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ABSTRACT

There are indications that the current generation of simulation models in practical,
operational uses has reached the limits of its usefulness under existing specifications.
The relative stasis in operational urban modeling contrasts with simulation efforts in
other disciplines, where techniques, theories, and ideas drawn from computation and
complexity studies are revitalizing the ways in which we conceptualize, understand,
and model real-world phenomena. Many of these concepts and methodologies are
applicable to operational urban systems simulation. Indeed, in many cases, ideas from
computation and complexity studies—often clustered under the collective term of
geocomputation, as they apply to geography—are ideally suited to the ssmulation of
urban dynamics. However, there exist several obstructions to their successful use in
operational urban geographic simulation, particularly as regards the capacity of these
methodol ogies to handle top-down dynamics in urban systems.

This paper presents a framework for developing a hybrid model for urban geographic
smulation and discusses some of the imposing barriers against innovation in this
field. The framework infuses approaches derived from geocomputation and
complexity with standard techniques that have been tried and tested in operational
land-use and transport simulation. Macro-scale dynamics that operate from the top-
down are handled by traditional land-use and transport models, while micro-scae
dynamics that work from the bottom-up are delegated to agent-based models and
cellular automata. The two methodologies are fused in a modular fashion using a
system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of
residential location has been developed with a view to hybridization. The model
mixes cellular automata and multi-agent approaches and is formulated so as to
interface with meso-models at a higher scale.

Keywords. geocomputation, urban geography, urban simulation, urban planning,
multi-agent systems, residential location.



1. Introduction

As the field of urban simulation moves into a state of maturity, it is noteworthy that
the pace of change in model development appears relatively duggish. Models in
practical use today do not seem much changed from those in use ten or even twenty
years ago (with the exception, of course, of models developed in academic circles,;
but, even there, there is much room for improvement). There are signs that the current
generation of urban models in operational uses has reached the limits of its usefulness
under existing specifications. This proposition is unremarkable when we draw
comparisons with other fields that have been established for a number of decades;
new avenues of exploration dwindle, leaving little room for innovation. It is
surprising, however, in the field of operational urban smulation, where cities are
evolving and adapting at a pace that outstrips our capacity to study them in theoretical
terms, let aone to model them. In short, the time is ripe in urban systems smulation

for the infusion of new ideas.

The relative stasis in operational urban modeling stands in marked contrast to
simulation efforts in other disciplines (ecology, environmental science, biology,
physics, economics) where techniques, theories, and ideas drawn from computation
and the burgeoning field of complexity studies are revitalizing the ways in which we
conceptualize, and model real-world (and hypothetical) phenomena. Many of these
concepts and methodologies are appropriate for application to operational urban
systems smulation. Indeed, in many cases, ideas from computation and complexity
studies—often clustered under the collective term of geocomputation within
geography—are ideally suited to the simulation of urban processes and the patterns
that those processes drive. The conditions to support the operationalization of
geocomputation models in urban planning are, to a certain extent, aready there. New
generations of spatial data have been available for developing and validating urban
simulation models at high resolutions. New data sources now exist, as do geographic
information systems for managing and manipulating that data. There are new
theoretical understandings of how dynamic adaptive urban systems function as
complex adaptive and self-organizing systems. Computing power continues to grow

in potency and fal in price. And, criticaly, new simulation techniques—particularly



geocomputation—offer the potential for a ‘revolution’ in the way we model urban
systems.

However, there exist severa significant barriers to the successful use of these new
tools in operationa urban smulation. If ignored, these obstacles could doom these
new ideas to a fate reminiscent of earlier waves of large-scale urban modeling
(Torrens & O'Sullivan, 2001). And importantly, ‘traditiona’ urban ssmulation models
still have a great deal to offer operational planning applications.

This paper describes a relatively new approach to operational urban smulation; it
describes a hybrid geocomputation model designed to support the exploration of
‘what-if’ scenarios for urban planning, urban management, and public policy
formation. The hybrid approach fuses ‘traditional’ simulation methodologies that
operate at macro- and meso-levels with a ‘new wave of geocomputation
methodologies at a micro-scale. To demonstrate some of the practicalities of building
hybrid models, a prototype residential location smulation is developed, fusing
cellular automata and multi-agent systems at the micro-scale and designed to interface

with meso-models at higher scales.

2. ‘Traditional’ urban models

‘Traditional’ urban models, developed in the style of the spatia interaction (and, to a
lesser extent, the spatial choice) model, were pioneered in atime in which the field of
urban simulation—and our ideas about how cities worked—was radicaly different
from current manifestations. Computing power was relatively less ubiquitous and
sophisticated than it is today and detailed data sets were not widely available to ‘feed’
these models. The ‘traditional’ generation of urban smulation models has come under
heavy criticism (Lee, 1973; Sayer, 1979; Lee, 1994). Many of these criticisms
overlook some of the successes achieved by those models (Batty, 1979; Harris, 1994).
However, we can identify several key weaknesses of ‘traditiona’ models that till
remain, particularly when contrasted with newer models currently being developed in
academic contexts: their centralized approach, a poor treatment of dynamics, weak
attention to detail, shortcomings in usability, reduced flexibility, and alack of realism.



21. Centralized approaches

The core components of ‘traditional’ land-use and transport models leaned heavily—
in a theoretical sense—on ideas about the city that stemmed from the Chicago School
of urban studies (Carter, 1981). These theories were formulated, for the most part, in a
time in which cities were quite different than their current manifestations. In terms of
activity, the conceptualization of cities was that they were largely dominated by
centralized modes of production. Structurally, cities were considered to be
monocentric, organized with a dominant and often singular center that was
surrounded by satellites of nucleated activity that orbited on the periphery, dispersing

monotonically with distance from the urban core.

Several techniques in ‘traditiona’ urban simulation mirror this centraized
conceptualization of urban systems. The spatia interaction (or gravity) framework, in
particular, is heavily dependent on the idea of a centralized city. In a spatia
interaction model, activity in an urban system is formulated as a series of flows or
exchanges (usually trips) between origin and destination zones in a city based
proportionally on the ‘mass or attractiveness of a given zone (e.g., population or
employment) (Fotheringham & O'Kelly, 1989).

Of course, the centralized approach is not really appropriate for many cities,
particularly large cities. Urban areas are becoming increasingly decentralized in terms
of activity and structure. As cities have grown progressively reliant on service
economies, the importance of the central city as the core of activity has waned
considerably. Largely with the exception of activities that redly rely on face-to-face
contact, activities are increasingly locating in and relocating to suburban and fringe
locations, paralleling residential location trends.

In a symbiotic fashion, urban structure has aso been decentralizing. Urban
infrastructure, particularly highways and utilities networks, have been developed with
strong bias to peripheral locations compared to investment in downtown areas. Urban
structure has unraveled, becoming more polycentric and dispersed over time (Hall,
1983). Consequently, we have arrived at a Situation where the theoretical ideas
supporting ‘traditiona’ urban models are at odds with the reality of our urban
systems. Clearly, there is a need for models that can represent cities in a decentralized



and distributed manner; some techniques in geocomputation can offer this

functionality.

2.2.  Dynamics

In order to be truly useful—whether for operational uses or just for exploring ideas—
an urban smulation should redlly incorporate dynamic functionality. Models should
be capable of capturing cities abilities to evolve over time. Generaly, dynamics are
poorly represented in operational urban simulations. Dynamics usualy enter models
in an indirect and implied sense. Cross-sectional data are commonly used as a proxy
for dynamics. These data are collected for a single period in time: a snapshot. Clearly,
this is a poor subgtitute, but is often the only available option. Other models are
developed with longitudinal data, offering a series of snapshots, often separated by
long periods of time with little information about the intervening period, e.g., data
from the Census, which is reported on a ten-year basis. While longitudina data are
much richer in the information they convey, they still constitute a weak proxy for

dynamics—a lot can happen in acity in ten years!

Ideally, dynamics would feature more explicitly in a smulation, with system
dynamics evolving in rea or near-real time (see Gleick, 2000, for an interesting
debate about what constitutes real time!). Some of the geocomputation techniques
that we will discuss later incorporate dynamics in a more redistic manner and offer

significant advantages over ‘traditional’ techniques.

23. Detail

‘Traditional’ land-use and transport models are weak in handling detail. For the most
part, this is due to a lack of data available at fine-scale resolutions. There are two
important attributes of detail to be considered when developing an urban simulation:

gpatial resolution and socioeconomic aggregation.

‘Traditiona’ models generally adopt the Traffic Analysis Zone (TAZ) as a minimum
level of spatia resolution. TAZs are quite aggregate levels of geography: a medium-
size city would be divided into just a few hundred TAZs, for example (figure 1). From
this level of geography, one can only infer information at the level of individuas or
entity-level geographies of urban space and to do so invokes issues of ecological



falacy and modifiable area unit problems (Openshaw, 1983). Because many of the
processes that ‘make cities work’ operate at finer resolutions, this lack of detail may,

in some cases, be regarded as a serious limitation of ‘traditional’ models,

The second important point when considering detail is socioeconomic aggregation.
‘Traditional’ models commonly represent discrete socioeconomic groupings in a city
in arelatively aggregated manner. In many cases, model developers would do well to
disaggregate the representation of various components such as households, land-use
categories, and employment types. Households could be nested into severa
socioeconomic groupings, land-use into a more diverse range of activities, and
employment into a wider collection of sectors. Essentialy, this involves a

microsimulation of urban systems.

Of course, this is difficult when there are not adequate data to support the required
level of detail. Nevertheless, more detailed data sets are becoming available for use
and over time they will be accessible for historical periods, enabling the calibration of
fineescale microsmulations. Importantly, panel data (data for individuals or
individual households, tracked over a given time period) for activity-based travel
models are becoming increasingly common and there is a strong need for a parallel
level of detall on the land-use side of smulations. ‘Traditiona’ techniques lose
efficiency as the level of detail increases, specificaly as the matrix of relational
entities in the model grows. In later sections we will explore a series of
geocomputation techniques that embrace detail in a more integrated fashion than
‘traditional’ techniques and offer the potential for a more resourceful handling of
detailed data.



Figure 1. Spatial resolution in ‘traditional’ urban simulation models: Megalopolis
and the New York Metropolitan Statistical Area.
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2.4.  Usability

It is vitally important that operational land-use and transport models are developed
with the end-user in mind. In particular, models should be developed in such a way
that makes them easier for decision-makers and the public to digest. Usability has
long been a concern in other areas of applied science (e.g., human-computer
interaction in computing; see Preece, 1994), but has often been weakly addressed in
operational urban simulation. In many cases, users perceive smulations as ‘black
boxes': inputs are fed into the model and the results of calculations and operations are
output, but the inner workings of the model may remain a mystery. This acts as a
barrier to the efficient and appropriate use of models as decision support systems and
impairs the ability of models to serve as exploratory tools.

The strengthening of linkages between models and Geographic Information Systems
(GIS) has helped somewhat in the area of usability, particularlly with the
communication and interpretation of results, but the need for an interactive
environment for directly manipulating models till remains largely unredlized in
operational contexts (Yeh, 1998 is a notable exception). Geocomputation techniques
can offer vast improvements in usability over ‘traditional’ models, as we will see in
subsequent sections.



25.  Flexibility

There are two important aspects of flexibility of relevance to urban simulation:
scaling and modularity. It is important that land-use and transport models cater to a
wide variety of scales, idedly in an integrated and seamless manner that is capable of
representing the phenomena that shape urban areas at al levels from global through to
local scales. As we have seen, ‘traditiona’ models are weak in their handling of
micro-scale phenomena. In terms of software engineering, land-use and transport
models are generally rendered more flexible when they are modularized into a set of
sub-models (each of which could deal with a particular subset of an urban system) and
constituent components that can be tested independently (the compartmentalization of
land-use and transport activity is a prime example; figure 2). There are techniques in
geocomputation that can better facilitate modularization and lend models greater
flexibility. The expression of models in object-oriented terms, in particular, offers the
potential for an improved level of flexibilty (Noth, Borning, Waddell, 2000).

2.6. Realism

Bluntly stated, cities don’t really work the way that ‘traditional’ models would have
us believe they do. We have aready explored this in terms of ‘traditional’ tendencies
toward centralized representations. However, there is a disparity between models and
reality on a behavioral level aso. In particular, ‘traditional’ models adopt a
reductionist view of urban systems. For the most part, assumptions are made that
portray cities as operating from the top down. Even the conceptua structure of
‘traditional’ models betrays a bias in their formulation: models are often illustrated as
flow diagrams that begin with a regional scale model and filter down to TAZ-leve
components. With the exception of a few feedback mechanisms, all of the arrows
point downward (figure 2). The reductionist approach implies that to understand
urban systems, it is necessary to dissect them into constituent local components from
aggregate conditions. In many cases, this is perfectly right! However, in other
instances it is inappropriate. Many components of urban systems (planning and public
policy, for example) do not work in a top-down manner; on the contrary, aggregate
conditions emerge, from the bottom-up, from the interaction of large numbers of
elements at a local scale (Holland, 1998). In the cases of bottom-up system dynamics,
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‘traditional’ models run in the wrong direction! Once again, there are some techniques
in geocomputation that can help to remedy these deficiencies.

3. A ‘new wave of urban models

The discussion of ‘traditional’ models and their weaknesses sets the stage for the
introduction of a‘new wave of urban models, which we might denote as ‘ complexity
models’, ‘geosimulation models, or more generally as ‘geocomputation models'.
These models are in ther relative infancy as applied to urban smulation and
constitute a new class of smulation tools that borrow heavily from developments in
geographic information science, artificial intelligence and artificial life, complexity
studies, and simulation in natural sciences and socia science outside of geography.
While the use of computers and computation in urban simulation is by no means new,
the geocomputation approach—modeling systems at the scale of individuals and
entity level units of the built environment—is particularly innovative from an urban
simulation standpoint.

3.1.  Advancesin geographical information science

Within the geographical sciences, geocomputation models have been supported by a
flood of detailed geographic information that has become easily attainable in recent
years. This data has been made available in a variety of media and covering
phenomena that would not have been possible a relatively short time ago, e.g., multi-
spectral and fine-scale resolution remotely sensed data on land-use and land cover
change in urban areas. The provision of these data has been directly responsible for
addressing some of the weaknesses we have just explored: a lack of detail in
‘traditiona’ models, for example. Also, it has had indirect impacts on urban
smulation by supplying new insights into how urban systems operate, thereby
allowing us to develop better-informed simulations. Furthermore, geographic
information systems (GIS) have been developed to store, manipulate, and display
gpatial data. There is now a rich tradition of use of these systems in operational

contexts.
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Figure 2. Specification of a ‘traditional’ land-use and transport model.
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3.2.  Object-oriented programming

The treatment of discrete entities of urban systems, e.g., land parcels, buildings,
administrative zones, households, and individuals, as objects has several advantages
from a simulation standpoint. There are benefits associated with object-oriented
programming (OOP) that remedy some of the deficiencies of ‘traditional’ models that
we have already discussed, particularly flexibility, usability, and realism. Object-
oriented software has the advantage of being more realistic in terms of representing
cities. The basic unit in OOP is the object (as opposed to the statement or the
expression in procedural software). The conceptualization of pieces of inanimate code
as objects mimics the way that we think of real world objects ourselves: as discrete
units with associated attributes and behaviors. Indeed, in OOP data and behavior are
integrated (unlike the case in procedural software, where they are separate). This has
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the advantage of allowing model developers to focus on the program as a simulation
rather than as a piece of software. Indeed, severa object-oriented modules have been
developed specifically for geographic software (Centre for Computational Geography;
Box, 2001), and object-oriented code for entire land-use and transport models has
been published in the public domain (Waddell, 2000a).

3.3. Complexity studies

Complexity studies are closely related to chaos theory (Gleick, 1987). The main idea
in complexity is that of emergence. In emergent systems, a small number of rules or
laws, applied at a loca level and among many entities are capable of generating
surprising complexity and often ordered patterns in aggregate form. Additionally,
these systems are dynamic and change over time without the direction of a centralized
executive. Complex patterns manifest themselves in such a way that the actions of the
parts do not smply sum to the activity of the whole (Holland, 1998). Essentialy, this
means that there is more going on in the dynamics of the system than simply
aggregating little piecesinto larger units.

Examples of emergent systems abound. For example, the liquidity of water is more
than a simple extrapolation of characteristics that can be attributed to individua water
molecules, which have no liquid quality in isolation (Krugman, 1996). Many urban
systems are also complex in this sense. From the local-scae interactive behavior
(commuting, moving) of many individual objects (vehicles, people), structured and
ordered patterns emerge in the aggregate, such as peak-hour traffic congestion (Nagel,
Rasmussen, Barrett, 1996) and the large-scale spatial clustering of socioeconomic
groups by residence (Benenson, 1998). In urban economics, large-scale economies of
agglomeration and disagglomeration have long been understood to operate from local -
scale interactive dynamics (Krugman, 1996). Also, cities exhibit several of the
signature characteristics of complexity, including fractal dimensionality and self-
similarity across scales, self-organization, and emergence (Batty & Longley, 1994;
Allen, 1997; Portugali, 2000).

Complexity studies have shed new light on our thoughts regarding the inner workings
of cities and have had profound impacts on our approach to urban simulation.
Complexity studies point to a need for detailed, decentralized, and dynamic views of
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urban systems. The ideas also suggest that the answer to questions of the form, ‘How
do cities work? might find new answers among the myriad and evolving interactions
of individuals and the urban spaces that they inhabit. This is a much more generative
approach than the reductionist view that is traditionally adopted in urban studies.
Simply dissecting cities may not provide all the answers; on the contrary, there may
be a need to build them up from the bottom and in doing so we may learn a lot about
how they work. This may have some direct analogies in urban simulation also; indeed
there are modeling techniques in geocomputation that work exactly on these
principles, chiefly cellular automata (CA) and multi-agent systems (MAYS).

3.4. Cdlular automata and multi-agent systems

In terms of urban simulation, CA are perhaps best used to represent the dispersal of
activity and characteristics between discrete spatial units of urban infrastructure. MAS
may be more suited to simulating urban population as collectives of individuals with
associated behaviors and traits and the capacity for gpatial mobility and

communication.

Cellular automata were originaly pioneered in computing (Sipper, 1997) but have
since seen uses in a wide variety of fields, including urban studies (Batty, Couclédlis,
Eichen, 1997; Torrens, 2000a). A cellular automaton is a finite state machine (an
engine of sorts) that exists in some form of tessellated cell-space. The term automaton
refers to a self-operating machine, but one of a very distinct nature: “An automaton is
a machine that processes information, proceeding logicaly, inexorably performing its
next action after applying data received from outside itself in light of instructions
programmed within itself.” (Levy, 1992, p.15) Additionaly, CA are parallel
automata: more than one automaton is active at any given instance. CA are comprised
of five components. The lattice of CA is the space in which they exist. This might be
considered equivalent in an urban context to an environment, a landscape, or a
territory. The lattice can aso be generalized to represent urban spatial structures,
networks of accessibility, the physical structure of the city, etc. CA cells represent the
discrete confines of individual automata. They are the elemental building blocks of a
CA, just like individua land parcels or buildings in a city. CA cells are, a any time,
in a particular state. The cell state offers a flexible framework for encoding attributes

of a city into an urban simulation model, e.g., land-use, density, land cover, etc.
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Neighborhoods are the localized regions of a CA lattice (collections of cells), from
which automata draw input. Neighborhoods in an urban CA might represent spheres
of influence or activity, e.g., market catchment areas, commuting watersheds, etc. The
real driving force behind CA are transition rules. These are smply a set of
conditional statements that specify the behavior of cells as CA evolve over time. The
future conditions of cells are decided based on a set of fixed rules that are evaluated
on input from neighborhoods. CA rules can be devised to mirror how phenomena in
real cities operate. Additionally, we might discern a sixth component to CA—time—
that is generally discrete and proceeds in iterative steps.

CA offer arange of advantages for urban ssmulation and in several ways they remedy
particular deficiencies of ‘traditional’ models. CA can be designed with attention to
detail. They are inherently spatial and decentralized. They are dynamic, as well as
being intuitively useful and behaviorally redlistic. Additionally, they have a “naturd
affinity” with raster data and GIS (Couclédlis, 1997), as well as OOP. CA also provide
a mechanism for linking micro- and macro-approaches and for connecting patterns

with the processes that produce them.

While CA ae most suitable, in urban simulation contexts, for representing
infrastructure, MAS are better used to model population dynamics. MAS aso have
origins in computer science, although their development post-dates that of CA by
some years. Most commonly, MAS are used in computing as artificia intelligence
systems or artificid life forms (Kurzweil, 1999). Additionally, there are ‘species of
agents that serve as network bots, webcrawlers, and spiders (Leonard, 1997). Network
agents are used to navigate computer information networks, to ‘mine’ data, retrieve it,
and return it to human users. There is aso a tradition of using software agents to
explore entomological behavior (Bonabeau, Dorigo, Theraulaz, 1999) and the actions
of agents in economic systems and markets (Luna & Stefansson, 2000).

Agents are quite similar to automata in their formulation but have less well-defined
characteristics. They congtitute pieces of software code with certain attributes (states)
and behaviors (rules) (see Ferber, 1999 for a general introduction to intelligent
software agents). They differ from CA in their spatid mobility: agents can be
designed to navigate (virtual) spaces with movement patterns that mimic those of

humans, while CA are only capable of exchanging data spatially with their
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neighborhoods. Additionally, agents can be given functionality that alows them to
evolve over time, atering their attributes and behavior with the help of genetic
algorithms (Mitchell, 1998).

MAS are excellent tools for representing mobile entities in urban environments, e.g.,
people, households, vehicles, etc. They have been used in urban contexts to simulate
pedestrian movement in dense urban environments (Schelhorn, O'Sullivan, Haklay et
al., 1999; Dijkstra, Timmermans, Jessurun, 2000) and relocating householders
(Benenson, 1998). However, their application to urban studies has not been as
widespread as that of CA, despite offering the advantages for urban ssimulation. Like
CA, MAS ae easly programmed in OOP environments, as well as offering
advantages in terms of detail, flexibility, dynamics, usability, and behaviora realism.

4. Theneed for hybrid models

Even though CA and MAS are very suitable to the simulation of urban systems and
despite the fact that they offer significant advantages over ‘traditional’ models, there
are simply some things that they cannot represent well, most notably systems that
operate from the top-down. In urban contexts there are several systems and
mechanisms that operate in this manner, including constraints such as planning
restrictions and global level phenomena such as socioeconomic shocks. In light of
these and other considerations, there is a convincing argument for developing hybrid
models for real-world urban planning and management and the formation of public
policy, aswell asfor academic inquiry.

An approach that is based purely on CA or MAS is weaker than a more combined
effort would be. Urban ‘cells do not simply mutate like bacteria in a lab experiment
(O'sullivan & Torrens, 2000); the characteristics of the urban infrastructure change
over time because of human intervention within and around them. Similarly, cities are
more than the people that inhabit them; there is a built environment that they
influence and are, in turn, shaped by. Also, there are phenomena that operate above
the scale of individuals and the urban fabric, such as regional economics, national
geopolitical systems, weather, etc. CA and MAS are not well equipped to model these
macro-level systems.
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To focus purely on a ‘new wave of urban models would ignore a rich history and
methodology of ‘traditiona’ models that have been developed and applied to cities
over many years. CA and MAS are new ideas and have not been fully tested in real-
world contexts. Additionally, there is the problem of ‘legacy’ systems. very many
planning agencies have elaborate and expensive systems in operational use already,
formulated under the influence of ‘traditiona’ methodologies. A ‘new wave of
models could not hope to simply sweep the existing simulation infrastructure aside,
nor would that be prudent. It would be much better to work within existing simulation
infrastructures, to interface with ‘traditional’ models and supplement them rather than

supplanting them.

5. A conceptual design for a hybrid geocomputation model

With the foregoing considerations in mind, we now present a conceptua framework
for amodel designed as a hybrid geocomputation environment for real-world land-use
and transport planning. The framework merges approaches from geocomputation (CA
and MAYS) with ‘traditional’ simulation techniques, offering a suite of tools for
modeling urban systems. Macro-scale dynamics that operate from the top-down are
handled by ‘traditional’ land-use and transport models, while micro-scale dynamics
that work from the bottom-up are delegated to geocomputation models. The two
methodologies are fused in a modular fashion using a system of constraining feedback
mechanisms. In section 6 a prototype model for simulating residential location
dynamics is presented, demonstrating how geocomputation models can be designed
with this sort of framework as a consideration.

Hybrid models are not new to urban simulation. Most ‘traditional’ operational urban
models are hybrids consisting of separate modules for handling land-use (location
decisions, development and redevelopment, market-clearing) and transport (potential
demand and trip generation, trip distribution, modal split, trip assignment; figure 2).
Moreover, hybrid geocomputation models are not new! White, Engelen, and
colleagues have developed a comprehensive hybrid simulation environment using CA
and more ‘traditional’ simulation techniques for operational uses in the Netherlands
and elsawhere (White & Engelen, 1997; White & Engelen, 2000).
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So, how does our conceptua design differ from that of related work? Essentially, our
model is designed to do mostly the same things, and goes about it in a roughly similar
fashion (figure 3). There are some important differences however. Our model is
formulated so as to interface with systems that are already used in planning agencies.
The micro-scale models we are developing can be viewed as a logical extension of the
‘traditional’ model design. This interface could, conceptually, constitute a smple
exchange of data between models, a set of constraints operating from the top-down or
from the bottom-up, or the connection could be more tightly coupled through
integrated modeling or feedback mechanisms. Our design uses MAS at the micro-
scale, closdly merged with a CA environment. Individuals in this design are
represented explicitly as agents, while sites are modeled as CA. The agorithms that
drive dynamics at the micro-scale are also designed so as to be as compatible as
possible with existing systems commonly in real-world use in many planning
agencies. Wherever feasble we use methodologies aready tried and tested in
operational simulation, particularly ideas from urban economics and decision theory;

the goal isto make the connection with ‘traditional’ models as seamless as possible.

The model is designed in a highly modular fashion and as such has the potential to be
highly flexible. Modeling of land-use and transport is separated (athough the two
approaches are linked via feedback mechanisms) because the two systems require
quite different treatment, both in a theoretical sense and in terms of designing
smulations. For the purposes of this discussion, we will focus on the land-use
component of the model. The ‘traditional’ tool for transport modeling is the four-stage
model (figure 2), but there are quite a rich range of methodologies for
microsimulation of transport (Ben-Akiva & Bowman, 1998) and there are severa
innovative geocomputation approaches to traffic simulation (Nagel, Beckman,
Barrett, 1999).

The land-use component of the simulation environment is divided into three sets of
models. those dealing with macro-level, meso-level, and micro-level subsystems
(figure 3). We are not necessarily concerned with building models at the macro- and
meso-scales as there are severa such models currently in existence and in operational
uses in urban planning and management (Torrens, 2000b). However, it is important to

consider such systems when developing interface tools that operate at the micro-scale.
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Standard regional science models are used to establish ‘seed’ conditions for the model
at the macro-scale. Generaly, such models are split between simulating economic and
demographic transition (Isard, 1975). This section of the model operates at very
coarse levels of spatial and socioeconomic resolution. Geographically, it deals with
large metropolitan regions, or perhaps with collections of such regions. On a
socioeconomic level, employment and economic activity is divided into only a few
key sectors, while demographics are handled at the level of a few household types. At
the meso-level, the smulation is divided by activity. Land and red edtate
development is modeled on the demand and supply sides, with market-clearing
mechanisms to reconcile the two. A land-use transition model simulates the dispersa
of activity in the urban infrastructure. The location decisions of households, office
employment activities (finance, rea estate, and insurance), and (non-service) industry
are handled by meso-scale location models. The meso-scale models simulate a an
intermediate level of spatial and socioeconomic resolution. Geographically, the lowest
level of detail is that of the TAZ or local economic submarket (a neighborhood or
district within a city, for example). The micro-level models pick up where the meso-
scale models have left off (figure 4). Conceptually speaking, they take constraint
values from higher-level models and ‘distribute’ them to entity level units of the built
infrastructure or individuals. Equally, they could be formulated to operate in the
opposite direction, supplying constraints for higher-level models, or perhaps work in a
bi-directional fashion. The micro-scale infrastructure is represented as a CA
‘landscape’, which we populate with life-like agents. Various components affecting
land-use dynamics are modeled: the supply of and demand for real estate (mediated
by development agents); land-use transition; and relocating households, offices, and
industries. We have developed one of the micro-scale components: a model for
residential location. In section 6 we will report a prototype model that demonstrates
how the micro-level modules are constructed and how they work.
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Figure 3. Conceptual design of a hybrid model.
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Figure 4. From macro- to micro-scales. Megalopolis to New York Metropolitan

Satistical Area to Lower Manhattan to Times Square.

6. A prototyperesidential location model

As a proof-of-concept exercise, we have built one component of the micro-scale scale
simulation environment: a residential location module. The model is designed to
simulate the residential location process from the standpoint of individua homebuyers
and sellers, as well as the sites that they are exchanging. The model is formulated as a
MAS-CA hybrid. The micro-scale model interfaces with its ‘big brother’—a meso-
scale residential location model (figure 3). The meso-scale model provides a set of
‘seed” conditions for the micro-model. Total attribute values for a single
neighborhood (which you might think of as a loca residential submarket) are thus
‘known’ at the start of the model. At various stages in the evolution of the micro-
model, we can ‘feed’ it more of this data, which in turn may be used to constrain the
behavior of the micro-model (somewhat like checking its progress over time). (The
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process could potentially operate the other way around, with the micro-model serving
as a congtraint on the higher-level meso-model.) Essentialy then, the micro-model
takes output from the meso-model and assigns it to individuals and individual
residences within a given local submarket. For the purposes of this discussion, we
have developed a working prototype, without a meso-level interface. We have also
built the model with abstract data for a single and hypothetical submarket, athough
we hope to test the simulation with real data.

There are three main components to the micro-model: sites (the urban infrastructure),
agents (the population inhabiting or visiting those sites), and globals (various storage
bins for capturing conditions in the inner workings of the mode!).

Sites are formulated as a cellular automata ‘landscape’, however there are only a few
transition rules applied to the sites and this is done simply to manipulate their state
variables over time; there are no dispersal mechanisms in the model (athough this
may be added at a later stage, allowing the infrastructure to evolve over time, e.g., to
gentrify). Each site represents a particular piece of real estate with attributes as listed
in Table 1. Currently a value is assigned to a property in an abstract manner, although
this could be reformulated in such away that the price of a given piece of real estate is
formulated as a bundle of attributes (bathrooms, bedrooms, aspect, etc.) associated
with the property: a so-called hedonic price. Additionally, for the purposes of
interfacing with meso-level models, sites could have neighborhood characteristics
added to their list of attributes, e.g., distance from a nearby center, accessibility to
highway networks, etc.

Two types of agents are represented in the model: homebuyers (‘mobile’ agents) and
home sellers (‘residential’ agents). (There is also a third, ‘god’ agent that is used to
automate tasks within the model.) The agents are designed with various attributes as
listed in Table 1. (For the sake of parsimoniousness, residentia and mobile agents are
designed with the same attributes, although certain values may be set to null.)
Additionally, agents are entrusted with various behaviors: a set of preferences for
housing as well as the capacity to move over the real estate landscape and sense their

surroundings.
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Table 1. The attributes of objects encoded within the model.

Sites Agents

Value Income

Housing type Age

Lot size Children

Housing tenure Household size

Density Ethnicity

Land-use Inertia

Number of bedrooms Residency

Renta value Segregation preference

Discounting function Lifecycle stage
Tenure preference

Housing preference

Housing budget

Willingness to |eave submarket
Socioeconomic preference
Agent type

6.1. Calculating lifecycle stage and value platforms

The matching of mobile agents with sites and the decisions by residential agents
regarding when to sell their properties are driven by a set of preference functions that
are calculated within the model. This lends agents a set of ‘likes and ‘didikes’, both
for particular types of neighborhoods, other agents, and certain types of housing.

Based on their preference functions, mobile agents are matched with suitable homes.

One of the key variables that determine agents preferences for housing is their stage
in the lifecycle. A rich literature exists for determining the role that lifecycle
characteristics play in the residential location process (Waddell, 2000b), as well as a
burgeoning science of geodemographics (Longley & Harris, 1999). Depending on
whether individuals or households are young and/or without families or in retirement,
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their preferences for various types of housing or characteristics of individual
properties—number of bedrooms, tenure, housing type—will change.

Currently, our model discerns three lifecycle stages. ‘young’, ‘middle’, and ‘senior’.
An attribute that denotes the presence of an agent in one of these lifecycle stages is
added to their attribute profile. ‘Young' agents are designed to represent individuals
that have recently left the family home and are striking out on their own for the first
time. They may be studying or working in their first full-time jobs. In the context of
urban location, individuals at this stage in their lifecycle may well demonstrate a
preference for central locations close to entertainment facilities. Also, we can identify
certain housing-specific preferences; individuals at this stage in the lifecycle are more
likely to favor apartment living than a house.

‘Middle agents represent individuals that are at a stage in their lives where they may
be beginning to start a family, or may aready have started a family. Such individuals
are bound to have different residentia location requirements when compared to other
lifecycle groups. One factor that they may find desirable, but which would be unlikely
to feature highly in the preferences of other groups, is the presence of good schools in
a suburban location, for example.

‘Senior’ agents correspond to those individuals entering into retirement age, either
without children or with children that have left home. We might consider these agents
as representing ‘ empty-nesters’. Thisis atricky demographic group to model. Income
variations may well influence the residential location behavior of ‘senior’ groups
more than in other groups. Some may own multiple homes with quite different
characteritics, e.g., a house in one location and a condominium in another.

Currently, the calculation of lifecycle stage is performed quite smply in the modd as
a set of conditional statements based on age (although the potential to expand that
calculation to incorporate other factors, along with the potential of diasaggregating the
groupings further, is there). If agents are between the ages of 22 and 35 they are
assigned a ‘young’ tag; between 35 and 65 they are assigned a ‘middle’ tag; and over
65 they are regarded as ‘senior’ (agents under the age of 22 are not represented in the
model).
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Another important variable that needs to be calculated and assigned as an agent
atribute is a ‘vaue platform’: the amount of money that an agent can spend per
month on rent or mortgage payments. Currently, value platforms are calculated by
smply dividing an agent's income by 12. However, this could potentially be
reworked as a more complicated calculation relying on other agent attributes such as
number of children, employment, and age.

Variables for lifecycle stage and value platform are used in conjunction with other
agent attributes (income, age, presence of children, size of household to which the
agent belongs, ethnicity, inertia, and period of residency) as ingredients for the
derivation of a set of preference functions. These preference functions—coupled with
a set of trangition rules, the capacity for spatial mobility, and the ability to ‘sense

their surroundings—govern the behavior of agents as the model evolves.

6.2.  Establishing preference functions

6.2.1. Site specific preferences

Agents are assigned a set of preferences in the model, both for specific attributes of
stes and for the neighborhoods in which individua properties are sSituated. A
preference for housing types (apartments or houses) is assigned to each agent.
Housing preference is one of the methods that rely heavily on an agent’s lifecycle
attribute. Depending on an individud’s stage in the lifecycle, she is likely to have a
strong preference for a house or an apartment (regardiess of whether she can afford
it). Preference for housing is assigned to agents in the model, principally based on
lifecycle stage. If an agent is ‘young’ its preference is for apartments. Individuals with
families are likely to prefer houses, al other things being equal. ‘Middle’ agents with
children are given a preference for houses, while those without are assigned
preferences for apartments. ‘ Senior’ agents are also assigned a preference for houses.
Currently, housing preferences are deterministic, athough they could be reformul ated
in a stochastic manner.

Preferences for housing tenure (rent or own) are also assigned to agents in the model.
‘Young' agents are assumed to give preference to rental accommodation, while
‘middle’ and ‘senior’ agents have a preference for owner-occupation.
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6.2.2. Neighborhood preferences

In addition to preferences for site-specific attributes of housing, agents are aso
assigned neighborhood-level preference functions. The implication here is that
homebuyers and home sellers factor certain conditions of the local residential
submarket into their location decisions, principaly ethnicity and socioeconomic
factors. (We could also add some other indicators representing the quality of the built
environment or the availability of neighborhood-scale amenities such as recreation,
retail, and entertainment.)

Socioeconomic preferences are currently calculated only for mobile agents. Upon
entering the local submarket, an agent assesses whether the neighborhood is too cheap
or too expensive for its budget. If so, the agent moves on to another submarket; if not,
the agent begins to evaluate individual properties in the submarket. This preference is
calculated as follows:

S, = f(c,e); where ¢l {0} and el {03 (i)

c=1if E?/mm g—-— otherwise ¢ = 0 (ii)
ﬂﬂ

e=1if (I, <V,,), otherwise e=0 (iii)

Where S, is the socioeconomic preference for neighborhood n; c is an evaluation of

whether a submarket is too cheap and e is an evaluation of whether a submarket is

too expensive. V.. is the minimum value of housing in the neighborhood and |, is

the income of mobile agent m.

Socioeconomic preferences are also calculated for residential agents, although they
are not used as part of their decision to stay in the submarket, nor are they factored
into the sale price of an agent’s property. This functionality could be added, however,
allowing agents to ‘sense’ the socioeconomic decline or gentrification of their
neighborhood. Additionally, residential agents could ‘sense’ the socioeconomic
profile of other households in the neighborhood by examining changes in the income
of their neighbors.

In addition to a set of neighborhood-level socioeconomic preferences, agents are also
designed with a level of bias towards the ethnic make-up of the neighborhoods that
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they inhabit or evaluate as a potential home. A lot of work has been done looking at
the geography of segregation in the housing market. Perhaps the most famous is that
of Thomas Schelling (Schelling, 1969, 1978), which looked at how large-scae
resdential segregation could emerge from individual biases. Also, Benenson and
colleagues have developed severa influential MAS for exploring the spatial dynamics
of residential segregation in Israel (Portugali, Benenson, Omer, 1997; Benenson,
1998, 1999). In our model, agents are arbitrarily assigned colors (blue, red, and
yellow) that we use to denote ethnicity. Agents of any given color have a certain
preference for living with agents of the same or different colors. Specifically, agents
are designed with a tolerance for living in neighborhoods with certain ethnic profiles.
Red agents do not like to live in a neighborhood where blue agents form a magority,
but are reasonably tolerant of living with yellow agents. Similarly, blue agents have a
preference for living in neighborhoods where blue agents form the majority of
householders. They do not like to be outnumbered by red agents and are ambivalent
about the numbers of yellow agents in the submarket. Y ellow agents have no bias for
color. Cut-off values (‘tipping balances) for these preferences are assigned as
follows. Red agents do not like to live in neighborhoods where the proportion of the
population that is blue exceeds 50%. Blue agents, on the other hand, will only tolerate
living in neighborhoods up until the point where red agents constitute 33% of the
population.
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6.3. Operationalizing the model

An actual run of the model is organized as a series of events. Many sub-events within
the model (such as calculations and the derivation of preference functions) occur on a
parallel basis, but the main events in the model—setup and the initiation of model
parameters, smulating the location process, and the updating of model parameters—

occur iteratively (figure 5).

The first event in the modd is the creation of a realistic urban infrastructure. The
‘god’ agent is caled upon to determine the location of individua sites in the model
and to assign various infrastructure attributes to those sites. Following this, the model
is ‘populated’ with residential agents. In this stage, ‘residential’ software agents are
assigned to simulated property sites, to serve as in situ owner-occupiers. Once again,
the ‘god’ agent is used to automate much of this. A given number of residential agents
are created with blank profiles. Life-like attributes are then assigned to those agents
and the calculations necessary to establish their preference functions are performed.
Agents are then placed in individual homes. At this stage in the model run, the * seed’
conditions for an iteration of the model have been established; the setup phase of the
model has been completed, and the model moves into simulating the residential

location process.

Before we introduce mobile agents into the simulation environment we must
determine whether any of the residential agents would like to put their properties on
the market. Some computations are performed and residential agents make a decision
whether to move, based on their own conditions and their knowledge of the
neighborhood in which they reside. If an agent decides to put its home on the market,
the characteristics of the site variable for that particular location are updated to reflect
that.

Now we introduce mobile agents into the simulation. Currently only a single agent
visits a given residential submarket at any stage in the model, but that could be
reformulated to create an environment of competitive buying, or perhaps some more
complicated bidding games. A mobile agent is created, assigned attribute data, and the
calculations necessary to establish its preference functions are performed. The mobile
agent then goes through the process of deciding whether or not the neighborhood that
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it has entered is suitable, before evaluating individua sites. The mobile agent checks
whether the market is too expensive for its budget, or alternatively whether it is too
far below (50% of) its value platform. Then the agent scans the socioeconomic and
ethnic profiles of the residential agents aready residing in the submarket, and based
on its biases will decide whether to stay in the submarket and evaluate sites, or move
on to another submarket elsewhere.

If the agent decides to stay, it begins to search for a home. The agent moves within
the model space and visits the first location for sale. Once there, it ‘negotiates a sale
with the residential agent. If the price of the property is amenable to both agents (and
the characteristics of the property match the preferences of the mobile agent), the
mobile agent will ‘move-in’, otherwise it will visit the next available property. If after
visiting all available properties in the model, the agent has not found a home, it leaves
the particular submarket and begins its search elsewhere. However, if the agent
decides to buy or rent a particular property, the property is put ‘under offer’. The
mobile agent and the residential agent trade ‘ species’ tags (the mobile agent becomes
residential and vice-versa); the residential agent is moved out of the submarket and
the mobile agent moves into the property; and a ‘sold’ tag is assigned to that

particular site.

The final stage in an iteration of the modd is a round of ‘spring-cleaning’.
Dissatisfied mobile agents are sent to alternative submarkets and if a residential agent
has not managed to sell its property it decides whether to discount the price of the real
estate in subsequent iterations of the model. Currently, prices are discounted by 5%
after four iterations of the model. The model then returns recursively to decide

whether residential agents are going to move.

6.4. Graphic user interface

The model can be manipulated in an interactive fashion by the user through the use of
a graphic user interface (GUI). Figure 6 shows the GUI for one particular stage in the
run of a model. Windows for particular agents or particular sites can be caled up to
display the attributes of those objects at any given moment in the model. In figure 6
we have displayed windows for mobile and residential agents as well as the ‘god’
agent. Additionally, a window for a particular site is displayed. Also, a series of
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buttons and dliders are available to run particular events in the model and to vary the
value of parameters that are used in model calculations, ‘on-the-fly’. A main graphics
window is aso shown, providing information on the position of sites and agents
within the model space at any given moment. Additionally, symbols in the graphics
window can be programmed to alter shape and color depending on the conditions of
the attributes that they represent (in figure 6 they are colored to represent the
‘ethnicity’ of the agents residing in those sites). The graphics window, and the
artificial submarket that it represents, are designed to mimic how a residential
submarket would appear in the real world (figure 7). Residential agents are situated
within particular sites. Upon visiting the submarket, a mobile agent will travel to these
sites and evaluate their suitability for its purposes. Additionaly, we have a ‘god’
agent (denoted in the diagram with the letter ‘G’) that is active in automating tasks
within the smulation, but does not partake in the residential |ocation process.

7. Future developments

The model presented in this paper is a prototype, designed to function as a proof-of-
concept tool. Several developments and additions to the model are planned.
Specifically, we hope to add more attributes and behaviors into the model to make the
simulation more realistic. Some of these plans call on tried and tested methodologies
from ‘traditional’ models, such as the reformulation of preference functions as logit
and spatia choice models (De la Barra, 1989). The mode is currently setup in a
nested fashion with the processing of events at specific cycles in the model, but the
gpecification of functions in a probabilistic fashion at each stage in the nesting would
lend the model an added degree of realism. Also, the model is quite ‘old fashioned' in
its characterization of residential location behavior and we would like to explore other
methodologies (marketing, spatial cognition, microeconomics, etc.) to find more

suitable premises upon which we can design more life-like algorithms.
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Figure 7. The graphic user interface to the residential location model.
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The current application of the model to a handful of sites in one particular submarket
is, of course, quite simplistic. Linking severa independent submarkets and facilitating
the exchange of agents between them will take some further work. However, this
should allow certain hypotheses about the residentia location process (the dynamics
of gentrification and neighborhood decline, the factors driving residential segregation,
etc.) to be explored in an abstract fashion. Connecting the residential micro-model
with other related micro-components such as industrial location and development
modules is another task that we need to accomplish. Additionaly, there is much work
to be done in designing interfaces (data exchanges, constraints) with meso- and
macro-scale models, as well as the design of feedback mechanisms between

independent model components.

8. Conclusions

The discussion thus far has been quite optimistic about the potentia of
geocomputation techniques to revitalize operational simulation. The techniques
themselves do certainly represent the possibility for a ‘revolution’” in the way we
simulate urban systems. However, there are some imposing barriers to putting those
techniques into practical use in the real world (Torrens & O'Sullivan, 2001).
Ironically, computing power poses one of the most pressing limitations. The prototype
that we have developed here works quite well and is efficient computationaly.
However, scaling that model up to represent an entire metropolitan area would require
daunting levels of computing power. The only operational equivalent is the
TRANSIMS model at Los Alamos Nationa Laboratories, which relies on distributed
computing clusters (Nagel, Beckman, Barrett, 1999).

Also, there are data limitations on the development of these models for practical uses.
Conceptualy, the idea of smulating individuals and the buildings that they inhabit is
quite appealing. However, as we discussed in section 2.3, data is not widely available
a the scale of the individual householder or building. Also, there are severa moral
issues that arise from the use of individua-leved—and often private—data in
operational simulations.
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Working at the micro-scale, in some cases, reveals inadequacies in the theory of how
cities work. The micro-approach betrays some theoretical gaps in our understanding
of the dynamics interactions that shape our urban systems. Indeed, there is some

justification for a‘new urban geography’ of the micro-scale.

Furthermore, micro-scale models, particularly dynamic and process-driven
simulations, are quite difficult to calibrate, even if data are available. In CA research,
there are some techniques for validating the patterns that those models generate and
or matching them with real world conditions. However, process-based calibration
techniques are not widely available (Torrens & O'Sullivan, 2001). Organizing the
model as a hybrid alows the possibility of scaling up the simulation to meso-scales
for validation purposes. This is a reasonable solution, but ideally micro-models would
be calibrated at the scale of the entity or the individual. The likely effort required to
do thisis, however, a daunting prospect.

The point that we would like to convey in this paper, however, is that—at least
methodol ogically—the techniques discussed here represent a move towards more
theoretically sound, behavioraly redlistic, and ultimately more useful smulation
environments. As computer hardware develops and becomes cheaper and as detailed
data become more widely available, the possibilities for applying geocomputation
smulations in real world contexts grow. Certainly, these smulations can be
developed as proof-of-concept tools and the methodologies can be refined in
academic contexts in preparation for a day in which these tools can be used to plan
and manage better cities. In the meantime, even as abstract tools, these simulations
can do a lot for our understanding of how cities work and perhaps provide new
insights into how we might construct a more sustainable urban future.
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