
fMRI Activity Patterns in Human LOC Carry
Information about Object Exemplars

within Category

Evelyn Eger, John Ashburner, John-Dylan Haynes, Raymond J. Dolan,
and Geraint Rees

Abstract

& The lateral occipital complex (LOC) is a set of areas in the
human occipito-temporal cortex responding to objects as op-
posed to low-level control stimuli. Conventional functional mag-
netic resonance imaging (fMRI) analysis methods based on
regional averages could not detect signals discriminative of dif-
ferent types of objects in this region. Here, we examined fMRI
signals using multivariate pattern recognition (support vector
classification) to systematically explore the nature of object-
related information available in fine-grained activity patterns in
the LOC. Distributed fMRI signals from the LOC allowed for
above-chance discrimination not only of the category but also of
within-category exemplars of everyday man-made objects, and
such exemplar-specific information generalized across changes
in stimulus size and viewpoint, particularly in posterior sub-
regions. Object identity could also be predicted from responses

of the early visual cortex, even significantly across the changes
in size and viewpoint used here. However, a dissociation was
observed between these two regions of interest in the degree
of discrimination for objects relative to size: In the early visual
cortex, two different sizes of the same object were even better
discriminated than two different objects (in accordance with
measures of pixelwise stimulus similarity), whereas the oppo-
site was true in the LOC. These findings provide the first
evidence that direct evoked fMRI activity patterns in the LOC
can be different for individual object exemplars (within a sin-
gle category). We propose that pattern recognition methods
as used here may provide an alternative approach to study
mechanisms of neuronal representation based on aspects of the
fMRI response independent of those assessed in adaptation
paradigms. &

INTRODUCTION

Two photographs of the same object taken from differ-
ent viewpoints, or under different lighting conditions,
may show little similarity in their low-level physical
properties. Despite this, our visual system can extract a
representation of the object abstract enough to over-
come such low-level differences, but specific enough to
discriminate from a similar object of the same category.
The computational mechanisms underlying this ability
and their implementation in the human brain are still
poorly understood. In humans, a complex of areas in the
lateral occipital and inferior temporal cortex, termed the
‘‘lateral occipital complex’’ (LOC), is more active when
viewing objects compared to textures or scrambled
images (Grill-Spector, 2003; Malach et al., 1995). The
LOC is considered a structure subserving general shape
processing (common to all object types), but the precise
nature of object-selective information within the LOC
(i.e., in how far, and at what level of representation, LOC
distinguishes individual objects) remains to be estab-

lished. Population measures of neural activity, such as
functional magnetic resonance imaging (fMRI), are often
considered unhelpful in resolving this type of question
given the evidence that, at the level of single neurons,
objects are likely to be represented in a distributed and
spatially overlapping fashion (Hung, Kreiman, Poggio, &
DiCarlo, 2005; Logothetis, Pauls, & Poggio, 1995; Rolls &
Tovee, 1995; Gross, 1992; Young & Yamane, 1992) that
is beyond the spatial resolution of conventional fMRI.

Indirect methods, such as repetition priming or fMRI
adaptation paradigms, (e.g., Sawamura, Georgieva, Vogels,
Vanduffel, & Orban, 2005; Avidan, Hasson, Hendler,
Zohary, & Malach, 2002; James, Humphrey, Gati, Menon,
& Goodale, 2002; Vuilleumier, Henson, Driver, & Dolan,
2002; Kourtzi & Kanwisher, 2000, 2001; Grill-Spector
et al., 1999), have therefore been used to probe the na-
ture of object representations in the LOC, but often
with inconsistent findings. For example, studies differ in
whether they suggest size and viewpoint-invariant rep-
resentation of objects in different subparts of the LOC
(Sawamura et al., 2005; James et al., 2002; Vuilleumier
et al., 2002; Grill-Spector et al., 1999). Common to these
studies is the reliance on a repetition-associated changeUniversity College London, UK
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in activation (usually blood oxygenation level-dependent
[BOLD] signal decrease) between consecutive presen-
tations of the same (or a related) stimulus. Although
these effects on the BOLD signal have been assumed to
either reflect neural adaptation or some other change
in the neural representation of the stimulus, the exact
mechanisms are as yet unknown and probably com-
plex (Grill-Spector, Henson, & Martin, 2006; Krekelberg,
Boynton, & van Wezel, 2006). Because reliance on
repetition-associated activity changes implies reliance on
some form of mnemonic phenomenon, different mecha-
nisms might be involved depending on the temporal lags
between repetitions (Henson, 2003). These, in turn, may
interact to a greater or lesser degree with task require-
ments (Henson, Shallice, Gorno-Tempini, & Dolan, 2002)
or other factors, such as level of attention during repeti-
tion (Vuilleumier, Schwartz, Duhoux, Dolan, & Driver,
2005; Yi & Chun, 2005; Eger, Henson, Driver, & Dolan,
2004; Murray & Wojciulik, 2004).

In the light of these limitations in existing paradigms,
here we sought to address the nature of LOC responses
using an alternative approach, based on direct evoked
fMRI activity (instead of changes of such activity due to
repetition). Multivariate pattern classification has previ-
ously been used to show that object category information
can be reflected in distributed activity patterns across
extended areas of the inferotemporal cortex (O’Toole,
Jiang, Abdi, & Haxby, 2005; Carlson, Schrater, & He, 2003;
Cox & Savoy, 2003; Haxby et al., 2001). These studies
were restricted to the discrimination of different object
categories, not testing for any potential difference of
response to exemplars within category, and thus, leaving
open the extent to which effects reflect the representa-
tion of visual features per se (instead of, e.g., semantic
differences associated with categories). More recently,
pattern recognition techniques have been applied suc-
cessfully to individual visual areas in the earlier visual
cortex. For example, information sufficient to reconstruct
the orientation of a stimulus can be decoded from human
V1 (Haynes & Rees, 2005; Kamitani & Tong, 2005) even
though the spatial layout of orientation-columns is below
the spatial resolution of conventional fMRI.

We therefore hypothesized that such techniques might
also provide more detailed insights into the nature of
object representation within more circumscribed higher-
level visual areas such as the LOC, even beyond dis-
criminating responses to images of different categories.
Conventional methods using average signals could not
detect selective responses to different types of objects in
this region, leading to the notion that this area may not
be discriminative of different objects, and only involved in
object detection (Grill-Spector, 2003; Malach et al., 1995).
In a series of three experiments, we used multivariate
pattern recognition to systematically explore whether
distributed signals from this area carried information suf-
ficient to discriminate object category, as well as the
identity of individual exemplars of two everyday man-

made categories presented in different sizes or from
different viewpoints. Furthermore, we compared discrim-
ination results obtained in the LOC for different objects,
sizes, and views, as well as generalization across changes
in size and view, with those obtained in the early visual
cortex (area 17/V1). Finally, we related our new fMRI
findings to classification results and measures of low-level
similarity based on the stimuli themselves.

METHODS

Participants and Data Acquisition

Eighteen healthy right-handed volunteers with normal
or corrected-to-normal vision (7 men and 11 women,
mean age = 27.3 ± 5.4 years) gave written informed
consent to participate in the three separate experiments,
which were approved by the local ethics committee.
Functional images were acquired on a 3-T MR system
with standard head coil (Siemens Allegra, Erlangen,
Germany) as T2*-weighted echo-planar image (EPI) vol-
umes with a TR of 1.4 sec (TE = 30 msec, 22 transverse
slices, voxel size = 3 � 3 � 2 mm, skip = 1 mm).

Stimuli and Design

Stimuli (Figure 1) were created from 3-D models that
were either freely available at various Internet sites,
or created from scratch in Blender 2.3 (www.blender.
org). All object models (4 chairs and 4 teapots) were
equipped with the same surface texture of a uniform
gray color, and illuminated with the same single light
source. For the viewpoint experiment, two views were
created separated by 608 rotation around the vertical
axis, while avoiding strongly uncanonical views and oc-
clusion of parts. In Experiments 1 and 3, rendered views
subtended 200 � 200 pixels, whereas in Experiment 2
the small stimuli subtended 160 � 160 pixels, and the
large stimuli subtended 240 � 240 pixels.

In Experiment 1, all participants were presented with
pictures of chairs and teapots. In Experiments 2 and 3, half
the participants were presented with the four teapots, and
the other half were presented with the four chairs as
stimuli (in two sizes, or two viewpoints each) to restrict
the overall number of experimental conditions to eight.

Experimental Protocol and Task

Stimuli were back-projected onto a translucent screen
located �60 cm above the subject’s head and viewed
via a mirror on the head coil. The presented pictures
subtended �58 of visual angle. Objects were presented
in short blocks of four pictures each (1 per TR, 1 sec
stimulus, 0.4 sec blank), followed by a fixation base-
line of 3 TR (Figure 1). The order of conditions was
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pseudorandomized. Within a given short block, each stimu-
lus could randomly appear in a red or green hue, and
participants were required to press one of two buttons
on a keypad, depending on the color of the current stimu-
lus. Five experimental sessions of 9.5 min length each
were run for each participant with this task, encompassing
35 short blocks of each experimental condition.

In an additional scanning session of �6 min in length,
object-responsive areas were determined for all par-
ticipants using a standard LOC localizer (Grill-Spector,
2003), comparing pictures of various common objects to
scrambled versions of the same pictures in a blocked
presentation with 500 msec per picture every 1 sec, and
a block length of 12 sec (6 sec fixation baseline) during
which participants performed a one-back repetition de-
tection task. This functional localizer was used for defi-
nition of regions of interest (ROIs; see Figure 2) for the
specific classification-based fMRI analysis performed, as
described below.

Image Processing and Data Analysis

Initial analysis of the imaging data was performed in
SPM2 (www.fil.ion.ucl.ac.uk/spm2.html). After motion
correction, the unnormalized and unsmoothed EPI im-
ages were entered into a general linear model, modeling
separately the effect of each short block (35/condition)
convolved with a standard hemodynamic response func-
tion, while accounting for serial autocorrelation with an
AR(1) model and removing low-frequency drift terms
by a high-pass filter with cutoff 128 sec. This analysis
yielded 35 independent estimates of BOLD signal
change (images of regression coefficients) for each con-
dition, which were subsequently entered into pattern rec-
ognition analysis.

We used a two-stage procedure to define ROIs based
on a standard independent ‘‘LOC localizer’’ scan (e.g.,
Grill-Spector, 2003). First, we identified voxels in the
ventral occipito-temporal cortex in each participant that

Figure 1. Stimuli and

experimental design. Across

all three experiments, stimuli

were presented in short
blocks with four successive

presentations of the same

object, separated by short
baseline periods (A).

Participants were required

to respond to each picture

depending on the color of
the object, which could

randomly appear in a red

or green hue. Two everyday

man-made categories (teapots
and chairs) with four different

exemplars each served as

stimuli (B). These were created
from 3-D models with a unified

surface texture and lighting.

Objects were presented in two

different sizes in Experiment 2
(C), and in two different views

(D) in Experiment 3.

Figure 2. Schematic illustration of analysis procedure (A). Based on a standard LOC localizer comparing pictures of different everyday objects

to scrambled versions of the same stimuli, ROIs were defined in each participant, corresponding to the left and right posterior (lateral/inferior

occipital) and anterior (ventral temporal) subparts of the LOC. Estimates of BOLD signal change were obtained for this ROI in the three main

experiments, corresponding to regression coefficients for each of the short blocks with one given object, convolved with a standard hemodynamic
response function. Thirty-five of such independent estimates were obtained for each experimental condition. These 35 multivoxel pattern

vectors for each condition were entered into a classification procedure using SVM, corresponding to pairwise ‘‘leave-one-out’’ prediction with

cross-validation (see Methods). (B) Group analysis (n = 18) of the LOC localizer (objects minus scrambled objects) thresholded at p < .05,
corrected, for the whole brain, superimposed onto a standard brain in MNI space, displaying group activations for posterior (lateral occipital cortex)

and anterior (fusiform/ventral temporal cortex) object responsive areas. MNI coordinates were 48 �84 �3 and �45 �84 0 for the posterior,

and 39 �45 �24 and �24 �39 �21 for the anterior subregion. (C) Average responses to objects and scrambled objects (parameter estimates)

derived from group maxima (upper panel) and individual maxima (lower panel), indicating stronger responses to objects than scrambled objects
in both subregions, while the overall visual response is stronger in the posterior than in the anterior subregion.
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showed significantly greater responses to visually pre-
sented objects versus scrambled objects (Figure 2). In
line with previous findings, posterior and anterior sub-
regions in the lateral occipital and fusiform cortex were
apparent in this contrast (see Figure 2 for mean stereo-

tactic coordinates). We then identified the response
maxima in these anterior and posterior regions on
a per-participant basis and defined spherical ROIs of
10 mm radius around these maxima. A spherical restric-
tion of ROIs was used as a means to obtain comparable
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numbers of voxels across participant (as desirable for
multivariate analysis) without the need for participant-
specific thresholding. We further confirmed that ROIs in
the anterior and posterior LOC were nonoverlapping,
and that any regions of white matter included in the
ROIs did not affect our findings. For the left and right
ROIs together, these comprised, on average, 212 (±37)
voxels for the posterior and 275 (±29) voxels for the
anterior part across participants (the exact number of
voxels differing slightly because not all voxels within
the spheres contained data in each case, e.g., due to sig-
nal dropout or location outside of the brain mask). For
the initial analyses, anterior and posterior ROIs were com-
bined, whereas for subsequent analyses we compared an-
terior and posterior sampled subregions of the LOC.

For the analysis of the early visual cortex, ROIs were
defined by a mask based on a probabilistic map of area
17/V1 in MNI space, derived from the Anatomy toolbox
for SPM (www.fz-juelich.de/ime/spm_anatomy_toolbox).
This mask was back-transformed onto the individual sub-
jects’ brains (Deformation toolbox for SPM) to create
individual ROIs for each participant.

Pattern recognition analysis was used to predict from
distributed response patterns in these ROIs which of two
given stimuli was currently being presented. The BOLD
signal change estimates of n voxels were extracted for
each condition and for repeated blocks forming a set of
pattern vectors x, which can be considered as points in
an n-dimensional Euclidean space. Pattern classification
was performed using linear support vector machines
(SVM; Christianini & Shawe-Taylor, 2000; Vapnik, 1995)
in the implementation of Gunn (www.isis.ecs.soton.ac.
uk/). A linear classifier finds a hyperplane

wTx þ b ¼ 0

defined by weight vector w and offset b separating the
training points x with two different given labels. The
principle of SVM is to find the optimally separating
hyperplane that maximizes the margin (given by kwk

2 )
with respect to both training classes (see Christianini &
Shawe-Taylor, 2000, for detailed algorithm). Under the
presence of noise (as here), the response vectors of both
stimuli might not be linearly separable and a so-called
soft-margin classifier can be used, which allows for a
certain proportion of misclassifications by minimizing

kwk
2

þ C
X

ji

subject to

yiðwxi þ bÞ 	 1 � ji i ¼ 1; 2; . . . ;N j 	 0

Where ji is a slack variable representing misclassification
error for the ith pattern xi with label yi 2 {1, �1} and C
a regularization parameter determining the tradeoff be-
tween largest margin and lowest number of misclassifica-
tions. In the analysis presented here, a linear soft-margin
classifier with C = 5 was used throughout (value of C cho-
sen based on literature and not tested for optimality with
present data). The classifier was trained on all but one
(=34) replications for two given experimental conditions,
and subsequently, tested on the remaining data, with 35
possible assignments of independent training and test data-
sets (leave-one-out prediction with 35-fold cross-validation).

The number of training and test data in each pairwise
comparison was identical in object, size, and view com-
parisons. Classification accuracies were computed across
all different training and test data assignments as mean
percent correct for the two objects in a given pair. This
mean pairwise percent correct is independent of clas-
sifier bias, comparable to the signal detection measure
d0 in a choice reaction task as performed here by the
classifier. Classification accuracies were subsequently
averaged across all possible pairwise comparisons to
yield mean classification performance (e.g., objects
across categories, within category, size, or view). The
theoretical chance level in this case corresponds to 50%,
which was further confirmed by performing classifica-
tion on data with randomized labels (see Figures 3–5
and 7). Significance of classification performance was
assessed in two-tailed t tests (against chance = 50%)
across the six subjects in each experiment. This, in
addition to identical training and test conditions (see
above), should ensure that the results are compara-
ble across the different comparisons between objects,
sizes, and views. Although comparisons across different
brain regions are informative in showing relative differ-
ences between different types of comparisons (e.g., size
discrimination and object discrimination), absolute ef-
fect sizes across regions may be less comparable be-
cause they are sensitive to different signal-to-noise ratios
and other factors unrelated to the biological question
under study.

For the analyses investigating prediction accuracies as
a function of number of voxels included, voxels were
rank-ordered based on their absolute pairwise t value for
a given comparison of interest, derived from the training
data only (identical for the conditions testing for dis-
crimination of the same image, and generalization).
Hereby, those voxels are selected that would be most
informative using a mass-univariate framework. This
analysis was conducted for 1, 5, 10, 20, 40, and further
in steps of 40 up to 400 voxels. Due to the pairwise im-
plementation of this selection, different voxels might
be selected first in different pairwise comparisons be-
tween conditions (reflecting the working assumption
that different voxels might be informative for discrimi-
nation of different pairs of objects, instead of the same
voxels for all objects).
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RESULTS

Discrimination between and within Categories

In the first experiment, we investigated whether signals
from the LOC carried information sufficient to deter-
mine either object category or the identity of individual
exemplars from that category. We presented participants
with four successive pictures of the same view of a par-
ticular object, in short blocks interleaved with short
baseline periods (Figure 1A), while brain activity was mea-
sured with fMRI (see Methods). Four different exemplars
of everyday man-made objects from each of two different
categories (teapots and chairs, one view for each object;
see Figure 1B) were used, with different objects pre-
sented in different blocks. Participants’ attention was en-
gaged in a color judgment task for each object, which
could randomly appear in a red or green hue.

BOLD contrast responses evoked by each object in
the main experiment in the sampled subregions of the
LOC were extracted separately for each block (see
Methods). To determine whether distributed response
patterns in the chosen ROIs could successfully discrim-
inate between and within different object categories, we
then applied a multivariate pattern recognition algo-
rithm based on Support Vector Machines (see Methods).
To compare the performance of our multivariate tech-
nique with more conventional analyses, we also deter-
mined whether successful prediction could be achieved
based on the mean level of activation in the sampled
LOC subregions, or on just a few maximally stimulus-
selective voxels. Prediction accuracies tended to increase
with larger numbers of voxels and plateau at around
200 voxels. Below we focus on reporting results for 1, 5,
10, 200, and all 400 voxels.

Classification accuracy was significantly above chance
for both between and within category comparisons when

using 200 [between: t(5) = 4.84, p < .01; within: t(5) =
9.65, p < .001] or the maximum of 400 [between: t(5) =
4.31, p < .01; within: t(5) = 6.19, p < .01] voxels. In con-
trast, pairwise classification accuracy was at chance when
based on mean activity for both comparisons. Accuracy
was also not significantly different from chance (across
subjects) for within-category comparisons when using
the 1 to 10 most discriminative voxels, indicating that
the fMRI pattern signal upon which successful classifica-
tion was based encompassed relatively large areas of the
LOC. Thus, although the mean signal in the LOC (as for
conventional fMRI analyses) did not discriminate between
and within object categories, the multivariate pattern
signal now allowed successful classification performance.
This indicates that neural population responses within the
human LOC, in addition to discriminating between cate-
gories, also carry information sufficient to discriminate
finer detail between individual object exemplars. Finally,
although both comparisons were significant, between-
category prediction accuracies were better (average 62%
at 200 voxels) than within-category prediction accuracies
(average 55% at 200 voxels), t(5) = 3.14, p < .05, and
between-category comparisons were already above chance
for up to 10 most discriminative voxels (see Figure 3).

Discrimination within Category and Effects of Size

In the second experiment, we determined whether the
signals used for successful discrimination within a single
category were invariant to stimulus size. A further six
participants were now presented with four exemplars
from just one of the two categories. However, the in-
dividual exemplars were presented in two different sizes
(50% increase from small to large; see Figure 1C). This
experiment thus focused on within-category comparisons

Figure 3. Discrimination

performance for Experiment 1
(object discrimination

between and within category),

displaying means and SEM

across six subjects for
pairwise prediction accuracies

(averaged across all possible

pairwise between-category and

within-category comparisons,
also shown is the simulated

‘‘chance’’ performance

obtained with randomized
labels of conditions).

Accuracies are plotted for

prediction based on mean

activity across the ROI, and
for 1, 5, 10, 200, or 400 voxels,

for which voxels were

rank-ordered depending on

their t value for a given
pairwise comparison in the

training data.
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alone. Pattern classification proceeded in the same way
as in Experiment 1, but we now, in addition, (1) changed
object size between training and test to determine
whether information from LOC signals used by our
classifier was sufficient to generalize across size, and
(2) attempted to directly discriminate the two sizes of
each object, to test whether the LOC contains informa-
tion about size in addition to object shape.

When training and test were carried out with data
corresponding to the same object in a different size,
significant above-chance accuracies were obtained for ob-
ject classification based on higher voxel numbers within
the LOC [200 voxels: t(5) = 3.50, p < .05; 400 voxels:
t(5) = 3.79, p < .05]. Thus, pattern signals within the
human LOC represent information sufficient to identify
individual objects across changes in their size. For train-
ing and test using the same size objects, we replicated
the within-category findings from Experiment 1. Sig-
nificant above-chance classification performance for
within-category discrimination was found when using
either 200 [t(5) = 3.53, p < .05] or 400 [t(5) = 2.51, p =
.05] voxels, testing with data corresponding to the same
size. As before, classification based on the mean signal
or the most discriminate voxels was not significantly dif-
ferent from chance (Figure 4). Prediction of object size
resulted in, on average, lower discrimination performance
than prediction of object exemplar (see Figure 4), which
failed to reach significance for 200 [t(5) = 1.4, p = .22]
and 400 [t(5) = 2.0, p = .10] voxels.

Discrimination within Category and
Effects of View

Having established generalization of distributed LOC
response patterns across changes in stimulus size, in a
third experiment, we investigated whether signals sam-

pled from the LOC showed generalization across views
within a single object category. A further six participants
were presented with four exemplars of just one of the
two categories. However, each exemplar could be pre-
sented from two viewing angles that differed by a 608
rotation around the vertical axis (Figure 1D). Analogous
to the size experiment, in the different view condition,
the classifier was trained on one view, and then subse-
quently tested on the different view of the object, in ad-
dition to directly comparing the two views of each object.

Significant above-chance discrimination performance
was once again obtained when based on the higher
voxel numbers [same view: 200 voxels, t(5) = 4.63,
p < .01; 400 voxels, t(5) = 5.55, p < .01; different view:
200 voxels, t(5) = 3.37, p < .05; 400 voxels, t(5) = 3.84,
p < .05; see Figure 5]. In this experiment, prediction
based on mean activity derived from the five most
predictive voxels reached significance for same views.
However, because combining the data for the same
image condition across all three experiments did not
yield a significant effect [e.g., prediction for identical
images based on mean activity across all three experi-
ments, t(17) = .07, p = .94], we do not place much
emphasis on these tendencies observed in Experiment 3
alone. As for object size in Experiment 2, prediction of
object view resulted in, on average, lower discrimination
performance than prediction of the object exemplar (Fig-
ure 5). For samples of 200 voxels, view discrimination
showed a trend for significance [t(5) = 2.2, p = .08] and
was nonsignificant [t(5) = 1.9, p = .12] for 400 voxels.

Comparison of Posterior and Anterior
Subregions of the LOC

The results reported above show that BOLD pattern
signals sampled from the LOC contained distributed

Figure 4. Discrimination

performance for Experiment 2

(object discrimination within
category, generalization across

size, and size discrimination),

displaying means and SEM

across six subjects for
pairwise prediction accuracies

(averaged across all possible

pairwise comparisons, also

shown is the simulated
‘‘chance’’ performance

obtained with randomized

labels of conditions).

Accuracies are plotted for
prediction based on mean

activity across the ROI, and

for 1, 5, 10, 200, or 400 voxels,
for which voxels were

rank-ordered depending

on their t value for a given

pairwise comparison in the
training data.
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information sufficient to discriminate between objects of
different categories as well as of the same category,
whereas average discrimination performance for sizes
and views of the same object was lower. Furthermore,
for individual objects, object discrimination generalized
across moderate changes in stimulus size and viewpoint.
As previous reports have suggested a functional distinc-
tion between anterior and posterior subparts of the
LOC (e.g., Sawamura et al., 2005; Grill-Spector et al.,
1999), we next performed separate analyses for the
sampled posterior and anterior portions of the LOC
(Figure 6). These analyses included all voxels in the
posterior (located in the lateral/inferior occipital cortex;
see above and Methods for full details of sampling) or
anterior (located in the ventral temporal cortex) ROIs
without further preselection.

In Experiment 1, an analysis of variance (ANOVA) with
the factors region (posterior/anterior) and object condi-
tion (between category/within category) revealed signifi-
cant main effects of region [F(1, 5) = 6.72, p < .05] and
object condition [F(1, 5) = 17.4, p < .01], without a signif-
icant interaction [F(1, 5) = 0.96, p = .37]. As Figure 6A
indicates, these results reflected higher classification ac-
curacies for the posterior LOC (compared to anterior),
and also better accuracies for between-category compar-
isons. A similar ANOVA on the data from Experiment 2
revealed a trend for an effect of region [F(1, 5) = 4.7,
p = .08], but no effect of object condition (same size/
different size) [F(1, 5) = 0.17, p = .69], and no inter-
action [F(1, 5) = 0.71, p = .44]. Again, the observed
tendency for significance reflected better discrimination
performance in the posterior LOC (Figure 6B). Finally, an
ANOVA for Experiment 3 showed a significant main effect
of region [F(1, 5) = 20.6, p < .01], without a significant
effect of object condition (same view/different view) [F(1,
5) = 1.65, p = .25], or interaction [F(1, 5) = 3.56, p = .12],

once again indicating better classification performance
for the posterior than anterior LOC (Figure 6C).

Separate ANOVAs were conducted to assess effects of
discrimination type (object vs. size/view) across regions.
In Experiment 2, this ANOVA revealed a significant main
effect of discrimination type [F(1, 5) = 59.0, p < .001],
indicating better discrimination for different objects in
the same size than for different sizes, without neither a
significant effect of region [F(1, 5) = 13.7, p = .16], nor
interaction [F(1, 5) = 7.4, p = .34]. In Experiment 3,
there was a trend for a main effect of region [F(1, 5) =
5.0, p = .08], whereas the main effect of discrimina-
tion type [F(1, 5) = .49, p = .50] and the interaction
[F(1, 5) = 1.4, p = .30] remained nonsignificant.

Taken together, the results of our comparisons be-
tween sampling the anterior and posterior LOC reveal
consistently better prediction accuracies for sampled
data from the posterior LOC. Although collapsed across
all three experiments, prediction accuracies for identical
images within categories reached significance for the an-
terior LOC [t(17) = 3.14, p < .01], whereas mean clas-
sification accuracy was only marginally above chance
(52%).1 This analysis further confirmed higher discrim-
ination performance for different objects than different
sizes of the same object, although this did not reach sig-
nificance for the comparison object versus view.

Occipito-temporal Regions of Interest Defined
in Main Experiments

The use of independent functional localizer sessions (as
here for the LOC) has recently been debated controver-
sially (Friston, Rotshtein, Geng, Sterzer, & Henson, 2006;
Saxe, Brett, & Kanwisher, 2006). For this reason, we
also conducted an alternative analysis where ROIs were
defined on the basis of lateral occipital and fusiform

Figure 5. Discrimination

performance for Experiment 3

(object discrimination within

category, generalization
across views, and view

discrimination), displaying

means and SEM across six
subjects for pairwise prediction

accuracies (averaged across all

possible pairwise comparisons,

also shown is the simulated
‘‘chance’’ performance

obtained with randomized

labels of conditions).

Accuracies are plotted for
prediction based on mean

activity across the ROI, and

for 1, 5, 10, 200, or 400 voxels,
for which voxels were

rank-ordered depending

on their t value for a given

pairwise comparison in the
training data.
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clusters activated in the main experiment (for Experi-
ment 1). Because objects were presented here against
a baseline of fixation, this contrast is likely to include
voxels that respond to any visual stimulus and not nec-
essarily more strongly to objects as opposed to scram-
bled objects. For pattern recognition analysis, individual
clusters activated for objects > baseline were identified
in lateral occipital and fusiform regions, after which data
were sampled and analyzed from these regions in a way
analogous to the analysis based on the LOC localizer.
The regions of interest defined on the basis of the main
experiment were on average located somewhat more
posterior than those defined by the LOC localizer, in
particular for the anterior subregion (mean difference in
y coordinates 4 mm for the posterior, and 10 mm for the
anterior ROIs).

Analysis of occipito-temporal ROIs defined in this way
yielded similar results with, on average, only slightly high-
er prediction accuracies (�64% correct for discrimination
between categories, �58% correct for discrimination within
categories when selecting from all voxels, and for the same
comparisons �63 vs �57% correct for the posterior ROI,
and �59 vs �53% correct for the anterior ROI).

Quantification of Image Changes

Generalization of classification performance across im-
age transformations, as shown here, could arise through

abstract representation by the neuronal populations, but
could also, to some degree, reflect overlap in low-level
visual features. To better understand the implications of
our findings from the LOC, we quantified the degree to
which our images of objects differed in their physical
(low-level) image properties. We calculated a pixelwise
dissimilarity measure (Euclidean distance) as performed
previously (e.g., Vuilleumier et al., 2002; Grill-Spector
et al., 1999) for all relevant stimulus comparisons. The
mean (across pairwise comparisons) and SD pixelwise
change was 78.4 ± 6.6 between category, 70.6 ± 9.2
within category, 78.1 ± 11.8 between same objects in
different sizes, and 52.7 ± 13.1 between same objects
in different views. The pixelwise change induced by dif-
ferent sizes was thus larger than that induced by ex-
emplar change (and even comparable to that induced
by different categories), but the difference due to view
changes was smaller than that due to different exemplars.
The pattern of discrimination performance obtained in
the LOC for objects, sizes, and views is therefore not
completely explained by the pixelwise similarity of the
stimuli, because in the size experiment, the pattern of
results for discrimination of objects versus sizes is op-
posite to one expected on the basis of this similarity
measure.

In addition, we simulated generalization performance
by entering the stimulus images themselves into an SVM
and testing whether object images could be correctly

Figure 6. Prediction accuracies when separately testing posterior (lateral occipital) and anterior (fusiform) parts of the LOC. Consistently

better discrimination (across the three experiments A–C) was possible based on MR signal in posterior compared to anterior parts (see
text for details and statistics). In these analyses, all voxels were included without preselection. Means and SEM across six subjects are shown

in all graphs.
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classified on the basis of their pixelwise physical charac-
teristics alone (see O’Toole et al., 2005, for a similar clas-
sification analysis of stimulus images). Across changes in
size, object stimuli could be identified in 32 of 48 cases
(67%) and across changes in view in 47 of 48 cases
(98%). The reference value for identical images in these
cases is 100% correct. These findings demonstrate that
generalization in SVM classification can occur based on a
low-level pixelwise representation of the stimuli (despite
the pixel-wise change, on average, across all size com-
parisons being bigger than across all object compari-
sons; see above). However, these results also indicate
that generalization based on such a representation does
not reach the same level of discrimination accuracy as
for identical images for the size changes used here.

Object Discrimination in the Early Visual Cortex

Finally, we also analyzed responses of the early visual
cortex to determine whether the pattern of discrimina-
tion performance there was different from the one
obtained in the LOC. Patterns of activation in the early
visual cortex discriminate between physically different
simple stimuli (e.g., Haynes & Rees, 2005; Kamitani &
Tong, 2005), so we anticipated that these regions would
also discriminate between the different objects used
here (because different shapes are invariably associated
with different local properties, which may be efficiently
discriminated by the small receptive fields of early vi-
sual cortical regions). However, the extent to which
early visual responses would also generalize across the

Figure 7. Prediction accuracies for the early visual cortex. (A) ROIs in MNI space (derived from a probabilistic map of area 17/V1 using the
anatomy toolbox for SPM) that was transformed back onto individual subjects’ brains. (B) Prediction accuracies for object discrimination across

and within category (Experiment 1), means across six subjects and SEM. (C) Prediction accuracies for object discrimination within category,

generalization across size, and size discrimination (Experiment 2), means across six subjects and SEM. (D) Prediction accuracies for object

discrimination within category, generalization across size, and size discrimination (Experiment 2), means across six subjects and SEM. In all
cases, results are plotted for mean activity and the same numbers of voxels (rank-ordered based on pairwise t test in training data) as used

for the LOC. Also shown is the simulated ‘‘chance’’ performance obtained with randomized labels of the conditions. Inclusion of further voxels

did not increase prediction accuracies for early visual areas.
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size and view changes in Experiments 2 and 3 was less
clear, and therefore, of more general interest.

We assessed brain responses within a new ROI de-
fined by a mask derived from a probabilistic map of
Brodmann’s area 17 that therefore identified regions of
the cortex consistent with the primary visual cortex (see
Methods for details). Results are summarized in Figure 7
(reported here for identical numbers of voxels as also
used in the analysis of the LOC, although inclusion of
more voxels did not further improve classification accu-
racies). In Experiment 1, reliable above-chance discrim-
ination performance was observed for both comparisons
across [e.g., for 400 voxels, t(5) = 8.5, p < .001] and
within [e.g., for 400 voxels, t(5) = 5.0, p < .01] catego-
ries, accuracies being higher for comparisons across
than within category [for 400 voxels, t(5) = 8.4, p <
.001]. In Experiment 2, both discrimination of same
images [for 400 voxels, t(5) = 8.3, p < .001] and
generalization across size [for 400 voxels, t(5) = 8.4,
p < .001] were above chance, however, with a marked
difference in accuracy level [higher for test on data from
identical than different image, at 400 voxels, t(5) = 6.5,
p < .01].

Importantly, size discrimination yielded even higher
prediction accuracies than object discrimination [see Fig-
ure 7; difference between size and object discrimination
at 400 voxels, t(5) = 4.1, p < .01]. These results fit well
with our quantification of pixelwise stimulus similarity as
presented above, and show that the simple measure of
image dissimilarity used here may account for much of
the discrimination performance obtained in this region.
Finally, in Experiment 3, above-chance discrimination
performance was observed for discrimination of object
exemplars in same [for 400 voxels, t(5) 6.4, p < .01] and
different [for 400 voxels, t(5) 4.6, p < .01] views, at a
comparable level of accuracy. Discrimination of view, al-
though also above chance [for 400 voxels, t(5) 2.8, p <
.05], was lower than object discrimination [difference be-
tween view and object discrimination for 400 voxels, t(5)
4.6, p < .01].

These results indicate that not only object discrimina-
tion based on identical images but also object discrim-
ination across changes in size and view (although not
always at comparable levels of accuracy as for identical
images, see size experiment) was possible based on ac-
tivity patterns of the early visual cortex. However, the
pattern of findings in the early visual cortex was partially
distinct from that in the LOC. Although early visual re-
sponses allowed better discrimination of different sizes
of the same object than different objects in the same size,
the opposite pattern was found in the LOC, as confirmed
by a highly significant interaction between region and
type of discrimination [object vs. size: F(1, 5) = 43.1, p <
.001]. The fact that the same pattern was not observed for
comparison of object versus view discrimination may be
related to the greater pixelwise similarity of the different
views used here.

DISCUSSION

In three independent experiments, we tested whether
distributed fMRI signals sampled from the functionally
defined human LOC represented information that sup-
ported discrimination between individual objects within
a category, in addition to discrimination between cate-
gories. Using pattern-based multivariate analysis on fMRI
signals, we could successfully use signals sampled from
the LOC not only to predict the category of a given ob-
ject, as done previously, but also discriminate between
exemplars within the same category. Moreover, success-
ful discrimination of individual category exemplars was
possible when different stimulus sizes and viewing an-
gles were used for training and test. Discrimination of
objects, as well as generalization across the size and view
changes, was also possible based on early visual cortex
activity with high accuracy, but differences between the
LOC and early visual regions were found in the detailed
pattern of results for discrimination of different proper-
ties (notably objects vs. size).

Our results provide further support of the idea that
distributed information about object categories is repre-
sented in the ventral occipito-temporal cortex (O’Toole
et al., 2005; Carlson et al., 2003; Cox & Savoy, 2003; Haxby
et al., 2001). Beyond this, we show that such distributed
discriminatory information is not limited to the relatively
coarse shape differences between different categories
(which are accompanied by additional semantic differ-
ences), but is also found within a single category. Our
results are obtained with a limited number of categories
and exemplars due to the constraints imposed by the cur-
rent level of sensitivity of fMRI that restricts the number
of experimental conditions, and further work will be
needed to show how far these results generalize to fur-
ther object categories and exemplars. Overall prediction
accuracies in our study were somewhat lower than those
found in previous studies using the multivariate approach
in relation to object categories (O’Toole et al., 2005;
Carlson et al., 2003; Cox & Savoy, 2003; Haxby et al.,
2001). This may be related to the specific categories used,
differences in experimental design (short mini-blocks of
only four objects here), or perhaps most importantly, due
to our use of an orthogonal task (color judgment). We
chose this task to avoid task-by-condition confounds, but
the reduced attention to object shape might have weak-
ened object-related activity. The effects described here
are therefore most likely a conservative estimate of dis-
criminability of single-object response patterns.

Our findings are also informative as to why investiga-
tions that based their analyses on the mean level of ac-
tivity within an ROI (see e.g., Grill-Spector, 2003; Malach
et al., 1995) failed to detect selectivity for different types
of objects in the same cortical areas. Our analyses in-
dicate that discrimination of categories (and exemplars)
is possible when using patterns of activity across multi-
ple voxels, but not for predictions based upon mean
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activity or the few most selective voxels in the case of
exemplar discrimination (Experiment 1). Prediction ac-
curacies increased with the number of voxels included,
compatible with the notion that also within the same
category, representation of object shape is not restricted
to the most discriminative voxels (as proposed in the
distributed representation model for object categories;
Haxby et al., 2001; Ishai, Ungerleider, Martin, Schouten,
& Haxby, 1999).

A more detailed analysis of our data investigated activ-
ity sampled from posterior (lateral occipital) and anteri-
or (fusiform) subregions of the LOC. Across the three
experiments, the overall level of prediction accuracy was
higher for the posterior compared to anterior LOC. In
the first experiment, prediction accuracies were also
higher for between-category than within-category com-
parisons, resulting in within-category comparisons being
close to chance in the anterior LOC. These data are
somewhat inconsistent with the notion of a simple ob-
ject processing hierarchy according to which more pos-
terior subregions would just be responsive to any object,
potentially subserving ‘‘object detection,’’ whereas more
anterior regions in the ventral temporal cortex (as also
our anterior ROI) contain subregions discriminative
between objects (see Grill-Spector, 2003; Malach et al.,
1995). Our results show that the posterior object re-
sponsive regions located in the lateral/inferior occipital
cortex alone can discriminate not only between catego-
ries but also exemplars at the level of distributed re-
sponses, whereas some previous work (see Ishai,
Ungerleider, Martin, & Haxby, 2000) already suggested
differential responses to categories such as faces, houses,
and chairs in similar locations in the ventral occipito-
temporal cortex.

Whether the anterior–posterior difference observed
here reflects a physiological difference in encoding (of
processing converging more onto category prototypes
than individual exemplars in anterior regions) cannot be
determined on the basis of our data alone. We did not
observe any interaction between region and stimulus
condition in between- versus within-category perfor-
mance, however, because discrimination of exemplars
was close to chance in the anterior LOC, this could reflect
a floor effect. Thus, our results need not imply that
identity information (and potential invariance to size
and view) is not represented in the anterior regions;
rather, that it was merely not detectable with the meth-
ods used here. Differences could exist in the BOLD signal-
to-noise characteristics between the two regions (also see
Figure 2 for differences in the overall visual response
between the occipital and ventral temporal subparts; and
note that the overall difference in level of prediction
accuracies between the early visual cortex and the LOC
is likely to result from differences in signal-to-noise). An
additional analysis performed on occipital and fusiform
activation foci from the main experiment yielded slightly
higher average classification performance, however, the

anterior ROIs defined on the basis of the main effect were
also located slightly more posterior. This suggests that
the more anterior regions defined by the LOC localizer
showed no very strong activation compared to baseline
in our main experiment, potentially due to the use of an
unrelated task (color judgment).

Other contributing factors to any differences in clas-
sification performance may include adaptation across
repetitions of the same stimuli (potentially more pro-
nounced in the anterior region), or differences in the
spatial scale of the underlying object selectivities. Any
variation in this spatial layout would be sampled in a
more or less efficient way at a particular MRI resolution,
leading to differences in performance of the multivariate
classification algorithm (Haynes & Rees, 2005). Future
studies using higher scanning resolution and/or different
paradigms may disambiguate between these potential
explanations. Little is currently known about the spatial
scale of object selectivities in the human cortex, whereas
monkey neurophysiology suggests that a column-like
selectivity for object features might exist in the order
of 500 Am (Fujita, Tanaka, Ito, & Cheng, 1992). In this
case (assuming no limitations in the spatial resolution of
the BOLD effect itself ), higher spatial resolution should
improve classification performance, but even 1 mm sam-
pling resolution would still not resolve the true under-
lying pattern of object selectivities, but rely on partial
volume effects.

The finding that the early visual cortex could also dis-
criminate between the different object images used here
was expected and is in line with previous studies using
object categories (Cox & Savoy, 2003) which reported
the highest classification accuracies for discrimination of
categories when the classifier was allowed to select
voxels from multiple areas including the low-level visual
cortex, as opposed to an analysis on high-level object
responsive areas only. Finding above-chance discrimina-
tion of activity patterns for objects in a given brain re-
gion thus need not necessarily reflect processing at the
level of objects (instead of low-level local properties of
the images). Beyond using pattern recognition to only
quantify separability of responses to different conditions
in this way, our experiments constitute a first step into
the direction of using these techniques for the more
challenging task of understanding mechanisms of rep-
resentation of visual information at different stages of
the processing pathway. The fact that we observed
above-chance generalization of classification across sizes
and views in the LOC, but also, less expected, in the
early visual cortex, suggests that generalization of the
classifier, although necessary, is not alone sufficient to
conclude invariant representation by the neuronal pop-
ulation. Generalization further need not imply that the
patterns for both conditions are identical, but may arise
based on just a few voxels that show overlapping ac-
tivation, for example, in foveal areas. Important addi-
tional information is therefore derived from the joint
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consideration of generalization across, and the discrimi-
nation of a given feature. This revealed a dissociation
between the LOC and the early visual cortex in the size
experiment, where the relative pattern of accuracies (for
discrimination of objects in same or different size, and
discrimination of size for the same object) was less well
predicted by our quantification of pixelwise stimulus sim-
ilarity in the LOC than in the early visual cortex. Our data
therefore support some degree of size-invariant coding
of object shape in the LOC, but do not allow us to de-
termine whether the representation is any more abstract
than this, because given the pixelwise similarity results
in the view experiment, an interpretation of the LOC re-
sults in terms of low-level overlap cannot be excluded.

The finding regarding size invariance in the LOC may
appear to contrast with reports that only a small per-
centage of single neurons in the monkey IT cortex gen-
eralize across size or viewpoint (Booth & Rolls, 1998;
Ito, Tawamura, Fujita, & Tanaka, 1995; Logothetis et al.,
1995; Lueschow, Miller, & Desimone, 1994). However,
these studies measured invariance of stimulus selectivity
at the single-neuron level, which does not exclude in-
variance expressed at the population level that may be
measurable with fMRI. Although in the data shown here,
the different sizes of objects (despite their higher pixel-
wise dissimilarity) were not discriminated in the LOC,
the possibility remains that higher spatial sampling (or
using even larger changes in stimulus size) would reveal
independent information about object shape and size
also in the LOC. Indeed, such independent coding is
suggested by recent findings that employed pattern rec-
ognition methods on populations of single neurons in
the monkey IT cortex (Hung et al., 2005), and this would
also be compatible with fMRI results that show some
retinotopic organization in area LO, albeit weaker than
in earlier areas (Larsson & Heeger, 2006).

Previous imaging studies investigating size and/or view-
point invariance of object representation, using para-
digms based on adaptation/priming, provided findings
that range from size invariance being more pronounced
in (or restricted to) anterior parts of the LOC (Sawamura
et al., 2005; Grill-Spector et al., 1999), through size in-
variance in the occipito-temporal cortex and view invari-
ance only in more anterior regions of the left fusiform
gyrus (Vuilleumier et al., 2002) to view invariance in bi-
lateral fusiform (but not posterior LO) regions ( James
et al., 2002). Here, we relied on aspects of BOLD activity
that were constant across multiple replications of the
same stimulus condition, rather than repetition-associated
changes. Our results provide converging evidence for size
invariance in the LOC, however, using this alternative
approach, we found evidence for generalization across
size, and inferior discrimination for sizes as compared to
objects, already in the posterior subpart of the LOC.
One possibility is that an overall weaker adaptability in
the posterior as compared to anterior LOC (Sawamura
et al., 2005) might account for the fact that some pre-

vious studies using repetition paradigms did not detect
generalization of adaptation across size changes in that
region.

Beyond differences associated with paradigms, it is
likely that object discrimination and generalization of neu-
ronal responses across stimulus attributes as size and view
are not absolute, but depend on stimulus change in a
gradual manner not only in earlier but also in higher
areas as indicated by behavioral research (Lawson, 1999;
Ashbridge & Perrett, 1998; Tarr & Bulthoff, 1998). We
employed moderate changes in our first experiments pre-
sented here, which are, however, within the range used in
previous studies (James et al., 2002; Vuilleumier et al.,
2002; Grill-Spector et al., 1999), to ensure that the chosen
manipulation did not result in, for example, strongly un-
usual views, or occlusion of parts. More studies will be
required to reveal the extent of generalization (‘‘tuning’’)
of fMRI response patterns across a wider range of changes,
and across a broader range of (potentially parameterized)
changes in object shape. Increasing the spatial resolution
of the MRI acquisition, together with further development
of methodological aspects, should provide additional sen-
sitivity to investigate more subtle aspects of shape rep-
resentation across a higher number of experimental
conditions. Therefore, the pattern recognition approach as
used here could, in the future, prove fruitful to approach
the most interesting question of the nature of structural
primitives (e.g., image-like ‘‘views,’’ or more structured
part-based elements; see Riesenhuber & Poggio, 1999;
Biederman & Kalocsai, 1997; Bulthoff, Edelman, & Tarr,
1995) underlying the representation of the visual input at
different levels of the cortical hierarchy.
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Note

1. Because ROIs were based on spheres around the activation
maxima, one potential factor contributing to inferior classi-
fication performance in anterior subregions could be that this
region is situated close to areas of MR susceptibility artifact,
and thus, classification could have included voxels where signal
is very low. To rule out this possibility, analysis was repeated
using only voxels within the chosen spheres that showed a
significant difference between object and scrambled pictures
in the localizer scan, which yielded qualitatively unchanged re-
sults. Likewise, restriction of the analysis to gray matter voxels
using a gray matter mask derived from SPM segmentation
did not change results, indicating that any inclusion of white
matter voxels in our ROIs did not affect the findings.
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