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We propose a mechanism where high entanglement between very distant boundary spins is generated

by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient

way to route entanglement between multiple distant sites. We observe that the key features of the

entanglement dynamics of the composite spin chain are well described by a simple model of two singlets,

each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo

cloud in a Kondo system and can be engineered and observed in varied physical settings.
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Introduction.—A high entanglement between two well
separated qubits is the central resource for quantum com-
munication tasks. It also facilitates the preparation of
multiparticle entangled states [1] for measurement based
quantum computation. One could ask whether many-body
systems can serve as mediums for entanglement between
arbitrary distant qubits in a multisite network. Though this
is the most important question from an ‘‘applied’’ perspec-
tive, the thriving field of entanglement in many-body sys-
tems [2] remains focused on the entanglement of blocks
and proximal spins. In fact, long-range entanglement be-
tween individual spins is notoriously uncommon [3]. There
are proposals exploiting weak couplings of distant spins to
a spin chain [4,5], but these have limited thermal stability
or a very long time scale of entanglement generation.
Alternatively, a global quench [6] or specific time-
dependent couplings [7] may generate entanglement,
though this decays with the system size. Finally, there is
a proposal [8] for distance-independent entanglement
through a local quench which, however, lacks the versatil-
ity of routing entanglement between multiple sites. A few
quantum routers have been recently proposed [9], but
harnessing a canonical many-body phenomenon for rout-
ing still is an open question.

Kondo systems [10–12] are very distinctive in the con-
text of entanglement for at least two reasons. Despite being
‘‘gapless,’’ they support the emergence of a length scale
�—the so-called Kondo screening length [10,11]—which
can be tuned by varying only one parameter [10] and
reflects in the entanglement [8], making it markedly differ-
ent from other conventional gapless models. Furthermore,
in Kondo systems, the impurity spin is maximally en-
tangled [12] with a block of spins whose spatial extent
may be varied at will by tuning �.

In this Letter, we propose a dynamical mechanism by
which long-range distance-independent entanglement may
be generated by the switch on of a single coupling suddenly
connecting two macroscopic singlets. We show that this
mechanism provides an efficient way to route entanglement

between various distant parties. By a macroscopic singlet
we mean an arbitrarily long spin chain which has been
engineered to behave as a Kondo system of pertinent �
and thereby as a two-spin singlet. Indeed we show that the
key features of our mechanism are remarkably well de-
scribed by a four-spin system made of two singlets.
Simple example.—Let us first consider two spin singlets

each formed by only two spins interacting with a
Heisenberg interaction of strength J01 and J02, respectively.
The ground state of the composite system is then given

by jgsi ¼ jc�i � jc�i with jc�i ¼ ðj01i � j10iÞ= ffiffiffi
2

p
.

One may generate high entanglement between the bound-
ary spins 1 and 4, by merely turning on an interaction Jm
between the spins 2 and 3. After quenching, the evolution
of the system is ruled by the Hamiltonian H ¼
J01 ~�1 � ~�2 þ J02 ~�3 � ~�4 þ Jm ~�2 � ~�3 and, since the initial
state is a global singlet, time evolution allows for a nonzero
overlap only with the singlet subspace of the spectrum of
H, i.e.,

jc ðtÞi ¼ e�iES1
tjS1ihS1jgsi þ e�iES2

tjS2ihS2jgsi; (1)

where, jS1i and jS2i are two singlet eigenvectors ofH with
energy ES1 ¼ �4Jm and ES2 ¼ 0. In order to get maximal

entanglement between the boundary spins 1 and 4—after a
certain time t�—one has to choose Jm ¼ J01 þ J02. Once
this condition is satisfied the state of the system at time t,
up to a global phase, is given by

jc ðtÞi ¼ �i sinð2JmtÞ
2

ðj0011i þ j1100iÞ � cosð2JmtÞ
2

�ðj1001i þ j0110iÞ þ ei2Jmt

2
ðj0101i þ j1010iÞ:

Surprisingly, jc ðtÞi depends only on Jm and, by tracing out
the spins 2 and 3, one gets the density matrix �14ðtÞ from
which the concurrence [13] between spins 1 and 4 is
computed as
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E ¼ max

�
0;
1� 3 cosð4JmtÞ

4

�
: (2)

Equation (3) shows that E oscillates with a period of �
2Jm

and that, at time t� ¼ �
4Jm

, the spins 1 and 4 form a singlet.

In this simple setting one sees that (i) the dynamics is
determined only by two singlet eigenvectors of H,
(ii) that maximal entanglement is achieved only when
Jm ¼ J01 þ J02, and (iii) the dynamics is oscillatory with
period 2t�, which is only a function of Jm and, thus, does
not depend on J01 and J02 separately.

Many-body systems.—We now show that the above sim-
ple dynamics and the resulting high entanglement between
the boundary spins, may be reproduced even with many-
body systems—for arbitrary length scales—using perti-
nent spin chains. We consider two Kondo spin chains [10]
in the Kondo regime, i.e., two chains of lengths Nk

described by

Hk ¼ J0kðJ1 ~�k
1 � ~�k

2 þ J2 ~�
k
1 � ~�k

3Þ þ J1
XNk

i¼2

~�k
i � ~�k

iþ1

þ J2
XNk�2

i¼2

~�k
i � ~�k

iþ2; k ¼ R; L (3)

where, J1 and J2 are nearest and next-to-nearest neighbor
couplings, k ¼ R (k ¼ L) labels the right (left) chain, ~�k

i is
the vector of three Pauli operators at site i for the chain k
and J0R (J0L) is the right (left) impurity coupling. A Kondo
spin chain supports a crossover from a gapless Kondo
regime for J2 < Jc2 ¼ 0:2412J1 to a gapped dimerized
regime for J2 > Jc2. In the Kondo regime the Kondo length
is uniquely determined by the impurity coupling [10,12]
and, for large chains, the explicit dependence is given by

�k ¼ e�=
ffiffiffiffi
J0
k

p
, where � is a constant; �k sets the size of a

block of spins forming a singlet with the impurity [12]. In
the following, we shall fix the value of J0R and J0L so that

�k ¼ Nk � 1; k ¼ R; L: (4)

We report in Table I the values of the impurity couplings—
determined for chains of arbitrary lengths in Ref. [12]—as
Nk is increased. Equation (5) allows us to build two macro-
scopic singlets (i.e., extendedover a distance�k tuned byJ

0
k).

The composite spin system is depicted in Fig. 1(a); the two
impurities are the boundary spins of the composite system
while, due to Eq. (5), the two Kondo clouds are tuned to take
over each chain separately. Note that not only is this J0k �
1=log2Nk much stronger than the weak couplings in
Refs. [4,5], but also the chain is gapless, so it cannot lead
to perturbative end-to-end effective Hamiltonians.
Initially, the two chains are separated and initialized in

their ground states [see Fig. 1(a)] and the initial state of the
composite chain is given by jc ð0Þi ¼ �k¼R;LjGSki where
jGSki is the ground state of the chain k. Then, we switch on
HI ¼ JmðJ1 ~�L

NL
� ~�R

NR
þ J2 ~�

L
NL�1 � ~�R

NR
þ J2 ~�

L
NL

� ~�R
NR�1Þ

between the two chains [see Fig. 1(b)]. The Hamiltonian of
the composite system of length N ¼ NL þ NR is given by
H ¼ HL þHR þHI. Now the ground state evolves ac-
cording to jc ðtÞi ¼ e�iHtjc ð0Þi. From knowing jc ðtÞi
one obtains the reduced density matrix of the boundary
spins at a generic time t by tracing out all other spins from
the state jc ðtÞi and evaluate the concurrence Eðt; JmÞ
between the boundary spins. The dynamics is now not
analytically solvable and one has to resort to numerical
simulations which, for N > 20, use the time-dependent
density matrix renormalization group introduced in [14]
while, for N < 20, one may use exact diagonalization.
If the composite system should reproduce the remark-

able features of the simple example discussed above one
should expect that Eðt; JmÞ oscillates with a period depend-
ing only on Jm and that maximal entanglement is achieved
provided that

Jm ¼ �ðNÞðJ0L þ J0RÞ: (5)

TABLE I. Typical values of J0k to generate Kondo clouds of
size �k as given in Eq. (5).

Nk J0k
4 0.300

6 0.280

8 0.260

10 0.250

12 0.240

14 0.230

16 0.220

18 0.215

20 0.210

22 0.205

24 0.202

26 0.198

28 0.195

30 0.190

32 0.187

34 0.184

36 0.180

38 0.175

FIG. 1 (color online). (a) The composite system made of two
separate Kondo spin chains initialized in their ground states in
the Kondo regime. Equation (5) is satisfied by tuning J0k. (b) To
induce dynamics, one switches on the interaction between the
two chains by the amount Jm.

PRL 105, 187204 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 OCTOBER 2010

187204-2



�ðNÞ accounts for the extended size of the Kondo singlets.
Of course, for our dynamics to make sense at all one has to
require that, asN ! 1, Jm should take a nonzero and finite
limiting value J (otherwise, one injects either zero or
infinite energy). This condition alone suffices to determine
�ðNÞ. Indeed, if NL � NR ! 1, one has

�ðNÞ � J

�2
log2

�
N

2

�
; (6)

since, in the Kondo regime, one has that �k ¼ e�=
ffiffiffiffi
J0
k

p
.

For the time being we will consider only chains for
which NL ¼ NR. In Fig. 2(a) we plot the evolution of the
entanglement as a function of time for Jm ¼ 0:97J1 when
N ¼ 32 and J2 ¼ 0. We see that entanglement dynamics is
oscillatory with a period 2t�. By restricting to the first
period of oscillations only, one sees that there is an optimal
value of Jm for which, at time t�, the entanglement reaches
its maximum Em. In Fig. 2(b) we plot Em as a function of
N. Despite decreasing for short chains, entanglement re-
mains very high and becomes distance independent for
very long chains. It is remarkable that this distance-
independent value seems to be 0.9 (e.g., for chains of
length N ¼ 40) whereas in Ref. [8] it was merely 0.7. To
complete the picture of entanglement evolution in Fig. 2(c)
we plot t� as a function of N. We see that t�increases
linearly with N with a slope that is small enough to allow
for fast dynamics. The linear dependence of t� on N im-

plies that t� is related to Jm by t��N��k�e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðNÞ=Jm�

p
.

In Fig. 3(a) we have plotted the optimal value of Jm as a
function of N. One sees that, as N increases, Jm goes to 1,
thus confirming the assumption used in the derivation of
�ðNÞ [see Eq. (6)]. In Fig. 3(b) we plot �ðNÞ versus
log2ðN=2Þ. The linearity of the plot provides an independent
numerical confirmation of the result obtained in Eq. (6).

We have also investigated the situations for which NL

is different from NR. In Fig. 4(a) we plot Em versus NL=N
for a composite chain of length N ¼ 32. Figure 4(a)

shows that the entanglement is maximal when NL ¼ NR.
In Fig. 4(b) we plot t� as a function of NL=N. Again one
sees that the optimal time t� is much shorter when NL �
NR. Figures 4(a) and 4(b) lead us to conclude that efficient
routing of entanglement is possible only if NL � NR.
The proposed mechanism for generating high entangle-

ment relies heavily on Eq. (5) and, thus, on the fact that, for
Kondo chains one can always tune the impurity couplings
J0L and J0R so as to satisfy Eq. (5). As a result, entanglement
generation between the boundary spins should vanish for
�k < Nk=2 aswell aswhen the constituentKondo chains are
in the dimer regime (i.e., J2 > Jc2) where the cloud does not
exist at all. We computed numericallyEm and t�, for a chain
composed of two Kondo spin chains in the dimer regime.
The results are reported in Table II and compared with the
results obtained for the same quantities when the two con-
stituent chains are in the Kondo regime and Eq. (5) is
satisfied. Table I shows that, as N increases, entanglement
Em (optimal time t�) is very small (large); for instance, for
N ¼ 40, in the dimer regime, Em ¼ 0:16 and t� ¼ 35:01
while, in the Kondo regime, Em ¼ 0:89 and t� ¼ 9:80.
Entanglement router.—Our analysis allows us to

engineer an efficient entanglement router dispatching
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FIG. 2 (color online). (a) The entanglement dynamics vs time t
(J2 ¼ 0) for a composite system of N ¼ 32 when NL ¼ NR.
(b) The maximal entanglement Em vs N. (c) t� vs N.
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FIG. 3 (color online). (a) Optimal Jm vs N for NL ¼ NR in the
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entanglement between very distant qubits. A four-node
entanglement router is sketched in Fig. 5. Each node, say
A, B, C, and D, has a boundary spin whose coupling to its
adjacent chain is tuned so as to generate a Kondo cloud
reaching the dispatch center (Fig. 5). The dispatcher can
entangle the spins of two arbitrarily chosen nodes, say A
and B, by switching on a coupling Jm between the chains A
and B and, thus, induce the quench dynamics previously
analyzed. At t ¼ t�, the entanglement may be taken out of
the boundary spins by a fast swap to any memory qubits in
nodes A and B. Note that exclusive pairs of nodes, e.g.,
(A, B) and (C, D), can be connected simultaneously.

Decoherence.—Spin chains with switchable or tunable
couplings are realizable [15] with both superconducting
qubits and spins in quantum dots. In the former, the effect
of a reasonable dephasing of strength 0:005J1 [16] forN ¼
12 is about 10%. In the latter, a magnetic field in a random
direction acts on each spin due to the dot nuclei [17].
For N ¼ 12, a very strong magnetic field (� 0:05J1) [17]
decreases the entanglement by 5%.

Conclusions.—We proposed a mechanism for generat-
ing high entanglement between distant spins by switching
on an appropriate interaction between two Kondo spin
chains. In contrast to other recent networking schemes
[9] it does not demand control of the intermediate spins
or time-varying local fields. Our results hint that a Kondo
spin chain satisfying Eq. (5) may be effectively described
by an extended singlet formed by two spins since the key
features of the entanglement dynamics can be easily under-
stood using a simple model of a pair of two spin singlets.

In the absence of the Kondo cloud, entanglement is sup-
pressed; thus, the remarkable dynamical behavior of the
system is a new clear footprint of the emergence of the
Kondo cloud in a Kondo system.
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FIG. 5 (color online). A four-node router in which each user
controls one boundary spin. A dispatcher connects two chains to
induce dynamics in a channel composed of two spin chains.
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