
 
What is so surprising about these kinds of network is that at the most local level, we 
know they must be based on rather dense clusters of friendship ties but at the aggregate 
level it is still possible to reach anyone from anywhere in an average of six steps. Thus 
there is a high level of local clustering, meaning short local distances but also short 
overall network distances, the best of both worlds. Watts and Strogatz (1998) were the 
first to formalise this problem in a way that articulated this local-global nexus. What 
they did was to show that graphs with low average distances, that is, shorter paths, could 
be formed by randomly selected arcs between a set of nodes, in the manner that we did 
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in our first example where we illustrated how distances reduced massively at the critical 
threshold where the graph became strongly connected. This is one extreme form where 
there is little local clustering but low average path lengths. At the other extreme, there 
are what Watts and Strogatz (1998) call ‘cave-man worlds’ where there are dense 
clusters strung together but these have high average path distances because one has to 
pass through each cluster to visit any other. Small worlds lie somewhere in between. 
Watts and Strogatz (1998) show that by starting from a cave-man world of dense 
clusters and requiring a small fraction of links to bypass the local clusters leads very 
quickly  to a small world with a much lower average distance between the nodes.  
 
We illustrate a picture of these kinds of network in Figure 5 where we illustrate a 
clustered graph (cave-man world) and a small world which results by rewiring the 
clustered graph through changing only 3 links. We have not computed the path lengths 
or the cluster values but the example is obvious enough in making the point that real 
networks often show a small world quality simply to enable efficient movement. The 
resurrection of this problem has led to a flurry of work. All kind of networks appear to 
have a small world quality, the world wide web being the most obvious one (Barabasi, 
2002) but so do energy networks, nervous systems, chemical bonds, and social networks 
which spread everything from friendship to disease (Watts, 2003). Moreover small 
worlds can also be consistent with the kind of scaling that we illustrated in the previous 
section although there are many networks which scale which are not small worlds. We 
do not have time to describe the ways in which connectivity, scaling and structure in the 
various types of networks we have used here can all be integrated through the new 
science of networks but this is occurring rapidly at present and readers are referred to 
the work of Albert and Barabasi (2002) for a comprehensive survey. 
 
We will conclude our speculations with an example which is suggestive rather than 
definitive but does pose the key challenge for network geography and for the way this 
might be incorporated in GI science and GIS. The network of streets which is the base 
on which cities grow and change is clearly not a small world. Street networks are planar 
graphs composed of junctions and street segments with junctions usually having a small 
number of in-degrees and out-degrees, usually no more than 6 with a mean around 4. In 
fact the distribution of in-degrees and out-degrees in street systems is likely to be 
Poisson. Only in countries such as Britain where the roundabout is used widely for 
street intersections are there many examples where more than four ways intersect and 
even there, five or six way intersections are very much a minority. However physical 
networks to move people in cities are small worlds if all the various networks 
corresponding to different modes of travel are considered. Let us consider the growth of 
the modern city in these terms as a metaphor for how small worlds emerge. If we go 
back to the medieval city, then the street system was simplistic although even there 
there were arrangements to control some streets for certain restricted purposes. In the 
industrial era, all this changed for as cities began to grow, new forms of transportation 
technology were needed to enable people to move greater distances at faster speeds. For 
example, freight was moved using canal systems while the emergence of the railways in 
the early 19th century in western Europe enabled people to move into peripheral 
locations which eventually were called suburbs. The street car or tram system also 
developed a little later and in these cases what actually happened was that a new 
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(a) (b) 

 
Figure 5: Creating a Small World 

 
(a) The original ‘Cave Man World’  based on weakly connected clusters 

Rewiring (a) to add strategic links retaining the high degree of clustering but enabling a massive 
reduction in the average path length between all nodes 

 
 
transport system with much restricted nodal access to the street system was layered on 
top of the existing roadways. In short, people would use the train with its limited stops 
to access the local clusters. In London, for example, which was expanding to embrace 
local villages in its hinterland, this was a way of connecting what were previously 
remotely linked clusters to each other.  
 
In the 20th century, all this was added to by the development of the automobile and new 
high speed road systems. In the 1920s, the ring road and the bypass were examples of 
such roads with relatively restricted access compared with the basic street system but it 
was the development of freeways with highly restricted access in the 1950s and 1960s 
that really produced new layers of segregated movement akin to the railways before, 
that reinforced the small world quality of urban networks. As large cities have become 
global, then these networks have extended to the airlines, and more recently to 
cyberspace, to information flows which really do produce dramatic changes in the way 
we can communicate over very large distances. In one sense, one can see this process as 
adding new layers of transportation which involves a limited amount of rewiring of the 
old but more new wiring for new forms of movement technology with higher speeds 
and the need for restricted access to enable such networks to function in the way they 
are intended.  
 
To enable cities to grow and continue to function in moving ever more people about 
between their parts, we need new networks based on new technologies, and this implies 
a process of co-evolution between population growth and changes in technology. In a 
sense, growth would not have been possible without the existence of these new 
technologies, not the other way around, so population growth and technological 
innovation have gone hand-in-hand, best seen in the way cities have made innovations 
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to their transport systems We are not able to illustrate this with specific examples of 
where the small world idea has been applied for as yet there are none but what we can 
do is show how new networks have been formed and provide some snapshots of how 
cities have evolved in terms of linking new transport nets to the existing structure. A 
particularly good example of the way two different networks – the street and the subway 
system – have co-evolved can be illustrated with respect to London, although over the 
last 200 years, the suburban railway system and more recently the freeway system have 
also reinforced the 'small worldliness' of the city. Nevertheless, the street and subway 
system is a good example of how it is necessary to move people around more efficiently 
as the city has grown, in that the subways interface with the street system at very 
specific points. Indeed  many people who work and live in London often find it 
difficulty to provide an integrated picture of how these systems interact in that the 
subway system implies a topology quite different from the street system which is even 
encoded in the maps that people use. 
 
In Figure 6, we show Sam Rich’s map of the topology of the subway system as mapped 
onto the actual street pattern for the central area. His web site 
http://www.fourthway.co.uk/ illustrates how the real subway map can be mapped back 
onto Beck’s original topology which forms the basis of the current non-Euclidean map 
used by most travellers to navigate their way around the subway. Although we are not 
able to say more about this process of moving from the topological to the Euclidean and 
back which is another aspect of the way we might represent networks (see Cox, 2002), 
such transformations make it clear how small worlds can never faithfully represent 
movement in terms of real maps. From the real map, one can see directly how one can 
travel quickly between local neighbourhoods using this mapping. If one adds the 
suburban and mainline rail network to this, then we begin to get a more comprehensive 
picture of how useful the small world idea can be. Moreover we can begin to think 
about measuring its connectivity and clustering, the distribution of its path lengths, and 
then consider how these can be used to compute its efficiency. It could in fact be argued 
that in London, the current difficulties of travelling in the city are due to lack of 
investment in keeping the small world quality of the network intact, given the 
underinvestment in freeway and the subway systems during the last 50 years. To this 
picture, we must also add cyberspace and all the other networks that exist in 
transporting people, information, and energy, but this will remain another challenge 
until we perfect our measurement systems for identifying such comparatively invisible 
interactions. 
 
 
6. Next Steps 
 
Given the nature of this argument, readers might have expected some stronger 
guidelines as to how contemporary GIS might be transformed to take account of the 
dynamics of network representation that we have emphasised here. We would counter 
that it is first necessary to explore network geography much further before we are in any 
position to develop new representations and new software which must  necessarily have 
routinised and generalised applications in mind. Our concern is more with GI science 
which has come to take the place of spatial analysis more specifically and quantitative 
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(a) Morphing the Topological Subway Map to the Real Geography 
 

 
 

(b) Connecting the Subway Topology to the Euclidean Street Pattern 
 

Figure 6: The Way the London Subway Connects to the Real Street Pattern 
A dynamic illustration of this morphing is at http://www.fourthway.co.uk/ 

(by permission Sam Rich and Transport for London) 
 
geography more generally, and it is in this domain that we need to grasp the dynamics 
of networks. Okabe’s (2003) proposal is a start, notwithstanding his focus on point 
patterns on a network rather than relationships and interactions per se. But what we 
need is new research on how network systems evolve and in this regard, developments 
in the physical world, for river and related hydrological systems for example, in the 
economic world based on trade flows and exchange, and in the social world where there 
is a renaissance in ideas about evolving social networks, all point the way. 
 
GIS is concerned very largely with representation but here we have argued that 
representation is not enough, We need to go beyond representation to dynamics and 
change, and this means that we need to involve process. In a sense, these ideas await 
further unification but all the seeds are there already in spatial analysis which is founded 
on stochastic processes in which time is clearly implicit. It is this kind of development 
that must go hand-in-hand with new ideas about the representation of networks within 
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GIS. In this way, processes working on networks which interact with ways in which 
such networks evolve must provide the new focus. In this, we consider that GI science 
must become more substantively based, that methodologies embracing processes that 
have substantive content must be developed. In this the network idea is intrinsic to 
spatial systems where exchange and interaction are key constituents of the way in which 
spatial structures can be explained, represented, modelled and ultimately understood. 
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