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A B S T R A C T

We present a general formulation for stability analyses of radiative shocks with multiple

cooling processes, longitudinal and transverse perturbations, and unequal electron and ion

temperatures. Using the accretion shocks of magnetic cataclysmic variables as an illustrative

application, we investigate the shock instabilities by examining the eigenfunctions of the

perturbed hydrodynamic variables. We also investigate the effects of varying the condition at

the lower boundary of the post-shock flow from a zero-velocity fixed wall to several

alternative types of boundaries involving the perturbed hydrodynamic variables, and the

variations of the emission from the post-shock flow under different modes of oscillations. We

found that the stability properties for flow with a stationary-wall lower boundary are not

significantly affected by perturbing the lower boundary condition, and they are determined

mainly by the energy-transport processes. Moreover, there is no obvious correlation between

the amplitude or phase of the luminosity response and the stability properties of the system.

Stability of the system can, however, be modified in the presence of transverse perturbation.

The luminosity responses are also altered by transverse perturbation.
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1 I N T R O D U C T I O N

The time-dependent properties of radiative shocks have been investigated by many researchers in different settings, for example the

interactions between supernova shocks and the interstellar medium, and accretion flow onto compact objects (e.g. Falle 1975, 1981; Langer,

Chanmugam & Shaviv 1981, 1982; Chevalier & Imamura 1982; Imamura, Wolff & Durisen 1984; Chanmugam, Langer & Shaviv 1985;

Imamura 1985; Bertschinger 1986; Innes, Giddings & Falle 1987a,b; Gaetz, Edgar & Chevalier 1988; Wolff, Gardner & Wood 1989;

Imamura & Wolff 1990; Houck & Chevalier 1992; Wu, Chanmugam & Shaviv 1992; Tóth & Draine 1993; Dgani & Soker 1994; Strickland &

Blodin 1995; Imamura et al. 1996; Wu et al. 1996; Saxton, Wu & Pongracic 1997; Hujeirat & Papaloizou 1998; Saxton et al. 1998; Saxton &

Wu 1999). Many of these shocks are found to be thermally unstable. For instance, a numerical study by Langer et al. (1981) showed that the

post-shock accretion flow in magnetic cataclysmic variables (mCVs), binaries in which a magnetic white dwarf accretes material from a red

dwarf companion star, suffers thermal instabilities and hence fails to attain a steady state. The accretion shock is driven to oscillate, giving

rise to quasi-periodic oscillations in the optical luminosity. A similar conclusion was obtained by Chevalier & Imamura (1982), using a linear

perturbative analysis.

The stability of the radiative shock depends on the energy transport processes. In the case of accretion shocks in mCVs, thermal

bremsstrahlung and cyclotron radiation are the most important cooling processes (e.g. King & Lasota 1979; Lamb & Masters 1979).

Bremsstrahlung and cyclotron cooling have very different temperature dependences, and hence influence the stability properties of the

accretion shock differently.

In the stability analysis of Chevalier & Imamura (1982), the total cooling effects were approximated by a single radiative loss term

L/r aT b depending on temperature T and density r. Various choices of the power-law indices (e.g. a ¼ 0:5 and b ¼ 2 for bremsstrahlung
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cooling) were investigated, and they have found that radiative shocks with larger b (i.e. stronger temperature dependence) are more stable

against perturbations.

The individual cooling processes were subsequently considered explicitly in the numerical study of accretion onto magnetic white

dwarfs by Chanmugam et al. (1985). An effective cooling term was constructed to mimic the effects caused by optically thick cyclotron

cooling. Their study showed that efficient cyclotron cooling stabilizes the shock. Wu et al. (1992, 1996) further investigated the same system

and found that in spite of the suppression of shock oscillations in the presence of cyclotron cooling, the oscillation frequency appears to

increase quadratically with the magnetic field strength. Moreover, each of the cooling processes, bremsstrahlung and cyclotron, dominates in

about half of the phases of an oscillatory cycle, allowing the perpetuation of small-amplitude oscillations provided that the magnetic field is

moderate or weak ðB & 10 MGÞ.

Linear perturbative analyses of accretion shocks with bremsstrahlung and cyclotron cooling were carried out by Saxton et al. (1997). A

composite cooling function (following Wu, Chanmugam & Shaviv 1994) was considered, comprising the sum of a term for bremsstrahlung

cooling and an effective term for cyclotron cooling. The analysis was further extended by Saxton et al. (1998), in which the cooling function

is a sum of terms for bremsstrahlung cooling ðLbr/r 2T 0:5Þ and a second power-law process with a destabilizing influence ðL
2
/r aT b for

b > 1Þ. The cases considered included that of a cooling term ðLcy/r 0:15T 2:5Þ, which effectively approximates the energy loss as a result of

cyclotron radiation in the geometry and flow conditions of the post-shock regions of mCVs. It was found that a simple comparison of cooling

and oscillation time-scales is insufficient to understand the instabilities of the shock under various modes.

When the radiative cooling is fast compared to the electron–ion energy exchange, the electron and ion temperatures are generally

unequal. Imamura et al. (1996) considered bremsstrahlung and Compton cooling, and a more general perturbation of the shock in both

longitudinal and transverse directions. Their study showed that the electron–ion exchange process and the presence of transverse

perturbations can destabilize each mode compared to the purely longitudinal and one-temperature cases. Saxton & Wu (1999) generalized the

works of Chevalier & Imamura (1982), Imamura et al. (1996) and Saxton et al. (1997, 1998) for radiative accretion shocks by considering

multiple cooling processes explicitly, the two-temperature effects and transverse perturbations (as for a corrugated shock). In the case of

mCVs the introduction of two-temperature effects complicated and broke down the strictly monotonic stabilisation of modes with increasing

cyclotron efficiency in one-temperature shocks with bremsstrahlung and cyclotron cooling, and the influence of transverse perturbation was

not always able to destabilize oscillatory modes in the presence of both bremsstrahlung and cyclotron cooling. (For a review of stability of

accretion shocks, see Wu 2000.)

The present paper expands upon the studies of the eigenvalue in Saxton & Wu (1999) to examine the amplitudes and phases of the

eigenfunctions that describe the response of the post-shock structure to perturbations of the shock position. As an illustrative case we consider

the accretion shocks of magnetic white dwarfs. Knowing the response of the hydrodynamic-variable profiles in turn provides information

about other characteristics of thermally unstable shocks, such as the responses of post-shock emissions caused by the shock oscillations.

2 F O R M U L AT I O N

2.1 Hydrodynamics

In accretion onto white dwarfs, the supersonic flow meets a stand-off shock where the inwardly falling matter is abruptly decelerated to attain

a subsonic speed. The shock sits above the white dwarf surface at a height xs < 1=4vff tcool, where the free-fall velocity is

vff ¼ ð2GMwd/RwdÞ
1=2, the cooling time-scale is tcool , nekBT s/L, and L is a radiative cooling function. (Mwd and Rwd are the white dwarf

mass and radius respectively; kB is the Boltzman constant; ne is the electron number density and Ts is the shock temperature.)

The time-dependent mass continuity, momentum and energy equations for the post-shock accretion flow are
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where the total radiative cooling function L and the electron–ion energy exchange term G are local functions of the density r, total pressure P,

electron partial pressure Pe, and the flow velocity v. The explicit form of the exchange function is

G ¼
4
ffiffiffiffiffiffi
2p
p

e 4neni ln C

mec

ui 2 ðme/miÞue

ðue 1 uiÞ
3=2

� �
; ð5Þ

660 C. J. Saxton and K. Wu

q 2001 RAS, MNRAS 324, 659–684



where ni,e are the ion and electron number density, and ui;e ¼ kBT i;e/mi;ec 2 with Ti,e being the corresponding temperatures. The constants

mi,e are the ion and electron masses, e is the electron charge, c is the speed of light and ln C is the Coulomb logarithm (as in e.g. Melrose

1986). An adiabatic index g ¼ 5=3 for an ideal gas is assumed, and the equation of state P ¼ rkBT/mmH is considered, where mH is the mass

of the hydrogen atom.

The total cooling function is written in a form of the bremsstrahlung-cooling term and a multiplicative term that expresses the ratio of the

losses caused by the second cooling process and bremsstrahlung cooling. The second process is characterized by its power-law indices of

density and electron pressure ða ¼ b 2 1=2 and b ¼ 3=2 2 a 1 b for a general cooling term L2/r aT bÞ, and by the parameter es, which is

the relative efficiency evaluated at the shock. (Larger es implies a more efficient second process.)

L;L
br

1 L
2
¼ Lbr½1 1 es f ðt0;peÞ�; ð6Þ

and a function is defined to relate the primary and secondary cooling processes:
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where Pe,s and rs are the shock values of electron pressure and density. The dimensionless parameter ss ; ðPe/PiÞs is the ratio of electron and

ion pressures at the shock. The bremsstrahlung cooling term Lbr ¼ Cr
2ðPe/rÞ1=2, where the constant is

C ¼ ð2pk
B
/3meÞ

1=2ð25pe 6/3 hmec 3Þðm/ k
B
m3

pÞ
1=2g

B
, with mp the proton mass, h the Planck constant, m the mean molecular weight and

g
B

< 1 the Gaunt factor (see Rybicki & Lightman 1979). For completely ionized hydrogen plasma, m ¼ 0:5 and the constant has a value

C < 3:9 � 1016 in cgs units.

2.2 Perturbation

A first-order perturbation is considered for the shock position xs and velocity vs:

vs ¼ vs1 eiky1vt; ð8Þ

xs ¼ xs0 1 xs1 eiky1vt; ð9Þ

where v is the frequency, and k is the transverse wavenumber of perturbation in the y (transverse) direction. The shock is at rest in the

stationary solution, vs0 ¼ 0, and the perturbed motion of the shock has vs1 ¼ xs1v. The dimensionless frequency and transverse

wavenumber are

k ¼ xs0k; ð10Þ

d ¼
xs0

vff

v: ð11Þ

The eigenfrequencies are complex, d ¼ dR 1 idI, with dI being the dimensionless frequencies of the oscillations, and dR the stability term.

When dR is positive the perturbation grows; when dR is negative the perturbation is damped.

The post-shock position coordinate is labelled by j; x/xs, which is j ¼ 1 at the shock and j ¼ 0 at the white dwarf surface. The size of

the perturbation is parametrized by 1; vs1/vff ¼ dxs1/ xs0. The other scales to be eliminated are xs0 (the stationary-state shock height) and ra

(the mass density of the pre-shock accretion flow). The hydrodynamic variables are expressed as

rðj; y; tÞ ¼ raz0ðjÞ½1 1 1lzðjÞ e
iky1vt�; ð12Þ

vðj; y; tÞ ¼ 2 vfft0ðjÞ½1 1 1ltðjÞ e
iky1vt�; 1lyðjÞe

iky1vt}; ð13Þ

Pðj; y; tÞ ¼ raðvffÞ
2p0ðjÞ½1 1 1lpðjÞ e

iky1vt� ð14Þ

and

Peðj; y; tÞ ¼ raðvffÞ
2peðjÞ½1 1 1leðjÞ e

iky1vt�: ð15Þ

where z0, t0, p0 and pe are dimensionless density, velocity, total pressure and electron pressure in the stationary solution; and lz, lt, ly, lp
and le are complex functions representing the response of the downstream structure to the perturbation of the shock height. These five

functions describe perturbations of the density, longitudinal velocity, transverse velocity the total pressure and the electron pressure

respectively.

Separating the time-independent terms from the hydrodynamic equations yields two algebraic equations and two differential equations

for the stationary case:

z0 ¼ 1/t0; ð16Þ
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p0 ¼ 1 2 t0; ð17Þ

dj
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: ð19Þ

The electron–ion energy exchange and cooling processes are described by appropriate dimensionless forms:
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where the constant cc is determined by normalisation of the integrated stationary solution and the parameter cei is a ratio between the

electron–ion energy exchange and radiative cooling time-scales, as described in Imamura et al. (1996) and Saxton & Wu (1999). The

physical values of cc and cei are given in Saxton & Wu (1999) and Saxton (1999).

The first-order perturbation is determined by the matrix differential equation:

d
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where the F functions, which are composed of terms that do not include derivatives of the l variables, are given by
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where the primed quantities are derivatives in terms of j. The functions g1(t0,pe) and g2(t0,pe) are defined as

g1ðt0;peÞ ¼ 1 1
2esaf ðt0;peÞ

1 1 esf ðt0;peÞ
; ð28Þ

g2ðt0;peÞ ¼ 1 2
2

3

esbf ðt0;peÞ

1 1 esf ðt0;peÞ

� �
: ð29Þ

The complex matrix differential equation (22) can be decomposed into 10 first-order real differential equations in terms of the functions of the

stationary solution j(t0) and pe(t0), and the real and imaginary parts of each of the perturbed variables. It can be shown that equation (22) is

the general description and that the more restricted formulations in Chevalier & Imamura (1982), Saxton et al. (1997, 1998) can be recovered

from it under specific assumptions (Appendix A).

2.3 Cooling functions

Optically-thick cyclotron cooling depends not only on the local properties of the hydrodynamic variables but also on the radiation field. A
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self-consistent description of cyclotron loss usually requires solving the equations for radiative transfer and the hydrodynamics

simultaneously. The particular geometry and physical conditions of the magnetically channelled accretion flow in mCVs, however, permit a

simplification (see e.g. Cropper et al. 1999). A functional fit involving the density and temperature dependences of the cut-off frequency

yields an approximate cooling term Lcy/r 0:15T2:5
e (see Langer et al. 1982; Wu et al. 1994).

In our analysis the effective cyclotron cooling term has power-law indices ða;bÞ ¼ ð2:0; 3:85Þ, and the efficiency parameter es (Wu

1994) depends upon the temperature, density, magnetic field, and geometry of the emission region. In the limit of a one-temperature accretion

flow the efficiency of electron–ion energy exchange cei is large, and the ratio of pressures ss tends to unity. For two-temperature shocks, ss is

determined by the electrons carrying energy into the region above the ion shock, which is a complication beyond the scope of this paper.

Following Imamura et al. (1996) and Saxton & Wu (1999), we treat ss as a parameter.

2.4 Stationary structure

We assume the stationary wall condition, which requires a zero terminal velocity at the lower boundary. The stationary solution can be

obtained by direct integration, after substituting equations (16) and (17) into equations (18) and (19). In Fig. 1 we show the stationary velocity

structures (t0) of the post-shock region for various choices of the system parameters. The electron and ion sound speeds (ce, ci) are also

plotted on the same scale. The density is related to the velocity by r0 ¼ ra/t0 and the respective temperatures are proportional to the squared

sound speeds. Two-temperature effects are more significant in cases when cyclotron cooling is efficient (e.g. es ¼ 100Þ, and when the

electron–ion exchange is inefficient (i.e. small cei). When two-temperature effects are unimportant, we recover the velocity, density and

temperature structure of the one-temperature calculations (Wu 1994; Chevalier & Imamura 1982). A detailed discussion on the two-

temperature stationary structures of the post-shock flows and their emission will be presented elsewhere (Saxton, Wu & Cropper, in

preparation).

Figure 1. Stationary structures of the post-shock flow, with t0 the flow velocity normalized to vff (dashed lines) as functions of the normalized position j. The

electron and ion sound speeds are represented by the upper and lower solid curves respectively. The upper, middle and lower rows represent parameter choices

ðss;ceiÞ ¼ ð0:2; 0:1Þ, ðss;ceiÞ ¼ ð0:5; 0:5Þ and ðss;ceiÞ ¼ ð1; 10Þ respectively. The columns represent values es ¼ 0, 0.1, 1, 10, 100 from left to right.
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2.5 Time-dependent solutions

For the time-dependent solution, the set of differential equations for the perturbed variables are integrated numerically from the shock down

to the lower boundary for trial values of the complex eigenfrequency d. The variables at the shock are determined by the shock-jump

conditions: lz ¼ 0, lt ¼ 2 3, ly ¼ 3ik/d, and lp ¼ le ¼ 2. The condition at the lower boundary is not so well-defined. The stationary-

wall condition only requires a zero terminal velocity at the bottom for the stationary solution. A lower boundary condition for the perturbed

variables, such as the requirement that the flow should stagnate ðlt ¼ 0Þ, the total pressure be constant ðlp ¼ 0Þ, or some other condition

relating density, pressure and longitudinal velocity (e.g. lz 1 lt ¼ 0Þ, may be chosen.

The time-dependent solution can be expressed as a linear combination of oscillations of different eigenmodes. For a hydrodynamic

variable X, we have

Xðj; tÞ ¼ X0ðjÞ
X

n

anlx;nðjÞ exp
vff

xs0

dnt

� �� �
; ð30Þ

where X0(j ) is the stationary solution, an is the relative strength of the mode n, dn is the eigenfrequency and lx,n is the eigenfunction. While

the complex d-eigenvalues provide information about the global stability properties and oscillating frequencies of the modes, the

l-eigenfunctions describe the more local dynamical properties. The absolute value of the l-function determines the local oscillation

amplitude of the mode, and the phase indicates whether the oscillation of the hydrodynamic variables lags or leads in one region with respect

to another.

3 E I G E N VA L U E S

The eigenvalues for two-temperature oscillating shocks with a ‘perfect’ stationary wall lower boundary condition, i.e. t ¼ lt ¼ 0 (see

Saxton 2001), have been discussed in our previous paper (Saxton & Wu 1999, see also Imamura et al. 1996). More restricted studies on the

one-temperature radiative shocks were presented in Saxton et al. (1997) and Saxton & Wu (1998) (see also Chevalier & Imamura 1982).

Particular results of these studies include

(i) In the one-temperature case, the frequencies are quantized like modes of a pipe that is open at one end, dI < dIOðn 2 1=2Þ1 dC with a

small correction dC. When two-temperature effects are strong the, ‘stationary-wall’ condition at the lower boundary loses importance, and the

frequency quantization becomes more like that of a doubly-open pipe, i.e. dI < dIOn.

(ii) The frequency spacing dIO decreases as the efficiency of cyclotron cooling (es) increases, but tends to increase when the efficiency of

electron–ion energy exchange (cei) decreases.

(iii) Increasing es generally stabilizes the modes, but when two-temperature effects are extreme there are situations in which an increase of

es destablizes some modes.

(iv) In presence of transverse perturbation, there are maxima of instability at certain values of transverse wavenumber k for each

longitudinal mode. However, there are values of (ss, cei, es, a, b ) for which some longitudinal modes are stable at all k ranges.

(v) For a given longitudinal mode, the shocks are generally stable against transverse perturbation of sufficiently large k.

(vi) Two-temperature effects affect the stability of cyclotron-cooling dominated shocks ðes @ 1Þ, but have less influence when

bremsstrahlung cooling dominates ðes < 0Þ.

4 E I G E N F U N C T I O N S

4.1 Amplitude-profile

In one-temperature accretion shocks, the non-trivial eigenfunctions are lt, lp, and lz, corresponding to total pressure, longitudinal velocity

and density. In the two-temperature shocks, the non-trivial eigenfunctions also include that of the electron pressure le. When there is a

transverse perturbation, a transverse perturbed velocity eigenfunction ly becomes important also (see Section 7).

Our choice of boundary conditions requires that the perturbed longitudinal velocity lt has a fixed value of 23 at the shock, and a

stagnant flow at the white dwarf surface implies a zero lt at j ¼ 0. (Here and hereafter in this section, unless specified, the stagnant flow

condition is assumed.) The amplitude profiles generally have local minima and maxima (see Appendix B), which are analogous to the nodes

and antinodes in the oscillations of a pipe. The number of nodes and antinodes depends on the harmonic number n, and their positions are

determined by the radiative-transport processes and the system geometry. Unlike the nodes of an ideal pipe, the amplitude minima of

oscillating shocks do not always go to zero, and the amplitude maxima do not have the same values. Moreover, the nodal features of one

hydrodynamic variable may not coincide with those of another hydrodynamic variable.

4.1.1 |lt|-profile

The |lt| profiles do not show very distinctive nodes and antinodes. The amplitude |lt| increases very rapidly with j from a zero value at the
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lower boundary, reaches a plateau or a peak at larger j and then declines with a gradual tail towards the shock boundary value. The rapid rise

of |lt| occurs only in a small region where j & 10 2 4, and the size of the region seems to be independent of the harmonic number n (see

Fig. 2). The profiles for es ¼ 0 and 1 are similar, with the plateau value of |lt| of the fundamental mode <3 (e.g. Fig. B5). For higher

harmonics, the plateau values of |lt| are larger. The maxima (antinodes) generally become more visible when n increases (e.g. Figs B6–B8).

For the cases with large es, |lt| has a strong peak near the lower boundary. The peak heights tends to increase with n. It is worth noting

that in the extreme of small cei, large ss and large es (strong two-temperature effects and equal temperature for electrons and ions at the

shock), a small peak in |lt| is also present near the shock (see appendix D.2.4 in Saxton 1999).

4.1.2 |lp|-profile

The boundary value of |lp| ¼ 2 at the shock, but it is not defined at the white dwarf surface for the stagnant flow condition. The |lp| profiles

do not show distinctive nodes and antinodes for n ¼ 1 and 2. The nodes and antinodes, however, become more visible when n increases and

cei becomes small (see Figs B7–B10).

4.1.3 |le|-profile

The electron pressure eigenfunctions le show nodes and antinodes. The sharpness of the nodes depends on the strength of the electron–ion

energy exchange, cei. When the electron–ion energy exchange is efficient, the nodes are weak. When the electron–ion energy exchange is

inefficient, (e.g. cei ¼ 0:1Þ, the amplitude minima are narrow in j and deep in terms of amplitude. (See for example the es ¼ 100 curves of

Figs B1–B4).

For two-temperature shocks, it is the electron pressure pe rather than the total pressure p0 that appears in the cooling terms and

electron–ion exchange term. The electron pressure eigenfunction le therefore adopts the role that is played by the total pressure

Figure 2. The amplified view |lt| profiles (left column) and the phases wt (right column) near the lower boundary for the case with ðss;cei; esÞ ¼ ð0:5; 0:5; 1:0Þ

and a stagnant-flow boundary condition ðlt ¼ 0 at j ¼ 0Þ. The |lt| profiles and the phases of the modes n ¼ 1, 2, 3 and 4 are shown in rows from top to

bottom. The |lt| profiles are similar for the four modes, but the phases are very different.
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eigenfunction lp in the one-temperature case. When the electron–ion energy exchange is weak (i.e. small cei), the lp and le eigenfunctions

are very different. The different modes have sharp and strikingly different features in |le|, whereas the total pressure eigenfunction is

relatively featureless and smoothly varying. When the energy exchange between electrons and ions is efficient (i.e. large cei), the disparties

between their pressures becomes small throughout most of the post-shock region. When the system approaches the one-temperature

condition, and the total pressure follows the behaviour of the electron pressure, and the variations of the electron pressure and total pressure

eigenfunctions, le and lp, are comparable in amplitude over all j.

Because of the lower boundary conditions we assume, the electron and ion temperatures are zero and the electron and ion pressures

always become equal at j ¼ 0. The relative oscillation of the electron pressure must equal the relative oscillation of the total pressure at the

lower boundary; i.e. leðjÞ!lpðjÞ as j!0. However, there is no condition to determine the particular value at which these quantities must

meet at j ¼ 0, for any given mode under particular conditions.

Figure 3. Density eigenfunction of the n ¼ 3 eigenmode of a system with ðss;ceiÞ ¼ ð0:2; 0:1Þ, with varying es. Far from the critical value for these

parameters ðes < 6:527Þ, the phase jumps are broad: first row ðes ¼ 10Þ; fourth row ðes ¼ 3Þ. Near the transition, the phase jump is abrupt and the amplitude

approaches zero at the node: second row ðes ¼ 6:55Þ; third row ðes ¼ 6:5Þ.
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4.1.4 |lz|-profile

The density eigenfunctions, lz, have strong and distinct nodes and antinodes. For each mode the positions and magnitudes of the node–

antinode–node sections are affected by the efficiency of cyclotron cooling es. When es is small (&1), the nodes are nearly evenly spaced and

the antinodes near the shock tend to have lower amplitudes than those nearer the white dwarf surface. When es is larger, the nodes near the

shock are more widely spaced and the antinodes near the shock tend to be higher in amplitude. The innermost antinode in the region j & 0:1

becomes higher as es increases through the cases of es ¼ 0, 1, 100 studied here.

Because of the sharp node and antinode features appearing in the profiles of |lz| (and |le|) we suspect that the density and electron

pressure may be the quantities which determine the oscillatory properties of the shock. These hydrodynamic variables appear explicitly in the

functions for the cooling and electron–ion energy exchange processes. Other hydrodynamic variables (i.e. the flow velocities and the total

pressure) have amplitudes that vary less rapidly in j, probably indicating a less active involvement in determining the oscillatory behaviour of

the shock.

For the studied cases of (ss, cei, es), the modes divide into two classes based on the qualitative features of their amplitude profiles.

Profiles of the fundamental and first overtone ðn ¼ 1; 2Þ are more alike than the profiles of higher modes. The n . 2 modes have n 2 2

nodes at intermediate j positions, whereas the n ¼ 1; 2 profiles are slowly varying in j. The actual number of density nodes in each profile is

n 2 1, including the shock (where lz ¼ 0 is a boundary condition). An additional shallow, and usually indistinct, node occurs near the fixed

wall boundary (small j ) for some cases of large es. When two-temperature effects are strong, |le| also has sharp nodes for n . 2

modes.

4.1.5 Nodes, antinodes and sound speeds

The dimensionless electron and ion sound speeds are given by

ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gt0pe
p

; ð31Þ

and

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt0ð1 2 t0 2 peÞ

p
ð32Þ

respectively, and the mean sound speed is

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt0ð1 2 t0Þ

p
: ð33Þ

The sound speeds determine the local dynamical time- and length-scales, which influence the mode spacing. In regions of the post-shock flow

where the sound propagation is fast, nodes of the eigenfunctions tend to be further apart.

The sound speeds generally decrease from the shock down to the lower boundary (see Fig. 1). When the gradients of the sound speed

have change less dramatically (e.g. the case es ¼ 0 as in the far-left column of Fig. 1) the nodes of the eigenfunctions are more evenly

spaced. When es is large, the sound speeds are proportionately larger in the upper region of the flow, resulting in wider node-spacing in the

high-j region (contrast the different es curves of |lz| in Fig. B4).

The local amplitudes of antinodes of the density eigenfunctions are greatest in regions near the shock for large es. This is

counterintuitive, because previous studies (e.g. numerical simulations by Chanmugam et al. 1985, and Wu et al. 1992, 1996) show that

oscillations are globally suppressed by cyclotron cooling. This global result would lead us to expect lower local amplitudes in the cyclotron-

dominated region, and reduced amplitudes in systems with greater es. We believe that there is a connection between the increased antinode

amplitudes and the increased node spacing in the cyclotron-dominated region when es is great. The amplitude enhancement is not related to

two-temperature effects, because it occurs in the one-temperature extreme (large cei and ss!1Þ as well as the general two-temperature cases.

The behaviours of the nodes and antinodes (of the density eigenfunction) probably depend more sensitively on the overall form of the

stationary solution than on the energy exchange processes present in each region of the flow.

4.2 Phase

The phases of the various perturbed hydrodynamic variables are given the labels wz, wt, wy, wp and we for density, longitudinal velocity,

transverse velocity, total pressure and electron pressure respectively. The zero values correspond to oscillations in phase with that of the shock

height.

4.2.1 Boundary conditions and phase

At the shock ðj ¼ 1Þ there are boundary conditions on all of the l variables. The only phase which is not explicitly determined is wz. Our

calculations, however, show that the density oscillation is approximately in quarter-phase ahead of or behind the shock height oscillation,

except when es , 100 (see Figs B2, B6).
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There are fewer boundary conditions on the hydrodynamic variables at the bottom of the post-shock region. For the stationary-wall

condition, only the longitudinal velocity variable is constrained; |lt|!0 as j!0. The phase wt is not determined. The other perturbed

variables have no definite lower boundary values, and their phases depend completely on the energy transport processes.

The phases we and wp are not completely independent. As the electrons and ions have reached the same temperature at the lower

boundary, the oscillations of electron pressure and the oscillations of total pressure are identical at j ¼ 0. The variables lp and le have the

same values at the shock and the base but different values in between.

4.2.2 Interpretation of dw/dj

If the phase increases with j, we consider the oscillation to be propagating downwards from the shock towards the lower boundary. (This

is because the oscillations in the high-j region lead the oscillation in the lower-j regions.) If the phase decreases with j, then the

oscillation is considered to be propagating upwards. The upward and downward propagation are labelled positive [1] and negative [2]

respectively. If a complex l-function is viewed along the j-axis, with the real and imaginary l-parts horizontal and vertical, then the

complex function appears to wind about the origin in either a clockwise manner for positive propagation, or an anticlockwise manner for

negative propagation.

The phase functions can be regarded as having an overall winding between j ¼ 1 and j ¼ 0, with local phase glitches. For given (ss,

cei, es), the total winding of each perturbed variable across the interval 0 , j , 1 is a function of the harmonic number n. The number of

winding cycles is not necessarily an integer. Generally the number of cycles increases with n.

4.2.3 Illustrative cases

For the case of (ss, ceiÞ ¼ ð0:5; 0:5Þ (see Figs B5–B10), the pressure phases wp and we wind positively for the first six modes when

es ¼ 0; 1. When es ¼ 100, we may wind negatively in some regions. For n ¼ 1, the winding is negative throughout the entire post-shock

region. For n . 1 the winding is negative near the lower boundary ðj & 0:05Þ, but it can be positive or negative elsewhere.

The phase wz winds in a monotonically negative sense below j & 0:98 for the fundamental and first overtone. For the higher harmonics,

the winding of wz undergoes one or more abrupt jumps or reversals in narrow ranges of j. There are n 2 2 phase jumps in wz, and their

positions correspond to the distinct density-amplitude nodes. For the harmonics with n . 2, wz begins with a negative winding near the

shock ðj ¼ 1Þ and remains negatively winding throughout most of the flow, except at the jumps. The jumps can be either positive or negative.

Descending from the shock, the first jump is positive, and for many choices of (ss, cei, es) and n, the second jump is negative. The signs of the

further jumps depend on the mode and (ss, cei, es). For (ss, cei, esÞ ¼ ð0:5; 0:5; 1Þ the sequence of jumps is ½ 1 ; 2 ; 2 � when n ¼ 5

ðes ¼ 0, 1 in Fig. B9) and ½ 1 ; 2 ; 1 ; 2 � when n ¼ 6 ðes ¼ 0, 1 in Fig. B10). In cases where the cyclotron cooling dominates, the

positive jump in wz occurs very close to the shock and the subsequent jumps are all negative and indistinct.

4.2.4 Phase ‘discontinuities’

The sense of a phase jump, e.g. either a modest negative jump in phase or a positive jump by more than half a cycle, is essentially distinct

because the phase is seen to either increase or decrease asymptotically on either side of the node discontinuity, i.e. it is determined by the sign

of 2 dw/dj in the neighbourhood. In some situations there are critical values of es at which the sense of a phase jump changes from positive

to negative. For es far from the critical values, phase jumps are gradual, being spread relatively broadly in j. At the critical es the phase jump is

a discontinuity without a well-defined sign. Fig. 3 shows an example of the changes in structures of a density phase jump with es shown near

and far from its transition value.

4.2.5 Phases at j ¼ 0

As not all the phases at the lower boundary are directly constrained by boundary conditions, they can only be obtained by integrating the

hydrodynamic equations.

The lower boundary phase of each perturbed variable increases between a mode n and the consecutive mode n 1 1, when (ss, cei, es) is

fixed. This inter-mode increment differs slightly between the phases of different hydrodynamic variables. It also depends weakly on harmonic

number n. (See Fig. 4 for examples of lower boundary phases for one-temperature systems with different values of the parameter es.)

For a particular mode, there are regular phase relationships between different perturbed variables evaluated at the lower boundary. The

general trends are as follows.

(i) For both one-temperature and two-temperature accretion flows, the density and longitudinal velocity profiles are approximately in phase

(i.e. wz |j¼ 0 < wt|j¼ 0Þ.

(ii) The phase wp is approximately a quarter-phase behind the density and longitudinal velocity phases

ðwp|j¼ 0 < wz |j¼ 0 2 0:5 < wt |j¼ 0 2 0:5Þ.
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The phasings wa 2 wb for two hydrodynamic variables a and b are approximately constant for n . 2. For n ¼ 1 or 2 the phasings do not

conform to the general trend as well.

5 B O U N DA RY C O N D I T I O N S

So far we have considered a special case of ‘stationary wall’ in which both t and lt are zero at j ¼ 0. We now consider modifications in

which the zero-velocity boundary condition for the stationary solution ðt0 ¼ 0 at j ¼ 0Þ is retained but the boundary value of lt is not

necessarily zero. For example, the condition lp ¼ 0 implies constant (non-oscillating) pressure at the lower boundary, whilst allowing

oscillations of the velocity at the base of the settling flow. Other interesting conditions studied include lz 1 lt ¼ 0 (opposite density and

velocity oscillations) and lz ¼ 0 (constant density at lower boundary), see Fig. 5. However, it is found that the change of boundary

conditions has little effect on the frequency sequence dI. The mode stability dR only changes appreciably in the regime of large es and high

harmonic number n. Some choices with reasonable physical interpretations In general most of the choices that we consider yield eigenvalues

that are very close to those of the conventional case ðlt ¼ 0Þ at j ¼ 0. Detailed discussions of the effects of boundary conditions on the

eigenfunctions can be found in Saxton (2001).

Alternative lower boundary conditions on the stationary variables may be considered in conjunction with alternative conditions on the

perturbed variables. However these choices would describe systems that are physically very different from the white dwarf accretion problem

illustrated in this paper. An exploration of the properties of such systems is beyond the scope of this paper, and will be investigated in the

future.

6 L U M I N O S I T Y R E S P O N S E

The total power (normalized to rav2
ffÞ is given by integrating the cooling function over the whole post-shock structure in the stationary

solution:

L ¼

ð1

0

~L

g 2 1
dj ¼

ð1=4

0

½gð1 2 t0Þ 2 t0�

g 2 1
dt0 ¼

7g 2 1

32ðg 2 1Þ
: ð34Þ

For the adiabatic index g ¼ 5=3, the total power radiated via all processes is L ¼ 1=2, consistent with energy-conservation. The contribution

of bremsstrahlung cooling is

Lbr;0 ¼

ð1=4

0

½gð1 2 t0Þ 2 t0�

g 2 1

1

1 1 ~Lcy/ ~Lbr

dt0: ð35Þ

Figure 4. Phase of perturbed variables evaluated at the lower boundary ðj ¼ 0Þ for the n ¼ 1;…; 8 modes of one-temperature systems. Phases are defined in

relation to the oscillation of shock position. The left, centre and right columns show cases of the efficiency parameter es ¼ 0:1, 1, 10 respectively. The polar

plots show density, longitudinal velocity and pressure phases as diamonds, crosses and squares. The radius is the oscillatory part of the eigenvalue, dI. The

bottom row shows equivalent linear plots of phase versus dI for the same modes, with the same symbols as the polar plots. The phase variables are defined in

terms of p, so that a phase difference Dw ¼ 2 means a full cycle.
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The second cooling process (which is assumed to be cyclotron cooling) contributes the difference between this value and the total,

Lcy;0 ¼ L 2 Lbr;0.

It can be shown that the local luminosity responses are described by complex l-functions that are analogous to the eigenfunctions of the

hydrodynamic variables. The bremsstrahlung and cyclotron luminosity response functions, normalized to 1, are

lbr ¼
3

2
lz 1

1

2
le ð36Þ

and

lcy ¼ ð0:15 2 2:5Þlz 1 2:5le ð37Þ

for the conditions of accreting magnetic white dwarfs. For a particular mode the lbr and lcy profiles describe what could be regarded as

eigenfunctions of the effect of the oscillations on the cooling emission.

The amplitude and phase profiles of the modes reveal several regularities. The phases wbr and wcy are both zero at the shock, j ¼ 1 (see

Figs 6 and 7), meaning that the emission caused by both processes locally near the shock oscillates in phase with the oscillation of the shock

height. The function |lbr| has a minimum in amplitude at or near the shock, and the cyclotron function |lcy| has a maximum in the same

vicinity. In between the upper and lower boundaries there is no simple relationship between the phases of the two functions. Near the lower

boundary, both eigenfunctions reach their maximum amplitudes for any given mode, and these maxima are higher for modes with a higher

harmonic number n. At the lower boundary, j ¼ 0, the oscillations of the two cooling processes are in antiphase. However, in almost all cases

Figure 5. Eigenplanes for ðss;ceiÞ ¼ ð0:5; 0:5Þ and es ¼ 0, 1, 100 (from left to right) with alternative lower boundary conditions. Contours indicate the

agreement between integrated values of the perturbed variables at given complex d and the boundary condition. The top row is for the conventional zero-

velocity boundary condition lt ¼ 0. The upper-middle row is for lp ¼ 0, meaning constant pressure at the lower boundary; the lower-middle row is for

lz 1 lt ¼ 0, which relates to the strict relation r/1/v; and the bottom row is for lz ¼ 0, which is a condition of constant density at the boundary.
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the antinodes of lbr occur at the nodes of lcy and the nodes of lbr occur at the antinodes of lcy. There is no obvious relation between the

luminosity responses lbr, lcy and the eigenvalues d.

Multiplying lbr and lcy by the respective cooling functions and integrating over the entire post-shock region yields the luminosity

responses for a small shock-height perturbation 1 (see Section 2.2):

Lbr;1 ¼ 1

ð1=4

0

~Lbr

g 2 1
lbr

dj

dt0

dt0 ¼ 1

ð1=4

0

½gð1 2 t0Þ 2 t0�

g 2 1

~Lbr

~Lbr 1 ~Lcy

lbr dt0; ð38Þ

and

Lcy;1 ¼ 1

ð1=4

0

~Lcy

g 2 1
lcy

dj

dt0

dt0 ¼ 1

ð1=4

0

½gð1 2 t0Þ 2 t0�

g 2 1

~Lcy

~Lbr 1 ~Lcy

lcy dt0: ð39Þ

Lbr,1 is different for different modes, and so is Lcy,1. Moreover,the modes which have high-amplitude Lcy,1 oscillations do not necessarily have

strong oscillations in Lbr,1.

In Table 1 we show the integrated luminosity responses, scaled according to the amplitude of the shock-height oscillation 1. These

quantities are proportional to the relative variations in bremsstrahlung (cyclotron) emission.

Lbr,1 and Lcy,1 do not show obvious dependence on dR, however, they do seem to be dependent on the system parameters (ss, cei, es).

Whether or not |Lbr;1|/Lbr;0 . |Lcy;1|/Lcy;0 depends strongly on es, but is only weakly dependent on ss and cei.

The complex phases of the values Lbr,1 and Lcy,1 are Fbr(n ) and Fcy(n ) respectively for each mode n, and are listed in Table 2.

Depending on the difference between the phases, the waxing and waning of the emission as a result of one cooling process may follow or lead

the other process, or else they may be in phase or antiphase.

Figure 6. Profiles of luminosity perturbed variables, lbr and lcy, in modes n ¼ 1, 2, 3, 4 from top to bottom. This choice of system parameters,

ðss;cei; esÞ ¼ ð0:2; 0:1; 100Þ, gives strong two-temperature effects, and cyclotron cooling dominates. The left column shows the amplitudes for bremsstrahlung

luminosity |lbr| (solid line) and cyclotron |lcy| (dotted line). Central and right columns are the phase profiles, wbr and wcy, with the dotted straight line being a

zero-phase reference.

Stability analyses of two-temperature radiative shocks 671

q 2001 RAS, MNRAS 324, 659–684



For small es and for a given mode n, the phases Fbr(n ) and Fcy(n ) are nearly constant throughout the (ss, cei) parameter space. The two-

temperature parameters (ss, cei) are almost ineffectual in the small-es regime. For constant ss and es, decreasing cei causes the phase

difference FcyðnÞ 2 FbrðnÞ to decrease. This means that if cyclotron luminosity lags then its lag increases; if cyclotron luminosity leads

bremsstrahlung luminosity then the cyclotron lead decreases.

In general, Fbrð1Þ < 0:35p to 0.5p and Fcyð1Þ < 0:9p for the fundamental mode in a wide range of system parameters, i.e. cyclotron

emission oscillation almost always lags bremsstrahlung emission by < 0:6p. In the extreme cases in which two-temperature effects are so

strong that the fundamental mode becomes unstable, e.g. when ðss;cei; esÞ ¼ ð1:0; 0:1; 100Þ, this relation breaks down. The phase properties

are more complicated for the overtones because of the more complicated winding and nodes in the l-functions (see 4.2.2). Therefore no

obvious relationships are found between the stability of a mode, the phases Fbr, Fcy, and their differences.

7 T R A N S V E R S E P E RT U R B AT I O N

7.1 Eigenfunction profiles

In the absence of transverse perturbations ðk ¼ 0Þ, the transverse velocity eigenfunction ly is zero everywhere. When k . 0, the profiles of

the other eigenfunctions are modified (see Figs 8 and 9). The amplitude |ly| generally has its maximum value near the lower boundary, and

from that value it declines steeply in j to the value fixed by the boundary condition at the shock. Increasing k causes the amplitude |ly| to

increase in the region near the lower boundary, and the slope d|ly|=dj steepens throughout the profile. Greater es makes the slope steeper,

when k is fixed. For some k there are one or more local minima in the |ly| profile, with the number of minima depending on the harmonic

number n.

The transverse velocity phase wy generally winds in a negative sense from the shock to the lower boundary (see 4.2.2). The total number

of turns of wy increases with k until a threshold is reached. Beyond the threshold there is no winding in wy (see Figs 8 and 9, third panel, right

column). The lower boundary values of |lz|, |lt|, |lp| and |le| all increase with k beyond the k-threshold.

The |lz| and |lt| profiles have the most distinctive features. However the lz and lt features disappear when k is sufficiently large. These

Figure 7. Same as Fig. 6 but for ðss;cei; esÞ ¼ ð0:5; 0:5; 1Þ. This choice of system parameters gives modest two-temperature effects and equal bremsstrahlung-

and cyclotron-cooling efficiencies.
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Table 1. Amplitudes of the oscillations of the total emission in bremsstrahlung and
cyclotron radiation, relative to these processes total luminosities in the stationary solution.
For each set of the system parameters, the left column indicates whether the mode is stable
(2) or unstable (1) in the small-amplitude analysis (see complete eigenvalue results in
Saxton & Wu 1999). The middle and right columns are the 1-normalized relative amplitudes
|Lbr;1|/1Lbr;0 and |Lcy;1|/1Lcy;0 respectively.

ss cei es ¼ 0 es ¼ 1 es ¼ 100
dR

|Lbr;1 |
1Lbr;0

|Lcy;1 |

1Lcy;0
dR

|Lbr;1 |
1Lbr;0

|Lcy;1 |

1Lcy;0
dR

|Lbr;1 |
1Lbr;0

|Lcy;1 |

1Lcy;0

0.2 0.1 2 2.749 * 2 0.924 2.615 2 0.534 0.796
1 1.650 * 2 0.333 0.736 2 0.203 0.405
1 2.501 * 2 0.945 0.588 2 0.471 1.156
1 1.298 * 1 0.859 0.473 2 0.566 0.927
1 1.685 * 2 1.085 0.375 2 0.544 0.728
1 2.020 * 1 0.978 0.352 2 0.741 0.594

0.2 0.5 2 2.732 * 2 1.136 3.755 2 1.128 4.057
1 1.626 * 2 0.213 0.659 2 0.145 0.825
1 2.493 * 2 1.001 0.202 2 0.471 0.964
1 1.294 * 2 0.819 0.364 2 0.525 1.093
1 1.651 * 2 1.107 0.354 2 0.484 0.923
1 1.977 * 2 0.987 0.329 2 0.688 0.795

0.2 1.0 2 2.732 * 2 1.219 4.227 2 1.244 5.198
1 1.621 * 2 0.168 1.193 2 0.246 1.072
1 2.494 * 2 1.054 0.260 2 0.352 0.400
1 1.291 * 2 0.788 0.099 2 0.550 0.806
1 1.654 * 2 1.099 0.214 2 0.416 0.924
1 1.974 * 2 0.998 0.248 2 0.641 0.863

0.5 0.1 1 2.800 * 2 1.277 2.857 2 0.661 0.695
1 1.628 * 1 0.435 0.727 2 0.279 1.751
1 2.530 * 1 1.218 0.693 2 0.612 1.494
1 1.335 * 1 1.096 0.633 1 0.693 1.429
1 1.652 * 1 1.243 0.557 1 0.860 1.315
1 2.049 * 1 1.209 0.528 1 0.923 1.215

0.5 0.5 2 2.745 * 2 1.318 4.079 2 1.254 3.600
1 1.618 * 2 0.345 0.513 2 0.183 0.429
1 2.497 * 2 1.197 0.190 2 0.715 0.950
1 1.306 * 1 1.015 0.344 2 0.652 1.173
1 1.641 * 1 1.228 0.339 2 0.804 1.143
1 1.983 * 1 1.109 0.331 2 1.102 1.080

0.5 1.0 2 2.739 * 2 1.342 4.453 2 1.425 4.649
1 1.617 * 2 0.304 0.950 2 0.294 0.898
1 2.496 * 2 1.215 0.237 2 0.677 0.171
1 1.297 * 1 0.987 0.199 2 0.666 0.758
1 1.650 * 2 1.228 0.231 2 0.643 0.929
1 1.976 * 1 1.091 0.232 2 1.109 0.959

1.0 0.1 1 2.893 * 2 1.635 2.419 1 0.738 0.580
1 1.601 * 1 0.516 1.024 1 0.350 2.706
1 2.596 * 1 1.438 1.070 1 0.654 2.588
1 1.396 * 1 1.278 1.043 1 0.814 2.533
1 1.591 * 1 1.319 0.975 1 1.192 2.430
1 2.094 * 1 1.388 0.917 1 1.013 2.311

1.0 0.5 2 2.769 * 2 1.551 4.088 2 1.277 3.048
1 1.604 * 1 0.415 0.419 1 0.211 0.512
1 2.505 * 1 1.373 0.284 2 0.806 1.494
1 1.329 * 1 1.141 0.402 2 0.662 1.737
1 1.624 * 1 1.303 0.395 2 1.128 1.778
1 1.998 * 1 1.270 0.402 2 1.202 1.739

1.0 1.0 2 2.752 * 2 1.544 4.516 2 1.441 4.218
1 1.609 * 1 0.384 0.780 2 0.311 0.462
1 2.499 * 1 1.374 0.246 2 0.822 0.615
1 1.309 * 1 1.108 0.251 2 0.672 1.115
1 1.640 * 1 1.299 0.246 2 0.905 1.319
1 1.982 * 1 1.245 0.240 2 1.254 1.390
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Table 2. Total bremsstrahlung and cyclotron emission phases, Fbr and Fcy, expressed as multiples of p, for the modes n ¼ 1…6 from top to
bottom, under given (ss, cei, es) conditions. In this convention the phase of the shock-position oscillation is defined as Fs ¼ 0. In each set, the
third column described the difference between the phases of integrated cyclotron- and bremsstrahlung-luminosity oscillations,
FcyðnÞ 2 FbrðnÞ. Negative values indicate the cyclotron luminosity oscillation following the bremsstrahlung luminosity oscillation; and
positive values indicate cyclotron luminosity leading bremsstrahlung luminosity.

ss cei es ¼ 0 es ¼ 1 es ¼ 100
Fbr 2 Fs Fcy 2 Fs Fcy 2 Fbr Fbr 2 Fs Fcy 2 Fs Fcy 2 Fbr Fbr 2 Fs Fcy 2 Fs Fcy 2 Fbr

0.2 0.1 20.366 * * 20.353 20.986 20.663 20.542 0.928 20.530
20.763 * * 0.573 20.336 20.909 0.388 20.385 20.773
20.450 * * 20.891 20.319 0.572 0.770 20.429 0.801

0.141 * * 20.333 20.263 0.070 20.855 20.295 0.560
0.936 * * 0.305 20.280 20.585 20.325 20.271 0.054

20.454 * * 0.892 20.302 20.194 0.144 20.281 20.425

0.2 0.5 20.374 * * 20.347 20.989 20.642 20.410 0.954 20.636
20.766 * * 0.517 20.989 0.494 20.163 20.645 20.482
20.458 * * 20.957 20.334 0.623 0.725 20.367 0.908

0.116 * * 20.441 20.207 0.234 0.955 20.373 0.672
0.913 * * 0.175 20.168 20.343 20.600 20.324 0.276

20.487 * * 0.674 20.170 20.844 20.137 20.265 20.128

0.2 1.0 20.376 * * 20.339 20.981 20.642 20.340 20.984 20.644
20.767 * * 0.396 0.993 0.597 20.284 20.827 20.543
20.461 * * 20.973 0.934 20.093 0.810 20.607 0.583

0.111 * * 20.487 20.107 0.380 0.879 20.335 0.786
0.909 * * 0.147 20.050 20.197 20.868 20.324 0.544

20.494 * * 0.612 20.071 20.683 20.244 20.299 20.055

0.5 0.1 20.361 * * 20.348 20.976 20.628 20.486 20.981 20.495
20.762 * * 0.635 20.157 20.792 0.402 20.231 20.633
20.448 * * 20.771 20.192 0.579 0.775 20.251 0.974

0.123 * * 20.863 20.284 0.579 20.738 20.192 0.546
0.931 * * 0.484 20.252 20.736 20.241 20.182 0.059

20.466 * * 20.863 20.284 0.579 0.219 20.195 20.414

0.5 0.5 20.373 * * 20.349 20.995 20.646 20.415 0.976 20.609
20.766 * * 0.615 0.825 0.210 20.047 20.585 20.538
20.458 * * 20.820 0.077 0.897 0.743 20.202 20.945

0.112 * * 20.240 20.024 0.216 20.923 0.270 0.807
0.911 * * 0.406 20.054 20.460 20.399 20.211 0.188

20.490 * * 20.974 20.105 0.869 20.021 20.189 20.168

0.5 1.0 20.375 * * 20.347 20.992 20.645 20.359 20.980 20.621
20.768 * * 0.593 0.884 0.291 20.160 20.878 20.718
20.461 * * 20.833 0.660 20.507 0.782 0.171 20.611

0.123 * * 20.260 0.235 0.495 0.986 20.187 0.827
0.907 * * 0.388 0.137 20.251 20.458 0.193 0.651

20.496 * * 0.996 0.047 20.949 20.083 20.187 20.104

1.0 0.1 20.352 * * 20.342 20.889 20.547 20.474 20.299 0.175
20.757 * * 0.700 20.134 20.834 0.418 20.104 20.522
20.444 * * 20.690 20.195 0.495 0.762 20.146 20.908

0.091 * * 20.109 20.243 20.134 20.639 0.497 20.864
0.924 * * 0.573 20.292 20.865 20.227 20.159 0.068

20.487 * * 20.772 20.325 0.447 0.251 20.181 20.432

1.0 0.5 20.371 * * 20.352 20.986 20.634 20.428 0.994 20.578
20.766 * * 0.684 0.689 0.005 0.039 20.067 20.106
20.458 * * 20.734 0.113 0.847 0.731 20.070 20.801

0.104 * * 20.141 0.008 0.149 20.814 20.121 0.693
0.906 * * 0.533 20.047 20.580 20.306 20.137 0.169

20.494 * * 20.817 20.111 0.706 0.039 20.149 20.188

1.0 1.0 20.374 * * 20.353 20.991 20.638 20.378 20.975 20.597
20.768 * * 0.680 0.807 0.127 20.088 20.950 20.862
20.461 * * 20.743 0.525 20.732 0.755 0.056 20.699

0.105 * * 20.151 0.241 0.392 20.928 20.063 0.865
0.904 * * 0.526 0.160 20.366 20.328 20.093 0.235

20.499 * * 20.830 0.010 0.840 20.008 20.115 20.107
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k-dependent properties depend on the harmonic number n and the system parameters [e.g. k * 4 for ðss;cei; esÞ ¼ ð0:5; 0:5; 100Þ and

n ¼ 1; 2; k * 8 for ðss;cei; esÞ ¼ ð0:5; 0:5; 0Þ and n ¼ 1; 2�.

The amplitude and phase profiles of the total pressure lp and electron pressure le are less dependent upon k than the density and velocity

eigenfunctions. In the case of ðss;ceiÞ ¼ ð0:5; 0:5Þ the eigenfunctions for total pressure and electron pressure are not greatly affected by the

introduction of a transverse perturbation when k is small. The total pressure and electron pressure eigenfunctions are much alike because the

amplitude and phase profiles match at both the upper and lower boundaries. Increasing k causes the decrease of the lower boundary pressure

phase, we|j¼ 0 ¼ wp|j¼ 0. The phases wp and we have similar profiles for small-es flows, but the electron pressure develops phase jumps and

associated node-like amplitude features when es is large. (For a more detailed discussion of the transverse perturbation, see Saxton 1999.)

7.2 Luminosity response

Figs 10 and 11 show the luminosity responses as functions of k for n ¼ 1 and 2. The integrated luminosity amplitudes |Lbr,1| and |Lcy,1| have

minima in k where there are abrupt changes of the phases Fbr and Fcy respectively. The number of k-minima is determined by n. For n ¼ 1

and ðss;ceiÞ ¼ ð0:5; 0:5Þ the |Lbr,1| minima occur at about k , 1:6, 1.0, 0.6 for es ¼ 0, 1, 100 and the |Lcy,1| minima coincide at

approximately the same k-values. For n ¼ 2 there are at most two minima of |Lbr,1|. For small es the minimum corresponding to a larger

k-value becomes an inflection, e.g. for es ¼ 0 the actual amplitude minimum of |Lbr,1| is at k < 1:8 and the inflection point is at k < 3:4.

Both amplitudes, |Lbr,1| and |Lcy,1|, are slowly varying in k when the value of k is below k*, where k*ðn; esÞ < 1
2
ð2n 2 1ÞkeðesÞ and ke

depends on the system parameters. For ðss;ceiÞ ¼ ð0:5; 0:5Þ, ke , 1:0 for es ¼ 0. It reduces gradually as the cooling efficiency increases,

and ke , 0:3 at es ¼ 100. For wavenumbers k . k*, both |Lbr,1| and |Lcy,1| increase rapidly with k. This is a consequence of the increasing

amplitudes of the hydrodynamic variables’ l-functions as k increases. Because bremsstrahlung cooling is most efficient in regions near the

lower boundary, |Lbr,1| tends to rise more steeply with k than |Lcy,1| does.

The integrated luminosity phases Fbr and Fcy wind with k. On top of these winding trends, there are phase jumps where the respective

Figure 8. Eigenfunction profiles in the presence of transverse perturbation, for density, longitudinal velocity, transverse velocity, total pressure and electron

pressure (from top to bottom), for the n ¼ 1 mode with ðss;cei; esÞ ¼ ð0:5; 0:5; 1Þ. Profiles for wavenumbers k ¼ 0, 1, 4 are plotted in dotted, dashed and

solid curves respectively. The left column shows logarithms of the amplitudes, and the right column shows the phases. Phases are multiples of p. The dotted

line in the phase plots gives reference for zero phase, which is defined to be the phase of the oscillation of shock height (marked in grey).
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|Lbr,1|, |Lcy,1| amplitudes reach minima. Away from the minima, both of the phases generally decrease when k increases. Generally the

winding of both phases in k is more rapid when es is large, however for sufficiently large es there are modes where Fbr overtakes Fcy in its

variation with k, e.g. n ¼ 2 with ðss;cei; esÞ ¼ ð0:5; 0:5; 100Þ. The prevailing winding of the bremsstrahlung phase Fbr is usually more

sensitive to k than the Fcy is, i.e. 2 dFbr/dk tends to be greater than 2 dFcy/dk.

In summary, the presence of transverse perturbations may significantly alter the instability of a mode and modify the luminosity

response.

8 C O N C L U S I O N S

We have presented a general formulation for the linear analysis of two-temperature radiative shocks with multiple cooling processes. The

formulation recovers the restrictive cases in the previous studies such as the one-temperature flows with a single cooling function (Chevalier

& Imamura 1982), the one-temperature flows with multiple cooling processes (Saxton et al. 1998) and the two-temperature flows with a

single cooling function (Imamura et al. 1996). We have applied the formulation to mCVs and investigated the hydrodynamic and emission

properties of the time-dependent post-shock accretion flows in these systems. Our finding are summarized as follows.

The amplitude profiles of l-eigenfunctions show local minima and maxima, which we identify as nodes and antinodes. The nodes and

antinodes are prominent only in the eigenfunction profiles of density and electron-pressure. The eigenfunctions for the fundamental and first

overtone are more similar to each other than any of the higher overtones. The eigenfunctions for higher-order modes have more nodes.

The phase profiles of the eigenfunctions describing particular hydrodynamic variables circulate about the complex plane as j varies from

the shock down to the lower boundary. This circulation can be positive or negative overall, or there may be reversals of the winding sense

between distinct zones. The abrupt jumps in the phase profiles always coincide with the nodes in the l-eigenfunction profiles.

The luminosity responses of cyclotron and bremsstrahlung are determined by the l-eigenfunctions. There is no obvious general

relationship between the amplitude or phase luminosity responses and the stability properties of the flow. There are situations in which a

mode is unstable but the amplitude of oscillations are larger in the cyclotron luminosity than in the bremsstrahlung luminosity.

Figure 9. Same as Fig. 8 but for n ¼ 2.
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Figure 10. Integrated luminosity response amplitudes and phases for n ¼ 1 mode in the presence of transverse perturbations, for the parameters ðss;ceiÞ ¼

ð0:5; 0:5Þ and es ¼ 0, 1, 100 from left to right. The curves corresponding to bremsstrahlung cooling are marked with 1; the curves corresponding to cyclotron

cooling are marked with �.

Figure 11. Same as Fig. 10 but for the n ¼ 2 mode.
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For the same stationary condition ðt ¼ 0 at j ¼ 0Þ, all our choices of perturbed boundary conditions do not show significant

differences in the stability properties. We therefore conclude that the stability properties of the flow with a stationary wall boundary is mainly

determined by the energy-transport processes.

The presence of a transverse perturbation modifies the eigenfunction profiles of all the hydrodynamic variables. The profiles of electron-

pressure and total-pressure eigenfunctions are less affected in comparison with the other eigenfunction profiles. In some range of the

transverse wavenumber k, the density and longitudinal velocity eigenfunction profiles develop extra node features. When k is large enough

(&3 for n ¼ 1; 2Þ, the amplitudes of all the eigenfunctions become large near the lower boundary. The amplitudes, however, decrease as the

height j increases. For some values of the transverse wavenumber ð1 & k & 3Þ, a mode which is stable in the absence of the transverse

perturbation can become unstable. However, when k is very large, the mode is stabilized. The phase difference between the oscillations in the

bremsstrahlung and cyclotron luminosity are also modified in the presence of transverse perturbations.
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A P P E N D I X A : R E D U C T I O N T O R E S T R I C T E D S Y S T E M S

The matrix equation describing the perturbation is

d

dt0

lz

lt

ly

lp

le

2666666664

3777777775
¼

1

~L

1 2 1 0 1/t0 0

2 gp0/t0 1 0 2 1/t0 0

0 0 2 ðgp0 2 t0Þ/t0 0 0

g 2 g 0 1=p0 0

g 2 g 0 g/t0 2 ðgp0 2 t0Þ/t0pe

2666666664

3777777775

F1

F2

F3

F4

F5

2666666664

3777777775
: ðA1Þ

For systems with a purely longitudinal perturbation, k ¼ 0 and the third row and third column of the matrix can be eliminated. The ly terms

vanish from the remaining F functions, and the equation for ly which decouples from the rest of the perturbed variables is simply

678 C. J. Saxton and K. Wu

q 2001 RAS, MNRAS 324, 659–684



ðln lyÞ
0 ¼ d/t0 2 ðln t0Þ

0, or l0y ¼ lyðd 2 t00Þ/t0. The two-temperature system with purely longitudinal perturbations is described by this

reduced matrix equation, with corresponding F functions that omit all terms of ly:

d

dt0

lz

lt

lp

le

2666664

3777775 ¼
1

~L

1 2 1 1/t0 0

2 gp0/t0 1 2 1/t0 0

g 2 g 1=p0 0

g 2 g g/t0 2 ðgp0 2 t0Þ/t0pe

2666664

3777775
F1

F2

F4

F5

2666664

3777775: ðA2Þ

In the single-temperature limit, cei becomes large and the electron and ion pressures both equal half of the total pressure, i.e. we have

2pe!p0 ¼ 1 2 t0, and le!lp throughout the entire post-shock flow. Moreover, F5!1=2F4. Then we can eliminate the fifth row of (A1),

yielding

d

dt0

lz

lt

ly

lp

2666664

3777775 ¼
1

~L

1 2 1 0 1/t0

2 gp0/t0 1 0 2 1/t0

0 0 2 ðgp0 2 t0Þ/t0 0

g 2 g 0 1=p0

2666664

3777775
F1

F2

F3

F4

2666664

3777775: ðA3Þ

Reducing the system to a one-temperature form with purely longitudinal perturbations leaves only three non-trivial perturbed variables and

hence a 3 � 3 coefficient matrix

d

dt0

lz

lt

lp

2664
3775 ¼ 1

~L

1 2 1 1/t0

2 gp0/t0 1 2 1/t0

g 2 g 1=p0

2664
3775

F1

F2

F4

2664
3775; ðA4Þ

which is equivalent to that in Saxton et al. (1997) and Saxton et al. (1998).

A P P E N D I X B : E I G E N F U N C T I O N P R O F I L E S

Figure B1. Eigenfunctions for n ¼ 1 mode with ðss;ceiÞ ¼ ð0:2; 0:1Þ and es ¼ 0, 1, 100 for dashed, dotted and solid lines respectively. Amplitudes are

shown in the left column, phase profiles on the right.
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Figure B2. Same as Fig. B1 but with n ¼ 2 and ðss;ceiÞ ¼ ð0:2; 0:1Þ.

Figure B3. Same as Fig. B1 but with n ¼ 3 and ðss;ceiÞ ¼ ð0:2; 0:1Þ.
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Figure B4. Same as Fig. B1 but with n ¼ 4 and ðss;ceiÞ ¼ ð0:2; 0:1Þ.

Figure B5. Same as Fig. B1 but with n ¼ 1 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.
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Figure B6. Same as Fig. B1 but with n ¼ 2 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.

Figure B7. Same as Fig. B1 but with n ¼ 3 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.
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Figure B8. Same as Fig. B1 but with n ¼ 4 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.

Figure B9. Same as Fig. B1 but with n ¼ 5 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.
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Figure B10. Same as Fig. B1 but with n ¼ 6 and ðss;ceiÞ ¼ ð0:5; 0:5Þ.
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