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Abstra ct

Two agents h av e to ch oose one of th ree alternativ es. Th eir ordinal rankings

of th ese alternativ es are commonly known among th em. Th e rankings are di-

ametrically op p osed to each oth er. Ex-ante efficiency requ ires th at th ey reach

a comp romise, th at is ch oose th e alternativ e wh ich th ey both rank second,

if and only if th e su m of th eir v on Neu mann Morgenstern u tilities from th is

alternativ e exceeds th e su m of u tilities wh en eith er agent’s most p referred al-

ternativ e is ch osen. W e assu me th at th e v on Neu mann Morgenstern u tilities

of th e middle ranked alternativ e are indep endent and identically distribu ted,

p riv ately observ ed random variables, and ask wh eth er th ere are incentiv e

comp atible decision ru les wh ich elicit u tilities and imp lement efficient deci-

sions. W e sh ow th at no su ch decision ru les exist if th e distribu tion of agents’

typ es h as a density with fu ll su p p ort. W e also stu dy th e p roblem of fi nding

second-best decision ru les in ou r set-u p , and exp lain h ow th is p roblem differs

from more familiar second-best p roblems. Finally, we giv e some nu merical

insigh ts into th e natu re of second-best ru les. For a v ariety of distribu tions of

typ es, second-best ru les inv olv e v ery little inefficiency.



1. Introduction

You and your partner disagree about which restaurant to go to. You

prefer the Italian restaurant over the English restaurant, and the English

restaurant over the C hinese restaurant. But your partner has exactly the

opposite preferences. S hould you compromise by going to the English restau-

rant, or should you go to a restaurant that one of you likes best? The answer

to this question presumably depends on how strongly each partner prefers

his favorite restaurant over the compromise, and how strongly he prefers the

compromise over the bottom ranked alternative. Is there a way of finding out

the partners’ strengths of preference, or will they, for example, necessarily

pretend to have a lower valuation of the compromise than they really have?

This is the question which this paper addresses.

O f course, we first need to say what we mean by “strength of preference”.

O ne interpretation could be that the strength of preference is equal to the

amount of money that an agent is willing to pay in order to obtain one

outcome rather than another. If this were what we have in mind, then one

could try to elicit the strength of the partners’ preferences by introducing a

mechanism that obliges any partner whose favorite restaurant is chosen to

pay compensation to the other.

Here, we want to abstract from such side payments as they seem inappro-

priate in many situations. S pouses, for example, rarely pay money to each

other to resolve confl icts. When initially conceiving of this paper, we had

another situation in mind in which money payments are typically not made:

voting. V oting rules might try to elicit, in some sense, the “strength of pref-

erence” for candidates, yet voters are typically not asked to offer payments

together with their votes. The problem that we study here is a simplified
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version of the problem of designing voting rules that elicit strengths of pref-

erences without side payments.

If side payments are ruled out, what do we mean by “strength of prefer-

ences”, and how can we elicit them? We mean in this paper by “strength

of preference” the von Neumann Morgenstern utility of alternatives. If we

evaluate different mechanisms from an ex an te perspective (Holmström and

Myerson (1983)), then von Neumann Morgenstern utilities have to be taken

into account when resolving conflicts. How can we elicit von Neumann Mor-

genstern utilities truthfully? By exposing agents to risk. Agents’ choices

among lotteries indicate their von Neumann Morgenstern utilities. If agents

play a game with incomplete information, then they are almost always auto-

matically exposed to risk. Their choices can then reveal their utilities.

We develop this theme in a simple stylized example with two agents

and three alternatives. We assume that it is commonly known that the

agents’ rankings of the alternatives are diametrically opposed. Their von

Neumann Morgenstern utilities for the alternatives are, however, not known.

To implement efficient decisions, these utilities need to be elicited, as it is

optimal to implement the compromise if and only if the sum of the agents’

utilities of the compromise is larger than the sum of their utilities when either

agent’s most preferred alternative is chosen.

Our first main result is that this decision rule, to which we refer as first-

best, is not incentive compatible, and can therefore not be implemented, if

the distribution of von Neumann Morgenstern utilities has a density with

full support. We complement this observation with a study of second-best

decision rules. We explain that the structure of the second-best problem

in our context is different from that in other, more familiar settings, and

that an analytical approach appears difficult. We then report numerical
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results about second-best decision rules. These indicate that the amount of

inefficiency that second-best involves is surprisingly small.

One motivation for our paper is that mechanisms for efficient compromis-

ing are potentially relevant to many areas of conflict, such as labor relations

or international negotiations. A second motivation was already mentioned

above: we are interested in the application of the theory of Bayesian mecha-

nism design to voting. The current study is a first and limited step into that

direction. Traditionally, the literature on voting has either studied strate-

gic behavior under specific voting rules, or the design of voting rules using

solution concepts that rely on weak informational assumptions, such as dom-

inant strategies (Gibbard (1973), Satterthwaite (1975), Dutta, Peters and

Sen (2004)), or undominated strategies (Börgers (1991)). Our purpose here

is to explore the theory of voting with stronger informational assumptions,

which are, however, frequently made in other areas of incentive theory. A

third motivation for this paper is that it is a case study in Bayesian mecha-

nism design without transferrable utility. Much of the literature on Bayesian

mechanism design has relied on the assumption of transferrable utility. It

seems worthwhile to explore what happens if this assumption is relaxed.

It turns out that the setting that we study, although formally with-

out transferrable utility, is closely related to models of mechanism design

for public goods with transferrable utility as studied by d’Aspremont and

Gérard-Varet (1979), Güth and Hellwig (1986), R ob (1989), and Mailath

and Postlewaite (1990). These papers all consider settings in which there are

two goods, a public good, and “money.” Agents’ preferences are assumed to

be additive in the quantity of the public good that is provided and “money.”

In our setting there is no “money.” However, for each agent the probability

with which their most preferred alternative is chosen serves in some sense
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as “money.” The public good is the probability with which the compromise

is implemented. Agents “pay” for an increased probability of the compro-

mise by giving up probability of their most preferred alternative. Agents’

preferences are additive in the “real good” and “money” because they are

von Neumann Morgenstern preferences over lotteries, which are additive in

probabilities.

The details of the analogy between our work and the literature on mech-

anism design for public goods will be explained later. Two points deserve

emphasis. Firstly, an important difference between our work and the estab-

lished public goods literature is that agents, in our model, face a budget

constraint, which is absent from traditional models. The budget constraint

arises from boundaries on the amount of probability which agents can sur-

render: for instance, it cannot be larger than one.

The second difference is that our model does not feature individual ratio-

nality constraints. Most, though not all, of the previous literature on public

goods has postulated an individual rationality constraint (see the discussion

in Hellwig (2003)). Although in our setting there is no “outside option” which

would guarantee agents a minimum utility, a lower boundary for agents’ ex-

pected utility nevertheless easily follows from the facts that there is only a

finite number of allocation decisions, and that there is an upper boundary

for the “payments” which agents can make. Thus the budget constraint has

a similar effect as an individual rationality constraint.

In the light of the above discussions, it becomes intuitively plausible that

it is not possible to implement the first best in our setting. Analogous re-

sults have been obtained for the public goods setting by Güth and Hellwig

(1986), Rob (1989), and Mailath and Postlewaite (1990). The analysis of the

second best in our setting is more involved than in the established public-
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goods literature because of the difficulty involved in taking account of the

implicit budget constraint. For this reason our analysis of second-best rules

is restricted to numerical results.

This paper is organized as follows. In Section 2 we introduce our model.

Section 3 explains the analogy between our setting and the public goods

problem. In Section 4 we characterize incentive compatible decision rules.

Section 5 proves the impossibility of implementing first-best decision rules.

Section 6 explains the difficulties with an analytical approach to second best.

In Section 7 we report numerical results about second-best rules. Section 8

concludes.

2. The M odel

There are two agents i = 1, 2 who must collectively choose one alternative

from the set {A, B, C}. Agent 1 prefers A over B, and B over C. Agent 2

prefers C over B, and B over A. These preferences are common knowledge

among the two agents.

Each agent i has a von Neumann Morgenstern utility function ui : {A, B,

C} → R. We normalize utilities so that u1(A) = u2(C) = 1 and u1(C) =

u2(A) = 0. These features of the von Neumann Morgenstern utility functions

are common knowledge among the two agents.1

For i = 1, 2 we write ti for ui(B). We refer to ti as player i’s type. We

assume that ti is a random variable which is only observed by agent i. The

two players’ types are stochastically independent, and they are identically

distributed with cumulative distribution function G. We assume that G has

1The normalization of agents’ utilities that we have introduced in this paragraph will

be discussed further towards the end of this section.
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support [0, 1], that it has a continuous derivative g, and that g(t) > 0 for all

t ∈ (0, 1). The joint distribution of (t1, t2) is common knowledge among the

agents.

Definition 1 A decision rule f is a fu nction f : [0, 1]2 → ∆({A, B, C})

w here ∆({A, B, C}) is the set of all probability distribu tions over {A, B, C}.

We write fA(t1, t2) for the probability which f(t1, t2) assigns to alternative

A, and we define fB(t1, t2) and fC(t1, t2) analogously.

Given any decision rule, denote for every ti ∈ [0, 1] by pi(ti) the probabil-

ity that agent i’s most preferred alternative is implemented, conditional on

agent i’s type being ti, i.e.:

p1(t1) =

∫
1

0

fA(t1, t2)g(t2)d t2 and p2(t2) =

∫
1

0

fC(t1, t2)g(t1)d t1.

Denote by qi(ti) the probability that the compromise is implemented, condi-

tional on agent i’s type being ti, i.e. for i = 1, 2:

qi(ti) =

∫
1

0

fB(t1, t2)g(tj)d tj where j 6= i.

Finally, we denote by Ui(ti) agent i’s expected utility, conditional on being

type ti, that is:

Ui(ti) = pi(ti) + qi(ti)ti.

We restrict attention to decision rules for which the integrals pi(ti) and qi(ti)

exist for every i = 1, 2 and every ti ∈ [0, 1].

We evaluate decision rules using a utilitarian welfare criterion.2 Welfare

is defined as the ex-ante expected utility of an agent who does not know

whether he will be agent 1 or 2, and who does not know his type. We assume

that the probability of being either agent 1 or agent 2 is equal to 1/2, and

2We comment on the welfare criterion in the last paragraph of this section.
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that the prior probability of types that is used for welfare calculations is again

described by G. We can then omit the probability weights for agents when

calculating ex-ante expected utility and simply consider a non-weighted sum,

as in the following definition.

Definition 2 The ex-ante expected utility associated with decision rule f

is: ∫
1

0

U1(t1)g(t1)dt1 +

∫
1

0

U2(t2)g(t2)dt2.

The expression in this definition can equivalently be written as:

1 +

∫
1

0

∫
1

0

fB(t1, t2)(t1 + t2 − 1)g(t1)g(t2)dt1dt2.

In this sum we might as well omit the initial constant 1, which is what we

shall do in future.

From the last formula it is obvious that the decision rules f that maximize

ex-ante expected utility among all decision rules are those that are fi rst-best

in the sense of the following definition.

Definition 3 A decision rule f is called first-best if with probability 1 we

have:

t1 + t2 > 1 ⇒ fB(t1, t2) = 1 and

t1 + t2 < 1 ⇒ fB(t1, t2) = 0.

Note that there are many first-best decision rules. The reason is firstly

that Definition 3 requires the listed conditions to be true with probability

1, but not always. The reason is secondly, and more importantly, that the

above definition does not restrict the probabilities with which alternatives A

and C are chosen if the compromise is not implemented.
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In the next section we shall introduce incentive compatibility. Our in-

terest will be in those decision rules that maximize ex-ante expected utility

among all incentive compatible rules. In the following definition we use the

term incentive com patible in the sense that will be defined in the next section.

Definition 4 A decision rule f is called second-best if it yields the largest

ex-ante expected utility am ong all incentive com patible decision rules.

We emphasize two aspects of our framework. The first is that the frame-

work is ex-ante symmetric with respect to agents. This is intended to reflect

that ex-ante there is no known reason to systematically bias the decision rule

in favor of one of the agents. This seems the most interesting scenario when

designing rules that are meant to be used in a large variety of circumstances.

The second aspect of our model that we emphasize is the normalization

of von Neumann Morgenstern utilities so that the utility of the most pre-

ferred alternative is 1, and the utility of the least preferred alternative is 0.

Because we construct an ex-ante symmetric model, we apply this normaliza-

tion to both agents. An implication of this is that welfare as defined above,

i.e. the sum of agents’ utilities, is unchanged if probability is shifted from

alternative A to alternative C. The only welfare relevant decision is whether

the compromise B is implemented.

While our normalization allows us to focus on the incentive issues involved

in efficient compromising, it is clearly restrictive.3 Moreover, one of our main

results, i.e. that no first-best rule is incentive compatible, is non-trivial only

3Our model can be generalized somewhat without change to our main conclusions. We

can allow both agents’ vectors of von Neumann Morgenstern utilities to be multiplied by

a constant τi, provided that the distribution of both τis is independent of t1 and t2, and

that τ1 and τ2 are independent. A first-best rule would then condition on the τis, but

no incentive compatible rule can do so because the values of the τis do not affect agents’
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because we have chosen a set-up in which it is welfare irrelevant whether A or

C is chosen. If the choice of A and C were welfare-relevant, say in a model in

which agents’ ex-ante utilities of A, B and C were continuously distributed

random variables with some generic joint distribution, there would typically

be only a single first-best decision rule, and it would be straightforward to

check whether this rule is incentive-compatible. In our set-up, by contrast,

there are many first-best rules, and it will require some work to find out

whether any of them is incentive-compatible.

We argue, however, that our framework is no more restrictive than what

is commonly assumed in mechanism design. Consider the allocation of a sin-

gle indivisible good to a number of possible buyers with privately observed

preferences. A commonly made assumption is that buyers’ preferences are

affine in the quantity of the good (either zero or one) and money, and that

the coefficient applied to money is 1 for all types of all agents. This assump-

tion implies that for ex-ante utilitarian welfare the allocation of money is

irrelevant, and only the allocation of the good matters.

The assumption that the coefficient applied to money payments is 1 for

all types of all agents is analogous to our normalization of all types’ utilities

for the alternatives A and B. If this assumption were not made, and if hence

the allocation of money were welfare relevant, then there would typically only

be a single first-best allocation rule, and it would be entirely straightforward

to check whether this rule is incentive compatible.4

interim incentives. (F or a more thorough discussion of the argument of the last sentence,

though in a different setting, see Hortala-Vallve (20 0 4 , Theorem 3 ).) The analysis of this

paper can be interpreted as second-best analysis that incorporates in the set-up the fact

that it is impossible to condition on the τis.
4Indeed, in most cases, the first-best would not be incentive compatible. Thus, one of

the stand ard results of sing le-unit auction theory w ould be overturned
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We finally note that the u tilitarian welfare criterion that we u se here

is imp licit in the mechanism d esign literatu re. In the single u nit au ction

context, for examp le, “allocating the good to the bu yer who valu es it most” is

necessary and su fficient for op timality from an ex-ante u tilitarian stand p oint,

bu t it is certainly not necessary for efficiency from an ex-p ost viewp oint.

Giving the good and all the money always to the same bid d er is another

examp le of an ex-p ost efficient ru le.5

3. Ana lo g y w ith the P ublic Go o ds P ro blem

T here is a close analogy between ou r mod el and mod els typ ically consid -

ered in the theory of B ayesian mechanism d esign for non-exclu d able p u blic

good s (d ’Asp remont and Gérard -V aret (1979), Gü th and Hellwig (1986), R ob

(1989), Mailath and P ostlewaite (1990)). We can view the p robability with

which the comp romise is chosen in ou r framework as the qu antity of a p u b-

lic good withou t exclu sion that is consu med by both agents. Each agent’s

p rivate typ e d etermines the agent’s valu ation of the p u blic good . Agents

p ay for the p u blic good with a red u ced p robability of their most p referred

alternative.

T o mak e this analogy more p recise let u s d efine somewhat arbitrarily the

ou tcome in which each of the two extreme alternatives A and C is chosen with

p robability 0.5 as the defau lt ou tcome. F or every agent i d efine mi(t1, t2) to

be the d ifference between the d efau lt p robability of this agent’s most p re-

ferred alternative, and the p robability with which the agent’s most p referred

alternative is chosen by a given d ecision ru le if the typ es are (t1, t2):

m1(t1, t2) ≡ 0.5 − fA(t1, t2)

m2(t1, t2) ≡ 0.5 − fC(t1, t2)

5This allocation is also interim effi cient and it is interim incentive compatible.
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for all (t1, t2) ∈ [0, 1]2. We can think of mi(t1, t2) as the paym en t made by

agent i if types are (t1, t2). The probability of the compromise is then:

fB(t1, t2) = m1(t1, t2) + m2(t1, t2)

for all (t1, t2) ∈ [0, 1]2. We can think of this probability as the quantity of a

public good that is produced if types are (t1, t2). The above equation shows

that the public good is produced with a one-to-one technology where the

quantity produced equals the sum of agents’ payments. The quantity of the

public good can obviously not be more than one, and we might model this

by assuming that the public good’s marginal costs rise to infinity once the

quantity exceeds one.

O ur model is then isomorphic to the traditional set-up for Bayesian mech-

anism design for non-excludable public goods, except that we have to respect

a budget constraint: For every i ∈ {1, 2} and every (t1, t2) ∈ [0, 1]2 we must

have:

mi(t1, t2) ∈ [−0.5, + 0.5].

O therwise fA(t1, t2) or fC(t1, t2) would be larger than one or smaller than

zero. This implicit ex-post budget constraint of individual agents is a first

feature that distinguishes, to our knowledge, our set-up from all public-good

models that have been investigated in the literature.

A second feature that distinguishes our set-up from the traditional pub-

lic goods set-up is that there is no individual rationality constraint in our

model. In the public goods context, and in other related contexts, one is

often interested in characteriz ing all decision rules that are incentive com-

patible and individually rational.6 But in our model there is no natural role

for individual rationality.

6An exception is d’Aspremont and G érard-V aret (1 9 7 9 ).
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The two differences between our context and the traditional set-up neu-

tralize each other to some extent. S pecifically, even though there is no in-

dividual rationality constraint, there is a lower boundary for the interim

expected utility of the agents because there is only a finite number of alter-

natives, and agents cannot be asked to pay more than their budget allows.

We shall return to this point in S ection 5.

4. Incentiv e C ompatibility

Because types are privately observed, a decision rule can be implemented in

practice if and only if it is incentive compatible.7

D efinition 5 A decision rules f is incentive compatible if for i = 1, 2 and

for any types ti, t
′

i
∈ [0, 1]:

pi(ti) + qi(ti)ti ≥ pi(t
′

i
) + qi(t

′

i
)ti.

The proof of the following L emma is familiar from the literature on

Bayesian incentive compatibility. Therefore, we omit it.

Lemma 1 A decision rule f is incentive compatible if and only if for i = 1, 2

w e have:

(i) qi is monotonically increasing in ti;

(ii) for any tw o types ti, t
′

i
∈ [0, 1] w ith ti < t′

i
:

−t′
i
(qi(t

′

i
) − qi(ti)) ≤ pi(t

′

i
) − pi(ti) ≤ −ti(qi(t

′

i
) − qi(ti)).

7The following definition implicitly assumes that the mechanism which is used to im-

plement the decision rule is a direct one. B y the revelation prin ciple this is without loss

of generality.
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The first item in this Lemma says that the probability of the compromise,

conditional on an agent’s type, increases as this agent’s utility of the com-

promise increases. Where is this probability taken from? The second item

in Lemma 1 indicates that some of the probability has to be taken from the

probability assigned to the agent’s most preferred alternative. It is intuitive

that the probability of the most preferred alternative must decrease. If the

additional probability for the compromise were only taken from the agent’s

least preferred alternative, then the agent would have an incentive to report

a higher utility for the compromise than he actually has. The agent has to

pay for a higher probability of the compromise with a lower probability of

his most preferred alternative.

The inequality in the second item in Lemma 1 provides a lower and an

upper boundary for the change in the probability of the most preferred al-

ternative. Both of these boundaries are negative. The boundaries are such

that among two types the higher type prefers to pay the price and obtain a

higher probability of the compromise, whereas the lower type prefers not to

pay the price.

The next lemma describes incentive compatibility in terms of properties

of the interim expected utility. The result is standard in related settings8,

and therefore we again omit the proof.

Lemma 2 A decision rule f is incentive compatible if and only if for every

agent i = 1, 2:

(i) qi is monotonically increasing in ti;

(ii) for every ti ∈ [0, 1] such that qi is continuous at ti:

U ′

i
(ti) = qi(ti).

8See, for example, Section 5 .1.1 of K rishna (2 0 0 2 ).
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We can use the differential equation of Lemma 2 to obtain a formula that

links the interim expected probabilities of each agent’s favorite alternative

to the interim expected probabilities of the compromise. This is done in

Lemma 3. To solve the differential equation, we have to take the value at

some boundary point as given. We choose here the highest type, i.e. ti = 1,

rather than, as is convention, the lowest type, ti = 0, because in the proof of

Proposition 1 the current formulation will be more useful. Apart from this

modification, the proof is again standard, and therefore omitted.

Lemma 3 A decision rule f is incentive compatible if and only if for every

agent i = 1, 2:

(i) qi is monotonically increasing in ti;

(ii) pi(ti) = pi(1) + qi(1) − qi(ti)ti −
∫

1

ti
qi(si)d si for all ti ∈ [0, 1].

5. Impossibility of Implementing F irst-Best Rules

We can now build on the characterization of incentive compatible rules,

and show that:

Proposition 1 N o fi rst-best decision rule is incentive compatible.

We shall prove Proposition 1 by showing that a first-best decision rule

that is incentive compatible would have to have the property that the ex-ante

probability of the compromise, and the ex-ante probabilities of alternatives

A and C, as implied by incentive compatibility, add up to more than one.

This then contradicts the definition of decision rules.

If our set-up is interpreted as a public goods set-up, as indicated in Sec-

tion 3, our result shows that the contributions which individuals are willing

14



to make under incentive compatibility are not enough, from an ex-ante point

of view, to cover the total resources required to produce the first-best quan-

tity of the public good. This is also the reason why the first best cannot be

implemented in standard models of incentives in public goods provision (for

example: Güth and Hellwig (1986)). However, as argued above, our set-up

differs from the most common set-up in that we have no individual rational-

ity constraint. If there is no individual rationality constraint in the public

goods framework, then the first-best can be implemented (d’Aspremont and

Gérard-Varet (1979)). We obtain a different result because, as explained

in Section 3, our agents face individual budget constraints. These budget

constraints imply lower boundaries for the utility of each type, even if no

individual rationality is required.

Despite of the differences between our model and the public goods model,

the proof of Proposition 1 that we provide below parallels the modern ap-

proach to proving impossibility results in the field of mechanism design. For

example, it is analogous to Milgrom’s (2004, p.79) version of the proof of the

Myerson-Satterthwaite (1983) impossibility theorem. We begin the proof by

arguing that Lemma 3 implies that all incentive compatible first-best deci-

sion rules imply the same ex-ante probabilities for the three alternatives. We

then construct one particular incentive compatible first-best decision rule for

our problem, namely a Vickrey-C larke-Groves (VC G) mechanism. We show

for this decision rule that the ex-ante probabilities of the three alternatives

add up to more than one. It then follows that the same has to be true for

all incentive compatible decision rules.

An important difference between the structure of our proof and similar

proofs of earlier impossibility results in Bayesian mechanism design is that

in earlier proofs individual rationality is used to select the mechanism on
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which to focus among all conceivable VCG-mechanisms. In our proof, the

VCG-mechanism on which we focus is determined by the condition that the

highest type, ti = 1, has to expect the compromise with probability 1, and

all other alternatives with probability zero. Thus, we use efficiency, and this

agent’s “budget constraint” to select the appropriate VCG-mechanism.

Proof: The proof is indirect. Suppose there were a first-best decision rule

that is incentive compatible. Then qi(ti) = 1 − G(1 − ti) for i ∈ {1, 2} and

almost all ti ∈ [0, 1]. We want to use Lemma 3 and infer the functions pi.

For this we need to know pi(1) + qi(1). Because qi(ti) = 1 − G(1 − ti) holds

only for almost all ti ∈ [0, 1], we cannot assume that it holds for ti = 1.

However, interim expected utility Ui is continuous because, by Lemma 3,

it is an integral. For almost all types interim expected utility is at least

qi(t1)ti = (1 − G(1 − ti))ti. By continuity, therefore, the expected utility of

type ti = 1 has to be one.

We can now apply Lemma 3. Because sets of measure zero don’t affect the

value of the integral, we can deduce pi(ti) = 1−(1−G(ti))ti−
∫

1

ti
(1−G(si))dsi

for all ti ∈ [0, 1]. This implies that the value of
∫

1

0
pi(ti)g(ti)dti is the same

for all first-best, incentive compatible decision rules.

The idea of the proof is now to show that the interim probabilities implied

by first best and incentive compatibility add up to more than one. We

show this by considering the following decision rule, where we ignore for the

moment that the components of this rule do not add up to one for every type

vector. The function fB is the first best rule of Definition 3. The functions

fA and fC are defined as follows.

fA(t1, t2) = (1 − fB(t1, t2))(1 − t2) for all (t1, t2) ∈ [0, 1]2;

fC(t1, t2) = (1 − fB(t1, t2))(1 − t1) for all (t1, t2) ∈ [0, 1]2.
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We assume that players evaluate outcomes under this rule by the expected

utility calculation indicated in Section 2, ignoring the fact that the compo-

nents of the decision rule do not always add up to one.

This rule is incentive compatible. This follows from the fact that it is

a weakly dominant strategy for each player to report his true type. To see

that truth telling is weakly dominant, consider, say, player 1, and assume

player 1’s true type is t1. Suppose player 2’s reported type is t2. Assume

first that t2 is such that t1 + t2 > 1. If player 1 reports his true type, he

receives utility t1. If he reports a type τ1 such that τ1 + t2 < 1, then player

1’s utility becomes under the above rule: 1− t2. Player 1 will prefer to report

his true type because t1 > 1− t2 ⇔ t1 + t2 > 1, by assumption. Now suppose

alternatively that player 2’s reported type is some t2 such that t1 + t2 ≤ 1.

Then, if player 1 reports his true type, he gets: 1 − t2. If, alternatively, he

pretends to have a type τ1 such that τ1 + t2 > 1, then he receives utility t1.

Player 1 prefers to report his true type because 1− t2 ≥ t1 ⇔ t1 + t2 ≤ 1, by

assumption.

The interim expected values of fA and fC implied by the above decision

rule have to satisfy condition (ii) of Lemma 3. This is because the fact that

the values of fA, fB and fC add up to one plays no role in the proof of Lemma

3. Therefore, the values of qi(ti) for i ∈ {1, 2} and ti ∈ [0, 1] that are implied

by the above decision rule must be the same as for any first-best, incentive

compatible decision rule.

We complete the proof by showing that for the above decision rule the

sum of the expected values of qi(ti) (for arbitrary but fixed i ∈ {1, 2}), p1(t1)

and p2(t2) is greater than one. This sum is equal to the expected value of

17



the sum fA(t1, t2) + fB(t1, t2) + fC(t1, t2). Calculating this sum yields:

fA(t1, t2) + fB(t1, t2) + fC(t1, t2) =



















1 if t1 + t2 ≥ 1

2 − t1 − t2 if t1 + t2 < 1.

Because the bottom line is strictly larger than one, and because we have as-

sumed that G has support [0, 1] it is obvious that the ex-ante expected value

of fA(t1, t2) + fB(t1, t2) + fC(t1, t2) is greater than one.

Q .E.D.

6. Second-Best Rules:

Problems with an Analytical Characterization

We now turn to second-best rules. A popular approach to characterizing

second-best mechanisms proceeds by writing the maximization problem that

defines second-best rules so that only directly welfare-relevant variables ap-

pear as choice variables. In our model the directly welfare-relevant variables

are the probabilities of the compromise, fB(t1, t2). Thus, we might seek to

eliminate from the problem the variables fA(t1, t2) and fC(t1, t2) which are

needed to maintain incentives, but do not directly enter the welfare function.

To do so, we need a characterization of all functions fB that can be part of an

incentive compatible decision rule. In a supplement to this paper we prove

the following lemma, that goes some way towards such a characterization.9

9The supplement is available from: http://www.ucl.ac.uk/∼ uctpa01/Papers.htm.

W e prove Lemma 4 under the additional assumption that pi(1) = 0 for all i = 1, 2. W e

show that this assumption is without loss of generality in the sense that every incentive

compatible decision rule that does not satisfy the assumption can be replaced by one that

does, that is also incentive compatible, and that yields the same ex-ante welfare.
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Lemma 4 Consider a function f̂B : [0, 1]2 → [0, 1]. F or i = 1, 2 define

the interim expected value of f̂B to be: q̂i(ti) ≡
∫

1

0
f̂B(ti, tj)g(tj)dtj for all

ti ∈ [0, 1], where j 6= i. If there is an incentive compatible decision rule

f = (fA, fB, fC) such that fB = f̂B, then for i = 1, 2:

(i) q̂i(ti) is monotonically increasing in ti;

(ii)

∫

1

0

∫

1

0

f̂B(t1, t2)

(

t1 +
G(t1)

g(t1)
+ t2 +

G(t2)

g(t2)
− 1

)

g(t1)g(t2)dt1dt2

= q̂1(1) + q̂2(1) − 1

The first condition of this lemma is the same as the first condition in

Lemmas 1-3. A few lines of calculations show that the second condition

is equivalent to the requirement that the ex-ante probabilities of the agents’

preferred alternatives, as implied by the incentive compatibility condition (ii)

in Lemma 3, add up to one minus the probability of the compromise. If we

adopt the public goods interpretation of our model, we can think of this con-

dition as an ex-ante balanced budget constraint: ex-ante, in expected terms,

the contributions to the public good have to cover the costs of producing the

public good.

In the theory of public goods conditions that are analogous to condi-

tions (i) and (ii) in Lemma 4 are not only necessary, but also sufficient for

an allocation rule to be part of an incentive compatible scheme (for exam-

ple: Theorem 1 in Mailath and Postlewaite, 1990). The reason for this is

that whenever ex-ante budget balance is satisfied by an incentive compatible

decision rule, one can construct a payment scheme that is ex-post budget

balanced and incentive compatible, and that supports the same allocation
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rule. This argument does not apply in our setting. If we mimic the standard

construction of ex-post budget balanced rules (as described, for example, in

the proof of Lemma 3 in Cramton, Gibbons and K lemperer (1987)), then we

violate the budget constraints of individuals in our model. That is, under

the standard construction individuals would be asked to give up so much

probability of their preferred alternative that this probability would become

negative. Thus, although ex-ante budget balance is necessary, it is not suffi-

cient for a rule fB to be part of an incentive compatible decision rule in our

setting.

There are at least three directions our investigation could take at this

point. Firstly, we could seek to introduce further conditions on fB so that

ex-post budget balance can be achieved. For a simpler setting than ours,

Border (1991) has found such conditions. However, generalizing his results

to our context seems hard.

A second approach would be to ignore initially that condition (ii) is only

necessary, but not sufficient, and to solve the second-best optimization prob-

lem using only conditions (i) and (ii) from Lemma 4. We would then have to

verify that the solution can be implemented using functions fA and fC such

that fA, fB and fC add up to one for every type pair. Quite apart from the

problems involved in this latter step, we note that constraint (ii) would be

awkward to handle as there is a choice variable on the right hand side.

A third approach would be to abandon the idea of focusing on directly

welfare-relevant variables, and to optimize simultaneously over fA, fB and

fC . This problem would involve a continuum of constraints. In a context in

which we don’t want to rule out that fB is a step function, and hence don’t

want to assume that fB is continuous, it seems hard to obtain analytical

insights into the solution to such a problem.

20



Here, we shall pursue none of the three possible avenues listed above.

As numerical methods for analyzing second-best problems are readily avail-

able, it seems natural to investigate properties of second-best rules with the

computer.

7. Second-Best Rules:

Numerical Results

We now present numerical results about second-best decision rules. To

make numerical calculations possible, we discretize the type space. Instead

of having types continuously distributed in the interval [0, 1], we assume that

both players’ types are drawn from the set {0, 1/20, 2/20, 3/20, . . . , 19/20, 1}.10

We maintain the assumption that the model is symmetric, and hence that

both players’ types follow the same distribution on this set.

For finite type spaces the problem of finding a second-best decision rule is

a linear programming problem. The choice variables are the probabilities of

the three alternatives for each possible pair of types. The objective function

as well as the constraints are linear in these probabilities. We have used two

software packages to solve this problem.11

10We have chosen the discretization as fine as was possible with the computing facilities

available to us.
11F or the computations reported in this section we used version 2.0.1 of the statistical

programming language R (R D evelopment C ore Team, 2004). We also used version 1.1.5

of the R pack age “ lpSolve” (Berk elaar and others, 2004). R and the R pack age lpSolve

can be obtained from http://www.r-project.org/. The pack age lpSolve is due to Sam

Buttrey. It is an interface to version 5 of the linear program solver Lp solve. This is open

source software that is documented at: http://groups.yahoo.com/group/lp solve/.

Lp solve uses the revised simplex algorithm. We have also check ed all calculations us-

ing the implementation of the interior point algorithm that is available in M athemat-
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Two features of our numerical work should be pointed out. Firstly, we

only consider symmetric decision rules, that is, rules such that fA(t, t′) =

fC(t′, t) for all (t, t′). For any decision rule that is not symmetric there is

a symmetric rule that yields the same ex-ante welfare. This symmetric rule

can be constructed by an initial random draw that assigns the names “agent

1” and “agent 2” with equal probability to each of the two agents.

A second feature of our numerical work is that it only considers local

incentive constraints, i.e. we only consider the constraint that no type has

any incentive to imitate either of their two neighboring types. It is easily

seen that in our model, as in other contexts, local incentive constraints imply

global incentive constraints.

We begin with the case that all types have the same probability. Fig-

ure 1 indicates for this example the probability of the compromise B under

the second-best decision rule. The figure shows a grid representing the 212

possible pairs of types. For each grid point we have drawn a square that is

centered on the grid point. The color of this square refl ects the probability

with which B is chosen by the second-best rule. If the square is white, the

probability of B is 0. If the square is black, then the probability of B is 1.

If the color is grey, the probability is between 0 and 1. The darker the grey

the larger the probability of B.

We also indicate in Figure 1 the diagonal of the unit square which connects

the points (0, 1) and (1, 0). All first-best decision rules assign probability 1

to the compromise B if the types are above this diagonal, and probability 0

if the types are below this diagonal. Probabilities on the diagonal have no

ica 5.0.1.0. The R code that we used to generate the five figures in this section, and

the Mathematica code that we have used to verify our calculations, are available from:

http://www.ucl.ac.uk/∼ uctpa01/Papers.htm.
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Figure 1: Probability of the compromise under the second-best rule for uni-

form type distribution

23



efficiency implications.

The main point to notice about Figure 1 is that the second-best rule is

remarkably similar to the first-best rules. The second-best differs from the

first-best only for the type pairs (1, 1/20) and (1/20, 1). First-best chooses

the compromise with probability 1 for these type. In the second-best rule,

the compromise is implemented with probability 0.5767.

We note that deviations from first-best occur only if the sum of the two

types is relatively close to one. Moreover, such deviations occur only if the

differences between the types are relatively extreme. Finally, we note that

the ex-ante probability with which the second-best rule differs from first-best

is very small. It is 2 · (1/21) · (1/21) · (1 − 0.5767) which is less than 1/500.

The efficiency of the rule displayed in Figure 1 is surprising if one com-

pares it to the efficiency of the second-best rule in the corresponding public

goods problem. As a standard of comparison consider the public goods model

with two agents where the public good can be produced in any quantity be-

tween zero and one, marginal costs equal 1, and valuations are uniformly

distributed on [0, 1]. Assume also that there is an individual rationality con-

straint that requires interim expected utilities to be non-negative. Then the

public good is implemented under the second-best decision rule if and only

if the sum of the valuations is above 1.226, which implies that inefficiency

occurs with approximate probability 0.2.12

This difference between our model and the public goods model is due to

the absence of an individual rationality constraint in our model. To illustrate

12This is the result of an analytical calculation with a continuous type space. We have

verified that the numerical solution of a discretized version of the public goods model yields

almost the same conclusion. For this verification we have used the same discretization and

similar R code as we used for the analysis of the compromise problem.
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Figure 2: Expected utility under the second-best rule for uniform type dis-

tribution

this we display in Figure 2 agents’ expected utility under the second best rule

as a function of their type. If our model is given a public goods interpretation,

as in Section 3, then individual rationality requires that all types’ expected

utility be at least 0.5. As Figure 2 shows, this condition is violated by the

second best rule for all types less than or equal to 0.4. It is this violation of

individual rationality that permits the second best rule to come as close to

efficiency as displayed in Figure 1.

We next show in Figure 3, still for the case of the uniform distribution,

the probability with which agent 1’s preferred alternative A is chosen by a

second-best rule. The method that we use for the graphical representation

of these probabilities is the same as in Figure 1. All first-best rules have the
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feature that the probability of alternative A is zero above the diagonal. Below

the diagonal, the probability of alternative A is indeterminate in first-best.

In the second-best rule, alternative A receives positive probability if types

are (1/21, 1), even though this probability is zero in all first-best rules. This

is a reflection of the same deviation from first-best that we already described

when discussing the probability of the compromise B.

The probability assigned to A by the second-best rule for type pairs below

the diagonal seems to follow no particular pattern. These probabilities are

chosen by the optimization routine so as to provide at the interim stage

incentives for agents 1 and 2 to report their valuations of the compromise

truthfully. Beyond this, these probabilities have no efficiency implications.13

The main insights that we have found in the uniform distribution example

concern the probability of the compromise B rather than the probabilities

of the extreme alternatives A and C. To test the robustness of these con-

clusions, we have considered the second-best rule for 100 other probability

distributions over the type space. We have generated these probability distri-

butions by assigning to each type randomly a weight between 0 and 1, where

these weights were drawn independently with uniform distribution over the

interval [0,1]. We then normalized these weights by dividing them all by their

sum so that they could be regarded as probabilities.

For each second-best rule we have calculated the overall ex-ante probabil-

ity with which an alternative is implemented that could not be implemented

by a first-best rule. We first show in Figure 4 a histogram of these proba-

bilities. On the vertical axis we show absolute frequencies. The main point

13The matrix of probabilities that the second-best rule assigns to alternative A does not

seem to be unique. We obtained different results using R and using Mathematica. The

results reported in the paper were calculated using R. The probabilities of alternative B

were independent of the software used.
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Figure 3: The probability of alternative A under the second-best rule for

uniform type distribution
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Figure 4: The frequency distribution of ex-ante probabilities of deviations

from first-best for 100 randomly selected type distributions

to notice is that in all cases this probability was below 1/100. Thus, the

observation that we made in the case of uniform distribution that deviations

from first-best occur with low probability seems to hold quite generally.

Next, we indicate in Figure 5 for each pair of types the average probability

with which the outcome under second-best deviates from first-best for this

pair of types. The average is taken over our 100 randomly selected examples.

For grid points that are marked in white the average probability of deviations

is zero. For grid points that are marked in black the average probability of

deviations is above 0.2. If the average probabilities of deviations was between

0 and 0.2, we have indicated the value by choosing an appropriate level of

grey, where darker grey corresponds to higher probabilities.
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Figure 5: Average probabilities for deviations from first-best for 100 ran-

domly selected type distributions
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As in the uniform example, we find that deviations from first-best occur

only if the sum of the players’ types is relatively close to 1. The pairs of

types for which deviations from first-best are most likely are those two pairs of

types for which such deviations occur in the example of uniform distribution:

(1/20, 1) and (1, 1/20). Deviations from first-best occur typically when the

resulting welfare losses are small. Moreover, deviations from first-best are

somewhat more likely when agents’ valuations of the compromise are very

different from each other, and seem somewhat less likely in the centre of

Figure 5 where the two agents’ valuations are close together.

8. Conclusion

For a simple compromise problem with non-transferrable utility we have

shown the impossibility of implementing the first best, and we have deter-

mined for some particular examples a second-best decision rule. In future

research we plan to extend our work to a scenario in which agents’ rankings

of the alternatives as well as their von Neumann Morgenstern utilities are

privately observed. We suspect that in this setting second-best decision rules

can only be determined numerically. We also plan to examine in more detail

the robustness of the decision rules that we obtain in our simple Bayesian set-

ting, and to compare these decision rules to decision rules which are optimal

if informationally less demanding concepts of implementation are considered.
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