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Classification methods for spatial data representation 

 

Toshihiro OSARAGI 

 

Abstract:  It is necessary to classify numerical values of spatial data when 

representing them on a map and visually understanding it.  In consequence, loss of 

information from original data is inevitable in the process of this classification.  A 

gate loss of information might lead to a misunderstanding of the nature of original 

data.  In this study, a classification method of spatial data is proposed, in which the 

loss of information is minimized.  Comparing our method with other existing 

classification methods, some new findings are shown. 

 

Keywords: spatial data, visualization, classification, information loss, AIC (Akaike’s 

Information Criterion) 

 

1. Introduction 

 

Our natural interpretation capabilities, originally endowed to human being, are excellent.  

Thematic maps are therefore very effective to understand spatial distribution of geographical 

features, since we can use our natural interpretation capabilities to understand colors, patterns, and 

spatial relevance.  This fact simultaneously suggests the importance of expression methods, i.e., 

how to represent spatial data on a map.  That is, according to how creation of the thematic map on 

a geographic information system is carried out, the characteristics of the original data might be 

overlooked, or there might be a risk of mistaking judgment about the characteristic which original 

data has. 

 

The error problem in geographical information systems was briefly summarized by Goodchild et al. 

(1992).  In order to estimate the uncertainty of a product, we have to discuss not only the 

uncertainty existing in the database, but also the propagation of uncertainty through the operations 

performed on the data by the systems.  Focusing on the so-called ‘area class map’, an error model 

for categorical data was proposed (Goodchild et al. 1992).  In the visualization process of the 

bi-dimensional spatial data defined quantitatively, it is necessary to classify the data (i.e., places) 

into several class-divisions.  Namely, the places that have values in a certain range are classified 

into the same class and represented using the same display-colour.  The aim of this paper is to 

discuss the uncertainty performed in the process of classifying numerical data. 
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Generally, if we employ a number of classes, the distribution-characteristic of original data can be 

expressed faithfully.  However, if there are too many classes, its legends will become complicated 

and the map will be difficult to understand; we cannot distinguish delicate color differences.  On 

the other hand, when we only have a few classes, the information such as small vibrating factors or 

local peaks might be ignored; namely, much information of original data will be lost.  Hence, a 

classification problem has to be discussed from the following viewpoint. 

(1) How many classes are necessary to represent the spatial data? 

 

Automatic classification methods are being incorporated in existing geographic information 

systems.  However, the characteristics of the original data might be overlooked, or there might be 

a risk of mistaking judgment, if we do not have enough knowledge about the classification method 

as well as the distribution characteristics of the original data.  Even if we are using the same 

number of classes and the same spatial data, we might obtain the quite different maps.  A typical 

example is shown in figure 6.  Hence, the following viewpoint is also important for a 

classification problem. 

(2) How the boundary value between each class should be set? 

 

It is true that the classification method to be used depends on the nature of data, and what we want 

to show about the data.  However, more flexible, simple and easy methods are necessary for the 

non-expert end-users of GIS.  In this research, we discuss this primitive and fundamental problem.  

Hence, the existing classification methods are examined from the viewpoint of information 

statistics, and we attempt to propose a new classification method for the visualization of spatial 

data. 

 

As for the former question (1), Umesh (1988) developed an algorithm for achieving efficient 

classification of data with no a-priori information available about the number of groups.  From 

this a performance index was defined so that minimizing it results in appropriate clustering of the 

given data. 

 

As for the latter question (2), various methods have been considered and already built in existing 

geographical information systems.  For instance, we have options called Natural-Breaks, Quantile, 

Equal-Area, Equal-Interval, Standard-Deviation in a popular GIS software, Arc View.  According 

to the Natural-Brakes, the so-called “Jenks’ optimization method” is employed and realized (Jenks, 

1967).  This is the method of determining boundary value so that the average of a squared 

deviation in each class will be minimized.  The capabilities of each method will be shown through 
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application to actual spatial data in section 4. 

 

Considering the above two fundamental questions, one study that consideres about the cell-size of 

raster data should be cited.  Tamagawa (1987) has analyzed point sampling data by changing the 

observed spatial-range variously, and proposed a method based on AIC (An Information Criterion) 

by Akaike (1972 and 1974) to obtain the optimum cell-size.  The AIC is a synthetic-measurement 

considering “model’s fitness” and “model’s simplicity”.  This idea is employed to our 

classification problem. 

 

In this study, the classification method using the evaluation function based on AIC is examined first, 

and is applied to actual spatial data.  Next, based on the consideration about its result, a new 

classification method based on the minimization of information loss will be proposed.  

Furthermore, verification of this method is achieved through the examination comparing it with the 

existing classification methods. 

 

 

2. Classification Method based on AIC 

 

2.1 Formulation of Classification Method 

 

2.1.1 Discrete variables 

Firstly, the spatial data such as point sampling data is discussed.  Namely, we focus on the spatial 

data obtained by counting an attribute value within a certain spatial unit. 

 

First, we denote the variable xi (i= 1, 2, .., n) as an observed value within a certain spatial unit.  It 

is assumed that its value is obtained by distributing the total number of observation within the 

whole objective-space, denoted by )( 1∑ == n
i ixX , into n space units.  That is, the multinomial 

probability distribution is assumed here.  Next, if the objects are distributed into some spatial 

units according to the same distributing probability qk (k= 1, 2, .., m), these spatial units should be 

classified into the same class, denoted by Gk.  Therefore, under the condition that the values xi (i= 

1, 2, .., n) are observed, the logarithm of Maximum Likelihood Estimates can be written as follows: 

∑∑
= ∈

+=
m

k Gki
kik qxCqL

1
log)(ln ,     (1) 

where C is a constant value.  Distribution probability qk has a constraint of 1
1

=∑ =

m

k kk qN , 
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where Nk is the number of spatial units in a class of Gk.  The Maximum Likelihood Estimates of 

qk can be estimated, by using the Lagrange's method of undetermined multiplier considering the 

constraint of qk, as follows: 

k

Gki
i

k
NX

x
q

∑
∈=ˆ ,       (2) 

 

The number of free parameters qk of this model is m-1.  Then, the value of AIC is given by the 

following equation (Akaike 1972 and 1974), when we classify the original data into m classes: 

 

 AIC = -2 [Maximum Likelihood] + 2 [the number of free parameters] 

)1(2ˆlog2
1

−+−= ∑∑
= ∈

mqx k

m

k Gi
i

k

,     (3) 

where the constant term is omitted. 

 

2.1.2 Continuous variables 

Spatial data composed of continuous variables can be discussed in the same way.  First, the 

observation value at each place i (i= 1, 2, .., n) is denoted as xi.  Next, the parameter common to 

all observation value is denoted as 0θ , and a parameter peculiar to a observation value is 

expressed by kθ ,,,2,1( mk ⋅⋅⋅= )0
1

=∑ =

m

k kθ . 

 

The number of places which have the same parameter kθ  is denoted as Nk )(
1

nNm

k k =∑ =
, and 

it is assumed that these places are contained in the same class Gk.  That is, the observation value 

included in class Gk is assumed to follow the normal distribution ( kθθ +0 , 2σ ).  Then, the 

logarithm likelihood of observed data can be written as follows: 

 

[ ]
2

1

2
0

0 2
ln2ln

2
},{ln

σ

θθ
σπθθ

∑∑
= ∈

−−
−−−=

m

k Gki
ki

k

x
nnCL ,     (4) 

 

where, C is a constant. 

 

Next, the maximum likelihood estimator which makes equation (4) the maximum can be estimated 
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as follows, if the undetermined multiplier method of Lagrange is used considering the constraint 

conditions about 0θ  and kθ : 

 

n

NX
m

k
kk∑

=

−
= 1

0
ˆ

θ
θ

,      (5) 

0
ˆˆ θθ −=

∑
∈

k

Gki
i

k N

x

,       (6) 

∑∑
∑

= ∈

∈
















−=

m

k Gki k

Gki
i

i N

x
x

n 1

2

2 1σ̂

.     (7) 

 

Since there is constraint condition about kθ , the number of free parameters of a model is (m+1) in 

all.  That is, the value of AIC when classifying the data into n classes is given by the following 

formula, where the constant term is omitted: 

 

)1(2ˆlnAIC 2 ++= mn σ .      (8) 

 

 

2.2 Method of boundary setting for classification  

 

We can evaluate each model by comparing values of AIC, which is a synthetic-measurement 

considering “model’s fitness” and “model’s simplicity”.  This is the principal difference between 

the method we propose and the method proposed by Umesh (1988).  Hence, the optimum 

classification under the condition of the data currently observed can be achieved by minimizing the 

value of AIC given in the equation (3).  Namely, optimum classification can be achieved by the 

following two steps: 

 (i) Fix the number of classes m, and search the boundary value of optimum classification, which 

minimize the value of AIC.  

 (ii) Repeat the above process by changing the number of classes m one by one, and search the 

number of classes m that gives the minimal value of AIC.   

Although the step (ii) seems to be simple and easy, the step (i) is not so clear.  In the following, 

we discuss in detail how we can achieve the step (i). 
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The problem of setting the boundary values of classification will become equivalent to the problem 

of setting the ranks of boundary values, if the data is sorted in the order of its attribute values (see 

figure 1).  The rank of boundary value is hereafter called "boundary-rank", and a possible 

procedure of setting the boundary-rank is shown in figure 2.  In the following discussion, we 

consider the condition that the number of class m is fixed for simplicity.  The procedure given by 

figure 2 is described as the following four processes: 

(1) Make a group of the spatial units, if their values show a tie. 

(2) Set up the initial boundary-rank of (m-1) classes, and consider them as initial values. 

(3) Calculate a value of AIC by moving a boundary-rank up or down, and set the boundary-rank so 

that the value of AIC becomes minimum. 

(4) Repeat the above operation until the value of AIC does not decrease. 
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Figure 1: Basic concept of data classification 
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Figure 2:  Algorithm for minimizing the value of AIC 

 

The above method can correspond flexibly in such a case.  For instance, it can be achieved by 

setting the original data into a round number at the end, in advance of the process (1), to obtain the 

boundary value with a round number at the end.  However, this procedure might lead us to a risk 

that the value of AIC is a local minimum. Therefore, it is more desirable to introduce the 

probabilistic method in spite of the above deterministic method, in the process (3) setting of 

boundary-rank.  Namely, set the boundary-rank according to the size of probability calculated 

from the value of AIC.  The technique called "annealing" of the Neural Network Theory can be 

utilized here (see figure 3). 
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Figure 3: Comparison of deterministic method and stochastic method  

in the minimization process of AIC 

 

According to our experiments using actual data, we can obtain quasi-optimum boundary-rank that 

gives almost the minimum value of AIC, if the process of minimization is performed several times 

by changing the initial boundary-rank.  The above method (the deterministic method) does not 

produce any major practically problem, from the author’s experience. 

 

2.3 Application to Actual Data 

 

The above method is first applied to the raster data, Digital Mesh Statistic compiled by Statistic 

Bureau & Statistic Center of Japan, and the result is shown in figure 4-a.  The data source is 

"agriculture/forestry/fishery worker households, 1989 Population Census".  The cell-size is about 

1 km by 1 km, and the number of cells is 100.  Figure 4-a shows us that the value of AIC is 

minimum when the number of classes is seven.  Hence, we can say that optimum classification 

has been achieved from a statistical viewpoint. 

 

Next, this method is applied to the same kind of raster data as "the number of companies, 1994 

Establishment and Enterprise Census".  The cell-size is about 500 m by 500 m, and the number 

of cells is 3,220.  The result is shown in figure 4-b.  Since many samples are observed in this 

case, the likelihood of model (equation 3) becomes more dominant than the model’s degree of 

freedom.  Therefore, the optimum number of classes tends to become very large.  Even if we 

classify the data into too many classes and represent it, the small degree of color-difference in a 

map cannot be distinguishable, and the legends may be complicated.  It is also difficult to give 

significant meaning to the optimum number of classes, since we cannot find any big difference in 
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the values of AIC.  Furthermore, much time is required to calculate an optimum solution when 

many classes are considered.  Therefore, we cannot call it a realistic classification method. 

 

Considering the above discussion, it may be more realistic to examine only step (ii) described in 

section 2.2, that is, to examine how we should set up the suitable boundary-rank by fixing the 

number of classes.  As for step (i), GIS users should set up a-priori the number of classes to be 

employed according to their demands. 
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Figure 4: Shapes of data distribution and behavior of the vale of AIC in minimization process 

 

 

3. Classification Method based on Minimization of Information Loss 

 

When the different attribute values are classified into the same class, a part of the inherent 

information contained in original data must be lost.  A classification method which keeps the loss 

of inherent information as low as possible can be considered an effective method in a sense of 

lessening the error of judgment.  Roy et al. (1982) have presented a criterion to indicate a strategy 

for cumulatively combining corresponding discrete rows and columns of a square array to form an 

array of reduced size so that the loss of information thereby incurred is minimized.  We employ 
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their strategy to our classification problem.  In the following, we define the information loss 

caused by classification first. 

 

We define the averaged information, denoted by I0, for spatial data obtained by counting an 

attribute value within a certain spatial unit as follows: 

∑=
i

ii ppI log0 ,       (9) 

where 
X
xp i

i = .  This equation shows the amount of information when any classification is not 

carried out.  That is, equation (9) gives the total information contained in original data, when each 

value is classified into individual n classes.  On the other hand, the averaged information, denoted 

by I, can be described as follows, when the data is classified into m classes. 

∑∑
= ∈

=
m

k Gki
kk qqI

1
log  ,      (10) 

where kq̂  is given by )( k
Gki

i NXx∑
∈

.   

 

The above-mentioned concept about the averaged information of discrete attribute variables can be 

naturally extended to the case of continuous variables.  Denote x as the random variable of 

continuous data sources, and p(x) as its density function.  The averaged information I0 of 

continuation sources of information can be defined as follows (Minami, 1995). 

 

∫
∞

∞−
−= dxxpxpI )(log)( 20        (11) 

 

However, actual spatial data are not necessarily obtained in a continuous form, but only the values 

aggregated in a certain space range are acquired in many cases.  Then, in actual calculation, it is 

considered as follows. 

 

First, the aggregated value in a certain space range ix∆  can be expressed by ii xxp ∆)(  (i= 1, 

2, ..., n).  The averaged information I0 can be defined by the following equation, since the 

integration range of equation (11) is equivalent to the whole space. 

 

∑
=

∆∆−=
n

i
iiii xxpxxpI

1
20 )(log)(        (12) 
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Here, the value of ii xxp ∆)(  is given by ∑
=

n

k
ki xx

1
. 

 

Consider the case that the whole space is classified into m class divisions.  The averaged 

information I of this case can be defined by the following equation: 

 

∑∑
= ∈

∆∆−=
n

i Gki
ikik xxqxxqI

1
2 )(log)(      (13) 

 

The following statistical value calculated using equations (9), (10) or equations (12), (13), is 

defined as "the ratio of information loss", denoted by L, as follows: 

100
0

0 ×−=
I

IIL (%).       (14)  

 

If the value estimated by equation (14) is small enough, we can accept this classification from the 

viewpoint of information loss.  Comparing equation (3) with equation (10) or (13), it turns out 

that the evaluation measurement of equation (14) is equivalent to the definition of AIC in the case 

where the number of model’s parameters is not taken into consideration.   

 

The value of AIC is, basically, the relative index used in order to judge the superiority or inferiority 

of models.  Hence, there is no absolute meaning in the value of AIC itself.  On the other hand, 

the ratio L of information loss in equation (14) is an index showing how much information of 

original data is lost.  Therefore, this index L can help us as a reference, when we understand a 

map drawn using the classified data. 

 

The classification method based on minimization of information loss can be achieved using the 

equation (14) as an evaluation index.  Namely, the optimum classification should be performed 

according to the procedures described at "2.2 Method of boundary setting for classification ". 

 

 

4. Comparison of Classification Methods 

 

The above method will be verified through some comparisons with existing classification methods.  

Before the examinations, the features and capability of existing methods are reviewed briefly.  

The Natural Breaks classification method identifies breakpoints by looking for groups and patterns 

inherent in the data.  One of the most popular GIS software programs, Arc View, employs Jenks’ 
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optimization in this method, which minimizes the variation within each class (Jenks 1967).  The 

features of the data are divided into classes whose boundaries are set where there are relatively big 

jumps in the values.  As for the Quantile method, each class is assigned the same number of 

features.  This may be misleading because low values are often included in the same class as high 

values.  However, it is the best suited for the data that is linearly distributed, namely, data that 

does not have disproportionate numbers of features with similar values.  In addition, it is suitable 

when we want to emphasize the relative position of a feature among other features.  The Equal 

Area method classifies polygon features so that the total area of polygons in each class is 

approximately the same.  The Equal Interval method divides the range of attribute values into 

equal sized sub-range.  It is useful when we want to emphasize the amount of an attribute value 

relative to the other values, and ideal for data whose range is already familiar, such as percentage or 

temperature.  Finally, the Standard Deviation method, it shows us the extent to which an 

attribute’s values diverge from the mean of all the values (ESRI, 1996). 

 

In order to investigate the characteristics of existing classification methods and our method, we 

have attempted to apply each method to the variety types of actual spatial data, i.e., seven different 

sets of data from Digital Mesh Statistic compiled by Statistic Bureau & Statistic Center of Japan.  

Each data is classified into nine classes using five existing classification methods mentioned above 

and our method based on the minimization of information loss.  The ratio L of information loss by 

each method is shown in Table 1.  Hatches are attached to the smallest or second smallest results 

among the existing classification methods.  In order to grasp the characteristics of original data, 

the data is sorted from the largest to the smallest by the size of the attribute values, and the shape of 

its distribution is shown in figure 5.  The ratio L of each classification method is also shown in 

figure 5 correspondingly.  Furthermore, examples of spatial data representation are shown in 

figure 6 with the values of the ratio L. 

 

 

 

 

 

 

 

 

 

 

 



   
 

 15

 

Table 1: The ratio L of Information-loss: comparison of existing classification methods and a 

method based on minimization of information-loss 

 

Quantile         Equal            Equal    Standard    Natural    Minimized 
Area      Interval   Deviation   Breaks    Information-loss

the smallest Information-loss

the second smallest Information-loss

Upper  Normal classification
Lower      * Round down the first figure / ** Round down the second figure

0.986 0.986 2.615 0.520 0.356 0.210

3.080 3.080 6.323 1.899 0.583 0.332

0.759 0.759 3.100 0.513 0.373 0.219

1.376 1.376 5.461 1.407 0.553 0.280

1.052 1.052 3.282 5.851 1.134 0.837

0.639 0.639 1.233 1.360 0.932 0.562

Industry

Company

Factory

Private Shop
( 10-1)

Shops

Population
(Tokyo 10-1)

Population (Yoko-
hama 10-1)

Classification 
Methods

Spatial Data

1.3231.323 5.427 0.915 0.589 0.283

2.9452.945 6.322 1.866 0.3350.584

0.9750.975 2.653 0.505 0.349 0.215

*

**

*

*

*

*

*

1.315 2.393 0.515 0.497 0.2421.315

0.792 0.792 3.105 0.507 0.390 0.224

1.058 3.241 5.875 1.129 0.8401.058

0.645 0.645 1.275 1.415 0.922 0.563

1.194 1.194 2.353 0.708 0.465 0.209

Quantile         Equal            Equal    Standard    Natural    Minimized 
Area      Interval   Deviation   Breaks    Information-loss

the smallest Information-loss

the second smallest Information-loss

Upper  Normal classification
Lower      * Round down the first figure / ** Round down the second figure

0.986 0.986 2.615 0.520 0.356 0.210

3.080 3.080 6.323 1.899 0.583 0.332

0.759 0.759 3.100 0.513 0.373 0.2190.759 0.759 3.100 0.513 0.373 0.219

1.376 1.376 5.461 1.407 0.553 0.280

1.052 1.052 3.282 5.851 1.134 0.8371.052 1.052 3.282 5.851 1.134 0.837

0.639 0.639 1.233 1.360 0.932 0.5620.639 0.639 1.233 1.360 0.932 0.562

Industry

Company

Factory

Private Shop
( 10-1)

Shops

Population
(Tokyo 10-1)

Population (Yoko-
hama 10-1)

Classification 
Methods

Spatial Data

1.3231.323 5.427 0.915 0.589 0.283

2.9452.945 6.322 1.866 0.3350.584

0.9750.975 2.653 0.505 0.349 0.215

*

**

*

*

*

*

*

1.315 2.393 0.515 0.497 0.2421.3151.315 2.393 0.515 0.497 0.2421.315

0.792 0.792 3.105 0.507 0.390 0.2240.792 0.792 3.105 0.507 0.390 0.224

1.058 3.241 5.875 1.129 0.8401.0581.058 3.241 5.875 1.129 0.8401.058

0.645 0.645 1.275 1.415 0.922 0.5630.645 0.645 1.275 1.415 0.922 0.563

1.194 1.194 2.353 0.708 0.465 0.2091.194 1.194 2.353 0.708 0.465 0.209
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Figure 5: Shapes of data distribution and ration of information-loss 
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Figure 6: Visualization of spatial data by existing classification methods and minimization method 

of information-loss: the number of classes is 9, the number of cells is 3,220 
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Table 1 and figure 5 show us that the ratio L of information loss deeply depends on the feature of 

original data.  For example, the Natural-Breaks classification method is effective for the data that 

has clear breakpoints such as the data "the number of companies".  The Natural-Breaks can be 

acceptable to the variety types of data, since its information loss is comparatively smaller than that 

of the other methods.  However, it should be noted that the Natural-Breaks is unsuitable for the 

data such as "Yokohama population" which has an unclear breakpoint.  As for the 

Standard-Deviation classification method, it appears out that there can be a risk of being 

accompanied by a large amount of information loss.  Furthermore, although it is easy to 

understand the legends in the Regular-Intervals method, due to the regular intervals in the range of 

boundary values, it must be recognized that there is a tendency to lose large amounts of information.  

Moreover, the Quantile method can be excellent for data that shows linear distribution, such as the 

data "Tokyo population", since its information loss is suppressed.  However, in the case of data 

such as "the number of factories", the Quantile shows quite large information loss. 

 

Considering the above discussion, it is necessary to examine the distribution characteristics of 

spatial data, in order to determine which classification method should be employed.  If this 

process is neglected, we might have a risk of overlooking the nature of the original data.  

However, according to the classification method based on the minimization of information loss, we 

can correspond with flexibility in regards to any spatial data. 

 

 

5.Summary and conclusions 

 

The classification method based on AIC is proposed in order to grasp the nature of spatial data from 

the viewpoint of statistical meaning.  However, this method is not effective for data with a large 

number of observations.  Then, we proposed another classification method based on the 

minimization of information loss.  This method is examined through the application to actual 

spatial data and comparing it with the existing classification methods.  The results of numerical 

analysis show the flexibility and validity of the proposed method.  However, further 

considerations regarding the efficient algorithm for minimizing information loss should be 

discussed. 
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