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A B S T R A C T
We present highly time-resolved HST FOS UV spectroscopy of the nova-like binary V795 Her.
Several key results emerge. For the first time we find a strong 2.6-h signature in the variability
of the UV lines. The HST data reveal no evidence of a 4.8-h ‘period’, in contrast to our previous
IUE observations. This, and differences in the spectral line characteristics, suggests that HST
found the system in a different state from earlier IUE observations.

The C IV line alone contains a fairly stable, asymmetric, extended blueward absorption
trough which we associate with a wind outflow. The 2.6-h variations of the line profiles are
largely confined to an interval of about 0.4 in phase and to the velocity regime
¹1500 < v < 0 km s¹1, the changes being dominated by the apparent decline and re-emer-
gence of a blueshifted emission peak. The complex profiles permit many empirical inter-
pretations, but the simplest attributes the variability to a narrow (FWHM,1000 km s¹1)
emission component which is always blueshifted with a mean velocity of around –600 km s¹1.
This interpretation, however, is not readily related to any obvious source within the binary. An
alternative picture, which attempts to relate the UVand (simultaneously observed) optical line
behaviour, invokes a more stable, broad (FWHM,2000 km s¹1) emission feature, the intrinsic
morphology of which is disguised by superposed constant and variable absorption compo-
nents. One tentative physical explanation of such a decomposition involves an accretion
stream that overflows the accretion disc. However, several problems with this model remain to
be resolved.

We also draw attention to similarities between the velocity-restricted behaviour in the UV
lines of V795 Her and that in the optical lines of T Tauri stars. This might indicate a connection
between V795 Her and the magnetically influenced inflow/outflow characteristics associated
with the central star in T Tauri systems. If such a connection were eventually demonstrated, it
would reopen the question of whether the 2.6-h period in V795 Her is really the binary period
and whether the system is in fact related to the intermediate polars.

Key words: accretion, accretion discs – binaries: close – stars: individual: V795 Her – novae,
cataclysmic variables – ultraviolet: stars.

1 I N T RO D U C T I O N

V795 Her is a member of the nova-like subclass of the cataclysmic
variables (CVs), i.e. a close red dwarf–white dwarf binary in which
mass is transferred to the compact star through an accretion disc.
The nova-like systems are bright, apparently undergoing persis-
tently high levels of accretion. V795 Her has displayed a generally
prominent 2.8-h modulation of its optical light curve (e.g. Mironov,
Moshkalev & Shugarov 1983; Baidak et al. 1985; Rosen et al. 1989;

Kaluzny 1989; Shafter et al. 1990; Zhang et al. 1991), although this
may recently have disappeared (Patterson & Skillman 1994; Rosen
et al. 1995). It also possesses a distinct 2.6-h radial velocity
variation which was proposed as the binary orbital period (Shafter
et al. 1990). Whilst this two-period phenomenon was initially used
to argue that V795 Her might be an intermediate polar binary
containing a magnetized white dwarf, convincing evidence for such
a classification remains elusive and indeed, on balance, current data
do not favour an intermediate polar interpretation (e.g. Rosen et al.
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1995 and references therein; see also van Teeseling, Beuermann &
Verbunt 1996). This leaves the original superhump scenario of
Zhang et al. (1991) as currently the best explanation of the 2.8-h
photometric period. Remarkable, low (400 km s¹1) and high
(1500 km s¹1) velocity amplitude ‘S-wave’ features have been
observed in the Ha emission line of V795 Her (Haswell et al.
1994). Their reconstructed Doppler images of the disc in the Ha and
He I l6678 lines indicated spatially distinct sites for each of the Ha

‘S’-wave components and the He I emission. More recent analyses
of the optical line profiles in V795 Her have identified two high-
amplitude S-wave features, one offset to the blue, the other to the
red (Casares et al. 1996; Dickinson et al. 1997). As a result, Casares
et al. (1996) resurrected a magnetic model for V795 Her, suggesting
that its white dwarf rotates synchronously with the binary. Their
model envisages partial disc accretion, nevertheless, and explains
the double S-wave behaviour in terms of material entrained in the
magnetic field of the white dwarf. This picture is challenged by
Dickinson et al. (1997), who prefer a model in which the accretion
stream overflows the disc.

V795 Her has also been the subject of an intensive UV (IUE)
study following the discovery of pronounced, time-dependent
morphological changes in its Si IV and C IV lines (Prinja, Rosen &
Suppelli 1991, hereafter PRS). Extensive time-resolved IUE spec-
troscopy (Prinja, Drew & Rosen 1992, hereafter PDR; Prinja &
Rosen 1993, hereafter PR) found that the UV variation was
consistent with periodic behaviour but, extraordinarily, occurred
on a period of 4.8 h rather than on either of the known 2.6- and 2.8-h
optical periods. The C IV line in particular showed, at certain phases,
a P Cygni like profile which is typically associated with mass loss,
and was interpreted as reflecting the presence of an outflowing wind
in V795 Her. In detail, however, CV wind models then available
were unable to account for the pattern of C IV profile variability
actually observed. A recently reported ROSAT X-ray observation of
V795 Her (Rosen et al. 1995) found the 0.1–2.5 keV X-ray flux
from the star to be about 5 × 10¹13 erg s¹1 cm¹2. These data did not
reveal any significant coherent periodic X-ray variability, although
a ,15-min quasi-periodic oscillation (QPO)-like variation was seen
in both the X-ray and quasi-simultaneous optical data.

In this paper we report on the first ultraviolet observations of
V795 Her made with the Hubble Space Telescope (HST).
These observations exploit the enhanced spectral resolution
and huge improvement in time resolution possible with HST. A
parallel study of quasi-simultaneous optical spectroscopy of
V795 Her, obtained from the Isaac Newton Telescope, is presented
by Dickinson et al. (1997).

2 O B S E RVAT I O N S

Ultraviolet observations of V795 Her were obtained with the
COSTAR-corrected HST during three closely separated runs in
1994 June. The observations, each spanning an elapsed time of
8.5 h, were obtained between 03:55 and 12:22 UT on 1994 June 20,
between 16:54 UT June 21 and 01:22 UT June 22, and between
13:56 and 22:24 UT on June 23. The total on-source exposure
amounted to 8.1 h. Data were recorded using the blue digicon with
the Faint Object Spectrograph (FOS), operated in RAPID mode to
obtain sequences of 20-s exposures with minimal (<1 s) dead time
between integrations. A total of 1458 spectra were collected. The
source was observed through the 0.9-arcsec aperture and the light
dispersed by the G130H grating to obtain spectra covering the
1150–1605 Å spectral range at a resolution of about 1 Å
(,230 km s¹1 at 1300 Å).

For comparison, these observational characteristics represent
6-fold and at least 60-fold improvements in spectral and temporal
sampling respectively, relative to our previous IUE low-dispersion
data. Interruptions owing to Earth occultation, lasting about 40 min
in each 96-min satellite orbit, and also occasional passages through
the South Atlantic Anomaly, meant that observations of V795 Her
were not continuous. The HST spectra supplied by STScI were pre-
calibrated in both wavelength and flux, with the wavelength scale
accurate to about 0.3 Å (,60 km s¹1 at 1550 Å) (e.g. Bohlin 1995;
Dahlem 1995; Koratkar & Evans 1995).

3 T H E OV E R A L L P RO P E RT I E S O F T H E U V
S P E C T RU M

The spectrum that is the mean of all our HST data from V795 Her is
shown in Fig. 1. All of the prominent lines (e.g. N v l1240,
Si IV l1400, C IV l1550), the Si II/Si III/O I blend around 1300 Å
and the C II l1334 line observed in our earlier IUE SWP spectra are
present in the HST data. However, it is now incontestable that the
spectrum is also affected by line blanketing (e.g. immediately
redward of the C IV line).

To gain some idea of which lines and which parts (if any) of the
continuum vary, we have computed a fractional variance spectrum
from all the data, i.e.

j2
l ¼

1

ðN ¹ 1Þf l
2

XN

i¼1

ðfil ¹ f lÞ
2
; ð1Þ

where N is the number of spectra, fil is the flux at wavelength l of
the ith spectrum and f l is the flux at that wavelength averaged over
all spectra. The result is shown in the lower panel of Fig. 1. We point
out that statistical noise alone contributes an rms variation of
,13 per cent (variance of 0.017) at wavelengths above 1300 Å,
but this rises steeply below 1200 Å owing to the rapid decline in
instrumental sensitivity. At 1180 Å the rms variation due to noise is
,35 per cent (variance , 0.12).

From Fig. 1 we find that the continuum exhibits a broadly
wavelength-independent rms variation of about 20 per cent (or
about 15 per cent after removing the noise component). It is
obvious, however, that the strong resonance lines dominate the
overall variability of the spectra. Variability is also observed in
other lines such as C II l1335 and the blend at 1300 Å. In the Si IV

and C IV lines there is a distinct asymmetry to the variance profile
with stronger changes on the blue wing of the lines. This may also
be true for other lines too, but is not so obvious.

It should be noted that the C IV doublet (ll1548.19,
1550.76 ¹ v ¼ 0, 498 km s ¹1) is not resolved in these data,
owing to intrinsic line broadening, while the Si IV doublet
components (ll1393.76,1402.77 ¹ v ¼ 0, 1939 km s ¹1) are well
separated.

3.1 The variability characteristics of the lines and continuum

We have used the 1458 FOS spectra to examine the photometric
behaviour of both the line-blanketed ‘continuum’ and the dominant
absorption lines as functions of time. The continuum light curve
was generated by summing the flux over three segments of the
spectrum devoid of strong absorption features (i.e. ll1270–1290,
ll1310–1330 and ll1440–1490). Time-series of the total flux
(line plus continuum) in each of the C III, N V, Si IV and C IV lines
were also derived. Each time-series was then Fourier analysed.

From the results, plotted in Fig. 2, the key point to emerge is that
the lines exhibit a clear variation on a 2.60-h period. Indeed, the

306 S. R. Rosen et al.

q 1998 RAS, MNRAS 299, 305–318



largest peak in the power spectrum of each line occurs at the same
frequency (9.216 d¹1 ¼ 2:60 h with an uncertainty of typically
0.03 h). The Fourier spectrum of each line also shows notable peaks
(and their associated window patterns) at frequencies of
n ¼ 24:13 d¹1 (0.99 h) and 5.7 d¹1 (4.22 h), features not seen in
the power spectrum of the continuum data. These peaks can be
identified with the positive and negative sidebands arising from
beating of the 2.60-h period with the satellite orbital period [i.e.
Pbeat ¼ ðP¹1

sat 6 P¹1
2:6Þ

¹1].
In contrast to the lines, the 2.6-h period is not evident in the

Fourier spectrum of the continuum flux. It does, however, show
excess power between n ¼ 13 d¹1 (1.8 h) and 18 d¹1 (1.3 h) which

can be decomposed into two overlapping window patterns centred
on n ¼ 14:5204 d¹1 (1.65 h) and 15:9127 d¹1 (1.51 h). Never-
theless, in the absence of a more extensive data set, we resist the
temptation to claim more periods in this system. The inset in the top
panel of Fig. 2 also reveals enhanced power in the frequency range
70–120 d¹1 (12–21 min) with the most prominent structure within
this domain centred around 96 d¹1 (,15 min). A similar but weaker
pattern of power is seen in the Fourier spectra of the lines (not
shown). This distribution of power is similar to that reported from
the X-ray and optical data (Rosen et al. 1995; see also Zhang et al.
1991 and Shafter et al. 1990). The broad-band nature of the power
suggests QPO-like behaviour. The origin of this power is flare-like
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Figure 1. The upper panel shows the mean 1150–1600 Å spectrum of V795 Her measured by the HST FOS. The strongest lines are labelled – the tick marks are
located at the rest velocity of the particular line. The lower panel shows the corresponding variance spectrum (see Section 3).



events in the continuum light curve, typically with an amplitude of
about 10 per cent. Thus, while we find no convincing evidence of
coherent modulations in the FOS UV continuum data, the QPO
phenomenon seems to be a persistent feature in the signal of
V795 Her, affecting the X-ray, UVand optical output of the system.

Another important point is that in neither the lines nor the
continuum do we find any convincing sign of the 4.8-h ‘period’
detected in earlier IUE observations (PDR; PR).

Finally, we also searched the UV continuum light curve for
evidence of the 2.8-h variation which has been detected in the past
in the optical light curve. We find it to be absent from these data and
estimate an upper limit of about 5 per cent on the semi-amplitude of

coherent modulation at this period. This is consistent with its
absence from our contemporaneous optical data (Dickinson et al.
1997) and from other recent optical observations (see Patterson &
Skillman 1994; Rosen et al. 1995).

3.2 Comparison with IUE spectra

The extensive catalogue of IUE spectra from V795 Her (PRS –
1989 October 12 and 13; PDR – 1990 August 6 and 7; PR – 1992
August 13-18) permits direct comparison of the UV spectrum at
different epochs. In Fig. 3 we plot the 1200–1600 Å portion of two
of the IUE SWP spectra presented by PDR, one when the C IV
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Figure 2. Fourier power spectra of time-series representing (from top to bottom) the continuum data and the fluxes beneath the C III, N V, Si IVand C IV lines. The
leftmost dashed line marks the frequency of the 4.8-h period, while the rightmost dashed line indicates the frequency of the 2.6-h period. The inset in the top panel
shows the Fourier spectrum of the continuum data over a wider frequency domain, highlighting the enhanced power near 96 d¹1.



emission was strongest, the other when the absorption was most
prominent. Superimposed on these are corresponding examples
from our current HST data, degraded to the same spectral resolution
as the IUE data. The continuum level in the IUE observations was
,25 per cent weaker than during the HST run and, accordingly, has
been rescaled to match. Significant differences are evident. Promi-
nent amongst these is the contrast in strength of the emission peak in
the C IV line, which is much greater in the IUE data. The relatively
stable 1300-Å blend in the IUE data also contrasts with the obvious
variations exhibited in the HST spectra. Changes in the Si IV line are
more closely matched.

3.3 The state of the system

The HST UV data of V795 Her presented here pose a major problem
in relation to our previous IUE observations of the star (PRS; PDR;
PR) because we now observe a strong 2.6-h variation in the lines
which was not apparent in the IUE data. We doubt that the 4.8-h
period detected instead was due to a sampling problem, given that
the variation was seen in two independent data sets, both of which
were long enough to establish its presence (see PR), and sampled in
different ways. It is not obvious how a 4.8-h alias could have arisen
in either run. It is possible that the 4.8-h ‘period’ might simply
reflect fortuitous coverage of a non-coherent time-scale in the light
curve (see also Patterson & Skillman 1994). The significance of the
4.8-h time-scale remains to be determined. If a clear 2.6-h signal
had been present in the earlier IUE data, it is implausible that it
would have escaped attention, given that the IUE line flux light

curves folded on that period (see fig. 3 of PR) sampled it adequately
and yet showed no sign of a systematic effect.

Thus we suspect that our present HST run found the system in a
somewhat different state from the previous IUE runs where the 2.6-h
clock may have been swamped by another phenomenon. This view
is reinforced by the spectral changes reported in Section 3.2. It is
worth bearing in mind that if the apparent difference in behaviour is
connected to the mass transfer rate, the typical UV continuum flux
level during the earlier IUE observations was around 25 per cent
lower than at the epoch of the HSTobservations, suggesting that the
properties of the system are quite sensitive to the accretion rate. It is
interesting to note that V795 Her has exhibited odd UV behaviour in
the past, as indicated by the weak-lined spectra from the first shift
(1989 October 12) of IUE observations presented in PRS. An
intriguing question that arises is whether the absence of both the
4.8-h UV and 2.8-h optical modulations (Dickinson et al. 1997) is
coincidental (see also Patterson & Skillman 1994).

4 T H E L I N E P RO F I L E S

We have established that in these new HST data the dominant
variation in the UV lines occurs at the 2.6-h period. To investigate
the line changes in more detail, the FOS spectra were phase-folded
into 20 phase bins according to the ephemeris of Shafter et al.
(1990), i.e. T0 ¼ JD( 244 7329.824 + 0.108 2468N, where N is the
cycle number. Note that the period is incorrectly quoted in some
places in the paper of Shafter et al. The epoch of this ephemeris
refers to the red-to-blue crossing phase of the radial velocity motion
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Figure 3. The two IUE SWP spectra of V795 Her, taken in 1990 August (see PDR), show the most extreme profiles of the C IV line, i.e. those with the most intense
emission (upper panel) and deepest absorption (lower panel). Overlaid are corresponding extreme examples from our HST data, degraded to the same spectral
resolution as the IUE data. The continuum levels have been normalized. Note the substantially stronger emission in the IUE data and the very different behaviour
of the 1300-Å blend.



of the S-wave noted by Shafter et al. in the optical emission lines –
they associated the S-wave with the orbital motion of a bright spot
on the edge of the accretion disc. At the epoch of our HST
observations, the accumulated phase uncertainty arising from the
use of this ephemeris is 0.06. Fig. 4 shows, for reference, a sequence
of 20 phase-resolved spectra covering the entire 1150–1600 Å
range.

In Fig. 5 (opposite) we present colour-coded ‘grey-scale’
images for the C III, Si IV and C IV lines, trailed over the 2.60-h
cycle. Being effectively a singlet, the C III line provides an
important comparison with Si IV and C IV. Here, and in all other
figures presented in velocity space (unless otherwise stated), zero
velocity for the C IV line is aligned with the flux-weighted
centroid of the doublet (assuming a flux ratio for the blue and

red components of 2:1) which is at 1549.05 Å, while the zero-
velocity point for the Si IV data is aligned with the bluemost
(l1393.76) doublet component.

Before discussing the phase behaviour in more detail, we first
draw attention to the basic structure of the line profiles. Concen-
trating on the shape of the C IV line (lowest panel), one sees that the
line spans the velocity range from about –3500 to +1000 km s¹1 (or
maybe even +2000 km s¹1 if the redward bump between +1000 and
+2000 km s¹1 is a part of the C IV profile). The asymmetric,
extended blue wing of the line is seen in absorption, with two
shallow absorption lines owing to Si II l1527 (–4270 km s¹1) and
Si II l1533 (–3110 km s¹1) superposed. The minimum of the
deepest profile, observed at about phase 0.75, lies near
¹1000 km s¹1, but at other phases (see below) it is masked by the
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Figure 4. The phase-folded HST spectra (1150–1600 Å), resolved into 20 phase bins (indicated on the right). The dotted line provides a common reference level
for each spectrum.



presence of an apparently narrow emission peak located near
–600 km s¹1. In C III, the minimum of the deepest profile occurs
near –200 km s¹1 but, as with C IV, for most of the cycle the blue
side of the trough is filled in by an emission feature. The C III

characteristics are essentially replicated in both doublet compo-
nents of the Si IV line.

An idea as to which parts of the line profiles vary can be gained
from Fig. 6 where the average line shapes for the C IVand Si IV lines
are overlaid with the corresponding variance profiles. The variance
is clearly concentrated blueward of rest velocity and, as graphically
demonstrated by the C IV data, correlates very well with the
emission peak.

We now consider the pattern of variation in more detail. The
‘grey-scale’ image of the raw C IV data (upper right panel) confirms
that the most prominent changes are restricted to the velocity
regime between about ¹1500 and 0 km s¹1 (i.e. around the emis-
sion feature). These changes are largely confined in phase to the
interval between 0.55 and 0.85 when the central emission feature (in
blue) appears to fade, transforming the profile into a pure absorption

trough at about phase 0.75. The extended blue absorption wing
between ¹3500 and ¹2000 km s¹1 is broadly constant around the
entire binary cycle, as is the red wing of the absorption structure in
the range +500 to +1000 km s¹1. The redward bump that lies
between about +1000 and +2000 km s¹1 shows modest changes
near phase 0. In C III, the redward absorption trough starts to
broaden at about phase 0.55, extending blueward to about
¹1500 km s¹1 by phase 0.75, before rapidly retreating to its original
shape by phase 0.85. As in C IV, the red wing of the absorption
trough in C III is stable throughout the cycle. The same pattern of
variations is largely repeated in the Si IV line. Neither the C III nor
Si IV lines show an obvious counterpart to the extended blueward
absorption wing (¹3500 to ¹2000 km s¹1) seen in the C IV line. The
variations in each line are repeated in all three HST visits.

Although these HST data permit many possible interpretations of
the line composition, for illustrative purposes we present the two
extreme cases as phase-folded trailed ‘grey-scale’ images in Fig. 5.
In the first case (central panels) we subtracted a template with the
strongest emission structure (an average of phase bins 0.975, 0.025
and 0.075), pushing the residuals into absorption. The lower images
show the case where we have instead subtracted a template of the
deepest absorption profile (an average of spectra in phase bins 0.725
and 0.775) from all phase bins, forcing the residuals into emission.
In essence, these opposing approaches reveal the cyclic pattern that
arises if the changes are largely driven by variations in an absorption
component (central panel) or an emission component (lower panel).
We emphasize that intermediate cases (emission and absorption)
are also possible. Two further aspects of the data arising from this
analysis are considered below.

4.1 Comparison of the profiles at phase 0.775

In Fig. 7 are overlaid the profiles of the C III, Si IV and C IV lines
observed at phase 0.775 when the line fluxes are at minimum. These
profiles suggest the presence of a common absorption component.
The blueward limit of this component at ¹1500 km s¹1 is obvious
in the C III and Si IV lines. In the C IV line it is perhaps less evident
owing to blending with an extended blueward absorption wing, but
it can be identified with the shoulder at ¹1500 km s¹1. The redward
limit of the trough is also well defined by the common redward
shoulder in the C III and C IV lines at about +1200 km s¹1. A
consistent limit is also measured in the Si IV line from the longward
limit of the redward doublet component (which occurs around
+3100 km s¹1 on the velocity scale of Fig. 7).

We thus conclude that all three lines harbour an absorption
component between ¹1500 and +1200 km s¹1, which is most
easily isolated, and cleanly characterized by the C III line shape at
phase 0.775. The minimum of the C III line appears displaced
blueward of rest velocity, perhaps by as much as 350 km s¹1. The
minimum of the Si IV line, as measured from a double Gaussian fit to
the profile in which the component widths were held equal and the
flux ratio allowed to depart from 2:1, is ¹1426172 km s¹1. In the
case of C IV, the minimum is displaced blueward by about
800 km s¹1, but this is most likely a consequence of blending
with the extended blueward wing that only this line possesses. It
is unclear whether the common absorption profile outlined here is a
single structure or a superposition of two absorption components
(one constant, the other variable perhaps). We return to this in
Section 5.3.

We also comment on, but do not pursue, the fact that the N V and
C II lines possess rather different structures at phase 0.775 from
those witnessed in the other lines. For clarity, the data for these two
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Figure 6. The top panel shows the mean Si IV line profile (solid line) (left-
hand scale) and the variance profile (dotted) (right-hand scale). The vertical
dashed lines mark the rest velocity of each doublet component. The velocity
scale is with respect to the blueward component. The lower panel is similar
but for the C IV line, and the dashed line marks the position of rest velocity
for the weighted centroid of the doublet (1549.05 Å).



lines are presented in the lower panel of Fig. 7. The minimum in the
N V line occurs near +300 km s¹1 and the blue wing shows no
evidence of the sharp truncation of the trough at ¹1500 km s¹1 that
is detected in the profiles of the C III, Si IVand C IV lines. The N V line
is contaminated significantly on its red wing by C III l1247 (which
is seen at 2080 km s¹1 on the velocity scale of Fig. 7). The C II line is
much narrower (full width at base ,900 km s¹1) than any of the
lines shown in the upper panel. To make a further exploration of
possible differences between lines of different ionization state, we
also folded the flux curves of the lines on the 2.6-h period. While we
found marginal signs that the mid-ionization lines of C IV and Si IV

may reach maximum depth after the lower ionization lines (e.g. C II)
by perhaps 0.05–0.1 in phase, there was no confirmation of the
trend from the high-ionization line of N Vor from the mid-ionization
line of C III, variations for both of which are more reminiscent of that
in C II.

Finally, we note that the underlying absorption profiles discussed
above, and indeed the line-blanketing evident throughout the UV
spectrum of V795 Her, could very well originate in a disc photo-
sphere – see for example, Diaz, Wade & Hubeny (1996) and Long
et al. (1994).

4.2 Radial velocity motion

Close inspection of the ‘grey-scale’ images in Fig. 5 hints at radial

velocity motion within the lines, perhaps best seen in the lower
panel of the C IV data where the emission feature appears to drift
blueward between phases 0.9 and 1.4. To quantify this motion, we
have made measurements of the C IV and C III spectra after subtrac-
tion of the line profile at phase 0.775. Measurements were not made
for the Si IV line because the doublet components are partially rather
than completely blended. The steps in preparation of our spectra for
this measurement are shown in Fig. 8 – the example here is for
phase 0.025.

We used a simple measure, the weighted centroid, to determine
the line velocity. In the case of C IV, we included data in the range
1539–1560 Å (¹1950 to +2120 km s¹1), the velocity being refer-
enced to a weighted rest wavelength of 1549.05 Å for the unre-
solved doublet. For C III, the centroid was deduced using data
between 1169 and 1177 Å. The results are shown in Fig. 9 and
Table 1. Uncertainties were deduced after scaling the data errors so
as to normalize the reduced x2 to 1.0.

As evident in Fig. 9, there is a discrepancy between both the
amplitude and mean velocity of the motion inferred from the C III

and C IV lines. However, this outcome depends on whether the
redward extension (see Section 4 and Fig. 4) (1554–1560 Å, i.e.
,1000–2100 km s¹1) of the C IV line is included. Table 1 (case B)
demonstrates that restricting the measurement domain for this line
to the range 1539–1552 Å (¹1950 to +570 km s¹1), i.e. omitting the
redward extension of the C IV line, brings the velocity amplitude
into broad agreement with that seen in C III. The remaining mean
velocity offset of about 90 km s¹1 might, however, be all but
accounted for if the flux ratio of the C IV doublet was closer to the
optically thick value of 1:1 than the adopted 2:1 (the limiting effect
would be to shift the mean motion of the C IV line blueward by about
<80 km s¹1). While the emission peak is undoubtedly, and sub-
stantially, blueshifted, the reality of the radial velocity modulation
is less certain. Some of the profiles (e.g. around phase 0.025) show
slightly asymmetric shapes which may reflect a multi-component
structure. If so, simple experiments with as few as two independent
components show that the radial velocity motion could be
accounted for by uncorrelated changes in the intensities of the
components.

We also searched for evidence of radial velocity motion in the
simpler, pure absorption-line profiles. Specifically, we investigated
the absorption line at 1345 Å and the pair of features at 1419 and
1430 Å via a cross-correlation technique. While the results of the
cross-correlation analysis on the latter two lines (supported by
Gaussian fitting to the 1419 Å feature) suggest a small 2.6-h radial
velocity modulation with a semi-amplitude of 95657 km s¹1 and a
blue-to-red crossing phase of 0.8360.1, we could find no corrobor-
ating motion in the 1345- Å line.

5 D I S C U S S I O N

In the preceding sections, we have described the basic temporal and
spectral properties of the UV spectrum of V795 Her apparent in our
HSTobservations. The behaviour of the source is different from that
during our earlier IUE studies, with the dominant time-dependent
phenomena now being tied to a 2.6-h rather than a 4.8-h period. One
implication of these HST observations is that, if the 2.6-h period
were the binary period, they would place V795 Her back amongst
the more conventional non-magnetic cataclysmic variables where
UV line variations, when detected, are on the binary period (for
example, see Drew 1993). In this section, we consider possible
interpretations of the line profiles. We begin by commenting briefly
on the extended blueward wing of the C IV line.
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Figure 7. Upper panel: profiles of the C III (solid), Si IV (dashed) and C IV

(dotted) lines from phase 0.775, normalized to the same local continuum
level, and overlaid. Lower panel: a similar overlay of the N V and C II lines.
Note that, here, zero velocity for the N V, Si IV and C IV doublets corresponds
to the rest wavelength of the blueward doublet component in each case.



5.1 The high-velocity C IV absorption component

The asymmetric, blueward absorption trough is present at all phases
in the C IV line and can be traced shortward of ¹1500 km s ¹1 to
perhaps ¹3500 km s ¹1. It is, however, difficult to determine the
blueward limit of the C IV absorption wing, owing to the effects of
line blanketing and more distinct absorption lines, notably at about
¹4000 km s ¹1 (1527 Å). This line and the less prominent feature at
¹2750 km s ¹1 (1534 Å) are presumably due to Si II l1526.7 and
Si II l1533.5. The extended C IV absorption component, which we

associate with a fast wind outflow in V795 Her, has no obvious
counterpart in the Si IVor C III lines. The relative stability of the C IV

profile between ¹3500 and ¹2000 km s¹1 suggests that any asym-
metry in the wind outflow is small or viewed at low inclination.

5.2 A narrow-emission-line interpretation?

We demonstrated in Section 4 that the dominant variations in the
lines are confined to the domain of the ‘emission peak’. This feature
is present in each of the three lines studied in most detail, but is most
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Figure 8. The upper panels show an overlay of the C III, Si IV and C IV line profiles from phases 0.025 (solid) and 0.775 (dashed). Note that to remove cycle-to-
cycle variations in the overall flux level, the spectra in these plots have been normalized to the same level via comparison of ‘continuum’ regions adjacent to each
line. The lower panels show the corresponding difference profile which in each case is dominated by an emission component. The dashed vertical lines indicate
the rest velocities of the lines (for C IV, it is for the weighted centroid of the doublet).



clearly identified in C IV where the extended blueward absorption
structure helps to separate it, visually, from the local continuum.
Most simply, the appearance and variation of the profiles
suggest that a narrow emission component (FWHM,1000 km s¹1)
is primarily responsible for the changes seen. These occur
mainly in the short interval between phases 0.55 and 0.85, during
which the emission fades away gradually to a minimum at
phase ,0.775 and then recovers rapidly. Significantly, this
emission peak is indisputably blueshifted to a mean radial velocity
of around ¹600 km s¹1.

If correctly identified as a narrow emission feature, this compo-
nent poses a severe challenge to any conventional source of
emission within the system. In disc-accreting binaries, one location
often invoked to explain narrow, low-velocity-amplitude optical
emission-line features is a bright spot where the infalling stream
from the secondary star interacts with the outer disc. One might be
tempted to associate the narrow UV emission feature in V795 Her
with a putative bright spot – note there is no reliable information on
the phasing of inferior conjunction of the secondary star in
V795 Her. However, the mean motion of the bright spot should
reflect the systemic motion. In V795 Her, the ,600 km s¹1 net
blueshift of the UV emission feature is implausibly large and is
discrepant with the roughly centred locations of the optical emis-
sion lines – there is no obvious optical counterpart to the UV
emission peak. The width of the feature is also somewhat larger than
might be expected for material circulating at the edge of the disc.

Another hypothetical source for the narrow emission peak would
be part of an infalling stream that overflows the disc edge and re-
impacts closer to the white dwarf (e.g. Armitage & Livio 1996, and
references therein). The lack of substantial radial velocity excur-
sions essentially rules out the possibility that we could be viewing
such overflow at large inclinations. Appealing to a low-inclination
scenario is not convincing either. The blueshifted motion would
imply an upwardly directed flow, but it is unlikely that this could
come from the initial deflection of the overflowing stream after
impact with the disc edge, since the deflection angle is believed to
be very small. Whether the re-impact of the stream near the inner
disc could produce a splash-back with sufficient vertical motion is
uncertain (and untested), but in any case it is unclear why we would
see only the splash-back in emission and no sign of the subsequent
infall. It must be remembered that one also needs either to hide the
emission source and/or to introduce compensating absorption over
the same velocity regime to account for the decline of the feature
around phase 0.75.

We conclude that, while it is tempting to attribute the 2.6-h
changes of the UV lines in V795 Her to a narrow emission
component, we are not yet able to find a convincing source within
the binary that could account for its observed properties. An
alternative interpretation is considered in Section 5.3.

5.3 Competing models

Two models have recently been floated to explain the apparent
double S-wave in the wings of the optical emission lines in
V795 Her (Casares et al. 1996; Dickinson et al. 1997; see also
Haswell et al. 1994). The first, propounded by Casares et al. (1996),
employs a hybrid magnetic model in which a magnetic white dwarf,
accreting material from a disc, rotates synchronously with the
binary, the orbital period of which is assumed to be 2.6 h. Here
the double S-wave is associated with emission from material
diverging to feed two magnetic poles, but flowing in opposite
directions along the same magnetic field line rather than, as might
naı̈vely be expected, along azimuthally opposed field lines. Over-
looking the dynamical objections raised by Dickinson et al. (1997),
a significant concern for such a magnetic model is the lack of an
obvious 2.6-h pulse in the soft X-ray flux from the star (Rosen et al.
1995).

In rejecting the model of Casares et al., Dickinson et al. (1997)
advanced a stream overflow picture for V795 Her in which the
optical double S-wave is explained as a single, broad emission
component, the core of which is depressed by strong, superposed,
comoving absorption. This model is similar to that proposed by
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Figure 9. The radial velocity motion of the effective centroid of the emission
peak in the C III line (stars) and C IV line (circles). The C IV data represent
measurements that include data in the range 1539–1560 Å, i.e. incorporating
the redward extension on the C IV line. The solid curve is the best-fitting sine
wave to the C IV data.

Table 1. The mean velocity (Vm), semi-amplitude (Va) and
blue-to-red crossing phase (f0) derived from measurements of
the radial velocity motion of the emission peaks in the C IV and
C III lines. In case (A) for the C IV line, data between 1539 and
1560 Å were used (i.e. the redward bump is included). In case
(B), the redward bump was omitted from the analysis.

Line Vm Va f0

(km s¹1) (km s¹1)

C IV(A) ¹640650 330660 0.8060.04
C III ¹770640 120650 0.7360.09
C IV(B) ¹670630 160635 0.7660.05



Hellier & Robinson (1994) to explain the behaviour of the optical
lines in SW Sex stars. The broad emission component is believed to
arise from the fast-moving material where it re-impacts with the
disc, while the variable absorption comes from the stream over-
flowing the outer portions of the disc. Several substantial problems
remain with this model, as discussed in Dickinson et al. (1997),
but its basic tenets do at least provide a qualitatively plausible
explanation of the underlying optical line behaviour.

We now consider whether aspects of our HST UV data from
V795 Her might be reconciled with the basic overflow model. A
simple model that could explain both the optical and UV line
behaviour would be encouraging, although one must bear in mind
that we are generally considering lines in the UV which are
considerably more highly ionized than the optical lines. If an
overflowing stream is a correct explanation of the optical line
behaviour, it is likely that parts of it could also produce broadly
similar UV phenomena, even though the UVabsorbing and emitting
sites may not be coincident with the optical ones.

Although a broad emission component is not obvious in the HST
data, it is not necessarily surprising, since it is not obvious in the
optical lines either owing to suppression of the core by absorption –
its possible presence there was inferred from the wings of the lines.
In a crudely similar way, it may be possible to explain the
UV lines in terms of a broad emission structure (with a
FWHM ,1300–2000 km s¹1) which masquerades as the narrow
blueshifted emission peak owing to the presence of absorption
components that cut into its wings, mainly on the red side in C III and
Si IV but on the blue side too in C IV, i.e. the wind-formed blueward
absorption structure. Subtle hints that a broad feature might be
present in the UV lines come from the bump that is most promi-
nently seen just redward of the C IV line (around +1000 to
+2000 km s¹1), particularly noticeable around phase 0.0 before it
fades away around phase 0.5, and the filling-in of the region
between ¹1000 and ¹2000 km s¹1 (blueward of the peak) in the
C III and Si IV lines around phase 0.3–0.6. Both are qualitatively
consistent with the blueward migration of a broad emission feature
between phases ,0.1 and 0.5. In addition to circumventing the need
to explain the bump redward of C IV, a perceived advantage of
invoking a broad emission component is that its mean position is
located closer to rest velocity than for the narrow-emission-peak
case.

An important point to bear in mind here, however, is that it is not
possible to reproduce the line profiles observed between phases
0.875 and 1.525 solely by superimposing a broad, variable emission
component on the absorption structure seen at phase 0.775. The
narrowness and blueshifted nature of the peaks in the variance
profiles (Fig. 6) are also inconsistent with the notion that the profile
variability could be produced by uniform changes in a broad
emission component. We conclude that, if the lines do contain a
broad emission feature, the transformation observed between
phases 0.55 and 0.875 is dominated not by changes in that
component, but by changes in an additional absorption component
that spans the velocity regime between , ¹2000 and 0 km s¹1 and
which is effective only during that phase interval. This variable
absorption could not, however, arise from a geometric asymmetry
or absorption enhancement in a wind outflow, since it is tied to the
2.6-h period which is far longer than the radial transport or
rotational time-scale for the outflow.

Another problem is that, although the complex UV line profiles
make it difficult to quantify any radial velocity motion of a putative
broad emission component, simple simulations suggest that it
would be difficult to accommodate any motion that was as large

as that (,400 km s¹1) inferred from the optical data. In particular,
one would expect any substantial motion to affect significantly the
shape of the red absorption wing (between 0 and 1000 km s¹1),
contrary to the observations. The stability of the latter component
suggests that a relatively invariant absorption structure is present,
centred near rest wavelength. This could be associated with
absorption in a disc photosphere.

To investigate further a possible connection between the UVand
optical data, we derived light curves as a function of velocity
through the C IVand Hb lines. The results, shown in Fig. 10, provide
some evidence of correlated behaviour. Over the velocity range
¹1500 & v & 0 km s¹1 the C IV line shows a deep trough around
phase 0.75, i.e. when the narrow emission peak disappears – the
optical S-waves are at maximum blueshift then. The Hb line also
shows a flux dip near this phase, at least for data in the range
¹1000 & v & 0 km s¹1. On the red side of line centre, however,
while flux between 0 and 500 km s¹1 in the Hb line shows a strong
modulation that reaches a minimum near phase 0.4, and even earlier
in the 500#v#1000 km s¹1 bin (i.e. in approximate anti-phase with
the variation on the blue side), there is no corresponding effect in the
C IV line.

In the interpretation proffered for the optical line behaviour
(Dickinson et al. 1997), the flux variation is attributed mainly to
the absorption component (that overlies and moves with the broad
emission component) as it traverses the velocity window over which
the line flux is measured. This would explain the basic, roughly anti-
phased behaviour of the Hb flux either side of the rest velocity. In
the context of this model, the additional absorption invoked to
account for the loss of the narrow blueshifted emission peak in the
UV lines at phase 0.75 may no longer be a distinct component, but
merely the UV counterpart of the optical absorption component as
seen when it is near maximum blueshift. However, the model does
not transfer directly to the UV lines, since we do not see the same
behaviour on the red side of the line. In the UV lines, the absorption
must be more variable, being strong around phase 0.75 and much
weaker when redshifted at early phases in the cycle. We also face
the problem that the variable absorption which affects the UV lines
cuts in when the putative broad emission component is near
maximum blueshift (phase 0.55–0.875), and then seems to go
away. In SW Sex stars, such behaviour may be connected with
the presence of a flared accretion disc, the system inclination and
flare geometry conspiring to hide the absorbing portion of the
stream when flowing away from the observer (Hellier, private
communication). However, this probably only works for high-
inclination systems, and there is no evidence to date (e.g. eclipses)
that V795 Her is sufficiently inclined.

In summary, there remain many problems with the stream over-
flow explanation for the optical and (especially) the UV line
behaviour in V795 Her which will demand quantitative assessment
if the overflow model is to be a serious contender.

5.4 Variability in V795 Her compared with a T Tauri star

We end by looking at some points of similarity between the
behaviour of the UV lines in V795 Her and the Balmer lines in
the spectrum of the classical T Tauri star SU Aurigae. As a young
enough stellar object, SU Aur is still experiencing some accretion
from a circumstellar disc. As such it might be reasonable to draw
some parallels between it and V795 Her . This star has been the
subject of an intensive optical spectroscopic monitoring campaign
(Johns & Basri 1995) that has resulted in a characterization of the
pattern of variability as a function of projected velocity within the
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Ha and Hb line profiles. It has been found that Ha varies within its
blue wing on a period that matches the star’s rotation period of
,3 d. A similar effect is seen in the more transparent Hb line, where
anti-phased variations are also apparent in the red wing.

Johns & Basri (1995) have proposed that the pattern of variation
seen in SU Aur is consistent with what they refer to as an ‘egg-
beater’ model. The accreting star and disc are in an intermediate
polar configuration wherein the magnetic axis of the star is at an
angle with respect to the stellar rotation and disc axis. At the inner
edge of the disrupted disc, the flow divides between a magnetically
channelled accretion flow on to the star and a centrifugally driven
outflow (e.g. Shu et al. 1994). The inclination of the magnetic axis
breaks the axisymmetry and makes it inevitable that variation is
seen on the stellar rotation period. The blue wing variations in Ha

are attributed to the changing aspect of the stronger outflow
associated with the inner disc edge visible to the observer to one
side of the rotation axis, while the anti-phased red wing variations in
Hb are due to the stronger accretion flow on the other. The failure to
detect red wing variability in Ha is very plausibly an optical depth
effect.

The gravitational potential near the accreting star in a system
such as V795 Her is significantly deeper than in a T Tauri object. For
this reason one might expect phenomena apparent in the optical in
an object such as SU Aur to shift to at least the ultraviolet in
V795 Her. Could the blue wing variations seen in Ha in SU Aur be
analogous to those that we have described here in C III, Si IVand C IV

in V795 Her? The absence of obvious anti-phased red wing changes
is not a problem in that these lines, like Ha in SU Aur, are very
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Figure 10. Light curves of the C IV (top) and Hb (bottom) lines as a function of velocity within the line profile. Velocity bin boundaries are given in each panel.
Fluxes are inclusive of the continuum level.



probably significantly opaque. A key consideration for the analogy
seems to be the significance of the 2.60-h periodicity in V795 Her,
in that the analogy can only apply if this time-scale is identified with
the white dwarf rotation rather than with the binary orbit. As argued
by Dickinson et al. (1997), synchronism between the white dwarf
spin and binary orbit seems implausible. We therefore have to
conclude that this hypothesis can only be appropriate if the orbital
period of V795 Her is not 2.60 h.

Whether this picture is viable remains to be established. If a disc
is present, a centrifugally driven outflow would require that the
magnetospheric radius, Rmag, lie beyond the corotation radius, Rco –
otherwise the circulating disc material would exert a spin-up torque
on the white dwarf. However, for a white dwarf rotation period of
2.6 h, the corotation radius would already lie close to the edge of any
disc that could comfortably fit inside a binary with a period of less
than about 6 h. This suggests that if the condition Rmag > Rco holds
in V795 Her, either it is unlikely to possess a conventional
Keplerian accretion disc, or the binary period is substantially
longer than 6 h. Moreover, in the absence of a magnetic interaction
between the stellar components, it is hard to see why the white
dwarf has not already been spun up to a much shorter period than
2.6 h, unless either the binary period is very long (, 1 d) in which
case we might hope to have seen evidence of an evolved secondary
star, or we have caught the system in a short-lived (,105 yr) era in
its life during which this spin-up is taking place.

A caveat to this discussion arises if there is magnetic coupling
between the stars. Recent work examining the relation between the
orbital and spin periods in the intermediate polar EX Hya (King &
Wynn 1998) shows that a slowly rotating white dwarf can exist in a
system the orbital period of which is a factor of a few longer than the
spin period. Here there is no conventional accretion disc. The
infalling material from the secondary star interacts directly with
the white dwarf field and can lead to episodes of accretion and
ejection on the spin period which depend on the orientation of the
field with respect to the companion star. In this context, it is worth
noting that spin-phase-dependent absorption on the blue side of the
C IV line may also have been seen in HST observations of EX Hya
(Stavroyiannopoulos et al., in preparation; Long, private
communication). If V795 Her is similar, we might anticipate an
orbital period of 4–8 h, perhaps raising speculation about the origin
of the 4.8-h periodicity in the IUE data. However, the lack of
reported phenomena at this period in other wavebands might weigh
against such a notion. One would also have to consider whether the
optical behaviour in V795 Her were compatible with this picture
and, perhaps more importantly, whether one could explain the
apparent lack of a prominent 2.6-h X-ray modulation. Nevertheless,
the HST results, when considered alongside the broadly analogous
behaviour seen in SU Aur and perhaps EX Hya, will ultimately have
to be weighed against the prevailing view that the binary period of
V795 Her is 2.6 h. It also seems that a magnetic scenario for
V795 Her has yet to be laid to rest.

6 C O N C L U S I O N S

We have presented highly time-resolved HST UV spectroscopy
of the nova-like binary V795 Her. The 4.8-h variation detected in
the line fluxes during earlier IUE observations is no longer
evident, being replaced by a strong signal at the 2.6-h period.
This change in temporal behaviour, which seems to be accom-
panied by changes in the line spectrum, suggests that the HST
observations caught the system in a rather different state from
our earlier IUE observations. While no coherent pulse is detected

in the UV continuum, a ,15-min QPO-like phenomenon, similar
to that seen in earlier optical and X-ray light curves, is present.

The least contentious feature of the UV lines is the asymmetric
blueward absorption trough which is seen only in the C IV line. We
associate this structure, which is approximately constant through-
out the binary cycle, with an outflowing wind. However, it is
relatively weak and partially blended with time-variable structures
in the line core.

The 2.6-h variation in the lines is restricted to a narrow velocity
range between about ¹1500 and 0 km s¹1, i.e. concentrated almost
exclusively on the blue side of the line. Naı̈vely, a variable, narrow,
blueshifted emission component provides the most obvious expla-
nation for the 2.6-h cycle in the C III, Si IV and C IV line profiles.
However, we cannot identify a convincing source within the system
that could account for its highly blueshifted velocity and flux
variability. We examined the UV data for signs that a self-absorbed,
broad emission component might be present in the lines, as
proposed to explain the optical data presented by Dickinson et al.
(1997) where it was tentatively associated with stream overflow of
the disc. There is some circumstantial evidence that a broad
component may contribute to the UV lines, but we are not able to
isolate it reliably. If a broad component is present, it appears that a
phase-dependent, blueshifted absorption component is also needed
to account for the gross 2.6-h line variability. Nevertheless, several
qualitative and quantitative problems remain with the basic over-
flow picture, and a convincing model for the system remains
elusive. In addition, it seems that the line profiles contain a broadly
phase-stable absorption component which, along with clear signs of
line blanketing across the UV spectrum, indicates that absorption,
perhaps in a disc photosphere, is an important component in the
lines of V795 Her.

Finally, we note some similarities between the velocity-
restricted changes in the lines of V795 Her and the optical lines
of some T Tauri stars. Related behaviour may also have been
observed in UV data from the intermediate polar EX Hya. In
T Tauri systems at least, the variability may be associated with
magnetically controlled inflows and outflows tied to the rotation
of the central star. If evidence of a link between V795 Her and
T Tauri stars (and perhaps EX Hya) is eventually confirmed, we
will need to revisit the question of whether the 2.6-h period is
really orbital, and indeed whether V795 Her is truly distinct from
intermediate polars.
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