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ABSTRACT

This paper develops a framework for analysing and calcglaystem optimizing flow and
externalities in time-dependent road networks. The ealigies are derived by using a novel
sensitivity analysis of traffic models. The optinmgtwork flow is determined by solving a
state-dependent optimal control problem, which assigtfisictsuch that the total system cost
of the network system is minimized. This control théor®rmulation can work with general
travel time models and cost functions. Determinigtieue is predominantly used in dynamic
network models. The analysis in this paper is more gémerd is applied to calculate the
system optimizing flow for Friesz’'s whole link traffimodel. Numerical examples are
provided for illustration and discussion. Finally, someatading remarks are given.



1 INTRODUCTION

Dynamic traffic assignment models of route and depatiome choice for travellers through
congested networks provide important insight into the dycwanof peak periods and
sensitivity of travellers’ behaviour in response toaage of transport policy measures. In
general, formulations of dynamic traffic assignmeotlofv the extension of the two
Wardrop’s principles: user equilibrium and system optimiihe dynamic user equilibrium
assignment has been the focus in the past two decaslesrelult, we have already gained a
substantial knowledge on the formulations, properties, soidtion methods of dynamic
equilibrium assignment.

This paper aims to analyse the dynamic system optimanassnt with departure time
choice, which is an important, yet underdeveloped ardw dynamic system optimal
assignment process suggests that there is a centrédrfsysanager” to distribute network
traffic over time within a fixed horizon. Consequentlye total, rather than individual, travel
cost of all travellers through the network is minieds Although the system optimal
assignment is not a realistic representation of netwalffic, it provides a bound on how we
can make the best use of the road system, and astssiehuseful benchmark for evaluating
various transport policy measures.

Proceeding after Heydecker and Addison (2005), the trastlioccurred by each traveller is
considered to have three distinct components: a c@dedeto the travel timen route and
time-specific costs associated with the departure tiimibeotraveller from the origin and the
arrival time at the destination respectively. Given dksigned network flow, the associated
travel times through the network are determined by aidraibdel. The travel times then
influence the arrival times of travellers and hence tilavel costs incurred. Following the
Daganzo (1995) and Mun (2001), to ensure the satisfaction efadawecessary physical
principles such as proper flow propagation (or consisteetyden flows and travel times),
non-negativity of flow, first-in-first-out (FIFO) queudiscipline, and causality, the traffic
model adopted in this paper considers the travel timeaah énk to be a linear non-
decreasing function of link traffic volume.

Many previous analyses on dynamic system optimum andnektes adopted an optimal
control theoretic formulation with Merchant and Nembker’s (1978) outflow traffic model.
On the one hand, this formulation provides some atteaatmathematical properties for
analysis. On the other hand, however, it ignoresith@rtance of ensuring proper flow
propagation. In addition, the outflow models have alsenbwidely criticized for their

implausible traffic behaviour (see Astarita, 1996; Heydeaker Addison, 1998; Mun, 2001).

In addition to the system optimizing flow, it is notidwht each additional traveller, who enters
the system at a certain time, imposes an additioaselt cost on the others who enter the
system at that time and thereafter. Understandingaheenof this externality is important in
managing dynamic network. Previous research on thenektgrwas specific to certain kinds
of traffic models. Some traffic models adopted in sopnevious studies were even now
considered to be implausible for various reasons. Thisrgapisits the dynamic externality in
a more general and plausible way. We develop a novelisén analysis of the traffic models
and apply it to derive the externality in an optimaltcolritheoretic formulation.

In Section 2, we first present the formulation andessary conditions of the dynamic system
optimal assignment in the next section. The dynamitesy®ptimal assignment problem is



formulated as a state-dependent optimal control prolieftewing Friesz et al., (2001), we use
this to analyse and solve dynamic system optimal assignpneblem. To solve the dynamic
system optimal flow and analyse the associated fiterpalities, a novel sensitivity analysis
of the traffic model with respect to the link inflow islapted. The sensitivity analysis is
developed through flow propagation mechanism and the anaysig confined to a specific

traffic model. Indeed, we apply the sensitivity anaysi deterministic queuing model and we
are managed to restore previous analytical resultsli(@td Smith, 1993; Kuwahara, 2001).
Then, solution algorithms are presented for implemerttiegsensitivity analysis and solving
the dynamic traffic assignments. With the solutiogoathms, we show some numerical
calculations and discuss the characteristics of theltse Finally, some concluding remarks
are given.

2. SYSTEM OPTIMAL ASSIGNMENT AND EXTERNALITY

2.1 Formulation

The system optimal assignment with departure timecehtr fixed travel demand can be
formulated as the following optimal control problem. Tdwtimization problem (1) — (6)

looks for an optimal inflow profileg, (s), which minimizes the total system travel cost within
the planning horizon given a fixed amount of total throughput:

E?(isr; Z-= ;]Ca (s)e,(s)ds (1)
subject to:
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The objective function was adopted by Merchant Biesnhauser’s (1978), and by several
other researchers since then. Proceeding after ddkgd and Addison (2005), this study

considers the total travel ca8t (s) encountered by each traveller on the travel lirk thaee

distinct components. The first component is theetgspent on travelling along the link, which is
determined by the travel time model that is adapiledaddition to the travel time, we add a

time-specific costf[ra(s)] associated with arrival timera(s) through routep at the
destination. Finally, we add a time-specific cb§s) associated with departure from the
origin at times. Possible choices of these time-specific costtions are investigated by
Heydecker and Addison (2005). Consequently, thal toavel costCa(s) associated with
entry time to linka at time s is determined as a linear combination of theséscas



C,(s) = h(s)+[7,(s) = s] + [z, (s)]. (7)

The notationr, (s )denotes the exit time from the lirgkfor traffic which enters at time.
Following Daganzo (1995) and Mun (2001), we consider the exit tjj(® to be a linear
non-decreasing of link traffic volume, (s , hence plausible traffic behaviours such as FIFO
gueue discipline and proper flow propagation are guaranteddwirg) Friesz et al.’s (1993),
we consider thatr,(s) takes the functional form as

X, ()
= a , 8
r,(s)=s+¢ + 9 (8)

a

where the amount of whole link traffic at tiraés represented by, (s .)The free flow travel
time and the capacity of the travel link are deddig ¢, and Q, respectively. Equations (2)
ensure the proper flow propagation along each rowmtehich G, (s) denotes the cumulative
outflow by the exit timer, (s) . Equations (3) are the state equations that gaverevolution
of link traffic, x,(s). The variablese,(s) and g,(s) represent the flow rates at tinseof
inflow and outflow respectively. Equations (4) defithe cumulative inflonE, (s) . Equation
(5) specifies the amount of total throughpd§ generated in the system within the time
horizonT. Conditions (6) ensure the positivity of the contvatiable,e,(s), for all timess.
Given a positive inflowe,(s), the corresponding outflowg,(s) and link traffic volume
X,(s) is guaranteed to be positive (see for example, ,M®1). Hence, we do not add

explicit constraints to ensure the non-negativifygg(s) and x,(s). The class of traffic

models considered in this paper has been showatisfysFIFO structurally (see, for example,
Daganzo, 1995; Mun, 2001), we do not need to agiceaplicit constraint for this.

2.2 Analysis

One technical difficulty is that with the trafficadels above, the time lag between changes to
the control variableg, (s), and the corresponding responsgs(s) , is state-dependent. This

state-dependent control theoretic formulation isrthodox. Its properties and application to
dynamic equilibrium were studied by Friesz et 2DQ1l). As an extension to Friesz et al.
(2001), the necessary conditions for the state+tgr® system optimization problem are
given by the following the proposition.

Proposition 1: The necessary conditions for therojation problem (1) — (6) can be

derived as
>0=>C,(s)+ I ‘Zﬁ &, (Ot + A, (9) = A,[1.(9)] = () = 4
e,(s) o s ,0a,0s0[0,T]
=0=C,(9)+] Zﬁ &, ()t + A, (8) = A,[7. (9] 2 44 (8) = V4
9)

where 1, (s) = v, is constant with respect to time and its magnitisdgéetermined by
the predefined amount of throughput.



Proof:
See Appendix A in Chow (2006). [

The notation A, (s ) and /la[ra(s)] denote the costate variables at timgesand 7,(s)
respectively, where
T
IXCE Qi [@+ Flr.©De,at. (10)
a t=s
This costate variable represents the sensitivity ofvidae of the objective function with
respect to the changes in state variable] at(the associated time.

The first term on the left-hand-side of (9, (s , i$ the cost experienced by that additional
traveller given the current traffic condition, anck timtegral in the second term on the left-

T
hand-side of (9)W,(s) :faca e, (t)dt, is the additional travel cost, which is regarded as
0 s |t

externality, imposed by an additional amount officaus, at times to existing travellers in
the system. Capturing the externality is importemtmanaging dynamic network, and it

. : e oC . .
requires knowing the sensitivity of the total trwest 3 2| for each departure timewith
u

S It
respect to a change af in the link inflow a particular times. In this study, we consider
parametersis of the form for which
de,(t) |1 if tO[s,s+ds)

du, |0 otherwise

in whichdsrepresents the incremental time step. Differeingaboth sides of (7) with respect
to us, we have

oC,
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3. SENSITIVITY ANALYSISOF TRAFFIC MODELS

Calculating the externality’, (s dequires the sensitivity of traffic models with pest to

perturbations in link traffic inflow. Consequentlghe section derives a novel expression for
the sensitivity of the time of exit with respectgioch perturbations in inflow, which is given
in the following proposition.

Proposition 2: Suppose there is a change ohthe link inflow rate at a particular
time s, the sensitivity of the time of exit atnaetis with respect to this perturbation can
be calculated as

t
o7, =i{ f Md/(+ga(t)ara } (13)
ousf Qu |y=gy dUs Yslou
Proof:

See Appendix B in Chow (2006). [



The derivative of exit time with respect to the chanfye io inflow is then expressed in terms
of the dependence of the inflow profiég(s in whichs lies betweersand o, (s), the current

outflow g, (s), and the derivative of exit time at the time of entry(s).

4. SOLUTION ALGORITHM

We propose the following procedure to solve for the dynaystem optimal assignment with
fixed travel demand:

Step 0: Initialisation

0.1 Choose an initial equilibrium co€X; ;

0.2 Set the overall iteration counter=1;

0.3 Sete, (k) :=0 for all linksa, alJ[1, A], and all timesk, k[J[0,K]. The notatione, (k)
represents the assigned inflow to liakbetween timeskAs and (k +1D)As. The total
number of simulated time steps is denotedasT /As and the total number of parallel
links is denoted by; set time indeX :=0;

0.4 Set costates, (k) := 0 for all timesk O [0,K }

0.5 Set the link indexa:=1,;

0.6 Set the time indek :=0;

0.7 Set the overall iteration counter:= . 1

Step 1: Network loading
Find 7_(k + 1) by loading the travel link using the infloe; (k) at the current iteration. The

network loading algorithm “Algorithm D2” describad Nie and Zhang (2005) was adopted
for this purpose.

Step 2: Calculating externality
Use Algorithm 2 to calculate the externally, (k) associated with eaod) (k).

Step 3: Determining the auxiliary inflow
3.1 Calculate

C,(k+1) =h(k+1) +[r,(k +1) - (k + D]+ f[r, (K + D]+ W, (k +1) + A, (k) - A, [r, (K)];
C,(k+1)-C (k) 0Q

3.2 CalculateQ = and Q'=

As de, (K)

in which f'[ra(k)] = f[r; ((kkili)]:;[(ri)(k)]

1
=1+ f' k+D|)—,
(1+ [ra(+>])Q

a

using a finite difference approximation;

3.3 Calculate the auxiliary inflond, (k) = -2 )Q- K’ with the second-order searching

direction.
Step 4: Stopping criteria for calculating auxiliaftpw
4.1. Check if |C,(k+1) -C,,

inner iterations, then go to step 4.2; otherwisens:=n' + 1and go to step 1.

< & orn' is greater than the predefined maximum number of




4.2.1f k =K, then go to step 4.3; otherwike k + 1 and go to step 1;
4.3. If a= A, then go to step 4.4; otherwige= a + 1 and go to step 0.6;

4.4. Check if the total throughpuk,, => > e, (k) from the system is equal to the

Oa Ok
predefined total demand,q for the o-d pair. If yes, thenterminate the algorithm;

‘] od Eod
dE,,
dcC’

otherwise updateC,, :=C,, + , and go back to step 0.3. The derivative

:CE:—T‘ is given by Heydecker (2002).

od

Step 5: Determining step size
Search for an optimal step sigeby using golden section method and update thevinfis
e, (k) := max[e, (k) + &, (k),0] for all timess such that the total system cost is minimized.

Step 6: Calculating the associated costate varisible
6.1Set the link indexa:=1;

6.2 Setd,(K)= 0Q
6.3 Set the time indek = K -1;

6.4 Computed_ (k) = A, (k+1) + {1+ '[r, (K)]) efék) As:

a

6.5 Calculatela[ra(k)] from A, (k) and7,(k ) using linear interpolation as

(0] /]ahra(k)j)(ra (k) - Ua (k)J) .

6.6. If k =0, then go to step 6.7; otherwise k - 1 and go to step 6.2;

Alr,()]= A, A

(k) +a,

6.7. 1f a= A, then go to step 7; otherwiae= a + 1 and go to step 6.1.

Step 7: Overall stopping criteria

Y. > e (K)C,(k+1) -C,
Define § = 22X as a measure of disequilibrium, which is equaieim

Z Z ea (k)C:)d

Oa
at system optimum. If is greater than the predefined maximum numbewefall iterations
or & is sufficiently small, i.ef <& wheree¢ is a test value, then go to stop; otherwise set

n:=n+1 and go to step 1.2.

5. NUMERICAL EXAMPLES

We first consider a single link, which has a fresvftime 3 mins and a capacity 20 vehs/min,
connecting a single origin-destination pair. Theef discretized time intervdls is taken as



1 min. We first show the numerical solutions of the lghiink traffic model. A parabolic
profile, which is specified as (14), of inflow is loadeditie travel link.

Lliao-ss ifo<s<40
e,(9=1° . (14)

0 otherwise

To investigate the accuracy of the sensitivity analydig parabolic inflow profile is
perturbed at time 1. The associated variations in traned are plotted in Figure 1. The
variations are calculated according to equation (13). & dame figure, the variations
determined by using numerical finite difference methodadse plotted for comparison. To
calculate the finite difference, one extra unit ofamflis added at time 1, others remain
unchanged. The variations in travel times are thesulzied by repeated link loading with the
original inflow profile versus the perturbed inflow profilehe result shows that the analytical
variations given by equation (13) can represent the truatieas in travel time reasonably
well. Both numerical and analytical derivatives drop épozat time 83 when all traffic is
cleared from the link.
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Figure 1 Sensitivity of travel time with respect to atperation in inflow

To calculate the dynamic traffic assignments, oneenticavel link having a free flow travel
time 4 mins and a link capacity 30 vehs/min is added to thensyBterthermore, the origin-
specific cost is considered to be a monotone linearttikmof time with a slope -0.4. The
destination cost function is piecewise linear, withpemalty for arrivals before the preferred

arrival timet” =50, and increases with a rate 2 afterwards. The lengtthe planning
horizon [0, T ], whereT=100, is set such that that all traffic can be rdday timeT. The total

amount of trafficJ_, is taken as 800 vehs. Figure 2 shows the correapgprprofiles of

inflow and outflow, and the total travel cost augiQrium. The traffic is assigned to the route
1 during times 18 and 49, and to route 2 duringesirdl and 49. The route flow volumes
using route 1 and route 2 are 380.25 (vehs) and781®ehs) respectively. The measure of
disequilibrium & achieved is below 18. At dynamic user equilibrium, the total system

travel cost is 12,465.2 veh-hr.

Figure 3 shows the assignment of the dynamic systetimum. With the same total
throughputJog, the period of assignment to route 1 expands fiioras [18, 49] to times [4,
56], while that to route 2 expands from times [29] to times [6, 50]. In general, the profiles
of route inflows are more spread at system optinlmeduce the intensity of congestion on
the routes, whilst maintaining the same volumerabdl. The associated total system travel



cost at system optimum is decreased from 12,465.2 veh4msein equilibrium to 11,447.3
veh-hr. However, due to the addition of externality &imel costate variables, the marginal
social cost at which travel takes place increases 658 min at user equilibrium to 21.78
min at system optimum, although the system optimizing ftmauses the decrease in total
system cost.
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Figure 2 Equilibrium assignment uFegg3 System optimal assignment

To illustrate the cause of the decrease in systemeltcast, Figure 4 shows the link traffic

volumes at user equilibrium and at system optimum. Eumtbre, using the sensitivity

analysis of traffic models described in proposition 2,ekternalities imposed by travellers to
the system at equilibrium condition and system optiroall¢ion are also calculated and the
numerical results are plotted in Figure 5. Interesyingét importantly, the results show that,
with Friesz et al's (1993) travel time model, the syst@ptimal assignment has to allow

queuing, and the externality that each traveller impaseshe others is not zero even at
system optimum. The system optimal assignment canmahage and minimize queuing and
externality of each traveller imposes on the othEhss implies that the previous analyses on
dynamic system optimum using the deterministic queuing hatdeot apply in general.
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Figure 4 Link traffic volumes Figure 5 Externalities

6. CONCLUDING REMARKS

The main contribution of this paper is the necessaryditions for dynamic system
optimizing flow. To solve the system optimal assignmemé also developed a novel
sensitivity analysis of traffic models with respectperturbations in link inflow. We then
presented solution algorithms for implementing theiteig analysis and solving the dynamic
traffic assignments. We also applied the algorithms to nuoalercalculations. The
characteristics of the results were discussed. Iricp&at, with Friesz et al's (1993) linear
traffic model, the system optimal assignment haslltavaqueuing, and the externality that



each traveller imposes on the others is not zero @&veystem optimum. We can only manage
and minimize queuing and externality of each travelgpases on the others. This implies
that the previous analyses on dynamic system optimum tiengdeterministic queuing model
do not apply generally.

The study gives us a deeper understanding of the nature aimdyrsystem optimal

assignment on a plausible framework. In addition to tls¢em optimizing flow, this paper
revisited the dynamic externality in a more genera plausible way. Furthermore, in the
present study, the formulation and analysis presentedeatacted to networks in which
capacity limitations of different routes are mutuallgtinct. We are currently exploring ways
in which this analysis can be extended to consider shatddr®cks in general networks.
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