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1 Introduction 

Consider two incidents that might trigger a fruitless search: 

1. mislaid car keys, and 

2. a noise in the night that might indicate a burglar. 

In the first case, the search is likely to be intense and sustained. In the second, cursory and 
short. 

There are at least two reasons why this might be. The first is our level of belief in the 

existence of the searched-for object. Although the car keys remain elusive, our belief in them 

is almost unshakeable. In the case of the burglar, (hopefully) our experience is that they are 

unlikely.  

The second reason is related to the size of the searched-for object. A quick check should be 

enough to give us confidence that there is no (big) burglar. The (small) car keys however, 

could have been missed even during the most extensive search. 

We can formalise these principles and use them to assist in designing effective surveys to 

detect hidden patches of objects or resources. The survey objective is to control the risk that 

such patches go undetected.  Conversely, having carried out the survey and observed no 

patches, what inferences can we make about the size and frequency of patches that could have 

been missed? 

Previous discussions about optimum design of archaeological surveys to detect patches of 

remains include Krakker et al (1983), Lightfoot (1986) and Kintigh (1988). However, the 
problem has arisen in many other fields, for example geology (Singer, 1975), mineralogy 

(Drew, 1979), pollution monitoring (Ferguson, 1992) and ecology (Nicholson and Barry, 

1995). 

The following section introduces the terminology and some of the basic ideas. We compare 

the classical with Bayesian solutions that may reduce sampling effort by incorporating prior 
information about the possible existence and size of remains. These results are then applied in 

section 3 to data from a series of excavations made in London. 

2 Controlling the risk that remains of a given area are missed 

Suppose that in a survey area there may be hidden (e.g. sub-surface) archaeological remains 

with relative area a, i.e. 
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areasurvey 

remains of area
=a    0≤a≤1. 

We assume that the remains are detected if one or more sampling points overlay the remains. 

i.e. detection does not depend on the depth or the vertical extent of the remains. 

Our objective is to design the survey so that if there are remains with relative area equal to or 

greater than some value a*, the risk that they will be missed is sufficiently small. 

We begin by discussing the classical solution to this problem. We then go on to describe two 
Bayesian models (Hartigan, 1983; Lee, 1989), the first incorporating prior information about 

the existence of remains, and the second incorporating information about both existence and 

the size of remains. Finally we consider the changes to the measured risk brought by this 

additional information. 

We derive simple, explicit results for simple random surveys of N independent sampling 
points – i.e. the outcome at one sampling point isn’t affected by the outcome at other 

sampling points. The implications of other sampling schemes are presented in the discussion. 

2.1   Classical solution 

For a random survey of N independent sampling points, the relative area of remains is 

equivalent to the probability of success in a binomial distribution of the number of successes 

in N trials. When no remains are detected, the  upper (1- p) confidence limit for a (Johnson 

and Leone, 1977, p267) is defined as ap, the largest a satisfying 

1-p ≤ (1 – a)N. 

Turning this around, we can therefore define (1-a*)N as a upper limit of the (classical) risk 

that remains with a relative area greater than or equal to a* have been missed i.e. 

Rclassical(a≥a*) ≤ (1 – a*)
N
. 

For example, suppose that the total survey area is 100x100 m
2
. If there was no evidence of 

any remains at N = 50 random sampling points, the risk that remains with an area of 100 m
2
 

(relative area = 1%) or greater could have been missed is 

Rclassical(a≥0.01) ≤ (1 – 0.01)
50 = 0.61. 

We see that even with 50 sampling points, this risk is very high – worse than the toss of a 

coin. This reflects the difficulty of making inferences about small probabilities with limited 

resources. Table 1 demonstrates this further, using 

*)1log(

*)](log[

a

aaR
N classical

−

≥
=  

to find the values of N required for different combinations of R(a≥a*) and a*. 

Note also that for small a*, 

NaN ea **)1( −≈−  

showing that approximately, a given risk effectively depends on the product of a* and N. This 

implies that e.g. halving a* (by decreasing the area of the remains or increasing the survey 

area) requires an approximate doubling of N. 



Draft Text for IFA Conference,  Brighton 2000.  Version 2.3  16 March 2000 

 3 

2.2   Bayesian Model 1: Incorporating information about the likely existence of remains of a 

given size 

Table 1 demonstrated that for small remains in large areas, relying solely on surveys to 

control risk demands large sampling resources. It may be possible to reduce this demand 

however, by adopting a Bayesian approach to incorporate additional information. In this first 

model, we will incorporate prior information about the likely existence of remains. 

Suppose that there may be remains with relative area a* or greater in a survey area, but that 

no remains are detected in a survey. Before the survey, we can quantify our prior belief 

as priorπ , the prior probability that these remains exist. We can then update priorπ  having 

carried out the survey. 

Let posteriorπ  be the posterior belief that there are remains with area greater than or equal to a* 

in the survey area given that no remains were seen at N sampling points. Deriving posteriorπ is 

simply an exercise in conditional probability: 

i.e. 

missed) Pr(

Missed)  andexist  Pr(remains
  missed)  |exist  remainsPr(

N

N
N =  

 

exist) remains | missed Pr(exist) Pr(remains  exist)t don' Pr(remains

exist) remains | missed Pr(exist) Pr(remains

N

N

×+

×
=  

i.e. 

*

*

M-1

M

apriorprior

aprior

posterior ππ

π
π

+
=  

where *M a  is the probability that remains of relative area a* are missed at all N sampling 

points. For a simple random sample  

N
a a*)1(M * −= . 

Clearly priorπ  and posteriorπ  correspond to the prior and posterior risks that remains of relative 

area a* or greater could have been missed in the survey, giving 

priorprior aaR π=≥ *)(  

and 

N
priorprior

N
prior

posteriiorposterior
a

a
aaR

*)1(1

*)1(
*)(

−+−

−
==≥

ππ

π
π . 

When designing a survey, this last equation can be re-written to give 

*)1ln(

)
)1(

)1(
ln(

a
N
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prior
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−

−

−

=
π

π

π
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the required number of sampling points in a simple random sample required to reduce the risk 

of failing to discover remains with relative area a* or greater from priorπ  to posteriorπ . For 

example, Figure 1 shows Rposterior(a≥1%) plotted against Rprior(a≥1%)  for N = 25, 50, 100, 250 
and 500. 

Differences between the sample size requirements suggested by this approach and the 

classical solution are discussed in Section 2.4. But first we consider an extended version of 

this Bayesian model where there is prior information about both the existence of remains and 
their size. 

2.3  Bayesian Model 2: Incorporating prior information about both the likely existence and 

size of remains 

In this second case, we model existence and size of remains separately. For existence, we re-

define πprior and πposterior to be the prior and posterior probabilities that a survey area contains 
any remains – i.e. remains of any size. 

In the second component, the relative area of the remains, a, is now a random variable, whose 

variation is described by some probability distribution. Prior information about area is 
expressed in the parameters of this distribution. Let us deal with second component first. 

A convenient probability distribution to consider is a specific parameterisation of the Beta 

distribution 

),(

)1(
)(

11

βα

βα

B

xx
xf

−− −
=  

where B(α,β) is the mathematical beta function (Evans et al, 1993). Following Nicholson and 
Barry (1995), we set α = 1. The prior distribution for a is then 

prior
prioraaf ββ 1

)1()(
−−=  

and the mean of a is given by 

prior

aE
β+

=
1

1
][ . 

Hence prior information about the area of remains, given they exist, can be expressed simply 

as the average relative area. Alternatively, as we shall see, βprior acts as a sort of virtual sample 
size – the number of observations in a hypothetical previous survey in which nothing was 

found (c.f. Nicholson and Barry, 1995). 

Prior Distribution 

To obtain the prior distribution function for the relative area of remains, we combine the 

probability of existence and the distribution of relative area where there are remains as 

follows: 

write 

Pr(a < a*) = Pr(no remains, or, remains exist and a < a*) 

or 

Pr(a < a*) = Pr(no remains) + Pr(remains exist) × Pr(a < a* | remains exist). 
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i.e. the cumulative prior distribution function of the relative area of remains, that may or may 

not exist is given by 

)|*(1*)( priorpriorprior aFaH βππ ×+−=  

where F(a*|βprior) is the cumulative distribution function for a Beta probability density with parameters 
α = 1 and βprior.  

Posterior Distribution 

Suppose again that we carry out a random survey of N sampling points, at which no remains 

are observed. To find the corresponding posterior distribution, G(a*), we have 

G(a*) = Pr(a<a*|No remains seen) 

which is derived in Appendix 1. The solution is 

)|*(1*)( posteriorposteriorposterior aFaG βππ ×+−=  

where 

prior

prior
priorprior

prior

prior
prior

posterior

N

N

β
β

ππ

β
β

π
π

+×+−

+×
=
1

 

and 

priorposterior N ββ += . 

We see that H(.) and G(.) are of the same form. 

Prior and Posterior Risk 

 The prior and posterior risks are simply given by 

prioraaHaaR priorprior

βπ *)1(*)(1*)( −=−=≥  

and 

posterioraaGaaR posteriorposterior

βπ *)1(*)(1*)( −=−=≥ . 

Samples sizes required for a given posterior risk must obtained numerically. For example, 

Figure 2 shows Rprior(a≥1%) for a prior mean relative area of 2% (equivalent to βprior =49) 
plotted against πprior, together with the corresponding Rposterior(a≥1%) for N = 25, 50, 100, 250 
and 500. 

Predictably, Figure 2 shows the posterior risk generally increasing with increasing πprior.  
However, the behaviour of the posterior risk for changing mean area of remains is less 

straightforward. Figure 3 shows Rprior(a≥1%) for πprior = 0.2 plotted against the prior relative 
mean area of remains together with the corresponding Rposterior(a≥1%) for N = 25, 50, 100, 
250 and 500. We see that although the posterior risk decreases with increasing N, it first 

increases and then decreases with increasing prior mean area of remains.  

With more thought, this is sensible – since if the area of remains is high where they exist, the 
less likely they are to exist when none have been seen in the survey. Figures 4 and 5 support 

this simple argument by showing how the components of the posterior risk change with the 
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prior mean area of remains. Figure 4 shows the posterior mean area of remains increasing 

with the prior mean, whereas Figure 5 shows πposterior decreasing with increasing prior mean. 
Together, these opposing responses produce the complex response seen in Figure 3. 

2.4 Comparisons of Classical and Bayesian Risks 

Classical Versus Bayesian model 1 

Comparing Rposterior(a≥a*) for model 1with Rclassical(a≥a*), we find 

Rposterior(a≥a*) > Rclassical(a≥a*) 

when 

Nprior
a*)1(2

1

−−
>π . 

Thus with e.g. a* = 1% and N = 100, when the prior evidence for the existence of remains is 

high, i.e. 

612.0
99.02

1
100

=
−

>priorπ , 

the posterior risk will be higher than the classical risk. i.e. N = 100 is insufficient to offset 

such a high initial probability that there are remains. 

However, having prior information about the possible existence of remains will give a smaller 

posterior risk when 

Nprior
a*)1(2

1

−−
<π . 

Since this is satisfied for any a* and N when 

 πprior < 0.5, 

having prior information about the existence of remains will lead to a smaller risk than the 

classical model provided non-existence is more likely than existence.  

Classical Versus Bayesian model 2 

Comparing Rposterior(a≥a*) from model 2 with Rclassical(a≥a*), we have 

posterioraaaR posteriorposterior

βπ *)1(*)( −=≥  

or 

*)(*)1(*)1(*)( aaRaaaaR classicalposterior

N

posteriorposterior
priorprior ≥×−=−=≥ + ββ ππ . 

Hence 

*)(*)( aaRaaR classicalposterior ≥<≥  

for any a*>0 and βprior>0. 

 

 



Draft Text for IFA Conference,  Brighton 2000.  Version 2.3  16 March 2000 

 7 

3  Application to archaeological sites in London 

To demonstrate how these results might be applied, we use data on the frequency and area of 

archaeological remains reported for Greater London. Information about the area of remains 

comes from published plans of archaeological sites, of which the most abundant were from 

Roman sites. We therefore initially assess the risk of failing to detect Roman remains, and 

then generalise these results to consider any type of remains. 

Table 2 summarises the frequency of positive and negative evaluations of sites assessed in 

1992 and 1993 in the thirty-three London  boroughs and other local authorities which make 
up Greater London (McCracken and Phillpotts, 1995). From the total of 120 positive 

evaluations out of 414, we have an estimate of πprior, the prior probability that there are 
remains at a site, of 0.29. 

Table 3, also taken from McCracken and Phillpotts (1995), summarises the frequency of 

remains from different periods. Combined with the overall value of πprior, these frequencies 
then give the prior probabilities of remains from a specific period; e.g. the value of πprior for 
Roman remains is 0.29*30/206 = 0.042. 

Information about the area of remains comes from the published plans of five sites containing 

Roman constructions (Table 4). From this admittedly small data set, an estimate of the prior 

mean of the relative area of remains is 12.5%, corresponding to βprior = 7. 

Putting this information together into Bayesian model 2 (Section 2.3), the prior risk that e.g. 

remains with a relative are of 1% or greater could be present at a site is 

039.0)01.01(%)1( =−=≥ prior

priorprior aR
βπ . 

Figure 6 shows the corresponding posterior risk that Roman remains with a relative area  

greater that 1% could have been missed in a random survey as a function of N, the number of 

sampling points. We see Rposterior(a>1%) =1/10 would require N = 24, whereas Rposterior(a>1%) 

=1/100 would require N = 115. 

Without more information, it is difficult to extend these results to remains from any period. 

Although information about the areas of non-Roman remains was less easy to obtain, we note 
that in some cases, non-Roman remains overlaid or were overlaid by Roman remains (c.f. 

Adkins and Adkins, 1983; Williams, 1984; Potter, 1994). Hence we might argue that the 

average relative area derived from Table 4 is appropriate to remains from any period. 

Alternatively we might simply employ Bayesian Model 1 (Section 2.2) and assume we have 

no information about the distribution of the size of remains from any period. Figure 7 shows 

the prior and posterior risks for both of these approaches.  

Table 5 summarises and compares the sample sizes for the classical and Bayesian models 

corresponding to risks of 1/10, 1/100, 1/1000 and 1/10000 for both Roman and any remains 
when no remains have been seen in the survey.  

4   Discussion and conclusions 

The results presented here show the large potential for decreasing sampling requirements 

when prior information about the existence and size of remains is available. 

We have dealt with the simple case where detection is certain if the remains overlay one or 
more sampling points. Reality may require more complex assumptions. For example, Krakker 

et al. (1983) and Kintigh (1988) considered uncertain detection in terms of the density and 

visibility of artifacts within a site. However, the simple results presented here might still be 

useful. Intuitively, suppose artefact density, observer efficiency or other factors result in a 
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probability pdetection that remains are detected when hit by a sampling point. Then the effect 

will simply be to re-scale the area of remains from a to an effective area pdetection×a.  

Kintigh (1988) and Lightfoot (1986) also considered the effect of different size of sampling 

units. Again intuitively, the effect will be to re-scale the area of the remains – effectively 

extending the remains with a surrounding band whose width depends on the size and shape of 

the sampling unit. 

We have also only considered a random sampling design. This leads to simple results that are 

applicable to remains of any shape, present in any number of fragments. Many authors have 

considered sampling schemes that are potentially more efficient. For example, Singer (1975), 

Drew (1979), Krakker et al. (1983), Kintigh (1988) and Ferguson (1992) have discussed and 
compared the effectiveness of various systematic sampling schemes, in particular square- and 

triangular lattice designs. However, the effectiveness of these designs depends on the shape 

and number of targets. Drew (1979) developed theoretical results for a fixed number of 
elliptical targets. Ferguson (1992) also considered a fixed number of targets, but derived 

results by simulation for several simple geometrical shapes. Nicholson and Barry (1999) 

derived theoretical results for a random number of circular targets, with frequency generated 
by a Poisson distribution. They employed the Bayesian approach described here to provide 

posterior estimates of the number and average radius of circular targets. 

However, for remains with a complex shape, particularly when the total area of remains is 

fragmented, the performance of lattice designs and simple random sampling may be very 

similar. For example, Figure 8 shows the probability that remains present as a single circular 
target go unseen with N = 50 sampling points for both simple random sampling and (the most 

efficient) triangular lattice design. These were computed using the formulae of Barry and 

Nicholson (1993), who give exact formulae for several designs for a single circular target.  

For circular remains with an area of about 2%, detection is almost certain for the triangular 

design, but there is a 36% chance they will be missed with the random sample. Also shown is 

the effect of these remains being present as a number of randomly dispersed, equally sized 

circular fragments. We see that the benefits of the triangular design are quickly lost when 

fragmentation occurs. Hence if complex-shaped or fragmented remains are possible, the 

results presented here may be adequate for both regular and random designs. At worst, they 
would provide an upper limit for the posterior risk where no remains have been seen. Note 

that the Roman remains summarised in Table 4 tended to be very fragmented. 

We have presented results that allow us to quantify the risk that remains could be, or have 

been, missed. An interesting question that has not been discussed is what inferences can be 

made if one or more sampling points do encounter some remains. With random sampling, the 
number of hits divided by N provides a simple estimate of the total area of remains. However, 

total area may not be very informative, if hits from two contiguous sampling points indicate 

potentially larger and more-significant remains than two unconnected sampling points.  

One approach might be for evidence of remains from a few sampling points to trigger 

different decisions, such as to invoke further, more extensive sampling. Thompson and Seber, 

1996 describe adaptive sampling strategies, where resources in a second stage of sampling are 

focussed on areas of interest suggested by the first stage.  

Note that the Bayesian approach suggested here naturally lends itself to this multi-stage 

sampling approach: the posterior values of the model parameters simply become the prior 

values in subsequent waves of sampling. From the form of Rposterior for model 2, we see that 

the role of βprior is simply to kick-start this process, acting as a sort of virtual survey, 
providing an initial estimate of risk. A practical strategy for dealing with a large number of 

sites might be to screen all sites with a low sampling intensity to reduce this initial risk and 

flush out sites with large remains. Sites with no evidence of remains can then be ranked 
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according to their posterior risks. Both sites with evidence of remains and high-risk sites 

might then be subject to further sampling or evaluation. 

Another refinement might be to compute πprior on a regional basis e.g. separately for each of 
the thirty-three London Boroughs. Alternatively, it may be possible to model πprior as a 
function of soil type, land use, and so on. This would lead to prior risks based on local 

knowledge, and greater control of the resulting risks that archaeological remains are lost. 
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Appendix 1 

G(a*) = Pr(a<a*|N missed) 
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or 
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and 

priorposterior N ββ += . 
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Table 1 Sample size N for different combinations of Rclassical(a≥a*) and a*. 

 

Rclassical(a≥a*) a* 

1 in: 10% 1% 0.1% 

    

10 22 230 2302 

100 44 459 4603 

1000 66 688 6905 

10000 88 917 9206 

 

Table 2  Frequencies of positive and negative evaluations for Greater London. Source: 

McCracken and Phillpotts (1995). 

 

Year No. of Sites No. Positive No. Negative 

1992 188 54 134 

1993 226 66 160 

Total 414 120 294 

 

 

Table 3  Frequencies of positive evaluations by period of remains. Source: McCracken and 

Phillpotts (1995). 

 

Year Pre Historic Roman Saxon Medieval Post Medieval Total 

1992 29 15 2 14 40 100 

1993 43 15 5 13 30 106 

Total 72 30 7 27 70 206 

πprior 0.10 0.042 0.009 0.038 0.098 0.29 

 

 



Draft Text for IFA Conference,  Brighton 2000.  Version 2.3  16 March 2000 

 13 

Table 4 Areas of Roman remains. 

 

Source 

 

Description Area of remains 

% 

Miller (1982) Roman waterfront 8.6 

Adkins and Adkins (1983) Roman buildings 17.1 

Williams (1984) Roman buildings 6.6 

Potter (1994) Roman features 15.2 

Rowsome (1996) Roman house and bath 15.0 

 Average area 12.5 

 

Table 5  Summary of sample sizes N required to control the risk that remains with an area of 

1% would be missed at N random sampling points. 

  

 Roman remains Any remains 

Posterior Risk 

 

1 in: 

Model 2 

 πprior = 0.056 

βprior = 7 

Model 2 

 πprior = 0.29 

βprior = 7 

Model 1 

 πprior = 0.29 

Classical 

10 - 14 130 229 

100 17 94 369 450 

1000 100 237 599 688 

10000 243 413 828 917 
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Figure 1 

Prior Risk(area of remains > 1%)
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Figure 2 

Probability that remains exist at a site  (Pi prior)
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Figure 3 

Prior relative mean area of remains
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Figure 4 
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Figure 5 

Prior relative mean area of remains
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Figure 6 

Sample size N
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Figure 7 

Sample size N
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Figure 8 
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