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Abstract 
 
Small-scale spatial events are situations in which elements or objects vary in such a 
way that temporal dynamics is intrinsic to their representation and explanation. Some 
of the clearest examples involve local movement from conventional traffic modeling 
to disaster evacuation where congestion, crowding, panic, and related safety issue are 
key features of such events. We propose that such events can be simulated using new 
variants of pedestrian model, which embody ideas about how behavior emerges from 
the accumulated interactions between small-scale objects. We present a model in 
which the event space is first explored by agents using ‘swarm intelligence’. Armed 
with information about the space, agents then move in an unobstructed fashion to the 
event. Congestion and problems over safety are then resolved through introducing 
controls in an iterative fashion and rerunning the model until a ‘safe solution’ is 
reached. The model has been developed to simulate the effect of changing the route of 
the Notting Hill Carnival, an annual event held in west central London over 2 days in 
August each year. One of the key issues in using such simulation is how the process 
of modeling interacts with those who manage and control the event. As such, this 
changes the nature of the modeling problem from one where control and optimization 
is external to the model to one where this is intrinsic to the simulation. 
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1 Introduction: Small-Scale Spatial Events 
 

Analysis at ever finer geographical scales changes the emphasis from a concern for 

understanding the structural arrangement of objects to the way in which those objects 

move to position themselves in space and time. This change in perspective is 

occasioned by several factors. At finer scales, we become increasingly part of the 

scene as observers, and begin to identify more closely with elements that are nearer to 

our everyday experiences. This in turn changes the need to abstract and generalize. Of 

course, the law of large numbers also breaks down when the phenomena that we 

observe cannot be classified into categories from which general relationships can be 

inferred or deduced. But more important is the fact that spaces which are observed at 

the finest scales cannot be viewed as being predominantly static. What comes into 

focus is the kind of routine movement which keeps systems energized, alive if you 

like, and as observers within the scene, our own actions are enough to change the 

focus of our inquiry from statics to dynamics. 

 

The implications of this are important for geographical information science. As we 

approach the human scale, relationships begin to be articulated between objects rather 

than aggregates. Interactions between objects suggest that ‘mobility’ as well as 

location is important. More routine processes on finer time scales are introduced and 

the focus changes from one where the dynamics is abstracted to one where many 

system elements can be directly observed, often in real-time. Of course aggregate 

spatial representations are built from the smallest scale where data is collected in real-

time but in beginning to represent and model such scales, dynamics becomes 

essential. This means that very different kinds of spatial events come to our attention, 

many which have previously been beyond science, indeed beyond geography. 

 

Progress in developing science at this fine scale has been immensely slow for human 

systems. Systematic data has been absent while ways of defining objects and 

manipulating them in mathematical and digital environments have only just begun to 

emerge with the advent of object-orientated representations and agent-based 

modeling. There has thus been very little work on examining changes in, for example, 
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urban form at these scales, despite some extremely promising work on the fine-

grained socio-economic structure of cities half a century or more ago (Rannells, 

1956). As we move to finer scales, new kinds of event which have important spatial 

manifestations in both the short and long term emerge. For example, the local 

movement of people in routine contexts clearly affects the location of activities. 

Changes in the use of land parcels, the continual rebuilding of urban structures, and 

the changing economy of property are all problems which have barely been touched 

by systematic science but which now seem to be amenable to deeper explanation.  

 

Perhaps the most obvious problems at the local scale and those that we will illustrate 

in this paper comprise one-off spatial events which involve the movement of large 

numbers of people over short periods of time. These largely fall within the sphere of 

entertainment although some of them relate to work, but all of them involve issues of 

mobility and interaction between objects or agents which generate non trivial 

problems of planning, management, and control. The classic example is the football 

match but rock concerts, street parades, some kinds of shopping, the entry and exit of 

large numbers of people from high capacity buildings and vehicles such as airports, 

stations, subway trains, and high buildings, are all examples of such events. Recently 

disaster scenes involving evacuation have been significant, especially following 9/11 

and the war against terrorism where methods for dispersing large concentrations of 

people are being increasingly explored. These types of event, however, have tended to 

resist scientific inquiry, and have never been thought to be significant in terms of their 

impact on spatial structure, or to be worthy of theory. Indeed theories for helping 

architects design better buildings based on patterns of usage which in turn are dictated 

by the way people respond and move through small spaces are virtually non-existent, 

despite occasional but infrequent attempts in the past to provide suitable methods 

(March and Steadman, 1971). 

 

Much of this is now changing. There is a new momentum to developing geographic 

information science at much smaller scales which is coming from at least three 

directions. The most obvious is due to changes in data where ever smaller scales are 

being observed, measured, and represented digitally. Sensing technology for detecting 

fine-scale geometries and textures as well as geodemographic data capture through 
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electronic transactions are driving the acquisition and measurement of both physical 

and socio-economic attributes of the small-scale. This is seen for example in the 

increasing use of GIS software for activities such as urban design (Batty, Dodge, 

Jiang, and Smith, 1999). The second source revolves around a sea change in the way 

systems in many fields are currently being conceptualized. There is an increasing 

recognition that systems must be understood from the bottom-up for many systems 

function and maintain their structure in this manner. Top-down simulation which 

usually depends on articulating relationships between system aggregates, is unable to 

capture the richness in structure and dynamics that many systems display. The way 

local actions generate emergent structures which have order at more global levels is 

particularly important to many functioning spatial systems such as the way traffic 

behaves in networks, the way suburbs and edge cities develop, and the way highly 

segregated residential areas coalesce within the urban fabric. This is part and parcel of 

complexity theory which espouses the idea of decentralized functioning and thinking 

as the basis for new ways of simulation and policy analysis (Johnson, 2001). The third 

source is a consequence of our growing abilities to interact more globally than 

hitherto. Consequently, the movement of large numbers of people over short periods 

of time is an increasing feature of cities and the kinds of spatial problems that they 

generate are increasingly important.  

 

Before we begin to detail some of these new ways of modeling, we must illustrate in 

more detail the class of examples that we use here. The events we have in mind are 

those in which large numbers of people move rapidly to various attractions where the 

focus of interest is mainly on the attraction and not on others attending the event. 

Interactions between people, however, do occur through crowding and flocking 

behavior while the geometry of the environment has an important constraining effect 

on how people move. Within this nexus, preferences related to the detailed schedules 

of activities that individuals wish to execute, are embedded within the movement 

patterns, and these in turn may be tied to fixed locations at the level of buildings, land 

parcels, and land uses. Such environments may range from those that are not 

controlled at all as in the case of shopping to those that are highly controlled often 

through other mobile objects which change the local geometry through barriers, street 

and building closures, and capacity limits on density. This description of a spatial 
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event covers a wide range, from very large concentrations of people at concerts and 

sports events to movements into local spaces for routine activities of working and 

shopping through to more drawn out events such as religious festivals, carnivals, and 

street parades. In this paper, we will illustrate models using the latter examples but the 

dynamics that we explore are generalizable to other events of this type. 

 

We will begin with a discussion of the local dynamics of small-scale events and ways 

in which these might be observed and measured. Because such events are subject to 

considerable control, any model must account for this and we thus propose a two 

stage structure in which control is gradually introduced into the simulation. In the first 

stage, we explore the effect of geometry on movement and to this end, we develop an 

algorithm based on ‘swarm intelligence’ which generates hierarchies of shortest paths 

and surfaces of attraction relating the location of events to points at which agents 

enter the event. In the second stage, agents – visitors/walkers/pedestrians – are 

launched from the entry points and climb the attraction surface to reach the event. An 

initial assessment of crowding is then made and if necessary, controls introduced 

manually to reduce congestion. The model is re-run through this second stage and this 

process continues until a ‘safe solution’ is reached.  

 

We then show how the model can be calibrated to data. This model, like many, only 

touches our knowledge of the event in terms of the data we have. The data 

requirements are enormous and always less than optimal, quite unlike aggregate 

modeling where parsimony is the watch word. We develop the model to simulate the 

effect of changing the route of the parade in the Notting Hill Carnival, an annual event 

held over 2 days in August each year in a 3.5 square km area of west central London. 

This event attracts over 1 million visitors and is widely regarded as posing a major 

problem of public safety. Our simulations continually refer to such problems of safety 

and we finally illustrate the way the model can be used to change routes and introduce 

controls which reduce crowding to acceptable levels. Our focus is not on the 

application per se but on introducing a generic class of models that might be 

generalized to a wide variety of small-scale spatial events explicable only through 

dynamics which involve movement. 
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2 Observing and Understanding Local Dynamics 

 

Spatial models at any scale imply interactions whose locations are sustained by 

movements of people, goods, ideas, whatever, between two or more locations which 

are usually classified as origins and/or destinations. These movements imply 

processes of interaction over different time scales at different speeds from slow (in 

years) to fast (in minutes and seconds). At the human scale, interactions occur over 

different sized areas, each implying a different dynamics, purpose, and goal. Where 

interactions between people take place in very small spaces of the order of 10s of 

square meters, then the dynamics of movement is dominated by density 

considerations such as crowding whereas over wider areas of 100s of square meters or 

even 10s of square kilometers, movement is less characterized by geometry, more by 

cost and purpose. What complicates the dynamics of the small-scale are events in 

which different scales and types of movement take place with individual movements 

switching from one purpose and/or scale to another. In our example here, we will deal 

with movements that take place in confined spaces such as subway stations, along 

streets where density and crowding are less important, and at fixed attractions where 

density once again becomes important. But in all these cases, different streams of 

movement based on different types of individuals form crowds which in turn have 

their own dynamic.  

 

Although the kinds of events we will simulate appear comparatively simple and occur 

from fixed origins to destinations like the journey to work, they are quite unlike the 

journey to work in being much more protracted in duration, with greater freedom of 

movement in space and time. Such events are complicated by the fact that although 

the attractions are assumed to be the main foci for such movement, multiple other 

purposes can intervene and compete such as shopping, eating, and so on. There is also 

the somewhat mystical property of large crowds being formed with their own 

momentum which binds them together and drives their movement in very small 

spaces. Such characteristics are hard to identify, never mind model although such 

herding instincts due to identity of purpose in the foci of attraction, ‘crowd fever’ so 

to speak, are important features. The morphology of such events has barely been 
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touched to date. There is little descriptive material at small spatial scales on which 

good models of these dynamics might be built, and the interpretations that do exist are 

not found within mainstream geographical, urban, or architectural analysis. There is a 

useful classification from Canetti (1962) who describes crowds as certain kinds of 

groups while there is a persistent line of research in psychology from LeBon (1905) 

on but much of this relates to what Isaac Newton once described as the ‘madness of 

crowds’, dealing as much with speculation and gambling as with physical 

concentrations. 

 

Canetti’s (1962) classification is however useful. He describes such events as being 

highly focused on single points of attraction which are spatially associated with 

agglomerations of individuals. The crowds we are dealing with here form slowly with 

minimal diversions but because there are competing attractions, there is continual 

circulation within the highest density places as individuals move to experience 

adjacent attractions. It is possible in the events simulated here that crowds can grow to 

sizes and densities which are out of control. Fear and panic can set in as crowds 

attempt to disperse if densities become too high and safety is compromised. Crowds 

form at points of ingress and egress where they are channeled into and out of high 

capacity vehicles like buses, subways trains, and buildings. In short, there is an 

implicit morphology of crowds which likens them to organically growing and 

changing phenomena although few have attempted to describe the dynamics and the 

transformations that take place as crowds form and dissipate. In this context, our 

events are considerably calmer than crowds at football matches or in Japanese subway 

trains. Canetti (1962) describes the kind of crowd that we are dealing with here when 

he says: “There is a …. type of slow crowd which can better be compared with a 

network of streams. It starts with small rivulets gradually running together. Into the 

stream thus formed other steams flow, and these, if enough land lies ahead, will in 

time become a river whose goal is the sea. The pilgrimage to Mecca is perhaps the 

most impressive example of this slow crowd” (page 40).  

 

We shall see that this picture is close to the way the crowds form in our applications 

here. It is directly reflected in the dynamics captured within the model but this 

depends on the way we define the elements or objects that make up the event. It is 
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worth thinking of these as mobile agents which move within a geometric landscape – 

based on streets in the urban case. Most models of pedestrian movement are now 

being developed in this way but here we will not confine our agents simply to the 

walkers who are visitors at the event. The attractions themselves may be treated as 

objects, some fixed such as concert venues but others mobile like parades. Ways of 

controlling the geometry of the landscape – the streets – can also be defined as 

objects. Barriers and agents such as the police who control access can be mobile while 

the whole range of emergency services and related vehicles can be similarly 

considered. Different group types within the crowd might be defined depending upon 

the variety of attractions and the diversity of the visitors at the event. This variety 

suggests many different types of interaction between different agent groups – not 

simply based on human interaction but interaction between the physical landscape and 

users of that landscape, where the cells that actually define the geometry may 

themselves be considered as agents (Box, 2001). This type of characterization is 

similar to that used in particle physics where the concept of the active walker – a 

particle (agent) that both changes and is changed by its environment (landscape) – has 

become popular (Schweitzer, 1997). 

 

The critical issue involves the difficulties in observing this kind of system in sufficient 

detail. Strictly speaking with models which are composed of individuals, there should 

be data on the decision-making events associated with each individual throughout the 

time periods and across the space associated with each decision event. All dynamics 

involves making observations at cross sections in time and interpolating time paths 

between these sections. This, however, is difficult where actions and interactions are 

required in real time. Invariably it is not possible as each individual cannot be tagged 

remotely or directly through human or automated sensors. What is usually possible is 

good data on the density of crowds but not on paths taken by individuals. This is the 

same problem that is faced in monitoring vehicular traffic although in that example, 

movement is constrained to much stricter geometries – the road or rail system – and 

there is some possibility that the movement of individual vehicles can be tracked. It is 

difficult to get good path data from closed circuit TV or even from laser scanning data 

but the idea of tagging pedestrians and monitoring movement this way is probably 

never going to be possible due to privacy considerations.  
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In the case of pedestrian systems, good origin and destination data for each individual 

is never enough as it is the actual movement through the street system that is 

important. The best data that has been collected to date is for the most confined spaces 

where crowding at sports events and in subway stations is under scrutiny. Over wider 

areas, this has always been problematic and the fact that the best examples are not 

contemporary indicates the importance of the observation problem (Pushkarev and 

Zupan, 1975). In fact the lack of path data and data on how crowd and individual 

types interact will actually influence the kind of models that can be built. As we show 

here, models need to be built that not only estimate and predict but also enable users 

to explore existing patterns, predicting possible paths that may be taken in the absence 

of knowledge about the actual paths taken. Similar problems exist in eliciting 

preferences which cannot be observed but only inferred through actions and 

invariably we data on lack behavioral protocols and responses. Agent-based models 

must therefore be designed to account for such omissions. 

 

 

3 The Control of Spatial Events  
 

Simulation usually follows the conventional cycle of mathematical modeling where 

data assembly, representation, and analysis is prior to model specification and testing 

and where prediction is usually only attempted when a good enough fit of the model 

to reality has been achieved. The final stage of the cycle involves using the model for 

optimization where model outputs are managed or designed in some way to achieve 

certain targets or goals.  This process works well where models are aggregate and 

parsimonious, where data is adequate and where it is assumed that the kinds of 

controls or designs required in the future system are absent from the way the system 

has evolved in the past. However with small-scale spatial events, these assumptions 

are no longer tenable. As we have noted, data is always inadequate, by definition, and 

this puts in doubt the conventional process of model calibration. Moreover many of 

the events that are of interest in this domain cannot be separated from explicit 

controls. Many of these are passive, being part of the wider environment, but some of 
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them are active in a way that makes them critical to simulation and calibration. For 

example, as crowds at sporting events get bigger and denser, safety standards come 

into force through police control of crowd behavior. In the case of crowds which are 

not policed directly, constraints on the design of physical infrastructure act in a 

passive way to control behavior.  

 

In short, we cannot build models of spatial events where we assume that data is 

collected first, the model calibrated, and then if appropriate, used for prediction, 

thence design and control. What this implies is that the model designed here 

incorporates all these stages from data assembly to prescription and control and that 

the process of calibration is contingent on the entire sequence. It is easiest to illustrate 

this with the example used here. We have some data on where people originate and 

where they are destined for but we do not have data on their spatial preferences or on 

the paths that they actually take which connect up their origins to their destinations. 

Thus the first stage of the model is to generate these paths that are consistent with 

normal walking behavior. The problem is one of simulating the missing data but in 

such a way that the most likely behavioral pattern results. Once this is completed, the 

model can be calibrated in the usual way but as this calibration involves generating 

missing data, then it must embrace this earlier stage.  

 

However, the event we will be modeling is also highly controlled by the police who 

channel crowds by closing streets and erecting barriers as well as positioning 

attractions. These controls are known so we could model the actual situation with 

these in place but as the purpose of this model is to redesign these controls, then what 

we actually do is begin our simulation with no controls. We thus assess the situation 

first in the absence of control, then gradually introduce controls to a level which meets 

the goals of safety associated with local movements. This means that data, calibration, 

prediction, and control (prescription) merge into one another; calibration must thus be 

structured around the whole cycle. When it comes to testing different controls, then 

the entire cycle must be run again for new controls imply different data patterns which 

as before are not available and must be generated. In a sense, the kind of model that 

we have here is in fact a lot closer to the way we know reality is structured than the 

more parsimonious, aggregate models that have dominated social science to date. 
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Control exists despite the general assumption that free markets and unconstrained 

behavior prevail, while our inability to get inside the system and observe all its 

attributes means that in any situation, there will always some data that needs to be 

generated.  

 

There is a further twist to this circularity. The controls themselves cannot be divorced 

from the event itself, indeed they define the event, and these are also generated from 

the bottom up. Moreover, these controls cannot be easily modeled without the 

interventions of those who design them – the police and related authorities in the case 

of crowding situations.  Strictly speaking, the most appropriate way to design and 

operate this kind of model is to provide an interface to those who actually control the 

real event and to use their expertise in running the model through its various stages. In 

the first stage in which data is being assembled, such stakeholder involvement is not 

required but in the second stage where ‘virtual agents’ are simulated under different 

controlled conditions, the way these controls are introduced is best accomplished by 

the ‘real agents’ – the police and related authorities – who design these in the first 

place. As the process of calibration loops around this entire sequence, this breaks the 

model into stages where different kinds of expertise are required, further complicating 

the way it needs to be executed. In fact in the experiments which follow, we do not 

involve the stakeholders in the control phases for we are intent on evaluating existing 

controls. But in evaluating futures, such involvement is crucial. 

 

Before we explain the class of agent-based models that we consider suited to these 

types of problem, it is worth a brief review of alternative and complementary 

approaches. In fact there is a disjunction in the field of pedestrian or walker modeling 

between models which emphasize density and crowding and those that focus on the 

way walkers move from origins to destinations. These approaches are not mutually 

exclusive, they may be complementary but they do not deal with the same kinds of 

walking phenomena. The former tend to be for confined spaces while the latter for 

much wider areas; the former are designed for issues of safety and evacuation while 

the latter are for predicting volumes on different routes between origins and 

destinations with the assumption that capacity issues will be dealt with naturally. Yet 

all these models deal with self-organization through push-pull effects which occur 
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when individuals form crowds through herding, and when individuals seek to escape 

from crowds due to panic.  

 

Helbing (1991) and his colleagues have developed a whole series of models which are 

built around social forces, which relate variously to ideas from fluid flow, particle 

systems, and flocking (Helbing, Schweitzer, Keltsch, and Molnar, 1997). Similar 

approaches have been developed by Still (2001), and Hoogendoorn, Bovy and 

Daamen (2001). Several reviews exist (Helbing, 2001; Helbing, Farkas, Molnar and 

Vicsek, 2001; and Helbing, Molnar, Farkas, and Bolay, 2001). In contrast there are 

models being developed by Blue and Adler (2001) usually for more constrained route 

systems using cellular automata akin to those developed by Nagel and Schreckenberg 

(1992) for vehicular traffic. These models are also being applied to slightly larger 

scales by Dijkstra, Jessurun, Timmermans (2002) and Burstedde, Klauck, 

Schadschneider, and Zittarz (2001). At smaller scales for more ordered flow 

schedules, queuing models have been adapted but with limited success (Lovas, 1994) 

while for building and urban spaces where preferences associated with different 

locations are key, event based simulation has been attempted (Baer, 1974). At the 

larger scales where movement on malls and even entire neighborhoods is the focus, 

spatial choice and interaction models have been applied (Borgers and Timmermans, 

1986). There have never been enough applications to generalize this field into distinct 

types for there are elements of each approach in every other. For example, agent 

based models are now becoming popular at several small scales ranging from town 

centers (Haklay, Thurstain-Goodwin, O’Sullivan and Schelhorn, 2001) to buildings 

but there is also the implication that such approaches can be applied at much larger 

scales (Schweitzer, 1998; Batty, 2001). 

 

 

4 Movement Dynamics: A Formal Model 

 
The best way to illustrate this generic approach is through our example of the Notting 

Hill Carnival. This event is represented by several groups of agent which move at 

different speeds – fast, slow, and immobile. We define: walkers (W) who are visitors 
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and interact with each other and the Carnival events in real time, paraders (P) who 

move in more routine fashion along the parade route again in real time, bands (B) 

which form the fixed sound systems, are immobile but emit noise which decays 

exponentially from source, thus attracting walkers, and physical objects which we will 

call streets (S), reflecting building layout and street geometry which act as obstacles 

to movement but are ‘movable’ in themselves. In fact, the parade and paraders, the 

bands, and the street objects can all be ‘moved’ occasionally but infrequently, and it is 

these that provide controls which can be manipulated to meet standards of public 

safety. 

 

Table 1: Varieties and Characteristics of Agent in the Notting Hill Model 

 

Agent 
Group 

Agent Type Mobility 
Level 

Movability Data 
Sources 

Walkers (W) Visiting Parade Fast in Real Time Completely 
Flexible 

 Visiting Bands Fast in Real Time Completely 
Flexible 

 Visiting Bands 
and Parades 

Fast in Real Time Completely 
Flexible 

Origins and 
Destinations 
of Observed 

Walkers, 
Paths not 
known 

Paraders (P) Moving Vehicles  Fast but Fixed 
Route  

Movable in Long 
Term 

Observed 

Bands (B) Fixed Sound 
Systems 

Fixed  Movable in Long 
Term 

Observed 

Streets (S) Physical 
Objects/Barriers 

Fixed  Movable in 
Medium Term 

Observed and 
Managed 

 

 

In Table 1 we show these agents in terms of their mobility characteristics and data 

requirements while in Figure 1, we graph their potential interactions. From these 

interactions, it is very clear that the focus of the agent structure is on the walkers. 

These interact with each other through forming crowds by flocking, and then 

dispersing if congestion is too high. They are directly affected by paraders, street 

geometry, and sound systems. The paraders and bands interact with themselves in a 

relatively passive way but not with each other while the street geometry simply affects 

the walkers. These interactions exists in real time but there are longer term 

interactions between all agent types: first through changes to the street geometry 

affecting parades and bands which can occur as control is increased or decreased (the 
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broken arcs with no arrows in Figure 1), and second in the much longer term when the 

parade route and the band locations are themselves changed (the broken arcs with 

arrows). The self-interactions involve crowding behaviors when visitors come in 

contact with each other and with the paraders and the bands, while interaction with the 

street geometry is always in terms of obstacles on movement and behavior. Table 1 

also makes clear that at least three kinds of walkers exist in the system: those who 

interact solely with the bands, those who visit simply to see the parade, and those who 

visit to engage with both. Although preferences are not explicitly incorporated in this 

model, these three walker types involve implicit behavioral differences with respect to 

their attraction to the events that comprise the Carnival. 

 

 
Figure 1: Interactions between Agents 

 

The spatial behavior to be simulated is extremely straightforward. Walkers enter the 

Carnival area and move through the street system to the various attractions. They 

interact with each other, the parade, and the sound systems, and these interactions can 

cause crowding which violates safety limits. The paths they take from the points at 

which they enter are defined by the noise that they hear, and by feedback from other 

walkers which leads to ‘flocking’. When large crowds form at the various attractions, 

they disperse if congestion exceeds certain thresholds. If they cannot disperse 

sufficiently quickly due to the build up, then panic can set in and accidents occur. In 

terms of the simulation, the paths that walkers take are unknown and must be 
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generated and thus the first stage of the model involves generating this ‘missing data’. 

Hierarchies of shortest routes and related accessibility surfaces will mark this stage 

and these are used in second stage to effect the simulation of walkers from which 

patterns of crowding and public safety levels can be evaluated. Constraints designed 

to raise levels of safety are then systematically introduced through a process of 

optimization-control-management and this will necessitate the two stage model being 

reiterated until acceptable limits are reached.  

 

To generate the shortest routes, we can either begin with walkers at known origins 

which are the entry points or with walkers at known destinations, searching either for 

destinations from origins or vice versa. We will use an algorithm in which all walkers 

begin to search for the relevant locations randomly but as these are discovered, others 

simply learn by watching where the successful walkers are moving to. This kind of 

algorithm is based on a class of behaviors called ‘swarm intelligence’ (Kennedy, 

Eberhart, and Shui, 2001). Based on intelligence amongst insects which is determined 

in a bottom-up fashion through such learning, these techniques are finding wide 

applicability in all kinds of routing problems from telecommunications to robot 

manipulation (Bonabeau, Dorigo, and Theraulaz, 1999). The walkers move out 

randomly from their starting points (which in fact are their ultimate destinations). 

Those closest to entry points will discover these first and once this occurs, they head 

back to the starting points which they remember. However to remind themselves of 

the path between their entry point and starting point, they make a mark by laying a 

trail. In analogy to the way ants react to the discovery of food sources, they drop 

‘pheromone’. (Camazine et al., 2001). Other agents who have not yet discovered any 

destination points see these trails by sensing the scent and this leads them more and 

more quickly to the various entry points. This process turns out to be one of finding a 

hierarchy of shortest routes between destinations and entry points. Once an agent has 

returned to the destination after such a discovery, it begins again but this time reacting 

to the pheromone surface where it exists. In this way, the hierarchy of routes is 

reinforced with the shortest being the most heavily trafficked. This first stage is 

illustrated in Figure 2 with the process of walking during this stage only finishing 

when the hierarchy begins to converge to a stable set of routes. 
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In the second stage, we use the information discovered at the first to construct 

appropriate accessibility surfaces for each class of walker. Essentially these surfaces 

links origins (entry points) to destinations (Carnival events), walkers being launched 

from entry points and ‘climbing’ these surfaces to reach the attractions. The walkers 

interact with each other through watching where others walk, thus ‘following the 

crowd.’ Walkers flock to the parade routes and to the fixed sound systems and in 

doing so generate congestion which is resolved by dispersal. Flocking is positive 

feedback and dispersal is negative. The interaction with the parade can lead to conflict 

other than congestion for as walkers try to cross the parade route, then accidents can 

occur. However the greatest source of potential safety problems occurs when crowds 

build up and are unable to disperse. Dispersal takes time and meanwhile flocking 

continues especially in areas where the street geometry is highly constrained. As the 

walkers are launched slowly in a stream from their origins, then it also takes time 

before they all reach the Carnival area and before a steady state distribution emerges.  

 

Only when this steady state emerges which is sensed when average distances traveled 

in each time period converge, are we able to make a clear assessment of crowding. In 

short we simulate the steady state at the peak period during the Carnival and to reach 

this point in time, we do not simulate all walkers throughout the two-day period but 

build up the relevant number from scratch just prior to the peak. Various measures are 

used to assess whether or not public safety requirements have been breached, and if 

so, then controls begin to be introduced. These controls are first on the street system 

and consist of street closures and movable barriers which constrain movement and 

densities. These are developed manually and this is the point at which those 

stakeholders who know the problem need to be involved with the model. Once we 

make such changes, however, the shortest routes and related accessibility surfaces 

also change and these must be recomputed so the entire sequence based on these two 

stages needs to be reiterated. Its essential logic is illustrated in Figure 2. This process 

continues until a steady state results and at this point, the model is essentially 

calibrated. Along the way, we may have ascertained that safety levels are too tight and 

that looser ones are possible or that safety measures are too slack and new ones 

required. In the latter, we can then initiate changes to the location of the parade and 
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sound systems, thus beginning to use the model as a traditional means of testing 

alternative configurations of the Carnival.  

 

 
Figure 2: An Outline of the Two Stage Model 

 
The first stage which is the ‘swarm’ algorithm is the initial left hand sequence, while the second stage 

simulation of crowding is the right hand sequence. Note how controls (‘Change Street Agents’) are 
gradually introduced through reiterating both stages of the entire sequence. 

 

 

 

5 The Mathematics of the Simulation 
 

All actions and interactions in the model take place in an event space composed of N  

square cells indexed Nji ...,,2,1, = .  The agent groups – walkers (W), paraders (P), 

bands (B), and street objects (S) are always located with respect to these cells at time 

Tt ...,,2,1=  with itW  the number of walkers, itP  the number of paraders, itB  the 

number of bands, and itS  the number of street objects, in each cell i at time t. In the 

case of bands and street objects, these are fixed in space and time and only a single 
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agent is associated with each cell. For bands, 0or  1=itB , that is a band exists in a 

cell or does not, and the total number of bands is thus tBB
i it ∀=∑ , . For streets, if 

1=itS , this means that the street agent is signaling that a cell is available for a walker 

to move to, that there are no obstacles to movement; if 0=itS , obstacles such as 

barriers, buildings or street closures exist, and the cell is off-limits to movement. The 

total number of cells available is tSS
i it ∀=∑ , , and thus there are SNN −=  cells 

which act as barriers or obstacles. The bands and street objects are entirely passive 

and do not change within a single run of the model. Street objects are however 

changed when control is being manipulated to meet safety measures through the outer 

loop in Figure 2 while band (and parade locations) are changed when different routing 

scenarios are evaluated. 

 

The three types of walker are composed of those whose motive is to visit the parade 

( 1W ), those who primarily visit the bands ( 2W ), and those who visit both ( 3W ) with 

the total numbers of walkers in the system ∑ =
=++=

3

1
321

z
zWWWWW . Each 

individual walker is defined by the binary variable zk
itW  which is set to 1 if a walker of 

type z is in cell i at time t, or 0 otherwise. A series of accounting relations define 

densities in cells and totals in the system at any one time, and the total number of 

walkers in each group zW  is fixed over all time periods, implying that the overall 

total is also constant. Then the total number of walkers of type z in i are 

∑=
z

z

k
k

it
z

it WW , the total in cell i ∑ ∑∑ ==
z k

k
itz

z
itit

z

zWWW , and the total of type z 

in the system tWW
i z k

k
it

z

z

z ∀=∑ ∑ ∑ , . The same kinds of relations pertain to 

paraders except that there is only one type defined as PkP k
it ,...,2,1, =  which is 

equal to 1 or 0 depending upon whether or not a parader occupies cell i at time t. The 

total paraders in cell i is ∑= k
k

itit PP  and the overall total ∑ ∑ ∀==
k k

k
itt tPPP , . 

 

The first stage of the simulation is based on the swarm algorithm which is solely 

based on walkers and does not involve paraders and bands except insofar as these act 

as sources for the random exploration of the street system. The walkers are launched 
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from these sources D (which are their ultimate destinations) at time 1=t  where 

∑ ∑∑ ==
z k

k
Dz

z
DD

z

zWWW 111 . Walkers of each type z can move from cell i  to an 

adjacent cell j  in each time period ]1[ +→ tt  where ij Ω∈  and iΩ  is the eight cell 

neighborhood around i . In general, some of these cells will not be accessible because 

of obstacles but if the street agent signals an empty cell, that is 1=jtS , the agent is 

able to make a move. Note we now call the street agent jS , dropping t which does not 

change during the two stage simulation, and only changes on a longer cycle so that 

safety limits can be met. Movement from i  to j  in search of an origin O  is then 

determined by the relevant probability for type z as 

 

 
∑
Ω∈

+ =

i

S
S

p z
t

j
z
jtz

ijt

l
llτ

τ
1  .      (1) 

 
z
jtτ  is the route accessibility to origins for agent type z, and this depends on the 

destinations which act as the sources of each walker type. A move from i  to j  is 

determined randomly according to the schedule of probabilities in (1). We also 

compute a composite accessibility surface for all the walkers 1+jtη  which in principle 

could be walker type specific but in practice, is more useful as an overall index 

combining the influences of all walkers. This is in contrast to z
jtτ  which, as we will 

see, is more like a density of movement associated with the use of routes. Then if 

1=zk
itW  and 11 =+

zk
jtW , the accessibility surface to destinations is updated as 

 

 ( )∑∑ −

++ +=
z k

k
Djtjtjt

z

zd
β

ηη 11  ,    (2) 

 

where zk
Djtd 1+  is the distance of walker zk  from D to cell j, and β  is a tunable 

parameter reflecting the friction of distance. In fact, this is also a ‘sound surface’ as 

the distance decay through the power law implied in (2), can be considered as a proxy 

for the decay of sounds from the attractor destinations. As we have implied earlier, in 
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small spaces walkers are attracted to sounds and this is one way in which this feature 

can enter the model, at least implicitly. The analogy should not be taken too far as we 

have not attempted any analysis of sound decay with distance but the reason for using 

this surface is to incorporate system-wide effects which affect all walkers. Sound is 

one such effect. Finally at this point, the density of walkers at j  can be computed as  

∑ ∑ ++ =
z k

k
jtjt

z

zWW 11 , or in terms of walker types, as ∑ ++ =
z

z

k
k
jt

z
jt WW 11 . 

 

The process implied by (1) and (2) continues until a walker discovers an origin O . 

For each walker zk
jtW 1+ , if Oj Ω∈ , the walker switches from exploratory to discovery 

mode zk
jtW 1+  and returns to the destination D  with knowledge of the discovery. The 

probability of returning is thus 

 

 
∑
Ω∈

+ =

i

z

z

z

S
S

q k
t

j
k
jtk

ijt

l
llπ

π
1  ,      (3) 

 

where zk
jtπ  is based on the difference between the heading in the direction from i  to 

j , zk
ijθ ,  and that from i  to the position defined by zk

DW 1 , zk
iDθ , which are combined as 

1]1[ −−+ zz k
iD

k
ij θθ . This move is also chosen randomly and when zk

itW  moves to zk
jtW 1+ , 

the walker marks the move by updating z
jtτ  as 

 

 ∑ ++ +=
z

z

k

k
jt

z
jt

z
jt W 11 ττ  .      (4) 

 

This process is akin to the walker dropping a marker or laying a pheromone trail when 

a discovery has been made: z
jt 1+τ  measures the density which ultimately reflects a 

hierarchy, the highest of which form the shortest routes. When the walker comes 

within the neighborhood of its destination Dj Ω∈ , it switches back to exploration 

mode and the search begins over again. 
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It takes some time before agents discover an origin. Before this, the search is a 

random walk with the route accessibility surface set as a uniform distribution, that is 

1=z
jtτ  until a time t is reached when the first entry point is found. If a walker crosses 

the edge of the event space, it is absorbed, regenerates at its source destination, and 

begins its search again. In its early stages, this is a random walk with absorbing 

barriers with a standardized variance of distance traveled proportional to 4.0t , a little 

less than the value for an unconstrained random walk where ½t=σ  (Sornette, 2000). 

As the process continues, more and more origins are discovered while during 

exploration, walkers ‘learn’ to direct their search at routes to origins already 

discovered. Those origins closest to destinations are discovered first and the hierarchy 

of ‘shortest routes’ is thus built up, continually reinforced by this positive feedback. 

This is the process implied by the first inner loop in Figure 2. The algorithm is a 

variant of that observed in trail formation and collective foraging behavior amongst 

animal populations such as ants (Helbing, Schweitzer, Keltsch, and Molnar, 1997; 

Camazine et al., 2001). The swarms created are extremely efficient in predicting 

shortest routes in geometrically constrained systems (Bonabeau, Dorigo, and  

Theraulaz, 1999). Here we do not let the pheromone trail z
jtτ  decay, while the 

accessibility surface jtη  gives the relative attraction of destinations to different street 

locations in terms of distance and its proxy as noise. The exploratory stage finishes 

when the differences in path densities ∑ −= +j
z
jt

z
jt

z τττ 1  and ∑ ∑ −= +z j
z
jt

z
jt τττ 1  

fall below various predetermined thresholds which we fix through experimentation. 

This marks the convergence of the swarm algorithm and the end of the first stage at 

time T. 

 

In the second stage, we launch the walkers from their entry points, and these walkers 

move towards the event using the surfaces z
jTτ  and jTη  as indicators of accessibility. 

These are aggregates from the entire time sequence. We suppress T, normalize these 

as z
jτ  and jη  and then combine them as αα ητ −1)( j

z
j . There are of course many ways 

in which we could do this and there is inevitably an element of double counting in 

their joint usage. We could even keep these as separate surfaces for each walker 
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group. However we use this parameterization as being one of the most straightforward 

ways in which different types of accessibility can be merged, the best combination of 

which will reflect the best fit of the model to the observed situation. The basic 

probability of movement for each walker type z is now defined as 
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i

z
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 ,     (5) 

 

where α  is a tunable parameter which plays a role similar to homogenous production 

functions of degree 1 such as the Cobb-Douglas, widely used in micro-economics for 

their scaling properties (Henderson and Quandt, 1980). We use (5) to select directions 

of movement from i to j where we use each probability zk
ijtq  in the neighborhood iΩ  

to determine the direction j in which the walker moves. This is done randomly with 

new headings in the direction j computed as zk
it 1+θ  and then used to update the existing 

heading as zzz k
it

k
it

k
it θλθλθ )1(ˆ

11 −+= ++  where λ  reflects a lag in response.  

 

There are two effects that complicate this movement. The first is herding or flocking 

(Reynolds, 1987; Vicsek, Czirok, Ben-Jacob, Cohen, and Shochet, 1995). This directs 

movement as an average of all movement in the immediate neighborhood reflected in 

the headings where ∑ ∑ ∑ ∑ ∑ ∑∈ Ω∈ ∈ Ω∈++ =
z jl j z jl j

l
jt

l
jt

l
jt

k
it

z i z i

zzzz WW11 θ̂θ . However a 

move by walker zk
itW  to zk

jtW 1+  only takes place if the density of walkers in cell j  is 

less than some threshold ∑ ∑ =≤Ψ
z k

k
jt

z

zW 2  based on the accepted standard of 2 

persons per meter squared (ppm2) (Fruin, 1971; Still, 2001). If this is exceeded, the 

walker evaluates the next best direction and if no movement is possible, remains 

stationary until the algorithm frees up space on subsequent iterations. These rules are 

ordered to ensure reasonable walking behavior. There are many variants that can be 

tried but those adopted seem to be plausible from ad hoc observation and from the 

literature. This, however, represents a major area for further research in pedestrian 

modeling in particular and agent modeling in general. 
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The paraders k
itP  move in a much more structured manner, around a parade loop 

defined by a linear sequence of cells }{i  forming the set Π∈i  which are ordered so 

that there is only one direction of movement from ][ ji →  in time ]1[ +→ tt . 

Headings and probabilities of movement do not have to be calculated for the paraders 

although movement is determined with some random input. Although the floats 

normally travel to adjacent cells in the given direction with the flow controlled to give 

reasonable moving behavior in time, this smoothness does incorporate a degree of 

intermittency. At any time t, the total number of paraders in each cell i, 

Π∈=∑ iPP
k

k
itit , , are distributed approximately uniformly amongst the total number 

of cells used for the parade (∑ Π∈i
1). A parader will progress to an adjacent cell in a 

time period according to a random function which ensures that most paraders make 

such transitions but a few do not and stay in the cell that they are currently in. For any 

parader k
itP , then if k

it
k
jt PP =Θ< +1then,)1(rand  otherwise k

it
k

it PP =+1 . If the threshold 

Θ  is set a little less than 1, then most paraders will move smoothly to the next cell. 

The parameter is set experimentally to introduce a level of intermittency in the flow of 

the parade that is observed in practice and which, for the most part, avoids major 

incidents. 

 

There are of course potential conflicts between paraders and walkers when they come 

into contact in the neighborhood which is immediately adjacent to each cell occupied 

by the parade. We define cells in these neighborhoods as P
ij Φ∈  where we compute 

the density of walkers in these cells. Note that walkers cannot occupy cells which 

define the parade route. Then if Λ≥∑ ∑ ∑Φ∈ P
i z

z

j z k
k
jtW , where Λ  is the critical 

density in cells adjacent to the parade, then walkers disperse in the same way that they 

do when they interact with each other and breach critical density limits. In fact we 

keep a trace ∑ ∑ ∑ ∑=′ Φ∈ ′=
t

t j z k
k
tj

P
i P

i z

zWtA
1

)(  which provides us with a record of 

potential accident hot spots along the parade. The same kind of logic is used in 

relation to crowding around the fixed sound systems where the bands are playing. In 

analogous fashion, we define cells in neighborhoods around each band i as B
ij Φ∈ , 
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an equivalent test for dispersion as Ξ≥∑ ∑ ∑Φ∈ B
i z

z

j z k
k
jtW , and the trace of potential 

accidents as ∑ ∑ ∑ ∑=′ Φ∈ ′=
t

t j z k
k
tj

B
i B

i z

zWtA
1

)( . This second stage is terminated when 

the density of walkers enters a steady state which means that the walkers are moving 

in the area of the Carnival and that movement between attractions is beginning to 

repeat itself. We can test for this using various criteria such as the statistics which we 

present below. A generic test however is based on the lagged density difference 

{ } { }1][
1 1 −′−−= ∑ ∑ ∑′

= −−−
′− tTWW

i

t

t k
k

tiT
k

tiT
tT

z
z

zzξ  defined for each type of walker z (or 

for all walkers) where the summation over time is from the point where the simulation 

enters the steady state t ′  to the point where the simulation ends T . This formula 

handles the case where periodicity is feature of the simulation. 

 

We can now assess how good the model is at predicting the observed distribution of 

crowds. We do not define any statistics for the individual groups z for two reasons. 

First, we do not have good data on these differences with respect to origins and 

destinations for we take this distribution from the observed locations around the 

various attractions over the Carnival period. As even those visitors whose prime 

concern is to visit either bands or the parade but not both, are likely to visit each of 

these, then our observations do not directly tie in with motivations. Thus we will only 

work with aggregate quantities. We compare the predicted density of all walker types 

itW  and average neighborhood density ∑ ∑ ∑ ∑∈ Ω∈ Ω∈
=

z jk j j j
k
jtit

z i i
SWW~  in cells 

where observed densities are available. We then relate these to the number of 

occupied cells Mn
i i =∑  (where 1=in  if 0>zk

itW , otherwise 0=in ) and the 

number of available cells ∑ =
i i SS , defining averages as ∑ ∑=

i i iit nWt ~)(ρ , 

∑ ∑=
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i i ii Snt)(ϑ . For different threshold values Ψ , if 

Ψ>itW , then itit Wc =Ψ)(  otherwise 0)( =Ψitc , and the proportion of the population 

at risk is thus McZ
i itt ∑ Ψ=Ψ )()( . Average distance traveled in each time period 
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These two stages define the complete model with subsequent stages being generated 

through reiteration of the entire sequence. These additional stages are activated if the 

statistics generated at the end of the second stage suggest that public safety is 

compromised. It consists of examining the statistics from the second stage, and 

gradually making changes to reduce the population at risk by introducing barriers, 

capacitating entry points, and closing streets. This is achieved by changing the 

number of street objects – switching street agents off or on that signal how much 

space for movement is available. The set of agents }{ jS  is updated to }{ jS ′ where the 

prime indicates that this is the next iteration in the sequence with the model beginning 

again and the original time t being indexed back at 1=t . As the repercussions of 

these changes are not immediately obvious, we make these changes one by one 

forming ...,,, jjj SSS ′′′′′′ , rerunning the model each time until an acceptable solution 

emerges. These reiterations assume that the shortest routes surface needs to be 

updated and this involves rerunning the entire two stage procedure shown in Figure 2.  

 

 

6 Dimensioning the Problem and Calibrating the Model 
 

The main feature of the Carnival is the parade which involves 89 floats and 64 support 

vehicles that continuously move around a closed loop of 4.9 kms from noon until dusk 

on each of the two days of the event. Within the loop, there are 42 static sound 

systems – bands – and across the entire area, some 240 licensed street stalls with well-

resourced health and comfort points for visitors and paraders alike. Most visitors to 

the event use public transport to reach the 38 entry points which define the zone 

within which traffic is excluded by the police, some 40% using the tube and 22% 

using buses. Many others walk from central London or neighboring areas and only a 

small number (< 10%) travel to the Carnival by car or taxi. The street system, and the 

entry, parade, static sound, and tube (subway) station locations, are shown in Figures 

3a and 3b respectively. 
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a The Street Geometry in Notting Hill 

 
b Entry, Tubes, Parade, and Bands 

 

Figure 3: Geometric and Locational Features of the Carnival 

 

The number of visitors grew dramatically in the 1990s reaching 1.2 million (over the 

two day period) in 1999 but dropping to something like 700,000 last year (2001). 

Informed speculation suggests that this is possibly due to the negative publicity 

associated with high levels of crime at the event which have dominated policing in 

recent years. Problems of crowding have become significant with accidents due to 

congestion rising dramatically and problems of emergency vehicle access being 

compounded by the conflict between the parade and visitors entering the inner core of 

the area to visit the sound systems. In 2001, there were 500 accidents (100 requiring 

hospital treatment with 30 percent related to wounding) and 430 crimes with 130 

arrests. Three fatalities occurred in 1999 from violent crime. This and the need to 

review resources allocated to manage the event – some 3500 police and stewards were 

required each day – was the trigger that led to the review that initiated this technical 

work (CRG, 2001).  

 

Attendance is more than twice as large on the second day with the peak level between 

4pm and 6pm when around 260,000 visitors are in the Carnival area. During the 

event, there is considerable movement between the various attractions and although 
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precise movements are not known, the rate of ‘churn’ which is ratio of  those entering 

and leaving the area to those within, is around 40 percent. In terms of the volume of 

movement from entry points to attractions, four streets located at E-W-N-S of the area 

account for over 50 percent. Crowd densities are high at about 0.25 persons per m2 of 

which 0.47 ppm2 line the parade route and 0.83 ppm2 lie inside. Critical densities up to 

1 ppm2 exist in the central section where many of the bands are clustered while 

around the judging point in the south west area of the parade, route densities rise to 

1.3 ppm2 which are critical. 

 

The data we have available was collected at the Carnival in 2001 specifically for this 

analysis but was limited by resources and technology. Essentially origin and 

destination data is available, the origins from a cordon count at all 38 entry points 

throughout the 2 day period, while destination data along the parade and at some static 

sound locations was derived from video footage taken from police helicopters during 

the late afternoon of the second day (IPS, 2002). From this footage, 1022 images have 

been extracted from which densities have been manually computed and averaged to 

cells as indicated in Figure 4. Additional data on entry and exit volumes at the subway 

station from surveys by London Underground Ltd., and bus volumes at setting down 

locations have been integrated into the density database. What we do not have are the 

paths that walkers take from entry points to attractions and the movements between 

the various attractions when visitors are within the Carnival area. Automatic ways of 

collecting such data are practically impossible for laser scanning is too expensive and 

CCTV is legally forbidden for this kind of monitoring. These constraints led us 

directly to the first stage of the simulation which is concerned with reconstructing 

such paths. 

 

To set up the simulation using this data, we need to decide on the level of resolution 

of the space within which the Carnival is to be modeled. This is largely dictated by 

software considerations in that the software used has upper limits on the number of 

agents and cells that can be handled. No more than 16,000 agents can be simulated on 

no more than 52,500 cells. Thus the area of the space was set as 207 x 251 pixels and 

13,000 agents were defined, divided into those whose intention is to visit the bands 

(3000), those visiting the parade (5000), and those visiting both (5000). This must be 
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interpreted as a 5 percent sample of the 260,000 visitors in the peak period that is 

being modeled and thus all quantities must be scaled and adjusted accordingly. This is 

less than satisfactory because we consider that a fully-fledged model should be able to 

handle not a sample but the full population of agents. This however would require 

considerable programming that was simply not possible within this project at this time 

but it remains is a longer term aim of this research. The cell structure is implied by the 

pixelation shown in Figure 3. Key locational features of the problem – entry points 

and Carnival destinations (parade and bands) shown in Figure 3b – represent the 

sources for the swarm algorithm which generates the paths in the first stage of the 

model and thus the starting (entry) points for the visitors in the second stage. 

 

 
Figure 4: Translating Video Footage of Walkers to Cell Densities 

 

Like all calibrations, the purpose is to define values for the parameters of the model 

(whose values are unknown at the outset of the simulation) so that the predictions of 

the model are as close as possible to the observed data. In terms of the model in 

equations (1) to (5), we have fixed several parameters relating to lags and crowding at 

what we consider reasonable values. This enables us to reduce the search problem to a 

phase space defined by only two parameters – the friction of distance β  and the 

accessibility weighting parameter α . The density thresholds for walkers with respect 
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to each other Ψ , to paraders Λ , and to bands Ξ  have all been set at 2 ppm2 as 

suggested in official advice (Fruin, 1971; ISP, 2002). In the second stage of the 

simulation once paths and accessibilities have been defined, the lag in updating the 

heading from the previous value is set at 4.0=λ  while the intermittency threshold for 

moving the elements in the parade forward is set at 9.0=Θ . The calibration thus 

consists in running the model through its two stages (together with any subsequent 

control) over samples of parameter values βα ,  until a combination is found which 

optimizes the model’s predictions based on the fit of observed to predicted densities. 

 

The simulation starts with the three types of walker z
DW 1  located at the Carnival event 

locations D, the ultimate destinations of the walkers. They begin their random walk 

through the streets in search of entry points where they will actually start their walk to 

the Carnival in the second stage. To illustrate the power of the swarm algorithm 

around which this walk is structured, we show the kinds of paths that are generated 

for walkers  (z = 2) starting from the sound systems )( 2
1DW  and finding the entry 

points but in the absence of any geometric constraints posed by the streets. In short, 

we set the streets jjS ∀= ,1 , and in this way the walkers find the entry points directly. 

They move out in concentric rings from the static sound locations, the symmetry of 

this concentricity being broken when entry points are first discovered. In Figures 5a 

and 5b, we show the location of the walkers at times 10=t  and 50=t . By 500=t , 

the pattern is dominated by the paths between sound systems and entry points as 

shown in Figure 5c, and this is confirmed by the straight line traces based on the 

densities 2
jTτ  reproduced in Figure 5d. All the results in this section are based on 

simulations with the best combination of βα ,  where 65.0=β , and 35.0=α . With 

the streets in place, the three shortest route hierarchies 3,2,1, =zz
jTτ  are shown in 

Figures 6a to 6c together with the overall accessibility surface jTη  in Figure 6d 

computed from equation (2). These show the hierarchy of routes which are then 

combined into a composite accessibility surface used to initiate the actual walks to the 

Carnival which is the basis of the second stage of the model. 
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a  Swarm at t=10 

 

 
b  Swarm at t=50 

 

 
c  Swarm at t=500 

 
d  Density of Shortest Paths  

 
Figure 5: Swarming in Search of Entry Points without any Street Geometry 

 

We will examine the various statistics associated with these simulations in more detail 

below after we have examined the second and subsequent stages of the simulation 

where safety levels determine how control is developed as part of the modeling 

process. Using the accessibility surface shown in Figure 6d, we locate all walkers at 

the points where they are observed to enter the Carnival area (at the entry points in 

Figure 3b) and we then launch these using the access surface to guide the directions 

that they walk. Flocking and congestion dispersal are an integral part of this second 
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stage simulation as are the interactions between walkers and paraders and walkers and 

the bands. We have not included emergency vehicles as separate agents for we 

consider the scale of the simulation and the fact that we are running this at a relatively 

crude level of cell resolution tends to make such interactions between walkers, 

paraders, bands, and emergency vehicles somewhat arbitrary. In fact, a clear problem 

in the Carnival is the fact that accidents which are caused by congestion can be further 

exacerbated by the difficulties of getting emergency vehicles to attend to injured 

walkers and paraders but explicit consideration of these effects must await the  

 

 
a  z=1 Agents Visiting Bands 

 

 
b  z=2 Agents Visiting Parade 

 

 
c  z=3 Agents Visiting Bands/Parade

 
d  Composite Accessibility Surface 

 
Figure 6: Hierarchies of Shortest Routes and Associated Accessibility 
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detailed model that we are currently constructing with more appropriate software. In 

Figure 7a, we show the composite access surface computed for just one of the walker 

types – those who visit the parade and the bands )3( =z  – as 65.035.03 )( ii ητ  where we 

use 35.0=α , the best values determined through running the entire model through 

different combinations of its parameter values within its phase space. We show the 

movement of all three walker types at 100=t  and then in the steady state at 

500=t in Figure 7b and 7c.  

 

 
a  Composite Access Surface z=3 

 

 
b  Agents Leaving the Entry Points 

 

 
c  Near the Steady State Distribution 

 

 
d  Congestion Hotspots 

 
Figure 7: The Second Stage of the Simulation 
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In the steady state, we have also computed the hotspot trace indices )(tAP
i , )(tAB

i  

defined earlier as well as those for walkers not in the parade or band 

locations ∑ ∑ ∑ ∑=′ Ω∈ ′=
t

t j z k
k
tj

W
i

i z

zWtA
1

)( . We have added these surfaces and 

smoothed them through diffusion as shown in Figure 7d which gives a good 

indication of the accident and crowding hotspots associated with the simulation at the 

end of its second stage. It is this kind of picture that is essential in determining where 

safety controls are to be introduced. In fact the simulation reveals that a mismatch 

between actual hot spots and those produced by the simulation. Congestion along the 

parade itself in the southwest corner is not as problematic as actually observed in 

2001 while there are more serious problems in the northern part of the route. The 

model does tend to give greater weight to the northern area and this is a systematic 

error that needs to be addressed in new versions of the simulation. 

 

At the end of the second stage, we assess safety levels. To illustrate how we proceed, 

we have introduced the various barriers that are associated with the actual Carnival in 

2001. The core area in the center of the parade route is reserved as an area for police 

and emergency management in case a serious disaster occurs and various other roads 

are closed for resident access and due to constrictions in streets unsuited to large 

crowds. The areas are shown in Figure 8a. All the previous kinds of visualizations are 

available for running the model with these barriers imposed but as these add little to 

the picture so far, we simply produce a summary of density levels which provide 

some idea how the crowding problems of the second stage are resolved. These are 

shown in smoothed surface in Figure 8b where it is clear that the north east leg of the 

parade is problematic in terms of crowding as is the center area of the Carnival where 

many static sound systems are clustered. In fact, the existing crowd control through 

barriers and street closures does go some way to reduce the crowding problems 

although it is probably best to consider the map of hot spots in Figure 8b as a 

diagnostic for future action rather than a definitive analysis of serious problem 

locations. A clearer analysis of safety must be focused on the actual densities which 

we will now examine using graphs of how density levels change through the various 

simulations. 
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a  Areas Closed to Pedestrians 

 

 
b  Crowding Intensity after Control 

 
Figure 8: Control of Crowds After the Second Stage Simulation 

 

 

7 Safety, Policy and Scenario Testing 
 

Before we examine safety issues and provide some sense of how the model is being 

used in evaluating different routes for the parade which reduce congestion, the 

performance of the existing model must be examined. At each stage of the simulation, 

we can compare existing densities of walkers in their steady state with observed 

densities at 120 locations which we have extracted as being significant from the 

density database. In the first stage however, the swarm algorithm predicts the numbers 

of walkers who ‘find’ each entry point, and from the cordon survey (ISP, 2002), we 

are able to account for 64% of this variance; that is, of the numbers observed entering 

the Carnival area during the peak period from 4pm to 6pm on the second day, the 

swarm algorithm predicts that the number of agents who find these points is correlated 

at 64% with the observed totals. The second stage which involves locating the 

observed walkers at these entry points and then enabling them to move to the Carnival 

attractions leads to 72% of the variance of observed densities in the 120 locations 

being explained. These predictions not only relate to the sound systems but to selected 

points on the parade route for which density data is available. At the third stage, when 

the model is rerun with the official street closures and barriers imposed, the variance 
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explained increases to 78%, but not all the points of extreme crowding have been 

removed, as we have already shown in Figure 8b.  

 

In terms of safety implications from these linked simulations, we graph the key 

indicators in Figure 9 for the entire system. These statistics are averages and totals and 

to understand their impact locally, reference to the densities and hotspots in Figures 6, 

7 and 8 must be made. Nevertheless, besides showing how the simulation works, the 

trajectories in Figure 9 give some sense in which densities change. There is a critical 

distinction between the densities and occupancies associated with the first and second 

stages of the model – between the swarm and climbing algorithms. The swarm 

algorithm begins with all walkers at destination attractions and as these spread out in 

the search for entry points, densities drop dramatically as illustrated in the upper and 

lower left hand graphs in Figure 9. As the algorithm converges on the most favored 

shortest routes between entry and attraction points – origins and destinations, the 

percent of the walkers who breach the critical thresholds of 0.5 and 1 ppm2, 

continuously increases. Although there is some sense of convergence to stable values, 

these percentages continue to rise as more and more walkers are attracted to the 

shortest routes. The percentage who occupy the streets is fairly stable as is the average 

distance traveled in each time period. In all cases, there is continual volatility in these 

trajectories as local geometric factors perturb the movement of walkers. Nowhere in 

models such as these is there a smooth flow of walkers, and this seems characteristic 

of what actually happens as walkers move between events at the Carnival itself. 

 

In contrast, the second stage of the model displays quite different behavior. Walkers 

this time move from their entry points by climbing the accessibility surface towards 

the attractions. Again walkers begin at very high densities which fall off as they 

spread out from their origins. These densities then rise slowly, peaking as walkers 

enter the Carnival area and move between attractions. The graphs of average point 

and neighborhood densities and critical threshold values converge to quite stable 

values which mark the steady state as the graphs on the right hand side of Figure 9 

show. What is of interest is that the average distance traveled slightly increases as 

walkers enter the steady state and the volatility of walkers gets greater as they crowd 

together around the Carnival attractions. A key issue of course is the difference 
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between the simulation without any controls on street closures and that which 

develops when routes are closed as indicated in Figure 8a. The results are encouraging 

in that it is clear that density levels at each point and in each neighborhood are 

reduced on average by around 12 percent with the percent vulnerable to crowding at 

0.5 ppm2 and 1 ppm2 reduced by about 14 percent. This must be attributed solely to 

the effect of closures and related controls. In short, this suggests that existing controls 

are effective although it also suggests that there is still considerable room for greater 

safety measures which would reduce the percent subject to such crowding to much 

lower levels. As Figure 9 shows, existing controls show that 20 percent breach the 

5.0)( >ΨtZ  and 8 percent the 1)( >ΨtZ  thresholds.   

 

For reasons of both space and confidentiality, we are not able to present the detailed 

results of using the model to assess the impact of alternative parade routes. However it 

is worth presenting some general comment on the way the model has been used. The 

process of developing six different alternative routes was based on a series of 

meetings organized by the Greater London Authority’s Carnival Review Group 

(CRG, 2001) and from this process, six somewhat different routes emerged for 

testing. These routes essentially broke the circularity of the existing route. The 

simplest was based on an L-shaped procession along the existing north-south route 

(Ladbroke Grove) and then west-east along the Bayswater Road (at the bottom of the 

map in Figure 3a) finishing in Hyde Park. The other five routes were variations either 

on this or on the existing route. The key issue in running the model however is in 

determining visitor volumes at entry points with the location of the sound systems 

unchanged. In fact a series of related models which we will not describe here, were 

built to predict these volumes based on linear regression of observed volumes against 

key route factors such as visibility, accessibility, and various distance measures to 

related facilities (ISP, 2002). Thus for any location in the area, it is possible to predict 

visitor volumes which when normalized to total visitor numbers, give the numbers 

entering the Carnival area associated with any new parade route.  

 

 

 



 36

  
First Stage Swarm Algorithm 

 

 
Second Stage Climbing Algorithm 
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Figure 9: Walker Densities and Safety Levels in the Two Stage Simulations 

 

There was considerable variation in average densities, occupancies and vulnerabilities 

associated with the six new routes although in every case there was improvement. In 

general, the new routes which were longer in distance traveled and simpler in 
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configuration spread the visitors over a wider area and this lowers the maximum and 

average densities of walkers. For example for the L-shaped route, the maximum 

density is 60% lower, the average neighborhood density is 45% lower and the average 

density is 36% lower than for the existing route. The interim solution adopted for the 

coming year (2002) which essentially breaks the loop by cutting the beginning from 

the end of the parade in the northern section, reduces crowding by 37%, 21% and 9% 

across these same measures and this is the least reduction of any of the six alternatives 

examined. These kinds of statistics form the basis of the evaluation of safety although 

there are many other measures from the model which are useful to the assessment. In 

future research, we will present these in more detail but for the moment, our concern 

is to outline the model and provide the rudiments of its use. 

 

 

8 Conclusions: Future Research 
 

Our current model is limited in its ability to simulate behavior across spatial scales 

and within different time periods due to software constraints on the number of agents 

handled and the level of resolution in terms of cell numbers. This means that we are 

unable to simulate a complete range of behaviors, which include panic situations 

where we need to represent the full agent population at very fine scales. As we move 

to full populations, we also require finer scales and finer time intervals which would 

enable us to represent speed and acceleration which are features of many pedestrian 

models (Helbing, 2001; Still, 2001). Only when we are able to represent all agents, 

would we be able to include behavioral protocols in the form of schedules governing 

movement and thus dispense with the rather crude way in which we model behavior 

as a response to various surfaces of accessibility. All these additions to the model 

require us to reprogram its structure in a more powerful language, thus enabling us to 

extend the number of agent types handled. This is work in progress. An important 

issue however is the need to develop software in which we can quickly visualize 

inputs and outputs from the model at different scales and through time. Some 

geographic information systems software can be extended in this way and we are 

already at work on using such software to handle visibility fields. It is unlikely 
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however that in our new model, there will be anything other than a loose coupling to 

such software. We do not envisage embedding more powerful dynamic models of 

small-scale spatial events into GIS in the same way that more static urban models 

have been developed within standard software (Batty and Xie, 1994). 

 

We also need much better data for such models. Path data is probably of lesser 

importance than attitudinal and related behavioral data that can only come through 

direct questionnaire. Our model depends on knowing the distribution of different 

types of agent and this in turn is reflected not only in their behaviors at the Carnival 

but also in various demographic and related characteristics. In short, following the law 

of requisite variety, we need to ensure that the richness of our models is matched by 

sufficiently rich data. This is clearly far from the case at present and although our 

concern for modeling small-scale events is being driven by new data sources as well 

as new methodologies, much better data sources are still required. This implies the 

expenditure of greater resources, notwithstanding the physical and ethical difficulties 

in actually obtaining the data that is required. To improve our models beyond what we 

have done here and in related work (Haklay, Thurstain-Goodwin, O’Sullivan and 

Schelhorn, 2001), data issues must be addressed. 

 

Finally the model structure developed here provides a rather different perspective on 

the nature of control, design and planning. In many small-scale spatial event situations 

such as the movement of people into and out of high capacity building and vehicles, 

there are already major controls on what is possible, established by various legislative 

and local mandates. These must be built into the models directly and if they are to be 

altered in any way, then the experts and stakeholders who know most about these 

situations and what is possible must be intimately involved. This in turn requires the 

models to be accessible in a way that is not usually the case. This implies 

visualization but it also requires some form of translation into a context in which non-

quantitative experts can interact with the process. In a sense, this is what has been 

attempted in participation within urban planning over the last 50 years or more but it 

is more than this. We need to establish environments in which a variety of 

stakeholders can be involved in the science and can provide essential inputs not only 

in the interpretation of results from the models but also the design of the models 
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themselves. This presents a new frontier for geographic information science which the 

models developed here are just beginning to address. 

 

 

9 References 
 
BAER, A. E., 1974, A Simulation Model of Multidirectional Pedestrian Movement 
Within Physically Bounded Environments. Institute of Physical Planning, Report 47 
(Pittsburgh, PA: Carnegie-Mellon University). 
 
BATTY, M., 2001, Polynucleated urban landscapes. Urban Studies, 38, 635-655. 
 
BATTY, M., and XIE, Y., 1994, Modeling inside GIS: Part 2: Selecting and 
calibrating urban models using ARC-INFO, International Journal of Geographical 
Information Systems, 8, 451-470. 
 
BATTY, M., DODGE, M., JIANG, B., and SMITH, A., 1999, Geographical 
information systems and urban design. In Geographical Information and Planning, 
edited by J. Stillwell, S. Geertman, and S. Openshaw (Heidelberg, Germany: 
Springer), pp. 43-65. 
 
BLUE, V. J. and ADLER, J. L., 2001, Cellular automata microsimulation for 
modeling bi-directional pedestrian walkways. Transportation Research B, 35, 292-
312.  
 
BONABEAU, E., DORIGO, M., and THERAULAZ, G., 1999, Swarm Intelligence: 
From Natural to Artificial Systems (New York: Oxford University Press). 
 
BORGERS, A. and TIMMERMANS, H. A., 1986, A model of pedestrian route 
choice and demand for retail facilities within inner-city shopping areas. Geographical 
Analysis, 18, 115-128. 
 
BOX, P., 2001, Spatial units as agents: making the landscape an equal player in agent-
based simulations. In Integrating Geographic Information Systems and Agent-based 
Modeling Techniques, edited by H. Randy Gimblett (New York: Oxford University 
Press), pp. 59-82. 
 
BURSTEDDE, C., KLAUCK, K., SCHADSCHNEIDER, A., and ZITTARZ, J., 
2001, Simulation of pedestrian dynamics using a two-dimensional cellular automaton. 
Physica A, 295, 507-525. 
 
CAMAZINE, S., DENEUBOURG, J-L., FRANKS, N. R., SNEYD, J., 
THERAULAZ, G. and BONABEAU, E., 2001, Self-Organization in Biological 
Systems (Princeton, NJ: Princeton University Press). 
 
 



 40

CANETTI, E., 1962, Crowds and Power (London: Victor Gollancz). 
 
CRG, 2001, Interim Report and Public Safety Profile Recommendations for 2001, 
(London: Carnival Review Group. Greater London Authority), available at 
http://www.london.gov.uk/mayor/carnival/interim_report/interim_review_report.pdf 
 
DIJKSTRA, J., JESSURUN, J., and TIMMERMANS, H. J. P., 2002, A multi-agent 
cellular automata model of pedestrian movement. In Pedestrian and Evacuation 
Dynamics, edited by M. Schreckenberg and S. D. Sharma (Berlin: Springer-Verlag), 
pp. 173-180. 
 
FRUIN, J. J., 1971, Pedestrian Planning and Design (New York: Metropolitan 
Association of Urban Designers and Environmental Planners, Inc.). 
 
HAKLAY, M. THURSTAIN-GOODWIN, M. O’SULLIVAN, D. and SCHELHORN, 
T., 2001, “So go downtown”: simulating pedestrian movement in town centers. 
Environment and Planning B, 28, 343-359. 
 
HELBING, D., 1991, A mathematical model for the behavior of pedestrians. 
Behavioral Science, 36, 298-310. 
 
HELBING, D., 2001, Traffic and related self-driven many-particle systems. Reviews 
of Modern Physics, 73, 1067-1141. 
 
HELBING, D., FARKAS, I. J., MOLNAR, P., and VICSEK, T., 2001, Simulation of 
pedestrian crowds in normal and evacuation situations, In Pedestrian and Evacuation 
Dynamics, edited by M. Schreckenberg and S. D. Sharma (Berlin: Springer-Verlag), 
pp. 21-58. 
 
HELBING, D., FARKAS, I., and VICSEK, T., 2000, Simulating dynamical features 
of escape panic. Nature, 407, 487-490.  
 
HELBING, D., MOLNAR, P., FARKAS, I. J., and BOLAY, K., 2001, Self-
Organizing Pedestrian Movement,  Environment and Planning B, 28, 361-383. 
 
HELBING, D., SCHWEITZER, F., KELTSCH, J., and MOLNAR, P., 1997, Active 
walker model for the formation of animal and trail systems. Physical Review E, 56, 
2527-2539. 
 
HENDERSON, J. M., and QUANDT, R. E., 1980, Microeconomic Theory: A 
Mathematical Approach, 3rd Edition (Tokyo: McGraw Hill).  
 
HENDERSON, L. F., 1971, The statistics of crowd fluids. Nature, 229, 381-383. 
 
HOOGENDOORN, S. P., BOVY, P. H. L., and DAAMEN, W., 2001, Microscopic 
pedestrian wayfinding and dynamics modeling. In Pedestrian and Evacuation 
Dynamics, edited by M. Schreckenberg and S. D. Sharma (Berlin: Springer-Verlag), 
pp. 123-154.  
 



 41

IPS, 2002, Carnival Public Safety Project – Assessment of Route Design for the 
Notting Hill Carnival (London: Intelligent Space Partnership, Greater London 
Authority). 
 
JOHNSON, S., 2001, Emergence: The Connected Lives of Ants, Brains, Cities, and 
Software (New York: Scribner). 
 
KENNEDY, J., EBERHART, R. C., and SHUI, Y., 2001, Swarm Intelligence (San 
Francisco, CA: Morgan Kaufmann Publishers) 
 
LOVAS, G. G., 1994, Modeling and simulation of pedestrian flow traffic. 
Transportation Research B, 28B, 429-443. 
 
MARCH, L, and STEADMAN, P., 1971, The Geometry of Environment :  An 
Introduction to Spatial Organization in Design (London: RIBA Publications). 
 
NAGEL, K. and SCHRECKENBERG, M., 1992, A cellular automaton model for 
freeway traffic. Journal of Physique France, I2, 2221-2228. 
 
PUSHKAREV, B. S., and ZUPAN, J. M., 1975, Urban Space for Pedestrians 
(Cambridge, MA: MIT Press). 
 
RANNELLS, J., 1956, The Core of The City:  A Pilot Study of Changing Land Uses 
in Central Business Districts (New York: Columbia University Press). 
 
REYNOLDS, C. W., 1987, Flocks, herds, and schools: a distributed behavioral 
model. Computer Graphics, 21, 25-34. 
 
SCHWEITZER, F., 1997, Active Brownian particles: artificial agents in physics. In 
Stochastic Dynamics, edited by L. Schimansky-Geier, and T. Poschel, Lecture Notes 
in Physics, Vol. 484 (Berlin: Springer), pp. 358-371. 
 
SCHWEITZER, F., 1998, Modeling migration and economic agglomeration with 
active Brownian particles. Advances in Complex Systems, 1, 11-37. 
 
SORNETTE, D., 2000, Critical Phenomena in Natural Sciences: Chaos, Fractals, 
Selforganization and Disorder (Berlin: Springer-Verlag). 
 
STILL, G. K., 2001, Crowd Dynamics (PhD Thesis, Warwick, UK: University of 
Warwick), available at http://www.crowddynamics.com/ 
 
VICSEK, T., CZIROK, A. BEN-JACOB, E., COHEN, I., and SHOCHET, O., 1995, 
Novel type of phase transition in a systems of self-driven particles, Physical Review 
Letters, 75, 1226-1229.  
 

 




